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Abstract
The idea of placing a coloured filter in front of a camera to

make it more colorimetric has been previously proposed. However,
this prior art approach sought to increase the dimensionality of the
capture — i.e. to take an image with and without a filter — rather
than to change the spectral characteristics of the sensor itself.

In this paper, we set out a new method for finding the filter
that, in a least-squares sense best achieves the Luther condition.
That is, the filter multiplied by the camera spectral sensitivities is
‘almost’ a linear combination from the colour matching functions
of the human visual system. We show that for a given sensor set
the best filter and best linear mapping can be found together by
solving an alternating least-squares problem.

Experiments demonstrate that placing an optimal filter in
front of a camera can result in a dramatic improvement in its
ability to see the world colorimetrically.

1. Introduction
The spectral sensitivities of a camera are designed to satisfy

many objectives including manufacturability and the need to min-
imise the conspicuity of noise when the raw RGBs are transformed
for display. As a consequence, most cameras do not ‘see’ like we
do. That is the RGBs a camera measure are not a linear transform
from colour matching triplets. More formally, a camera ‘sees’ like
we do – with a simple linear colour correction – if and only if its
spectral sensitivities are a linear combination of the corresponding
human visual system matching curves (or equivalently a linear
combination of the XYZ colour matching functions).

In the literature, it has been proposed that to make a camera
more colorimetric we could take several pictures under different
coloured filters [1]. This generates a higher dimensional represen-
tation with respect to which a linear combination can better predict
what we see (e.g. better predict XYZs). Alternatively, in the field
of fine art, multispectral and hyperspectral imaging systems are
widely used to obtain great colour fidelity [2].

The multiple-image approach is problematic because it neces-
sitates a long capture process where the user has to change filters
between image captures. If nothing else, the captured images are
not in registration, which is a problem in itself. As for the multi-
spectral approach, it is characterized by longer capture time and
much more expensive imagers.

Of course, a more pragmatic way to proceed – and the one
that is implemented in all camera processing pipelines – is simply,
given the RGBs for a given camera do, by mathematical means,
find a correction transform that brings them as close as possible
to the desired XYZs (or display RGBs). The preponderance of
methods take a regression approach and involve either linearly cor-

recting RGBs or linearly correcting a polynomial-type expansion
of RGBs [3, 4, 5, 6, 7, 8, 9]. Other mappings include look-up-
tables [10], and artificial neural networks [11, 12].

In this paper, we propose that finding the filter to make a
camera more colorimetric should be chosen in tandem with the best
colour correction transform taking RGBs to XYZs. Our method is
built directly on top of the Luther condition [13]. If Q(λ ) denotes
the vector of red-, green- and blue-spectral sensitivities and χ(λ )
denotes the XYZ colour matching functions then an explicit Luther
condition inspired formulation of the filter design problem can be
modeled as:

min
f (λ ),M

‖ f (λ )[MtQ(λ )]−χ(λ ) ‖ (1)

where f (λ ) defines the spectral transmittance of the colour filter,
and M is a fixed 3×3 linear transformation matrix.

Figure 1 illustrates Equation 1 with respect to the colour
matching experiment. Here the goal of the observer is to adjust
the intensities of the three primary lights (R, G and B) to make
a colour that looks identical to the bipartite of the test light. In
this example, R, G and B are set to respectively the intensities
ρ,γ,β in order to make a visual match. In Figure 1 we seek a filter,
shown in red in front of the camera, so that the camera RGB values
multiplied by matrix M record the same triplets as the observer
does under the same viewing geometry. That is the camera ‘sees’
mixture of the intensities a human observer would use to make a
match.

Figure 1: We try and find a filter such that the RGBs a camera
measures (after a 3× 3 correction matrix) are the same as the
colour mixtures a human observer would make to find a match.
That the filter is red here is for illustration (the best filter colour is
not a priori specified). The position of the observer and the camera
should be the same in the real match.

In this article, we show how to solve the minimization of
Equation 1 to find the best coloured filter to make a given camera
colorimetric. To quantify the improvement in colour measurement
for a given camera afforded by a colour filter we calculate the Vora-
Value before and after correction [14]. Remarkably, some cameras



become ‘nearly’ colorimetric. We also evaluate their performance
via a colour correction experiment using measured data e.g. ∆E∗ab
[15] with and without a filter.

In section 2 we review the background in colour filter design.
Section 3 presents our method. In section 4 we report on our
experiments. The paper concludes in section 5.

