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ARTICLE

A suitability model for viticulture in England and Wales:
opportunities for investment, sector growth and increased
climate resilience
A. Nesbitta, S. Dorlingb and A. Lovettb

aClimate Wine Consulting Ltd, Surrey, UK; bSchool of Environmental Sciences, University of East Anglia,
Norwich, UK

ABSTRACT
Despite continued investment and evidence of high quality wine pro-
duction, English and Welsh wine grape yields remain low. To increase
sector resilience to weather and climate risks we present the first com-
bined terrestrial and climatic English and Welsh Viticulture Suitability
(EWVS) model. Results show many existing vineyards (≥ 1 ha) are sub-
optimally located. Limiting the model to the top 20% of suitable land in
England and Wales resulted in 33,700 ha of prime viticulture land being
identified, a scale just larger than the Champagne region of France.
Beyond Kent and Sussex, large areas in Essex, with the warmest 30-
year (1981–2010) Growing Season Average Temperature (13.9°C) on
mainland Britain, and Suffolk, where few vineyards presently exist,
appear especially suitable for viticulture. The EWVS model developed
through this work allows, for the first time, a rapid assessment of land at
local, regional and national scales to inform investment and policy
related decisions.
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Introduction

Wine grape varieties (predominantly of Vitis vinifera L.) are generally suited to specific climatic
conditions, historically found in narrow latitudinal (30–50°N and 30–40°S) bands in which growing
season conditions are often characterised by a lack of extreme heat and cold (de Blij, 1983; Jones,
2006; Schultz & Jones, 2010; White, Diffenbaugh, Jones, Pal, & Giorgi, 2006). On a regional scale,
suitability for viticulture is ultimately determined by the effects of mesoscale and local atmospheric
processes (Carbonneau, 2003; Fraga, Malheiro, Moutinho-Pereira, & Santos, 2013a), which result in a
global patchwork of grape varieties and wine ‘types’ that bring complexity and value to the wine
market. However, the climatic sensitivity of Vitis vinifera L. exposes viticulture to threats and
opportunities associated with climate change (Fraga, Malheiro, Moutinho-Pereira, & Santos,
2013b; Tóth & Végvári, 2016; Webb, Watterson, Bhend, Whetton, & Barlow, 2013). There is increas-
ing evidence of new emerging cool-climate viticulture areas beyond 50°N, for example in Denmark,
England and southern Sweden (Danskevingaarde, 2015; Nesbitt, Kemp, Steele, Lovett, & Dorling,
2016; Vinvagen, 2016). Their recent rapid growth and, particularly in the case of England, recogni-
tion for very high-quality wine (English Wine Producers, 2017; International Wine and Spirits
Competition, 2017) suggests new investment opportunities.
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Vineyard hectarage (ha) in England and Wales is estimated to have increased 246% (722 to
2500 ha) between 2004 (when sparkling wine started to dominate production – Nesbitt et al., 2016)
and 2017 (Food Standards Agency, 2017; WineGB, 2018). Enhanced investor confidence, sector
expansion, widening varietal suitability, and greater viticulture opportunity have been underpinned
by climate change, evidenced through recent (1954–2013) warming of growing season (April–
October) average temperatures (GSTs) (Nesbitt et al., 2016). However, notwithstanding prima facie
opportunities associated with higher GSTs the UK is located between the mid-latitude westerly
wind belt on the edge of the Atlantic Ocean and the continental influences of mainland Europe
and is therefore sensitive to minor changes in the positioning of major atmospheric pressure
systems. Resulting intra- and inter-annual weather variations can affect viticulture productivity at
annual or longer time-scales. During the 2004–2013 period, UK-wide wine yield varied considerably
(6–34 hectolitres per hectare (hL/ha)) with an average of 20.7 hL/ha, less than one third of the
Champagne harvest base yield (66 hL/ha) – albeit due in part to a higher density planting structure,
set by L’Institut National de l’Appellation d’Origine (Comité Champagne, 2017). Investments in
English and Welsh viticulture therefore remain exposed to low and highly variable yields.

With weather and climate variability being significant contributors to this vulnerability, identify-
ing areas in England and Wales that are both terrestrially (soil, topography and land use) suitable
for viticulture and have enhanced climatic suitability is crucial to increasing sector resilience to
weather and climate threats, and to inform investment decisions.

The spatial and varietal distribution of longer established wine producing regions of the world,
often termed the ‘old-world’, largely results from centuries of trial and error, experience, learning
and adaptation. For new regions touted as potentially having increased future suitability, including
England and Wales (Fraga et al., 2013b; Kenny & Harrison, 1992; Nesbitt et al., 2016), decisions
regarding terrestrial and climatic suitability cannot readily be established from empirical or regres-
sion-based predictions. Defined quantitative relationships between variables such as locality,
topography, soil characteristics, seasonal weather profiles, inter-annual variability, grapevine yields
and grape quality parameters for different varieties are not yet objectively established in England
and Wales, and a trial and error phase is likely unpalatable to many due to investment risk. To date,
the siting of vineyards in England and Wales has not been supported by an objective high-
resolution local, regional or nation-wide assessment of climatic and terrestrial (soil, topography,
land use) suitability. Site selection remains on an ad-hoc case-by-case basis lacking systematic
spatial comparison and potentially exposed to value judgements around critical characteristics,
their relative degrees of importance and the weightings that should be applied to them. However,
the use of modern Geographic Information Systems (GIS) for data integration and spatial analysis
provides a rapid means of identifying, quantifying, and grading land suitability for viticulture at
high resolution, thus bypassing the decades or even centuries of exploration.

