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Abstract

Citizen science utilises public resources for scientific research. BirdTrack is such a project established in 2004 by the
British Trust for Ornithology (BTO) for the public to log their bird observations through its web or mobile applications.
It has accumulated over 40 million observations. However, the veracity of these observations needs to be checked and
the current process involves time-consuming interventions by human experts. This research therefore aims to develop
a more efficient system to automatically identify unreliable observations from large volume of records.

This paper presents a novel approach – a Hybrid Expert Ensemble System (HEES) that combines an Expert System
(ES) and machine induced models to perform the intended task. The ES is built based on human expertise and used as
a base member of the ensemble. Other members are decision trees induced from county-based data. The HEES uses
accuracy and diversity as criteria to select its members with an aim of improving its accuracy and reliability.

The experiments were carried out using the county-based data and the results indicate that (1) the performance of
the expert system is reasonable for some counties but varied considerably on others. (2) An HEES is more accurate
and reliable than the Expert System and also other individual models, with Sensitivity of 85% for correctly identifying
unreliable observations and Specificity of 99% for reliable observations. These results demonstrated that the proposed
approach has the ability to be an alternative or additional means to validate the observations in a timely and cost-
effective manner and also has a potential to be applied in other citizen science projects where the huge amount of data
needs to be checked effectively and efficiently.
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1. Introduction

Citizen science that engages the public to make their
contributions to a designated topic has been rapidly in-
creasing its popularity during recent decades and plays
an important role in some research areas (Bonney et al.,
2009; Wiggins et al., 2011; Wiggins and He, 2016), par-
ticularly on observations of the natural world such as
wildlife sightings.

The British Trust for Ornithology (BTO) is a chari-
table organisation that monitors bird populations in the
UK. On behalf of Royal Society for the Protection of
Birds (RSPB), BirdWatch Ireland, Scottish Ornitholo-
gists’ Club and Welsh Ornithological Society, the BTO
created a citizen science project called BirdTrack to en-
courage members of the public to submit their obser-
vations of birds, including Time, Location, Observer,
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Observed bird species, and Number of individual birds
seen, etc. To date over 40 millions of such observations
have been collected.

Naturally, observers vary in experience, so the sub-
mitted observations need to be screened for anomalies
before the data can be used for further analysis. The
most common anomaly is that species are misidentified,
particularly for rare species. Screening is done manu-
ally by a volunteer network of regional validators and
is certainly time-consuming. Validators can use a set of
locally-set filters on rarity, count and early/late dates for
migratory species and more importantly their own lo-
cal knowledge and experience to judge whether an ob-
servation is reliable or unreliable. Observations are la-
belled: “reliable”, “unreliable” or “under query”. Data
are also checked at a national level but resources for do-
ing this are limited. Sometimes unreliable records are
not identified in the first instance, but are picked up by
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data consumers when they attempt to analyse the data
and reported back to the data custodians.

Given the trend of increasing public participation,
the rate of submitted observations will increase rapidly.
Consequently, the burden of validating the observations
will continue to increase and has the potential to over-
whelm volunteer validators and ultimately compromise
the quality of the data (Lewandowski and Specht, 2015;
Lukyanenko et al., 2016; Bowser and Cooper, 2017).
Therefore, there is an urgent need to consider alterna-
tives such as artificial intelligence and machine-learning
systems, to do the task in a more efficient and effective
way. This motivates our research to develop an ensem-
ble of expert systems and machine learning classifiers to
identify unreliable observations in the BirdTrack data.

This research will also explore several issues that
should be considered when building a hybrid expert en-
semble system, including, specifically, how an expert
system can be built based on human expertise and com-
bined with machine induced classifiers, whether diver-
sity among the members can be used to build more re-
liable and accurate ensembles, and the number of mem-
bers needed for an ensemble. Our empirical results
provide some useful guidelines for applying ensemble
methods not only to this specific task but also to a wide
range of applications in citizen science projects in gen-
eral.

The rest of the paper is organised as follows. Section
2 reviews work related to the research, with a focus on
methods for data validation on citizen science projects.
Section 3 describes the proposed hybrid expert ensem-
ble framework. Section 4 explains the data, preprocess-
ing, partition and selection strategies. Section 5 presents
the experiment design and results. Section 6 evaluates
and discuses the work and results presented in the paper.
Section 7 gives conclusions and suggestion for further
work.

2. Related Work

The research on checking and validating the quality
of citizen science data has been carried out almost at the
same time as the citizen science was established simply
because it was clear that the quality of data contributed
by public varied significantly. Here we briefly review
some important related work.

Bonney et al. (2009) presented a protocol for some
citizen science projects, such as eBird – a continent-
wide bird monitoring program developed and run by the
Cornell Lab of Ornithology (CLO). Their protocol con-
sists of up to nine components and they emphasised that
“data quality is a critical issue for any citizen science

project”. Although they identified three measures that
could be used to ensure that the collected data are as ac-
curate as possible, there seemed no mechanism imple-
mented at time of this study to validate the data entered
into the system.

Wiggins et al. (2011) carried out a survey on the
mechanisms used for data quality and validation in citi-
zen science and found as many as 18 methods employed
in various projects. Of them, expert review is the most
common mechanism, employed in as many as 85% of
about 50 surveyed citizen science projects. This is obvi-
ously expensive or at least labour-intensive if conducted
by volunteers, and does not readily scale up for large
scale citizen science projects. They pointed out that
“one solution is applying data mining methods from
computer science or collaboration with researchers in
this area.”

The CLO did a case study (Bonter and Cooper, 2012)
on data validation for Project FeederWatch as they re-
alised that “to become more widely accepted as valuable
research tool, citizen science projects must find ways to
ensure that data gathered by large numbers of people
with varying levels of expertise are of consistently high
quality.” They designed a data validation system for this
project, which consists of some automated filters to flag
potential errors in bird observations for expert review.
These filters were primarily built with some check-lists
based on some simple statistical counts devised by the
experienced researchers. This semi-automated system
was tested on about 3.9 million submitted observations,
1.3% of them were flagged out for review and 97.7%
were approved. However, there was no further break-
down for positive and negative cases because the data
are obviously very unbalanced (much more valid cases
than invalid, i.e. positive cases). Nevertheless, this case
study demonstrated the feasibility and potential for us-
ing automated or semi-automated methods for data val-
idation and hence this idea inspired us to develop an
expert system to become a core member of our hybrid
ensemble system.

Another study (Wiggins and He, 2016) adopted
a mixed approach that involved relevant community
members participating in data validation. They carried
out a case study called iNaturalist. A sequential ap-
proach mixed some methods was used for validating the
data through interactions between community members
and the researchers/systems at different stages via vari-
ous devices (e.g. PC and Mobile etc.). They found this
approach was quite effective but its success was gov-
erned by several factors including the experience of par-
ticipants and the devices they used. This approach still
relies heavily on human participation and thus suffers
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from the very same issue that exists in any citizen sci-
ence project, i.e. the variable experience in humans, in
the first place. However, it should be noted that this
mixed approach, technically effective, bears a high de-
gree of similarity to our ensemble approach presented
in this paper.

In summary, these related studies directly or indi-
rectly pointed out that it would be more cost-effective
to employ artificial intelligence and machine learning
methods to build more accurate and reliable automated
or semi-automated systems to do the job. This is the
motivation of our research in developing a novel ap-
proach – a hybrid ensemble system that combines an
expert system and machined induced classifiers to vali-
date the bird observations more reliably and efficiently.

