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Atoms in complex twisted light )

Abstract. The physics of optical vortices, also known as twisted light, is now a
well-established and a growing branch of optical physics with a number of important
applications and significant inter-disciplinary connections. Optical vortex fields, of
widely varying forms and degrees of complexity can be realised in the laboratory. by a
host of different means. The interference between such beams with designatéd orbital
angular momenta and optical spins (the latter is associated with wave pelarisations)
can be structured to conform to various geometrical arrangements{ The focus of this
review is on how such tailored forms of light can exert a controllable influence on atoms
with which they interact.

The main physical effects involve atoms in motion due to application of optical
forces. The now mature area of atom optics has had notable 'suceesses both of
fundamental nature and in applications such as atom lasers,/atom guides and Bose-
Einstein condensates. The concepts in atom optics encompass not only atomic beams
interacting with light, but atomic motion in general as influenced by optical and other
fields. Our primary concern in this review is on atoms 'in structured light where, in
particular, the twisted nature of the light is made highly complex with additional
features due to wave polarisation. These features bring to thefore a variety of physical
phenomena not realisable in the context of atomi¢ motion injmore conventional forms
of laser light. Atoms near resonance with suchsstructured light fields become subject
to electromagnetic fields with complex polarisation and phase distributions, as well
as intricately structured intensity gradients and radiative forces. From the combined
effect of optical spin and orbital angularfmomenta, atoms may also experience forces
and torques involving an interplay between(the intérnal and centre of mass degrees
of freedom. Such interactions lead to'new forms of processes including scattering,
trapping and rotation and, as a result, theysexhibit characteristic new features at
the micro-scale and below. A ‘mumber of distinctive properties involving angular
momentum exchange between the light and the atoms are highlighted, and prospective
applications are discussed. Comparison is made between the theoretical predictions in
this area and the corresponding experiments that have been reported to date.

PACS numbers: 4250.-p, 42.50.Tx, 42.25.JA

A S
Keywords: Twisted Light, Atoms, Optical Angular Momentum; Structured Light,
Optical vortex, Singular ‘Optics, Optical polarisation, Laser Trapping, Laser Cooling,
Optical Manipulation, Selection Rules, Quantum Electrodynamics.

1. Introduction

The term ‘tavisted light’ refers to various states of light which are endowed with the
property of orbital angularmomentum (OAM). These encompass a wide range, including
twisted dight in freely propagating beams such as Laguerre-Gaussian and Bessel beams
[1] andlether forms of twisted light inside optical fibres [2] and on fibres supporting
twisted light3], as well as wave guide arrays [4]. Twisted light modes have also
featured in monlinear waveguides [5] and as so-called surface optical vortices (SOVs)
[6]. “The.reference to the twisted nature stems from the observation that the OAM
property of the light makes the normal to its wave-fronts twist in a helical fashion with
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a degree of twisting depending on the OAM content. Freely propagating twisted beams
are proto-typical twisted light and were the first to be explored; they are also referred
to as optical vortex beams. It has been realised [7] that associated with the wave<front
of such a state of light is a topological structure due to a singularity in phase. In
cylindrical polar coordinates (p, ¢, z) the phase of a pure vortex state takessthe form
exp (il¢) where [ is the topological charge, also called the ‘winding number’ and, the
‘azimuthal quantum number’. The value of |I| also quantifies, in terms of the reduced
Planck constant A the orbital angular momentum conveyed per photons Nye and Berry
were the first to describe the topological features of the wave-front as asserewndislocation
in a manner similar to that encountered in crystal defects [8].

This review is concerned with the principles, recent developments,and.applications
in the context where atoms interact with twisted light. Here ave begin with the
background theory of the interaction of atoms with electremagnetic fields in general,
emphasising the division of the atom dynamics into gross motion associated with
the centre of mass (which is dominated by the nucléar mass) and the internal
motion involving the bound electrons, and the distinction between optical spin and
optical orbital angular momentum densities. This is followed by brief descriptions
of conventional laser cooling and trapping of atems, including Doppler and Sisyphus
mechanisms. The essential formalism for twisted light field® is given next with emphasis
on Laguerre-Gaussian light as the mostawidely discussed form of twisted light. The
inclusion of optical wave polarisation (photen spin) as one of the main sources of
complexity of the twisted light is discussed with special emphasis on polarisation
gradients arising in co- and counter-"propagating twisted light beams with circular
polarisations. This background sets theéwscene for the main aim of this review, namely
the description arising when ¢omplex twisted light interacts with atoms.

One of the first issues to be addressed in the context of twisted light interaction
with atoms is the possibility of exchange of OAM. Could the well known selection rules
in the case of emission and abserption/of ordinary (Gaussian) polarised light with atoms
be modified with the invelvement.of the new ingredient in the form of OAM carried by
twisted light? The theory ofthis process is based on the analysis of the transition matrix
element for dipolar andiquadrupolar active transitions and on the division between the
centre of mass and the, internal (electronic-type) motion of the atom. We highlight
experiments carried out to.date on this issue. The interaction also gives rise to modified
optical forces that act on the centre of mass of the atom with additional characteristic
features associatéd withnthe orbital angular momentum content of the twisted light,
including azimuthal/Doppler shifts along with azimuthal forces and torques about the
beam propagation direction and an azimuthal Sisyphus effect. Multiple beams are shown
to lead to. ‘twisted molasses’ and other novel forms of optical trapping, including the
formation of “Ferris wheels” and ‘helical optical tubes” which arise when co-propagating
beams with opposite and identical winding numbers are formed.

Totally internally reflected twisted light can generate surface optical vortices as
evanescent waves carrying orbital angular momentum and in the presence of a metallic

Page 6 of 132
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film deposited on the surface, the evanescent modes acquire a plasmonic character. Such
evanescent fields interact with atoms in the vicinity of the surface and the atoms may
become trapped in the surface region.

Laguerre-Gaussian twisted light beams have anomalous additional phase effeets due
to being focussed beams with a well-defined waist plane at focus. The additional phase
terms in the form of a Gouy phase and a curvature phase term are normally ignored
but become significant for atoms localised the vicinity of the focus plane, particularly
for Laguerre-Gaussian light with large values of winding number [ and/er radial number
p. Under these circumstances the atoms experience enhanced anomalous phase effects
in the form of modified gradient forces which can diminish the axial force’component
acting on the atom, or even reverse its direction.

Besides LG and Bessel beams where the dominant phase/invol¥es integer winding
number [, light beams with fractional orbital angular momentum have been considered.
In particular, Gotte et al [9] reported the generation of light carrying fractional OAM
by limiting the number of Gouy phases in a superposition of LG light beams.

A well defined beam of atoms, like an optical beam, igessentially a de Broglie wave
with a wavelength that depends on the atomic axial velocity. Diffraction through light
masks, in techniques somewhat akin to, but ratherdifferent from, those used for the
generation of twisted light, are expected to lead to/the geheration of twisted beams of
atoms, so-called ‘atom vortex beams’. Finally, we describe how the gross motion of
atoms in twisted light gives rise to artificial gauge fields for atoms in donut modes and
in Ferris wheel patterns.

In the conclusions section we brieflynidentify a number of other treatments of atoms
in twisted light that are beyond our scope.in this review, including the trapping of ions in
donut beams, the effects on cyelotron motiomof ions in twisted light, spin-orbit coupling
effects in this context and non-linear effects.

2. Coupling light to atems,

The essential background physics/describing the interaction of twisted light with atoms
stems from conventional non-relativistic quantum electrodynamics [10] and considerable
work has been carried,outhen this (see references ([11] to [18]). An atom subject to
light typically exhibits two kinds of dynamics, namely the dynamics involving the gross
motion of the atomras awhole, in terms of its centre of mass, and processes involving
the internal/dynamics in, the form of transitions between quantum (electronic) states
due to the emission /and absorption of light quanta. These features play central roles
in the ¢ontext of twisted light interacting with atoms and it is helpful to tailor the
formalism in a manner that highlights the roles of the internal and gross motions. It is
common practice to explore interactions of atoms and molecules in terms of multipole
moments, both electric and magnetic, coupled to the electromagnetic fields [13, 16].
The treatment becomes particularly simple, but perfectly adequate and transparent,
when the atom comprises an outer electron and a nucleus surrounded by a closed-shell
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electron core. The corresponding particles have nett charges e; = —le| (electron) and
es = +|e| (nucleus and core) and masses m; = m, (electronic mass), ms = m, (nucleus
and core). Any inner transitions of the core need not concern us. We must bearin
mind that msy > myq, but it is important not to impose this condition from thefoutset,
in order to fully take account of the centre of mass motion and its coupling te.both the
relative motions of the outer electron and core and the light fields. The two-particle
atom coupled to the electromagnetic field has the following non-relativistie, classical
Lagrangian in the transverse (radiation) gauge [16]

1 1 ele
L _ = .9 + 22 162 /Ed 1
M1 T 51 Ireola — @ + r, (1)
where
1 e 12 2 -
L=T A+ e AL —(;2(V><AL)}, 2)

with q, and ., a = 1,2, the particle position variables and €erresponding velocity
vectors. In the radiation gauge (V- A+ = 0) the Coulomb, effects reside in the static
inter-particle interaction and we only have At as thé canonical field variable. Besides
the Coulomb interaction, the coupling between the field and the particles occurs via the
total current density

J(r) = e1qd(r — a1) + e2420(r —@2) (3)
The dynamical variables in this canonical proceduré are q;, q» and A*(r), and the
corresponding canonical momenta are p;, P2 and ITH(r). These canonical momenta
emerge from the Lagrangian as follows

oL
Po = 8(-:1& - mada - eaAJ_(qoc>; o = 17 2a (4)
oL ol
I o .l
II- = aAJ_ = €0A = E()E s (5)
and we obtain the total Hamiltoniandn the form
g Praat@)’  preAt@] e
27’)’1,1 2m2 47T€0|q1 — q2|

%eo / (Eﬂ + c2B2> dr. (6)

The transition,to the corresponding quantum theory follows once we identify the
canonical mementum and coordinate variables as operators obeying commutation rules

[Pai, g5 = —1hdasdiy,  [Ai (r,0), I} (v, 1)] = ihd; (r — 1), (7)

where dj;(r) is the transverse delta function [10]. The above framework constitutes the
non-relativistic/QED theory for the two-particle atom interacting with light. However,
so far the theory deals with two individual charged particles interacting with each other
and with electromagnetic fields. We need to devise means of identifying features of the
dynamies which recognise its division into types belonging to internal and gross motions.
Theimost useful form occurs when we seek to express the Hamiltonian in Eq.(6) in

Page 8 of 132
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a multipolar form. The complete theory can be generalised to a many-body system
involving atoms and molecules with well defined centres. Such a theory is now known
as the Power-Zienau-Woolley (PZW) theory, with numerous groups contributing 4o its
development and analysis (see [11] to [29]). The key point is the observation that itnis
possible to take account of all multipoles, both electric and magnetic in closed forms and
formally include inter- as well as intra-centre interactions [12]. As we emphasise above,
the version of the theory in which we deal with a one-centre atom is beth instructive
and relatively simple. Our ultimate aim in the context of this modekis to arrive at
a Hamiltonian which is valid to all multipolar orders, but ultimatelyswe shall need to
highlight applications involving the leading electric dipole and quadrupole interactions,
as these are the multipolar orders currently accessible to experimental work, including
recent experiments on OAM exchange between atoms and twisted Jlight.

We begin by introducing the total electric polarisationyvector field P(r) for the
two-particle system in the form

P(r)= ) ea(da—R) /0 dN[r — R =\(ga =R, (8)

a=1,2
in which X is an integration parameter and R is the centre of mass position vector
miqq + maqa
—
The above expression of the electric polarisation field of the two-particle system is a

R = M:m1+m2. y (9)

closed expression representing contributions from all electric multipoles excluding any
net monopole (which can be included separately, e.g. in the case of an atomic ion). The
multipoles manifest themselves on expanding the delta function appearing in P(r) in
powers of (q, — R), @ = 1,2. These twolectors are related to the internal coordinate
of the two-particle system denoted by q

q=4q — 92, (10)
and it is easy to show thategres R = maq/M and qs — R = —miq/M. Making use
of these relations, the polarisation vector field can be written entirely in terms of the
internal coordinates,q and the field position variable r. By expanding the delta functions
in (8) in powers of g followed by integration over A yields the ith Cartesian component
of the expanded polarisationfield vector P. Up to the quadrupole moment we have
(using the Einstein convention that a repeated index is summed over a set of mutually
orthogonal coordinates)

Phlr) £ {di » %Qijvj} 5(r—R), (11)

where d = |e|qds the electric dipole moment and Q;; = |e|gig; is a (ij)™ component of
the electrie_quadrupole moment tensor. For electric dipole-active transitions only the
first term is applicable, while the second (quadrupole) term dominates in case of dipole
forbidden transitions.

In practice one seldom goes beyond this truncated form of the electric polarisation
as given in Eq.(11) and, unless otherwise stated it is this form that we shall need when
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it comes to applications involving the coupling of the twisted light to atomic systems.
Ultimately it will prove convenient to use the notation Pr(r) to refer to the truncated
polarisation vector field which we will subsequently define as follows

Pr(r) =~ Di(r — R), (12)
where D is a quadrupole-corrected dipole moment operator with compenents given by

1

2.1. Canonical transformation

The coupling of the light to all the atomic multipoles is achievablewiara PZW canonical
transformation or, equivalently, a gauge transformation involving a characteristic
generating function S in the form [13, 16]

A= eiS _ 6% f’P(r)-AJ-(r)dr' (14)

This unitary transformation gives rise to a new Hamiltonian Hyg,, which has the same
form as the old Hamiltonian H, and to mark the distinetien we now represent all
transformed canonical variables with a prime. Weshave

2 2
i+ er At (qy)] s+ €2AL(QQﬂ €162
Hnew = + + +
2my 2m, dmeo|qr — ol

1 (" B
= + — | dr. 15
2 / < €0 Ho ) (15)

After transformation the new momentayp/, and II'* are given by

p/a = 6_ispaeis =Po 1 [pon S] ) (16)
T = e STIe® = T [T, 5] (17)

The evaluations of Egs.(16) and¥17)both involve a commutator series, but it is easy to
verify that both series terminate at the first commutator in each case due to the form

of S in Eq.(14). Weifind
p/a ;- pa + hVaSa (18)
IV (r) = ITH(x) - PH(x), (19)

where V in Eqd(18) denotes differentiation with respect to the canonical coordinate
qo. The veetor field P~ appearing in Eq.(19) stands for the transverse vector field
part of fthe electric polarisation vector field given in Eq.(8), having made use of the
commutation relations in Eq.(7).

The formal multipolar Hamiltonian follows from Eq.(15) by direct use of Eqs.(18)
and, (19). The next steps involve the division of the motion into the internal motion
(whichuisseharacterised by the appearance of the relative coordinate q), and the gross
metion involving the centre of mass coordinate R.

Page 10 of 132
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2.2. Decoupling of motions

Although we can continue the treatment without further recall of a multipolar expansion,
it is instructive to focus again on the approximation in which the electric polarisation
vector field takes its truncated form in Eq.(11) with leading contributions including only
the electric dipole and the electric quadrupole terms. We obtain for VS after some

algebra
1
hV®S = —e, At (qa) + §D x B(R). (20)
Hence we can write for the transformed momenta, Eqs.(18) and (19)
1
!’ o 1 -
P’y = Pa— €aA(qn) + 2D x B(R), iy (21)
I (r) = I (r) — PH(r). (22)

Note that the last term in Eq.(21) does not depend onfe. Finally, substituting from
Egs.(21) and (22) in Eq.(15) we obtain the transformed, Hamiltonian in the following
form

[Po + 3D x B(R)]” 2

Hrew = 0621,2 2Me " dregq 3
Ul - Phm” | Be?l
2/{ i } 23)

To arrive at a theory with explicit division of the motion into internal and gross motions
we have to define the centre of mass momentum P conjugate to the centre of mass
position vector R, as defined.dn Eq(9)

P = P1 + P2 (24)

and the internal momentum p eonjugate to the internal variable q by

moP1 711 P2

==L &= =q; — q>. 25
p M T A=4d1 — 92 (25)

We can then express p; and parin terms of P and p as follows
Do = %P BE)p; a=1,2. (26)

Equation (26),enables the explicit change from the particle canonical variables
q. and p, A0 internal variables (q,p) and gross motion variables (R,P). That
the new pairs are independent canonical variables can easily be checked. We have
[Pi, R;| = =ihdijwlpi, q;] = —ihd;; and [P;, q;] = 0 = [p;, R;] which follow by direct use
of the gommutator [pai,qs;] = —ihdapdi;. The above commutator relationships ensure
thatsthe new variables conform with the requirements for independent sets representing
two indepéndent motions in the absence of coupling. Substituting from Eq.(26) in
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Eq.(23) we get

p s (L G150 BRI
e 2mg, 4dmenq

a=1,2

dr. (27)

L [[H%r) - P B

€0 Mo

2

The Hamiltonian (27) simplifies considerably on expanding the square and we find
P2 2 02
Hnew = — + p_ - +
2M 2u  4megq
1 t(r)> B(r
= / < (r) + ( >> dr + ~
2 €0 Ho

lD.HL(R) b= (P.D x B(R) + D X B(R)iP) +

€ 2M
DxBR)® 1 / L2
—_ 4+ — d -‘B(R 28
8M + 260 73 (r) r + M ( )7 ( )
where g is the reduced mass g = (mymsg)/M and eoupling terms are given in the

truncated approximation. The ultimate term involves.the magnetic moment M
coupling to the magnetic field also in the truneateéd approximation. This term arises
from the product between p and D x B.{Imthe dipoleapproximation where D = d, the
leading contribution to the magnetic dipole.mement is
1
2me,

Equation (28) is the nonsrelativistic ' Hamiltonian for the electrically neutral two-

M = d x p. (29)

particle atom in interaction withlight. It is seen that the internal electronic-type motion
is essentially separated from the gross.motion, but these two subsystems of the atom
are coupled by mutual interactions between charges and with the light fields. Amongst
the various terms there are thre\e that essentially represent unperturbed components of
the system; these are the (zero-order) Hamiltonians representing the gross (centre of
mass) motion, the internal (electronic-type) motion and the light fields - which appear
as the first three terms of dEq«(28). Other terms represent couplings between the three
subsystems; the fourth term represents the coupling of the atomic dipole as well as the
quadrupole momerts to the transverse part of the displacement field IT+ (evaluated at
the centre of'mass coordinate R); the fifth constitutes the leading interaction involving
the centre of mass with the truncated multipole moment and the magnetic field; the sixth
is the diamagnetiefield-type energy and the seventh term is an integral of the square of
the polarisation field. The latter is a self energy contributing to the Lamb shift and may
be absorbediin‘any renormalised energies pertaining to the internal motion. Finally, the
last term is the leading interaction between the magnetic dipole of the atom and the
magnetic field of the light, evaluated at the centre of mass R.
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2.3. Mechanical momentum and pressure force

A prominent feature of the Hamiltonian in Eq.(28), when taken in the truncated
multipole approximation is the appearance of the term D x B. In the electric_dipole
approximation, this can be written as eAr where A = q x B. Clearly Ar plays the
role of an electrodynamic vector potential. The significance of this can, readily be seen
by considering the particle canonical momenta. From Eq.(21) we can writé

1
(Do + €A (da)) = Pa + ;D x B(R). (30)
The left hand side is equal to m,q., so we can write
1
Mol = Pa + =D X B(R). (31)
2 ~

Summation over a = 1,2 in all terms we get

S tade = 3 pa+D x B(R). (32)
a=1,2 a=1,2
Using Eq.(9), the left hand side of Eq.(32) is exactly M R while the first term on the
right hand side is just P. We therefore have

MR =P +D x B(R). » (33)

The relationship in (33) is between the,canonical momentum P and the mechanical
momentum MR of the centre of mass in thestruncated multipole approximation. The
result also follows as a Heisenberg operator equation based on the Hamiltonian in
Eq.(28). We have,

i (P +D.x B(R))
7 M '
The radiation pressure force acting,on the centre of mass in the dipole approximation

R =

[Hnewa R] = (34>

follows from Eq.(33) by total time differentiation

d : ap d
F=—(MR)=—+—(D x B).
& MB 5 F P B (35)
The force also follows from Eq.(34) as a Heisenberg operator equation in the form
. % d
MR.= % [Higd(P + D x B)] = —V (D -E(R)) + —(D x B), (36)

where V refers to differentiation with respect to the components of R. We have explicitly
evaluated thedfirst commiutator %[Hnew, P] = V(D E) but left the second commutator
as a time derivagive. (Thelast term is referred to as the Rontgen force, generalised here
to includesthe quadrupole contribution. The so-called Rontgen effect arises when an
electrically neutral system possessing a dipole moment is in motion in a magnetic field
[19]. Here,we have shown that the corresponding interaction arises from a treatment
ingorporating the motion of the atomic centre of mass as a dynamical variable. Other
effects that have been predicted to arise from the motion of neutral quantum systems
include the rotational motion of a Bose-Einstein condensate with a form of distribution
effectively associated with either a magnetic monopole distribution or an electric charge
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distribution [20]. We have therefore established that both dynamical attributes, namely
the momentum and the corresponding pressure force, receive contributions direetly
attributable to the Rontgen interaction. The complete Hamiltonian in the truncated
pole approximation is essential for studying processes involving the coupling’ of the
atomic system to electromagnetic fields.

The multipolar theory of atom-field interactions, beginning with the seminal
work by Power and Zienau [21] was subsequently developed and applied by several
contributors. The reader is referred to the following sources for further snformation (see
references [22] to [27]).

2.4. Quantum amplitudes and motion
~

Before proceeding further, it is helpful to recognise two quite distinet forms of mechanical
response that arise in describing the evolution of a given atom, + radiation state. As
fully discussed elsewhere [30, 31], gradient forces are generally produced in response to
interactions in which the initial and final states are identical, resulting in mechanical
motion through response to a potential energy surface sculpted by the structure of a
light-beam. Here, forces arise essentially as a secondaryresult from a position-dependent
shift in the electronic energy, AE, which in the quantum fgamework is identifiable with
the real part of a corresponding quantum amplitude., With no exchange of energy
taking place between the radiation and theiatom, the'response has to be mediated by
an isotropic property - one that has the full three-dimensional symmetry of the atom.
Most commonly this is polarizability, denoted here by &, and when this engages with
a radiation field with a locally variable strength there will be a resulting optical force
given by;

MR = %&VEZ(R). (37)

This expression of this form is eommonly used to determine an optical trapping force.
In contrast are non—conser%tive interactions, in which radiation directly produces
mechanical effect through quantum transitions that impart linear or angular momentum.
Since the atomic and the radiation states both change, these interactions engage
transition moments.that are intrinsically non-isotropic. A further significant difference
is that since the initial and final states differ, any observable will have a direct relation
to the process rate - the latter normally associated with the modulus square of a
quantum amplitude. In either case, in connection with imparted linear momentum the
changes in matter state are generally associated with translational motion amenable to
representation byrelassical physics; with angular momentum, however, internal changes
in electronic state are necessarily quantum events and must be dealt with accordingly.

2.5. Optical momentum density and OAM density

A helieal structure can be associated with two important and largely distinct aspects
of light; most familiarly the sweep of the field vectors in circular polarization, and for
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twisted light the phase structure. Circular polarizations represent radiation states that
are eigenfunctions of the operator for optical spin angular momentum, whose density
operator is given by;

S(r) = ¢ {E*(r) x At(r)}. (38)

As such, each circularly polarized photon conveys a well-defined quantum spin, precisely
oh , where 0 = £1 according to left/right helicity[32]. Photons of twisted,or vortex
forms of structured light in principle represent quantum eigenstates of an'‘orbital'angular
momentum density operator, expressible as follows;

L(r) = {E (r x V) 4}. (39)

Both of the above results, Eq. (38) and (39), represent gauge-dependent quantities,
cast in terms of the vector potential A(r). However, the,séparation of angular
momentum into spin and orbital parts is a simplification that appliesonly in the paraxial
approximation. More generally the separation is not absolute; there are transverse
components and spin-orbit coupling in any significantly, structured beam [33, 34] and
there is indeed recent experimental proof of their [interconversion in a cylindrically
symmetric optical fibre [35]. For an objective perspeetive it is therefore expedient to
introduce more definitive, generalized measures/f chirality for the radiation field. One
suitable measure is the optical chirality density; defined as;

x(r) = —60 {E*(r)V x EX(x)%°B(r)-V x B(r)}, (40)

whose expectation value relative to the energy density in cognate units is bounded within
the interval [-1, 1], the two limits signifying right- and left-handed circular polarizations
[36]. We can also define a corresponding ¢hirality flux;

p(r) = %eo {E* @)%V x B(r)) - B*(r) x (V x E(r))}, (41)
to satisfy the continuity equation
Ix(r)
ot + Vi (r) = 0. (42)

The volume integrals of both ¥(r) and ¢(r) are also directly related to the scalar field
helicity [37]

e / (A®) - B(r)} &r. (43)

For plane waves{ x(x) and ¢(r) effectively quantify a net spin angular momentum in
terms of a.difference’in the number of left- and right-handed photons, for example [38]

/ X(r)d’r = he ) K {N<L>(k) + N@® (k)} (44)

in ‘which the right-hand side contains a difference between the corresponding photon
number._operators. When vortex modes are entertained, the key optomechanical
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parameter is represented by the orbital angular momentum operator. In the paraxial
approximation, for a mode with topological charge [ this operator is expressible as;

Ry Uk {N<L><k) - N<R>(k)} , (45)

so that the spin and orbital parts of the total angular momentum effectively depend
on the difference and sum, respectively, of the number operators for modes,of opposite
polarization helicity. From a different perspective this result is also consistent with the
fact that fields whose mode expansions convey a phase factor exp(il¢), are eigenfunctions
of the angular momentum operator L [7]. The wide variety of othér beams eonveying
orbital angular momentum includes several other kinds of modified-Gaussian vortex
beams [39], described as having a perfect optical vortex structure [41} and‘propagation-
invariant Bessel beams [40]. For mode structures cast in a form that necessarily involves
summation over an additional parameter (as is the case with perfegtwortex beams, for

example) the associated quanta are correspondingly assogiated withystate superposition
[41].