There has been some previous use of GIS to map suitability for viticulture, for example in
Romania (Irimia, Patriche & Quénol, 2011) and Oregon (Jones, Duff, & Myers, 2006). However, land
suitability assessments for viticulture have been commonly undertaken using a Boolean logic
approach, i.e. logical true/false, rule-based methods that use a series of logical operators and, in
some cases, weighting factors to define ‘suitability’. Using a Boolean approach, the intersection
operator ‘and’ can be very restrictive (risk averse) when overlaying multiple datasets because if a
single criterion fails to meet its threshold an area is excluded. Conversely with the union operator
‘or’ there is the risk that an entire area could be chosen so long as a single criterion meets its
threshold (Romano, Sasso, Liuzzi, & Gentile, 2015). In reality, climate and terrestrial factors that
contribute to viticulture suitability are not discrete, but individually and collectively give a range of
suitability without distinct boundaries. Furthermore, the risk of uncertainty (error and vagueness) in
data regarding the natural environment, and ambiguity around precise relationships between
viticulture and environmental variables relating to ‘suitability’ is not well accommodated in a
Boolean approach, hence it may not fully elucidate opportunities, risks subjectivity and is unlikely
to usefully grade land suitability (Joss, Hall, Sidders, & Keddy, 2008). In this study, where
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appropriate, we employ a different methodology, based on fuzzy logic. Fuzzy logic/fuzzy set theory
is a precise logic of imprecision and approximate reasoning which allows for the conceptualization
of uncertainty, in this case to help create an analytical tool which facilitates decision-making based
on spatial information in a more valuable way than a ‘narrow’ Boolean approach would (Braimoh,
Vlek, & Stein, 2004; Burrough, Macmillan, & van Deursen, 1992; Fisher, Comber, & Wadsworth, 2006;
Robinson, 2003). Within fuzzy logic the concept of dataset membership is not absolute because all
members have degrees of association between 0 (not a member) and 1 (definitely a member)
(Malczewski, 2004), which are distributed according to the imposed membership function and
spread value (see Materials and Methods). Where suitability parameters for viticulture are defined
and delimited, fuzzy logic therefore presents a valuable tool for modelling risk and opportunities.

In this work we use GIS to deliver the first high-resolution (50 x 50 m) English and Welsh
viticulture suitability (EWVS) model, spatially representative at local, regional and national scales to
help direct investment, strategy, policy relevant actions and structural resilience to weather and
climate risks. The study also presents the first 30-year (1981–2010) average climate maps (England
and Wales) specifically relevant to the viticulture season (April–October) to deliver a comparative
regional climate narrative. We also apply the EWVS model to the 13 largest (≥ 25 ha) vineyards in
England and Wales to drive a model search for land with analogue characteristics and even higher
fuzzified suitability values.

Materials and methods

Geographic information systems (GIS)

ArcGIS version 10.3 (ESRI, 2014) was used for data integration and analysis.

English and Welsh vineyard locations

No ‘official’ database of English and Welsh vineyard locations and sizes (ha) was publicly available
so the UK Vineyards List (Skelton, 2015), although not independently verified, was deemed the
most up-to-date (November 2015) source. However, postcodes from this list were often found to
relate to premises and not precise vineyard locations, so to ensure model accuracy, individual
vineyards (≥ 1 ha) were visually located utilising a combination of Google Earth (Google, 2015a),
Google Maps Street View (Google, 2015b) and DigiMap Roam (Edina, 2015). Once located, coordi-
nates (British National Grid) of approximate vineyard centres were imported as point features into
ArcGIS to enable analysis of their spatial distribution and to quantify model parameters. Of the
384 ≥ 1 ha vineyards in England and Wales (2015), 4% (with a combined total of ~23 ha) could not
be found using this visual identification process (possibly due to their newly planted status and
therefore omission from the various base imagery used). They were therefore excluded from the
mapping and analysis exercise.

To facilitate an analogue approach to viticulture–climate suitability modelling, i.e. to enable the
EWVS model to search for similar or better ‘suited’ land, the boundaries of the 13 largest (≥25 ha)
vineyards in England and Wales were traced from an earth image base map (ESRI, 2014) using the
ArcGIS Editor tool, and saved as polygon features.

Regional ‘zoning’

Defining viticulture suitability through spatial zoning is not uncommon (Fraga et al., 2013b; Jones,
Duff, Hall, & Myers, 2010) and the geo-political boundaries utilised in the process provide an
artificial but useful means of depicting the appropriateness of relatively large areas. In the absence
of multiple appellations or defined viticulture zones within England and Wales, except for West and
East Sussex (which have a Protected Designation of Origin (PDO) geographic indication – Sussex)
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(UKVA, 2017), Unitary Authority (UA) boundaries (limited to counties to exclude small borough
pockets of suitability) (Ordnance Survey, 2015), were used as a means of representing spatial
suitability for viticulture at a regional scale and to define model classifications.

Terrestrial and climate data

Elevation, aspect, slope angle, land cover, soil characteristics and land designations are key
terrestrial factors when considering land suitability for viticulture. Weather and climate are critical
as they play predominant roles in grapevine physiology and phenology (van-Leeuwen et al., 2004)
and ultimately determine the commercial viability of viticulture. Data ‘types’, sources and EWVS
model parameters are shown in Table 1. The basis for their inclusion in the model is outlined
below.

Elevation
There is no stipulated ‘ideal’ elevation for vineyards in England and Wales but guidance suggested
vineyards would be best sited below 100 and not above 150 m (Skelton, 2014), with between
25–80 m being the preferred range (English vineyard managers, personal communication, 2015).
Elevation suitability is restricted by decreasing temperatures at higher altitudes and the greater
potential for wind exposure.

Aspect
At higher latitudes south facing slopes (in the northern hemisphere) have greater direct solar
radiation gain potential (Coombe & Dry, 2004; Jackson, 2014) particularly during the ripening
period when the sun is higher in the sky. They are also conducive to reducing the lag phase
during which a site heats up and dries out after a cold night (Jackson, 2014). All else being equal
such slope aspects are favourable to both yield and grape berry quality parameters.

Slope Angle
Optimum slopes for viticulture are 5–10%. The potential for mechanical vineyard-management
activity becomes limited on slopes greater than 10% (Jackson, 2014) and erosion risk increases.
Below 1% there is an increased risk of cold air accumulation and potential frost damage (Jones,
Snead, & Nelson, 2004).

Land cover
Potentially suitable areas for viticulture are limited in this work to those classified as arable,
horticulture or grassland in the Centre for Ecology and Hydrology’s (CEH) Land Cover Map (LCM)
(Centre for Ecology and Hydrology, 2007) because they were deemed most likely to exhibit
viticulture suitability parameters (Table 1).

Soil
Soil texture, drainage, pH, fertility, nutrient and organic matter content are all important attributes
in determining viticultural suitability. Their influences on vine nutrient and water availability, soil
temperature and humidity, the solubility of metal ions and the supply of nutrient cations and
anions, the number of beneficial microbes, and contributions to soil chemical, physical and
biological properties all impact vine health, growth and productivity (Davenport & Stevens, 2006;
Field, Smith, Holzapfel, Hardie, & Emery, 2009; Lanyon, Cass, & Hansen, 2004; van-Leeuwen et al.,
2004; Riches, 2013; White, 2010).