3. Hybrid Expert Ensemble Systems (HEES)

An ensemble is a machine learning paradigm that
combines the output of multiple individual models by
a decision fusion function with an aim of achieving
more accurate and reliable solution for a given problem.
Many ensemble methods (Dietterich, 2000; Wang et al.,
2001; Anifowose et al., 2016) have been developed and
applied to various problems (Perikos and Hatzilyger-
oudis, 2016; Kowalski et al., 2017; Liang et al., 2018).
However, an ensemble does not necessarily perform
better than individuals and a key factor that makes it
successful is that its members must be diverse enough
from each other(Yousefnezhad et al., 2016), i.e. hav-
ing different strengths and weaknesses to avoid making
the same mistake when working together, as obviously
an ensemble built with identical members does not im-
prove at all.

Many studies (Kuncheva and Whitaker, 2003; Wang,
2008; Richards and Wang, 2012; Rayana and Akoglu,
2016) have indicated that the models generated from
different learning algorithms such as neural networks
and decision trees, etc. are more likely to be more di-
verse than the ones generated from the same algorithms,
but no study has yet proposed to include any expert sys-
tems that are built based on human knowledge, which is
very useful and could be more diverse but difficult to be
represented by machine models induced from available
data. This is the main reason that this study proposes a
novel ensemble framework that combines an expert sys-
tem with several other machine generated classifiers to
form a hybrid ensemble.

3.1. Hybrid Ensemble Systems
Notation: Let E be a hybrid ensemble; hi a member

model (classifier) in E; S the decision fusion function;

N, the number of models in E; ci, a candidate classi-
fier in a pool C of machine generated classifiers, i.e.
ci ∈ {C}; acc(c) and acc(E) the accuracy of an indi-
vidual classifier and an ensemble respectively; D(E, hi),
a diversity measure between ensemble E and hi.

A framework of the proposed hybrid expert ensem-
ble system is depicted by Figure 1. As can be seen, it
consists of an Expert System, h1, and several machine
learning induced classifiers {h2, h3, ..., hn}, and their out-
puts are aggregated with a decision fusion function S .

Figure 1: The framework of the proposed hybrid expert ensemble sys-
tem shown on the left. The right figure illustrates the process for
building a hybrid expert ensemble system, ideally with the ES and
its complementary machine induced classifiers, hi, i = 2, ..., n

Construction of the hybrid ensemble requires confir-
mation that the output produced by the Expert System is
compatible with the output generated by the other clas-
sifiers and follows some strategies and rules to produce
hybrid ensembles with various combinations based on
the Expert System.

The main ideas and steps of a construction strategy
are as follows with the assumptions that the expert sys-
tem and a pool of candidate classifiers C have been built
(details explained in the next section).

• Take the Expert System as the first member of the
ensemble, h1.

• Select the most accurate classifier from pool C of
n machine generated candidate classifiers: C =

{c1, c2, ..., ci, ..., cn}, as the second member, h2, i.e.
h2 = max{acc(ci)},∀i = 1, ..., n.

• Choose ci ∈ {C * E}, to be h j, j = 3, ..., where:
ci has not already been included in the ensemble
E, and is able to introduce a maximum diversity
when added to the existing E, i.e. D(E, h j) =

max{D(E, ci)}.
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• Repeat the last step until the number of members
in E reaches a pre-set size N.

The rules above attempt to control factors which in-
fluence the accuracy of an ensemble in the experiment
and formalise the influence diversity has on the accuracy
of the ensemble.

3.2. Expert System and Machine Induced Classifiers

The hybrid nature of the proposed ensemble system
originates from the combination of expert system and
machine induced classifiers. The former is intended to
utilise the knowledge and experience of human experts,
which is difficult for the latter to represent as machine
induced classifiers can only learn from the data with a
learning algorithm and the data usually does not contain
human’s experience or common sense. So, each of them
is likely to capture different aspects of the underlying
problem and hence, possibly, be more diverse from each
other, and the combination of these two types of mod-
els in an ensemble provides a mechanism to utilise their
own strengths to compensate each other’s weaknesses,
and then produce more reliable and accurate identifica-
tion of unreliable observations. This section describes
how the expert system and machine classifiers are built.

3.2.1. Rule based Expert System
Expert observers have accumulated abundant experi-

ence from birdwatching and some of them have been
involved in manually checking and validating the sub-
mitted observations. Despite labour intensive and time-
consuming, they have been doing a reasonably good
job by labelling a considerable amount of unreliable
records. It is thus reasonable to use their expertise in
some ways in the proposed ensemble system, so, an
Expert System was built by following process adapted
from Ciarratano and Riley (2005):

• Conduct feasibility study: human experts and other
resources are identified and the size and scale of
the Expert System is considered.

• Rapid Prototyping: experts’ knowledge was ac-
quired and represented with a set of rules, and
an initial expert system was designed and imple-
mented with SWI-Prolog.

• Refine the system: The system was tested on the
validation data and then refined accordingly.

Two available veteran birdwatchers were identified
as experts and their experience, combined with infor-
mation gleaned from bird identification books (Couzens

and Nurney, 2013; Vinicombe et al., 2014) are extracted,
abstracted and represented by some simple rules as il-
lustrated in figure 2. It should be noted that this rule-
based expert system was developed with a trade-off be-
tween accuracy, simplicity and efficiency, which is a
common practice when implementing an expert system.

The expert system is tested in various Phases (details
given in later sections) with the data from three counties
and the results, given in Table 1, show that it achieved
good performance on one county, with the sensitivity
(defined in Section 3.4) between 67% and 81% on True
Testing data (explained in Section 4.2) even higher on
Validation data, but poor on the other two. These poor
results, however, are not surprising because the geo-
graphical distribution of bird species is often charac-
terised with locality, and the experience of human ex-
perts could also be limited to their local areas, and the
rules extracted from their knowledge are limited accord-
ingly as well.

Figure 2: The Expert System and an example of the rules built within
the expert system. An example of the explanation given by the ES
on the novice is that who has submitted less than about 100 complete
observations.

There is certainly room for improving the expert sys-
tem in a variety of ways, such as adding more de-
tailed rules, and/or devising sub-expert systems for each
county or region, etc. But as this study is more about
demonstration of the concept, on balance, it is consid-
ered to be acceptable as a core member of the hybrid
ensemble system for two reasons: (1) After all it repre-
sents human expertise to some extent, which could not
be directly learned through machine learning, and (2) it
can thus provide some complementary contribution to
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Table 1: Sensitivity of the expert system per core, per phase on three
representative counties: GBSTA, GBWAW and GBWMI.

GBSTA GBWAW GBWMI Phase
S C-fold S C-fold S C-fold

0.52 0.34 0.33 0.55 0.62 0.38 Phase 1
Validation Validation Validation

0.30 0.86 0.28 Phase 2
0.30 0.64 0.26 Phase 3
0.34 0.83 0.28 Phase 4

True test True test True-test
0.32 0.67 0.17 Phase 2
0.33 0.76 0.13 Phase 3
0.26 0.81 0.22 Phase 4

the hybrid ensemble.

3.2.2. Generating Machine Learning Classifiers
In principle, any machine learning algorithms can be

used to generate classifiers as the candidates for be-
ing considered as the members of a hybrid ensemble.
Therefore, at the early stage of this study, a number
of different algorithms were tried, including k-nearest
neighbourhood (kNN) method and logistic regression.
But due to the high dimensionality and quantity of the
data, they failed to produce viable results, even using a
high performance computing cluster. As a result a deci-
sion tree induction algorithm implemented in R, equiv-
alent to C5 (Kuhn et al., 2015), has been used primarily
because of its reasonably high accuracy, efficiency and
more importantly transparency.

However, due to limits in its implementation in terms
of handling the types of attribute and missing values,
the continuous attributes needed to be discretized before
ingestion into the program.

When inducing decision trees, four different data
preparations produced in experiment Phases 1 and 2
were applied to each of these subsets: 3 cores, 2 seg-
ments each (S & C-fold), 2 data representations with
discrete and continuous features to test which sets of
the features are more relevant and useful (Aldehim and
Wang, 2017; Cervantes et al., 2018), so several hun-
dreds of classifiers were induced as the candidates for
building hybrid ensembles. The details of data prepara-
tion and partition for training, validation and testing are
described in Section 4.2.

