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Abstract

Motivation: Public health authorities can provide more effective and timely interventions to protect
populations during health events if they have effective multi-purpose surveillance systems. These systems
rely on aberration detection algorithms to identify potential threats within large datasets. Ensuring the
algorithms are sensitive, specific and timely is crucial for protecting public health. Here, we evaluate
the performance of three detection algorithms extensively used for syndromic surveillance: the ‘rising
activity, multilevel mixed effects, indicator emphasis’ (RAMMIE) method and the improved quasi-Poisson
regression-based method known as ‘Farrington Flexible’ both currently used at Public Health England,
and the ‘Early Aberration Reporting System’ (EARS) method used at the US Centre for Disease Control
and Prevention. We model the wide range of data structures encountered within the daily syndromic
surveillance systems used by PHE. We undertake extensive simulations to identify which algorithms work
best across different types of syndromes and different outbreak sizes. We evaluate RAMMIE for the first
time since its introduction. Performance metrics were computed and compared in the presence of a range
of simulated outbreak types that were added to baseline data.
Results: We conclude that amongst the algorithm variants that have a high specificity (i.e. >90%),
Farrington Flexible has the highest sensitivity and specificity, whereas RAMMIE has the highest probability
of outbreak detection and is the most timely, typically detecting outbreaks 2-3 days earlier.
Availability and Implementation: R codes developed for this project are available through
https://github.com/FelipeJColon/AlgorithmComparison
Contact: f.colon@uea.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Epidemiological surveillance is becoming more important due to the
increasing public health threats resulting from the quick spread of
infections, especially as the world population increases and environmental
risks augment. Public health authorities seek efficient algorithms that can
detect unusual increases in infections quickly, so that they can investigate
the sources of spread and ultimately take control measures. A main

challenge for such algorithms is that they must be completely automated
and must work across a range of different infections and syndromes
encountered in real life in order to be useful in daily practice.

Most of the existing literature (Buckeridge and Burkom, 2010; Unkel
et al., 2012; Enki et al., 2016; Texier et al., 2017; Spreco et al., 2017;
Bédubourg and Stratt, 2017; Yang et al., 2018) considers and evaluates
surveillance algorithms for weekly data. There is, however, a rising interest
in daily surveillance (e.g. Mathes et al., 2017; Abat et al., 2016; Smith et al.,
2016; Vial et al., 2016; Morbey et al., 2015). One of the initial motivations
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of daily surveillance was the early warning of bio-terrorist incidences.
However, nowadays, daily surveillance is seen as important for various
purposes such as situation awareness during events, reassurance about
lack of incidents during mass gatherings and providing earlier detection
for quicker control. Syndromic surveillance is generally performed daily
based on diagnostic symptoms like cough, fever or diarrhoea, which
are available before a laboratory-confirmed causal pathogen has been
identified. Syndromic Surveillance has been in routine use at Public Health
England (PHE) and its predecessors the Health Protection Agency and the
Public Health Laboratory Service since 2001. Within PHE, syndromic
surveillance is coordinated by the Real-time Syndromic Surveillance
Team (ReSST). ReSST currently monitors general practitioner (GP)
consultations using an in-hours syndromic system (GPIHSS) (Harcourt
et al., 2012) and an out-of-hours and unscheduled care system (GPOOHSS)
(Harcourt et al., 2012), calls to a national telephone health service
(NHS 111) (Harcourt et al., 2016) and emergency department attendances
(EDSSS) (Elliot et al., 2012).

The aim of this paper is to investigate the performance of
three extensively used multi-purpose outbreak detection algorithms in
monitoring daily syndromic data across a range of scenarios representing
real-life syndromic activity. We base these scenarios on PHE’s syndromic
surveillance system and the various syndromic data signals it encounters.
We, therefore, compare: the multi-level regression approach known as the
‘rising activity, multilevel mixed effects, indicator emphasis’ (RAMMIE)
method (Morbey et al., 2015) developed and currently used at PHE for
syndromic daily surveillance; the improved quasi-Poisson regression-
based (Noufaily et al., 2013) method (also known and referred to in this
paper as Farrington Flexible) developed and currently used in PHE for
weekly detection of infectious disease outbreaks; the ‘Early Aberration
Reporting System’ (EARS) method (Hutwagner et al., 2003) based on
Shewhart control charts, developed and used as the standard system (since
11 September 2001) at the United States CDC for conducting weekly
syndromic surveillance (Fricker et al., 2008). In doing so, the study
addresses key challenges in epidemiological surveillance. It provides
a multi-purpose setting for evaluating algorithms based on simulations
representing the range of real-life syndromes. It also addresses the
challenge of monitoring daily counts for potential alarms, a theme that has
not been thoroughly explored in the literature as the main focus has been
on weekly surveillance. In addition, it presents the first formal evaluation
of RAMMIE since its introduction in 2013.