Although a range of desirable soil characteristics exist for viticulture, for example it is generally
accepted that soil pH should be between 5.5–8.0 for optimum vine growth and soil microbial
composition (Cass & Maschmedt, 1998; Lanyon et al., 2004; Riches, 2013), no one prescriptive ‘ideal’
set of soil properties exists. Rather a broad and generalised range is presented as being suitable
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under different environmental circumstances and for different rootstocks, clones, varieties, planting
densities and training systems. It should also be noted that many soil characteristics, particularly
nutrient availability, can be ameliorated via soil management activities to achieve desired traits.
However, to best represent the range of soil characteristics deemed desirable for viticulture, within
the EWVS model, three soil datasets were evaluated for their suitability in reflecting soil properties
in English vineyards. Results from this initial data trial (see supplementary material) led to the
selection of the Soilscapes (Farewell, Truckell, Keay, & Hallett, 2011; LandIS, 2015) dataset (11 of 27
simplistic soil descriptors) for inclusion in the EWVS model.

Designated areas
It was assumed that where land areas had been awarded a special designated status, for example,
Site of Special Scientific Interest, and were therefore ‘protected’, that they would not be available
for viticulture.

Temperature and bioclimatic indices
Temperature plays a major role in viticulture viability, grapevine growth, and in modulating the
final content of compounds in grape berries such as sugars, acids, phenolics, flavour compounds
and proteins (Gladstones, 1992; Kliewer & Torres, 1972).

In viticulture-climate research temperature is often presented through bioclimatic indices (BCIs),
metrics which provide simplistic illustrations and assessments of present or future viticulture or
varietal suitability (Anderson, Jones & Tait, 2012; Duchêne & Schneider, 2005; Hall & Jones, 2010;
Kenny & Harrison, 1992; Tonietto & Carbonneau, 2004). These BCIs commonly place numerical or
descriptive envelopes around summed or averaged daily or monthly growing-season temperatures
to express varietal suitability ranges. Various indices exist, for example Growing Degree Days (GDD)
and modifications thereof (Amerine & Winkler, 1944; Gladstones, 1992), the Growing Season
Average Temperature (GST) indices (Jones, 2006) and others as discussed in Tonietto and
Carbonneau (2004) and Malheiro, Santos, Fraga, and Joaquim (2010). They have been applied in
different regions, for different timescales, using different spatial resolutions, and driven by both
observed and modelled climate data which does not necessarily resolve the range of climatic
processes, intra-annual variability, or critical daily or hourly time-scale events which threaten
productivity and which are likely to influence sub-regional climate-viticulture relationships
(Jackson & Cherry, 1988; Jones, Moriondo, Bois, Hall & Duff, 2009; White et al., 2006). BCI classifica-
tion envelopes are restricted to observed establishment which may not adequately illustrate
varietal ‘potential’ or the adaptive capacity of viticulture through vineyard management techniques
(Jones & Storchmann, 2001; Tomasi, Jones, Giust, Lovat, & Gaiotti, 2011; Webb, Whetton, & Barlow,
2008). They are in essence crude measures of suitability that may mask or overstate true viticulture
potential in a specific location. As such, in this work the employment of BCIs is limited to GST
(Jones, 2006) for a 30-year (1981–2010) period with the sole aim of representing spatial and
temporal variability, an approach also adopted by Hall and Jones (2010) in Australia. Where GST
is applied to model viticulture potential in England and Wales it is used as an analogue with the
assumption that larger bioclimatic values present increased opportunity when the bottom end of
‘cool-climate’ is being explored. It was also selected for this work because of the availability of
observed monthly averaged daily temperature data, from which it is calculated (Table 1), and
because it has previously been widely used in inter- and intra-regional comparisons of viticulture
climates and suitability (Anderson et al., 2012; Hall & Jones, 2010; Jones et al., 2009; Montes, Perez-
Quezada, Pena-Neira, & Tonietto, 2012; Neethling, Barbeau, Bonnefor, & Quénol, 2012; Schultze &
Sabbatini, 2014; Webb, Whetton, & Barlow, 2007; and Xu, Castel, Richard, Cuccia, & Bois, 2012).

Whilst average growing season thermal characteristics are generally applied to determine varietal
suitability, intra-season temperature variability and extremes commonly influence the quantity and
quality of grapes produced (Ashenfelter & Storchmann, 2014). Vintage variation is not a new concept
in wine production, in fact it is one of the vagaries of wine that feeds into its marketing and its value.
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However, where the magnitude of weather variability is large viticulture may be unviable. Areas with
higher long-term GST variability in England and Wales (expressed in this work through inter-annual
standard deviation (SD)) were deemed to be less viticulturally stable.

Spring air frosts that injure developing buds and shoots are among the most common detrimental
effects of minimum temperature extremes on Vitis vinifera L. grapevines. Notwithstanding frost
protection, they pose a significant economic risk to vineyards (Trought, Howell, & Cherry, 1999).
Cool-climate wine producing regions are particularly exposed to the risk of early season frost events
when the advancement of budburst occurs in response to increased spring air temperatures (Molitor,
Junk, Evers, Hoffmann, & Beyer, 2014; Mosedale, Wilson, & Maclean, 2015).

Rainfall
Wine grape quality and quantity are affected by precipitation and water availability (Makra et al.,
2009; Moutinho-Pereira et al., 2007). High levels of rainfall, usually accompanied by reduced
sunlight, can negatively affect vine growth, berry quality and quantity through associated issues
such as increased disease pressure, overstimulated vegetative growth, reduced flowering, mill-
erandage (where grape bunches contain berries that differ greatly in size and maturity, sometimes
referred to as ‘chicken and hen’), coulure (flowers fail to set and are shed at or after flowering) and
a sugar/acidity imbalance. In this work, for suitability modelling purposes, areas with lower growing
season (April–October) rainfall and lower rainfall variability were favoured as a shortage of rainfall is
not presently deemed to be a significant risk to viticulture in England and Wales.

High rainfall during June, when grapevine flowering commonly occurs in the UK, has been
previously shown to have a negative impact on flowering and subsequent grape yield (Nesbitt
et al., 2016). As such, areas within England and Wales with lower average June rainfall (1981–2010)
were also awarded higher levels of viticulture suitability within the model.