3.3. Factors need to be considered when building an
ensemble

As the ultimate objective of using an ensemble phi-
losophy is to improve the accuracy of solution for a
given problem, it is then important to know what inter-
nal factors influence the accuracy in order to build more
accurate ensembles.

This has been an active area of research (Kuncheva
and Whitaker, 2003; Wang, 2008; Richards and Wang,
2012) and different conclusions were produced. How-
ever, it is generally viewed that four factors (Wang,
2008) need to be considered when building an ensem-
ble E: diversity D among the member modules in E,
the accuracy of individual member models hi, the size
of E and the decision fusion strategy (S ).

A function f () relating accuracy of E and these four
factors can be conceptually represented as:

acc(E) = f (acc(hi){∀i = 1 to N},D(E), S ,N) (1)

Where acc() = accuracy, N = the number of member
models h in E; D(E), the diversity among the members
h ∈ E; S , decision fusion method (Wang, 2008). f is
a non-deterministic function that varies in accordance
with the decision fusion function S and the other three
factors: acc(),D and N. So the relationship appears to
be complex, non-linear and variable.

3.3.1. Diversity D
Diversity has been perceived to be a key issue affect-

ing the accuracy of E. Kuncheva and Whitaker (2003)
probed 10 different definitions for “diversity” and found
that most of the existing diversity definitions are not ef-
fective, except the Coincident Failure Diversity(CFD)
(Partridge and Krzanowski, 1997), consistent with the
experimental evidence. This is the reason that the CFD
is used in this study.

The CFD measures the probability that all models in
an ensemble fail coincidentally on the test data and is
defined as:

CFD =


1

1−p0

N∑
k

N−k
N−1 if p0 < 1

0 if p0 = 1
(2)

Where pk is the probability that k members of E will
make the wrong choice at the same time. p0 is a special
case where no member is wrong.

CFD ∈ [0, 1], the larger, the more diverse the models
in E are. When CFD = 0, it means there is no diver-
sity among the models, i.e. all the models are identi-
cal, hence the ensemble has no gain on accuracy at all.
When CFD = 1, it means that a maximum diversity is
achieved among the models and the ensemble will pro-
duce perfect solutions on the test data.

3.3.2. Accuracy of individual classifiers, acc(h)
Another important factor that needs to be considered

when building an ensemble is the accuracy of individual
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models h as in general, better member models lead to
more accurate ensembles.

It is, however, difficult to determine how accurate of
an individual model is good enough to be selected to
be a member of an ensemble. This work (Wang, 2008)
gave some guidelines based on an analysis of the re-
lationship between ensemble’s accuracy and individual
member’s accuracy. It defined a lower-bound accuracy
for a classifier h:

acc(h)lb = lim
N→∞

N + 1
KN

=
1
K

(3)

Where K is the number of classes in a dataset be-
ing classified. It means that a classifier should achieve
at least an accuracy equal to or higher than the lower-
bound value 1/K to make some useful contribution to
the accuracy of ensemble E. For example, for a binary
classification problem, K = 2, then acclb = 0.5, which is
also called the default accuracy of a classification prob-
lem.

So, in general, in order to improve the accuracy of E,
the accuracy of all its members (hs) should be at least
higher than the lower-bound.

However, even the accuracy of all members in E is
higher than acclb, it is still possible that E may achieve a
lower accuracy than the average of, or even the least ac-
curate of its members (Wang, 2008) when the members
work in a destructive manner. That is, they may can-
cel each out when they have a negative diversity. This
possible phenomenon may occur in reality but has never
been observed before and will hence be investigated in
this study.

3.3.3. The size of ensemble, N
Conceptually speaking, the size matters, that means,

the more members an ensemble has, the more reliable
and accurate it could be. However, the problem is not as
simple as that, because the accuracy of an ensemble is
not solely determined by the size of it, simply because it
involves other factors, acc(h), diversity D, and decision
making function S , as mentioned above. So in practice
it is not clear how the size actually affects acc(E) when
coupled with the other factors, and what is the appropri-
ate size for a given application problem. These issues
were experimentally investigated in this study.

3.3.4. Decision fusion strategy, S
The decision fusion strategy, S is considered to be in-

fluential on the accuracy of an ensemble simply because
it produces the final solution. The output of an ensem-
ble can be determined when a specific fusion strategy

S is chosen. Commonly used strategies include voting
for classification and averaging for regression. But the
relationship between the accuracy of ensemble acc(E)
and S is not deterministic because again acc(E) cannot
be determined by S alone, but also the three other above
mentioned factors. This study employed the simple ma-
jority voting as it is commonly used as the decision fu-
sion function for classification ensembles.

3.4. Metrics for performance evaluation

Determining appropriate metrics for evaluating the
performance of classification is very important as they
must be able to represent the classification accuracy on
the target class in a quantitative manner, independent
from the distribution of classes in a dataset. For these
reasons, the following metrics are chosen to measure
the accuracy of individual classifiers and ensembles in
this research.

Sensitivity and Specificity are defined to measure
the accuracy of a classifier in relation to positive class
and negative class respectively. In this application,
S ensitivity represents the accuracy of identifying the
positive records in the data, i.e. the unreliable records
that were positively rejected by the human experts, and
S peci f icity, the accuracy of identifying the records that
were accepted by the human experts. They are defined
as follows:

S ensitivity(h) =
tp

tp + f n
(4)

S peci f icity(h) =
tn

tn + f p
(5)

Where (with respect to the positive class):

• tp = true positives - number of observations in the
positive class that are correctly classified as posi-
tive class by classifier h.

• tn = true negatives - number of observations not in
the positive class, correctly identified.

• f p = false positives - number of negative observa-
tions that are falsely classified as belonging to the
positive class.

• f n = false negatives - number of positive observa-
tions being incorrectly classified as negative class.

As the experiments were repeated several times in ac-
cording to the experiment set-up and procedures, the av-
erage values of these measures are given in the result
section.
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4. Data, Preprocessing and Partition Strategies

The raw data need to be cleansed and pre-processed
through several steps to make them ready for induc-
ing classifiers to build ensembles. Cleansing may in-
volve checking for invalid or contradictory records, in-
valid or irrelevant attributes, and/or missing values. Pre-
processing involves feature transformation, discretiza-
tion and normalisation etc., pending on the type of
the machine learning algorithms employed in the study.
Data selection determines how to select or partition the
data into subsets for training, validation and test.

4.1. BirdTrack and Habitat Data
Two raw data sets were obtained: BirdTrack data and

Habitat Data. BirdTrack data contain individual obser-
vations of bird species, time, location and observer de-
tails. Habitat data, from the Social and Environmental
Economic Research (SEER) team, provides additional
information on habitat types per square kilometre across
the UK(Bateman et al., 2014).

The demographics of the BirdTrack data can be sum-
marised as follows.

• 2,988,648 birdwatching lists, comprising

• 19,745,105 individual observations of 764 bird
species/types 1

• from 19,068 observers

• across 104,471 sites in 148 counties or special des-
ignated areas

• between 1 January 2007 and 30 April 2015.

The data were checked for quality and consistency,
and it was found that some observations contain missing
values or contradictions. For example, 95,338 observa-
tions missed observer identifier; 1,482 observations had
no county details; and 24 species had the same ID, but
multiple (similar) names. All those observations were
deleted or manually corrected.

It was assumed throughout that the identification of
the veracity of the observations was accurate – that is
that the identification of unreliable bird observations
was accurate and constant, as was the level of applied
human expertise.