3. Laser cooling and trapping

3.1. Overview

The term ‘laser cooling’ refers to various methods in'which an interaction of laser light is
made to systematically cool atomic, molecular and condensed matter systems to lower
temperatures. For general reviews/(see.zeferences [42] to [46]). The primary processes
involve the exchange of laser photons leading to ' momentum and hence velocity changes.
Doppler cooling is the simplest of a number of techniques leading to the systematic
reduction of the temperature of atomic or molecular ensembles while Raman anti-Stokes
techniques are used for cooling condensed matter systems. Besides Doppler cooling, the
list of laser cooling schemes-imeludes, among others: Sisyphus cooling [47]; Raman
sideband cooling [48]; Velocity=Selective Coherent Population Trapping (VSCPT); [49],
[50] and Electromagnetically Induced Transparency (EIT) cooling [51]. In addition to
laser cooling the laser light canbe made to trap atoms in the minima of optical potential
wells set up by thedaser lights

The atoms to be cooled are normally in the form of a dilute atomic gas and the
Doppler mechanismyis employed for cooling down to a microkelvin limit; for 8Rb the
limit is commonly around 150 K. The physical principles underlying Doppler cooling
can be summarised /succinctly as follows. When the frequency of the laser light is
below afstrong atomic transition frequency (a scenario referred to as red-detuning),
then for an atom travelling in the direction of the laser source the light is blue-shifted
in accordanée’with the Doppler effect. The atom absorbs a photon and so is slowed
down on recoil. Consider now the effects of two counter-propagating laser beams of the
same wavelength on a representative atom in a dilute atomic gas. Each atom absorbs
more photons belonging to the laser beam opposite to its direction of motion in each

Page 16 of 132



Page 17 of 132

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JOPT-105253.R1

Atoms in complex twisted light 17

event, thereby losing a linear momentum equal to the photon momentum. This atom
is now in the excited state and so discharges its excitation by spontaneous emission,in
a random direction. The total effect of this basic cycle of photon absorption followed
by emission is a reduction of the momentum of the atom, and so the atom loses speed.
Repeated cycles then lead to a reduction of the centre of mass kinetic energy, which
signifies cooling of the atom since (when compared with the case of molecules)ithey
have no other centre of mass degrees of freedom.

Currently the most prominent use of laser cooling is in preparing samples of atomic
ensembles with temperatures just above absolute zero, widely used forrexperiments that
lead to a variety of effects, most notably Bose-Einstein condensation. Laser cooling
has primarily been applied to atoms, but recently there has beenn progress leading to
the cooling of more complex systems such as molecules [52, 53] and fhacro-scale objects
[54, 55]. Depending on the size of the molecule, the problemyof dissipating the energy
from internal vibrational and rotational levels can present a eonSiderable additional
challenge [56].

When laser light is employed in the context/of the laser cooling techniques
mentioned above, it is commonly regarded as ordinary laser light in the sense that
it is not endowed with orbital angular momentum, unless this feature is specifically
introduced. The aim in the following is to highlight what has been achieved to date
as regards the modifications to processesdnvolving cooling and trapping of atoms when
the laser light is twisted.

3.2. The Sisyphus effect

Soon after Doppler cooling appeared to bewell-explained theoretically the experimental
evidence showed that the existent, theory was inadequate [57], as the measured kinetic
temperatures achieved were significantly lower than those predicted by the Doppler
mechanism. The failure of the Doppler mechanism to account solely for the lower
temperatures achieved meant that a new theory was needed. This paved the way for the
development of so-called subsDoppler cooling mechanisms, most notably the mechanism
based on the Sisyphusfeffect [58]5[59]. As we discuss later, the Sisyphus effect is modified
when the laser light.is endewed with orbital angular momentum, so it is helpful to first
review the salient features of this effect.

There are ‘two._main differences between the Sisyphus cooling mechanism and
Doppler cooling. - Tn Sisyphus cooling the main process involves the interaction of
atoms with ‘a light field eharacterised by spatial polarisation gradients. The specific
polarisation gradients which have been utilised in the Sisyphus effect can be created by
the superposition of two (for one-dimensional cooling) counter-propagating plane wave
lasersbeams; with either mutually orthogonal linear polarisations [58], or with opposite
cireular polarisations [59]. The former is known in the literature as the lin L lin case,
while the latter is represented as the o, —o_.

Consider now the first case where the two fields have mutually orthogonal
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polarisations. The electric field vectors of two identical, but counter-propagating laser
beams, of frequency w and axial wavevector |k| = k travelling in opposite directions

along the z-axis, are given by Ei(z) = éLFye™™* where é1 are the corresponding
polarisation vectors and FEj is the amplitude or its quantum operator counterpart.

We assume that the two beams have mutually orthogonal polarisations, é, = é, and

é_ = é,. The total the total electric field is the vector sum:
e, + € é,— €
Et(2) = V2E {cos kz b Y 4+ isin (kz)—= y}. 46

As depicted in Fig.1, the interference of two counter-propagating laser beams with
mutually orthogonal linear polarisations results in a total polarisation of left- and right-
handed circularity alternately ot and o~ at planes separated/by an axial distance of
A/4. Between planes the polarisation is linear with polarisation vector pointing at
angles 45°. This spatial variation of the wave polarisation aleng thé common axis of
the interfering beams constitutes a polarisation gradientswhich -“as,will be explained -
can lead to a spatially-dependent population differential.

To explain how Sisyphus cooling works, we considerran atom that possesses a
Jy = 1/2 ground state which has only two Zeeman sub-levels g41/o. Most laser cooling
experiments use optical transitions J, — J. = Jy + 1, the.energy gap between the two
states defined as hwy. We, therefore, consider a J; 4 J. = 3/2 transition. As in Doppler
cooling, we assume red-detuning Ay < Q where Ag=(w — wy) [43]. The polarisation
gradients created by the interfering counter-propagating beams affect the light shifts and
the populations of the atomic levels svhich now become spatially dependent. This can be
explained as follows. When the atom interaetsswith a non-resonant light field, then in the
weak-field limit the ground state levels aequire light shifts U... Similarly the populations
of the Zeeman sub-levels (for amjatom at rest) are now given by II{,(z) = sin?(kz) and
I, () = cos®(kz), so that thiése light shifts are spatially dependent and different for
the Zeeman sub-levels g4/, as\illustrated in Fig. 1. The optical potentials associated
with the two Zeeman sub-level Shiftsfare given by
2

Up = 3hA6 12 cos(2k2)], (47)
where Aj and the saturation parameter sy are given by
Qy/2
A/O R S()AO/Q; So = m (48)

Note that UL ape the optical potentials of the ground state sub-levels } g1 /2>. It is
easy to see that the minima of U, correspond to the maxima of U_ and vice versa and
the maxima and minima correspond to positions where the polarisation is ¢4 (purely
circular).

Early theoretical works which sought to explain the Doppler cooling argued that
the damping of the atomic gross motion arises from the fact that the atomic internal
state ‘does not follow adiabatically the variations of the laser field resulting from
atomic motion [60]. Such an effect may be described by a non-adiabaticity parameter
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32

33 e = vtp/\ = v/(Al'), defined as the ratio between the distance vrp covered by the

gg atom with a velocity v during its internal ¥elaxation time 7p (7p = ['"!), and the laser

36 wavelength. For multi-level atoms we canisimilarly define a non-adiabaticity parameter

37 ¢ =vrp/A = v/(AI"). At low intensities, since I << I' it follows that € > e. Thus

gg non-adiabatic effects can appear at much lower velocities (kv ~ I") than those required

40 by Doppler cooling, and thus ean ensure the presence of damping forces even at very

41 low velocities. >

jé Dalibard et al [58] explained how the damping of the atomic motion is generated.

44 The key point is thatpas a condition, the atom must have internal states with energy sub-

45 levels with a strong position-dependence, and which therefore experience large changes

j? as the atom moves. The ereation of polarisation gradients can ensure this condition. Let

48 us assume that the.atom moves along the z-axis, and it has a speed such that during the

49 optical pumping time 75 = I"~! it travels a distance of the order of the laser wavelength
. e atom starts from the bottom of a valley in a given Zeeman sub-level, then it has

g? . If the atom starts fromthe bottom of a valley in a given Z b-level, then it h

52 sufficienttime toxeach the top of the hill. At this position it has a large probability to be

53 optically pumped to the other sub-level and be shifted to the bottom of a valley, and so

g;" on: seerFig:2. The atom is running uphill more frequently than downhill. This is called

56 a low intemsity Sisyphus effect, which arises from the correlations between the spatial

57 modulations of light shifts and optical pumping rates. It is important to emphasise the

gg term ’low intensity’ as the Sisyphus effect we are discussing is valid in the low intensity



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JOPT-105253.R1

Atoms in complex twisted light 20

Figure 2. When the optical pumping time is suﬂi?:iently long, an atom, initially in
the g11/o Zeeman sub-level, has, sufficient time/to remain in the position-dependent
sub-level which changes in energy (vertical seale) from its value at the bottom of the
valley to its value at the top of the hill'as the atom moves (from left to right in the
figure). At this position the atom has a large probability of being optically pumped
into the higher state from whichrit,then gets de-excited to the other sub-level g_; /o
at the bottom of the corresponding valley. This basic set of steps is repeated in each
cycle. Reproducediwith permissiomifrom Ref. [58]

regime. This is in contrast tolanother Sisyphus effect which is valid at high intensities,
which we shall not discussanyfurther here [61].

In the process of Sisyphusicooling an atomic sample eventually reaches an
equilibrium temperature. “In each optical pumping cycle we have the emission of a
fluorescence photon.4 Each such photon has an energy higher than the energy of the
absorbed photon, by amameunt in the order of the light shift |UL|. The excess energy
is transferred frem the atom to the light field leading to a decrease of the atomic energy
by the same amounts, Repeated pumping cycles, thus, lead to a stepwise decrease of
the atomic energy umtil its total energy is so low that the atom becomes trapped in
the opticalspotential wells associated with the spatially modulated light shifts. The
equilibrium temperature of sub-Doppler cooling is therefore expected to be given by:

2
kpTsis =~ Uy = %, (49)
which. for large detuning Ay > I' takes the form,
kpTsis =~ Ux = Y : (50)
4|A|
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The detailed quantitative treatment of these predictions has been given in [58]. At low
intensity, the magnitude of the light shift |UL| of the ground state is much smallex than
the natural width AI' of the excited state. This explains why it is possible to attain
temperatures about two orders of magnitude lower than the Doppler limit, whi¢h itself
scales as Al'. The Sisyphus cooling leads to a damping force which for large detuning is
in the form,

Ag
T
The friction coefficient ar which applies in the case of low intensity Sisyphusicooling, as

Fs;s = —apv, ap = hk? (51)

given in Eq.(51), is much larger than the friction coefficient of Doppler cooling: the latter
is of the order of hk?sy, where the saturation parameter s, must'be smaller than one.
In typical experiments both cooling mechanisms come into play. Alth?ugh the friction
force of the low intensity Sisyphus cooling acts within a mu¢h smaller/velocity interval
than the Doppler cooling, both mechanisms are useful. The Doppler cooling that acts
over a relatively large velocity interval drags the atoms towards the velocity region where
the Sisyphus cooling operates. Thus use of the Dopplér meehanism as a first step serves
to increase dramatically the number of atoms affected by the sub-Doppler mechanism.

We have seen that the equilibrium temperature’is proportional to the square of the
Rabi frequency, which means that it is directly proportionﬁl to the laser intensity. This
may incorrectly imply that lowering the intensity can lower the temperature indefinitely.
But we must take into account the fact that, the scheme is based on spontaneously
emitted photons in each pumping cycle. Each phoeton imparts a recoil momentum hk
to the atom which, according to its diréetion relative to the atomic motion, may either
decrease or increase the atomic kinetiénenergy. The atomic motion continues to be
cooled only so far as the decréase of the total atomic energy due to the Sisyphus effect,
remains larger than the increasesof the kinetic energy, of the order of E,.., due to recoil
associated with the spontaneously emitted photon.

The qualitative description of low intensity Sisyphus cooling, as given above, is
based on a classical des¢ription of the position of the atomic centre of mass. This
means that the moving,atom is treated as a classical point particle. This is a reasonable
assumption only if the atomic wave packet, which describes quantum mechanically the
centre of mass, iswell loecalised in the laser wave. This assumption breaks down when
the minimum temperature is achieved and this leads to the conclusion that we must
then treat bothuinternal and external variables quantum mechanically. In this case
we can take advantage of the fact that in the Sisyphus effect the motion of the atom
occurs in spatially periodic potential wells. This is reminiscent of the electron motion in
solid state lattiees. Thus the description of atomic motion could also be given in terms
of Bloch states/and energy bands [62],[63],[64]. In this regime, low intensity Sisyphus
cooling is a result of optical pumping processes that accumulates the atoms into the
lowest energy bands.

The above arguments may suggest that the photon recoil energy E,.. should be
thenultimate cooling limit. However, to cool the atomic motion to kinetic energies
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below the photon recoil energy, atoms with velocity v smaller than the recoil velocity
Uree must be prevented from absorbing light [49],[50]. This condition can be sagisfied
by the creation of atomic dark states for which the fluorescence rate depends on the
atomic velocity at the excitation, by a Raman process. When the velocity is Zero, er
close to zero, the atom does not absorb photons; it thus does not fluoresce,sand so 1f
does not experience recoil. We can also use selective Raman processes in which, the
excitation of the atoms is velocity-selective [65]. However these mechanisms have basie
physical differences from Doppler and Sisyphus cooling. First the cooling with velocity-
dependent dark states is not based on a force. It is rather the result of aminhomogeneous
random walk in momentum space which vanishes as the atomic velocity tends to zero.
Secondly, in Doppler and Sisyphus cooling the system reaches a_steady state as a result
of the competition between the cooling introduced by the friction, afid the heating due
to fluctuations associated with the random spontaneous emission processes. Such a
competition does not exist in sub-recoil cooling.

As a corollary, it is interesting to note why the mechanism in question is called the
Sisyphus effect. The name comes from Sisyphus, aeroref ancient Greek mythology
who was punished by Zeus by being forced to tramsport a heavy rock to the top of a
hill. Just before reaching the top, the rock slipped, away and rolled downhill to the
bottom. The Sisyphus effect is an allusion to his cofidemn#tion to repeat this eternally
just as the atom loses kinetic energy through transitions involving the potential hills of
its space modulated energy levels.

4. Twisted light

Light possessing optical spinsangular momentum is well known, where optical spin
is identified with the intrinsic property of wave polarisation. The much more recent
discovery of twisted light began with the work in 1992 by Allen et al. [7] who suggested
that it should be possible to generate light beams possessing quantised orbital angular
momentum (OAM) in the laboratory. The experimental confirmation followed soon
after, with experiments carriéd out in a number of laboratories. Research on twisted light
continues apace more than three decades later and it has led to fundamental advances
in both concepts andsapplications (see references [1] to [69]). The most prominent
mechanical applications of twisted light include the optical spanner as the rotational
version of the optical tweezer which has also featured in a variety of other applications
(see refs. [7A] tof[76]). 2Other developments involving the application of twisted light
include micre-manipulation [77]; quantum communications and cryptography [78, 79, 80]
and phase contrast imaging (see refs. [81] to [83]). Twisted light has been presented
in some recent reviews which the reader is referred to, beginning with the 1999 review
by Allen et ali"[1] followed by a number of edited books, reviews and theme issues (see
refs. [66] to [70]). This topical review is concerned primarily with the interaction of
twistedulight with atoms and we feel it is helpful to begin by considering applications
involving Laguerre-Gaussian (LG) light as the prototypical form of twisted light. We
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Figure 3. Left: continuous phase ramps in transverse planes perpendicular to the
beam axis for [ = 1 (lefty,top) and b= 3 (left, bottom). Here, colours through the
spectrum denote the optical, phase;repeating on a 27 interval with an arbitrary zero.
Right: the I = 3 three-part wavefront, a helical surface of constant phase.
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shall also deal with complex gwistedilight, which we define as polarised twisted light
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arising in single or multiple beams and in various geometrical arrangements, including
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co-propagating or counter—propﬁgating twisted beams with specified wave polarisations
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in one, two or three dimensional configurations. These sources of complexity gives rise to
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novel interactions with atomsiin‘processes involving both the internal and gross atomic
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4.1. Laguerre-Gaussian (LG) light
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It is a general feature of twisted light, exemplified by the Laguerre-Gaussian beams,

(9]
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that different modes have helical wavefronts consisting of intertwined helices, as shown

(9]
N

schemafically in Fig.3. Modes of the Laguerre-Gaussian type, denoted LGy, have
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a waveveetor component k along the propagation direction and are characterised by
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the two integer indices: an azimuthal integer index [, representing the number of
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intertwined helices and a radial integer index p which arbitrates the number of radial
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nodes. These directly equate to the degree and order of the associated (generalised)
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Laguerre polynomial that modifies the Gaussian radial profile. The integer [ can be
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positive or negative, representing two senses of helical wavefront rotation. When both
[ and p are zero, the mode (k,0,0) becomes simply a Gaussian distribution withsno
angular momentum.

In the paraxial approximation the electric field associated with a Laguerre-Gaussian
mode, of wavelength A = 27/k and frequency w propagating in the z-diregtion, and
polarised in the x— direction is given by

]' 3 —iwtS
Erip(p, 6, 2,1) = Suy(p, 2)eOnr 0097 R, (52)

where u‘,fl(p, z) is the amplitude or mode distribution function

U
¢ 2 207 202
ugl(p, z) = Ekoo( i <\/_;0> L;lu” (w;zz)) xe Jw?(2) (53)

14 22/2p2)'/? \ w(2)

and Oy, is the phase function
kp?z

Orip(p, &, 2) = skz + 16 — s(2p+ [I| + 1) tanTi(z/2r) + (2t

(54)
Here L]‘Dl| is the associated Laguerre polynomial, w(z) is the beam waist at position z
defined by w?(z2) = 2(2%+2%)/kzg, and zp is the Rayleigh range, which is related to wy,
the waist at focus, by zp = mw2/\ where \ the/wavélengtl¥ of the light. In Eq.(54), the
third term is the Gouy phase for the LG mode and the fourth term is referred to as the
curvature phase term. The factor s = 41 takes.into account propagation in the opposite

directions along the +z-axes, while the factor Ciypis given by Cjy, = 1/2p!/7(|I|! + pl).

An important feature of all twistedylight fields is the existence of the phase factor
¢!, However, the full phase Oy, (p, #)2) is essential for describing the various effects
including rotational effects when the light interacts with atoms and molecules

A Laguerre-Gaussian beam. characterised by the electric field Eg,(p, ¢, z) has a
linear momentum hk and carries an angular momentum equal to [h per photon. The
quantum number [ is calledsthe, winding number (or the topological charge) and we
re-emphasise that [ can take both negative and positive integer values, corresponding
to right-hand and left-hand(twisting of the wavefront. LG modes for which [ # 0 but
p = 0 are called donut modes, since the light intensity is ring-shaped as shown Fig.4 for
the cases | = 1 and I'= 3. Figure 4 also shows the case of a double ring mode arising
when [ = 1,p = .

It is oftenssufficient to focus on the form of twisted light without explicit details of
the Laguerre-Gaussian form. An electromagnetic light mode of frequency w and orbital
angular momentum [/ possesses an electric field vector distribution which can be written
in cylindrical polar coordinates r = (g 2) as follows

1A i(kz—wt) i
Ey(r,t) = §eF(p)e (ke—wt) pilg (55)

where € is @ wave polarisation vector and F'(p) is a scalar distribution function which
depends’only on the radial coordinate p. Note that, unless a paraxial approximation is
deployed, the polarisation vector need not necessarily reside in the plane represented by
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Figure 4. The intensity distributions of modes, respectively, for LG ¢ (donut mode),

LGs (donut mode) and LGy 1 (wo-ring). These radial intensity distributions are at
the waist plane z = 0.5The insets exhibit graphically the corresponding radial intensity
distributions with radial distance in units of wavelength.

N
p. The field in Eq.(55) emerges from the familiar Laguerre-Gaussian light distribution

in the limit of large Rayleigh range 2z — 00, a situation which is often encountered and
is realisable in practicen, This simplified form of field is advantageous for a number of
reasons. It has the desired feature in being endowed with orbital angular momentum,
by virtue of thesazimuthal phase factor, and is free from the curvature problems which
often distractdrom the fundamental issues involving orbital angular momentum of light
in a real Laguerre-Gaussian beam, i.e. with a finite Rayleigh range.

4.2. Other types, of twisted light - Bessel beams

Besides the Laguerre-Gaussian beam, a second, somewhat simpler, type of vortex beam
is the Bessel beam [86]. This is characterised by a transverse electric field which is also a
solution te'the electromagnetic vector Helmholtz equation, with the modes characterised
by only one integer number [, that can take either positive or negative values. We have
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Figure 5. In-plane field intensity distributions as for for the,corresponding positive
value of I of Bessel beams: | = 1 (left) and | = 2 (right). Here the colours denote an
arbitrary intensity scale from a dark blue denotingizero through to bright yellow for
the highest intensity regions. The corresponding Bessel modes with [ < 0 have the
same intensity distribution. However, the phasehas the opposite sign. (Adapted with

permission from [84] ) - 4

in cylindrical polar coordinates r = (p, ¢, 2)
E(r,t) = éEgJi(kyp)et=el®e ! (56)

where FEj; is the amplitude and the unit, vector € designates a wave polarisation. The
radial function J;(k,p) is theBessel function, of order [ where, as in LG beams, [ is the
winding number and the vortex beam carries [h OAM per photon. The wavevectors k|
and k stand for in-plane and axial wavevector variables.

N
5. Complexity due to/wave pelarisation

5.1. Multiple polarised.beams

The superposition of ‘multiple beams endowed with orbital angular momentum can
give rise to various field distributions and associated properties which become more
complex when'wave pelarisation is included. The simplest cases are those in which two
beams are involved and arranged to be co-axial identical or otherwise and may have
different amagnitudes and signs of winding numbers. They can be co-propagating or
counter-propagating and may have the same polarisation. The influence of such states
of twistednlight/on the near resonant optical forces and torques leading to the trapping
and dynamics of the atoms immersed in them is discussed in section 7. It has been
shown [85] how further complexity arises when the twisted light beams have circular
wave polarisations (optical spins), giving rise to spatio-temporal polarisation gradients.
We'diseuss below the simplest cases involving only two beams, as done in [85].
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5.2. Co-propagating LG beams

Consider the case of two co-propagating LG beams, labelled 1 and 2 of the same
frequency w and axial wave vector k, with coinciding centres. The beams have the
same magnitude of winding number [, but differ only in the sign of [. The total electrie
field vector distribution is then given by

E(p,¢,2,t) = {F(p, ¢, 2)e ™" + c.c.} et (57)

where c.c. denotes complex conjugation and F*(p, ¢, z) arises from thésum of the two
electric fields. We have

where fi describe any LG light beam expressible through Egsi(52) to (54) with
appropriate choice of quantum numbers and parameters. However, for/the applications
we consider here, the beams differ in the sign of [ such that i,"= [ and [, = —I[.
The vectors é; and é, specify the wave polarisations of the beams, which in general
involve any combination of linear polarisations, but mere specifically we consider circular
polarisation.