Sunshine and solar radiation
Solar radiation at the earth’s surface, insolation, provides energy through photosynthetic processes
for grapevine growth and plays a particularly beneficial role during berry ripening and maturation
when sugar and phenolic contents are determined (Gladstones, 1992).

One additional meteorological variable that could be limiting to viticulture is wind speed. Whilst
wind data were not incorporated into the suitability model, site aspect and elevation were. Where
suitable topographic conditions (southerly facing sites and elevations of 20–80 m) exist, exposure
to easterly winds and dominant south-westerly winds should be minimised, although further site
amelioration may be required to offer greater protection.

Table 1 summarises these variables, their suitability parameters, data type, source, resolution,
and model membership type which are integrated into the EWVS model. The fuzzy logic model
membership ‘type’ and spread is described below.

Fuzzification

Fuzzy logic, when employed using ArcGIS, allows for different model/fuzzy membership types.
These different ‘types’ can represent the data distribution according to a user-imposed
‘optimum’ mid-point and spread value. The spread value defines the width and character of
the transition zone and directs the distribution of the data over a range of association from 0
(not a member) to 1 (definitely a member) (Malczewski, 2004). In the model a number of
different membership functions were used to represent different ways in which changes in
factor values were thought to influence suitability.

For elevation a ‘Near’ fuzzy membership type (ESRI, 2015b) was imposed on the data with
a mid-point of 52.5 m (25–80 m mean value) and a spread value of 0.001 (Table 1 and
Figure S1 – see supplementary material). The midpoint defines the centre of the set, identify-
ing definite membership and is therefore assigned a value of 1 within the EWVS model. As
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values move from the midpoint, in both the positive and negative directions, membership
decreases until it reaches 0, defining no membership, in this case for cells below 1 or above
150 m. The 0.001 spread was selected for this model to allow a wide transition zone,
illustrated in Figure S1 (supplementary material). Doing so gave a broader spread of values
across all grid cells than say a spread of 0.1 which would assign much lower values to cells
only marginally outside of the 52.5 m mid-point. The broad spread in this model indicates
that an elevation of 25 or 80 m may not be significantly less suitable than 52.5 m.

Slope aspect and angle datasets were also transformed and integrated into the fuzzy model
using the Near function, with spread values of 0.001. Slope was imposed with a mid-point
‘optimisation’ of 5%, and aspect with 180°, see Table 1.

Mean growing season total precipitation and precipitation inter-annual variability, June pre-
cipitation and days of air frost (≤ 0°C) in April–May were incorporated into the climatic suitability
model using a ‘Small’ fuzzy membership function with spread values of 5 (Table 1). The Small
membership function awards higher model membership suitability to cells with lower values, as
demonstrated in Figure S2 (see supplementary material), with a spread value of 5 assigning
increasingly steep fuzzification around the mid-point.

GST and hourly sunlight data (1981–2010) were integrated into the climatic suitability model
using a Linear fuzzy membership function (Table 1). No spread values were applied because the
fuzzy Linear transformation applies a straight line between the minimum and maximum values
of the dataset. Grid cells with the highest GST or Sunshine hours were awarded a value of 1,
and those with the lowest a value of 0.

Where layers were overlain and fuzzified, towards the ends of the terrestrial, climate, and combined
EWVS model developments (see Figure 1), a fuzzy Gamma overlay method was applied with a gamma
parameter of 0.5 to combine the data. This had the effect of producing an outcome that was a
compromise between a fuzzy SUM operation (an increase function used when the combination of
multiple evidence is more important than any of the inputs alone) and fuzzy PRODUCT (a decrease
function used when the combination of multiple evidence is less important or smaller than any of the
inputs alone). Alternative fuzzy overlay options of ‘And’ or ‘Or’ would have produced the minimum or
maximum value respectively, of the raster inputs being overlain.

EWVS model construction

Two suitability model sub-sets (terrestrial and climatic) were constructed and subsequently
combined to produce the EWVS model (see Figure 1). Some viticulture-climate studies
present bioclimatic values for zones or regions which in reality may not be entirely terrest-
rially suitable for viticulture, for example Kenny and Harrison (1992), White et al. (2006), Hall
and Jones (2010), and Malheiro et al. (2010). In this work, by creating the terrestrial (soil,
topography, and land use) suitability model first and then delimiting the climatic and
combined EWVS model criteria to it, regional and localised suitability can be more accurately
determined. Key steps in the model construction process are shown in Figure 1.

Model results extraction

The model outputs were overlain with Unitary Authority (UA) boundaries, the location of
existing vineyards (≥ 1 ha), and the boundaries of the 13 largest vineyards (≥ 25 ha). Using
the ArcGIS Map Algebra and Spatial Analyst tools the terrestrial, climatic and combined EWVS
model values for existing vineyards, and regional and national land areas were then extracted
for different model parameters, along with fuzzified/graded viticulture suitability.
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Results and discussion

Existing vineyard locations

The 2015 spatial distribution of vineyards can be seen in Figure 2 to be orientated towards south-
east and south-central England, a structure that has emerged over-time possibly as a result of local
vineyard suitability assessments and/or investor momentum built on observed occurrence of high-
quality wines being produced in these areas. The 2015 overall hectarage by Unitary Authority is
presented in Table 2.

Figure 1. Viticulture suitability model construction flow-diagram of key steps and ArcGIS tools employed.
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Terrestrial viticulture suitability in England and Wales

The model threshold for terrestrial suitability is any 50 × 50 m grid cell that meets all the soil, land cover,
land use, elevation, aspect and slope criteria identified in Table 1. Following interrogation of the terrestrial
suitability model (shown in Figure 3) using ArcGIS Map Algebra and Spatial Analyst tools:

● 1,435,867 ha of existing arable or horticulture land (Centre for Ecology and Hydrology, 2007)
in England and Wales was identified as terrestrially suitable for viticulture. 549,270 ha of this
was on soil classified as freely draining, and 179,852 ha on shallow lime-rich soils over chalk or
limestone.

● At a regional scale:
○ Large areas of terrestrially suitable land were identified in Devon (206,776 ha), North

Yorkshire (162,393 ha), and Cornwall (118,502 ha), see Table 3. To compare scale with an
established wine producing region, Hampshire alone (Area 10, Figure 2) was found to have
27,384 ha of suitable land on shallow lime-rich soils over chalk or limestone. This is slightly
less than the Champagne viticultural area (33,500 ha), which is also predominantly over
chalk (Johnson & Robinson, 2001). It is also over 10 times the existing vineyard hectarage
(2,500 ha (2017)) in the whole of England and Wales (WineGB, 2018).

