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Abstract Spatiotemporal changes in China’s carbon emissions during the 11th and 12th Five-Year Plan
periods are quantified for the first time through a reconstructed nationwide high-resolution gridded data
set. The hot spots of carbon emissions in China have expanded by 28.5% (toward the west) in the north and
shrunk by 18.7% in the south; meanwhile, the emission densities in North and South China have increased by
15.7% and 49.9%, respectively. This suggests a clear transition to a more intensive economic growthmodel in
South China as a result of the energy conservation and emission reduction policies, while the expanded
carbon hot spots in North China are mainly dominated by the Grand Western Development Program. The
results also show that China’s carbon emissions exhibit a typical spatially intensive, high-emission pattern,
which has undergone a slight relaxation (up to 3%) from 2007 to 2012 due to a typical urbanization process.

Plain Language Summary Implementation of China’s recent climate pledge to the Paris Agreement
requires effective carbon reduction policies at various geographical and administrative levels, which will rely on
not only accurate estimates of national total emissions but also on a comprehensive understanding of the
spatiotemporal changes in carbon emission patterns. The latter is crucial for allocating carbon emission quotas
and developing appropriate policies at regional and local scales, yet it remains poorly understood. To this end,
we reconstruct the nationwide high-resolution gridded carbon emissions for the first time by compiling the
CO2 emissions from industrial, residential, transportation, and agricultural sectors. This allows us to investigate
the spatiotemporal changes in China’s carbon emission patterns during the 11th and 12th Five-Year Plan
periods when unprecedentedly rapid economic growth, technological development, and environmental
change have taken place. Moreover, this enables us to quantify the influences and effectiveness of
previous carbon reduction policies (up to 3% relaxation to China’s spatially intensive high-emission pattern
and 16% reduction in emission intensity). Our findings are of great significance not only for developing
evidence-informed climate policies in the current and forthcoming five-year planning periods in China but also
for providing scientific references to other countries in support of developing effective climate policies.

1. Introduction

As the biggest emitter of greenhouse gases in the world, China has ratified the Paris Climate Change
Agreement and committed to reduce its carbon intensity by 60 to 65% from the 2005 level by 2030
(Jacquet & Jamieson, 2016; Rogelj et al., 2016). Because natural resources and economic activities are
unevenly distributed across the country (Luo & Wei, 2009; H. Wang et al., 2015; Yi & Liu, 2015), substantial
reduction of carbon emissions in China will require effective and efficient climate mitigation policies at both
national and provincial levels. Effective policy-making against climate change relies on not only the accuracy
of national total emission estimates (Feng et al., 2013; Guan et al., 2012; Z. Liu et al., 2015; Yu et al., 2014;
D. Zhang et al., 2014) butmore importantly, also a full and in-depth understanding of the spatiotemporal char-
acteristics of carbon emissions in China (Guan et al., 2014; Gurney, 2015; A. Li & Lin, 2013; Lo, 2016; S. Wang
et al., 2014; Y.-J. Zhang et al., 2014). The latter is essential for setting regional allocations of carbon emission
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quotas in China and developing appropriate policies at regional and local scales (Govindaraju & Tang, 2013;
Yu et al., 2014), yet it remains poorly understood due to the insufficient coverage of spatiotemporal variations
in CO2 emissions in national carbon inventories (Hao et al., 2014; J. Wang et al., 2014).

China is now in its 13th Five-Year Plan period (2016–2020) and is undergoing amajor structural transformation in
its economy toward a new developmentmodel focused on better-quality growth (Green & Stern, 2017; J. Zhang
& Cai, 2016). Developing evidence-informed climate policies based upon the experiences and lessons learned in
previous 5-year planning periods will be of great importance to facilitate its transition to a low-carbon economy
(Gu et al., 2016). Particularly, during the 11th and 12th Five-Year Plan periods (2006–2010 and 2011–2015), China
has experienced unprecedented economic growth and became the second largest economy in the world;
meanwhile, its CO2 emissions have surpassed the United States and China has become the world’s largest emit-
ter. Investigating the spatiotemporal changes in China’s carbon emission patterns during these periods can help
evaluate the effects of previous carbon reduction policies and will thus provide a scientific basis for developing
effective and efficient climate mitigation policies in the current and forthcoming five-year planning periods.