5.2.1. Co-propagating with o™ —o~ When the fwo ¢o-propagating beams have opposite
[, as well as opposite circular polarisations we write

1
& =0t =——(&,+ié,), (59)

N

&y=0 = ——(&, —ié,) (60)

where €, and &, are the usual linear wave polarisation vectors along the x and y axes.
Substituting for é; 5 in Eq.(58) we have

1 3 .
F(p.6.2) = 5 {11lo P P05 (6) il 2) + 1o IS 0) ). (6)
where f]i(gb) are peolarisation vectors that depend on only the azimuthal angular
position.
3 (6) = épcos (1g) — é,sin (1¢), (62)
(@)= -&. sin (1¢) + &, cos (1¢). (63)

Thus the polarisation of the interference fields is, in general, locally elliptical with an

(fZ(p7 Z) B fl(pv Z))
<f2(p7 Z) +f1(p7 Z))

To illustrate the polarisation distribution in the resultant field of the above scenario

ellipticity given by

involving ¢o-propagating LG beams, we make use of the fact that the two beams are
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Figure 6. Polarization distributions in the (z,y) plane for.o’y — o_ co-propagating
LG beams for two cases, | = £1 (a) and I = +2(b). The dashed red circles show
the radial position of maximum intensity. The_.distances are measured in units of the
beam waist wg. The arrows represent polarisation directions.

identical, except for the sign of {. This means/that fi =%, = f. We then have from
Eq.(61)

Frp,¢,2) = —iv2f(p, 2) 5 (9)
= —iV2f(p, z) {€xsin (16) + &, cos (1))} . (64)
The polarisation is linear throughouty but its direction is independent of the axial
position and depends only ,the in-planeypositions (p,¢). Figure 6 displays the
polarisation distributions for twoncases, | = +1 and [ = +2. The dashed red circles
coincide with the radial positions of maximum intensity.

5.2.2.  Co-propagating with lm\ 1L lin polarisations When the co-propagating beams
have opposite winding numbers, but with wave polarizations that are linear and
orthogonal, we have

~7'-+(P, ¢7 Z) . fl(pv Z)eil(ﬁél + f2(p7 Z)eiilqsé?v (65>
where now é; =€, and é3 = é,. Substituting in Eq.(65) we get:

Filp, dr2).= V2f(p, 2) {cos (lqﬁ)ﬂ\/ﬁey + isin (lgzﬁ)%—\/;’}. (66)
Clearly thepolarization direction distribution does not depend on the axial position, but
its form varies swith angular position and is in general elliptical, displaying both linear
and cizcular forms, as the azimuthal angle varies. This is illustrated in Table 1. For a
donut mode where p = 0 and a general value of [ > 0, the region of maximum intensity
occurs at aradial position, py = wy \/l/_2, the polarisation changes from linear to circular
along the arc of length As = mwg/ 44/21. Thus the spatial extent of the polarisation
depends on the beam waist and the magnitude of the orbital angular momentum.
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10) Polarization

0 Linear
m/4l | Circular o~
7/2l | Linear
3n/4l | Circular o+
7/l Linear

Table 1. Variation with azimuthal angle ¢ of the type of polarization for two co-
propagating donut modes at fixed radial position pg = wg \/(l /2). Tt is seen, that as ¢
changes from 0 to 7/l, the type of polarization switches between linear‘and circular.

~
5.3. Counter-propagating LG beams

Now consider counter-propagating beams with opposite signs of winding numbers. The
electric field distribution associated with an LG beam travelling along the negative z-
axis can be found from the standard form by a simple transfermation. This involves
rotating the LG beam as a rigid body about the Cartesian y-axis by an angle 7, which
amounts to the substitution + — —z; y — y and 2= —z. In terms of cylindrical
polar coordinates, we have p — p; ¢ — —¢ and z — =2. It is easy to see that this
transformation affects only the phase facgors but leaves'the function f(p, z) unchanged.
The polarisation of the light field in this caserdepends also on the axial position z.

5.3.1. Counter-propagating with ot =~ Here two counter-propagating beams have
opposite circular polarisations, but theisame winding number. The total electric field
vector is now given by the analogue of Eq.(57)

E(p, ¢, z,t) = {FHpag, 2)e ™ + c.c.} (67)
where now we have
FH(p, 0, 2) & [P e, + fy(p, 2)e g, (68)

where é; and é; are given by Eqsi(59) and (60), respectively. On substituting for these
vectors in Eq.(68), we find

F4(9.0.2) = <ATBIL 1092 0) = ilhlp.2) + Ko 2O} (09

where f)i(qﬁ, z)rare polarisation vectors that now depend on both the azimuthal angular
position ¢ and the axial position z.

E_($42) = é, cos (kz + 19) — &, sin (kz + 1), (70)
N4 (h,2) = é,sin (kz + 1¢) + &, cos (kz + 1). (71)

Once again we shall consider the case where the beams are similar in which case
we have

Flp.6n2) = — iVaF(p. )% (:2)
= —iV2f(p,2) {€,sin (kz + 1p) + é,cos (kz +1p)}.  (72)
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@) _

0.5

(v/wy)

Figure 7. Helices of constant dinear polarisation. The red solid line corresponds to
points where kz + l¢ = 0, where the polarisation is é,, while the blue dashed line to
points where kz + l¢ = 7/2, where thepolarisation is é,. The helices correspond to
points of maximum intensity.

In this case the polarisation distribution is z-dependent as well as angular dependent.
The polarisation is linear and 4§ eonstant in direction along spirals which result from
the equation kz + (¢ = constant. For example, the polarisation vector is €, along the
spiral kz 4+ l¢ = 0 and é, alongsthe spiral kz + l¢ = 7/2, as shown in Fig. 7.

Figure 8 displays the polarisation distributions on the planes z = 0; A\/4; \/2;3\/4
and A\ in the case wheré'l = 1. It i§ easy to see that the polarisation gradient distribution
on the plane z = 0“or the counter-propagating fields is identical to that for the co-
propagating .G beams for any z value.

5.3.2.  Counter-propagating with lin L lin polarisations The second case is the one
where the two beams have mutually orthogonal polarisations. The total electric field
vector ismow givenby the analogue of Eq.(57)

where now .we have
F(p,¢,2) = filp, 2)e "D, + fo(p, 2)e *H10e,. (74)
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30 Figure 8. Polarisation distributions on different z planes, but for o4 — o_ counter-
g , N
31 propagating Laguerre-Gaussian (LG) beams with the same magnitude and sign of
32 [. The distances are measured in units of the beam waist wg. Arrows represent
P
33 polarisation direction. The red cirgles correspond to points of maximum intensity.
y:
34 The figures are labelled (a), (B)sn(c),nand (d) corresponding to the axial positions
22 2 =0, A\/4, \/2, and 3\/4, respectively.
37
38
39 On substituting for these vectors in Equ(74), we find
40
41 é,+é, . € — &,
Ft(p, ¢, 2) = @(p, z)qcos (lp + kz)——= +isin (l¢ + kz)——=— p .(75)
4; V2 V2
4 e s . L . : . .
44 Now the polarisationds also,in @eneral elliptical, displaying both linear and circular
45 forms, as the function kz+ l¢ varies. This is illustrated in Table II.
46 As shown in/Table 2 the polarisation acquires certain forms along the spiral lines
47 P
48 defined by kz+Il¢ = constant. Figure 9 displays two sets of helices in separate plots, one
49 set representing two helices of constant linear polarisation and the other set represents
g? two of oppositeseirctilar polarisations. The helices correspond to points of maximum
52 Intensity.
53
4. ARotating mode patterns
55
g? Finally consider the case where the intensity pattern of the light fields rotates in time.
58 This‘israchieved when the interfering beams have a slight difference in their frequencies.
59 The selection of different values of beam winding numbers and polarizations gives rise
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kz + l¢ | Polarisation

0 Linear

/4 circular & _

/2 linear N
3n/4 circular &,
7'(' linear L 4

Table 2. Variation with axial and azimuthal position (z, f the e of
polarisation for two counter-propagating donut modes at ial position
r = wo\/|l|/2. As (kz + l¢) changes from 0 to m, the type o arisation
switches between linear and circular.

(a)

ure 9. (a): Helices of constant linear polarisation. The red solid line corresponds
o points where kz 4+ l¢ = 0 while the blue dashed line to points where kz + ¢ = 7/2.

Figure (b): Helices of constant circular polarisation polarisation. The black solid line
corresponds to points where kz 4+ l¢ = m/4 while the red dashed line to points where

v kz +1l¢ = 3w /4. The helices correspond to points of maximum intensity
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to temporal polarization gradients. Here we present two such schemes.

5.4.1. Clircular polarisation ot — o~ Consider first two co-propagating LG beams, of
opposite [ but slightly different frequencies. Assume that beam 1 has frequency'w; and
a positive circular polarisation ot and beam 2 has frequency wy and a negative circular
polarisation o~. The electric field vector for the two co-propagating circularly polarised
LG beam with different frequencies is given by the analogues of Eqs.(57),andy(58). We
have

E(p, ¢, 2,t) = {.7:+(p, o, z,t) + c.c.} et (76)

where
~

f+(p> ¢7 Z, t) = fl (p? Z)ei(l(b_WIt)él + f2(p> z)e_(il¢+w2t)é2 (77)

On following analogous steps to those in section 2, we have thesanalegue of Eq.(64)

Ftp,¢,2,t) = —i\/ﬁf(p, z)e’im?ﬂ) {éx sin [WT—FM] + &, cos [w] }(78)

where A is the frequency difference A = wy — w;. We now see the polarisation varying
in both space and time. At a given axial plane, theppelarisation pattern rotates at a rate
which depends on the frequency difference A and thé magnitude of the winding number
l. Figure 10 displays a graphical illustration of the'rotation of the polarisation vector in
two different cases. The first is the case i which the'beam 1 of frequency w; has | =1
while beam 2 of frequency wy has | = —1; shown for different times ¢ = 0 (left) and
t = /A (right). The second the casésn.which beam 1 of frequency w; has [ = —1 and
beam 2 of frequency wy has [ = 1 again,shown for two different times ¢ = 0 (left) and
t =7 /A (right). It is interesting to see thatiin the second case the polarisation changes
from fully azimuthal to radial. Finally we note that in the limit where the beams have
the same frequency, .i.e when A = wy—=w; = 0, Eq.(78) reduces to Eq.(58), as it should.
N

5.4.2. The lin L lin case/ Finally; we deal with the case where the two co-propagating
LG beams, of opposited butsslightly different frequency have mutually orthogonal linear
polarisations. Assume that beam 1 has frequency w; and polarisation é, and beam 2
has frequency wy and'and aypolarisation €,. In this case we have

E(pyg. 2, 1) = {Ft(p,¢,2,t) + c.c.} e, (79)
where

F ' (pdd. 2.t) = fi(p, 2)el0710¢, + fo(p, 2)e" 10T Ne,, (80)
Since fi(p, 2) = f2(p, z) = f(p, ) we find

Ftp,0,2,t) = f(p, z)e_iw {ei(w—mméx + ei(_l‘HAt/méy} (81)

Figure 11 displays the evolution of the polarisation vector, at z = 0, for the light field
arising from the interference of two LG beams with mutually orthogonal polarisations,
opposite winding numbers and slightly different frequencies. Two different cases
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Figure 10. The rotation of the polarisation weetor, at z = 0, for the light field that
is made up from the interference of two LG beam$ with opposite helicity, opposite
circular polarisations and slightly different frequencies: (a) The case where the first
beam of frequency w; has | =1 and the second beam of frequency ws has [ = —1 at
two different times ¢ = 0 (left) andit =#/A (right), (b) The case where the first beam
of frequency w; has [ = —1 and the second beam of frequency wo has I = 1 at two
different times ¢t = 0 (left) andwt= 7/A (right). The red circles correspond to points
of maximum intensity

involving two different time instants areéshown, Note in particular how the polarisation
changes from linear to circular-and vice versa at different azimuthal angles.

In summary of this sectiom; we have investigated the spatial and temporal
polarisation of light fields‘created by the interference of either co-propagating, or
counter-propagating<lLG, beams when they have opposite winding number [ and for
the cases where they possess opposite circular polarisations, o, and o_ and mutually
orthogonal lineas polarisations.

When thediG beams are co-propagating and possess opposite circular polarisations
we have found that for afixed value of |l|, the polarisation is independent of the axial
position zgso that within a normal beam cross-section, it is everywhere locally linear
but the/direction changes, depending on its polar position (p, ¢). When the beams have
mutually orthogonal polarisations the total polarisation again does not depend on the
radial position, but now it can change from linear to o_ and then back to linear and o,
as the azimuthal angle changes from 0 to 2.

When the LG beams are counter-propagating, the polarisation distribution depends
o the axial position as well as the in-plane polar position (p,®). Note the interesting
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30 Figure 11. The evolution of the polarisation vector, at z = 0, for a light field made
31 up from the interference of two LG, beams with mutually orthogonal polarizations,
32 opposite helicity and slightly different frequencies: (a) The first beam of polarisation
33 along the x—axis has frequency wi and "= 1 and the second beam of polarisation
34 along the y—axis has fréqueneyiwg,and ! = —1 at two different times ¢ = 0 (left) and
35 t = /A (right), (b) The first beam of polarisation along the x—axis has frequency wy
36 and [ = —1 and the second beam of polarisation along the y—axis has a frequency wo
2273 and [ = 1 at times ¢t =0 (left) and ¢ = w/A (right). The dashed circles correspond to
39 points of maximumdintensity
40
41 N
42
43 . . .. . . . .
42 symmetry in whichahe the distribution for z = A/4 is the mirror reflection of that at
45 z = 3\/4. Similarly, thepolarisation distribution for z = A\/2 is the mirror reflection of
46 that for z = 0. The distributions at z = 0 and z = X\ are identical.
47 . . . . . ..
48 A case in awhich the polarisation shows both temporal and spatial variations
49 is that of intérfering.béams with slightly different frequency and opposite signs of
50 winding number. We may again consider two different cases when the beams have
g; opposite eircular polarisations and mutually orthogonal polarisations. This difference
53 in frequency hag been shown to give rise to a rotation of the polarisation pattern. The
54 temporal evolution is very similar to the sequence exhibited by the spatial dependence
gg and so similar patterns will emerge, except that position-dependence is now replaced by
57 a time-dependence.
58
59
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6. Atom control and interactions

6.1. Overview

As an area of atomic and optical physics, atom optics is primarily concerned with the
manipulation and control of the gross motion of atoms. The word ‘optics®in ‘atony
optics' is in many respects an indication of realising and manipulating atems in beam
format, just as laser photons are realised in optical beam format. The analogy has
led to the realisation in the laboratory of analogues of ordinary opticalrelements; such
as atom mirrors, atom beam splitters and atom-guides [87], with ghe mainycontrol of
atomic motion provided by optical forces.

The principal basis for the frequency-tuned optical confinément of atoms has its
origin in forces associated with beam profile effects: Eq.(37) highliglits the key role of the
atomic polarizability. Resonance damping of the polarizabilitynis attributable to several
physically distinct processes responsible for the finite lifetimes of eleetronic excited states
which are not, in general, solely attributable to radiative decay./ The accommodation
of damping serves to represent dissipative and essentially. stochastic effects, but it
is impossible to fully accommodate the condition’ ef time-reversal invariance - the
Hamiltonian for an implicitly non-conservative systemnis necessarily non-Hermitian [88].
Accounting for the spherical symmetry of an ion or atom, the result is cast as:

) 1 - ] 1
_ — T 2
aw) 3;‘d | {Er—hw—thT/Q+Er+hwiihl“r/2} (82)

where the sum is taken over all ex€ited. electronic levels r of energy E,.. The effect of

the damping is primarily significant imnthe first; potentially resonant term in Eq.(82),
and on approach to resonance,with a speeific excited state, Ay = w — Ex/h — 0 , it
delivers signals with an approximately Lorentzian lineshape and FWHM linewidth I'x.
Specifically, we have:

) = 1 ﬁdXOF ’dXOF
= T B | Ay #ihDx/2  Ex + hw ikl y /2
drO’ ‘dr0|
+;{{E hw—th/2+Er+hwithr/2 (83)

Different arguments support varying conclusions on the sign and magnitude of the
damping in the anti-resenant terms the second and fourth in Eq.(83) (see refs. [88] to
[91]). However, the résults for alternative signs cannot be experimentally discriminated,
so these gorrection c¢an effectively be neglected.

In (principle, red- and blue-detuning from a resonance leads to opposite signs for
the dominant leading term - the principle is exploited in securing forces of opposite
divection gowards, or away from regions of highest intensity, according to Eq.(37) and
the first term in Eq.(83). However, it should be borne in mind that the presence of the
third terms in Eq.(83) means that any switch in sign generally occurs at a frequency
displaced from exact resonance.
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Besides atom trapping as a useful property, optical forces can also lead to the
transport of atoms in atom guides [92]. When Bessel beams are used as atom guides the
atoms can be confined within the central region of the beam. The non-diffracting nature
of the central region facilitates atom transport over long distances without transverse
spreading as expected from the use of a non-vortex structured light beam. The width
of the atom guide in the central region of the beam can be arranged t6'be as small as
the order of the optical wavelength.

A Laguerre-Gaussian-based dipole trap for atoms was first realized in 1997, in
which approximately 10* Rb atoms were confined in the LG core region using a blue-
detuned LG beam and two in-plane light beams [93]. A three-dimensional dark core
region surrounded by bright light, referred to as a bottle beam, dias subsequently been
constructed using suitable combinations of LG beams [94]. Su¢h beams have been used
to trap samples of cold atoms [95, 96], including single Rbdatoms [97] which could be
trapped for several seconds. Theoretical work on atom trapping,in bottle beams has
been reported by Aldossary [98]. Furthermore, LG beams and their superpositions have
been exploited in the construction of optical ring traps and ring lattices. A dark ring
trap, generated at the focus of an LGy mode, was shown to held Rb atoms with a decay
time of 1.5 s [99].

With suitable superpositions of co- or counter-propagfting LG beams, ring lattices
can be realized for trapping in bright or.dark intensity regions. These may be used
to simulate condensed matter effects: adjusting the phase twist can generate persistent
currents [100, 101], and adjusting the boundaxy between the lattice sites should allow the
realization of Mott insulator transitionsiA.large number of different trapping geometries
is possible by combining LG modes of different OAM and radial mode number [102].
Single Rb atoms have been trapped at individual lattice sites of a bright rotating optical
Ferris wheel [103]. The transfer-oftatoms between a bright and dark ring trap, simply
by modifying the laser detuning, has‘also been observed [104]. OAM beams have also
been used in the creation ofsdark spontaneous optical force traps [105].

6.2. OAM transfer

One of the issues that quickly arose in the context of the interaction of twisted light
with atoms is whether: ©AM can be exchanged between the twisted light and the
internal atomic ‘degrees of freedom in a process involving transition between the energy
levels in analogy with the photon spin angular momentum manifestation in a radiative
transition. Electromagnetically driven transitions between atomic states occur whenever
the exciting fieldiproperties match the redistribution of the atomic charge and the phase
of the material wavefunction. As we have seen at the outset, atomic transitions are
categorisedras dipole-allowed, quadrupole-allowed and higher multipolar-allowed orders.
The relatively clear-cut distinction between transitions allowed at different levels of
multipolarity is one of the key simplifications, due to symmetry, that arise when dealing
with atoms - in contrast to molecules where electronic transitions are frequently allowed
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by more than one form of multipole. In a dipole-allowed transition the atom engages
with the optical field strength while in a quadrupole transition it engages only with the
field gradient. The field gradients in atom-field interactions can lead to transitions for
atoms localised in the dark regions of the light beam where there is weak light intensity
but relatively strong field gradients.

6.3. Theory

Theoretical work has necessarily focused on the distinction between the internal motion
and the gross motion of an atom (or molecule) due to interaction with fields pessessing
orbital angular momentum, with due consideration of the selection rules involved in
transitions [106, 107]. Initial forays into the theory were followed by seme‘experimental
work [109, 110] which confirmed the theoretical finding of ‘reférence [107] that no
exchange of angular momentum arises between the light andithejinternal degrees of
freedom in a dipole-allowed transition.

Here we outline the underlying theory of OAM tramsfer as given in reference [107].
We focus on the two-particle model of the neutral atom as a system consisting of
a negatively charged electron of mass m; and a_positive atomic core of mass my as
emphasised at the outset. The Hamiltonian of this systemyin interaction with the light
field can be written as the following sum of four parts, to be discussed in turn

H=H + Hg + Hgield + Hypi (84)

HY, is the centre of mass Hamiltonian, which is essentially the kinetic energy of the
centre of mass

P2
2M
where P is the centre of mass mémentum with M = mj +my the total mass. The centre

HY, = (85)

of mass momentum is conjugate to the centre of mass coordinate R, defined in terms
of the particle position vegtors g;;ni= 1,2, by
miqi & maq2

M
We are, however, interested in the possibility of the centre of mass rotating about a

R = (86)

beam axis, so that the in=plane motion of the centre of mass kinetic energy is rotational.
The appropriate form of the centre of mass Hamiltonian is then given by

2" p2
HYY— o X z 87
M1 oM (87)

where Lgisthe angular momentum operator. Here I stands for the moment of inertia of
the atomic centre of mass about the z-axis and P, is the centre of mass momentum axial
vecterscomponeént. The second term in Eq.(84), namely HS, pertains to the internal
‘electronic4type’ motion

pQ 62

T2 dmenq

0
Hu

(83)
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where 1 = mymo/M is the reduced mass and p is the momentum conjugate to the
internal coordinate q = q; — q2. The second term in Eq.(88) is the Coulomb potential
binding the two-particle system, with ¢ = |q|. The third term in the total Hamiltonian
is defined by

Hfield = hwazlakl (89)

which is the field Hamiltonian in quantised form with ay, the annihilation‘eperator (its
Hermitian conjugate being the corresponding creation operator) of the light mede in
question of frequency w, orbital angular momentum /A and axial wavevector k = kz.
For present purposes any radial index p can be suppressed; the assuimption i8'a donut
mode of the lowest order for any given value of [. Finally, the last Hamiltonian term
is the interaction Hamiltonian describing the coupling between thedight and the two-
particle bound system, representing the molecule. In the PZW" scheme this can be
written as

Hipy = — / & P(r) - Blr, ) (90)

where Ekl(r,t) is the second quantised form of the electric field; P(r) is the electric
polarisation defined in a closed integral form as in"Eq.(8).

For simplicity we have ignored all magnetic interactiéns. Note that, although the
electric polarisation field defined in Eq.(8) appeats to/be a function of the individual
particle coordinates q; and q., it can be written entirely in terms of the relative
coordinate q using the relations

di2 — R = £my,q/M. (91)

Any quantum-mechanical, treatment of, the interaction between the light and the
atomic system must start by specifying the zero-order states of the overall motion,
comprising the centre of mass motien (rotational and translational), the internal
‘electronic-type’ motion and the field state. The appropriate states are product states

of the three-subsystem Hamiltonian H° = HY, + H + HY,,, and can be written as

zel
|P., La; j3{ Nii}) (92)

The unperturbed motion of the centre of mass in this product state is represented by an
axial translational state with linear momentum P,, together with a rotational eigenstate
of the angular mementum operator L, with corresponding eigenvalues hL,. The internal
motion enters in terms of the hydrogenic excited discrete states |j) = |e) of energy E.
and a ground state |j) =1g) of energy E;. The shorthand notation |e) and |g) stand for
|Ne; le; mg) and |mgsly; my), respectively, where nj,l;, m; with j = e, g are hydrogenic
state quantum fumbers. Finally the ket |{Ny;) is the number state of the light field.

The evaluation of the coupling between matter and field involves working out the
interaction/matrix element M,; where

i) = |P., L.; e; {Nu}) ; 1f) =P, L g5 {Ny}) (93)
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Specifically, we have

Mg = —(P., Lz; €; {Nu}| /d3r P(r) - En(r,t) [P, L g {Ny}) " 3(94)
To evaluate this matrix element we begin by expressing the interaction Hamiltonian in
the following form

1
H, :e/d3r/ ™25 R - A"2q) + ™Masfr — R+ A" q) L - B, 1) (@5
! 0 {M M M M } ( )

We cannot carry out the usual multipolar expansion, whereby the two delta funetions
are each expanded in powers of Amjo/M, leading to a series of terms multiplied by
d(r — R) which ultimately gives rise to a dipole term, a quadrupole term and higher
multipole terms. The reason why the multipolar expansion is inappropriate‘at this stage
is that the hydrogenic system has a centre of mass R which is significantly off-axis. To
proceed we now carry out the volume integral involving thexfull delta functions, but
keeping the A integral untouched for the time being. We have

1
6 ~ ~
Hin = 24 / )\ {ngkl(R + Amaq/M, t) + m (R \nid /M, t)} (96)
0

Note that the interaction is now such that the electrie.field of the twisted light is now
evaluated at the r = R + Amoq/M in the first/term andat r = R — Amyq/M in the
second term.

