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Abstract  21 

Background: A trend in the non-invasive brain stimulation literature is to assess the outcome of an 22 

intervention using a responder analysis whereby participants are di- or trichotomised in order that they 23 

may be classified as either responders or non-responders.  24 

Objective: Examine the extent of the Type I error in motor evoked potential (MEP) data subjected to 25 

responder analyses. 26 

Methods: Seven sets of 30 MEPs were recorded from the first dorsal interosseous muscle in 52 healthy 27 

volunteers. Four classification techniques were used classify the participants as responders or non-28 

responders: (1) the two-step cluster analysis, (2) Dichotomised thresholding, (3) relative method and 29 

(4) baseline variance method. 30 

Results: Despite the lack of any intervention, a significant number of participants were classified as 31 

responders (21-71%). 32 

Conclusion: This study highlights the very large Type I error associated with dichotomising 33 

continuous variables such as the TMS MEP.    34 
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Introduction 35 

Similar to many other interventions, the efficacy of non-invasive brain stimulation (NIBS) is limited to 36 

a subset of the population and it is important to better understand what proportion of participants 37 

might respond. A recent trend in the NIBS literature is to use a responder analysis to classify 38 

participants as responders or non-responders following an intervention. This simplifies the statistical 39 

analysis, interpretation and presentation of results [1]. In the NIBS literature, this classification is 40 

typically performed by di- or trichotomising the motor evoked potential (MEP) produced in response 41 

to transcranial magnetic stimulation (TMS) as this is considered a surrogate marker of neuroplasticity 42 

[2]. 43 

Pellegrini, et al. 2018 [3] recently conducted a systematic review of responder analyses in NIBS and 44 

concluded that they can effectively identify subgroups based on response patterns, and used to 45 

estimate the proportion of participants who might respond to the intervention. However, they also 46 

noted a lack of consistency and consensus in the methods by which the data are quantified. 47 

Furthermore, they highlighted that many studies in the NIBS literature lack a control group. As a 48 

result, the effect of natural variability of the MEP is not accounted for with these analyses. The MEP 49 

magnitude has considerable trial-to-trial variability and drift over time, which arise due to controllable 50 

and uncontrollable factors of physiological (e.g. cortical rhythms, arousal, etc.) and non-physiological 51 

(e.g. TMS coil placement and/or movement) origin [4, 5]. 52 

Responder analyses methods gained popularity in the early 2000s in the clinical medicine and 53 

psychology literature primarily as a means to establish proportions of responders in drug trials and in 54 

marketing studies [6-8]. However, these methods were then criticised by methodologists who 55 

questioned the validity of dichotomising (or trichotomising) continuous variables. They noted in 56 

particular that inferences made from such analyses are susceptible to large Type I error (false 57 

positives) that can lead to erroneous conclusions [1, 6, 9-19]. The aim of the present study was to 58 

examine the extent of the Type I error in MEP data that are subjected to different types responder 59 

analyses. 60 

 61 
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Methods 62 

Experimental procedures 63 

Fifty-two healthy participants, without contraindication to TMS and no history of neurological 64 

psychiatric disorder, participated in the study (20 ± 2 y, range 18-25, 35 female). Participants visited 65 

the laboratory once for ~1 h, during which MEPs were recorded from the first dorsal interosseus 66 

(FDI). Participants sat comfortably and were instructed to relax both the hand and arm, and to keep 67 

their eyes open for the duration of the experiment. To facilitate this instruction throughout the 68 

experiment, interactive feedback of FDI muscle activity was provided on a computer monitor. TMS 69 

was delivered through a 90 mm figure-of-8 coil (type: batwing; type no. 15411) using a Magstim 70 

Rapid2 stimulator (Magstim Ltd, Dyfed, United Kingdom). Coil position and orientation were 71 

monitored with frameless stereotaxy (BrainSight 2, Rogue Research Inc, Montreal, Canada). The 72 

stimulation intensity required to evoke 1 mV (SI1mV) peak-to-peak MEPs (MEPpp) was determined by 73 

adjusting the intensity until the mean of 30 stimuli produced a 1 mV MEPpp (calibration data set in 74 

Figure 1A). Next, seven sets of 30 MEPs were recorded with a 4 s inter-stimulus interval and 2 min 75 

rest between sets. The first set was deemed a baseline to which the remaining 6 data sets would be 76 

compared. Figure 1A summarises the experimental protocol.  77 

Statistical Analysis 78 

The MEPpp amplitude was extracted between 20-50 ms after stimulation and averaged across all 79 

stimuli within a set. The mean MEPpp for each set was then used for statistical analysis and 80 

classification either: (1) without any further processing; or (2) after normalisation to the mean MEPpp 81 

of the baseline set (B), the ‘grand average (GA) method’. Therefore, each classification method was 82 

performed twice on the same data, either the absolute mean MEPpp amplitudes for each set, or the 83 

normalised GA data.  84 

Before classification, the continuous data was analysed using a repeated measures analysis of variance 85 