2. Methods
2.1. Reconstruction of China’s Carbon Emissions

In order to reconstruct the high-resolution gridded carbon emissions in China, we first collected and surveyed
CO2 emissions in 2007 and 2012 from four major sectors, including industrial, urban residential, transporta-
tion, and agricultural sectors. For the industrial sector, we considered emissions from fossil fuel combustions
(e.g., thermal power plants) and industrial processes (e.g., cement production, lime production, iron and steel
production, glass production, and ammonia production). The emission data for the industrial sector were col-
lected from the China High Resolution Emission Gridded Data, which is based on the First China Pollution
Source Census (FCPSC) and subsequent data updates from the latest survey (J. Wang, Cai, et al., 2014;
M. Wang & Cai, 2017). The FCPSC is the first nationwide survey of all types of energy consumption complied
from the China Energy Statistical Yearbook. The FCPSC data set covers more than 1.58 million officially
registered industrial enterprises in China and is more comprehensive than China’s national official statistics
(which exclude small enterprises with annual revenue less than 5 million CNY). Since the emissions from
these industrial enterprises account for over 80% of total CO2 emissions in China (W. Chen et al., 2017;
J. Wang, Cai, et al., 2014; S. Zhou et al., 2013), small mistakes or errors in their geographical coordinates will
substantially influence the accuracy of the resulting carbon emission patterns. In order to improve the accu-
racy, we surveyed the administrative properties (i.e., county or district locations) of all enterprises and verified
their geographical coordinates to avoid conflicts. In cases where the recorded coordinate of an enterprise
conflicts with its administrative property, its coordinate is replaced by the geometric center of its affiliated
county or district. For the urban residential sector, we considered emissions caused by energy use for heating,
cooling, and cooking from hotels, restaurants, hospitals, schools, and households at the county/district level.
The emission data for the urban residential sector were also collected from the China High Resolution
Emission Gridded Data. The emissions from the transportation sector were collected at the provincial level
and covered various sources such as roads, railways, rivers, and aviation routes (Cai et al., 2012). For the
agricultural sector, we collected the emission data for agricultural activities and rural households from the
China Energy Statistical Yearbook published by the National Bureau of Statistics (NBS, 2008, 2013).

We applied a bottom-up aggregation approach (see Figure S1 in the supporting information) to reconstruct
China’s carbon emissions in 2007 and 2012 with a spatial resolution of 10 km based on the collected emission
data from the four major sectors. We interpolated the CO2 emissions from four sectors into a 10-km grid and
generated four separate high-resolution gridded maps, which were then added up to represent the overall
carbon emissions. For the point source emissions from the industrial sector, all point sources within the same
grid cell were summed up to estimate the total industrial emissions of the grid cell. Assuming EIi is the total
CO2 emissions from the industrial sector for grid cell i, EIi can be calculated by

EIi ¼ ∑
n

j¼1
∑
m

k¼1
EFjk�Ck þ EPj

� �
(1)

where n indicates the total number of point sources within grid cell i, m denotes the total types of fuels
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combusted by point source j, EFjk is the annual amount of fuel k burned in point source j, Ck is the CO2 emis-
sion factor for fuel k, and EPj represents emissions from industrial processes for point source j. In this study, we
derived the emission factors for different industries from the greenhouse gases inventory of the National
Communication on Climate Change of China (http://www.ccchina.gov.cn). The emissions from the urban
residential sector were surveyed and collected at the county/district level. We then allocated the CO2

emissions from the residential sector proportionally to all grid cells according to their population percen-
tages to the affiliated county/district. Similarly, as transportation emissions of a region are closely related
to its total population, we interpolated the provincial emissions from the transportation sector proportion-
ally to the 10-km grid cells within each province in accordance with their population percentages. The
agricultural emissions were collected at the provincial level and allocated evenly to all grid cells within
the province.