○ Norfolk has the highest terrestrial mean fuzzy value (0.54) over 117,231 ha (21.3% of its land
area), followed by Essex and Suffolk (both 0.52 – Table 3). However, they contain only 1, 5.3
and 1.6% respectively of current English and Welsh vineyard (≥ 1 ha) area (2015). In contrast,
Kent, with 16.6% of vineyard area (≥ 1 ha) has a lower mean fuzzy terrestrial value of 0.47.

The weak relationship between terrestrial suitability and viticulture establishment in England and
Wales is most likely due to constraints related to climate, i.e. although topographic, soil and land
use criteria are met in many areas commercial viticulture viability is restricted due to unfavourable

Figure 2. English and Welsh vineyard (≥ 1 ha) distribution and scale (ha) in 2015. Numbers denote Unitary Authorities
identified in Table 2.
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climatic conditions. Nevertheless, these results for terrestrial suitability alone are indicators of
viticulture potential in England and Wales under future climate change scenarios.

Climatic viticulture suitability in England and Wales

Identification of climatically suitable viticulture areas (5 x 5 km) is presented here through grid cells
(50 x 50 m) that encompass terrestrially suitable land. By combining data layers of different scales,
the output, at 50 m resolution, is the result of spatial averaging. Therefore, whilst the results for
terrestrial suitability are representative at field or meso-scale, subsequent integrated outputs for
climatic and combined (EWVS model) suitability are likely to be less accurate at such scales and
more indicative of wider local conditions.

The overall distributions of 1981–2010 mean GST, April and May air frosts, growing season
bright sunshine, growing season rainfall and June rainfall within England and Wales, were calcu-
lated and mapped (Figure 4 (a–e)). Results show:

● In general, highest GSTs (14–15°C) occurred in London, south-central, south-east and eastern
England, particularly on the south coast and coastal regions of Essex and south Suffolk.

● At Unitary Authority scale the highest spatially averaged GSTs were in Essex and the Isle of
Wight (both 13.9°C), followed by Cambridgeshire (13.8°C), then West Sussex, East Sussex and
Kent (13.6°C), all relatively highly populated with existing vineyards (Figure 2). However,
Suffolk also had a 13.6°C GST but only hosted 17 vineyards in 2015.

● Essex had the lowest growing season rainfall (346 mm), followed by Cambridgeshire
(356 mm) then Suffolk (362 mm).

● During the month of June (a critical period for grape vine flowering where high levels of
rainfall have been shown to negatively affect UK wine yields (Nesbitt et al., 2016)), the Unitary
Authority with the lowest rainfall was the Isle of Wight (47 mm), followed by the Isles of Scilly
(49 mm), Kent (49 mm) and Surrey (50 mm).

● Lower April and May (combined) air frost risk occurred in coastal areas of England and Wales
and in urban conurbations such as London (Figure 4(b)).

Table 2. English and Welsh vineyard (≥ 1 ha) area (ha) by Unitary Authority (2015).

Vineyard
area (ha)

Unitary
Authority

Figure 4
reference

Vineyard
area (ha) Unitary Authority

Figure 4
reference

Vineyard
area (ha) Unitary Authority

Figure 4
reference

313.9 Kent 8 15.2 Buckinghamshire 21 4.6 North Somerset 14
310.2 West Sussex 6 14.5 Wiltshire 12 4.6 Rutland 38
253 East Sussex 7 14.4 Lincolnshire 40 4.2 Leicestershire 37
221.1 Hampshire 10 12.9 Staffordshire 36 4.1 West Yorkshire 47
121.6 Surrey 9 12.4 Worcestershire 29 2.8 Gwynedd 33
100.5 Essex 23 11.5 Shropshire 34 2.6 Isle of Anglesey 44
69.7 Devon 2 11.1 Nottinghampshire 41 2.4 Ceredigion 32
62.9 Dorset 4 10.4 Isle of Wight 5 2.1 Central

Bedfordshire
26

49.8 Gloucestershire 19 8.8 Monmouthshire 18 2.1 East Riding of
Yorkshire

46

31.1 Oxfordshire 20 8.4 Cambridgeshire 25 1.6 Bath & North
East Somerset

13

30.1 Suffolk 24 6.5 North Yorkshire 48 1.6 Telford & Wrekin 35
29.6 Cornwall 1 6.3 Vale of

Glamorgan
15 1.2 Derbyshire 42

25.5 West Berkshire 11 5.7 Warwickshire 28 1.2 Cheshire West &
Chester

43

22.2 Herefordshire 30 5.2 Powys 31 1 Pembrokshire 16
19.9 Somerset 3 5 Hertfordshire 22 1 Carmarthernshire 17
18.7 Norfolk 39 4.7 Northamptonshire 27 1 South Yorkshire 45
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● The majority of East Anglia experienced on average (1981–2010) 1–2 days of air frost in April
and May, whilst the viticulturally dominant areas of south-central and south-east England had
slightly higher frequencies of 2–3 days. Areas in Dorset, Cornwall, the Severn Estuary, and
Anglesey also had lower levels of April and May air frost.

Figure 3. Terrestrial fuzzified viticulture suitability at national and local scales.

Figure 4. 1981–2010 mean viticulture climate conditions in England and Wales. A – GST (°C) (5 x 5 km); B – April and May air
frost days (5 x 5 km); C – Growing season average daily hours of bright sunshine (5 x 5 km); D – Growing season rainfall (mm)
(1 x 1 km), and E – June rainfall (mm) (1 x 1 km). Data sources: Centre for Ecology and Hydrology (2014) (Rainfall) and Met
Office (2015a) (Temperature, Air Frost and Sunshine).
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● High levels of growing-season mean daily hours of bright sunshine occurred along the south-
coast, particularly in south-central and south-east England, with decreasing sunshine levels
northward and westward (Figure 4(c)).

Inter-annual variability (SD) of GST and growing season rainfall in England and Wales has previously
been identified as a risk to wine yields (Nesbitt et al., 2016). Results in Figure 5 for the 1981–2010
period show:

● Higher GST inter-annual variability through central England and west Norfolk, and lower in
Suffolk, north Essex, the south west, and west Wales including Anglesey. In general, proximity
to the coast will reduce the SD because sea surface temperature varies less from year to year.
Further inland, the less influence the sea has and then temperature can vary more according
to sunshine and wind direction anomalies.