Farrington Flexible and EARS are methods usually applied to weekly
data, therefore we adapted them for daily surveillance by using seven-day
moving totals. We tested all four variants of the EARS method (called C1,
C2, C3 and NB). Also, we developed a modified version of RAMMIE
which includes testing for long-term trends. Our comparison thus involves
the two major surveillance algorithms (regression-based RAMMIE and
Farrington Flexible) used at PHE and arguably the most commonly
used surveillance algorithm, EARS, which includes non-regression-based
variants, and so we provide a variety of approaches to contrast. The main
challenge facing such algorithms is to control the false alarms whilst
keeping a good power of detection, i.e. producing high sensitivity and
specificity at the same time. We evaluate the performance of RAMMIE,
Farrington Flexible and EARS by comparing the power of detection,
sensitivity, specificity and timeliness using extensive simulations based
on various scenarios that reflect the range of different data structures
encountered in PHE’s syndromic surveillance system and seen in the real
world including volume, trend, seasonality and day-of-the-week effects.

In Section 2, we describe the RAMMIE, Farrington Flexible and
EARS algorithms. Section 3 explains the simulation study design used
to compare the three algorithms and Section 4 introduces the measures
used for this evaluation. Section 5 displays the results. We conclude with
a final discussion and interpretation of the results in Section 6.

2 The Algorithms
In this section, we provide a description of the algorithms we compared.
These algorithms offer public health bodies a first indication of unusual
activity or aberrations in the form of statistical alarms. Within PHE, a risk
assessment process follows the identification of statistical alarms after
which a smaller proportion of the alarms will be acted upon as required
(Smith et al., 2016).

2.1 The ‘rising activity, multilevel mixed effects, indicator
emphasis’ (RAMMIE) method

RAMMIE (Morbey et al., 2015) fits a multilevel mixed effects negative
binomial regression model to historical daily syndromic data counts and
provides estimates for current counts at a local, regional and national level
in England. The model controls for the days of the week/month and bank
holidays which can impact on health care consulting behaviour. Upper
prediction intervals for the estimates are used to create thresholds and
generate statistical alarms whenever actual counts exceed the thresholds.
ReSST uses RAMMIE as the first stage in its risk assessment process for
decision-making (Smith et al., 2016). For this study, data was not stratified
into different geographies so the RAMMIE models are not multilevel,
instead a simplified negative binomial model was used.

RAMMIE uses a denominator as an offset in its regression models
to allow for potential large daily fluctuations in daily coverage from data
providers. For this study, where coverage does not vary, an offset Nt at
day t is defined as:

Nt = 100
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Ht
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i=1(yiHi)∑n

i=1Hi

)
+

(
Sat

∑n
i=1(yiSai)∑n
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,

(1)

where H , Sa, Su and W are binomial variables being either 0 or 1
when day t is a public holiday, Saturday, Sunday or other day respectively;
yt is the count on day t and n the number of days in the baseline dataset.

A negative binomial regression model is fitted to all available baseline
data using the following loglinear model which includes the offset, month
of the year, day of the week and whether or not a day is a public holiday
as independent variables:

ln(yt) = ln(Nt) +

7∑
i=1

βiDit +

12∑
j=1

αjMjt + γHt, (2)

where Dit are seven binary variables for the day of the week, on any
particular day t, six of these will be zero and the other variable equal to
one. Mjt are 12 weighted variables for the months of the year.

An alarm is signalled if the current expected count is larger than 3 and
at the same time higher than the current observed count plus 3 times the
standard deviation; details can be found in (Morbey et al., 2015).

RAMMIE does not include an independent variable for trends.
However, for this study, a modified version of RAMMIE was also created
with an added simple linear trend to account for potential long-term trends
in the data. This version provided better detection and allowed a fairer
comparison with the other algorithms.
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2.2 The quasi-Poisson regression-based exceedance
algorithm

Farrington Flexible (Noufaily et al., 2013) fits a quasi-Poisson regression-
based model to weekly confirmed organism counts (by date of report), with
mean (expected count) µi and variance φµi at week ti. To estimate the
organism at the current week, the model is fitted to the most recent years
(usually 5 years) and includes a linear trend as well as a yearly 10-level
factor whose reference period comprises comparable weeks in previous
years. The corresponding log-linear model is:

logµi = θ + βti + δj(ti), (3)

where j(ti) is the seasonal factor level for week ti, with j(t0) = 0 and
δ0 = 0. In this model, a trend is always fitted, irrespective of its statistical
significance, except for special cases where data is very sparse.