The habitat data provided combined habitat informa-
tion for approximately 86% of the observations. The

1This included rare and migrant species, sub-species, hybrids and
in some cases generic “families” and catch-alls, e.g. “unidentified
warbler”

data were provided with the UK Grid Reference as a
unique key. The distance to the nearest coastal or marine
feature was calculated as the shortest Euclidean distance
to any grid reference containing a marine or coastal fea-
ture. Because coverage was incomplete, it is possible
that in some cases the distance to the nearest coastal or
marine feature might not be accurate – that is, the algo-
rithm will find the closest grid reference to those refer-
ences it knows about, which might not be as close to the
sea as a reference which is not included in the dataset.

The data sets were combined to become one dataset
with 45 attributes. The detail of some important at-
tributes in the dataset is given in Appendix A. Ob-
servations which were in query (i.e. had neither been
accepted nor rejected by the BTO) were also excluded
from the start

The data sets have been pre-processed through a se-
ries of steps, including discretization, feature transfor-
mation, normalisation etc. The details of all the features
are given in Appendix A.

4.2. Partitioning data for training, validating and test-
ing

After cleansing and pre-processing, the following
rules are used to generate the data subsets (cores) for
training and validating classifiers, and testing ensem-
bles.

4.2.1. County-based data selection
As the distribution of bird species is commonly deter-

mined by location and time, different area represented
by County can have their geographical characteristics,
which could not be generalised, and hence may have
their own localised bird species. Therefore it is reason-
able to partition the whole data by county into county-
based datasets. In doing so, it is hoped that the induced
classifiers may learn more local knowledge and be more
diverse from each other, which can result in more re-
liable and accurate ensembles. For this reason, three
counties encoded as GBSTA, GBWAW and GBWMI
were selected as the core datasets because their regional
features were considered as more representative.

For each core dataset, a subset is firstly selected and
kept aside as the ensemble testing data, called Ensemble
Test. Then the remaining data, Dr, are further selected
or sampled with two strategies: manual and random, to
produce data subsets for training and testing classifiers.

4.2.2. Two strategies for selecting data: manual and
random

As the experiments were designed and carried out in
four phases, two strategies – manual and random, were
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used to select the data from Dr for training and vali-
datingtesting, and their influences were investigated by
their corresponding experiment phases. In Phase 1 the
training data were manually selected by human expert
from each core dataset. In the subsequent phases the
data subsets were randomly selected for training and
testing.

Data for each phase are stratified and randomly as-
signed to the subsets. The process of stratification en-
sures that each subset has a representative proportion of
the minority class – this process is required because the
distribution of the minority class is so small it cannot
otherwise be guaranteed that a subset would contain ex-
amples from it.

[Manually selected data]Phase 1 - Manually selected
data subsets: It was initially believed that human ex-
pertise should and could be utilised to select the data
subsets that are more “representative” of the underlying
problem and hence better models(classifiers) could be
generated from the manually selected data, which may
lead to build more accurate and reliable ensembles.

For each core dataset, three subsets: S-train, S-test
and C-fold, were selected from Dr. This was done by
select a subset of some years’ data as training data S-
train, and a subset of a different year’s data as testing
data, S-test. The C-fold subset was selected from Dr

without any restriction and it was used for 10-fold cross-
validation. Although the data contained in the C-fold
and S-subsets may overlap, the Ensemble Test dataset is
“independent” and unique.

The details of the three manually selected data
subsets and their corresponding test dataset -
EnsembleTest, are shown in Table 2.

Table 2: For Phase 1, the details of three manually selected data sub-
sets(the numbers of instances are rounded to nearest thousand(k) for
simplicity).

County S-train S-test C-fold Ensemble Test
GBSTA 138k 83k 428k 70k
GBWMI 72k 28k 258k 49k
GBWAW 73k 31k 263k 50k

[Randomly selected data]Phase 2 - Randomly se-
lected data subsets:

In order to compare the results of ensembles trained
by the manually selected data, a stratified random se-
lection mechanism was employed to split the data into
three non-overlapping subsets for training, validating
and testing at a pre-fixed ratio as follows.

Select 70% of the available data as C-fold for train-
ing, 20% for validating the performance of the individ-
ual members and selecting the members for the ensem-

ble, and keep the remaining 10% aside for testing.
The choice of these ratios (70/20/10) was primarily

based on an empirical hypothesis that more training data
are likely to produce better models. While this is not al-
ways true, as the focus of this research is to demonstrate
the concept and not for trying to find the optimal train-
ing to test ratios, it was considered non-essential to try
other partitioning ratios.

Details of the split are shown in table 3.
This procedure was repeated for the subsequent

phases (3 and 4) with the same ratios so that the numbers
of data instances in each subset are roughly the same.

Table 3: For Phase 2, the numbers of records in three randomly parti-
tioned data subsets.

County Train Validation Test
GBSTA 349k 100k 50k
GBWMI 215k 61k 31k
GBWAW 219k 63k 31k

5. Experiment Design and Results

5.1. Experiment Design
As mentioned earlier, the experiments were divided

into four progressive phases. Each phase uses its corre-
sponding data subsets, as described in the previous sec-
tion, to generate the classifiers – decision trees – and
then build ensembles with various strategies to test the
performance of built hybrid ensembles and investigate
the influence of diversity, accuracy of individual classi-
fiers and the size of ensemble, on the accuracy of en-
semble.

The generic procedure for building and testing hy-
brid expert ensembles is essentially the same for all the
phases.

5.1.1. Generation of decision tree classifiers
Each S-train dataset is used for inducing a decision

tree classifier and S-test dataset is used for validating.
Their results were used to determine if a classifier is
selected to add onto the ensemble.

The K-fold cross validation mechanism is applied to
the C-fold data to generate decision trees. We set K to
10, so 10 classifiers are induced with 9 folds and vali-
dated with 1 remaining fold in one round-robin run for
each data subset in each phase. Their validation per-
formance was used to determine whether a generated
model – decision tree, is good enough to be selected to
add into an ensemble.

For each of the selected counties, around 60 decision
tree classifiers were generated in each phase.
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5.1.2. Strategies for building hybrid ensemble
As described in Section 3.1, after constructing the ex-

pert system and generating pools of decision tree clas-
sifiers for each county in each phase, hybrid ensembles
can be built by using the expert system as a core mem-
ber and then choosing the best classifier from a corre-
sponding pool as another core member and some other
classifiers based on the strategies designed for the pur-
poses of investigations.

For investigating the relationship between accuracy
and diversity, the following strategies are devised.

Strategy 1: Hybrid Ensembles of Fixed Size, or HEFS
for short.

The size of hybrid expert ensembles in the experi-
ments of Phase 1 is fixed in order to focus on the in-
fluence of accuracy of individual classifiers and diver-
sity. The size is initially fixed to 3 (2+1) – the minimum
number of members required for a valid ensemble.

After the first two core members have been estab-
lished, the remaining candidates in the pool competes
against each to become the third member of the ensem-
ble. The third member can be chosen by applying some
rules, such as comparing diversity measures with an aim
to maximise the diversity of the ensemble.

The above strategy is applied when selecting more
members to build larger ensembles. However, it should
be noted that because the decision fusion strategy ap-
plied in this study is a simple majority voting, the num-
ber of members in an ensemble should be odd to avoid
ties for binary class classification problems.

Strategy 2: Hybrid Ensemble of Growing Size, or
Growing for short.

Another set of experiments are designed to investi-
gate the relationship between accuracy and size of en-
semble in a systematic manner.

In this set of experiments, the size of a hybrid ensem-
ble is increased by one at a time with the most diverse
candidate left in the pool until all the candidates have
been included. The previous procedure can be used by
a small modification on the last few steps. Therefore,
the ensembles of fixed sizes then become only few spe-
cial cases in this experiment design.

5.2. Experimental Results of Phase 1
Three sets of the results were produced from the ex-

periments in Phase 1 and other phases as well and pre-
sented in this section. The first set is the sensitivity
accuracy of individual classifiers on the testing data,
acc(ci), ci ∈ C; the second set is the sensitivity accu-
racy of the ensembles acc(E) and the average accuracy
of the members in ensemble E; and the third set is the
diversity in E measured by CFD, div().