2. Background
There are three important physical variables to consider in

image formation. First, there are the surface reflectance properties
of the objects in the scene. Second, we must consider the illu-
mination or illuminations under which a scene is viewed. Lastly,
the spectral characteristic of the sensors is an important variable.
The interaction of surface, light and sensor is elucidated in the
equation:

ρk =
∫

ω

C(λ )Qk(λ )dλ ,k ∈ {R,G,B} (2)

The colour signal C(λ ) is a combination of light and surface in-
formation. An integrated response is calculated for each of three
sensors Qk(λ ) (usually, short-, medium- and long-wave sensitive
mechanisms or R, G and B). The integral is taken over the visible
spectrum ω .

It will be useful to recast Equation 2 in the discrete domain
(matrix-vector representation). Sampling spectra allows us to write
spectral quantities as vectors. We rewrite Equation 2 as

ρk =CtQk (3)

where C is the spectral colour signal spectrum sampled at measur-
ing intervals (e.g. giving 31 values over the visible spectrum 400 to
700 nm through 10 nm interval). Qk is the discrete representation
of the kth sensor. Advantageously, in the discrete domain it is
easy to write the RGB response as a single response. Equation 4
denotes the RGB and XYZ responses to the same stimulus (where
Q and χ denote the 31×3 matrices of sensitivities).

ρ
t =CtQ, xt =Ct

χ (4)

A necessary and sufficient condition for a camera to measure
the world colorimetrically (that is, for its RGBs to be a linear
correction from XYZs) is for Q and χ to be a linear correction
from one another, the so-called Luther condition:

if Q = χM⇒ xt = ρ
tM−1 (5)

The Luther condition is strong. Arguably, for a fixed view-
ing illuminant, because the reflectance characteristics tend to be
smooth, it may be possible to measure colorimetrically (to some
small degree of error) without the Luther condition being met.
Indeed, the colour fidelity we see on our smart phones is rea-
sonably good. Let C denotes a set of N colour signals then the
corresponding response sets of RGBs and XYZs can be written as:

P =CtQ, X =Ct
χ (6)

We can treat P and X as data matrices and the best colour correction
can be written as a least-squares regression.

min
M
‖ PM−X ‖⇒M = [PtP]−1PtX = P+X (7)

The ‘book formula’ shown in the right hand side of Equation
7 is called the Moore-Penrose inverse. Note the superscripts +

and t denote pseudoinverse (also see in Equations 10 and 11) and
matrix transpose respectively.

Under the assumption that reflectances are sufficiently well
modeled by a 3D linear model [16, 17], then Equation 7 yields
an M that supports perfect colour correction. However, there are
many examples of cameras recording the wrong colours (i.e. the
reproduction formed after colour correction has the wrong colours
compared to what a human observer perceives when viewing the
same scene). Further, the tolerance for measurement (e.g. to
decide that one surface is the same colour as another) is tighter
and a linear correction does not suffice.

The quality of colour reproduction (and linear models) was
the motivation for Farrell and Wandell’s [1] colour filter approach.
They proposed placing a filter between the object and the measure-
ment device (scanner or camera). Then two images are captured,
once with and once without the filter. In this way six measurements
are made per pixel. Mathematically, the data matrix becomes:

PN×6 =Ct [Q Q f ] (8)

Here the superscript f denotes the sensitivities of the camera mul-
tiplied by a colour filter f (λ ). Note that for this case the least-
squares matrix M in Equation 7 is a 6× 3 matrix. The ‘best’
filter was chosen empirically (by choosing the filter from a set
of commercially available choices that supports the best colour
measurement).

In previous work, Vora and Trussell [14] developed a simple
‘goodness’ score – a number between 0 and 1 — to assess how
closely a sensor set measures colours compared with the human
visual system (unity means the sensor set is colorimetric while
a zero measures nothing in common). In [18, 19] they used this
Vora-Value as part of an optimization scheme to find the sensor
set that was most colorimetric. Perhaps counter-intuitively these
sensors do not meet the Luther condition.

Rather, their problem formulation asks what are the best filters
that can measure the world under multiple lights with a simple
linear correction, which can map the recorded RGBs (for a given
light) to corresponding measurements under a reference light. This
approach is intriguing not least because we ourselves do not see
in this way. Under different lights some colours do look different!
In this paper we will be looking at filter design as a way of best
trying to measure the same XYZs we see for a given illuminant
condition.