A particular week is flagged as being a possible outbreak based on the
value of what is known as the exceedance score:

X =
y0 − µ̂0

U − µ̂0
, (4)

where y0 is the current observed count and µ̂0 = exp(θ̂ + β̂t0 + δj(t0))
is the current expected count, θ̂ and β̂ being the respective estimates of θ
and β from equation 3. U , the upper threshold, is the 100(1-α)% negative
binomial quantile,α being the type I error. Another suggested approach to
compute U uses the 2/3 power transformation of the Poisson distribution
which is approximately normal. An alarm is flagged for organism weeks
where X ≥ 1. The exceedance score is conditioned to 0 for particular
cases that represent high data sparsity.

To reduce the effect of baseline outbreaks on current predictions, the
algorithm reweights baseline data. As explained in (Noufaily et al., 2013),
the baseline at week ti is down-weighted by a factor of the Anscombe
residual when the latter is greater than 2.58 at that week.

This algorithm is implemented in (R, 2018) and is available via the
functionFarringtonFlexiblewithin the packagesurveillance
(Höhle, 2007; Salmon et al., 2016).

2.3 The Early Aberration Reporting System (EARS)

EARS (Hutwagner et al., 2003) is available through its 4 variants (EARS-
C1, EARS-C2, EARS-C3 and EARS-NB), mainly used for monitoring
weekly syndromic counts. These methods are particularly useful when
limited baseline data is available for undertaking syndromic surveillance.
Although the first three variants are labelledC after CUSUM, most of them
are actually Shewhart range methods using a moving sample average and
sample standard deviation (Fricker et al., 2008). For each of the variants
EARS-C1, EARS-C2 and EARS-C3, a statistical alarm is produced at
week twith observed countY (t) if statisticsC1,C2 andC3 (given below)
respectively exceed the baseline count mean plus a multiple of the standard
deviation:

C1(t) =
Y (t)− µ1(t)

σ1(t)
, (5)

where µ1(t) = 1
7

∑t−7
i=t−1 Y (i) and σ2

1(t) = 1
6

∑t−7
i=t−1(Y (i) −

µ1(i))2 are respectively the moving sample mean and the moving sample
standard deviation.

C2(t) =
Y (t)− µ2(t)

σ2(t)
, (6)

where µ2(t) = 1
7

∑t−9
i=t−3 Y (i) and σ2

2(t) = 1
6

∑t−9
i=t−3(Y (i) −

µ2(i))2 are respectively the moving sample mean and the moving sample
standard deviation.

C3(t) =

t−2∑
i=t

max[0, C2(i)− 1] (7)

Alarms for the different variants are produced when corresponding
statistics C1 or C2 exceed three sample standard deviations above the
sample mean or if C3 exceeds two sample standard deviations above the
sample mean.

EARS-NB implements Shewhart regression Poisson and negative
binomial charts based on the generalized likelihood ratio statistic and is
described in (Höhle and Paul, 2008). The method is implemented via the
algo.glrnb function within the (R, 2018) surveillance package
(Höhle, 2007; Salmon et al., 2016).

3 Simulation Study
We first describe how baseline data is simulated and second how outbreaks
are generated. The simulations reflect the real world experience of
the syndromic surveillance systems. A novel and key feature in this
paper is the way simulations take into account the day-of-the-week
effects based on health-seeking behaviour. These effects are also applied
to the outbreaks before combining them with the synthetic baselines
(Buckingham-Jeffery et al., 2017). The simulations are a potential resource
for similar evaluations and can be used by researchers for testing other
algorithms in a daily setting.

3.1 Simulated Baseline Data

The simulations are set to reflect the various syndromes encountered at
PHE as well as the reporting patterns. The four services reporting to PHE
(i.e. GPOOHSS, GPIHSS, NHS 111 and EDSSS) report data based on the
days of the week they operate. GPOOHSS and NHS 111 operate on a 7-
day-week basis, with a lower volume of reports during the week and almost
double that volume on weekends. GPIHSS operates on a 5-day-week basis
(only during weekdays) and portrays two peaks around Mondays and
Fridays (the Friday one being smaller). In contrast, for EDSSS the day
of the week effects are much smaller.