The reason that we chose to reconstruct a new data set instead of using the existing data sets (Saikawa et al.,
2017) is because that they are all based on a top-down disaggregating approach (as illustrated in Figure S1)
to generate gridded carbon emissions. The key idea of this top-down approach is that total emissions at
regional levels (e.g., county, city, or province) are proportionally disaggregated to the related grid cells
according to the population, development level, etc. Since the emission data at regional levels are usually
from government statistics which only provide total emissions without any spatial information (especially
for industrial point sources), disaggregating the regional statistics into small grid cells will lead to overly
smoothed results because partial emissions from industrial point sources are apportioned to neighboring
cells. Apparently, this top-down disaggregation approach cannot reasonably reflect the spatial variations
of carbon emissions at local scales. In contrast, we applied a bottom-up aggregation approach to construct
the high-resolution gridded emissions data set for China (see Figure S1). In detail, we first collected and ver-
ified both the carbon emissions and the geographic locations of all industrial point sources in a region. For
each output grid cell covering an industrial point source, the emissions from this industrial point source
together with emissions from other sectors (e.g., residential, transport, and agriculture) are aggregated to
represent the total carbon emissions from this grid cell; for other grid cells, only emissions from other sectors
are aggregated. The advantage of this approach is that the spatial variations of carbon emissions at local
scales can be appropriately reflected in the outputted gridded data set (MWang & Cai, 2017). Here we should
note that the focus of this research is not on how the totals of our bottom-up approach are different from the
top-down method, as our purpose of introducing the bottom-up approach is to help derive the spatial pat-
tern of China’s carbon emissions at a finer resolution. However, we have performed detailed comparisons in
both totals and spatial variations of carbon emissions between our method and other data sets (J. Wang, Cai,
et al., 2014; M. Wang & Cai, 2017). In general, the totals from our bottom-up approach are slightly higher than
other sources and our data set shows a better performance than other data sources in representing the spa-
tial variations of carbon emissions.

2.2. Characterization of Carbon Emission Patterns

We employed a two-step approach to characterize the spatial patterns of China’s carbon emissions in 2007
and 2012: (1) the hot spots of gridded carbon emissions in each year were first identified through a geosta-
tistical analysis, and (2) the emission patterns of the identified hot spots were then quantified to represent the
spatial characteristics of carbon emissions in each year (refer to the supporting information for more details
about this two-step approach). Note that we used the Getis-Ord local statistic to help identify the hot spots of
carbon emissions in China. The Getis-Ord statistic is based on the normal z-score and can be used to detect
statistically significant spatial clusters of high values (i.e., hot spots) through measuring the z-scores and p-
values at all grid cells. Here we used a significance level of 90% (i.e., p-value ≤ 0.10 and z-score ≥ 1.65) as a
threshold to identify the hot spots of CO2 emissions in China. The quantified spatial characteristics of carbon
emissions in 2007 and 2012 were then compared with each other to help understand the spatiotemporal
changes in China’s carbon emission pattern from the 11th Five-Year Plan period (2006–2010) to the 12th
Five-Year Plan period (2011–2015). This is to understand the influences and effectiveness of carbon-related
policies introduced and implemented during these periods and will be of great importance for guiding the
development of new climate mitigation policies toward a low-carbon economy in the Thirteenth Five-Year
Plan period (2016–2020) and the forthcoming 5-year planning periods. Here we should note that our study
highlights the transition from the 11th Five-Year period to the 12th Five-Year period. In other words, our
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analysis emphasizes the policy effects from the beginning of the 11th Five-Year period to its end. In detail, we
may assume that there might be a 1-year delay to start seeing the effects of some policy changes, then we
can use the carbon emissions data in 2007 to represent the policy effects at the beginning of the 11th
Five-Year period (i.e., 2006); similarly, we can use the carbon emissions data in 2012 to represent the policy
effects at the end of this period (i.e., 2011). In this sense, our study quantifies the outcomes of carbon
mitigation policies from the beginning of the 11th Five-Year period to the beginning of the 12th Five-Year
period. A more detailed discussion of the methodology can be found in the supporting information (Getis
& Ord, 1992; Mitchel, 2005; Ord & Getis, 1995; Scott & Warmerdam, 2005).

Once the spatial characteristics (hot spots and their spatial patterns) of carbon emissions for 2007 and 2012
were quantified, we further analyzed the changes in geographical location, spatial coverage, and emission
patterns of the identified hot spots from 2007 to 2012 to help understand the spatiotemporal changes of
China’s carbon emissions in recent years. In addition, the gridded carbon emissions were aggregated at
the provincial level in association with total area, population, and gross regional product (GRP; Viet, 2010)
to help understand the changes in CO2 emission density and intensity at regional scales. The data for popula-
tion and GRP at the provincial level were collected from the National Bureau of Statistics of China (http://data.
stats.gov.cn). Note that the CO2 emissions from Taiwan, Hong Kong, and Macao are not included in the
gridded carbon emissions data sets and the related analyses.