3. Filter design
Let us rewrite Equation 1 in the discrete domain. Specifically,

we propose that the filter that best matches the Luther condition
can be found by minimizing:

min
D,M
‖ DQM−χ ‖ (9)

Here Q and χ are respectively N×3 matrices capturing the camera
spectral sensitivities and the XYZ colour matching functions. N
refers to the sampling number across the visible range. M is a 3×3
correction matrix. D is an N×N diagonal matrix. Mathematically,
Dii, the ith diagonal term in D multiplies the ith row in Q. That is,
the three camera sensitivities at the ith wavelength are multiplied



by the same value. D in the discrete domain is a physically accurate
model of f (λ ) in Equation 1.

Unfortunately, there is no closed form solution to Equation 9.
Rather we solve for D and M using a technique called Alternating
Least-Squares (ALS). The algorithm is shown below where ‖ • ‖F
denotes the Frobenius norm (also see in Equation 11).

Algorithm 1 Filter and Linear Matrix Estimation by ALS

1: i = 0, Q0 = Q;
2: repeat
3: i = i+1;
4: min

Di
‖ DiQi−1−χ ‖F ;

5: min
Mi
‖ DiQi−1Mi−χ ‖F ;

6: Qi = DiQi−1Mi;
7: until ‖ Qi−Qi−1 ‖F < ε

D = ∏i Di and M = ∏i Mi;

In ALS we make an initial guess for the filter by ignoring
the linear correction term M. See step 4. Then we hold the fil-
ter fixed and solve for M (step 5). Taken together we estimate
a new ‘corrected’ (partial solution) spectral sensitivities. We re-
peat this process until convergence (the method is guaranteed to
converge[20]).

In Figure 2, top left we show the CIE1931 2◦ colour matching
functions. Top right shows the Canon 50D spectral sensitivities.
Using the above algorithm, we solve for the filter shown in the
middle of the diagram. We arrive at the comparison shown in the
middle of the figure (solid, XYZ colour matching functions and
dotted the approximation) by multiplying this filter (shown at the
bottom) and linear fitting to the XYZ colour matching functions.
The closeness of the two sets of curves is remarkable.

Cautionary Remarks
First, the reader will note the filter shape is rapidly varying

especially at the long-wavelength end and so likely not easy to
manufacture. Further, across most of the wavelengths the filter
absorbs most of the light. Therefore, if this filter is used the
resulting image would either be noisy (less light captured) or the
exposure time would need to be significantly increased. The role
of noise and the shape of the filter will be addressed in future
research.

Second, we draw attention to the paper [21] where the cone
sensitivities are discovered by modelling colour matching func-
tions as optical pre-filtering and linear combination of the cone
absorptances. Essentially, we deploy the mathematics developed
in [21] here. However, in [21] it is known a priori that a good
solution was possible. Further, constraints have to be placed on the
shape of the pre-filtering (since much is known about the ocular
media, lens etc.).

The emphasis of our own work is to solve for the best pre-
filter for the application of making a camera more colorimetric.
In contrast to the previous work, there is no a priori reason why
good pre-filtering should exist. But, in our favour here, we need
not concern ourselves with the shape of the pre-filtering filter (we
do not need to consider biological plausibility).
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Figure 2: Spectral distributions. (a) CIE1931 CMFs of 2◦ standard
observer, (b) camera spectral sensitivity functions of Canon 50D
normalized at 560nm, (c) reconstructed camera response functions
with designed filter and linear mapping (dotted lines) comparing
to the reference CMFs (solid lines), (d) spectral transmittance of
colour filter solved for Canon 50D over the measuring range.

4. Experiments
Spectral Evaluation

In order to measure the quality of filtered camera respect to
the desired CMFs, we adopt the measures of Vora-Value [14] and
normalized spectral root-mean-square error (NRMSE).

The Vora-Value is defined in Equation 10 as

ν =
Trace(χχ+QQ+)

3
(10)

The Trace function sums up the terms along the diagonal of a ma-
trix. We refer the reader to [14] where the meaning and derivation
of this equation are explained.

The Vora-Value returns a number between 0 and 1 meaning
respectively not colorimetric at all and 100% colorimetric. Prag-
matically, a sensor system that has a Vora-Value above 0.9 captures
colours that a 3×3 matrix can correct to XYZs to a tolerable per-
ceptual error (e.g. the colours will look mostly correct and the
visual error will be acceptable). A Vora-Value above 0.99 is in-
dicative of a camera that is almost colorimetric i.e. to all practical
purposes will sense the world like we do.