Figure 3: Phase 1: the diversity and accuracy results of 2+1 hybrid
ensembles on hand-selected data subset GBSTA. The accuracy of in-
dividual classifiers acc(h), accuracy of ensembles, acc(E), average
accuracy of the members in a hybrid ensemble H = E, acc(h ∈ H),
and the diversity div(E) in E.

It should be noted that whilst all accuracies given are
measured with sensitivity, the specificity is also mea-
sured but not presented here because it is always very
high between 99% to 100% for almost all the cases.

5.2.1. HEFS 2+1: the battle for the third member
Figures 3 to 5 show the results produced in Phase 1

for the three subsets with discrete and continuous at-
tributes respectively with many details.

The bar graph shows the Accuracy of each individual
candidate, acc(ci) – colour coded to separate candidates
trained on Discrete and Continuous data.

The third member in E is awarded to the candidate on
the far left of the graph, as this is the candidate which
is the most different from the existing ensemble. Notice
that it may not be the most accurate hcandidate. Then, it
is awarded to the next one in turn and so on until all
the candidates have been used as the third member. In
this way, ensembles as many as up to the number of the
candidates have been built.

The accuracy of ensembles, acc(E) is shown with a
solid line. The average Accuracy of the individual mem-
bers of the ensembles, avg(acc(hn ∈ E)), is shown by
the dashed line, assuming the candidate ci has been ac-
cepted into the ensemble.

In addition the graphs also show diversity measure
div(E) on two scales. The first uses the same scale as the
Accuracy, but as the changes in div(E) are so slight, a
second line is shown scaled so that the highest Diversity
corresponds to 1 and the lowest to 0 - thus making it
possible to see detail within the movement of div(E)).

As can be seen, the first two subsets(figures 3 and 4)
are not good but the ensembles in the third subset (figure
5) are reasonably good.
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Figure 4: Phase 1: the diversity and accuracy results of 2+1 hybrid
ensembles on hand-selected data subset GBWMI.

There are several notable characteristics in figure fea-
tures 3 and 4):

• The machine induced decision tree classifiers are
very bad, with the accuracy of only about 10 % on
both discrete and continuous data sets. The accu-
racy of the ensembles is very bad as well.

• The accuracy of the ensembles, avg(acc(E)) lies
below avg(acc(hn ∈ H = E)), the average of the
members. This means that the members of an en-
semble make poor joint decisions when working
together. Outside the ensemble, they are individu-
ally more likely to make the correct decision.

• Diversity div(E) is very high – indicating that the
decisions of the members differ significantly for
any given case presented. Combined with the
above phenomenon, avg(acc(E)) < avg(acc(hn ∈

H = E)), it is clear that majority of the members
are more likely to be on the wrong side, against one
on the correct side for most of the test cases, hence
the decision made by the ensemble is more likely
to be wrong than the average performance of the
members working individually.

The fact that acc(c) is very low on the test data – even
lower than a random guess– clearly indicates that these
machine classifiers induced from the training data did
not generalise well at all, and the main reason is that the
hand selected training data is not representative on this
dataset as intended.

Figure 4 shows similar characteristics to those dis-
cussed for dataset GBSTA, except there are some rel-
atively good candidates – better than a random guess
(shown by high grey bars).

It is noteworthy that none of the more accurate can-
didates have been trained on continuous dataset of the

Figure 5: Phase 1: the diversity and accuracy results of 2+1 hybrid
ensembles on hand-selected data subset GBWAW.

same data subset. The most diverse candidate (far left
on the graph) also happens to be fairly accurate - it is
added to E.

However, even with these relatively “good” candi-
dates, the ensembles E performed still poorer than the
average of the members in E. As the diversity div(E)
remains high, it shows again that the members work de-
structively to ignore the correct decisions made by mi-
nority members, so force the accuracy of the ensembles
below that of the average of the individual members.

Figure 5 shows candidates competing for the third
member in hybrid ensembles for data subset GBWAW.
It is very clear that these ensembles are much better than
the previous two situations as their accuracies are be-
tween 75% to 85%, and more importantly acc(E) was
sometimes about 10% more accurate than the average
accuracy of the individual members, avg(acc(hn ∈ E)),
which is the evidence of the gain achieved by the en-
sembles utilizing the right diversity.

It is interesting to note that the candidate selected to
join an ensemble E was not particularly accurate, but
its inclusion into E resulted in an ensemble that per-
formed better than the average of its members. On the
other hand, the models trained on continuous data were
more accurate than their counterparts but when they
were added to hybrid ensembles E, acc(E) dropped be-
low avg(acc(hn ∈ E)). This is probably because they are
in this case relatively less diverse than those classifiers
trained with discretized attributes.

Having produced ensembles of three members that
can perform better than the average of the individual
members, it would be interesting to explore what would
happen if the ensemble size increases, e.g. to 5 and
more.
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Figure 6: Phase 1: the diversity and accuracy results of 4+1 hybrid
ensembles on hand-selected data subset GBWAW.

5.2.2. HEFS: 4+1 and 8+1 Ensembles

A hybrid ensemble E with 5 members is built with the
following procedure. The expert system again is used as
the first core member, then the most accurate three can-
didates in a pool are selected as the second, third and
fourth members of ensemble E; the remaining candi-
dates in the pool competes for the fifth member in E.
So it is called as 4+1 ensemble.

Figure 6 shows the results of the 4+1 ensembles. It
can be seen that (1) these ensembles consistently per-
form better (as acc(E) > acc(h ∈ H = E)) regardless
of which candidate joins its ranks. (2) The more accu-
rate individuals do not increase acc(E) by as much as
the less accurate candidates, just as observed in the pre-
vious case (2+1 ensembles on GBWAW data).

However, when the size of ensemble is increased to
8+1 using the same strategy as that of 2+1 and 4+1, the
results of the hybrid ensembles, shown in figure 7, are
very different from that of 4+1 ensembles, although the
individual candidates seemed more or less the same.

The accuracy of these hybrid ensembles, acc(E), is
worse than the average of the members in E. In other
words, although some of the individual members are
quite accurate and also have relatively high diversity
values, their addition to the ensembles make them worse
collectively, which suggests again that this diversity is
not helpful but actually harmful, therefore the diversity
in this situation should be considered as negative.

So, these two cases of the enlarged hybrid ensembles
demonstrated that it is not always true that the bigger an
ensemble is, the better it can be. Then it is necessary
to investigate how the size of ensemble may affect the
performance of ensemble in a more systematic manner,
when the size grows gradually from the minimum 3 to a
possible maximum size equal to the size (around 60) of
its corresponding candidate pool.

Figure 7: Phase 1: the diversity and accuracy results of 8+1 hybrid
ensembles on hand-selected data subset GBWAW.

Figure 8: Phase 1: The diversity and accuracy results of growing
ensembles hand-selected data. The relations between the accuracy
and diversity in growing ensembles on GBSTA validation data. The
Box plots show the diversity values(maximum, high quartile, median,
lower quartile, minimum and outliers(circles) if any) of the ensembles
for each size.

5.2.3. Growing ensembles
This section presents the results of growing hy-

brid ensembles to show how the accuracy of ensemble
(acc(E)) may vary as the ensemble size (N) expands.

Figures 8 to 10 show the change in acc(E) and
avg(acc(hn ∈ H = E)) as the number of members in
a hybrid ensemble H expands from 3 to the maximum
possible number - the size of the candidate pool, for the
data of the three counties. The range of the div(E) gen-
erated by all the candidates as they compete for each
position is also shown. Note that the div(E) rises un-
til position 35 or 36 and then declines. Note also that
the spread of div(E) decreases - this is a natural conse-
quence of removing the most diverse candidate from the
pool of candidates each time.