Simulations are designed to mimic the various syndromes’ properties,
including volume, trend, seasonality and weekly patterns. Based on
(Noufaily et al., 2013), data is generated using a negative binomial model
(of mean µ and variance φµ) with dispersion parameter φ ≥ 1. We
adapt the (Noufaily et al., 2013) model to incorporate the day-of-the-week
effects. Hence, two simulation models are designed, one for each of the
5-day-week and 7-day-week systems. On day t, mean µ(t) is defined as:

µ(t) = exp
{
θ + β(t+ s) +

k1∑
j=1

{
γ1 cos

(
2πj(t+ s)

52× d

)

+γ2 sin

(
2πj(t+ s)

52× d

)}

+

k2∑
j=1

{
γ3 cos

(
2πj(t+ s)

d

)

+γ4 sin

(
2πj(t+ s)

d

)}}
,

(8)

where d is 5(7) for the 5(7)-day-week system. The value k1 = 0

corresponds to no seasonality, k1 = 1 and k1 = 2 to annual and biannual
seasonality respectively, while k2 = 0 corresponds to no specific weekly
pattern, k2 = 1 and k2 = 2 to one and two weekly peaks respectively.
In our simulations, we have considered the real-world variability seen
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Table 1. Parameters and criteria used to generate the 16 representative signals.

Signal θ β γ1 γ2 γ3 γ4 φ s k1 k2 Trend
1 6 0 0.2 0.2 0.5 0.4 2 29 1 2 0
2 0.5 0 1.5 1.4 0.5 0.4 1 -167 1 2 0
3 5.5 0 0 0 0.3 0.25 1 1 0 2 0
4 2 0 0 0 0.3 0.25 1 1 0 2 0
5 6 0 0.3 2 0.3 0.5 1.5 -50 1 2 0
6 1 0 0.1 2 0.05 0.05 1 -50 1 1 0
7 6 0.0001 0 0 0.6 0.9 1.5 0 0 1 1
8 3 0 1.5 0.1 0.2 0.3 1 -150 1 1 0
9 3 0 0.2 0.1 0.05 0.15 1 -200 1 1 0
10 5 0 0.2 0.1 0.05 0.1 1 0 1 1 0
11 0.5 0 0.4 0 0.05 0.15 1 0 2 1 0
12 9 0 0.5 0.2 0.2 0.5 1 0 1 1 0
13 2 0.0005 0.8 0.8 0.8 0.4 4 57 1 2 1
14 0.05 0 0.01 0.01 1.8 0.1 1 -85 4 1 0
15 3 0 0.8 0.6 0.8 0.4 4 29 1 2 0
16 6 0 0 0 0.8 0.4 4 1 0 2 0

in our systems and characterised it into 16 data scenarios (there is no
particular significance for the choice of a total of 16) representing the
range of over 12,000 syndromic surveillance time series that PHE analyses
daily, taking into consideration different linear trends (β), seasonal trends
(γ1 and γ2), day-of-the-week effects (γ3 and γ4), baseline frequencies
of reports (θ) and dispersions (φ). A horizontal shifting parameter (s)
allows easier control over dates of peaks. Table 1 shows the parameters
used to simulate 16 different data scenarios representing most syndromic
data signals encountered in England. Table 2 displays examples of 16
syndromes that can show a similar type of behaviour to the 16 simulated
scenarios, along with their characterizations. We did not select these 16
syndromes because they were the most clinically important or most likely
to have outbreaks. Instead, these syndromes together cover the range of
different structures of the different time series monitored daily by PHE.

Baseline data, in the absence of outbreaks, is generated using 100
simulations from each of the 16 scenarios; each simulation of size 2548
days (i.e. 7 years consisting of 364 days each or equivalently 52 weeks).
Day-of-the-week effects are also reflected within each week. In a 7-day-
week system, weekends are set to have around double the volume of reports
than weekdays. In a 5-day-week system, weekends are set to zero, whereas
weekdays generally consist of 2 peaks, one at the beginning of the week
(around Monday) and another later in the week (around Friday). Figure 1
shows the resulting data series and Supplementary Figure 1 shows the first
three weeks of signals 3 (7-day-week system) and 7 (5-day-week system)
to demonstrate the modelled weekly patterns. The outbreaks are added to
the most recent 49 weeks (343 days) of the simulated syndromic data.

3.2 Simulated Outbreaks and Public Holiday Effects

The simulation models described in this paper enable the control of
baselines for different scenarios, and therefore outbreaks and unusual
increases of different shapes can be added to the baselines. We consider
two types of outbreaks: ‘spiked outbreaks’ which last around three weeks
on average and ‘seasonal outbreaks’ which have a duration of about eight
weeks on average. We also consider the effects of public holidays (called
bank holidays in the UK), which usually last one or two days, because
of their impact on syndromic baselines. All outbreaks and public holiday
effects take into account the day-of-the-week pattern.