3. Results

Here we apply a bottom-up aggregation approach to reconstruct China’s carbon emissions in 2007 and 2012
with a spatial resolution of 10 km based on the CO2 emissions from four major sectors, including industrial,
urban residential, transportation, and agricultural sectors (see section 2). Hot spot analysis is then applied to
the gridded carbon emissions to detect if the CO2 emissions are significantly clustered. Not surprisingly, the
high-emission regions are primarily located in East China where major economic activities are taking place
(see Figure 1). Furthermore, these high-emission regions exhibit significant spatially clustered patterns in

Figure 1. China’s carbon emissions and hot spots in 2007 and 2012. (a and b) 10 km × 10 km gridded carbon emissions in
2007 and 2012, respectively; (c and d) hot spots of CO2 emissions (z-value ≥ 1.65 and p-value ≤ 0.1) in 2007 and 2012,
respectively.
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the central east (including Beijing, Tianjin, Liaoning, Hebei, Shanxi, Shandong, Henan, Jiangsu, Anhui,
Shanghai, and Zhejiang) and the south (mainly in Guangdong), as illustrated by the detected hot spots in
Figure 1.

Through comparison of the gridded carbon emissions and their hot spots between 2012 and 2007, we inves-
tigate the spatiotemporal changes in China’s carbon emission patterns during the two 5-year periods.
Although our focus here is on the spatiotemporal changes of carbon emissions, we find the total carbon
emissions in China have increased by 33.5% from 2007 to 2012. As the hot spots of carbon emissions account
for more than 70% of the total emissions (70.6% in 2007 and 74.0% in 2012, respectively), here we focus on
exploring the changes in the spatial coverage and emission patterns of hot spots (see Figure 2 and Table S1 in
the supporting information). We find that the hot spots in North China have expanded by 28.5% from 2007 to
2012, while the hot spots in South China have shrunk by 18.7%, leading to an overall expansion of carbon hot
spots in China by 12.2%. Such a spatial shift in the coverage of hot spots from south to north is likely to be
associated with the Grand Western Development Program (e.g., massive investment to boost economic
development in western regions; Lai, 2002; Shenglong et al., 2009) and the energy conservation and emission
reduction policies (e.g., shutdown or phase-out of high-emission industries; L. Li et al., 2011; Yuan et al., 2011)
implemented in the 11th Five-Year Plan period.

Owing to rapid economic growth, the total emissions in both regions have increased from 2007 to 2012.
However, the increasing rate of total carbon emissions in North China (48.7%) is more than three times higher
than South China (14.6%), driving the overall increase rate in China to be as high as 39.9%. The emission den-
sity of hot spots in North China is generally higher than South China from 2007 to 2012, yet the increasing
rate of emission density in South China (40.9%) is approximately 2.5 times higher than North China
(15.7%). The shrinkage of carbon hot spots and the increase of emission density in South China suggest a
clear transition to a more intensive economic growth model, while the expansion of hot spots to the west

Figure 2. Expansion of hot spots of CO2 emissions from 2007 to 2012. The two rectangular regions are introduced to help
summarize the changes in the spatial coverage of carbon emission hot spots and are labeled as “North China” and “South
China,” respectively. Note that the boundary between these two rectangular regions is determined using the location of
Yangtze River, since the northern part of Yangtze River is usually regarded as North China while the southern part is
commonly known as South China. The expanded hot spots in 2012 are calculated as the difference between newly
emerged hot spots and vanishing hot spots in 2012 relative to 2007.
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and the increase of emission density in North China are likely to be dominated by the strategic plans of the
Grand Western Development Program.