Table 3. Top 10 (ranked) Unitary Authorities (UA) by terrestrial suitability, their fuzzy values according to the EWVS model,
terrestrially suitable area (ha) and its proportion of UA land (mean fuzzy suitability = the average fuzzy suitability values of
50 × 50 m grid cells in the UA).

Terrestrial suitability

Rank order Unitary Authority Suitable hectarage % of UA land area Unitary Authority Mean fuzzy suitability

1 Devon 206,776 31.2 Norfolk 0.54
2 North Yorkshire 162,393 14.8 Essex 0.52
3 Cornwall 118,502 32.8 Suffolk 0.52
4 Norfolk 117,231 21.3 Kent 0.47
5 Hampshire 110,172 29.5 North Yorkshire 0.45
6 Wiltshire 108,692 33.4 Lincolnshire 0.45
7 Cumbria 108,288 15.1 Dorset 0.44
8 Lincolnshire 98,095 16.0 Hampshire 0.42
9 Northumberland 95,947 18.9 Cornwall 0.41
10 Shropshire 94,240 29.5 Cumbria 0.41

Figure 5. 1981–2010 GST (°C) (5 x 5 km) and growing season rainfall (mm) (1 x 1 km) inter-annual variability (expressed as SD)
across England and Wales. Data sources: Centre for Ecology and Hydrology (2014) (Rainfall) and Met Office (2015a) (GST).
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● Areas within East and West Sussex and Hampshire had a rainfall standard deviation of
110–140 mm, higher than the majority of East Anglia and Essex (55–90 mm) during the
growing season. The latter areas and others in east Wales, the Severn estuary, and Dorset
have much greater levels of growing-season rainfall ‘stability’.

Figures 4 and 5 show, for the first time, the broad spatial variability of viticultural relevant climatic
variables which require assessment when determining optimal viticulture locations. Climatic suit-
ability for viticulture in England and Wales is however not dependent on any one single variable,
rather it is the combination of factors that is important. When 1981–2010 mean GST, GST SD, April
and May air frost days, growing season bright sunlight hours, growing season rainfall, growing
season rainfall SD, and June rainfall values are individually fuzzified, and then combined (Fuzzy
Overlay), the resulting climatic suitability model can be visualised to help identify spatial suitability
at national and local scales.

Figure 6 shows the spatial distribution and fuzzification of climatic suitability for viticulture across
terrestrially suitable areas in England and Wales at 5 × 5 km resolution. White areas in Figure 6 are not
suitable. At a local level (0–5 km) when previously identified terrestrially suitable land (Figure 3) is
overlain with the model climatic suitability layer, results determine whether climate may be a limiting
suitability factor or, as in the case illustrated in Figure 6, that there is indicative viticulture opportunity.
The highest maximum cell-value for climatic suitability was found in West Sussex, but at UA scale the
Isle of Wight had the highest mean fuzzy climatic suitability (see Table 4), followed by West Sussex and
Suffolk. These results suggest an apparent correlation between climatic suitability and the current
distribution of viticulture in the south-east of England, but also indicate a high degree of mean climatic
suitability in Suffolk, which hosts only eight vineyards (≥ 1 ha) equating to only 1.6% of vineyard area
(ha) in England and Wales (2015). Suffolk and Essex had both relatively high mean terrestrial suitability
values and area, and relatively high combined climatic suitability (Table 4). Within these Eastern
counties it can also be seen (Figure 5) that in general there is lower GST and growing season rainfall
inter-annual variability (1981–2010) than in the south-east and south-central areas which currently
dominate production. This suggests these areas have greater temperature and rainfall stability from
one season to the next.

Figure 6. Climatic fuzzified viticulture suitability at national and local scales.

428 A. NESBITT ET AL.



Combined viticulture suitability in England and Wales: EWVS model results

By combining terrestrial and climatic models, through an overlay fuzzification process, a compre-
hensive viticulture suitability model for England and Wales was generated – as presented in
Figure 7 (including the highest 20% of fuzzified suitable land) at regional and local scales.
Viticulture suitability, through the EWVS model, is defined as any 50 × 50 m grid-cell that
encompasses all the prescribed suitability parameters set out in Table 1. The higher the EWVS
model fuzzy score (0–1) the greater the cell’s viticultural suitability. From this it is possible to assess
collective suitability by Unitary Authority and gain an understanding of the amount of potential
viticultural land under different model fuzzified classifications.

Table 5 shows, for each of the most suitable 10 Unitary Authorities in England and Wales, the
mean and highest fuzzy value of all suitable 50 × 50 m cells as well as the total (summation of all
suitable cell values) within those Unitary Authorities.

Table 4. Top 10 (ranked) Unitary Authorities (UA) by climatic suitability and their fuzzy values according to the EWVS model
(mean fuzzy suitability = the average fuzzy suitability values of 50 × 50 m grid cells in the UA; maximum fuzzy suitability = the
highest fuzzy suitability value of a grid cell in the UA).

Climatic suitability

Unitary Authority Mean fuzzy suitability Unitary Authority Maximum fuzzy suitability

Isle of Wight 0.59 West Sussex 0.75
West Sussex 0.52 Kent 0.69
Suffolk 0.51 East Sussex 0.66
East Sussex 0.50 Essex 0.65
Kent 0.50 Isle of Wight 0.65
Essex 0.49 Cornwall 0.65
Cornwall 0.47 Dorset 0.64
Dorset 0.47 Suffolk 0.64
Hampshire 0.46 Hampshire 0.63
Greater London Authority 0.46 Devon 0.63

Figure 7. Combined (EWVS model) fuzzified viticulture suitability at regional and local scales, including the highest fuzzified
20% of land.
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Ranking viticulture suitability by Unitary Authority resulted in:

● The Isle of Wight, followed by Suffolk, West Sussex and Essex having the highest mean
suitability (the mean of all suitable grid cells within those UAs). In Wales, the Vale of
Glamorgan ‘scored’ particularly well, perhaps surprisingly as it only currently has 6.3 ha of
vineyards (Figure 2, reference 15/Table 2).

● Kent having the highest (0.82) single viticulture suitability grid cell (50 x 50 m)
● Norfolk topping overall suitability, when land area is taken into consideration (all suitable grid

cell values summed).