Fig. 1. Plots of the 16 simulated data signals.

3.2.1 Seasonal Outbreaks
Examples of syndromes with seasonal outbreaks are syndromes designed
to detect seasonal influenza and allergic rhinitis (i.e. hay fever). Although,
baseline data already take into account seasonality, ‘seasonal outbreaks’
differ from the usual seasonality in the sense that the size and timing of their
peak is more variable. They are added to a similar window of weeks within
each year of simulated data. Based on (Noufaily et al., 2013), outbreak
sizes are simulated using a Poisson distribution with mean equal to m
times the standard deviation of the baseline count of the day at which
the outbreak started and then distributed randomly in time according to a
lognormal distribution with mean 0 and standard deviation 0.5. Outbreaks
are then re-weighted based on the day of the week they fall on, since
outbreaks tend to be influenced by the weekly patterns. In the 5-day-week
system, Monday (Tuesday) outbreaks are over-weighted by a factor of
1.5 (1.1). Outbreak days falling on the remaining weekdays are kept the
same. In the 7-day-week systems, weekend outbreaks are over-weighted
by a factor of 2, whereas weekday outbreaks are kept the same. ‘Seasonal
outbreaks’ are only added to signals 5 (m = 1680), 6 (m = 1050) and
15 (m = 3150) as shown in Supplementary Figure 2.

3.2.2 Spiked Outbreaks
‘Spiked outbreaks’ are added to the most recent 49 weeks of our 16
simulated signals. They are generated in a similar fashion to ‘seasonal
outbreaks’, however they are of shorter duration. Day-of-the-week re-
weighting is also considered. ‘Seasonal outbreaks’ were added first to
signals 5, 6 and 15, then ‘spiked outbreaks’ were added to all signals.
‘Spiked outbreaks’ of different sizes - very small, small, medium and
large using respective m values of 2, 3, 5 and 10 - have been considered
and this study will involve repeating the analysis of the 16 signals 4 times,
each time using a different ‘spiked outbreak’ size. For the purpose of
demonstration, Supplementary Figure 3 shows baseline data for signals 1,
2, 9 and 12 with examples of medium (m = 5) ‘spiked outbreaks’.

3.2.3 Public Holidays
Public holiday effects are added to the simulations following the addition
of ‘seasonal outbreaks’ and ‘spiked outbreaks’. We chose the public
holiday dates to be on similar days as the United Kingdom ‘bank holidays’
(Supplementary Data). In the 5-day-system, the public holiday count was
set to zero and the weekday after the public holiday was multiplied by 1.5;
in the 7-day-system, the public holiday count was doubled.
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Table 2. Characteristics of 16 syndromes representative of the 16 simulated data signals.

Signal ID Related system Related syndrome Mean daily count Yearly variation 5/7 day service Trend
1 NHS111 Diarrhoea >100 Moderate 7 No
2 ED Arthropod bites <10 Large summer peak 7 No
3 ED Cardiac <500 Small 7 No
4 ED Cardiac admissions (HCU/ICU) <10 Small 7 No
5 GPIHSS Allergic rhinitis >100 Large peak with variable timing 5 No
6 GPIHSS Heat stroke <10 Large peak variable with timing 5 No
7 GPIHSS Herpes zoster >100 Small 5 Yes
8 GPIHSS Insect bite 10-100 Large summer peak 5 No
9 GPIHSS Pertussis 10-100 Moderate 5 No
10 GPIHSS Pneumonia > 100 Moderate 5 No
11 GPIHSS Rubella <10 Moderate 5 No
12 GPIHSS Upper tract respiratory infection >100 Moderate 5 No
13 GPOOHSS Bronchitis 10-100 Moderate 7 Yes
14 GPOOHSS Hepatitis <10 Moderate 7 No
15 GPOOHSS Influenza-like illness 10-100 Large peak with variable timing 7 No
16 GPOOHSS Urinary tract infection >100 Small 7 No