We further compare the distributions of z-scores and CO2 emissions between 2012 and 2007 to test the sta-
tistical significance of changes in the intensiveness of carbon hot spots and the density of CO2 emissions
(shown in Figures 3, S3, and S4). It is noted that the number of grid cells with high z-score (≥17.5) has dropped
down to zero from 2007 to 2012, while the number of grid cells with medium z-score (3 to 17) shows an
apparent rise in 2012 (particularly in North China). This is also demonstrated by the fitted lines of z-scores
between 2012 and 2007, which have coefficients less than 1 (0.84 for North China and 0.9 for South
China). However, the medians of z-scores in 2012 (7.1 in North China and 4.6 in South China) are still slightly
higher than in 2007 (6.8 in North China and 4.4 in South China), suggesting that the hot spots of CO2 emis-
sions in 2012 are generally more intensive than 2007. This implies there has been a statistically detectable
decline (p-value < 0.001) in the intensiveness of carbon emission hot spots (i.e., a shift in z-scores from high
to medium values) from 2007 to 2012, but such a shift has not substantially changed the intensiveness of hot
spots in 2012. The changes in the z-scores of the high-emission hot spots (represented by those 95%–100%
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percentile grid cells in Figure 3) from 2007 to 2012 are also analyzed (see Figure S3). In general, the z-scores
for the high-emission hot spots have experienced an average decrease of 2.3 from 2007 to 2012 both in the
North and the South, suggesting a relaxation in the intensiveness of those carbon hot spots; meanwhile,
the spatial variations in this relaxation in both regions can also be reflected by some slight differences in
the shape of the histogram and its maximum and minimum values. In detail, the relaxation in North China
manifests higher spatial variability than in South China, implying that the economic development in the
North is less homogeneous than in the South. Besides, we find that the emission densities in North and
South China have significantly increased from 2007 to 2012 (see Figure S4), which further supports our pre-
vious findings about the increase in the emission density of hot spots.

To understand the emission pattern of China’s carbon emissions, we break down CO2 emissions into nine
categories and compare the contribution of each category to the total emissions to its percentage of the total
area (see Figure 4). The results show that high CO2 emissions are usually concentrated in very small regions.
For example, CO2 emissions over 10 Mt which account for 29% of the total emissions in 2007 only come from
0.4% of the total area; while in 2012, the contribution of the same category of CO2 emissions has increased to
37.2% of the total emissions, yet the spatial coverage is still less than 1% of the total area. We further fit the
relationships between the contribution to total emissions and the percentage of total area in 2007 and 2012
using the emission data at grid cell scales. This is to quantify the carbon emission patterns and their temporal
changes from 2007 to 2012. Although the CO2 emissions in 2007 and 2012 are both characterized as spatially
intensive high-emission patterns, we find a slight relaxation in the overall emission pattern. Particularly, the
contributions of extremely intensive high-emission regions (accounting for 1% and 2% of the total area) to
the total emissions have declined slightly in 2012 (by 3% and 1.1%, respectively), while the contributions
of other high-emission regions have increased accordingly. Such a slight relaxation in the overall emission
pattern is also confirmed by the difference maps of carbon emissions at grid scales and relative shares of
national total emissions (see Figure S5).

We also compare the CO2 emissions and the intensiveness (z-score) of the overlapped hot spots between
2012 and 2007 (see Figure S6). The emission density and the intensiveness of the overlapped hot spots have
slightly decreased from 2007 to 2012, which further supports the slight relaxation in the overall emission pat-
tern. In general, an urbanization process involves building new transportation systems (e.g., roads and high-
ways), relocating heavy industries to suburbs or rural areas, deploying new electricity generation and supply
networks, turning agricultural lands and forests into urban surfaces, and so on (Y. Liu et al., 2013). One of the
outcomes of such an urbanization process is the increase in the total carbon emissions, while another out-
come is apparently the expanding of the spatial coverage of high-emission areas. The latter is usually
reflected by the change in the spatial pattern of carbon emissions. As our results show an apparent increase
in the total emissions from 2007 to 2012, such a slight relaxation in China’s spatially intensive high-emission
pattern suggests that the spatial coverage of high-emission areas has slightly expanded from 2007 to 2012,
implying a typical urbanization process during the same period. This is very likely associated with the fact that
the rapid economic development in major cities has spread widely to other less developed cities and suburbs
(Shen & Wu, 2013; Wei, 2015; Y.-J. Zhang et al., 2014). Furthermore, it is worthwhile to mention that some
recent studies have presented novel analyses of China’s carbon emissions at city levels (Shan et al., 2018;
Tong et al., 2018; Zheng et al., 2018); however, these city-level analyses often use a point to represent the
geographical location of a city and are incapable of reflecting the spatial variations of carbon emissions
(e.g., emissions from transportation networks) within the city’s boundary. Thus, they are unable to detect
the abovementioned urbanization process.

