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To determine whether ground-disturbance increased Woodlark Lullula arborea abundance, we 

examined responses over three years to four treatments varying in establishment method (shallow- 

or deep-cultivated) and complexity (homogenous or ‘complex-mosaics’ comprising fallow and 

recently-cultivated subplots), plus controls, replicated across the UK’s largest lowland grass-heath. 

Abundance increased through the study, and was higher on plots closer to woodland and across all 

treatments. Within complex-mosaics, Woodlark preferentially used recently-cultivated subplots over 

one- or two-year-old fallows. Regardless of treatment detail, providing suitable foraging habitat 
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within c. 45 m of woodland, through annual ground-disturbance, can increase Woodlark abundance 

within lowland grass-heaths characterised by closed swards. 

 

Keywords: Conservation management, grass-heath, lowland heathland, semi-natural habitat  

 

Management interventions for birds have been extensively tested in farmland and woodland (e.g. 

Siriwardena et al. 2007, Holt et al. 2014), but other lowland semi-natural habitats have received less 

attention. While many studies use observed relationships between species and habitat composition 

to inform management (van den Berg et al. 2001, Border et al. 2017), experiments that test multiple 

treatments across different habitats are needed to support best practice (Buckingham et al. 2004). 

The Woodlark’s Lullula arborea global population is concentrated in Europe (SPEC 2; Burfield 

& Van Bommel 2004) where it is protected under Annex 1 of the EC Birds Directive (EC 1979). 

Although the British population underwent a partial recovery during the late 20th century (Conway et 

al. 2009), declines in some areas have resumed and the species is classified as Threatened (Stanbury 

et al. 2017). Most territories in Britain are associated with lowland heathland or plantation forestry 

(67 % and 32 % respectively, Conway et al. 2009), where the species uses taller vegetation for 

nesting (Mallord et al. 2007a) and bare-open foraging areas (Bowden 1990, Mallord et al. 2007b). 

Declines may be linked to the cessation of dynamic processes (e.g. rabbit grazing, turf/litter removal, 

episodic-cultivation) which historically created early-successional mosaics within lowland heathland. 

Although the importance of bare ground is known, it is not clear whether treatments that open-up 

closed swards promote population recovery, nor whether disturbance treatment or habitat type 

matters.  

We assessed the effects of ground-disturbance on Woodlark as an integral part of an 

extensively replicated, multi-taxa, landscape-scale experiment in the UK’s largest lowland grass-

heath (involving 102 plots, totalling 248 ha, within 3,850 ha of grass-heath). We examined territory 

numbers (hereafter ‘abundance’) and habitat use across four treatments, differing in establishment 
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method (shallow- or deep-cultivated) and complexity (annually treated ‘homogenous plots’; or 

‘complex-mosaic plots’, comprising subplots varying in age and disturbance frequency), while 

controlling for vegetation type, year and landscape features.  We a priori predicted that: (1) 

complex-mosaics would support the greatest increase in abundance, and (2) recently-cultivated 

subplots would be preferred within complex-mosaics. 

 

METHODS 

 

Study site 

The study was carried out from 2015-2017 on the Stanford Military Training Area (STANTA; 0°76'E, 

52°51'N, 3,500 ha), Bridgham Heath (0°83'E, 52°44'N, 150 ha) and Brettenham Heath (0°83'E, 

52°43'N, 200 ha), in Eastern England (Fig. S1; for site details, see Appendix S1).  

 

Experimental design  

Across these sites, 66 replicate 2 ha plots (33 deep-cultivated, 33 shallow-cultivated) and 36 

uncultivated controls were established in early 2015 (for treatment details, see Appendix S2). 

Treatments were repeated in early 2016 and 2017, maintaining 26 as 2 ha homogenous plots (13 

deep-cultivated, 13 shallow-cultivated) treated annually in the same location, and diversifying 40 as 

complex-mosaics (20 deep-cultivated, 20 shallow-cultivated), again cultivating 2 ha each year, but 

half-overlapping and half first-time-cultivation, building up a rotational mosaic of subplots that 

varied in frequency of, and time since, cultivation. Each complex-mosaic comprised three 1 ha 

subplots in 2016 and four 1 ha subplots in 2017, that included fallowed (in 2016 one-year-old; in 

2017 both one- and two-year-old), first-time-cultivated, and annually-cultivated (Fig. 1). All 

homogenous and complex-mosaic plots received 2 ha of ground-disturbance treatment each year, 

representing similar cost; but while homogenous plots remained 2 ha in area, complex-mosaics 
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increased to 3 ha in 2016 and 4 ha by 2017. To account for differences in treatment extent between 

designs and years, monitoring consistently examined a 4 ha area centred on the plot (whether 

homogenous, complex-mosaic or control), but including sufficient untreated grass-heath to 

complete 4 ha. 