The azimuthal dependence of the atomic intermal motion is referred to the centre
of mass coordinates, while the twisted beam has an axis coinciding with the z-axis of
the laboratory coordinate system. /Lhe position vector variables of the centre of mass
R and the atomic internal coordinateig in polar coordinates are written as follows:

R = (R, Pr, Rg); a=(q1¢, ) (97)
We need to incorporate the fulllazimuthal angular dependence which must be split into
internal and centre of mass dependencesr To be able to establish the azimuthal angular
dependence, we consider projéctions of relevant vectors in a plane parallel to the (z,y)
plane. The situation is shown'in Fig.12 for the vectors Ry, Amoq/M and their sum

in the context of the first interaction term. Similarly the vectors Ry and (—Amqq /M)
and their sum

Vg = R” — )\mlq”/M

would apply indhe context of the second interaction term.

In pursuit of'@ multipolar expansion of the interaction Hamiltonian, the next step
is to express the azimuthal dependence of the two vectors V; and V5 in terms of the
azimuthal angle ¢ of the centre of mass relative to the laboratory frame, and the
azimuthal ‘angle of the internal ‘electronic’ position vector ¢ relative to the centre of
mass. ‘This 1s followed by applying the approximations

Amqu/M << R”; )\mqu/M << R, (98)
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6.4. Transfer of OAM to centre of mass only - electric dipole interaction

We then find that the interaction Hamiltonian up to the quadrupole term consists of
four contributions which we can write as

Hye = Hi) + HE) + HE) + H) (99)

int int int int

The leading term is identifiable as the electric dipole term, which emerges from the sum
of the terms linear in the vector components of the internal coordinate g» We have

Y = ce.qe™ ™ F(R))e"* e ayy + h.c. (100)

int
where F(R)) is a function of the centre of mass coordinate R fonly. We see that,
besides the internal position operator e€.q, this interaction Hamiltonian involves the
centre of mass cylindrical coordinates (R), ®r, R.). Remember that the cigenstates of
the internal dynamics are as for a hydrogen atom, with the position vector q expressible
in spherical polar coordinates where ¢ is the azimuthal angle, as‘isithe case in cylindrical
coordinates. Substitution of this in the transition matrix element; Eq.(94), writing the
explicit forms of the translational and rotational eigenstates,of the centre of mass motion
and performing the space integrals, we obtain

Mig = (2m)? (e|e.d|g) Ny e 6" Lyud(Pa— P, — hk)M, (101)

where d = eq is the electric dipole moment vector/and M| is the integral
M) = /0 AR R F(Ry) (102)

The Dirac delta function in Eq.(101) exhibits conservation of the centre of mass axial
linear momentum with conventional linear momentum transfer between the light and
the centre of mass. The Kromecker delta expresses conservation of orbital angular
momentum and there is clearly~orbital angular momentum transfer of magnitude [h
between the light and the centre of mass rotational motion. This transfer is not to
the internal motion, and itrSshould be emphasised again that the internal motion does
not participate in any exchange of momentum between the atom and the vortex light,
neither linear momentum nor orbital angular momentum. Only the centre of mass
responds to the vortex. As we explain later, this is the process that leads to mechanical
action involving the gross dynamics of the atom as a whole, through the motion of its
centre of mass,sand in which the atom experiences both rotational and translational
forces.

6.5. Quadrupole intéractions: OAM exchange

Consider next the terms H (2) H® and H “)

imts Hont .t~ These interaction terms are quadratic in

thearector components of q and so correspond to quadrupole interactions. Explicitly we
have for the first type of quadrupole interaction

HiY) = cie.qq.e"™* F(Ry))e™ e “ay + h.c., (103)

nt
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where c; is a constant. The next type is of the form

H® = CQé.qq”ewei(Z_l)@RG—’f (R”)eikRze_makl + h.c., (104)

nt
where ¢y is a constant. The last is of the form

HY = cré.qqpe e TIPRGH(R e e ay, + h.c. (105)

nt

Once H?

wnt?

Eq. (103), is inserted in the matrix element in Eq.(94), we can réadily deduce
that this term cannot mediate any transfer of orbital angular momentum between the
light and the internal motion. However, transfer of orbital angular mementum does
occur between the light and the centre of mass motion, as in the électric dipole case.
T}(li)S is essentially the next order of the multipolar process, over and above that due to
g

int *

By contrast, we see in the expression for Hi(sz in Eq.(104) that-asfactor ¢ now
appears in the matrix element between the internal states |e >‘and |g >, and the centre
of mass azimuthal phase factor is now ¢?!~)®=_ This is indicative of afransfer of orbital
angular momentum from the light beam to the internalsmotion, leéaving only (I — 1)k
Eq.(105),

is substituted in the matrix element, we can conclude that atransfer of orbital angular

units to be transferred to the centre of mass rotation.=Similarly/when H;ﬁg,
momentum occurs between the internal motion and the light beam, with a balance of
(I 4 1)h transferred to the centre of mass rotation. It is.cagy to check that the integrals
over the azimuthal angle ¢ for the internal motion léad to the usual quadrupole selection
rule |m. — my| = 0,£1,£2 where, as defined earlier; m. and m, are the azimuthal
quantum numbers of the respective internalstates |e) and |g) involved in the transition.

We have thus demonstrated by explicit analysis that in the interaction of light
possessing orbital angular momentum, with“atoms (or molecules, by a directly similar
mechanism) the major mechanism of exchange of orbital angular momentum occurs in
the electric dipole approximatiom,and involves only the centre of mass motion and the
light beam. The internal ‘ele¢tronicstype’ motion does not participate in any orbital
angular momentum exchange with the light beam to this leading order. It is only in the
weaker electric quadrupolé interactioft that an exchange involving all three subsystems
(the light, the atomic centre of mass and the internal motion) can take place. This
involves one unit of ‘erbital angular momentum being exchanged between the light beam
and the internal motion, with the remaining (I £ 1)% units of orbital angular momentum
being transferred fo the ¢entre of mass motion. The quadrupole transitions thus involve
participation of twe units of OAM. These conclusions rule out any experiments which
seek to obsetve orbital angular momentum exchange involving light beams and the
internal states of molecular systems via electric dipole transitions.

A differentitreatment of this problem was given by Lloyd et al. [86] in the
conventional QED framework using a coupling involving the vector potential A rather
thansthe electric field as above. Lloyd et al. confirmed theoretically that an optical
vortex canfiot transfer OAM to the internal atomic motion in a dipole active transition,
although it could do so in a quadrupole transition.
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6.6. Ezxperimental work and other theoretical work on OAM exchange

Following the publication of the work in Ref.[107], experimental research began totest
the validity of the main theoretical prediction, namely that OAM cannot be transferred
between an optical vortex in a dipole active transition. There was need to experimentally:
find out whether the OAM can influence the internal electronic degrees of freedom of
the atoms, a requirement at the core of the theoretical analysis, both inithe eleetric
dipole approximation and for higher order transitions. Mathevet et @l. [115] gave
an intuitive argument for explaining the absence of magnetic orbital dichroism in an
isotropic medium as a function of the sign of the OAM. They suggested that this
effect cannot be observed in transitions essentially described by the electric dipole
approximation, but only when considering (at least) the higher‘quadrupele order.

As noted earlier the compartmentalisation of optical angulazdmomentum into spin
and orbital parts cannot always be clear-cut, and when vortex, radiation is associated
with circular polarizations, spin-orbit coupling can arise [33] Circular polarizations
are, of course, widely associated with chiroptical phenemena, i.e. optical interactions
exhibiting a quantitative difference in an observable suchnas rate of excitation, for
molecules of opposite handedness engaging with a particular circular polarization or
equally vice versa. It is therefore not surprising/hat the ppssibility of engaging twisted
light with chiral matter has become a widely Tesearched topic. Moreover, whilst the
manifestations of spin-orbit interactions‘domnot requireé engagement with chiral matter
(see [33] to [35]) the latter offer additional scope.for novel effects.

The first experimental report was by Araoka et al. [109] who showed that LG light
is not specific in interaction with chiral matter. This was followed by the work of LofHler
et al. [110] who concluded that they couldmot find any influence of the OAM on circular
dichroism in cholesteric polymers. Despite the experimental evidence provided by the
work of Aroaka et al [109] and LofHer et al [110], subsequent theoretical investigations
continued on the issue of the transfer of OAM to the internal degrees of freedom of
atoms and molecules withsome regarding it as an unsettled matter (see refs. [108],
[111] to [121]) and it appeared that the community was not entirely decided upon a
matter which the theeretical analysis makes quite clear. As has recently been shown, it
is only possible to break this embargo under conditions that thoroughly undermine the
powerful spatial isotropy.principles that otherwise generally apply. Specifically, they
require a chiral molecule (which can support transitions simultaneously allowed by both
electric dipolé and quadrupole forms of coupling) held in a fixed orientation [122].

The most frecent experimental work on OAM transfer in atoms is that by
Giammaneo et alg[124] whose results we outline below. Giammanco et al’s results
confirmed the @arliest theoretical finding and subsequent experimental evidence [107,
109,110} regarding the lack of influence of the photon orbital angular momentum on
electric dipele transitions.
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6.7. Giammanco et al. experiment

In their experiment Giammanco et al. [124] aimed to find out whether or not the orbital
angular momentum of light has the same ability and manner of interacting with_atoms
as occurs for the spin angular momentum (SAM). They used laser light with different
combinations of OAM and SAM to excite Rb atoms. The laser radiation was selected
to inhibit or enhance the fluorescence according to the selection rules forsthe eleetric
dipole transitions between the ground state and the first excited doublet statess Their
experimental results showed that the orbital angular momentum does not.engage with
the atomic internal (electronic) motion in dipole active transitions.

Figure 13 shows the absorption profiles in the case of left ‘and right circularly
polarized untwisted light (without OAM) and twisted light (with OAM)='By sweeping
the laser frequency in a range of 10 GHz across the Rb resonaneé profile, Giammanco
et al. were able observe the four minima in the transmission corrésponding to the
transitions from the ground state of ®*Rb (F3, Fy, inner minima) and*"Rb (Fy, F}, outer
minima). The Doppler width at their working temperature was about 529 MHz. This
enabled the resolution of the hyperfine structure of the ground state (3.03 GHz and 6.83
GHz for ®Rb and 8Rb, respectively).

Figure 14 shows the fluorescence signals measured umder the same experimental
conditions as given in Fig.13. As expected, the fluoresgence exhibits a complementary
behaviour with respect to the absorption.»The profiles of the transition lines do not
exhibit significant variations within the limits of.the experimental error; and with both
polarizations and OAM, no disappearance of the electric dipole transition effects was
observed.

As pointed out, the experiment was an attempt to verify whether the total angular
momentum of a light beam with,an OAM component induces fluorescence excitation
on alkali atoms or inhibits it, depending on the values of the OAM and of the SAM of
the beam. Theoretical results [107, 86] suggested that this effect cannot be observed
in transitions essentially déscribed by the electric dipole approximation, but only when
considering (at least) the higher quadrupole order. In short, these results corroborate
the theoretical predietions [107]s

The first experimental confirmation of quadrupole transitions involving twisted
light interacting Avith an!’Cat ion was given in [123], in which Schmiegelow et al.
demonstrated that.a transfer of OAM from the beam to the internal electronic degrees
of freedom could be observed for a quadrupole transition of a single trapped ion. This
paper is briefly/summarised in the next section. More recent related work extended
research by bothytlieory and experiment involving 4°Ca™ ion is that by Afansev et al
[125] who also ‘considered the effects of the position of the atom relative to the beam
axis:
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Figure 13. Transmitted radiation with modes OAM=0 (black open squares) and

OAM=1 (gray_full
polarization (bottom

)

Squares
of the laser beam transmitted radiation with modes OAM=0

) for left circular polarization (top) and right circular

(black open 'squares) and OAM=1 (gray full squares) for left circular polarization

(top) and right circular polarization (bottom).

The black squares are not clearly

visible because they overlap with the gray squares. Reproduced with permission from

[124]:

6.8. Schmiegélow et al==experiment: OAM transfer in quadrupole transitions

In their experiment Schmiegelow et al [123] excited an atomic transition with a vortex

laser beam and demonstrated the transfer of optical orbital angular momentum to the

valence'electron (i.e. to the internal degrees of freedom) of a single trapped ion. They

obsérved stromgly modified selection rules showing that an atom can absorb two quanta

of langular momentum from a single photon: one from the spin and another from the

spatialbstruicture of the beam. Optical vortex beams possess both an axial field gradient

and a transverse (i.e. in-plane) gradient both of which can drive quadrupole transitions.
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41 Figure 14. Rb fluoreséencé with modes OAM=0 (black line) and OAM=1 (gray line)
42 for left circular polarization (top) and right circular polarization (bottom) of the laser
43 beam. ,The black squares are not clearly visible because they overlap with the gray
44 . .
45 squares, Reproduced with permission from [124].
46
47
48 . . .
49 In particular,the core region of the LG o beam possesses a strong field gradient, even
50 though the intensity@t the core vanishes. The interaction of such a gradient field with
g; the quadrupole moment involves the transfer of OAM from the LG;, mode to the
53 internal dynamics of the trapped ion.
54 The experiment by Schmiegelow et al. involved a single laser-cooled *°Ca™ ion in a
gg microstructured, segmented Paul trap. The positioning of the ion along the beam was
57 achieved to a sub-micron accuracy by adjusting the voltages of the trapping electrodes.
58 The keyaspects of the experiment are the use of a quadrupole transition, the focusing
59

of the probe beam close to the diffraction limit and the use of a well-localized atomic
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(ionic) system.

7. Radiation pressure forces and torques

As pointed out earlier, the Doppler effect has been exploited in laser cooling of,atoms by
a process called ‘optical molasses’ (see refs. [42] to [46]). The principlesiof laser cooling
have been explained in section (3.1). When two counter-propagating light beams are
used, the atoms in both directions are slowed down. For atomic motion in diréetions
transverse to the original axis one needs further pairs of orthogonal configurations which
act to slow the motions in an analogous manner, leading to the cgoling ofsthe motion
in all three directions: this is essentially the optical molasses effect (see refs. [126] to
[129]). e

The effects of structured light on atom dynamics, in bethits forms, namely the
gross motion and the internal motion have been thoroughly investigated (see references
(refs. [130] to [137]). These investigations have shown that the interaction of light
carrying OAM with atoms introduces new significant featuresymamely that (i) there
is, in addition to translational effects, a light-induced torque which causes a rotational
motion of the atoms about the beam axis and; (ii),there are characteristic regions of
maximum and minimum intensity in the beam ¢rossésection. The forces and torque are,
in general, time-dependent as well as position-dependent. As we discuss below, the full
space- and time-dependence of the motion is; in general, characterised by a transient
regime, followed by a steady state regime after a'sufficiently large time has elapsed from
the instant in which the beam is switehed on \(typically for elapsed times much larger
than the characteristic time-scale of the,problem).

7.1. Derivation of optical forces-and torques

To derive the optical forces acting on a hydrogenic atom or molecule due to application of
laser light we initially adopt a guantum mechanical approach based, once again, on the
simple picture in which the atomic motion is described in terms of the gross dynamics of
the centre of mass and the iternal dynamics is in terms of a two-level system [132]. We
shall see how the optical ferces emerge naturally from the quantum-mechanical approach
by appeal to the ¢lassical limit.

The total Hamiltonian of the light and atom and their interaction can be written

as follows
2

P
H = hwa'a + IV hwor'm — i [71 f(R) — h.c.] (106)
where 7 and f(R) are given by
7 =me  f(R) = (D &)Fu,(R)e©w»® /p (107)

where 7 and 7' are the ladder operators of the two-level atom; P is the momentum
operator of the centre-of-mass with M the total mass and wy the transition frequencys;
a andya’ are the annihilation and creation operators of the laser light of frequency w.

Page 48 of 132



Page 49 of 132

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JOPT-105253.R1

Atoms in complex twisted light 49

Our goal is to derive expressions for the forces acting on the atomic centre of
mass appropriate for the case of a coherent optical beam whose close approximation
to classical wave means that the a and a' operators for the light become c-numbers
involving a parameter b such that

a(t) — be ™" a'(t) — bet, (108)

The interaction between the two-level atom and the laser light is given by the last term
in Eq.(106). This is given above in the truncated multipole approximation as welbas the
rotating wave approximation and is evaluated at the centre of mass position vector R.
The function f(R) in Eq.(107) involves Dy, the transition matrix ¢lement of the atom,
including both dipole allowed and quadrupole allowed transitions.,The atom is subject
to a Laguerre-Gaussian light mode characterised by the wave polarisation vector €, the
mode amplitude function, Fy;,,(R) and phase Oy, (R), given by expressions of the forms
in Egs. (52) to (54) with s = 1 (denoting forward propagation) in the latter case. Here

U
C, V2, 2p? "
]:k;lp(R) — EkOO p'” ( p) LL” (L) e_p /w (Z)) (109)

we have

(1+22/25)2 \ w(z) w?(2)
2
Ouy(R) = % Yo+ (2ph |14 D (2/2R) + ke, (110)
R

The mode indices | and p determine the field intensity distribution and are such
that [h is the orbital angular momentum content,carried by each quantum.

The classical limit demands that.the position R and the momentum operator P
of the atomic centre of mass should take their average values r and Py = MV, where
V is the velocity vector of the centre of mass. This scheme treats the centre of mass
motion classically while the internal atomic motion in terms of the two-level system
continues to be treated quantum mechanically. This is a good approximation provided
that the atomic wavepacket spread is much smaller than the laser wavelength, and that
the centre of mass recoil energy 1n atransition is much smaller than the linewidth. The
density matrix of the system'can then be written as

ps = (R 1)3(P — MV)p(1), (111)

where p(t) is the density matrix of the internal two-level system. This follows the
standard time evolution

dp 7

—= —=H R 112

i LI+ Ry, (112)
where Rpvis an.added term representing relaxation in the two-level system. The

evolution of the density matrix is governed by the optical Bloch equations which are as

follows
Por (1) —(Ty —iA) 0 2f(r) | | pu(t) —f(r)
Pralt) (= 0 —(Dy +1iA) 2f*(r) p2(t) | + | —f(r) (113)
p22(t) —f*(r) —f(r) —I p2a(t) 0
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The relaxation processes in general involve two types of rates I'y » and are assumed to
include both elastic and inelastic collision rates I'.,; and such that

r
Iy =14 Iy = 5 + Lo, (114)

where I' is the de-excitation rate of the upper state of the atomic transition.. In the
optical Bloch equations A is the effective velocity-dependent detuning given by

A:AO—V@V, A():a)—a)o, (115)
so that A is the static detuning. We have also set
p = pexp(—itV - VO). (116)

and applied the sum rule p1;(t) + p22(f) = 1. The average force actingsom'the centre of
mass is given by

(F) = —(ir(pVH)) (117)
and this leads to a total force that is the sum of two differens, forces: a dissipative force

(Faiss) and a dipole force (Fgipoe). The two radiation forees are related to the density
matrix elements as follows

(Faiss(r,1)) = — BVO(p3, f(r) + P21 (1)) (118)

(Bupore(e.1)) = i (75, fa) — P ) (19)
where Q(R) is the position-dependent Rabi\frequency

AQUR) = 2|(dis - &) F(R) iy, [(R) = QR)O™ /2. (120)

The gross motion is that of the centre of mass in response to the light fields. Once
the total force (F(¢)) is known the atom dynamics can be determined by application of
Newton’s law, written in the form

2
M = (NS (12)
This, together with the initial conditions, namely the initial position vector components
R(0) and initial veloeify vectomeomponents V(0), are sufficient to determine the classical
trajectory R(t) and-the ¢orresponding velocity V(t) = R(t). The solution also provides
information about the time-dependent torque acting on the atomic centre of mass.

A kind of fransient atom dynamics arises initially, just after the light is switched
on, and depends on the characteristic time scale of the system. This type of dynamics
becomes important when the excited state of the atom has a relatively long lifetime I'~!
(T" is thefde-exeitation rate of the upper state of the atomic transition) [137, 138, 140].
An example of ‘Such a scenario was studied in detail by Carter et al. [138] for the case
of rafésearth.ions such as Eu®* ions whose transition ®Dy —7 D; has a wavelength and
transition tate A = 614 nm and I' = 1111 Hz, respectively [139]. Although transient
dynamics is of interest, most attention has focussed on the the steady state forces as in
the case of laser cooling and trapping.
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7.2. The steady state forces and torque

The steady state forces emerge on taking the limit ¢ — oo. This corresponds to setting
time derivatives in the optical Bloch equations to zero. In the steady state we have
I't << 1, and we find that the steady state forces become position- and velocity =
dependent and consist of two types. The force acting on a moving atom subject to a
single LG beam propagating along the positive z axis turns out to be in the form

<F>klp = <Fdi88>klp + <Fdipole>klp7 (122)

where (Fy;ss) rp 18 the dissipative force

VO, (R)/4
A%lp(R‘a V) + Q%ZP(R)/Q\_F ]_‘12/4) , (123)

(Faiss (R, V)>klp - hFQilp(R) <

and (Faip0e(R, V)) kip 1 the dipole force

1 Aklp(R, V)
F. — _2HO O 124
Fapote (R, V) = =5 001y (R) “p(AZZJR,V)+Q%zp(R)/2+F2/4 B

where Ay, (R, V) is the detuning which is both position- and velocity-dependent
App(R, V) =Ag =V - VO, (R,V). 'S (125)

Both the dissipative and dipole forces imvolved in the/context of non-vortex light are
well known in atom cooling and trapping. The dissipative force is a net frictional force
responsible for optical molasses, and the dipole foxce corresponds to a potential which
traps the atom in regions of extremumrlight intensity.

A steady state light induced torque acts on the atomic centre of mass due to
interaction with the twisted light as can be shown by examining the velocity-independent
force terms. Setting V = 0 and.foriumotion near the beam waist, i.e. z << zg we have

2
<F2iss(R)>klp = gA2 £ Q2Qk(l§{()17; +12/4
0 klp

There are two vector components of this force: an axial component and an azimuthal

[ki + ég&} . (126)

one. Only the azimuthal compenent is responsible for the torque about the beam axis.
Associated with thedightiinduced force is a torque given by

T.5 1 x (F). (127)
We find

02, (R
d | it 12 (128)

UGS grom 02, (R)/2+T2/4

Berry and Shukla [140] referred to forces akin to the above azimuthal component as a
curlforce. Imthe saturation limit of high intensity corresponding to 2 > Agand Q > T’
we obtain

1
T ~ Shila. (129)
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This relation of the light-induced torque acting on the atom was first derived by Babiker
et al. [130] and has a simple interpretation as follows. Since a torque is, by definitien,
angular momentum per unit time, the above saturation torque arises from an angular
momentum (A delivered over a time period of (I'/2)~!. The general form of thé light-
induced torque displays both velocity- and position-dependences, and so has well defined
values along the atom trajectory.

7.8. Atom trapping: dipole potential

The dipole force is the gradient of the dipole potential

0 Ql%lp
(U(R))klp:hA In [1+ ® )/2]

- T (130)

such that

< dzpole>kl R>>klp : (131)

As in laser trapping with ordlnary light, the dipole potential dueto the LG beam traps
atoms either in the high intensity regions of the LG beam for Ay < 0 (red-detuning),
or in the case of blue detuning, Ay > 0, in the low-intensity (i.e. dark) regions.

As an illustration we consider the LG donut mode propagating along the z-axis
for which [ = 1, p = 0. At focus, i.e. in the beam waist plane z = 0, the dipole
potential has a minimum at radial position p.= py =g/ V2. The locus of the minimum
is therefore a circle in the (z,y) plane given byaa? + y? = p3 and the atom is trapped
for Ay < 0. Expanding the potential expression at focus, i.e. (U(R,z =0)),;, to a
harmonic approximation about py we have

1
(U)o = Uo + §Ak10, (0 — po)? (132)
where |Up| is the depth of thepotential

1 02, (R)/2
Up = =hAo ln'1 s =200 133
075 “n{*AMrm] (133)
and Ao is the effective elastic modulus given by
2hA e Cf 0%
Apig= DA Be 12 920 5 |l|0 0. (134)
o +e Cmo roo/2 +12/4 wh

An atom of mass M, trapped in this potential would exhibit a vibrational motion about
- : 1/2
p = po of angular frequency approximately equal to {Ax10/M} 7~

8. Doppler shifts and atom dynamics

8.1. Azmmuthal and other Doppler shifts

The light-induced force and torque involve the effective velocity and position-dependent
detuningAy, given by

Aklp =W — Wy — V@klp -V. (135)
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This can be written as follows
Aklp =W — Wy — 0. (136)

Because of its dependence on velocity the term ¢ is identified as a Doppler shiftinOn
substituting for the LG phase function ©(R) we obtain

k %
- ( 2p22)vp+_¢
24+ z2p P

kp® 227 2p+ [l + 1)z
1— S 137
+ {2(224—2]2%) [ z2+z]2J + 22+ 2% + (137)

where V,, V, and V are the velocity vector components in cylindrical polar‘coordinates.