(RM-ANOVA) across sets for the mean absolute MEPpp values. Subsequently, the participants were 86 

classified using the four common methods found in the NIBS literature. Following classification, a 87 

mixed RM-ANOVA was performed on the absolute MEPpp data with the within-factor ‘set’ and 88 
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between-subjects factor ‘group’ (i.e. the result of the classification method). In addition, a one-way 89 

RM-ANOVA was performed for each group individually on the absolute MEPpp data to classify 90 

groups of participants as either: 91 

• (+) responders: significant increase in MEPpp across set 92 

• (−) responders: significant decrease in MEPpp across set 93 

• (0) responders or non-responders: no significant change in MEPpp across set 94 

If Mauchly's Test of Sphericity indicated that the assumption of sphericity had been violated, a 95 

Greenhouse-Geisser correction (GG) was performed. All statistical tests were performed using SPSS, 96 

with significance accepted at p<0.05. 97 

Responder Analysis Methods 98 

1) Two-step cluster analysis: This SPSS method uses a two-step clustering approach that allows 99 

automatic detection of the optimal number of clusters. In the first step all cases are scanned an 100 

pre-clustered based on a predefined distance criterion (e.g. squared Euclidian distance or log-101 

likelihood) that specifies either the difference or similarity between cases. In the second step, 102 

the algorithm uses agglomerative hierarchical clustering to merge the sub clusters resulting 103 

from the first step into a smaller number of clusters. In the present study we allowed the 104 

algorithm to automatically determine the number of clusters rather than specifying two or 105 

three clusters. This is a commonly used method in NIBS literature [20-26].  106 

2) Dichotomised thresholding: This method separates data into two groups based on a predefined 107 

threshold. For GA data, participants were categorised using the mean GA of sets (in our case 108 

sets T1-T6). Participants were then classified as negative responders for mean GA < 1 and 109 

positive responders for mean GA > 1. This analysis was also performed on absolute MEPpp 110 

data. With absolute MEPpp data this method can be applied either on a group level or 111 

individually. For the group level analysis, the mean MEPpp amplitude across all participants 112 

was chosen as the threshold (1.35 mV in this study). For the individual analysis, the threshold 113 

is set to the mean MEPpp of the baseline set for each participant individually. Next, each 114 

participant is classified as a positive responder if the mean MEPpp across T1-T6 is greater than 115 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 6

the threshold and a negative responder if the mean MEPpp across T1-T6 is less than the 116 

threshold. Dichotomised thresholding is a common method of subgrouping normalised MEP 117 

data [22, 24-33]. 118 

3) Relative method: This method is used to classify participants into three groups based on a 119 

predefined percent change from baseline threshold. This method has been used in several 120 

studies to trichotomise participants using a threshold of 10% [23, 34], 15% [35], 20% [20] or 121 

50% [36]. In the present study we used a conservative approach by choosing 20% change 122 

from baseline as the threshold. For the GA data, participants are classified as negative 123 

responders for mean GA across sets T1-T6 < 0.8, positive responders for mean GA > 1.2 and 124 

non-responders between 0.8-1.2. Likewise for the absolute MEPpp data the threshold was 1.35 125 

± 0.27 mV as for the collected data the group mean of the baseline set B was 1.35 mV. This 126 

procedure was also performed on an individual level, in which case the threshold was 127 

individually determined based on the mean MEPpp amplitude of set B.  128 

4) Baseline variance method: In this method participants are trichotomised based on the variance 129 

of the baseline measure. For the GA data, the standard error (SE) of the GA of the baseline set 130 

was 0.14 across all participants. Therefore, a participant was classified as a (−) or (+) 131 

responder if the mean GA across sets T1-T6 was smaller or greater than 1.27 (95% confidence 132 

limit (CL) 1 ± 0.27) and a non-responder otherwise. Similarly, for MEPpp data the SE of the 133 

baseline set was 0.17 across all participants (95% CL  1.35 ± 0.36  mV) and therefore a 134 

participant was a  (+) responder when above this upper limit, a (−) when below the lower limit 135 

or a non-responder otherwise. The same analysis was also performed on the level of each 136 

individual, i.e. the CL of the baseline set was determined individually to assign the participant 137 

to the correct group. This method has been used in several studies [28, 33, 37-41]. 138 