Plots were located in grass-heath, often excluding, but close to (95% within 16m), scattered 

trees or scrub (Ulex europaeus). Potential for unexploded ordnance precluded placing ground-

disturbance plots in the central ‘impact area’ of STANTA, restricting treatments to the outer areas of 

this site and Bridgham and Brettenham Heath (Fig. S1).  Control plots were also located in these 

areas (n = 16), and the impact area (n = 20). Potential plot locations were mapped based on: (1) 

underlying soil type (National Soil Resources Institute, Cranfield University), (2) age since last 

cultivation (Sheail 1979), and (3) indicator plant composition before treatment (Table S1). Using this 

information, and within constraints of ordnance, plots were allocated randomly to four vegetation 

strata: (1) calcareous grass-heath of any age (hereafter ‘calcareous grass-heath’), (2) young grass-

heath, (3) intermediate grass-heath, and (4) ancient acid grass-heath (Table S2). Treatments and 

controls (five groups) were distributed similarly with respect to Latitude and Longitude (Kruskal-

Wallis, H = 2.65, P = 0.62; H = 1.23, P = 0.87, respectively; n = 102); but due to aggregated 

distributions of soil types and grass-heath ages, vegetation strata (four groups) was not (Latitude, H 

= 19.26, P < 0.001; Longitude, H = 47.19, P < 0.001; n = 102). 

 

Territory mapping and subplot use 

In each year, three 40-minute visits were made to each 4 ha plot between 14 March and 26 June 

(days between visits: mean 24 ± 11 sd) between dawn and 11:00 during still, dry mornings (Beaufort 

wind force < 4). During each visit, we recorded Woodlark location and behaviour, initially scanning 

from a vehicle positioned > 100 m away, followed by walking through each plot’s edge and centre. 

For complex-mosaics, we also recorded the number of registrations on each subplot; multiple 

subplots used by the same individual were included as separate registrations. Observations were 
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restricted to vehicles on 20 of 936 plot-visits (3 in 2015, 10 in 2016, 7 in 2017; affecting 4 treatment 

replicates, but not controls) to minimise disturbance to Eurasian Stone-curlew Burhinus oedicnemus; 

on these occasions, vehicles were repositioned during visits to maximise coverage. 

Territories were subsequently identified across the three visits, for each year, following 

Conway et al. (2009). We recognised territories with registrations (on, or singing above, the plot) 

from at least two separate visits, but excluded males apparently drawn in to interact briefly with a 

resident bird. 

 

Analysis  

Separate analyses considered abundance per plot-year: (1) across all three years (2015-2017; with all 

treated plots classified as homogeneous in 2015, then homogenous or complex-mosaic thereafter), 

and (2) during the last two years (2016-2017), when complex-mosaics had accrued (though only in 

2017 were all subplots available). Generalised Linear Mixed Models (GLMM), with Poisson error and 

log-link, considered fixed effects of treatment (5 categories: control, cultivation-method x 

homogenous vs complex-mosaic), vegetation strata (4 categories), and year (2 or 3 categories), with 

plot identity as a random factor. Distance from plot edge to the nearest woodland (> 0.5 ha) 

(potential refuge, Schaefer & Vogel 2000) and Thetford Forest (Fig. S1; potential population source, 

Wright et al. 2007), were both entered as covariates.  

For occupied complex-mosaics in 2017 only, we related the maximum number of 

registrations (over three visits) per subplot to sub-treatment (4 categories: first-time-cultivated, 

annually-cultivated, one-year or two-year fallow), in a GLMM with Poisson error, that incorporated 

fixed effects of cultivation-method (2 categories: shallow- vs deep-cultivation) and vegetation strata, 

with plot identity as a random factor. 