Limiting the EWVS model to identify only the highest 20% of suitable viticultural areas in England
and Wales (Figure 7) results in:

● The identification of 33,700 ha of prime viticulture land. This is slightly larger than the
Champagne region in France (33,500 ha) (Johnson & Robinson, 2001). Kent, West and East
Sussex, Essex and Suffolk have the largest share of this land area.

When the EWVS model was even further restricted to show the top 5% of suitable land the results,
by hectarage, stretched across 25 Unitary Authorities with West Sussex having the largest area
(911 ha), followed by East Sussex (503 ha), Kent (468 ha), Suffolk (343 ha) and Cornwall (341 ha).
Approximately 300 ha were identified in both Dorset and the Isle of Wight, 150 ha in Devon and
100 ha in both Hampshire and Essex.

Interestingly Sussex (West and East combined), is the only region within England and Wales to
have its own PDO status which specifically refers to Sussex as ‘one of the driest and warmest areas
in England . . . with average rainfall typically between 600–850 mm per annum . . .’. Although
through this work Essex was found to be the warmest and driest region during the growing
season (over the 1981–2010 period) in overall suitability classifications, East and West Sussex also
‘performed’ well.

This assessment illustrates the significant scale of opportunity for English and Welsh viticulture
in highly suitable areas and demonstrates viticulture potential well beyond the previously defined
latitudinal ‘norms’ (40–50°N – de Blij, 1983; Jones, 2006; Schultz & Jones, 2010; White et al., 2006),
up to circa 51.5°N. The local identification and targeting of these prime locations can be achieved
through the EWVS model. As illustrated in Figure 7 the EWVS model can be used to rapidly ‘grade’

Table 5. Ranked viticulture suitability by Unitary Authority.

Summed fuzzy suitability ranked by UA

Rank
Order Unitary Authority

Mean
suitability

Unitary
Authority

Maximum
suitability Unitary Authority

Summed
suitability

1 Isle of Wight 0.46 Kent 0.82 Norfolk 194,276
2 Suffolk 0.45 East Sussex 0.81 Devon 147,161
3 West Sussex 0.44 Isle of Wight 0.80 Hampshire 136,290
4 Essex 0.44 West Sussex 0.80 Essex 130,377
5 Vale of Glamorgan 0.43 Dorset 0.79 Kent 128,564
6 East Sussex 0.42 Cornwall 0.78 Lincolnshire 128,232
7 Norfolk 0.42 Devon 0.77 North Yorkshire 127,623
8 Kent 0.41 Pembrokeshire 0.75 Suffolk 125,546
9 Greater London

Authority
0.40 Hampshire 0.75 Cornwall 116,559

10 Isle of Anglesey 0.39 Suffolk 0.74 Dorset 105,472
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any 5 × 5 km area for suitability and within those grid-cells, identify terrestrial suitability at field
scale (50 x 50 m).

The distribution pattern of the combined resulting fuzzy scores for cells in the EWVS model is
skewed left, as shown in Figure S3 (supplementary material). The distribution indicates that most of
the viticulturally suitable land has a score higher than the mean and a larger proportion of
suitability grid-cells have a fuzzy score of > 0.5, perhaps indicative of the restrictions/suitability
envelopes imposed on suitability criteria (Table 1).

Viticulture suitability of existing English and Welsh vineyards

By applying the EWVS model to existing English and Welsh vineyards (≥ 1 ha) their fitness and
model alignment can be determined to assess existing suitability. Here, it should be noted that
these results are based on only one 50 × 50 m visually prescribed grid cell closest to the centre of
each vineyard (see Materials and Methods). Although such a small area may not be indicative of
mean elevation, slope angle or aspect throughout a vineyard, the coarser resolution Soilscapes
data layer and spatially averaged 5 × 5 km 1981–2010 climate layers used in model development
are likely to provide more appropriate results when extracted from a single grid-cell.

The top five soil ‘types’ in existing vineyards were classified as: ‘Slightly acid loamy and clayey
soils with impeded drainage’ – 92 (25%), ‘Freely draining slightly acid loamy soils’ – 85 (23%),
‘Slowly permeable seasonally wet slightly acid but base-rich loamy and clayey soils’ – 70 (19%),
‘Shallow lime-rich soils over chalk or limestone’ – 32 (9%), ‘Freely draining lime-rich loamy soils’ –
19 (5%). A further five vineyards were positioned on soils classified as being ‘Slowly permeable
seasonally wet acid loamy and clayey soils’. These results suggest that of the approximate centres
of the 367 vineyards identified and analysed, 45% are positioned on soils classified by the Soil
scapes (Farewell et al., 2011; LandIS, 2015) data as having impeded drainage or being slowly
permeable and seasonally wet, factors that are not deemed ‘ideal’ for viticulture due to their
negative association with disease pressures and impact on vine health (Lanyon et al., 2004).
However, despite the prima facie unsuitability of such soil ‘types’ they were included within the
EWVS model because such a considerable number of vineyards were located on them. Potential
soil amelioration activities (including land drainage), rootstock selections, and analysis of vineyard
performance from vineyards on these soil types fell outside of the scope of this study but it is
accepted that such activities can mitigate otherwise negative effects of these soil parameters.

Overlaying ≥ 1 ha vineyards with 1981–2010 climate outputs, presenting these conditions in bands
and calculating the number of vineyards that fell within each band highlighted the potential for spatial
optimisation of viticulture to areas with higher degrees of climatic suitability, as presented in Table 6.

These results demonstrate:

● 85% of vineyards (≥ 1 ha) in England and Wales are positioned in locations (within 5 × 5 km
grids) with a 30-year (1981–2010) mean GST above the 13°C climate/maturity threshold for
cool-climate viticulture (Jones, 2006).

● Only 10% are in regions with a mean GST > 14°C, the observationally driven climate/maturity
threshold for Chardonnay and Pinot Noir (Jones, 2006), the dominant grape cultivars in
England and Wales (Nesbitt et al., 2016).

● Only 4% of vineyards were in areas with the highest level of sunshine hours, with the majority
experiencing 5.5–6 hours per day on average during the growing season.

● All vineyards were positioned within 5 × 5 km grid-cells with April and May air frost
occurrence. These results suggest that without site positioning that allows adequate cold
air drainage or frost risk mitigation capacity, all vineyards are exposed to a degree of threat.