It is seen that ¢ consists of four terms: an axial term 0,4, a'termoarising from the
Gouy phase 0gouy, @ beam curvature term deyrpe and an azimuthal 6111 0,2imauen, SO that

0= 5am’al + 5Gouy + (5curve + 5azimuth- (138>

The axial term 0. is identical to a Doppler shift due to a,plane wave of wavenumber
k travelling along the beam axis

5aacial = k‘/;: (139>
and the Gouy phase Doppler shift is 'S
2p+ |l +1)zg
0 = b 14
Gouy ( 2 T 212% V. ( 0)

For LG beam with low integer values of [ and p the, Gouy phase Doppler shift would be
negligibly small since typically zg <> wgmAs will be discussed later, this term becomes
significant, for large values of [ and/or p:

The curvature Doppler shift is given by

kpz kp? 222
Ocurve = | —= | V. 1-— V.. 141
<z2—|—z§2) p+2(z2—|—z%g) [ 22 + 2% (141)

This Doppler shift is causéd by*the wavefront curvature spreading of the beam in the

radial and axial directions and could be observable under appropriate conditions. Finally
a Doppler shift which/arises dizectly from the vortex nature of the twisted light is the
azimuthal Doppler shift'swhich is given by

G (142)

5azimuth =

This is directly jproportional to the winding number [ characterising the angular
momentum property of the twisted light, but it is also inversely proportional to p
the radial coordinate of the atom. Note that the dependence on [ includes both the
magnitude and the sign of the winding number.

Experimental work on the azimuthal Doppler shift was reported by Luo et al.
[141] and Aramaki et al. [142]. Luo et al detected the Doppler effect associated with
light ' beams carrying orbital angular momentum in ‘left-handed materials’ (LHMs).
However, they reported that the azimuthal Doppler shift, proportional to the orbital
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angular momentum of photons, was not reversed compared to conventional positive-
index materials. They attributed this result to two joint contributions, one,from
the negative phase velocity and the other from the inverse screw of the wave-front.
Aramaki et al. performed a modified saturated absorption spectroscopy to separate the
components. The optical vortex and a plane wave are used as a probe beam and pump
beam, respectively. Although the plane-wave pump laser cancels thé axial-direetion
Doppler shift, the azimuthal Doppler shift remained in the saturated dip. The spatial
variation of the dip width provided information on the azimuthal Doppler shift.

8.2. Steady state atom trajectories

The dynamics of the atom is governed by Newton’s second law, togetherswith well defined
initial conditions. The solutions leads to the trajectory R(t) as well as other dynamical
properties of the system. However, the analytical form of the trajectery R(f) cannot be
determined in general and there is, inevitably, a need to resort to computational analysis.
One of the significant properties that can be verified directly is that the trajectories for
two cases in which the atom is subject to single separate LG, beams with opposite but
equal signs of [, are identical except for a reversal of.the direction of atom rotation.
This is consistent with the dependence of the light-induged torque on the magnitude
and sign of [.

8.3. Atoms in multiple twisted beams

It is well known that Doppler cooling'leads to the optical molasses effect in multiple
beams in one, two and three dimensionsas We expect a form of optical molasses effect to
occur for twisted beams, but the description of optical molasses in this context demands,
as a first step, the specification.ef éach of the multiple beam field distributions relative
to the same (the laboratory) coordinate frame. This step requires the application of
coordinate transformationsetForrelatively weak beams the nett light-induced force due
to all beams in the molasses configuration is the vector sum of individual light-induced
forces and the atom. trajectory in the multiple beams arises from the solution of the
equation: mass times ageeleration equals the vector sum of all forces entering Newton’s
law.

For illustration we ‘consider a basic twisted light beam of frequency w, axial
wavevector k_and quantum numbers [ and p coupled to an atom or an ion at a general
position vector R =4(py¢, z). In cylindrical coordinates, the phase Oy, (R) and the
Rabi frequeney €2,,(R) are taken as follows

@klp =lp+ kz (143)
and

I )
Uy (R) = % Clyy (ﬂ) (/)L (%) (144)
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The above expressions apply for a Laguerre-Gaussian beam in the large Rayleigh range
limit z < zg and also setting w(z) = wy, which also means disregarding beam curyature
effects.

The steady state light-induced forces acting on the centre of mass are given above
but with the approximate phase O, (R) and Rabi frequency 4, (R), as in Egs.(143)
and (144). These expressions are in cylindrical polar coordinates with“he direction of
propagation along the positive z-axis. However, in order to derive the dymamics for
multiple beams, we need to express the position dependence in Cartesian coordinates
R = (z,y,2), using p = /22 +y? and ¢ = arctan(y/x). The expressiomfor an LG
beam whose axis of propagation is in an arbitrary direction is obtained by applying two
successive transformations with the first transformation involvinga retation about the
y-axis by an angle 6 and the second is another rotation about the z@xis by an angle .

An appropriate choice of 8 and v leads to the force digtribution due to a twisted
light beam propagating in any desired direction. This procedure,allows consideration
of geometrical arrangements involving counter-propagating beams (especially those
corresponding to one-, two- and three-dimensional opticalumolasses configurations).

As a specific application of the above scheme we consider optical molasses of
magnesium ions Mg" in multiple beams. The réquisite, transition is of frequency wy
corresponding to the wavelength A = 280.1 nm and tramsition rate I'/2 = 2.7 x 10°
s71. The Mgt mass is M = 4.0 x 10~%64kg. To have frapping in regions of high field
intensities we must choose red-detuned lightisuch that Ag = —I'/2 and we assume a
value of the beam waist wy = 35\. The equationief motion for the Mg" ion is written
as

d2

M-sR(t) = Ei:m-). (145)
The sum is over all individual force wector contributions due to all beams present in the
configuration. The simplest case is the one-dimensional molasses configuration, which
involves a pair of identical cour?cer—propagating twisted light beams arranged along the
z axis. Figure 15 (top left)shows the trajectory of the Mg™ ion with i} = —ly = 1
and p; = ps = 0. “The initial.radial position is p = 10\ and the initial velocity is
V(0) = 5 m s~ '2. The motion. is for a time duration equal to 4 x 105 'L

Once the Mg* ionis trapped in the high intensity ring which is located at the
fixed focus point z=0, it rotates clockwise about the common axis. This rotation is
due to the light-induéed torque which, in the saturation limit, is given by [(T)| =~
[1hI'/2 — I;hL /20= KT

It igreasy toysee that the motion of the trapped ions at azimuthal speed v, gives
rise to an electrie current equal to e/T = ev,/2mwpy per rotating axially trapped particle.
Withmy ofiabout 2 m s and py ~ wy = 35\ we have an ionic current of the order of a
fAlper parficle. Note that the electric current scales with the number of trapped ions;
if a'million or so ions are involved they can produce an electric current on the nA scale.
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Figure 15. Topnleft: the pathyof a Mg™ ion in the one-dimensional twisted
optical molasses created. by two counter-propagating Laguerre-Gaussian beans with
lh, = =l = 1 andp; = py.= 0 propagating along the z-axis. The initial velocity
is v.= 52 m s~ '.\ Top right: trajectories of two Mg*t ions with different initial
locations subject to astwo-dimensional optical molasses formed by two pairs of counter-
propagating twisted beams, with [; = 1 and p; = 0 for ¢ = 1 — 4. Each ion ends
up motionless en the locus of lowest potential energy minima corresponding to two
oblique  orthogonal eircles, as explained in the text. Bottom: Trajectories of eight
MgT ions inva three-dimensional twisted optical molasses formed by three pairs of
counter-propagating Laguerre-Gaussian beams with [; =1 and p; = 0 where ¢ = 1 —8.
The initial velocity of each of the ions is v, = 5 ms™!. The ions end up motionless at
the-corners of a cube of side wy.
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8.4. Twisted molasses in two- and three- dimensional configurations

The two-dimensional molasses configuration arises when we introduce in addition te'the
pair along the z-axis of waist wy a second pair of counter-propagating beams along the
x-axis of waist w(, which can be equal or different from wy. The net force in this case'is
the vector sum of the individual forces from the four beams. The appropriate functional
dependences of three of the beams are obtained from the expression of a beam along the
z-direction using transformation equations for axis rotation. The trajectories in Fig.15
(top right) are of two Mg™ ions initially located at different points with, each having
an initial velocity of v, = 5 m s~!. The ions are subject to the four'beams where each
beam of has a waist wg, an azimuthal index, [ = 1, and radial index; p = 0.

The total torque about the common axis arising from each pairdsizero. This is
because the choice of [ values produces identical torques of oppesite senses which cancel
in this case. Thus each ion ends up at a specific fixed point; depending on the initial
conditions and it remains at that fixed point essentially motionless. To understand
this, we should note that the deepest dipole potential.well issfour times the depth due
to a single beam. The potential minima are situated on the locus of spatial points
defined simultaneously by two equations 22 4 y?> = w?/2 and 3? + 2> = w'z/2. For
w'y = wy these two equations describe two ortliogonak oblique circles representing the
intersection curves of two cylinders of radii wy/V2/Solving for 2 and y we have z = +z
and y = +/wi/2 — 22.

The locus of spatial points where the dipolé:potential is minimum can be described
by the parametric equations

z(u) = (w)/V2)cosu
y(u) = (wifad2) s u
z(u) = i\/w8/2 (w3 /2)sin*u (146)

All Mg™ ions in the two—dimel;@onal configuration of orthogonal counter-propagating

pairs of twisted beams will be#rapped at points lying on one of the two oblique circles,
as determined by the initial€onditions. An ensemble of Mg* ions with a distribution of
initial positions and welocities will populate the two circles, producing two orthogonal
essentially static Mgfnion loops. Associated with this system of charges would be a
Coulomb field whose spatial distribution, for example, for ions uniformly distributed in
the ring can easily be evaluated. When the values of | are such that each pair of beams
generates a [torque, themmotion becomes more complicated, but the ions will seek to
congregate in the region of potential minima, while responding to the combined effects
of two grthogonal torques and orthogonal axial cooling forces.

When a third pair of counter-propagating beams is added to the two-dimensional
configurationy’orthogonal to the plane containing the original beams, we have a three-
dimensional configuration. In this case the deepest potential minima are located at
eight diserete points defined by the coordinates: © = :I:%7 y==+%L z= i%. These

V2
coincide with the eight corners of a cube of side wy, centred at the origin of coordinates.
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Figure 16. Time-of-flight image showing the donut shape characteristic of a atomic
cloud with quantized rotation. Figure reproduced with permission from the Ph.D.
thesis by A. K. Ramanathan [146].

Figure 15 (bottom) exhibits the trajectories of 8 atomsswhich,end up being trapped at
the eight corners of the cube.

8.5. The NIST-Gaithersburg experiments N

A number of experiments by Anderson etyal. [143] and Calde et al. [144] showed that
a Bose-Einstein condensate of sodium atoms,.can be trapped in the field of a donut
beam and a Gaussian beam or a sheet beam and with the atomic ensemble exhibiting a
quantised superfluid behaviour. The atoms. were made to rotate in the donut ring by the
light-induced torque [130] and constituted a relatively long-lived persistent current for
a time more than twenty timesithe duration for the atoms confined in a spheroidal trap.
A snap-shot image of the trapped atom is presented in Fig.16. The flow was observed
to persist even when there was a largen(80%) thermal fraction present in the toroidal
trap. These experiments open the possibility for investigations of the fundamental role
of flow in superfluidity and of realizing the atomic equivalent of superconducting circuits
and devices such as SQUIDs [145]. Atoms trapped in such ring-shaped traps could form
the basis of quantum motors. Generally such findings were hailed as paving the way
towards the realisatiomef atem circuits in the field of atomtronics [145, 147, 148].

9. Azimuthal Sisyphus cooling

9.1. Sisyphus éffect with twisted light

As described earlier the Sisyphus effect which uses ordinary plane wave laser light has
beensshown, to/provide an efficient cooling mechanism which has succeeded in cooling
atoms to gemperatures well below the Doppler cooling limit [44]-[58]. The point to
emphasise /here is that this cooling method is based on the creation of a standing
wave exhibiting polarisation gradients using counter-propagating laser beams. The
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polarisation gradients are responsible for the generation of spatially dependent light
shifts which result in spatially modulated energy levels along the beam axis. 5 This
interaction landscape is characterised by potential hills which an atom has to ¢limb
more than it descends in the processes of stimulated and spontaneous emission cy¢les
between the energy levels. The atom progressively loses its kinetic energy and slows
down.

An analogue of the Sisyphus mechanism has been predicted by Lembessis et al:
[149] concerned with the case of the azimuthal atomic motion in the,annular region
of maximum intensity when the atom is irradiated by two LG beams with linllin
polarizations, i.e. having orthogonal linear polarisations. The azimuthal ndetion arises
in the context involving two co-centred, co propagating LG beams; labelled 1 and 2, of
the same frequency w and axial wave vector of magnitude k. The beéams have the same
magnitude of the winding number |I| but differ only in the sign of [.

In the focus plane z = 0, the electric field consists of two in gquadrature fields with
the amplitudes proportional to cos({¢) and sin(l¢). The wave polarisation form varies
with angular position and is in general elliptical, displaying both linear and circular
forms at certain angles, as ¢ varies. The situation is equivalent to the conventional
polarisation gradient due to two counter-propagating, plane wave light beams where the
changes in polarisation are cyclic, with a spatial periodicity of the standing wave along
the z-axis equal to the wavelength of thelight A = 2m/k. Here the periodicity occurs
in the azimuthal direction. However, the spatial extent of the polarisation gradient
depends on the beam waist w, as well as the winding number .

We now consider the atom dynamies in such a light field and we focus on an
atom with transitions between a hyperfine ground state J, = 1/2 and an excited
state J, = 3/2. The Clebsch<Gerdan coefficients of the various possible transitions are
indicated by the numbers in theinset of Fig.17 with the squares of the numbers indicated
representing the corresponding transition probabilities. We also make the assumption
that the atomic motion is restricted in/the annular region of radius py = wo+/|l|/2 where
the intensity of the beams is highest (when p = 0). The optical potentials associated
with the two Zeeman sub-level shifts are given by
2

Us =ghi&af2 Feos(2]l]0)] (147)
where sq is the saturation parameter at po = wo+/|l|/2 and Aj is given by
/2
A6 — 50A0/2; S — m (148)

Here Q44 1s themRabi frequency at py which, in the case where p = 0, is given by
Qnaz = QooCloe™1/2(J1]/2)117220172 " For large values of |I|, we may use Stirling’s
approximation‘and we have Q00 = QuooClpoll|!/+/27|l|. The potentials U, are the
optical potentials for the | J+1 /2> sub-levels. It is easy to see that the minima of one
potential c¢orrespond to the maxima of the other and vice versa, and the maxima and
minima correspond to positions where the polarisation is ¢4 (purely circular).
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Suppose now that the angular position of the atom within the annular ring is
¢ = w/4|l| and that the light field has a circular polarisation 6_ . If we assume that
the atom is optically pumped to level | g_1 /2>, the population of the level | g1 /2> is'then
zero. Furthermore we consider that the detuning is negative so that both light shifts
are negative. If the atom is shifted within the annular trap to an angular pesition af
¢ = 3m/4]l| the level populations are reversed. Finally if the atom is at angular positions$
where the polarization is linear, the two sublevels are equally populated.. This scenario
is summarized in Fig.17.

When the light intensity is sufficiently low so that the excited state population is
negligible the cooling of the atomic azimuthal motion can be explained with@eference to
the inset to Fig.17. This shows the energy levels for the J;, = 1/2#%5 Je.= 3/2 transition
and the relevant transition probabilities. If the atom is locafed at’é = 7/4|l| where
the polarization is ¢_, the absorption of a o_ photon takegithe atom’from | g1 /2> to
}e,l /2>. This process is followed by a decay of the atom from the state ‘e,l /2> to the
state ‘g_l/g>. If the decay is from |e_1/2> to ‘g+1/2>, the atem can absorb a o_ photon
and have another chance to arrive at |g,1 /2>. By contrast,absorbing a o photon when
in }g_1/2> promotes the atom to ‘6_3/2> from whieh the atom can decay to ‘g_1/2>.
It follows that in the steady state all the atomig'population is optically pumped into
|9—1/2). If the atom is at ¢ = 3w /4[l| where the polarization is 6., the above scenario
is reversed.

The damping of the atomic motion in the Sisyphus effect is characterised by a
damping coefficient which can be calculated as follows. Let us assume that initially the
atom performs circular motion at & radius.po = wo/ \/m with an azimuthal speed vy.
As explained in Table 1 and with referenge to Fig.17, the atom in effect sees an azimuthal
standing wave of an equivalefit, wavelengthi\y, = 7w,/ \/m . We define the two-level
relaxation time as 7 = I'"! and-amoptical pumping time between sublevels 7p = I"~1.
In general the atomic internal state does not follow adiabatically the variations of the
light field. To take into acceuntithis fact we introduce two adiabaticity parameters: one
is a two-level atom adiabaticity parameter €4, defined as the ratio between the length of
the arc travelled by the,atom during its internal relaxation. The other is a characteristic
length of the azimuthalspatial variations of the laser field (i.e., the wavelength \s). For

€ We write
L UsTR Vs 2|l

y . 149
€ Ao Twol’ (149)

The corresponding multizlevel parameter €} is defined as

VyTp Vg 2’”
ey = N = D (150)

At lowylaser powers we have € > €4 since I << T', i.e. T << 7p. The condition

for the nomradiabatic effects coming into play is then approximately given by € = 1,
whichyleads to
s/ 2|1

~T. 151
p— (151)
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Figure 17. Variationsof the light-shifted energy levels with azimuthal position ¢ and
the steady-state populations (full circles) for a J, = 1/2 ground state interacting with
two counter-propagating LG light beams in the lin L lin configuration and negative
detuning. The grou{Ld state is light-shifted into the state g_;,3, which varies with ¢
as shown by the full curve, and g, /2, whose variation with ¢ is shown by the dotted
curve. The atomds trapped in the donut annular region and is assumed to be rotating
with veloCity vg.n /' The most populated energy sublevel is the one with the largest
negative light shift. The inset shows the processes of emission and absorption involved
in the azimuthal Sisyphus effect between J. = 3/2 and J, = 1/2 sublevels.The time lag
Tp.associated with the optical pumping is responsible for the atom climbing on average
more potential uphills than downhills as it rotates. Reproduced with permission from
[149].
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The resulting azimuthal damping force is then given by
F¢ = —0pUy. (152)

where oy is an azimuthal damping coefficient. This coefficient can be estimated
qualitatively following Dalibard and Cohen-Tannoudji [58] and is given by

2
27 AO 8h|l|A0
ag=n|—" ) 20 , 153

: <ww0/\ﬁ2m> Y "

Associated with the friction force is a torque about the common beams’ axis directed

along Z, operative at py = wg/+/2|l| and given by

4/201[ s
T=rxF,= %z (154)
0

~

It is seen that the damping coefficient is proportional to the.magnitude of the winding
number [, while the torque is proportional to the square root of [{|thréuigh its dependence
on the radius of the annular region. Hence the higher‘the value of |/| the larger the
annular radius, and consequently the larger the numbeérief potential hills there are for
the atoms to climb. Note that the damping coefficient andythe torque are inversely
proportional to the beam waist wy. The larger thesbeam, waist the further apart are the
potential hills and this amounts to less effective’damping and smaller torque due to the
potential hill climbed by the atom.

As an illustration we consider Cs atomsiinteracting with a light field of wavelength
A = 852.35 nm, which can thus excite the transition 625;/2 — 62P; /2, where the upper
state 62Ps /o has a spontaneous emission rate Ih= 3.25 x 107 s7!. We assume a detuning
Ay = 2I" and the Rabi frequency (2 isitaken to be 0.1I'. These atomic transitions and
orders of parameter were usedvin the pioneering experiment that confirmed the validity
of Sisyphus cooling mechanism [47]. Finally, for the LG beams we take |I| = 20 and the
beam waist wg = 10A. With these parameters Eq.(151) yields the azimuthal velocity at
which Sisyphus effect COMMENERS a5 Vg= 3.6 cm s~1. We have made use of the following
relationship [58] giving the pumping rate IV in terms of I and the saturation parameter
[V = 2I'sg/9. The value of the jazimuthal damping coefficient corresponding to the

L. For the same parameters,

above parameters turns out to'be a, = 4.65 x 107*?kg s~
the azimuthal velogitysin the Doppler limit is v, = 8.82 ¢cm s™! approximately twice the
azimuthal velocity at which the Sisyphus effect commences. Both are much larger than

the recoil velocity of 0.35'em s~

9.2. Comparison with other azimuthal cooling mechanisms

It is instructivedo compare the Sisyphus cooling mechanism with other azimuthal cooling
mechanisms. The Doppler regime for a twisted single (TS) beam involves a torque acting
on/the twoslevel atom which has a magnitude at the radial coordinate py = wo+/|l|/2
(whexe the Rabi frequency maximises), is given by:
/4

Tre = hI'l )
s A+ Q2. /2 +T2/4

(155)
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This torque is proportional to [ and so can be positive or negative. It is easy to
verify that it depends on the radial but not the angular position of the atom. In ghe
saturation limit, achieved at high intensities, the torque becomes Trrg ~ [Al'/2, whichyis
position-independent. In the twisted molasses (M) situation, which involves two ¢ounter-
propagating donut beams, also within the Doppler regime, the atom experiences a torque
of magnitude given by:

hkIATQ?

T — max - 1
MEATE 2, 2+ 12/4)2" (156)

max

where v, is the axial component of the velocity. This torque is also proportional to [ and

4hklAQ
02

max

in the high intensity limit we have T ), =~ > v,. So this torque decreases with
increasing intensity. By contrast, here the general torque in the Azimuthal Sisyphus
effect emerges as

8hll|Ag
= w2l Ve,

where A is the static detuning, applicable here as the 'Doppler effect is negligible at

Ts (157)

low velocities. This torque is proportional to the azimuthal welocity and the magnitude
of [, and inversely proportional to the beam waisti,wgs, It is a function of the radial
coordinate p, but it does not depend on the light intensity. Significantly, this torque
is proportional to the detuning A, which can be/positive, or negative. This suggests
that the Sisyphus effect is a mechanism withywhich we can accelerate or decelerate the
azimuthal atomic motion by simply changing thesign of the detuning, as in the twisted
molasses case. This may be exploitédsfor controlling the azimuthal motion in different
types of atomic samples trapped in annular regions. We also see that the general torque
in the azimuthal Sisyphus effect is inverselysproportional to the relaxation rate I while
in the case of Doppler cooling it isidirectly proportional to I'. This reflects the different
physical processes that are behind the'generation of the two cooling mechanisms.

A crucial parameter in thiicontext is the beam waist. In the case of the azimuthal

Sisyphus effect the torque is inversely proportional to the square of the beam waist.
In the annular region, wheré p =/wo+\/|l|/2, Eq.(157) yields Ts = %U(ﬁ. Thus
twisted beams with large crosssections, i.e. weak focusing, will result in smaller torques.
This is because as«the,beam svaist increases the characteristic length of the azimuthal
spatial variations of the laser field (i.e., the "wavelength” \;) becomes larger. This
is equivalent to.a Sisyphus effect in a field with a larger wavelength and thus to a
smaller Sisyphus torqueaThe torque created by the Doppler mechanism does not depend
explicitly on the beam waist. This is clear in the case of irradiation by a single beam
in the saturation limit; for the case of twisted molasses as given by Eq.(156), a larger
beam waist (for a given power) results in a smaller Rabi frequency and thus to larger
torques.

Finally we must emphasise the role of the dependence on the winding number /.
In the Deppler mechanism a larger winding number leads to larger torques and this is
reasonable since it is associated with the angular momentum exchanged between the
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light and the atom. In the case of the azimuthal Sisyphus effect, again an increase
in [ leads to a larger damping. This is because the equivalent wavelength A\, becomes
smaller and thus leads to a more effective Sisyphus effect.

10. Ferris wheels

A Ferris wheel is a typical example of an optical lattice field with cylindrical symmetry.
The term owes its origin to analogy with a rotating fairground ride. Ferris wheeblight
fields were proposed by Franke-Arnold et al. in 2007 [101]. Since then-there have been
theoretical as well experimental works concerning the atom dynamics in the trapping
sites of this light field. Using optical Ferris wheels it is possible torereate hoth positive
and negative optical potentials that are either static or can rotate around the beam axis
at frequencies ranging from a few mHz to hundreds of MHzg102].

The generation of a Ferris wheel light field in its simplestaform requires setting
up two co-propagating LG beams with equal and opposite eptical angular momenta, i.e
such that [; = —Iy. This type of light field is characterised by bright petal-like regions in
a plane transverse to the propagation direction, and by using .G beams with different
indices [ and p it is possible to create dark lattices of.different geometrical patterns
[101]-[102]. Furthermore it has been shown that counter*propagating beams in three
dimensions would lead to exotic light fields where the bright regions have the form of
helical tubes twisted along the beams’ propagation direction [151]-[156]. However, prior
to the proposal of the optical Ferris wheel field,sbright ring-shaped lattices had been
used in optical tweezing experiments |158]-[159].