The normalized spectral NRMSE between corrected camera



sensitivity functions and desired CMFs is defined as:

NRMSE =
‖ χ−QQ+χ ‖F

‖ χ ‖F
(11)

The performance of our proposed filter design method is
evaluated with respect to [22], a set of the measured spectral sen-
sitivities of 28 commercial cameras. A large component of the
set comprises 9 Canon and 10 Nikon cameras. We will pay close
attention to these subsets. As a final note the data is given from
400 to 720 nm through 10 nm interval so we use 33 sample points
in our calculations.

For each camera, a specific filter and a linear transformation
were calculated using Algorithm 1 developed in the last section.
Fig. 2(d) displays an example of colour filter calculated for Canon
50D. The relative spectral transmittance values are positive in
the range between 0 and 100%. The Canon camera sensitivities
multiplied by the filter with a linear combination applied are shown
in dotted lines in Fig. 2(c). The filter corrected sensitivities are
almost the same as the XYZ colour matching functions.

In terms of Vora-Value the Canon 50D which was originally
0.950 becomes 0.992. The NRMSE improves from 0.250 to 0.052,
reduced by nearly 80%. By applying this colour filter and linear
mapping, Canon 50D camera becomes almost colorimetric.

In Table 1, we look at the Vora-Value and NRMSE perfor-
mance before and after a filter is added (with linear correction).
The first three rows of the table show the performance of 3 cam-
eras which post filter correction have the maximum, median and
minimum Vora-Values. Then we look at the average performance
of the Canon and Nikon cameras as separate subgroups. Finally,
the average performance over the whole data set is summarized.
We repeat this methodology for NRMSE.
Table 1: Performance of camera systems with colour filter versus
the original functions using Vora-Value and NRMSE.

Vora-Value NRMSE
Camera After Original After Original
Canon50D 0.992 0.950 0.052 0.250
NikonD40 0.947 0.924 0.104 0.305
NikonD90 0.941 0.922 0.113 0.317

Canon group 0.987 0.938 0.062 0.285
Nikon group 0.944 0.921 0.108 0.316
Whole data 0.961 0.918 0.091 0.316

Spectrally, all cameras are improved to some extent. About
50% of the cameras lend themselves to significant improvements
in their colour measurement ability. This is an interesting result
since it shows that within the range of manufacturable sensors
there are sets which can be made much more colorimetric with the
addition of a coloured filter. And these cameras could then be used
in applications where accurate colour measurement is needed.

Taken as a group, Canon cameras can be filter-corrected to
become colorimetric more readily than Nikon cameras. The cor-
rected Canon cameras have Vora-Values of 0.972 at least, with an
average value as high as 0.987 for the whole subset compared to
0.944 of Nikon subgroup.

Colour Correction Experiment
We now carry out a second experiment. Here we wish to eval-

uate how well the RGBs measured by a camera can be corrected

to match XYZs and how much this colour correction performance
is improved when a coloured filter (designed by Algorithm 1) is
placed in front of the camera. For each camera (normal and filter
corrected) we calculate the RGBs under CIE D65 [23] for the
SFU set of 1995 reflectances [24]. We then find the optimal least-
squares linear correction to best map to ground-truth XYZs. We
then calculate the average, median, and 95% quantile of ∆E∗ab over
the test data set.

Figure 3: Comparison the performance of colour correction with
and without colour pre-filtering with linear mapping and direct
linear mapping. The blue squares represent direct linear correction,
while the red squares show the results by colour pre-filtering with
linear correction. On the horizontal axis, there lists three indica-
tors respectively mean, median and 95% quantile of the colour
differences for the SFU reflectance data set under CIE D65. The
trend of the three measures is consistently dropping showing the
reduction of colour error.

The results are presented as shown in Fig. 3. For each error
statistic we show the means (i.e. the mean of the means calculated
over different cameras and the mean of the medians and the mean
of the 95% quantiles). We also show the spread in the error defined
to be 2 standard deviations. Whichever statistic is employed, there
is over 20% on average boost in performance. However, when re-
viewing the cameras individually, a few cameras like Sony Nex5N
and Nikon D40, are not greatly improved by pre-filtering.

5. Conclusion
In this paper, we develop a method to find the best coloured

filter such that when placed in front of a camera its new effective
spectral sensitivities best match the Luther condition (become most
colorimetric). Experiments show that our method often makes
a camera ‘almost’ colorimetric which means that they can, in
principle, be used for precise colour measurement.
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