  139 
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Results 140 

A one-way RM-ANOVA applied across all seven data sets (B-T6) before dichotomisation revealed 141 

neither a significant difference in mean MEPpp amplitude across these data sets (F(4.76,242.75) = 1.27GG, 142 

p=0.28) nor in GA  (F(4.74,241.73) = 1.31GG p=0.26; Figure 1B).  143 

The results for the subgrouping methods are presented in Table 1 and for the group level analysis 144 

visualized in Figure 1C. The SPSS two-step cluster analysis determined two clusters to best separate 145 

the data. For the MEPpp data 11 participants (~21%) were classified as responders, showing a 146 

significant increase in MEPpp (p<0.01) across time, and 41 participants (~79%) were classified as non-147 

responders (p=0.96). The same groups were identified using the GA data but with 19 responders 148 

(p<0.01) and 33 non-responders (p=0.22). The MEPpp and GA across time for each group is illustrated 149 

in Figure 1C.   150 

Using the dichotomised thresholding method on MEPpp data and a group level , 33 participants (63%) 151 

were classified as (+) responders (p<0.01) and 19 participants (37%) as non-responders (p=0.88). For 152 

the GA data, 28 participants (54%) were classified as (+) responders (GA > 1, p<0.01) and 24 153 

participants (46%) were classified as (−) responders (GA < 1, p=0.01) (Figure 1D).  154 

The relative and baseline variance methods produced similar proportions of responders when 155 

performed irrespective of the group or individual level analysis. Generally, more participants were 156 

classified as non-responders for the GA data (40-58%) than the MEPpp data (29-52%). Moreover, the 157 

baseline variance method resulted in more non-responders (46-58%) than the relative method (29-158 

40%). 159 

  160 
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Discussion 161 

The present study followed a typical intervention design where TMS MEP data are collected at 162 

baseline and then again at pre-defined times following the intervention. However, in the present study 163 

the participants were not exposed to an intervention. Therefore, subject to normal MEP variability, the 164 

‘post-intervention’ data sets would not be expected to be different from baseline. As expected, 165 

parametric statistics performed on this continuous data set revealed no significant difference with time. 166 

However, when the data were subjected to responder analyse between 21-71% of the participants were 167 

classified as responders, thus revealing a large number of false positives. 168 

The responder analysis has been used throughout clinical medicine and psychology literature because 169 

it simplifies the analysis and interpretation of experimental results; with proponents of the analysis 170 

highlighting its usefulness in clinical decision making [7]. However, methodologists have argued for 171 

more than two decades that the dichotomisation of continuous variables is not valid for hypothesis 172 

testing [1, 9-14, 16-18]. The dichotomisation of continuous variables results in significant loss of 173 

information (~35-50% depending on the distribution of the data), reduced power of the statistical tests, 174 

high probability of Type I error, biased parameter estimates and erroneously small variances (for 175 

detailed discussion see: [1, 13, 16]).  176 

The specific objective of the present study was to investigate the Type I error associated with 177 

responder analyses when MEP data are used to classify participants. In general, we observed 178 

substantial Type I errors with all of the responder analyses methods. Our results suggest that at best, 179 

20% of the participants who have been classified as responders will have been classified erroneously. 180 

It may be valid to use a responder analysis to compare an intervention with a control group, but the 181 

specific response rates may be over-estimated. 182 

  183 
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Figure/Table Legends 299 

Figure 1: Responder/non-responder analysis across TMS MEP testing sets. (A) Seven sets of 30 300 

MEPs were acquired at a stimulation intensity selected to producing a mean 1 mV peak-to-peak MEP 301 

amplitude (mean SI1mV: 56 ± 10% of maximum stimulator output). The first set was considered the 302 

baseline to which the remaining six sets would be compared. (B)  MEPpp amplitude across all 303 

participants and all sets. No effect of set on MEPpp amplitude observed for these data. (C) MEPpp 304 

amplitude is shown across each of the seven data sets, with the participants di- or tricotomised using a 305 

two-step cluster analysis, dichotomised thresholding, relative threshold method or baseline variance 306 

method on a group level. In this way participants are classified as either (+) responders (light grey 307 

lines), showing an increase in MEPpp amplitude compared to baseline, (0)- or non-responders (grey 308 

lines), no change in MEPpp amplitude across SET, or (−) responders (black lines), a decrease in 309 

absolute MEPpp across SET. The left column presents results when the classification was based on 310 

absolute MEPpp data, the right column when based on GA data. All data are presented as Mean ± S.D. 311 

The number of participants for each group can be found in Table 1.  312 

Table 1: Overview of results for subgrouping participants according to four methods for both 313 

normalised grand average (GA) data as well as non-normalised ‘raw’ MEPpp data: (1). SPSS Two-Step 314 

Cluster analysis; (2) Relative % change with respect to baseline; (3) Dichotomised thresholding:  a 315 

predefined fixed threshold; and (4) Change relative to the variance of the baseline set. A subgroup of 316 

participants is classified as positive responders (+) or negative responders  (−), when there is a 317 

significant increase or decrease across SET respectively. Non-responders (0) are those participants in 318 

the group with no significant change in MEPpp amplitude across SET. For some methods participants 319 

were subgrouped both on a threshold defined on an individual (Indv) basis as well as on a group (Gr) 320 

level. The %0 column highlights the proportion of non-responders. Results are shown with analysis 321 

performed on normalised grand average (GA) data and non-normalised absolute MEPpp data. 322 