A superfluid ensemble trapped in‘arotating helical optical tube has been shown to
be associated with an artificialanagnetic field,[151]. The twisted tubes can be considered
as a waveguide for atomic motion ever distances significantly smaller than the Rayleigh
range of the beam (z << zg) [152], while connections between Gaussian lattices and
helical optical tubes have beensalso considered [152].

This scheme has been also proposed as an atomic guide along a helical path
where the atom oscillates globally between two turning points [153]. However, a slight
difference in the angular frequencies of the LG beams produces rotating helical optical
tubes (HOTSs), whichshave been used to study the flow of a cold bosonic ensemble
(superfluid) trapped in the helical pattern [151]. The rotation of the reference frame
(the helical pattern)can be used as laboratory equipment to demonstrate the difference
between quantum and elassical fluids [154]. The rotating helical pattern can also be used
as a detector of the slow rotation of an interferometer [155]. The study of atom guiding
inside a/rotating HO'T has shown that this mechanism can serve as an Archimedes spiral
for elevating atoms [156].

Recentlysuch a cylindrical lattice has been proposed as a mechanism for exhibiting
various realisations of a Hofstadter-Hubbard model with fermionic cold atoms, and it has
been shown that this set up in the presence of interaction might allow the observation of
fractional quantum Hall physics [160]. The Ferris wheel optical lattice has been used in
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an experiment where a trapped atom has been rotated and observed from its fluorescence
[97]. In another recent work the interaction of a two-level atom with a rotating Ferris
wheel light field has been shown to create artificial gauge electromagnetic fields which
propagate in closed paths [161]. Finally, besides lattices with cylindrical symmetry itnis
also possible to create other types of lattices by proper interference of LG beams. One
such example is the stack of ring shaped traps which is created by thé'interference of
counter-propagating beams with the same winding number [162].

10.1. Ferris wheel: co-propagating LG beams with I, = —ly

Consider a Ferris wheel light field composed of two LG beams labelled 1,2 co-
propagating along the z—direction and both are polarised along the @=direction, but

with opposite optical angular momenta l; = —l; = [. The eleettic fields of these LG
beams are given by:
1 . N
Eix(z,p,¢) = B} kOOCm,pué(p? z) exp(ikz £ @), (158)
with
1]
ul (p Z) — 1 \/ip 1] \/Ep
P V142225 \wo/1+ 2% /2% P \wo/1+22/2%
2
p
_ 159
< o (o A 1)
The total electric field of the optical Ferris wheel light field is the sum
E(z,p,¢) = Ekmq”pu;(p, 2) cos(le) exp(ikz)&, (160)

The intensity of the light fieldigythen I o [ub(p, 2)]* cos®(1¢). The presence of the factor
cos®(1¢) leads to the appearancesof 2bpetal-like high intensity regions. Figure 18 displays
the spatial distribution of the Ferris wheel light field intensity (in arbitrary units) for
the case where [ = 2 and p'="0Osand for the case where [ = 2 and p = 1 together with
the corresponding contour plets. These show the characteristic four petal-like intensity
distribution. The Ferris wheel pétal-like structure is richer when the radial index p is
different from zero, in which case the intensity displays p 4+ 1 petal-like regions.

The above light fields are not the only ones that can be constructed. Other
cylindrically symmetric optical lattices can be realised by interfering beams with
opposite | butralso different magnitudes. Such a scenario presents interesting features.
The maximum of the at-focus intensity of the field of a donut beam occurs at the radial
position gge= 1/|l|/2wo. Thus LG beams with different magnitudes of the azimuthal
index [ (have their intensity maxima at different radial positions. The electric field of an
LG beamphas a full-width at half-maximum (FWHM) equal to 2in(2)w, in the radial
divection. The interference of such beams is such that py g — pao = 2(n(2)wy. The two
LG fields have similar maximum amplitudes and are separated by one FWHM. This
leads toa dark Ferris wheel lattice with an approximately uniform depth in the radial
and azimuthal directions.
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Vg

Figure 18. (a)-(b):The intensity (arbitrary units)of a Ferris wheel light field at z = 0.
The field has been created from the stiperposition of two co-propagating LG beams
with [; = —Ily = 2. In the contour plot we see the characteristic four petal-like regions
of maximum intensity. (c)-(d):Theyintensity (arbitrary units) of a Ferris wheel light
field at z = 0. The field has been created.from the superposition of two co-propagating
LG beams with I; = —ls = 2 and p = 1. Tmrthe contour plot we see the characteristic
two zones of four petal-like regions of maximum intensity.

Furthermore, the optical Eerris wheel intensity patterns can be rotated in space
when the two beams have a glight difference in frequency Aw = wy — wy. There are
various methods for the gemeration of precise laser frequency shifts, as for example
by passing the light through @n acousto-optical modulator (AOM), or when circularly
polarized light is passed ‘through a rotating half wave plate [163] which, due to an
accumulated geometricior Berry phase [164], shifts the frequency by twice the rotational
speed of the waveplatésin the'context of optical tweezers [165]. A rotating Ferris wheel
due to a frequency difference Aw has an the electric field of the form:

E(z,p, o) = %EkOOC’”,pué(p, z) exp(ikz) exp(il¢) exp(iwit)
X |1 4 exp(—2il¢p) exp(iAwt)] &, (161)

The cotresponding intensity is such that I oc [u}(p, z)]? cos®(I¢ — tAw/2), indicating
that_the pattern rotates at a rate €,,, = Aw/2|l|. This rotating pattern can be used
as/an azimuthal optical conveyor belt for trapped atoms as in the experiment by Xu
et aly, [97]./ It is important to note that for both bright and dark Ferris wheel lattices,
the rotation is not subject to mechanical noise, which means that the pattern would be
extremely stable over rotational frequencies ranging from mHz to tens of MHz.
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10.2. Trapping of atoms

Consider now the interaction of atoms with a Ferris wheel light field. Once more we
concentrate on a two-level atom with a transition frequency wy interacting with a.static
optical Ferris wheel light field. The interaction is characterised by a Rabi frequeney
given by:
Q(p7 ¢) Z) = 2QOC\l|pué(pa Z) COS(Z¢)' (162)
Assuming large detuning, the trapping optical dipole potential is given by:
o hAOQQ(p7 (ba Z)

Ulp, b, 2) = ; = hAGRCH, (uh)” cos®(I9). (163)

Here €2y is the Rabi frequency associated with a Gaussian beam of the'same power

and beam waist as the two LG beams involved in setting, up the optical Ferris
wheel light field. The trapping potential (for Ay < 0) has minima at the radial
positions (po, ¢, 2) = (wor/|1|/2,n7/|l|,0) where n = 0,4, ..., 2[l} 1. An atom deeply
trapped in such a rotationally symmetric potential is.subjeet to'the simple harmonic
approximation about the potential minimum and irrespeetive of the value of [ the
potential has trapping regions on the common axisiof the beams. In the trapping
region located on the positive x—axis and for red detuning .the potential has a minimum
at (zo, Yo, 20) = (wo+/]1]/2,0,0), so performing & Taylor expansion about this minimum

we find
1 2 1 1
U(z,y) = U(|)l| - 5]{;90 (m — Wo\/ |l|/2) — §kyy2 — 51{222, (164)
where the derived force constants k;,ik,, k. "and U(|)l| are given by:
1Rt R an2file
T AT Agwdr(I =DV Agzga|l]!
2RO 1| e~
Ul = ol!["'e (165)

AL
For large values of [ [application of the Stirling’s approximation gives [! =
V27 |1 ]1| W exp(—|I] hand we'thenhave

PP (/197 L OSRO2\2ll ARQ2
SO AR 2T Dowdm T Ag22ad2\ /2l
2h3
e —. (166)
Aoﬂ'g/Q 2|”

where we _havetaken the detuning A, to be negative. The parameters k,, k, are larger
than k.since in general zr > wy. This means that in-plane trapping is much stronger
than axial trapping. A complete three dimensional trapping would then require an
additional trapping potential to be set up in the axial direction. In a Ferris wheel
scheme axial trapping can be considerable only for tightly focussed beams. Moreover
Eq.(166)sshows an interesting dependence on the index [, such that as [ increases
the, potential U(|]l| becomes shallower and a similar behaviour is shown by the axial
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potential. The in-plane potential depth decreases in the z—direction and increases in
the y—direction. Furthermore other features arise at other trapping positions suchyas
the point (o, Yo, 20) = (wor/]1|/2,0,0) on the x—axis. At the corresponding trapping
point (2o, Yo, 20) = (0, wo+/|{|/2,0) on the y—axis the force constant k, becomes'k, and
vice versa. Since the intensity pattern is rotationally symmetric the potential at the
different trapping sites can be cast in the form

Uz, y) = U - %kx/mﬂ — %
where the primed symbols are given by:

— (az — wm/W) cos(¢y), vy = (y — wo\/W) sin(¢y);
ki = cos®(¢y) ks + sin® () ky, ki, = sin® (g ) kuf-+ cos® (@ )k, (168)

Thus we have an anisotropic harmonic oscillator poténtial, and the harmonic
approximation leads to oscillation frequencies given by wys v o =\/kyr o - /M where
M is the atomic mass.

1
kyy? — 5@22, (167)

When two-level atoms are trapped in a dipole trap the trapping quality depends on
two important factors, namely the depth of the optical dipole potential and the photon
scattering rate. A numerical estimate of the trapping quality can be made as follows.
Consider the D2 5251/2 — 52P3/2 transition of ®Rb for which the de-excitation rate is
['/2m = 5.98 MHz, the transition waveléngth is A= 780.9 nm, and the intensity is Ig
= 16.4 W m~2. We assume a ring lattice,laser of total power of 0.12W, focussed to
a beam waist of wy = 10 pum and a negative detuning of 1064 nm for trapping. The
Rabi frequency associated with each beamuis related to the saturation intensity Is by
I/Ig =202 /T? where I = P/2w?, with Puthe total available laser power (such that P/2
is provided by each of the interfering beams). Also we have a scattering rate S ~ %
[166]. With these parameters it is possible to construct a ring lattice of depth about
25 pK and a scattering rate S ~ 0.013"s~!. The spatial distribution of the trapping
potential is shown in Fig.19:" "\

The above analysis indicates that the Ferris wheel lattice could provide a potentially
dynamic three-dimensional trap for atoms. The trapping is sufficient in the transverse
direction, though thé potential is shallower in the z—direction. For a lattice that traps
in the intensity maximan(red lattice) we could use a tightly focussed Ferris field (short
Rayleigh range){but there is a trade-off between axial confinement and scattering rate.
However, it has been suggested that an additional localisation field can be set up along
the z—diredtion/with a hybrid configuration of a Ferris light field and a quadrupole
magneticarap [167]4[168]. Alternatively it is possible to create an axial confinement in
a ring lattice byyusing counter-propagating laser beams forming a standing wave. This
leads.to the generation of an axially separated stack of lattices similar to the ones in
[100]. However, by introducing a frequency shift between the forward and backwards
LG beams, the individual ring lattices will not only rotate but also translate along the
Z-axis.
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Figure 19. The trapping potential for a Ferris light field created from the
superposition of two co-prepagating LG beams with I; = —Ily = 5. The potential
is given in pK units.

A S

10.3. Helical Optical Tubes{(HOTs)

The twisted optical potential tubes or Helical Optical Tubes (HOT) are formed by the
interference of two counter-propagating LG beams, with opposite winding numbers [
and the same polarisation, which results in the generation of a three-dimensional twisted
standing waye. When a two-level atom interacts with such a light field the optical dipole
potential (in the far off-resonance case) is given by:

hAY (p, 6, 2
Ulp, 6,2) = — i )
This HOT dipole potential is shown in Fig.20 for the case where [ = 1 and p = 0. This
pattern has a left-handed helical shape with a pitch equal to 2wh (h = |l|/k) and has
two tubes'where the maximum intensity is at the geometrical centre of each tube at

= AR, (uh)” cos® (¢ + k=), (169)

z= 0 and decreases in the radial direction away from the centre of each tube, and away
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0.0

Figure 20. The helical optical tube potential with rﬁode [ =1and p = 0. Reproduced
with permission from [153].

from the z = 0 plane along each tube:

The motion of an atom in suchha potential has been analysed in the semi-
classical approximation whicliitreats the external variables classically [153]. The atom
is considered as subjected to both,the optical dipole potential and the gravitational
potential and depend on the helix orientation with respect to the lab frame. The
equations of motion can bepderived/using the Lagrangian formalism in cylindrical
coordinates, leading to three/fcoupled non-linear differential equations of the second
order for which there is ngeéxact general analytical solution. The atom trajectory can,
however, be calculatedsnumerically and analytically in special cases. The numerical
solution is based on' the fourth order Runge-Kutta method subject to initial conditions
for the cold atom inside the helical optical tube. For negative detuning the atom is
attracted towards the high intensity regions.

The initial position of the cold atom can be chosen at the maximum intensity point
(which is the minimum value of the dipole potential) which, in cylindrical coordinates is

(Po, Po,20) = <w0\/ %, ("|_l|1)7r, O), where n = 1,2, ..., 2l is the index of the tubes of the

helieal'opticalpotential. For example, for [ = 1, the helical optical potential has two
tubes: theffirst tube has index n = 1 while the second one has index n = 2, as in Fig.
20. “For_the initial velocity we choose v = (v,,v4,v,) =(5 cm s, 5 cm s~!, 0). This
is reasonable as the initial velocity of the cold atom should not be less than the recoil
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velocity vy (in order to ensure the validity of the semi-classical approximation) and
must be greater than the Doppler velocity vp (so as to keep the interaction resonant),
1.e. Upee < Vg < Up.

For an atom in the region where z << zg, assuming that the small radial ‘wiggling’
of the motion does not affect the global oscillations in the z—direction, it is pessible to
obtain an analytical solution of the equations of motion. We have

4'2 29,2
o) = VTR ey O (170)

sin 2w?’

h 40 + 722 h|dol ”
) =— o+ 0) — U gin(wt) — == 171
z(t) o (wst + ©) gt sin(w gt} 2057 (171)
7 .

p(t) = —/zw(z) + o sin(w,t), (172)

2 W,
where ¢ is the initial angular velocity, w, = ;;T:;((%’;)) Bre€’ y = 2gh/(r2 + h?),
wp = 2 ET@"E(;HaHZ)(eR) and w, = ”ﬁ—ﬁ)’;ce, where dpe. =.12k?/2M is the recoil energy,

4hQ3C3

Or = arctan(h/p) is the pitch angle with h =_|| /& andre = —%% exp(—|l]) is

the depth of the potential at the minimuin, point.

Figure 21 displays the trajectories, calculated both numerically and analytically,
for the following set of parameters. The transitionvis taken as 5252 — 5P/ in ®*Rb
for which A\ = 780.2 nm, I, = 1.64 Wm?, ‘and I'/27r=5.98 MHz. The recoil and
Doppler velocities for laser cooling of‘an 8°Rb atom are v, = 0.602 cm s~! and
vp = 11.85 cm s7!, respectively [44]. The laser power is P = 80 mW, detuning
A = 2.57 x 10" Hz and the beam waist wo = 4 um [97]. Figures (a) and (b) in Fig. 21
provide an excellent agreement between the numerical and analytical calculations. Both
figures show the global oscillatery. behaviour of the atom between two turning points
along the z-axis and following a helical trajectory due to the helical geometry of the
dipole potential.

The physical origithof this type of motion lies in the term cos?(l¢ + kz) which is
responsible for the'formation’of 2/ potential wells (each well corresponds to a tube in the
potential depictéd in Fig.20 in the (z, ¢) plane. Each of these wells has energy minima
along the linedé =+ kz.= (n — 1)7 (n is the index of the tube of the potential). This
topological feature of the dipole potential drives the atom to oscillate locally about the
line {¢ +kzy=(n—1)m, which is the locus of the minima of the potential wells. Due to
the coupling of he equations of motion the local oscillations induce an average motion
along theline (¢ + kz = (n — 1)m, which guides the atom inside the tube of index n by
keeping (¢ £ kz = (n— 1)7 and a radial distance p = w,+/|l|/2/2. This guiding elevates
the atom along the z-direction.

Anether important parameter of the atomic motion is the beam width w(z) which
depends on the position in the z—direction. This dependence, which is shown in Fig.22,
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Figure 21. The 3D tajectory of ®*Rb atom along the helical tube with index n = 1
with a time duration of 8 us,calculated: (a) numerically (red line) and; (b) analytically
(blue line).

A S

has normally been ignered in previous works concerning the atomic motion in twisted
beams, being considered. negligible. However, here it plays an important role. Due
to the factor 1/w(z) the depth of the potential is modified in the z—direction. It is
straightforward 4o understand that if the kinetic energy of the atom is less than the depth
of the dipole potential.on this larger scale, the atom will perform a global oscillation
between two turningoints. Thus the motion inside the twisted optical potential tubes
is made up-of two component motions: a local atomic oscillation in the region 0 < z < A
and 0 € ¢ < 2@ and a global oscillation in the region A < z < zg. The two types of
motion are due to the fact that the dipole potential has two different topological features
with different spatial scales.

The turning points of the atomic trajectory constitute one of the important features
of the atemic motion inside the twisted optical tube. This feature defines the furthest
pointsthe atom can be guided along the helical optical tube. Additionally, the turning
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Figure 22. The scaled (in units of it§ maximum depth ) twisted optical dipole
potential as a function of z along the minimé linedd + kz = (n — 1)7.

points are a feature of the atomic gross motion that can be manipulated by changing
the characteristic parameters of the EGibeams, namely the power, the detuning and the
beam waist. In general, the upper turning point of the atom can be higher when the
dipole potential is weaker. This can be achieved by making the beam waist larger, the
beam power smaller or the detuning larger. On the other hand, the lower turning point
of the atom occurs at a lower position and farther than the upper turning point when
the dipole potential becomessweaker.

The positions of the furning points are symmetric with respect to the origin when
the dipole potential is strong and/therefore the influence of gravity is negligible. When
the dipole potentiall issdominant over the gravitational one, the trapped atom will
oscillate between thesymmetrical positions of the upper and lower turning points,
a situation equivalent to an atom reflected between two mirrors of an atomic cavity.
When the dipele potential is weaker an asymmetry between the positions of the lower
and the upper tarning points (where the lower turning point becomes more distant
from the origin than the upper turning point) arises since the influence of gravity is
then stronger. At the limit of very weak dipole potentials the motion of the atom is
governedhalmost entirely by gravity and thus has only one turning point. Its initial
velocity allows the atom to move up and reach the upper turning point, then the atom
starts to fall under the influence of gravity only and follows in its downward motion the
helical path determined by the topology of the optical tubes.
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10.4. An Archimedes screw for atoms

A HOT intensity pattern can also be rotated once we arrange for a slight frequency
difference between the two interfering LG beams [169]. The most interesting.effeet
on atomic motion is that for specific choices of the values and the sign of the rotating
angular frequency the trapped atoms can be dragged in an upward or downward motion.
In this case the action of the rotating HOT on atoms is reminiscent of the operation
of the Archimedes screw with which even today in several places of the worldspeople
elevate water from rivers and lakes. This Archimedes screw for atoms was proposed and
presented in [156] and an experiment on this was reported by Hadad et al. [157]. Here
we outline the essential elements of the treatment by Al Rsheed et al. [156].

The potential in this scheme is given by ~
U b= P00 poce p e 216 + kz 0wt /2 173
(P,¢7Z»)—4—AO— oLjijpot (p, 2) cos™(lp + kz ~Awt/2). (173)

This potential rotates at an angular velocity Qp = Aqwy2|l|. Thestudy of the atomic
motion can be done in the rotating frame of reference,where the potential takes a form
similar to the one in Eq.(169) but for new coordinates (p"=p,¢' = ¢ — Qgrt, 2’ = 2).
The equations of motion for the new coordinates are as follows:

ou . .
=y T mp' ¢ + 2mp/ Qpd’ £ mp! Q¥
mpd = —g—Z —2mr’ ' ¢ =2’ ' Vs

ou
¥ = ——, 174
: 0z’ (174)

The third term on the right-hand side of,the first equation in (174) and the last term
in the second equation are Corielis forces, while the last term in the first equation is a
centrifugal force. These are well’known forces that appear because of the rotation of the
HOT. The above three equations of metion are coupled non-linear differential equations
of the second order for which there.is no exact analytical solution, but a solution can
be obtained numerically using the fourth-order Runge-Kutta method.

The motion of anfatom thatdis trapped inside a rotating HOT can be explained in
terms of inertial forces: Imitially, an atom at rest inside a rotating HOT will experience
a centrifugal forcg' F, =mmre€% and will then move along the radial direction. Once in
motion it acquirés a radial velocity and an associated Coriolis force F' = —2mp'Qp along
the azimuthalddirection=<"This drives the rotating atom in a direction opposite to that of
the angular welo¢ity of the, HOT. Finally, the atom will have a global motion along the
HOT duetothe coupling between the motions along the z- and the azimuthal directions.
Consequently, the cold atom, which is initially at rest, will acquire a clockwise azimuthal
velocity ifit is trapped inside a counter-clockwise rotating HOT, while it will acquire a
counter-clockwise azimuthal velocity if it is trapped inside a clockwise rotating HOT. In
other, words, the angular momentum that is transferred from the rotating HOT to the
atom 1s directed opposite to the angular velocity of rotation of the HOT, in agreement
withithe prediction by Bekshaev et al. [170].
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We now demonstrate with a specific example that with a judicious choice of
parameters the rotating HOT can be used for elevating atoms. To elevate an atemswe
must obey two conditions: first, the atom must be able to escape from the oscillations
along the vertical z-direction and, second, it must simultaneously be kept trappediin
the potential tube without escaping along the radial direction. Again the dight field
is assumed to excite the transition 52Sj/5 — 5%Ps)s, in **Rb for which & = 780.24,nm,
I, =164Wm™2  T'/(2r) = 5.98 MHz, the laser power is P = 80 mW, the detuning is
Ay = —2.57 x 10'® Hz and the beam waist is wy = 5 pum. The initial yelocity is'taken

1, 1,
, Uy =5 cms ', v, =0).

as (v, =5 cm s~

Figure 23 shows the helical motion of the atom in the rotating framedof reference
for two different angular velocities of the HOT: Qr = 70 kHz; Qp =—70/kHz. In the
first case the atom is performing an oscillation in the upward z—direction and in the
second case the atom is is performing an oscillation in the downward z—<direction. Note,
however, that the atom oscillates between two vertical positionstand it is not elevated
or dragged downwards.

Figure 24 displays the time evolution of the vertical displacement of the atom.
The atom can be elevated along the z-axis when the HOT rotates at angular velocities
greater than 146 krad s™! counter-clockwise. It€an also move downwards when the
HOT rotates at angular velocities greater than' 1504 krad ®~' clockwise. In these cases
the rotating HOT operates as an Archimedes screw for atoms. For other values of
the rotational angular velocity it clearly performs an oscillation along the z-axis, which
means that it remains trapped in this direction.

The operation of the rotating Ferris,wheel as an Archimedes screw for atoms is
possible for those angular velocities {2z for which the atom during the elevation remains
trapped in the radial directiofiy, The angularfrequency of the axial oscillations is given
by:

AT
W~ \/wg i (175)

The angular frequency, wfint the/radial direction can be computed numerically. Here
ws is the angular frequency of the axial oscillations in the static HOT case. Figure
25 displays the angular frequiencies in the axial and radial directions and from the
figure it can be seen that there are values of the HOT angular frequency {2z for which
the oscillation frequencies along the axial and radial direction, w’ and w; respectively,
become zerg. Weralso see that the atomic radial frequency w/, is always larger than the
atomic global frequency w’ and that there are rotation angular velocities for which these
frequendies can be zero. In Fig.25 these are denoted by Q% and Qf,, respectively. These
are important since if the HOT rotates within the following range of angular velocities:
Q%] < [Qplr< |Q%] then the atom can be elevated to any desired height along the
z-axis while simultaneously remaining trapped in the radial direction. The atom can
be transported upwards or downwards along the HOT by changing the direction of the
rotation of the HOT. The values of Q% and Qf, can be controlled by changing the dipole
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Figure 23. The trajectory of a 3>Rb atom with respect to the HOT frame of reference:
(a) Qg = 70 kHz, répresented by the black line and (b) Qr = —70 kHz, represented
by the red line.

A S

potential parameters suchas the winding number [, the beam waist w, the beam power
P, and the detuning/A.