4 Evaluation Measures
We used different measures to evaluate the performance of the detection
systems in the presence of outbreaks. The measures are the power of
detection (POD), sensitivity (also known as the true positive), specificity
(also known as the true negative or as ’1-false positive rate’), positive
predictive value (also known as PPV or precision) and timeliness. POD is
the probability of having an alarm at least once during a spiked outbreak
i.e. the probability of detecting the outbreak; sensitivity is the proportion
of alarms among spike outbreak days; specificity is the proportion of
no alarms among non-outbreak days; PPV is the proportion of detected
outbreaks that are true positives i.e. the proportion of detections that are
correct; timeliness is the proportion of days elapsed to detect an outbreak
since its start. This measure of timeliness prevents undue weight being
given to poor performance during a very long outbreak, which is a problem
if timeliness is measured as the number of days since the start of an
outbreak. If an outbreak was not detected, then timeliness was set to
1. Sensitivity and specificity are a rate per day whereas POD, PPV and
timeliness are a rate per outbreak. For each of the 16 simulated signals, all
five measures are computed from running the algorithms to the most recent
49 weeks (343 days) of the 100 simulations across each of the four sizes
of ’spiked outbreaks’. We note that we use these measures to evaluate the
detection of just ’spiked outbreaks’ in the presence of ’spiked outbreaks’,
’seasonal outbreaks’ and public holidays. Below are the explicit formulae
used to compute each measure:

POD =
number of ‘spiked outbreaks’ flagged at least once

100
; (9)

Sensitivity =
number of alarms among ‘spiked outbreaks’ days

number of outbreak days
; (10)

Specificity =
number of non-alarms among non-‘spiked outbreaks’ days

number of non-outbreak days
;

(11)

PPV =
number of true positives

number of positives
; (12)

Timeliness =


∑100

sim=1(‘spiked outbreak’ detection-1)/(total ‘spiked outbreak’ days)
100

if the ‘spiked outbreak’ was detected

1 if the ‘spiked outbreak’ was not detected.
(13)

A number of additional measures, such as receiver operator
characteristic curves, have been used elsewhere to assess the performance
of algorithms. However, here we focussed on measures that can be easily
explained to the users and policy makers who will be choosing which
algorithms to implement. Hence, we have POD to measure the probability
of detecting specific outbreaks but also specificity and sensitivity measures
that tell users how accurate daily alarms will be during and outside
outbreaks. PPV is useful when outbreaks are very rare because even if
specificity is high, an alarm is more likely to be false than true. For example,
a system monitoring two outbreak types (one from a common disease, and
one from a rare disease) may have the same specificity for both of them;
however, the PPV for the common disease would be higher than that of
the rare disease. It is noted that in our study PPV is not very informative
because we specified outbreak occurrence to be exactly one outbreak for
each 343 day simulation. Thus, PPV does not give the user any more useful
information than does specificity.

5 Simulation Study Results
As well as giving overall performance we report on differences between the
16 scenarios of synthetic syndromes. RAMMIE without trend, RAMMIE
with trend, Farrington Flexible, EARS-C1, EARS-C2, EARS-C3 and
EARS-NB were implemented to the most recent 49 weeks of each of the
100 simulations from each of the 16 signals (i.e. 49 weeks × 16 signals
× 100 simulations = 78400 simulated time series) and the evaluation
measures defined in Section 4 were computed across all four sizes of
‘spiked outbreaks’ (notice that PPV is discussed at the end of this section).
As previously mentioned, both RAMMIE versions were run on daily
counts whereas Farrington Flexible and the EARS variants were run on
7-day moving totals. Results for RAMMIE with or without trend are very
similar in cases where a trend does not exist; however, RAMMIE without
trend produces a much lower specificity in some cases where data has
an increasing trend, such as signal 13. Given that RAMMIE with trend
produces a much higher specificity and similar sensitivity and timeliness
(for signals with trend) as well as comparable results for signals without
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Fig. 2. Average (across the 16 signals) sensitivity (lower end of plot) and POD (upper
end of plot) vs timeliness for evaluating the impact of ‘spiked outbreak’ size on detection
capabilities obtained from applying RAMMIE, Farrington Flexible, EARS-C1, EARS-C2,
EARS-C3 and EARS-NB to the most recent 49 weeks of each of the 100 simulations of
the 16 signals. Marker size is proportional to outbreak size (i.e. largest point refers to large
outbreaks; second largest refers to medium outbreaks; third largest refers to small outbreaks;
smallest point refers to very small outbreaks).

trend, we only include the results corresponding to RAMMIE with trend
(referred to as RAMMIE) in the analysis below.