Above all it is worth noting that acc(E) never in-
creases beyond that of avg(acc(hn ∈ E)) , which means
that this set of hybrid ensembles is definitely destructive
rather than constructive when making their final classi-
fication decisions. It is not a surprise considering that
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Figure 9: Phase 1: the diversity and accuracy results of growing en-
sembles on hand-selected GBWMI data. These ensembles are very
poor, basically no use at all.

Figure 10: Phase 1: the diversity and accuracy results of growing
ensembles on hand-selected GBWAW data.

they are not “experts” at all - their decisions are worse
than random (as shown in figure 3)

This set of the results demonstrates that, given a pool
of very poor candidates, the accuracy of growing en-
sembles is not affected much by their size, nor the di-
versity, although it fluctuates a bit up and down.

The growing ensembles, shown in figure 9 built for
data subset GBWMI do not differ much from those of
GBSTA. All the ensembles E perform poorly again,
even when fairly accurate members are added to them.
Diversity peaks at position 3 and decreases as the com-
mittee grows.

The growing ensembles (as shown in figure 10) are
in general much better as they increase their accuracy
when the appropriate candidates are added in, but de-
crease when inappropriate candidates are selected to
join the ensembles.

This inverse behaviour pattern, seen at cases 2+1,
4+1 and 8+1, is repeated many times over the whole
length of candidate pool size dimension, and it is quite
obvious that the size of an ensemble on average does not
have much influence on the accuracy of ensembles built

Figure 11: Phase 2: the diversity and accuracy results of 2+1 ensem-
bles on randomly selected data GBSTA.

under the conditions as described in the earlier section,
but the appropriateness of candidates does.

However, it is not clear what constitutes the appro-
priateness for a candidate as no study was found in the
literature to define it explicitly. We think it should have
something to do with a combination of suitable diversity
between the members and accuracy of the candidates.
The repeated patterns indicate that an appropriate can-
didate appears to be less accurate but more diverse in
a certain direction, which has not been captured by the
current diversity measure.

5.2.4. Summary of the results of Phase 1
Considering all the results produced in Phase 1 as

a whole, one obvious conclusion can be self-evidently
generalised, that is, the hand-selected data sets are not
as representative as the human experts expected, or bi-
ased, because two sets of the ensembles built based on
the hand selected data performed poorly, and only one
set produced some reasonably good results. The possi-
ble reasons for this will be discussed later in Evaluation
and Discussion Section.

This justifies the ideas of using randomly selected
data and necessitates the experiments of the more
phases. The next sections give their results respectively.

5.3. Experimental Results of Phase 2

5.3.1. Fix-sized ensembles: 2+1 and 4+1
For comparative reasons, the tussle for the opening

positions in E built from members trained on data se-
lected randomly from their respective subsets, is pre-
sented in the same sequence as section 5.1.

As can be seen, Figure 11 is remarkably different
from its counterpart (figure 3). This trend continued
throughout this phase. The most notable fact is that the
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Figure 12: Phase 2: the diversity and accuracy results of 4+1 ensem-
bles on randomly selected data GBSTA.

Figure 13: Phase 2: the diversity and accuracy results of 2+1 ensem-
bles on randomly selected data GBWMI.)

accuracy acc(h) is significantly higher than those mod-
els trained on the hand selected data. Diversity in en-
sembles div(E) also remains high. With a few excep-
tions, where the acc(h) falls below the default accuracy
0.5, so in principle, the candidates with acc(h) >= 0.5
would have made a positive contribution to ensemble E
(compared to avg(acc(hn ∈ E))).

When choosing the fifth member to build 4+1 ensem-
bles, the results as shown by figure 12 indicate that the
three most diverse candidates are the worst perform-
ers as individuals. Their accuracy is below 50% and
they then drag down acc(E) to a point where it is lower
than avg(acc(hn ∈ E)), hence these ensembles do not
improve their collective accuracy at all. On the other
hand, adding other candidates which are less diverse but
more accurate into hybrid ensembles improve accuracy
as acc(E) > acc(hn ∈ H = E). This means that the ac-
curacy of ensembles if influence by both diversity and
accuracy factors, not just diversity, nor accuracy itself.

The results of the hybrid ensembles built for GBWMI
on randomly selected data, shown in figure 13, are even
better than the above presented results for GBSTA data.
It is clear that none of the individual members has poor

Table 4: Phase 2: Statistics of the mean accuracies and variances of
individual candidates induced from the randomly-selected GBWMI
datasets with Discrete attributes, denoted by Z, and Continuous R.

Z R Combined
Average 0.72 0.86 0.79
Standard Deviation 0.034 0.012 0.075

Figure 14: Phase 2: the diversity and accuracy results of 2+1 ensem-
bles on randomly selected data GBWAW

accuracy and acc(E) is always higher than avg(acc(hn ∈

E)). The same pattern observed in figure 12 becomes
even more obvious, which is, that acc(E) for the most
diverse but less accurate candidates(left half) is lower
than acc(E) for the least diverse but slightly more accu-
rate candidates(right half).

An interesting observation is the clear divide between
classifiers trained on different types of data. Table
4 shows that the numerical statistics of the mean ac-
curacies and standard deviations of the two types of
models induced from the datasets with discrete(Z) and
continuous(R) attributes.

Close scrutiny of the results, shown in figure 14, of
ensembles built with randomly selected data for GB-
WAW, reveals that while the overall acc(E) remains ab-
solutely high, the difference between acc(E) and the
mean accuracy of the members in H = E, acc(hn ∈ H)
is tiny, it occasionally dips below avg(acc(hn ∈ H). This
implies that there is a little gain achieved by the ensem-
bles in terms of sensitivity accuracy, although the candi-
dates are very accurate (minacc(h) >= 82%) and quite
diverse from the core members (the expert system and
the most accurate candidate).

5.3.2. Growing ensembles
As in Phase 2 additional test data (True test) was

designated and kept aside for testing the ensembles,
apart from using the validation data to test the candi-
dates. So the results presented in this subsection include
the sensitivity accuracies: acc(Validation) as well as
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Figure 15: Phase 2: the diversity and accuracy results of growing
ensembles on randomly selected validation and true test data for GB-
STA. Note: there are two additional lines on this figure and all on-
wards ones: solid (blue) line with solid square markers is the mean
sensitivity accuracy of hybrid ensembles on the true test data, and
solid (orange) line with triangle markers is the mean sensitivity accu-
racy on the validation data.

acc(TrueTest), obtained from both the validation data
and True Test data respectively.

Again, in these experiment set-ups, the situations pre-
sented in the immediate above section are just some spe-
cial cases when the size of ensemble is set to a fixed
number.

It can be observed quite clearly from figure 15, for
GBSTA, as E increases its size, the accuracies on
validation and true test data: acc(E(Validation)) and
acc(E(TrueTest)), are better than that of their individ-
ual members every time.

Further inspections found that the ensembles of 3
members are reasonably good on validation and true test
data as their both accuracies are higher than the average
of their members. However, when the ensemble size in-
creases up to around 11 or 13, the accuracy of these en-
sembles drops, although it is still higher than the mem-
bers’ mean acc(hn). This is once again evidence that
adding members to E based only on the diversity div(E)
they introduce to the ensembles will not necessarily re-
sult in a higher performing E.

Then, after this, the ensemble accuracy starts to in-
crease again to even higher than acc(E) when N =

3. Furthermore, after a certain point (about N=17)
acc(E(TrueTest)) stabilises and adding more members
does not change its accuracy. This means that there is
no gain for building larger ensembles.

The results of the growing ensembles for GBWMI
data, shown by figure 16, indicate that div(E) reached
a peak at position 3. Again E performed better than
avg(acc(hn ∈ H)) on both the Validation and True test
data. Again the trend is that the results level-off after a
while, which means that increasing the number of the

Figure 16: Phase 2: the diversity and accuracy results of growing
ensembles on randomly selected validation and true test data for GB-
WMI.