11. Atomic interaction in evanescent waves

11.1. Goos-Hanschew and. Imbert-Federov shifts

It is well"established in elementary geometrical optics that when plane wave light is
totally linternally reflected at the interface between a dielectric material (like a glass
prismi)yand, vacuum then evanescent waves that propagate along the boundary are
developed {1 An evanescent wave has an amplitude that decreases with distance away
from the boundary so that its intensity falls away with a typical decay length of the
order A\/2m where X is the wavelength. The light fields associated with the evanescent
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Figure 24. The variation of a ®**Rb atom elevation with initial velocity (v, = 5 ¢cm

s7!, v, =5 cm s7!, v, = 0) for different angular rotation velocities of the HOT:

147 krad s~! (black solid line){ 146 krad's=! (red dashed line), -151 krad s=! (blue
dash-dotted line), and -150 krad s L (brown dotted line) (wp =5 m and [ = 1).

wave have strong intensities and are localised within a small volume. There are thus
strong spatial field gradients, avhich can influence atomic properties.

In addition to optical forcesndue to evanescent light atoms experience van der
Waals attraction to the surfage. Atoms can dwell in the vicinity of surfaces either as
a result of chemisorption (prod&cing bond formation) or physisorption. Here we focus
on physiosorbed atoms where/binding energies are much smaller and the equilibrium
distance to the surface i18\comparatively larger. Physisorbed atoms will respond to
surface optical forces because they can represent a displacement from equilibrium, in a
planar motion thatdeaves the/distance to the surface unchanged. Undoubtedly, atomic-
scale irregularity in the surface itself will modulate the atomic motions we describe, but
these will be only minor perturbations to the main effects.

The physics of lightat surfaces is in reality a little more involved when one is dealing
with a light ‘beam with finite spatial variations in the plane perpendicular to the axis
of propagation. The first effect experienced by a light beam, such a Gaussian beam, on
reflection is a Goos-Hénschen shift of the plane of incidence [171]. This is a lateral shift,
which is distinet from a second, so-called, Imbert-Fedorov shift that is perpendicular to
the plane of incidence [172, 173].

The reflection of a beam carrying OAM changes the vortex beam and creates
additional modes of higher and lower orders. On reflection, a vortex beam has been
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Figure 25. The variation of w/, (red dashed line) and w!. (black solid line) of a trapped
85Rb atom as a function of Qg. The atom starts motion from rest, the beam waist of
LG beams is wyg = 5 u m, and the orbital winding number is [ = 1.

shown to experience further shiftssassociated, with the additional angular degrees of
freedom. These are the angular Goes-Hansehen and Imbert-Federov shifts, both of
which have been analysed and demonstrated [174, 175]. The angular shifts are in fact
shifts in wavevector space (see refs:[176] to [177]). Merano et al [178] demonstrated both
theoretically and experimentally that the spatial and angular shifts are in fact coupled.

However, the intensities_of .the additional modes responsible for the above shifts
are typically small. A reasonable approximation is to ignore such effects and adopt a
geometrical optics model'indwhich the light beams are specularly reflected. When the
totally internally reflected lightss an LG beam that is assumed specularly reflected, the
effect, as we explaingshortly, is to produce surface optical vortices (SOVs)[6]. These are
evanescent waves endowed with angular momentum.

11.2. Atoms at surfaces

Electromagnetic. surface modes can have strong interactions with two-level atoms in the
vicinity of the interface, leading to considerable optical trapping potentials, forces and
associated torques. We have seen that when the detuning of the laser light is positive,
theén the dipole force acts to repel the atoms away from the high intensity regions. With
the potential barrier so created any incident atoms can be elastically reflected if their
kinetic energy is smaller than the maximum of the optical dipole potential, and the
systemyoperates as an evanescent mode atom mirror (EWAM) [179]. A laser intensity
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of 1 W, focused on a surface area of the order of 1 mm?

, creates an atom mirror on
which an atom can be reflected if the component of its velocity normal to the mirror is
lower than a few meters per second, which corresponds to kinetic temperatures on the
order of few mK [43].

The evanescent wave atom mirror (EWAM) has been used in both the technological
and fundamental research of atomic physics for many years [92]-[184]: The EWAM
allows one to reflect ultra-cold atoms [185] in order to probe quantum electredynamie
retardation effects [186]. It is also the basic component for the creation of gravito-
optical traps [187]-[188]. The first demonstration of an EWAM wassin 1987, where it
was used to reflect thermal atoms at grazing angles [189]. In 1990 it wag used with
cold atoms at normal incidence [190]. Since then, EWAM has been extensively studied
by several groups, both experimentally [191]-[196] and theorgtically [197]-[200]. The
control of the effective potential barrier has been demonstrated in the case of a two-
level atom interacting with surface plasmons [191]-[193], a dielectriec waveguide structure
[202] and a metallic film [203] deposited on the surface of the mirror. Multiple bounces
of atoms have been observed when evanescent wavesiwere created on concave surfaces
[204]. The EWAM has also been used to investigate atom optics in the time domain
[205]. Ome of the most spectacular propertiesoftan EWAM is the quantum state-
selective character of the atomic reflections which svereidémonstrated by Balykin and
colleagues[206]. An atom mirror of a three-level atom in the so-called A—configuration
has also been proposed [207]. Finally evaneseent wave mirrors have been considered for
small objects at surfaces [208]-[210], rather than fermear-resonance atoms and molecules.

The intensity of the evanescent wawvesin an EWAM can be increased by a few orders
of magnitude by introducing a thin metal layer into the dielectric-vacuum interface
due to the excitation of surfage.plasmons produced, or by introducing a dielectric film
of high refractive index, which-essentially produces a dielectric optical fibre for the
laser radiation. The repeated reflection of the laser light from the dielectric-vacuum
and dielectric-dielectric interfaces substantially increases the intensity of the evanescent
wave [211]. When an EWAM witha thin metal film is irradiated by an LG beam we have
the so-called Surface Plasméon Optical Vortices (SPOVs). These specifically plasmonic
modes which are once again features with an intrinsic angular momentum [212]-[213].

11.3. Surface Optical Vortices (SOVs)

We now ignore the small beam effects in the forms of the Goos-Hanschen and Imbert-
Federov shifts and adopt a geometrical optics model in which the twisted light beams
are totally internally reflected at a planar interface between a dielectric material and
vacuum.. The résult of the total internal reflection is the generation of an evanescent light
whigh'earries.an in-plane distribution of the incident beam and its angular momentum
properties{ This is a surface optical vortex (SOV) endowed with the orbital angular
momentum of the incident light. Figure 26 schematically shows the total internal
reflection leading to evanescent light carrying OAM.
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Figure 26. Total internal reflection of an LG beam at an angle greater than the
critical angle (schematic) . The incident beam is arranged such that at § = 0 the
beam waist coincides with the surface at z = 0. The evanescent light possesses angular
momentum properties, but is confined near the surface, exponentially decaying in the
direction normalsto the surface. Reproduced with permission from [275].

The electric field of an LG beam travelling along the z-axis in a medium of a
constant refractivedndex n,eharacterised by the integers [ and p, frequency w and axial
wavevector k =, mko where kg = w/c is the wavevector in vacuum. If the interface
with the vacuum- oceupies the plane z = 0 and the angle of incidence, 6, exceeds the
total internal reflection angle, an evanescent mode is created in the vacuum. The main
requirements are the/applicability of the standard phase matching condition of boundary
reflection and the condition that the electric field vector component tangential to the
surface 18, continuous across the boundary. Figure 27 displays the intensity distribution
of an SOV due to an internally reflected LG mode on the planar surface of a dielectric.
The assumed paramters are given in the caption to this figure.

Theevanescent light possesses well-defined intensity maxima and minima that can
besused to trap adsorbed atoms or to reflect incident atoms with transition frequencies
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:; Figure 27. The intensity distribution for the SOV created by the total internal
39 reflection of a LG beam with [ = 2;p = 1. The LG beam has a waist wy = 200 um
40 and a power P=1mW. The beam has a wavelength A = 589.16 nm and is incident at
41 angle 6 = 30° at'thednterface of a piece of glass made of GaP with a refractive index
42 n = 3.365. The glass is_transparent at this wavelength which can excite the transition
43 3251/2 —32P3/2 in ®Na. /The beam has an intensity Iy = 25 kW m~2=390.251,,;, where
44 I,q; ='64W m~2is the saturation intensity for the sodium 325’1/2 — 32P3/2 transition.
45 The intensityadistribution is plotted in the (x,y) plane at z=0.

46

47

48 appropriately detuned from the frequency w of the light. We also see that the spatial
53 profile of the intensity distribution is, in fact, no longer circular, but elliptical, because
51 the light strikes'the surface at the angle of incidence 6 and the ellipticity increases with
52 increasing 6.

53

54

55 11.4- SurfaeesPlasmonic Optical Vortices (SPOVs)

56

57 Consider now the case of co-propagating incident beams of opposite winding number [
58 creating an interference of two surface vortices, in a manner similar to that discussed
59

in theyprevious section which leads to the generation of the optical Ferris wheel [101].
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Figure 28. Schematic total internal reflection of two LG beams at a planar dielectric
interface with a metallic film, creating a surface plasmon from counter-propagating

evanescent modes. N

The total electric field in the vacuum regionxesults from the interference of the two
evanescent light beams in the azimuthal direetion.

Twisted light can also lead to'the gemeration of surface plasmonic optical vortices
[215]-[216]. An experimentally accessibléscenario is the case where a thin metallic film is
deposited on the surface of a glass prism andy as before, a LG beam is totally internally
reflected on the inner interface.as shown in Fig.28.

The metallic film enhances greatly the evanescent fields and the interaction with a
two-level atom in the vicinityissstronger than in the absence of the metallic film, so the
corresponding mechanical effeéts should be larger. From Maxwell’s equations the electric
field vector components emerge awith in-plane polarisation in the three regions of the
layered structure as shown in Fig. 28, namely a dielectric, occupying the region z < —d;
a surface film occipying, theregion —d < z < 0, and the vacuum region occupying the
space z > 0. These fields are then subject to boundary and phase-matching conditions.
This procedureleads to.the evanescent field in the vacuum region.

An atom in the vacumn region with position vector R(t) = (x(t),y(t), z(t)) interacts
with the_surface plasmon vortex and the interaction is characterised by the Rabi
frequency Q(R(t)) and the phase ©(R(t)).

To ‘confine/the atom to an angular path in the plane parallel to the surface, it is
neg¢essary to use two internally reflected incident beams as shown in Fig.28. Here two
LG beams, labelled 1 and 2, are incident at angles ¢; and ¢5. The two beams, which are
assumed as identical, are totally internally reflected and have field components within
thefilm, and surface plasmonic components in the vacuum region. Once the forces
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acting on the centre of mass of the atom are specified, the motion of the atom in the
vicinity of the surface can be determined. The dynamics again follows a Newtonian
equation of motion, driven by a sum of the forces delivered by each beam.

To illustrate the results of the theory leading to typical trajectories, we consider
a sodium atom in two confocal, counter-propagating Laguerre-Gaussian beams as in
Figs 29 and 30 assuming the same magnitude of detuning, but one beam has pesitive
detuning and the other negative detuning . It is seen that the trajectories of the sodium
atom are very different in the two types of detuning. The confinementsregions are now
concentric elliptical valleys defined by the intensity distributions, radial eenfinement
leading to vibrational motion in a radial direction and resulting in an overall zigzag
trajectory.

~

11.5. Extraordinary spin in evanescent waves

In recent years there has been a growing interest in extraordinary spin in evanescent light
modes. The reference here is to spin directed transversesto the.direction of propagation.
Much of the work has been done for subwavelength optical fibres (see for example,
[217][218]), but the phenomenon is general in this setting [219]. Note, however, that the
twisting here is not in the phase of the optical field. .

Bliokh et al [219] explored the local momentum and spin distributions of evanescent
waves. The electric field of their evanescent, wave emerges from that of an elliptically-
polarised plane wave propagating along thez-axis carrying momentum and spin in the
form E = A(& + mg) exp (ikz)/\/LL+ |m|?) where k = w/c. A rotation of the plane
wave field by an imaginary angle 6 leads torthe electric field E.,., of an evanescent
mode in the half-space x > 0, occupied bywacuum

A k K
Eopun = ———=2+m—7y —1—2 | exp (tk,z — kT 176
(g mid i) e ) (176)

where k., = kcoshf > k. Insthelabove, A is the wave amplitude and caret denote unit
vectors; m is a complex number that determines the polarisation state. The evanescent
mode propagates along the z-axis‘and its field decays exponentially along the x-axis. It
is characterised by thelongitudinal wavenumbers k. and &, the spatial decay rate. These
combine to form the ecomplex‘wavevector k = k.2 +ix&. The calculated density of each
of the canonical.momentum 7°, spin momentum 7r* and spin angular momentum s of

this evanescentmwave,aredas follows
2

of W, % s w (k" _Kkk w({_.Kk . K.
& ksl w(kzz+0kzy> ° w(akzz+kzy> 1
where (in Gaussian units) w = (87w) 'w|A|* exp (—2kz) is the spatially-inhomogeneous
d =

energy. density /of the wave and ¢ = 23(m)(1 + |m|?)~" is the helicity (ellipticity of
polarisation).

The three expressions presented in Eq.(177) are the main findings of the work by
Bliokh et al Bliokh2014 who emphasised the remarkable peculiarities of the momentum

and'spin. In particular,
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Figure 29. ] he sodium atom in the evanescent fields generated by
counter-propag , cams, with positive detuning, at a planar dielectric interface

coated with a

onar ssociated potential well. The parameters are as follows. The
beam taken as wy = 3bA, with A = 589.0 nm. The intensity is assumed
The layer structure consists of a thin silver film of

59 nm and electron density n = 5.57 x 10%® m~3, deposited on glass of
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Figure 30.
counter-propag
coated with a
onar

he sodium atom in the evanescent fields generated by
eams, with negative detuning, at a planar dielectric interface
m where [y = lo = 1;p = 0. The trajectory is superimposed

(1) since k, > k| nescent wave possesses a longitudinal canonical momentum
component 7,

(2) The gro in the evanescent wave is v,, = ck,/k > ¢ which confirms that
the eva e is superluminal in the direction of propagation.

(3) The redicts a super-momentum transfer per photon (i.e. larger than hk)
fro cent wave to a dipole particle via the radiation force F, oc w¥. This is

in ‘conformity with the super-momentum transfer [220] which was observed earlier by
How Imbert [221] in the resonant interaction between a moving atom and an
cent wave.
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(4) The results show that there are transverse y-components of the momentum and

spin of the evanescent wave propagating in the (x,y) plane. The y-component of the

0
Y

spin is s, o< wk/k,, which is helicity-independent.

momentum 7, x dwkk/k,, which depends on the helicity 6. The y-component of the

So far we have assumed that the evanescent wave exists in the vicinity of.a planar
surface. There are other contexts in which evanescent modes feature prominently, most
notably in waveguides and in whispering galleries. Here too, it has been found,that the
polarisation of an allowed evanescent mode exhibits a longitudinal component along the
direction of propagation. The work by Junge et al. [217] investigatedr thesinteraction
of a single atom with a whispering gallery mode in a microresonator, taking account
of the effects of the non-transversal polarisation of the whispering gallery .mode in the

. . ~
Interaction.

12. Enhanced quadrupole effects with twisted light

12.1. Quadrupole transitions

The development of laser cooling and trapping has been based on the interaction of
coherent light with atoms in the electric dipole approximation. Other higher multipolar
effects have been ignored since they are considered to be too small [223]. The next in
the multipolar order is the electric quadrupele. Electric quadrupole transition rates are
typically smaller by a factor g = (agk)? incomparison with electric dipole transitions,
where ag is the Bohr radius and k£ is the wavenumber of the ordinary laser light. For
processes involving transitions in the optiéalzegion we have g ~ 1076.

Although usually weak, quadrupole effects become important at high intensities or
when the light is tightly focussed [225], or 'when the transition in question is driven
between two long lived statesg”in which case the Rabi frequency may be larger than
the linewidth, leading to coherent oscillations of the upper state population [226],[227].
Further advancements in optical techniques have allowed more quadrupole transitions
to be observed and utilised. dn particular, very weak quadrupole transitions have been
detected in hydrogen.molecules.and these have been regarded as of particular interest
in probing the atmospheres of various celestial objects [229]. Enhancements of optical
absorption of an felectrie,quadrupole transition in caesium atoms interacting with an
evanescent field‘have also been observed [230]. Indeed quadrupole transitions can be
significantly #nhancedrin the vicinity of material surfaces, including microstructures
where enhancements by two orders of magnitude are predicted and have been
experimentally ebserved [231],[232].

12. 20Quadrupoles in twisted light

Here we seek to explore what mechanical effects a LG beam would create on a two-level
atom when the atomic transition is electric quadrupole allowed. The aim is to find
out, whether we can achieve mechanical effects of substantial strength when LG beams
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with high orbital angular momentum content interact with atoms by quadrupole allowed
transitions. Once more, we consider a two-level system with a ground state, denoteda|1)
of energy & and an excited state |2) of energy &, such that the resonance frequencyiis
wo = (& — &1)/h. The atom interacts with an LG beam characterised by the quantum
numbers [ and p propagating along the z- axis with an axial wave-vector k.

The basic quantum mechanical Hamiltonian formalism in this ‘case follows. an
analogous initial set of steps to those followed in the case of atoms interacting with light
in the electric dipole approximation. The only difference here is that the interaction
Hamiltonian is

- 1
Ho = —5ewiw; ViEj(R), (178)

where the Einstein summation convention applies. Here x; are thé Co\mponents of the
internal position vector x = (z,y,2) and V; are componentsiof the gradient operator
which act only on the spatial coordinates of the transverse electrie field vector E as a
function of the centre of mass variable R = (X, Y, 7).

We assume that the LG mode is linearly polarised along the z—direction and that
its quantised electric field as a function of the centre‘ef mass coordinate R now expressed
in cylindrical coordinates R = (p, ¢, Z) (with p & V/X2%Y?) has the familiar form of
Egs.(52) to (54). Here, for simplicity, we shall ignore the Gouy phase such that the
phase of the LG beam at position R is given by O, (R) = kZ + l¢. With the electric
field polarized along the x-direction, the quadrupole interaction Hamiltonian Eq.(178)
now takes the form

o = 5 { 0 Tl .. 5 | (179)

where Qij = ex;x; are the elements of the quadrupole tensor operator, which for the
two-level atom can be writtendin terms of ladder operators as

Qij = Qi;(m + WTQ\ (180)

where @Q;; = <1 ‘Q”‘ 2> are quadrupole matrix elements between the two atomic levels.
Substituting for'the fields®we can write the quantised quadrupole interaction
Hamiltonian in the form

Hg = ha,Qp, (R)e©® 4 he. (181)
Here lep(R) is the eomplex Rabi frequency defined as follows
WY (R) = ErooClptiy(R) { Qoo F + Quu + ikQu0} (182)

where, at z = 04

X 2X ity 1 oL} iy 2v  ix 1 oL}
F 4 _ 2 7= = - = — . 183
( 20wk 2 I ox Tl Tt e T o oy (183)

The form of the interaction Hamiltonian is similar to the one for the electric dipole
tramsitions. The only difference is the way that the Rabi frequency has been defined. The



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JOPT-105253.R1

Atoms in complex twisted light 88

theoretical and experimental justification of this model has been extensively discussed
in [233]. With both the phase and the complex Rabi frequency defined, the steady.state
force on the moving atom due to the LG laser mode is written in a manner similar
to case of electric dipole transitions. As in the case of electric dipole transitions the
dissipative force can now be understood as a result of quadrupole absorptions followed
by spontaneous emissions of the light by the atom, while the quadrupole force, whieh.is
proportional to the gradient of the Rabi frequency, is responsible for confining:the atom
to the maximal or minimal intensity regions of the field, depending on the detuning
Agp. The quadrupole force is derivable from a quadrupole potential

1 |2, (R)[2/2
Upad(R) = =hAppIn [ 14+ —F—— (184)
7 2 " A, +T5/4 -
In experimental situations where we have large detuning |Aggp| Q9| A,| > T the
quadrupole potential can be written to a good approximation as

Uguaa(R) = |lep ‘ : (185)

4A

It is clear from the above expressions that if we ayish to compare the corresponding
expressions for forces and potentials in the eléetric dipole and electric quadrupole
transitions we need to investigate the modulus squafed Rabi frequency |Q§lp(R)|2 which
is rather different from the correspondingicase in electric dipole transitions.

For illustration we now consider the case of an LG donut mode of winding number
[, but for which p = 0. In this case the derivative imF in Eq.(183) is equal to zero, since
L{ljl is a constant for all I. We also‘asstiesthat the atom is constrained to move in the
X-Y plane and the quadrupole transitiomis such that @), = 0 = Q),.. this can occur for
example in a V5% — V>0 fransition. In this case the Rabi frequency Eq.(182) takes
the following simpler form,

X 2X iy
thm( Ekoo% p) Qs (—’ X _ — = —) : (186)
0
Expressing lengths in units 6f wg, so that R = R/wy, etc., we find for the modulus
square of the Rabi frequencyientering the dissipative force
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- 1X\> /vy’ -
h2|leo|2 EkOOC|l|p| up? (Cl)Uo> {(%) + (%) +4X2[ H]} (187)

The topologyof the Rabi frequency will be imprinted in the topology of the quadrupole
potential in|the/ease of large detuning. It is interesting to explore the relevant depth
and the gpatial structure of the trapping potential given by Eq.(185) and how these
are affected bydthe choice of the vortex and atomic parameters. To be specific, we
consider Cs as an atom recently explored for its quadrupolar transition 625, /2 — 52 D5 /2
spécifying she de-excitation rate I'g and a quadrupolar matrix element ),,. The optical
vortex is such that the amplitude FEjyyo is related to the intensity by [ = eocE,goo /2.
We also need a suitable value for the detuning A and, since we wish to maximise
the 'quadrupolar effects we take a large value of winding number [. The parameters
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are wo = 10 pym; A = 675 nm; Q.. ~ 10eay; T = 7.8 x 10° s7%  and
A = 10Tg; P = 1W; I = 3.18 x 10 Wm 2. It is also convenient to define a
scaling parameter )y as follows

1 /2I\"? 0
Qo=—-|— = 136T 188
0 h <60C) Wo @ ( )

where the last equality emerges on substituting the relevant parameters défined above.

Figure 31 displays the quadrupole potential and the corresponding contour plots.in two
different cases namely when [ = 3 and | = 300. Experimentally, winding numbers as
large as [ = 300 can be achieved, as emphasised in [234]. The trapping potentials are
given in absolute temperature units. It is obvious that the increase of the winding
number [ gives a deeper trapping potential. From the contour plotsswe also see a
different spatial structure of the potential. As [ increases we obtain two crescent-like
trapping regions. This spatial structure can be explained by amanalysis of Eq.(187) on
substituting for ]u¥||2, expressed in terms of the dimensionless variables. In the large [
case we have a distribution with two regions of variatien andithere are high symmetry
points. To identify the dependence on | we consider theypoints (X,Y) = (0,=+1),
the expression between the curly brackets in |le0|2 becomes equal to [2, while at the
points (X,Y) = (£1,0) the curly bracket reducgs to (b= 2)?, both of these observations
effectively scale as [2 for large [. We have also verified that the maxima and minima of

102 | actually occur at the following (X, ¥). points
(X,Y) = (£+/]1|/2,0) (minimum); (X,Y )= (0j5+/[|I] — 1]/2) (maximum) (189)

It is seen that the positions where the Rabi frequency maximises are different from
those in the case where we have an eleetric dipole transition. In this case the Rabi
frequency maximises at pointsiwhere R = 1/|l|/2. The reason is that the strength of
the electric quadrupole interagtion depends on the gradient of the electric field. Thus
such an interaction can be maximum even at points where the electric field and thus the
intensity are zero [235]. This ceunter-intuitive observation has been demonstrated in
an experiment where a singlefion was positioned at different locations inside an optical
cavity [236].

The depth of the quadrupole trap is sufficiently large to lead to the trapping of
atoms. Moreoverfas our analysis has shown the photon scattering rate is very low, so
ensuring long trapping lifetimes. This means that the interaction of LG light with an
atom in a quadrupoleallowed transition can lead to significant mechanical effects on the
atoms. The facility to generate LG light in the laboratory with large values of [ [234]
indicates«that the guiadrupolar mechanical effects should be amenable to experimental
verification.

It.seems reasonable to suggest that a further enhancement of quadrupolar vortex
interactions, could be achieved by placing the atoms near the surface of plasmonic
struetures and arranging the generation of surface plasmonic modes endowed with the
vortex properties. Dipole allowed transitions are subject to strong enhancement under
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Figure 31. The quadrupole potential’and the,compesponding contour plots for two
cases: (a)-(b) for [ = 3, (¢)-(d) for I = 300./Data as given in the text.

these conditions, as recent theoretical and experimental work have shown [149]-[150]
and corresponding enhancements of quadrupolar effects are also to be expected.