 323 

 324 

 325 
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Table 1 

 Normalised GA data 
  # Participants  Mixed RM-ANOVA OneWay RM-ANOVA 

Subgrouping  
Method 

+ 0 − %0 
  

+ 0 − 

Two Step Cluster  19 33 - 63% 
SET:   
SET×GROUP : 

F(4.83,241.71) = 3.43GG  
F(4.83,241.71) = 8.40GG  

p<0.01 
p<0.01 

F(3.66,65.93) = 5.97GG  p<0.01 F(5.02,160.76) = 1.65GG  p=0.15 - - 
Threshold 
Dichotomisation  28 - 24 - 

SET: 
SET×GROUP:  

F(4.88,243.73) = 1.05GG  
F(4.88,243.73) = 8.14GG  

p=0.39 
p<0.01 

F(3.96,106.90) = 6.33GG  p<0.01 - - F(6,138) = 2.78  p=0.01 

Relative  20 21 11 40% 
SET:  
SET×GROUP:  

F(4.66,228.43) = 0.49GG  
F(9.32,228.43) = 5.63GG  

p=0.77  
p<0.01 

F(3.69,70.22) = 5.91GG   p<0.01 F(4.41,88.25) = 0.64GG  p=0.65 F(6,60) = 4.59 p<0.01 

Baseline 
Variance Gr 15 27 10 52% 

SET:   
SET×GROUP: 

F(4.63,226.73) = 0.97GG  
F(9.25,226.73) = 6.08GG  

p=0.43 
p<0.01 

F(6,84) = 6.59  p<0.01 F(4.59,119.21) = 0.52GG  p=0.74 F(6,54) = 4.29  p<0.01 

 Indv 13 30 9 58% 
SET:   
SET×GROUP: 

F(4.57,223.80) = 1.24GG  
F(9.14,223.80) = 6.59GG  

p=0.29 
p<0.01 

F(3.11,37.37) = 6.68GG  p<0.01 F(4.56,132.17) = 0.48GG  p=0.77 F(6,48) = 4.58  p=0.01 

Non-normalised MEPpp data 

Two Step Cluster  11 41 - 79% 
SET:  
SET×GROUP: 

F(6,300) = 4.74  
F(6,300) = 4.96  

p<0.01 
p<0.01 

F(6,60) = 4.50  p<0.01 F(6,240) = 0.26  p=0.96 - - 
Threshold 
Dichotomisation Gr 33 19 - 37% 

SET: 
SET×GROUP: 

F(6,300) = 3.23 
F(6,300) = 6.69 

p<0.01 
p<0.01 

F(3.65,65.65) = 5.80GG p<0.01 F(6,192) = 0.88  p=0.51 - - 

 Indv 24 - 28 - 
SET:   
SET×GROUP: 

F(4.87,243.27) = 1.06GG  
F(4.87,243.27) = 7.44GG  

p=0.38 
p<0.01 

F(3.81,102.80) = 5.80GG  p<0.01 - - F(6,138) = 2.57  p=0.02 

Relative Gr 16 15 21 29% 
SET:   
SET×GROUP: 

F(6,294) = 2.12  
F(12,294) = 5.23  

p=0.05 
p<0.01 

F(3.62,52.85) = 5.00GG  p<0.01 F(6,84) = 2.43  p=0.03 F(6,120) = 2.91  p=0.01 

 Indv 17 19 16 37% 
SET:   
SET×GROUP: 

F(4.73,231.96) = 1.47GG  
F(9.47,231.96) = 6.63GG  

p=0.20 
p<0.01 

F(3.41,54.60) = 6.44GG  p<0.01 F(6,108) = 1.70  p=0.13 F(6,90) = 4.13  p<0.01 

Baseline 
Variance Gr 12 27 13 52% 

SET:   
SET×GROUP: 

F(4.75,232.84) = 2.16GG  
F(9.50,232.84) = 6.95GG  

p=0.06 
p<0.01 

F(3.10,34.09) = 6.32GG  p<0.01 F(6,156) = 1.51  p=0.18 F(6,72) = 4.77  p<0.01 

 Indv 13 24 15 46% 
SET:   
SET×GROUP: 

F(4.79,234.73) = 2.49GG  
F(9.58,234.73) = 6.08GG  

p=0.03 
p<0.01 

F(3.11,37.37) = 6.68GG  p<0.01 F(6,138) = 0.95  p=0.36 F(6,84) = 3.41  p<0.01 
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