We first investigate how performance is affected by outbreak size.
Figure 2 shows the detection capability of each algorithm for different
outbreak sizes. It displays both POD and sensitivity versus timeliness (note
that a lower score for timeliness indicates better results). Specificity was
not included in this figure because it varies only very slightly with outbreak
size (for each of the algorithms, a difference of less than 0.003, on average,
between the different outbreak sizes). The average specificity across all 16
signals and all outbreak sizes for each of the algorithms is: 0.981 for
Farrington Flexible; 0.953 for RAMMIE; 0.922 for EARS-C1; 0.834 for
EARS-C2; 0.812 for EARS-C3; 0.969 for EARS-NB. The figure shows
that, all algorithms were very likely to detect the larger outbreaks, but
POD was considerably lower for the smallest outbreaks, particularly for the
Farrington Flexible method. Farrington Flexible detection capability is the
most affected by outbreak size, though generally algorithm ranking is not
affected by outbreak size and as the latter increases, POD, sensitivity and
timeliness improve. Farrington Flexible and EARS-NB have a much higher
sensitivity than RAMMIE but lower POD, most likely due to the smoothing
methods used in adjusting from weekly to daily surveillance. In particular,
Farrington Flexible has the highest sensitivity but lowest POD, though its
POD is similar to the other algorithms with outbreaks of size 10. EARS-
C1 and EARS-C2 were the most timely, although RAMMIE has similar
timeliness except for the smallest outbreaks. (See Supplementary Figure
4 for further demonstration on how detection is influenced by outbreak
size).

Fig. 3. POD, sensitivity, specificity and timeliness for each of the simulated signals,
with added medium ‘spiked outbreaks’, obtained from applying RAMMIE (dashed lines),
Farrington Flexible (solid lines) and EARS-NB (dot dash lines) to the most recent 49 weeks
of each of the 100 simulations from each signal.

Second, we investigate the algorithms’ performance with the particular
characteristics depicted by each of the 16 simulated signals. Figure 3
displays the algorithms’ 4 performance measures for each of the 16 signals,
when ‘spiked outbreaks’ of medium size (m = 5) were added to the most
recent 49 weeks. Figures corresponding to very small, small and large
outbreaks can be found in the Supplementary Data. EARS-C1, EARS-C2
and EARS-C3 have much lower sensitivity and specificity than the other
algorithms making them not very useful in our setting, therefore Figure 3
reports on the results corresponding to just RAMMIE, Farrington Flexible
and EARS-NB. The figure shows that Farrington Flexible has the highest
specificity on average followed by EARS-NB then RAMMIE. RAMMIE
specificity is similar to Farrington Flexible, however it has particularly
low values for signals 5, 13, and 15, all of which have high volume and
seasonality. Signal 13 has a trend and signals 5 and 15 have the added
‘seasonal outbreaks’, which could explain the low specificity. RAMMIE
produces particularly low specificity for signal 15 and so the false alarms
might be due to the fact that RAMMIE detects ‘seasonal outbreak’ better
(which in reality could be the seasonal influenza outbreak). RAMMIE
sensitivity is the least variable across signals. Farrington Flexible produces
low POD and is the least timely particularly for signals 5, 6, 8 and 15 which
have high seasonality and added seasonal outbreaks (for signals 5, 6 and
15). EARS-NB gives a similar picture but with a higher POD and lower
timeliness on average. The timeliness for simulations where an outbreak
is not detected is set to 1, which explains why signals with particularly low
POD are also the least timely. RAMMIE produces, on average, the highest
(lowest) and most consistent POD and timeliness across all signals.

Every algorithm scored highly in terms of PPV. Farrington Flexible
had the highest overall PPV (99.73%) followed by EARS-NB (99.56%),
RAMMIE (99.04%), EARS-C1 (99.03%), EARS-C2 (98.00%) and
EARS-C3 (97.70%). The slightly lower values for EARS-C methods
reflects their lower scores for specificity.

6 Discussion
During the testing of algorithm performance across a range of scenarios, we
found that EARS-C1, EARS-C2 and EARS-C3 have considerably lower
specificity than the other algorithm variants tested. Amongst the other
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algorithms, Farrington Flexible has the highest sensitivity and specificity,
whereas RAMMIE has the highest POD and is the most timely.

Farrington Flexible and EARS-NB smooth the data by taking moving
totals and so dilute the signal, whereas RAMMIE is designed for daily
surveillance which allows it to detect more outbreaks, typically 2-3 days
earlier. However, RAMMIE is less consistent in generating alarms during
spiked outbreak days and produces the lowest sensitivity. Due to smoothing
of the day-of-the-week effects, once Farrington Flexible and EARS-NB
detect an outbreak, they are more likely to generate alarms consistently
during the remaining spike outbreak days.

Although there are differences in the performance measures across
the syndromes, the differences mostly affect all the algorithms in similar
ways, apart from some signals with high seasonality or added seasonal
outbreaks. The Flexible Farrington method has the biggest variation in
detection capabilities across the different signals. Our results show that the
performance of RAMMIE can be improved by adjusting it for long-term
trends.