Figure 17: Phase 2: the diversity and accuracy results of growing
ensembles on randomly selected validation and true test data for GB-
WAW.

members to E has not helped in increasing the accuracy
of ensembles.

The results of the growing ensembles for GBWAW, as
shown on Figure 17, are similar to those shown on fig-
ure 16. At a point, the ensemble accuracy acc(E) levels
off, that is, there is no or little gain when adding new
members into ensembles. Overall, all these ensembles
perform very well consistently, with the average sensi-
tivity over 85% on the test data, and specificity close to
100%.

5.3.3. Summary of the results of Phase 2
The results produced in all growing ensemble experi-

ments for three counties are summarised in terms of the
mean and standard deviation of the sensitivity measures
and listed in Table 5.

Some interesting patterns are observed from the re-
sults obtained in Phase 2:

• In general, individual models trained with ran-
domly selected data outperform those trained on
manually selected data. Particularly on the first
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Table 5: Statistical summary (mean,& standard deviation) for all en-
semble results for Phase 2 on the true test data.

hn ∈ E E
Data mean stdev mean stdev
GBSTA 0.60 0.062 0.64 0.090
GBWAW 0.83 0.026 0.85 0.041
GBWMI 0.72 0.093 0.79 0.132

two counties, models are much better than their
counterparts (shown in figures 3 & 4 and 11 & 13 ,
) and usable for building ensembles.

• Consequently the performance of ensembles was
also better and consistent over all the data subsets.

• The results indicate that the size of ensemble can
have some influence on the ensemble accuracy
acc(E) at some ranges, but have little or no dif-
ference after a certain point. This suggests that it
is not true that the bigger an ensemble is, the better
it performs. There is a trade-off at some point.

• The results produced in Phase 2 clearly demon-
strated that the randomly-selected data have a
much better representation of the underlying prob-
lem than the hand-selected data.

• The accuracies on validation and true test datasets
are mostly consistent and therefore validation per-
formance is a good indicator for selecting ensem-
bles that are more likely to be accurate and reliable
on test data.

The experiments in Phase 2 were repeated in two
more phases, i.e. Phase 3 and 4, with different data par-
titions to check if these results are consistent and reli-
able. Their results are found to be largely in line with
the results obtained in Phase 2.

5.4. Summary of the results

Several points can be drawn from the results pre-
sented earlier.

• The results produced in Phase 2 (and two repeated
phases) clearly demonstrated that the randomly-
selected data have a much better representation
of the underlying problem than the hand-selected
data.

• The individual models are more sensitive to the
change of data, on average, whilst the hybrid en-
sembles are robust due to the combination of hy-
brid models.

• On average, hybrid ensembles are more accu-
rate and reliable than individual members if
constructed appropriately, as mean{acc(E)} >
mean{acc(h)}.

• Sometimes adding a more accurate hcandidate did
not improve acc(E) - it actually reduced acc(E) to
a point where it fell below avg(acc(hn ∈ E)).

• Sometimes adding a more diverse hcandidate to E
did not improve acc(E) as much another hcandidate

based on a different criteria (acc(hcandidate) for ex-
ample) would have.

• The results indicate that the size of ensemble can
have some influence on the ensemble accuracy
acc(E) at some ranges, but have little or no dif-
ference after a certain point. This suggests that it
is not true that the bigger an ensemble is, the better
it performs. There is trade-off at some point.

• The accuracies on validation and true test datasets
are mostly consistent and therefore validation per-
formance is a good indicator for selecting ensem-
bles that are more likely to be accurate and reliable
on test data.

The results of all the ensembles are generalised in
term of goodness and shown in Table 6. A good per-
formance is determined by whether the average sensi-
tivity measure acc(E) of E (across its maximum per-
mitted size) less one standard deviation is above 0.50 –
the default accuracy, that is, mean{acc(E)} − stdev(E) >
0.5, poor, otherwise. However, a mean accuracy over
the whole length of growing ensembles may vary up
or down, i.e. oscillates a bit around the mean value,
which is not surprising when the number of the mem-
bers changes and the quality of the members varies.

Table 6: Ensemble accuracy in all phases for three counties.

GBSTA GBWMI GBWAW
Phase acc(E) acc(E) acc(E)
1 poor poor good oscillates
2+ good - with dip good good

6. Discussion

There are several interesting and important issues
raised from this research, which include the data and
choice of the data for training models, the expert sys-
tem, machine induced models and ensembles. This sec-
tion attempts to give some discussions on each of them
in order to provide some guidelines .
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6.1. Data Issues

The most prominent issue regarding the data is what
is the best way to select data for training. This research
used experienced human to select the data manually to
begin with. The initial consideration was that the expe-
rienced human could apply their knowledge and expe-
rience to select the data that can represent the underly-
ing problem better. But it was quickly discovered that
was not the case, and then switched to random selection
strategies.

Hand selected data vs Randomly selected data:
As the results produced in Phase 1 show that only one

set of the three hand-selected data sets is reasonably rep-
resentative as the generated decision trees and the en-
sembles performed reasonably well(with a mean sensi-
tivity around 73% ) but the other two failed to produce
reasonable ensembles (with sensitivity only around 10%
to 15%), although some individual classifiers performed
well.

This is a sharp contrast to the randomly selected data
sets, as shown by tables 5 and 6, the ensembles pro-
duced from the randomly selected data sets performed
well or very well on the true test data, with the mean
sensitivity between 64%, 85% and 79%, respectively on
the true test data of three subsets.

These results are a clear evidence that randomly se-
lected data better represented the problem domain than
the manually selected data, although the manual selec-
tion was guided by the experienced human with an in-
tention of preserving any annual patterns that might ex-
ist in the data (for example – during the autumn mi-
gration mistaken identification of very rare species is
common – also some species are only found in the UK
during particular periods of time) - so the relative poor
performance of this data was a surprise.

In addition, considerable time and effort was spent in
discretizing some continuous attributes, but the results
demonstrated this effort was not paid off. One possible
reason is that the number and width of the bins are not
optimized. However, optimization is not an easy task
as it involves many factors, such as distribution of input
attributes and dependent output target, although there
are some ways that could be tried. Nevertheless, our
results indicate that in practice one should not try it in
general unless there is a clear reason and a good method
to do it.

6.2. The members of ensemble

The Expert System:
The Expert System could perform quite well (86%

Sensitivity and 99% Specificity on the validation data

for one county GBWAW), and consistently responsi-
ble for setting acclow. However, the implementation
was relatively simplified and could be extended/adapted
with more sophisticated knowledge rules.

It is an interesting observation that conceptually
the Decision Tree algorithm selected for the Machine
Learning classifiers is very similar to the Expert Sys-
tem - although typically these algorithms produce many
thousands of rules along seemingly random lines of en-
quiry compared to the rules in an Expert System.

Machine Learning Algorithms:
At the early stages of this work, other algorithms,

e.g. kNN, Logistic Regression and Support Vector Ma-
chine(SVM) were tried, but were found not efficient
or failed completely in dealing with the data of very
high dimensionality and huge quantity. Then an equiv-
alent implementation of C5.0 Decision Trees in R on
a High Performance Computing Cluster (HPCC) was
used, primarily for its efficiency and competitive ac-
curacy. No comparison with other algorithms was at-
tempted as there were no other implementations avail-
able on the HPCC.

It was noticed that Discrete and Continuous data sets
were used to train models with the exact same proce-
dure. It can be seen from figures 3 to 7 in Phase 1, the
models are very different in most of cases. But, when
the randomly selected data is used, there is no or little
difference between them. However, close scrutiny cou-
pled with domain knowledge reveals that the decision
tree induced with the continuous attributes is too spe-
cific – common and rare birds are rejected out of hand
without further evidence.

Hundreds of successful models were created and then
several good ensembles were constructed.