For parsimony, initial categories within vegetation strata, treatment, and sub-treatment  

variables were combined if: (i) parameter estimates were initially similar, and (ii) their combination 

did not reduce model performance (Akalike's Information Criterion corrected for small sample size, 
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AICc, either reduced, or increased ≤ 2; Burnham & Anderson 2002). First, vegetation strata 

categories were examined within abundance analyses (2015-2017 and 2016-2017) and subplot 

models that incorporated all other variables. Next, treatment and sub-treatment categories were 

simplified where possible, within 2016-2017 abundance and 2017 subplot models. Treatment 

categories were not combined in 2015-2017 abundance models as complex-mosaics were not 

present every year; thus combined categories would have been confounded with year. Following 

simplification, for each analysis, the set of candidate models comprising all possible variable 

combinations were examined using package ‘lme4’ (Bates et al. 2017). Models were accepted as 

best if ΔAICc (difference in AICc) relative to all other candidate models was > 2. Where more than 

one model lay within 2 AICc, we used multi-model inference to estimate model-averaged 

coefficients, unconditional standard errors, and 95% confidence intervals across those competing 

models < 2 ΔAICc, accounting for their Akaike weights (following Burnham & Andserson 2002), using 

the package ‘MuMIn’ (Barton 2018). Candidate variables were deemed to be supported if 

confidence intervals of the model-averaged parameter did not span zero. Spatial autocorrelation of 

modelled residuals were examined by Moran’s I, separately for each year, using the package ‘Ape’ 

(Paradis et al. 2004). All models were run in R (R Core Team 2015). 

 

RESULTS 

 

In 2015, 2016 and 2017, 10, 25 and 39 territories were associated with plots, respectively; all 

occupied plots were within 45 m of woodland. Initial simplification of vegetation strata in abundance 

models (2015-2017 and 2016-2017) supported combining calcareous with intermediate and young 

grass-heath (retaining ancient acid as distinct), whilst simplification in 2017 subplot models 

combined calcareous with intermediate and ancient acid grass-heath (retaining young grass-heath as 

distinct; Table S3). Subsequent simplification of 2016-2017 abundance models combined all ground-

disturbance treatments: cultivation-method x homogenous/complex-mosaic, simplified to treated 
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vs. control (though models retaining complex-mosaics/homogenous were similar; ∆AICc = 1.9; Table 

S3). Simplification of 2017 subplot models combined first-time- with annually-cultivated (hereafter 

‘recently-cultivated’), and one-year-old with two-year-old fallows (hereafter ‘fallows’; Table S3). 

Multi-model inference was undertaken for both abundance analyses (2015-2017 and 2016-

2017) as there were several candidate models where < 2 ΔAICc (Table S4). For 2015-2017, 

abundance increased with year, and was higher on all treated plots (compared to controls) and plots 

closer to woodland (Fig. 2 & Table S5). Multi-model inference from 2016-2017 was similar (though 

treatment categories were combined in this model), but with no support for a difference between 

the two years (Table S5). Although vegetation strata and distance to Thetford Forest were included 

in averaged models (2015-2017 and 2016-2017), neither effect was supported (Table S5). Predictions 

from the 2016-2017 model showed a higher abundance on treatment plots in 2017, on calcareous, 

intermediate or young grass-heath, 18 m from woodland (median plot-woodland distance), 

compared to controls (treatment, 0.59, 95% CI 0.37–0.81; control, 0.15, 95% CI 0.03–0.27), whilst 

plots double this distance from woodland (36 m) had a lower abundance (treatment, 0.36, 95% CI 

0.18–0.53; control, 0.09, 95% CI 0.01–0.17; Fig. 3). Model averaged residuals from the 2015-2017 

analyses were spatially autocorrelated (although only in 2017, where Moran’s I was small but 

significant; Moran’s I = 0.04, P = 0.009), suggesting some variation attributable to a spatially 

correlated factor not considered in the modelling; nevertheless, we consider inference robust, as 

treatments and controls were distributed randomly in the landscape and balanced across vegetation 

strata (Table S2), and effects of treatment and distance to woodland were consistent with the 2016-

2017 model (where there was no spatial autocorrelation). 

In 2017, Woodlark were recorded on 21/40 complex-mosaic plots. The best supported 

model (Table S4), showed more registrations in recently-cultivated than fallow subplots (Fig. 4 & 

Table. S6), and on calcareous, intermediate and ancient acid grass-heath (cultivation-method was 

not supported). Model residuals were not spatially autocorrelated. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

DISCUSSION 

 

Through an extensively replicated landscape-scale experiment, we have demonstrated that 

Woodlark responded positively to all ground-disturbance treatments, preferred plots closer to 

woodland, and selected recently-cultivated subplots within complex-mosaic treatments. Previous 

research has shown Woodlark require bare-open areas for foraging (Bowden 1990, Sitters et al. 

