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Abstract
Background: A trend in the non-invasive brain stiion literature is to assess the outcome of an
intervention using a responder analysis wherebijgizaints are di- or trichotomised in order thatyth

may be classified as either responders or hon-nekgrs.

Objective: Examine the extent of the Type | erromotor evoked potential (MEP) data subjected to

responder analyses.

Methods: Seven sets of 30 MEPs were recorded fnenfirtst dorsal interosseous muscle in 52 healthy
volunteers. Four classification techniques weredusdassify the participants as responders or non-
responders: (1) the two-step cluster analysisP{ghotomised thresholding, (3) relative method and

(4) baseline variance method.

Results: Despite the lack of any intervention, gnificant number of participants were classified as

responders (21-71%).

Conclusion: This study highlights the very largep&yl error associated with dichotomising

continuous variables such as the TMS MEP.



35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

I ntroduction

Similar to many other interventions, the efficaéynon-invasive brain stimulation (NIBS) is limited

a subset of the population and it is important éttdy understand what proportion of participants
might respond. A recent trend in the NIBS literatus to use a responder analysis to classify
participants as responders or non-responders filipan intervention. This simplifies the statistica
analysis, interpretation and presentation of resilf. In the NIBS literature, this classificatios
typically performed by di- or trichotomising the too evoked potential (MEP) produced in response
to transcranial magnetic stimulation (TMS) as thisonsidered a surrogate marker of neuroplasticity
[2].

Pellegrini, et al. 2018 [3] recently conducted ategnatic review of responder analyses in NIBS and
concluded that they can effectively identify subgr® based on response patterns, and used to
estimate the proportion of participants who migképond to the intervention. However, they also
noted a lack of consistency and consensus in thithatie by which the data are quantified.
Furthermore, they highlighted that many studieshie NIBS literature lack a control group. As a
result, the effect of natural variability of the FEs not accounted for with these analyses. The MEP
magnitude has considerable trial-to-trial variapiind drift over time, which arise due to contable
and uncontrollable factors of physiological (e.grtical rhythms, arousal, etc.) and non-physiolabic
(e.g. TMS coil placement and/or movement) origing@

Responder analyses methods gained popularity inedrey 2000s in the clinical medicine and
psychology literature primarily as a means to dsalproportions of responders in drug trials amd i
marketing studies [6-8]. However, these methodsewsren criticised by methodologists who
guestioned the validity of dichotomising (or trithmising) continuous variables. They noted in
particular that inferences made from such analyses susceptible to large Type | error (false
positives) that can lead to erroneous conclusidns$| 9-19]. The aim of the present study was to
examine the extent of the Type | error in MEP dhiat are subjected to different types responder

analyses.
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M ethods

Experimental procedures

Fifty-two healthy participants, without contraindimon to TMS and no history of neurological
psychiatric disorder, participated in the study £y, range 18-25, 35 female). Participants &csit
the laboratory once for ~1 h, during which MEPs eveecorded from the first dorsal interosseus
(FDI). Participants sat comfortably and were instied to relax both the hand and arm, and to keep
their eyes open for the duration of the experimdr. facilitate this instruction throughout the
experiment, interactive feedback of FDI muscledtgtiwas provided on a computer monitor. TMS
was delivered through a 90 mm figure-of-8 coil @ygatwing; type no. 15411) using a Magstim
Rapid stimulator (Magstim Ltd, Dyfed, United Kingdom).oiC position and orientation were
monitored with frameless stereotaxy (BrainSighRague Research Inc, Montreal, Canada). The
stimulation intensity required to evoke 1 mV (&) peak-to-peak MEPs (MER was determined by
adjusting the intensity until the mean of 30 stinprbduced a 1 mV MER (calibration data set in
Figure 1A). Next, seven sets of 30 MEPs were resmbmith a 4 s inter-stimulus interval and 2 min
rest between sets. The first set was deemed aimselwhich the remaining 6 data sets would be

compared. Figure 1A summarises the experimentéb@ob

Satistical Analysis

The MER, amplitude was extracted between 20-50 ms afterutdon and averaged across all
stimuli within a set. The mean MEPfor each set was then used for statistical analgsid
classification either: (1) without any further pessing; or (2) after normalisation to the mean MEP

of the baseline set (B), the ‘grand average (GA)hod. Therefore, each classification method was
performed twice on the same data, either the atessohean MER, amplitudes for each set, or the
normalised GA data.