● The largest proportion of vineyards (≥ 1 ha) were in locations with 400–450 mm of rain (1981–
2010) during the growing season and 50–55 mm in June. However, there were vineyards
positioned in areas with lower rainfall (seasonally and in June when high levels of rainfall have
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been shown to negatively affect wine yields in England and Wales (Nesbitt et al., 2016)),
demonstrating potential for improved climatic positioning.

● All vineyards (≥ 1 ha) were in areas with a GST SD above 0.53°C, and growing season rainfall
SD > 73 mm. As illustrated in Table 4 there is potential for vineyards to be positioned in areas
with lower levels of inter-annual variability than most currently are. Lower levels of inter-
annual variability indicate greater growing season climatic stability which in turn, when all
else is equal, is conducive to greater yield consistency.

Although detailed analysis of terrestrial suitability across each of the existing 367 vineyards (≥ 1 ha)
in England and Wales was beyond the scope of this work, modelled terrestrial suitability was
calculated for the entirety of each of the 13 largest (≥ 25 ha) English vineyards, accounting for 29.8
% (523 ha) of English and Welsh vineyard hectarage (≥ 1 ha) included in this study. Results were as
follows:

● A mean aspect averaged across all 13 vineyards of 158° (south-south-east) and slope 5.6 %.
● A dominant soil type of ‘Shallow lime-rich soils over chalk or limestone’ followed by ‘Freely

draining slightly acid loamy soils’.
● Ten of the 13 vineyards predominantly established on land classified as Arable or Horticulture,

two on land classified as improved grassland and one on rough grassland.
● A mean fuzzy suitability of 0.6 and a range of individual vineyard mean values from 0.34–0.74.
● An elevation range of 3–124 m across the 13 vineyards with the average of all elevation

means being 50 m, within the ‘optimal’ model criteria.

Using an analogue approach to viticulture-terrestrial suitability modelling an analysis of terrestrially
suitable land with greater fuzzy suitability values (> 0.74) across England and Wales was subse-
quently undertaken, resulting in a total 1,592,749 ha of land being identified, i.e. land with a
greater suitability value rating than the highest of the existing 13 largest vineyards in England and
Wales. Perhaps of greater significance was that 284,110 ha were in the counties of East and West
Sussex, Kent, Surrey, Hampshire and Wiltshire, where the majority of the 13 large vineyards were
located, suggesting potential climatic as well as terrestrial suitability.

Discussion

The prospect of future climate change impacts on viticulture, specifically risks to appellations in ‘old
world’ regions, potential changes to existing cool-climate regions, and opportunities for additional ‘new
world’ regions to emerge was raised almost 30-years ago (Smart, 1989). Smart (1989) noted the potential
for a global re-distribution of wine-grape growing and recognised the social and economic implications
that such shifts could cause. Whilst large-scale viticulture migration from ‘hot’ areas has not been realised
to-date, potentially as a result of adaptive capacity building, a greater body of evidence has been
collected to demonstrate potential opportunities for new ‘new world’ regions to emerge (Fraga et al.,
2013a; b; Kenny & Harrison, 1992; Nesbitt et al., 2016; Tesic, Woolley, Hewett & Martin, 2001; Tóth &
Végvári, 2016). As yet, however, there are few impact studies that producers or investors can extract
decision making value from, not least because most do not align climate suitability models with the
terrestrial landscape that is paramount to commercial viticulture potential. Furthermore, whilst viticul-
ture-climate studies to-date have predominantly focused on climate change impacts in the hotter
viticulture regions of the world, few have paid attention to emerging ‘cool-climate’ regions.

This work has concerned itself with two new regions, England and Wales. Multi-criteria datasets
were overlain using ArcGIS and subjected to fuzzification processes to develop the first viticulture
suitability model for England and Wales – the EWVS model. This somewhat novel approach to
viticulture suitability modelling enables, in our opinion, a more valuable and informative grading of
land suitability than can be derived from a Boolean approach. Applying the model to existing

JOURNAL OF LAND USE SCIENCE 433



vineyards in England and Wales, through an overlay and analysis process, the sub-optimal positioning
of most vineyards was found in relation to GST (only 10% of vineyards were currently located in areas
with highest GST values) sunshine hours, April & May air frosts, and rainfall (seasonally and in June).
Furthermore, restricting the EWVS model outputs to only the top 20% of combined terrestrial and
climatic area resulted in 33,700 ha of prime land being identified, an area larger than the existing
Champagne region of France, and on similar terrain. As well as opportunities for expansion within the
currently dominant regions of Kent and Sussex, new areas such as Essex and Suffolk in particular,
where relatively few vineyards currently exist, have been shown to have highly suitable land, express
high degrees of climatic suitability and greater levels of stability from season to season than areas
currently populated with vineyards. The lack of viticulture practiced within these authorities is there-
fore somewhat surprising and may result from successful cropping in other forms of agriculture or
horticulture. However, it could also be partly explained through a prior lack of nationwide suitability
analysis and investment momentum regarding establishment of vineyards in the south-east. Under
future climate change scenarios suitable land area could increase further, potentially beyond the
~51.5°N latitude of suitability identified in this work, as terrestrially suitable land in England and Wales
far outweighs that which is currently considered to be climatically suitable. Using existing larger
vineyards as analogues and interrogating the model to uncover areas with higher terrestrial suitability
resulted in significant new areas of high value land being exposed for potential viticulture investment.

Several studies have modelled future climate change impacts on viticulture in Europe, for
example Moriondo et al. (2013), and Fraga, Garcia de Cortazar Atauri, Malheiro & Santos (2016).
Modelled projections of future viticulture suitability by Tóth and Végvári (2016) implied that post-
2050 large areas of southern England may be suitable for viticulture, but evidence of existing and
rapidly increasing viticulture activity in England and Wales has been largely overlooked in research
to date. Although rapid recent sector growth in England and Wales does not necessarily reflect
viticulture ‘suitability’ or economic sustainability, a closer examination of the spatial variability of
terrestrial and climatic suitability generates knowledge from which informed investment decisions
can be made about where best to establish vineyards.

Near-surface wind speed data, higher-resolution soil data, historic vineyard varietal yield and
quality parameters, and the ability to incorporate inter-annual variability expressed as coefficient of
variation would all enhance model functionality. Nonetheless, through reference to the EWVS
model presented in this study, the regional distribution of viticulture could be adapted to better
match apparent terrestrial, weather and climate suitability.
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