6.3. The ensembles: accuracy, diversity and size

This research was set to develop a framework for
building hybrid ensembles E and investigate what fac-
tors influence their performance. This study considered
three factors: accuracy of members acc(h), diversity
div(E) and the size of ensemble.

Accuracy and Diversity:
As mentioned before, these factors are coupled

together, particularly the accuracy and diversity are
closely tied, it is extremely difficult to isolate them and
then examine their individual impact on accuracy of en-
semble. In addition, there is no practical way to actively
control/manipulate the change of accuracy and diver-
sity, except for the size, which can be easily controlled.
Therefore the investigations were practically conducted
in a passive manner, i.e. using the models generated
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with whatsoever accuracy and diversity to build ensem-
bles with the rules described in Section 3.1, including
selecting candidates based on diversity and accuracy
boundaries (acclow, acchigh) on the selection of potential
members.

The results of diversity measured among the classi-
fiers show that these machine induced models are more
similar to each other in such an extend that their di-
versity is not high enough to improve ensembles. This
is not surprising as some studies such as Wang et al.
(2001), already pointed out that the models generated
with the same learning algorithm are statistically more
dependent or similar than those by different learning
methods. That is why this study introduce a method-
ologically different model – expert system, in a hope of
boosting the diversity. This is justified by the facts that
the highest diversity values are almost always achieved
on the far left of the plots in all the figures because the
expert system is more diverse from machine induced
classifiers and hence taken as the first core member in
any hybrid ensembles.

Constructive and Destructive Diversity:

Wang (2008) argued that diversity among the mem-
bers should be measured in two ways: positive and
negative, or namely constructive and destructive respec-
tively, because diversity can be useful as well as harm-
ful. But this phenomenon has not been observed in ap-
plications before and hence not paid enough attention in
ensemble research. In this work, several examples were
found, as shown in figures 3 and 4, where the accuracy
of ensembles is worse than the average accuracy of the
members, i.e. acc(E) < acc(hn ∈ E), which means that
the members used in an ensemble actually work against
each other to produce more wrong decisions than cor-
rect ones. In such a situation, the difference among must
be destructive and hence this difference should be rep-
resented by a negative diversity measure.

Nevertheless, there is no definition found in literature
to reflect negative diversity that causes the destructive
effect on performance of an ensemble. Thus, there is
a need to develop new measure for representing both
positive and negative diversity, but it is beyond the scope
of this study.

Size of Ensemble: It is quite clear that size does mat-
ter to a certain degree, but it then has no or little influ-
ence on the accuracy of ensemble after a certain point.
So, in general, it is not the case that the larger an en-
semble is, the better it performs. There is a trade-off

and often this point is actually quite low, less than 19 in
this study.

7. Conclusion

In this study, a hybrid expert ensemble framework
has been proposed to combine an expert system and
machine learning classifiers to identify reliable obser-
vations in BirdTrack data, collected through a citizen
science project.

It has been implemented and tested on several data
subsets selected in two ways, manually and randomly.
Manual selection was intended to utilize the human’s
experience to select that data to better reflect the char-
acteristics of the problem, such as, seasoning, species
distribution, migrating patterns etc. for training. How-
ever, the experiments showed that these manually se-
lected data sets are not representative for most cases,
as the models trained on these data sets performed ex-
tremely poor on two of three test data subsets, accept-
able on only one. Conversely, the randomly selected
data sets have much better representations as the models
trained on them generalised well enough to be consid-
ered as the candidates for building hybrid ensembles.

Due to the complexity and nature of species distri-
bution, it was discovered that data for each county be-
haved differently and building a big ensemble for the
whole country does not generalise well. Then a strategy
of “divide-and-conquer” is adopted, that is, dividing the
whole country into counties or regions and then building
an ensemble for each of them. the experimental results
demonstrated this strategy produced much accurate and
reliable ensembles.

An expert system was built using the rules extracted
from human experts’ experience, with an intention to
allow it work in the “same manner” as a human expert.
It was tested on various data subsets and achieved rea-
sonable performance. Although it varied considerably
from county to county. It was then used as a core mem-
ber when building hybrid ensembles. The experimental
results indicated that combining an expert system with
machine generated models brings greater diversity to an
ensemble and boosted the performance.

In conclusion, this study has demonstrated that hybrid
Expert ensembles are capable of identifying unreliable
observations with mean sensitivity accuracy measured
between 76% to 83% on three true testing data sets re-
spectively, and specificity 99% to 100%. That means the
hybrid ensembles are able to correctly identify the un-
reliable observations with an accuracy of around 80%,
and 99% to 100% accurate for reliable observations.

Considering there are over 40 million observations
in BirdTrack data to date, and rapidly increasing, it
would be expensive and time-consuming to employ ex-
perienced humans to validate them all. With the tech-
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nology developed in this work, it is possible to develop
some hybrid ensemble systems to assist humans to do
the work more efficiently and effectively, by at least fil-
tering out the reliable records and then labelling the sus-
pected unreliable ones for further inspections by human
to begin with. There is certainly some room for fur-
ther development and this kind of system may eventu-
ally work independently without human intervention.

Further work on the system can be done in several
aspects, including

On data: collect and add more features such as the
observer’s profile, replace grid reference with numeric
equivalent, and carry out cluster analysis on the data to
find better grouping of the data, not just on geographical
locations.

On Expert System: more experts’ knowledge needs
to be codified and represented with more rules, espe-
cially some local knowledge related to regions or coun-
ties. When more rules have been established, the expert
system can certainly be improved and sub-expert sys-
tems added to address relatively poor generalisation on
some counties.

On hybrid expert ensemble: several issues should be
addressed, including: to explore new definition to mea-
sure both constructive and destructive diversity which
would be more directly useful for building an effective
ensemble; to devise better strategies for selecting suit-
able members to build more accurate ensembles, possi-
bly based on a combination of accuracy and diversity,
and to estimate the number of members needed for an
ensemble.

It is worth noting that the framework developed in
this research can be applied to other citizen science
projects to validate the quality of big data or informa-
tion contributed from the general public.
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Appendices
Appendix A. Important Attributes in BirdTrack Data

Table A.7: Important Features or Attributes. Z=Discrete, R=Continuous, where both are available a suitable conversion function was provided.

Type Feature Name Behaviour Description
Logical all obs reported Z Observer reported all birds or just highlights
Character county code Z County Code
Real distance to coast R Approximate distance to coast
Real duration hrs R Hours spent watching birds for this list
Integer easting R British National Grid Easting. See gridref.
Character gridref Z Ordinance Survey Grid Reference for centroid of

Location. Site may extend beyond square kilo-
meter but the assumption is that all observations
occurred within square kilometer.

Logical has activity Z Observer commented on activity bird was en-
gaged in

Logical has age sex Z Observer indicated age or sex of bird
Logical has comments Z Observer provided additional comments. Poten-

tial bias - it is not clear whether the user entered
the comment before or after the observation is
identified as “unusual”.

Logical has direction of flight Z Observer noted direction of flight
Logical has habitat notes Z Observer made notes about habitat
Logical has proof of breeding Z Observer noted the bird was (potentially) breed-

ing
Logical has sensitivity Z Observer requested data not to be publicly avail-

able
Logical has significant Z Observer notes observation is remarkable (for

any reason, including personal reasons)
Integer how many R,Z How many individuals of indicated species seen
Integer list.week Z Week of the observation
Integer list.year Z Year of the observation
Logical mobileapp Z yes=list added via Mobile Application,

no=added via Website
Integer northing R British National Grid Northing. See gridref.
Integer num lists R, Z Number of lists submitted by observer, to date
Integer num partial lists R, Z Number of lists (with partial observations) sub-

mitted by the observer, to date
Integer pvkey Z Unique identifier for an observer
Integer species code Z Species specific identifier
Character verification status Target 0=Invalid, 1=OK, other=In Query
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