Before classification, the continuous data wasya®al using a repeated measures analysis of variance
(RM-ANOVA) across sets for the mean absolute MBRilues. Subsequently, the participants were
classified using the four common methods foundhim NIBS literature. Following classification, a

mixed RM-ANOVA was performed on the absolute ME&ata with the within-factor ‘set’ and
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between-subjects factor ‘group’ (i.e. the resultlod classification method). In addition, a one-way
RM-ANOVA was performed for each group individualpn the absolute MEP data to classify
groups of participants as either:

* (+) responders: significant increase in ME&cross set

* (-) responders: significant decrease in ME#eross set

* (0) responders or non-responders: no significaanga in MER, across set
If Mauchly's Test of Sphericity indicated that taesumption of sphericity had been violated, a
Greenhouse-Geisser correction (GG) was performédtatistical tests were performed using SPSS,

with significance accepted at p<0.05.

Responder Analysis Methods

1) Two-step cluster analysis: This SPSS method uses a two-step clustering agptbat allows
automatic detection of the optimal number of clistén the first step all cases are scanned an
pre-clustered based on a predefined distanceioritée.g. squared Euclidian distance or log-
likelihood) that specifies either the differencesomilarity between cases. In the second step,
the algorithm uses agglomerative hierarchical eliisty to merge the sub clusters resulting
from the first step into a smaller number of clustdn the present study we allowed the
algorithm to automatically determine the numberchfsters rather than specifying two or
three clusters. This is a commonly used methodBSNiterature [20-26].

2) Dichotomised thresholding: This method separates data into two groups basedooedefined
threshold. For GA data, participants were categdrissing the mean GA of sets (in our case
sets T1-T6). Participants were then classified egative responders for mean GA < 1 and
positive responders for mean GA > 1. This analyss also performed on absolute MEP
data. With absolute MEP data this method can be applied either on a gleupl or
individually. For the group level analysis, the medER,, amplitude across all participants
was chosen as the threshold (1.35 mV in this stugty) the individual analysis, the threshold
is set to the mean MEPof the baseline set for each participant indiviguaNext, each

participant is classified as a positive responfittta mean MER across T1-T6 is greater than
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3)

4)

the threshold and a negative responder if the nMBR,, across T1-T6 is less than the
threshold. Dichotomised thresholding is a commonhe: of subgrouping normalised MEP
data [22, 24-33].

Relative method: This method is used to classify participants irftee¢ groups based on a
predefined percent change from baseline thresidlts method has been used in several
studies to trichotomise participants using a thotsbf 10% [23, 34], 15% [35], 20% [20] or
50% [36]. In the present study we used a consemvatpproach by choosing 20% change
from baseline as the threshold. For the GA datatigg@ants are classified as negative
responders for mean GA across sets T1-T6 < 0.8jymsesponders for mean GA > 1.2 and
non-responders between 0.8-1.2. Likewise for tlsolate MER, data the threshold was 1.35
+ 0.27 mV as for the collected data the group nefathe baseline set B was 1.35 mV. This
procedure was also performed on an individual lewelwhich case the threshold was
individually determined based on the mean MEplitude of set B.

Baseline variance method: In this method participants are trichotomised basethe variance
of the baseline measure. For the GA data, the atdratror (SE) of the GA of the baseline set
was 0.14 across all participants. Therefore, aigiaant was classified as a (=) or (+)
responder if the mean GA across sets T1-T6 wadesnmalgreater than 1.27 (95% confidence
limit (CL) 1 £ 0.27) and a non-responder otherwiSenilarly, for MER,, data the SE of the
baseline set was 0.17 across all participants (€4%1.35 + 0.36 mV) and therefore a
participant was a (+) responder when above thigufimit, a (-) when below the lower limit
or a non-responder otherwise. The same analysisalgasperformed on the level of each
individual, i.e. the CL of the baseline set wased®ained individually to assign the participant

to the correct group. This method has been usseveral studies [28, 33, 37-41].
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Results
A one-way RM-ANOVA applied across all seven datts $8-T6) before dichotomisation revealed
neither a significant difference in mean MEBmplitude across these data set$7k4, 75= 1.27¢,

p=0.28) nor in GA (F.74241.73= 1.3F° p=0.26; Figure 1B).