1996, Mallord et al. 2007b, Arlettaz et al. 2012), but as far as we are aware, this is the first time 

numbers have been influenced experimentally through mechanical interventions.     

Contrary to our a priori prediction, when all treatment combinations were available (2016-

2017), abundance was greater on both ‘shallow and deep-cultivated treatments’ and ‘homogenous 

and complex-mosaic plots’, compared to controls, but these treatments did not differ from each 

other. This might be because: (i) both cultivation-methods created suitable foraging habitat, and (ii) 

recent-cultivation in a matrix of fallows (complex-mosaics) offers little by way of additional resource 

to recent-cultivation in a matrix of grass-heath (homogenous plots). Within complex-mosaics, their 

preference for the barer recently-cultivated subplots (Fig. S2) is consistent with a study from 

Switzerland, which showed c. 50% ground vegetation cover is optimal for foraging Woodlark 

(Arlettaz et al. 2012). 

The increase from 2015-2017 was attributed to cumulative colonisation as individuals 

discovered treated plots (visualised by Fig. S3), consistent with adult fidelity and the known scale of 

natal dispersal (e.g. up to 11 km; Bowden & Green 1992). We are confident this accumulation of 

territories was not due to the increasing size and complexity of the complex-mosaics, as abundance 

was similar between treatments.  

Consistent with evidence from Iberia, where colonisation of previously open habitats by 

woody vegetation benefitted Woodlark (Sirami et al. 2007), our results demonstrated a preference 

for plots close to woodland. Schaefer and Vogel (2000) explored the ecological function of field-

forest ecotones for Woodlark, and showed birds fly towards forest when disturbed, stating ‘on 
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closer examination of anti-predation strategies it became clear that forest edge is not a factor of 

woodlark-territories, but the habitat of that species.’ In Britain, Woodlark are regarded as a species 

of open-heath and clear-fell forestry; however, their association with woodland edge is important.     

 

Conservation recommendations 

Our experiment suggests that ground-disturbance could represent an important conservation 

prescription for Woodlark within other lowland grass-heaths. Since all treatments involved annual 

disturbance, and given their preference for recently-cultivated subplots, annual-cultivation may be 

necessary (although methods which retain bare ground for longer may require less frequent 

intervention), regardless of establishment method (complex-mosaic or homogenous; shallow-

cultivated or deep-cultivated). Interventions should be within c. 45 m of woodland, but this may 

deter other potential beneficiaries that prefer open habitats (e.g. Stone-curlew, Johnston 2009).  

Although Woodlark responded positively to all treatments, the multi-taxa consequences of 

this management are unclear, although autoecological information indicates it will benefit many 

scarce species (Dolman et al. 2012, Pedley et al. 2013). We thus advise caution in using a single 

ground-disturbance prescription until the wider results of our experiment are available. 
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Figure 1. Development of homogenous and complex-mosaic plots over three years (2015-2017). 

Numbers denote the age/disturbance frequency of each plot/subplot; 0: first-time-cultivated; 1: 

one-year-old fallow; 2: two-year-old fallow; x2 and x3: annually-cultivated in each of two and three 

consecutive years, respectively. See Figure S2 for example photographs and % bare ground 

estimates for each complex-mosaic sub-treatment in 2017. 
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Figure 2. Mean (± se) number of Woodlark territories per plot (n = 102) for ground-disturbance 

treatments and controls in each of 2015, 2016 and 2017. 
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Figure 3. Predicted Woodlark Lullula arborea abundance in 2017 (the final year of the experiment) 

across treated (dark grey, n = 66) and control (light grey, n = 36) plots in relation to distance to the 

nearest woodland, for (a) calcareous, intermediate and young grass-heath and (b) ancient acid grass-

heath. Predictions are based on multi-model inference (Table S5). Lines and shading represent 

predicted means and 95% confidence intervals, respectively. Circles show individual data points.  
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Figure 4. Mean number of Woodlark registrations per sub-treatment (filled symbol) across 84 

subplots from 21 occupied complex-mosaic plots in 2017 (11 deep-cultivated, 10 shallow-cultivated). 

Bars represent ± se, unfilled circles show individual data points. 

 