6.1 Implications for public health authorities

In this paper, we provide an assessment of algorithm detection capability to
help decision makers and researchers performing daily surveillance decide
which algorithm would be more efficient for their needs, and which aspects
of detection are more important i.e. POD, sensitivity, specificity, PPV
or timeliness. POD is the most important measure if the priority of the
surveillance system is to ensure that all outbreaks are detected. Whilst our
sensitivity measure is important if a clear consistent signal is required,
i.e. an alarm every day during an outbreak, specificity is important if
the user needs to ensure that there are no false alarms. PPV provides a
measure of how likely an alarm is to be true, which is particularly important
when outbreaks do not occur often. Finally, timeliness may be the most
important measure if the focus of the surveillance activity is on providing
early warning and other public health systems exist which can reliably
detect outbreaks. For each of these measures the user may want to set
a minimum threshold required by the algorithms and/or prioritise which
measures are most important for their surveillance needs. Furthermore,
their requirements may vary depending on the public health hazard they
are trying to detect.

In effect, there is no one algorithm that is better across all detection
measures. However, due to their lower specificity, the EARS-C1, EARS-
C2 and EARS-C3 variants may not be as suited for a multi-purpose daily
surveillance system. Farrington Flexible had the highest sensitivity and
specificity so may be preferred if the priority is for daily alarms that are
as accurate as possible. However, RAMMIE was more timely and had
a slightly higher POD so it may be more useful where early warning is
important or the top priority is that at least one alarm occurs during an
outbreak. Alternatively, EARS-NB may be preferred as a compromise
because its sensitivity was better than RAMMIE and its POD slightly
better than Flexible Farrington.

Specifically, we provide PHE with an evaluation of RAMMIE that will
help them improve their service by modifying RAMMIE or replacing it
with another algorithm. We recommend adjusting RAMMIE to allow for
any long-term trends in the underlying syndromic data. We also provide
a range of developed simulations that researchers can use in testing other
algorithms for use in a daily setting elsewhere. (We aim in the future to
provide public access to these simulations).

One of our research aims was to discover which algorithm worked best
in particular situations, (e.g. which algorithm is best for small numbers
or which is best for 5-day-week systems, or which is best for different
outbreak sizes or types). However, we show that the ranking of algorithms
is not affected by these different situations. Therefore, whichever algorithm
is preferred by users should be used for all types of signals.

6.2 Limitations

The timeliness penalty of 1 for failing to detect an outbreak is set quite high.
Consequently, when an algorithm has a low POD score it will also have
very poor timeliness, e.g. Farrington Flexible for signals with seasonal
outbreaks. An alternative approach, given that the simulated outbreaks are
nearly symmetric could be to impose a penalty of 0.5, because it is highly
unlikely that an outbreak will first be detected after it has peaked. It would
also be possible to not impose any penalty, although that could result in
algorithms that can only detect big outbreaks with an initial sharp rise
in cases being scored as more timely than algorithms with a much better
POD.

6.3 Future work

In further research, we aim to explore different decision rules for evaluating
the algorithms. We can use the results from this study to see how different
priorities for timeliness, sensitivity, specificity or POD would affect the
decision of which algorithm we should use. For instance, we can ask
decision makers to specify a set of preferred requirements for algorithms
(e.g. specificity >98%) and their priorities, (e.g. whether timeliness is a
priority over alarming every day). Then we can apply these decision rules
to our study results to determine which algorithm performed best against
the criteria set by the decision makers. This approach would also allow
them to set different priorities for different public health events (e.g. a short
spike in vomiting cases caused by a norovirus outbreak or a longer-term
gradual rise in scarlet fever incidence).

We attribute some of the differences in performance between
algorithms to whether or not they were designed for daily or weekly
surveillance. Future work could create new versions of the Farrington
Flexible and EARS algorithms which are specifically adapted to model
day-of-the-week effects inherent in the daily surveillance data.

This research focuses on the detection of spiked outbreaks. The
seasonal outbreak detection is part of the bigger question of what are
we trying to model versus what we are trying to detect. This is an issue
that can be addressed in future work. Also, further research on RAMMIE
day-of-the-week detection efficiency (e.g. weekends vs weekdays; public
holidays vs non-public holidays; detection on different days of the week)
can be undertaken.

7 Conclusion
We have created simulated data representing the wide range of data
structures seen in a multi-purpose daily surveillance system. We have
used this data to compare three algorithms already in use and made
these modelled data structures available for the evaluation of other new
algorithms. We have shown that the decision as to which algorithm to use
should depend on which detection characteristics are most important to
the user and not the characteristics of the data signal being monitored. In
particular, the Farrington Flexible method has the highest sensitivity and
specificity, whereas RAMMIE has the highest POD and is the most timely.
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