The results for the subgrouping methods are predeint Table 1 and for the group level analysis
visualized in Figure 1C. The SPSS two-step cluaterlysis determined two clusters to best separate
the data. For the MEP data 11 participants (~21%) were classified apaeders, showing a
significant increase in MEP(p<0.01) across time, and 41 participants (~79%evelassified as non-
responders (p=0.96). The same groups were idahtiféng the GA data but with 19 responders
(p<0.01) and 33 non-responders (p=0.22). The MBRd GA across time for each group is illustrated

in Figure 1C.

Using the dichotomised thresholding method on MERta and a group leveB3 participants (63%)
were classified as (+) responders (p<0.01) andat@cpants (37%) as non-responders (p=0.88). For
the GA data, 28 participants (54%) were classifiasd(+) responders (GA > 1, p<0.01) and 24

participants (46%) were classified as (=) respond@@A < 1, p=0.01) (Figure 1D).

The relative and baseline variance methods prodwedar proportions of responders when
performed irrespective of the group or individuavdl analysis. Generally, more participants were
classified as non-responders for the GA data (2@)5®an the MER, data (29-52%). Moreover, the

baseline variance method resulted in more non-resgs (46-58%) than the relative method (29-

40%).
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Discussion

The present study followed a typical interventioesidn where TMS MEP data are collected at
baseline and then again at pre-defined times fatiguhe intervention. However, in the present study
the participants were not exposed to an intervanfitlierefore, subject to normal MEP variabilityg th
‘post-intervention’ data sets would not be expectedbe different from baseline. As expected,
parametric statistics performed on this continutats set revealed no significant difference witheti
However, when the data were subjected to resparddyse between 21-71% of the participants were

classified as responders, thus revealing a largegruof false positives.

The responder analysis has been used throughaoigatimedicine and psychology literature because
it simplifies the analysis and interpretation opexmental results; with proponents of the analysis
highlighting its usefulness in clinical decision kitay [7]. However, methodologists have argued for
more than two decades that the dichotomisationoaticuous variables is not valid for hypothesis

testing [1, 9-14, 16-18]. The dichotomisation oihtinuous variables results in significant loss of
information (~35-50% depending on the distributidrthe data), reduced power of the statisticaktest

high probability of Type | error, biased paramegstimates and erroneously small variances (for

detailed discussion see: [1, 13, 16]).

The specific objective of the present study wasntestigate the Type | error associated with
responder analyses when MEP data are used to fglgsmiticipants. In general, we observed
substantial Type | errors with all of the respondealyses methods. Our results suggest that at best
20% of the participants who have been classifieckggonders will have been classified erroneously.
It may be valid to use a responder analysis to @senpn intervention with a control group, but the

specific response rates may be over-estimated.
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Figure/Table Legends

Figure 1. Responder/non-responder analysis across TMS MERgesets. (A) Seven sets of 30
MEPs were acquired at a stimulation intensity gelbto producing a mean 1 mV peak-to-peak MEP
amplitude (mean @h: 56 + 10% of maximum stimulator output). The fisgt was considered the
baseline to which the remaining six sets would bengared. (B) MER amplitude across all
participants and all sets. No effect of set on MEdnplitude observed for these data. P,
amplitude is shown across each of the seven dedaveeh the participants di- or tricotomised usang
two-step cluster analysis, dichotomised threshgldmelative threshold method or baseline variance
method on a group level. In this way participams elassified as either (+) responders (light grey
lines), showing an increase in MgRmplitude compared to baseline, (0)- or non-redpm(grey
lines), no change in MEP amplitude across SET, or (-) responders (blacks)ina decrease in
absolute MER, across SET. The left column presents results wherclassification was based on
absolute MEP), data, the right column when based on GA datadala are presented as Mean + S.D.

The number of participants for each group can beddn Table 1.

Table 1: Overview of results for subgrouping participantca@ding to four methods for both
normalised grand average (GA) data as well as womalised ‘raw’ MER, data: (1). SPSS Two-Step
Cluster analysis; (2) Relative % change with respedaseline; (3) Dichotomised thresholding: a
predefined fixed threshold; and (4) Change relativéhe variance of the baseline set. A subgroup of
participants is classified as positive respondefsar negative responders (=), when there is a
significant increase or decrease across SET regglgctNon-responders (0) are those participants in
the group with no significant change in MgRmplitude across SET. For some methods partigpant
were subgrouped both on a threshold defined omaimidual (Indv) basis as well as on a group (Gr)
level. The %0 column highlights the proportion @hrresponders. Results are shown with analysis

performed on normalised grand average (GA) datananehormalised absolute MERlata.
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