We aggregate the gridded 10-km carbon emissions at the provincial level to investigate the changes in total
CO2 emissions, emission density (measured by CO2 emissions per 100 km2), and emission intensity (mea-
sured by CO2 emissions per capita and CO2 emissions per 100 million Yuan GRP) from 2007 to 2012 (see
Figure S7 and Table S2). Statistically significant increases from 2007 to 2012 are detected in total CO2 emis-
sions (by 25%), emissions per 100 km2 (by 11%), and emissions per capita (by 62%) at the provincial level. In
the meantime, a significant decrease of 16% is observed in emissions per unit of GRP. Given the slight
increase in population (3%) and the significant increase in GRP (98%) from 2007 to 2012 (see Table S2), our
analysis suggests a clear transformation in China’s economic structure toward a market-oriented and low-
carbon economy during this period when its aggregate economy has been almost doubled (S Chen et al.,
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2011; Dekle & Vandenbroucke, 2012; X. Zhou et al., 2013). Particularly, the population and GRP of Beijing have
increased by 23.4% and 81.6% from 2007 to 2012, yet we find concurrent decreases in its total CO2 emissions
(30.4%), emissions per capita (43.6%), and emissions per unit of GRP (61.7%). This demonstrates a successful
transition to a low-carbon economy in the City of Beijing as a result of the innovative green development plan
(known as “Green Beijing”), which was introduced during the 11th Five-Year Plan period (Hu, 2016; Jiang
et al., 2010; Lewis, 2013; Z. Zhang, 2010). Furthermore, we also see an obvious shift in the linear
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Figure 4. Spatially intensive high-emission patterns of China’s carbon emissions. Only grid cells within the detected hot
spots of CO2 emission in Mainland China are considered in the calculation (see section 2). (a and b) The breakdowns of
CO2 emissions and the comparison between their contributions to the total emissions and percentages in the total area in
2007 and 2012. (c and d) The functional relationships between the contribution to total emissions and the percentage
of total area in 2007 and 2012, respectively; the mixed logarithm and polynomial functions indicate a typical spatially
intensive high-emission pattern of China’s carbon emissions (refer to Figure S2).
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relationship between carbon emissions density and average income from 2007 to 2012 (see Figure S8). In
other words, the carbon emissions required for each unit of income increase have decreased from 2007 to
2012. This further confirms the above-mentioned transformation in China’s economic structure toward a
low-carbon economy.

4. Conclusions

In summary, here we reconstruct the high-resolution gridded carbon emissions of China in 2007 and 2012 by
compiling the CO2 emissions from industrial, urban residential, transportation, and agricultural sectors, which
enables us to analyze and quantify the spatiotemporal changes in China’s carbon emission patterns during
the 11th and 12th Five-Year Plan periods. We find that the hot spots of carbon emissions in China have
expanded by 28.5% (toward the west) in the north and shrunk by 18.7% in the south; meanwhile, the emis-
sion densities (CO2 emissions per 100 km2) in both regions have increased by 15.7% and 49.9%, respectively.
The shrinkage of hot spots and the increase of emission density in South China suggest a clear transition to a
more intensive economic growth model as a result of the energy conservation and emission reduction poli-
cies, while the expansion of hot spots and the increase of emission density in North China are likely to be
dominated by the strategic plans of the Grand Western Development Program (e.g., massive investment
to boost economic development in western regions).

Our results show that the CO2 emissions in China exhibit a typical spatially intensive high-emission pattern.
Although this pattern has not been changed substantially from 2007 to 2012, we do find a slight relaxation
(up to 3%) in its intensiveness. As our results also suggest an increase of 33.5% in total CO2 emissions during
the same period, such a slight relaxation in the emission pattern reflects the effects of a typical urbanization
process in China. We also find that there is a statistically significant decrease (16%) in CO2 emissions per unit
of GRP at the provincial level from 2007 to 2012 when an average increase (25%) in provincial total CO2 emis-
sions is detected. This suggests a transformation in China’s economic structure toward a market-oriented and
low-carbon economy. As its economy continues to grow, China needs to take further steps to reduce its car-
bon emissions in order to fulfill its climate commitment to the Paris Agreement (reducing CO2 emissions per
unit of GDP by 60 to 65% from the 2005 level by 2030). Our findings on the spatiotemporal changes in China’s
carbon emission patterns can reflect the influences and effectiveness of the carbon reduction policies intro-
duced during the 11th and 12th Five-Year Plan periods. The effective policies demonstrated to be successful
(e.g., Green Beijing) in previous periods can be of great significance in support of developing new climate
policies in the current and forthcoming 5-year planning periods.
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