13. Mechanical effects fortlarge [ and p

The study of the mechanical effects of LG beams with atoms has mostly been limited to
cases of the lowest values of the winding number /. Furthermore, studies have ignored
modes with non-zero valués of t}e radial mode index p. As pointed out earlier, advances
in technology and experimental techniques for the generation of twisted light have
recently made possible the realisation of LG beams with very large values of both the
winding number [ and.theradial index, p [237], [238]. The radial index p has in fact been
dubbed as the "ignored™ quantum number, although its role in quantum communications
has been emphasized in [234] and a quantum mechanical theory featuring the effects of
p has been presented [239]. As the current experimental activity on the production of
optical vorticesiwith extremely large values of [ and p continues [237], [238] we expect
that mote light will be shed on the physical role of the radial index p. For example,
it has been suggested that LG beams with high values of p can be exploited in the
creation of eencentric cylindrical lattices which can offer a platform for the exhibition
of lquantum  Hall physics with cold atoms [160].

[t turns out that in the study of the mechanical effects of LG light on atoms the
consideration of large [ and p values brings to the fore optical phase terms which have
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so far been discarded because for small [ and p values they are justifiably negligible.
We show here that considerable modifications arise in the physics involving atomic
gross motion primarily because the radiation forces exerted by the light on the atoms
are modified. The modifications stem from phase gradients originating from the beam
curvature and the Gouy phase most prominently near the focus plane of thesLG light
mode. Both the Gouy and the curvature phase terms have so far been ignored in,the
analysis, with the Gouy phase strongly dependent on the values of [ and.p.

The Gouy phase is a basic property of all focussed beams. Altheugh frequently
discussed with reference to focussed light beams, it is also known tosarise in the cases
of focussed acoustic and electron beams. It was first discovered over 11 decades ago by
Gouy who made direct measurements in the case of optical beams [240],/[241]. Over
the years the Gouy phase has been shown to play significant rolés in a number of
contexts as described in the interesting paper by Feng and Winful [242] who provided a
physically transparent interpretation of the Gouy phase as originating from the in-plane
spatial confinement of the focussed beam. Hariharan and Robinson have given another
explanation of the Gouy phase as a geometrical quantum effeet'which arises as a result
of the uncertainty principle whenever there is a madification of the volume of space in
which the light beam is transmitted [243]. Oneofithe most prominent manifestations
of the Gouy phase is in the context of optical tweezers, where it plays a role in the in-
plane trapping of particles and leads to super-luminal phase velocities vy at focus. This
suggests a sub-luminal group velocity v, of the light' in vacuum which is in conformity
with the product rule vsv, = ¢*. Recent experiments suggest that light in vacuum
travels at sub-luminal speeds for all beams, including Gaussian, Hermite- Gaussian and
Laguerre-Gaussian ones, which are endewed with lateral intensity spread. Of course,
light only has its normal speéd.c in vacuumpy when propagating in the form of a plane
wave [244].

13.1. Gouy phase and beamseuryature effects

The mechanical effects of the Gouy and curvature phase terms on the gross motion of
two-level atoms haverbeen explored by Lembessis and Babiker [245]. The outlines of
their arguments are.as follows.. In the paraxial approximation the electric field associated
with a Laguerre-Gaussian,mode, of wavelength A = 27/k propagating in the z-direction
and polarised in the z— direction is given by Eqs.(52) to (54). In Eq.(54) the third term
is identified as the Gouy phase term, namely

Ocouy = —(2p + |I] + 1) tan'(2/2), (190)
and the curvature term is the last term, namely
kp*z
@curve = 357 9 . o~ 191
2(22 + 2%) (191)
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The beam is characterised by a wavevector given by K = V©O;, where the gradient of
the phase function is given by:

2.2 2
. . ZR P(ZR_Z)A [ 5 kzp
K=VoO, =k 1—(2p+|l|+1)k(22+212%)+ (Z2+212%)2 z+;¢+mr.(192)

In fact not just the wavevector, but also the Poynting vector expressions are significantly
modified compared with the expressions that are valid for low values of ghe indices"(
and p provided that we work with parameters that can make the conttibutions from
the Gouy phase Eq (190) and the curvature phase Eq.(191) of appreciable sizes.” This
conclusion, whilst it introduces additional complexity, suggests thatswhen experimental
results are assessed, it may be important to consider such effects if simpler formulations
give imprecise agreement. o

13.2. Modified radiation pressure forces

Recall that radiation pressure gives rise to two distinct“forces, namely the dissipative
force and the dipole force. In the saturation limit where();, 3 A, T', the dissipative
force can be approximated to
1 1

(Faiss)ip =~ thV@lp = §hFK. 3 (193)
Consider the situation in which the atoms move near the focus plane of the LG mode
such that z << zg. In this case the wave-vector of the beam K takes the following
effective form
2pt || +1 P
Pl ) AT

kzr 22

When the gradient terms originating from the Gouy phase and the curvature phase

K = k2~ k {1—( (194)

terms are considerable in size theyramount to an effective axial wavevector denoted by
Eeg, so that the phase gradient in the vicinity of the focus plane can be written as

V@pl ~ keﬁ/z\—l- é} (195)

The above relations show clearly that the axial wavevector is modified from £ to
keg. In the specific caselp.= 0 and making use of the relation zp = mwg/\ we find that

2 and since, kwy > 1, only LG beams

the winding numbper {“should be close to (kwy)
with large valuérof | could exhibit a non-negligible effect, i.e. such that k.;s differs
significantly from k.

To understand betterithe relevant size of the modifications we consider the following
numericalrestimations. Consider an LG mode of wavelength A = 27/k = 852.35 nm,
with azimuthal@nd radial indices [ = 300, p = 3, respectively. We focus on four different
cases.of beam waist with respective values wy = 3\, 5\, 10\ and 20\, and seek to explore
how the effective wavevector k gz changes with the radial position r near the focus plane
i.e. in the region at z ~ 0 of the beam. The plot of k.5 as a function of radius p,
scaled In"beam waist units, is shown in Fig.32 in which we clearly see that k.; becomes

considerably different from that of k as the beam waist decreases in value. The effect is
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42 plot of the intensity highlighting the regions where the beam intensity and thus its

43 mechanical effect§ on atoms are considerable. The radial distance p is scaled in wyg

44 units. Reprodueedswith permission from [245]

45

46

47 . . . . .

48 even more interésting since as we also see for wy = 3 the effective axial wavevector kg

49 takes negatiye values at certain radial positions: the interpretation is that locally the

g? atom ”sees” a heam travelling in the opposite direction. We must, however, be careful

52 in interpreting thisscenario since, as has recently been pointed out, when the focussing

53 is very [tight the generated LG beam is not a pure state as we have the production of

g: modesswith higher and lower winding numbers due to a small field component in the

56 propagation direction, so the above ideal picture does not precisely apply [160], [246].

57 A direct consequence of the modification of the axial wavevector is that the
issipative force on a two-level atom is also modified. In the saturation limi is force

o dissipative f two-level at 1 dified. In the saturation limit this f
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is now given by:
1 R AN
<Fdiss>lp - §hr {keﬁz + ;d)} . (196)

Note that the axial (2) dissipative force, which in the absence of the anomalous Gouy and
curvature phases is known to be given simply by (Faiss), = (1/2)AIkZ, is now modified
by the inclusion of the additional phase terms. By contrast these phase anomalies
have no effect on the azimuthal (ﬁ force component. The analysis shows/that, since the
effective wavevector is nullified on critical radial distances and changes its sign' from
negative to positive around them, there may be novel ways to handle atoms via LG
light beams. A light beam can decelerate the atomic motion even'in the case where it
propagates in the same direction with the atom. o

The mechanical effects of light on atom are very sensitiveto the Doppler shift
experienced by a moving atom. If the atom has a velocity ‘W, then.the Doppler shift
is given by 6p = {VO,,} - V. This topic has been investigated analytically by Allen,
Babiker and Power, [131], so it now seems clear (in view.of the discussion in section 8.1)
that the Doppler shift too is subject to modifications/due toGouy and curvature phases
for highly twisted light and there are also consequénces in the context of the dynamics

of the optical molasses in such LG beams [249]. y

14. Atom vortex beams

So far we have been dealing with optical vortex beams and their effects on atoms, and
the key feature of the vortex nature is the'angular momentum property. Vortex beams of
a different nature have been contemplated, prompted by the creation in the laboratory
of electron vortex beams [84;°251]. Electron vortex beams are also endowed with the
property of orbital angular mementum and they are characterized by a wavefunction
bearing the phase factor ¢, as appearsin the case of the optical vortex fields. However,
there are marked differences inselectron vortices when compared to optical vortices in
that electron vortices are characterized by the electron mass, electronic charge and
electron spin, all ofswhich introduce new effects that are absent in the optical vortex
case. Studies of electromwortices and their interaction with matter are now progressing
in both the theorgtical and experimental fronts.

The concept of a vortex beam should apply to any de Broglie particles and this
includes atoms, ions and molecules - provided that each can be produced in the form
of an initial well defined ordinary beam - but it is unclear how one can generate the
particle vertex in the case of a neutral atom beam. In both optical and electron vortices
the productiondrelies on the generation of a material computer generated mask and
diffractionnis the physical process through which the vortex beams are realized.

To create atom vortex beams we need a suitable mask. The use of an optical mask
suitably comstructed from laser light as a diffracting agent appears at first sight as a
reasonable choice. The proposal is that a beam of neutral atoms diffracted from a
suitably constructed optical mask at near resonance with an atomic transition should
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lead to the generation of a discrete set of optical vortex states each endowed with the
property of quantized orbital angular momentum about the beam axis in units, of;A.
We analyse this suggestion and seek to define criteria for the selection of separate atom
vortex beams and discuss prospects for potential applications.

When the atoms are cooled their speed is very small : consequently their de Broglie
wavelength is large and could be comparable to the laser light wavelength. Tm,this
case the atomic gross motion exhibits a quantum behaviour with a deminant wave=
like character. Omne of the most important effects for the atomic metion where the
wave-nature is exhibited is diffraction [43]. This effect occurs whemeverithe atomic
wave-packet interacts with anything that shifts its phase or even its amplitude, through
absorption. Diffraction can split the atomic wavefunction into a.céherent superposition
of momentum and/or angular momentum states. To achieve atomi@ diffraction atoms
are normally sent through a light field with which they interaet.for a short time, normally
smaller than I'~! which ensures that the probability of a spontaneéus photon emission
is negligible. In this case, when the detuning is large, the potential which corresponds
to the atom-light interaction is real, acts as a pure/phase object and the interaction
potential operates as a thin diffraction grating. This is knewn as the Kapitza-Dirac
scattering and occurs in the Raman-Nath limit]250]. Some experiments have shown
that similar effects may arise when the interaction timé is larger than I'"!, but in
addition we have far-detuning [252].

Over the years, diffraction of electromagnetic fields has played a key role for the
generation of electromagnetic waves with a phase topological charge such as the optical
LG beams [66]. But diffraction is algeneral wave effect and is not limited to light beams.
It can also be present in matter waves. The production of electron vortices (EV) is based
on the diffraction of electronawaves. The EVs are beams of electrons with a quantised
angular momentum along the propagation axis [253, 84, 251]. The creation of such
beams has been achieved by passing a plane electron wave through spiral phase plates
[254] or holographic masks [2565k The guantised orbital angular momentum constitutes a
fundamentally new electron degree of freedom which could find application in a number
of research areas and raisesfundamental issues such as the transfer of electron angular
momentum to matter [256].

As pointed ouf above, the proposal for the possible realisation of atom vortex (AV)
beams using a diffracting element sprang from this background. Prior to this there were
a few theoretical- works dealing with atom diffraction. First it was shown that atom
diffraction through a cylindrical optical lattice with a petal-like structure could give
rise to AV_beams with opposite winding numbers [257]. Subsequently, it was shown
theoretically that the existence of atom Bessel beams was possible [258].

This,was followed by the experimental creation of a Bessel beam of de Broglie
mafter wayes [259]. The Bessel beam was produced by the free evolution of a thin
toroidal atomic Bose Einstein condensate (BEC) which has been set into rotational
motion.

The proposal of AV beams from free atoms involved similar ideas to those used in
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the generation of EV beams [248]. By free atoms we mean atoms in the form of a beam
(thermal, BEC etc) that propagates in free space and is diffracted by a properly tailored
light field (a light mask). The short interaction time during the diffraction results ima
phase imprint on the atomic wave function [260]. In a recent report it has been shown
that on using a light mask with a spiral like intensity pattern the diffractionsgives rise
to AV beams. These could be used as a mechanism for the generation of atomic Ferris
wheel beams [161] whereby the diffraction involves a spiral-like light mask which plays
a role similar to that played by a spiral-like phase plate for the production of wertex
light and electron beams [261]. The new element here is, as is the.case with the OV
and EV beams, that the generated AV beams are focussed at different points along the
beam propagation axis. By properly focussing these beams it ispossible to make them
interfere. The interference of two AV beams with opposite winding numbers leads to
atom Ferris wheel beams. These are the atomic counterpartsief the optical Ferris wheel
beams with the characteristic petal-like transverse intensity patterns [101]. In what
follows we discuss the creation of atom vortex beams first by using fork-like light masks
followed by the case of spiral light masks.

14.1. Diffraction through a fork-like light mask
4
The creation of a fork-like mask is achieved when welinterfere a LG beam with a Gaussian

(G) beam. The propagation direction of the G wavesis considered to be slightly tilted
at an angle § with respect to z—axis. Both beams are assumed to be polarised along
the y—direction. The electric field of the G heam is given by

. 2 . . .
Ec(p, z) = §Ec(p, 2)e” ok 1 gikar ke (197)
Ea,o

V (1+(2/2r)?
The total electric field of thisconfiguration is :

where Eq(p, z) = e~ P/v*(2) with E¢ o being the Gaussian wave amplitude.

E(z,y,2) = g€y, 2) /2 (198)
where £(x,y, 2) is the field distribution given by the sum
g(l'a Y, Z) N gG(pv Z)ei(kzx+kz + 5LGf(p7 Z)e_il(beikz (199)

where Er.q = Ego(@/m (L [J1)!/? with [ the winding number of the LG mode and the

l2|
function f(p, z)& 1 + 22 /23] ~1/2 <Z(—\g> e~?°/w()° The above field is characterised by

an intensity 4, which is proportional to |E(z, v, 2)|*>. Explicitly at z = 0 we have:

B, g = £2 + E20,12(p) + 26Er (o) cos (Kur cos o +16).  (200)

It is ingtructivetat this stage to consider the following numerical example. We assume
that_the LG beam has a beam waist wrgo = 15 pm. The winding number of the LG
beam is taken as [ = 1 and its power is 81 uW. Both beams have wavelength A = 589.16
nni. ‘This is the wavelength which can excite the 3%5) /o — 3% Py transition in a Na atom
which has a saturation intensity Is = 64 Wm™2. The Gaussian beam has a beam waist
equalito wg o = 200 pm and its power is 8.2 mW. The G beam propagation direction
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Figure 33. Intensity of the total light field (at z 4 0) made up by the interference
of the LG beam with a tilteds Gaussianwave, The LG beam has a beam waist
wrg,0 = 15 ym. The winding number of the iG beam is taken as [ = 1 and its power
is 81uW. Both beams have wavelength A = 589.16 nm. This is the wavelength which
can excite the 3251/2 - 32P3/2 transition in'a Na atom which has a saturation intensity
Is = 64 Wm™2. The Gaussiantbeam has a beam waist equal to wag,0 = 200 pm and
its power is 8.2 mW. The G beam propagation direction is tilted at an angle equal
B = 59 with respect to the LG beam propagation direction. The inset displays the
corresponding contourplot.

is tilted at an angle equal(fp =5 with respect to the LG beam propagation direction.
The spatial distribution of the total intensity is displayed in Fig.33.

A two-level atomfinteracting with the above field has a Rabi frequency Q?(p, ¢) o
I o< |E(x,y, 2)|?, which athz =.0 is given by,

P(p, 0) = Q(p)+ Qo F2(p, 2) + 296(p) Qe f (p) cos (kupcos ¢ + 19) (201)

where Q¢ (p)=Qgaexp(—p*/wi) and Qra(p) = Qrgof(p). On interacting with the
mask field, the atomexperiences an optical dipole potential. In the case of far detuning
such that«Q/A <<A1, we have for the dipole potential

h?
=170

The dipolefpotential acts on the atom in its ground state and results in the diffraction of

(202)

the'atom over a short interaction time 7. We assume that the atom enters the potential
at the time ¢ = —7 and its state function at that instant is W(p, ¢, —7). After the
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Figure 34. (a) Diffraction of the atoms through the light mask involving an LG donut
beam of winding number lh= 2. The LG beam travels along the z-axis and the tilted
beam is in the (x,2) plane inja direction tilted with respect to the LG beam. (b)
after the diffraction\grocess different atom vortex states are shown separated in space
and are labelled n/= 0,+1,+2, . . . with the n-th vortex carrying orbital angular
momentum nlh. Reproduced with permission from [248]

diffraction process the atemic state function is at time ¢ = 0 and is given by

¥ (peg,0) 29 (p, ¢, —7)e”7I" (203)
On substituting for U frem Eq.(202) we have
()2

\I/(p, ¢a O) = \D(pa ¢7 _T) <_%) (204)

The physical interpretation of the above expression is that the diffraction process
through the optical potential over the short period of time 7 is in the form of a phase
imprint on the initial wave function [261]. This is the basic principle of vortex sorting
in Bose'Einstein condensates. Substituting for © from Eq.(201) we have

U(p,0,0) =Y(p, o, _T)efiATefiBTefiCT cos(kgz+1) (205)
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where A, B and C' are functions of p only and are defined by
0% (p) Q) f*(p) Qe f(p)2%(p)
Alp) = G\P) . peoy — LG ) _ a\p)
() =— 1" Bl) A G oA
The last exponential factor involving dependence on k, and ¢ can be expressed asra

(206)

sum over Bessel functions J,(z) using the Jacobi-Anger identity, namely

eizcosﬁ _ Z ian<Z)€in9. (207)
We obtain
U(p,0,0) =V(p, o, —T)e_iATe_iBT Z i"Jn(C’T)ei”ld’ei"k”. (208)
. o

The initial state function of the atoms prior to entering the interaction region (i.e. at
time t = —7) is best discussed with reference to a practical seenario involving a cold
atomic wavepacket. Such a wavepacket is considered to, have a transverse Gaussian
profile with a typical cross-section of dimensions of thererderiof fens of microns. Thus
we can write

4In2 :
U(p, ¢, 2, —7) = Nexp <— . pQ)e—ZK?Bz. (209)

where o, is the transverse size of the atomic wavepacket, K97 is the atomic wavevector
along the z-direction and N is a normalisation. factor.

Equation (208) shows that the atomic state function is made up of a series of atom
vortex states each labelled by thedindex.n = 0,4+1,+2,.... and each is endowed with
angular momentum nlh propagating atian angle 0, relative to the z-axis given by

TR A (70 N gy
0, = sin (KjB)anm (KgB)' (210)

The central component is such that n = 0, which is an Airy-type state function and

carries no angular momentum. Explicitly we have

41n'2 4 4 -
Uy =NV exp (— I; p2> e ATeTIBT J o (Cr)e KL (211)
g1
while the first orderstatessare, those for which n = 41
41n2 . . . .
Wy = Nitexp <——I21,02) e AT BT I (O ) ettt K"z (212)
07

These state /functions correspond to atomic beams carrying orbital angular momenta
+lh. Note thatlh is the orbital angular momentum of the LG beam which was required
to construct the fork pattern. This angular momentum is seen here as having been
transferred to the atomic beams to the lowest diffraction order. The situation is
depicted schematically in Fig.34. For practical purposes it is desirable to be able to
ensure that the atomic vortex beams are well separated, with minimum or no overlap.
This requirement clearly depends on the parameters used to generate the diffraction
pattern and the amplitude of a given component depends on the initial state and
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the corresponding Bessel function. The process described above is in fact a Raman-
Nath diffraction and there are certain criteria in which the Raman-Nath regime applies,
namely (i) that the width of the initial atomic beam must be large compared with the
spatial extent of the diffracting potential and (ii) that the transverse kinetic energyrof
the atoms as they enter the diffraction region should be smaller than the maximum
energy of the atom-light field interaction.

14.2. Diffraction through a spiral light mask

The creation of a spiral mask is achieved when a Gaussian beam is passed through a
thin lens of width d, refractive index n and focal length f. Then theelectri¢ field of the
Gaussian beam is given by: ~

5(p7 Z) = ggG(p; Z)e—ikndeikp2/2f€ikzp2/(z2+z%)6—itan_l(z/zR)eikz/2' (213>

On interference of this beam with a LG donut beam [, p(= 0) we, have for the total
electric field:

1 . ) L ;
5tot(,0, Z) _ giezkzezkp2/2(zg+z%)e—ztan l(z/zR)ezksz/(ZQ—}—z%) %

i(—knd+kp?/2f) il tanfl(z/zR)] 914
Ea(p, z)e +&af(p. 2)e 8 : (214)
This field has an intensity proportional te the [Et(p, 2)|?, which at z = 0 is given by:

€t (0)]? = 1€2a(p) F(P) P + 1€ (p)|* + 2Eraf (B)Ec(p) cos (16 + knd — kp®/2f) . (215)

The intensity of this light field has a,spiral profile in the transverse plane, as illustrated
by the following numerical example., We assume that both beams have equal beam
waists wg = 15 pm, equal wavelengths Av= 1083.33 nm. The Gaussian beam has a
power of 0.3 pW while the LG beam has a power 1.4 uW. The wavelength corresponds
to the transition 235, — 2P, in the *He atom. The winding number of the LG beam
is [ = 2, while the lens is characterised by the following parameter values: d = 0.5 mm
and f = 100 pum. The intensmf of 'the total light field with the characteristic spiral
transverse profile is presented in Fig.35.

The atom interaeting withsthe above field experiences a potential given in Eq.(202)
with a Rabi frequeney. Q(p, @), whose square modulus is given by

2p, 9)1> = [Qalp)* + 196 (0)1> + 2216(p) Q0 (p) cos (16 + knd — kp?/2f) | (216)

where Q¢ (p)= Qaoexp(—p? /wd) and Qra(p) = Qrcof(p).

In the scheme shown in Fig. 36, a BEC which has been released from a trap moving
in free space is directed towards the light mask and made to interact with it for a short
time interval and gets diffracted by the optical dipole potential. We assume that the
BEC.initially occupying the ground state of the trap and immediately after its release
enters the interaction region at time ¢t = —7 . To a good approximation the condensate
wave-function can be considered as a Gaussian one as described in Eq.(209).
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Figure 35. Intensity of the total light field (at 2 4 0) made up by the interference
of the LG beam with the G beam. The inset to this figure shows the corresponding
contour plot. The parameters used are as follows. Both beams have equal beam waists
wg = 15 pm, equal wavelengths A= 1083.33 nm. The Gaussian beam has a power of
0.3 uW while the LG beam has a power 1.4 yW. The wavelength corresponds to the
transition 235, — 23 P, in the *He;atom: The winding number of the LG beam is [ = 2,
while the lens has d = 0.5 mmpand f =100 pm.

After the diffraction, the @atomic wave function acquires a phase imprint and so has

the form, N

\Ij(p7 Qb, O) N qj(ﬁa ¢7 _T) CXp <_

2iQ%(p, gb)) 7 (217)

Ay
where Ay = wr; — wp. Using Eq.(216) and the Jacobi-Anger equation this becomes:

Ufp, ¢,0) =W (p, ¢, —7)e BTe T Z i S (BT) e gimhnd g —imap® - (91g)
where, a & K/2f5 Blp) = Qa(p)/4A1, Clp) = Q&(p)/4A: and E(p) =
Qc(p)Qralp) /24, . {The diffraction pattern consists of AV beams, with a quantised
angular’ momentum along z-direction equal to mh. These AV beams are focussed at
the points. mm/Aa = mf along the z-axis. This is a rather simpler diffraction pattern
than that in the case of the fork-like mask described in the previous subsection. Here
the different AV beams are in focus in different planes along the propagation direction,
while in"the fork-like mask case they propagate in different directions. Equation (218)
indicates that the diffraction pattern is made up of a term ¥y with no OAM content
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Figure 36. Scheme of the diffraction set up. a) Schematic representation of the
diffraction of the atoms threugh the light mask made up of a Laguerre-Gaussian beam
interfering with a (Gaussian beam; (b) after the diffraction process the different atom
vortices are focused\at different planes along the propagation axis and are labelled
m = 0,£1, 42, ... with the m-th vortex carrying an orbital angular momentum equal
to Imh. Reproduced with permission from [248]

and different diffraction orders of opposite winding numbers ¥_,, which means there is
a quantized orbital angular momentum mh along the propagation axis.

Voox e BT W (p, ¢, —7)Jo(ET),
\Ij:i:m Y —ie_iBTe_iCT\I/(p, ¢7 —T)J:tm(ET)eiiml¢€iimknd€q:imap2. (219)

The two AVs with opposite angular momenta Fmh are defocused over mf and —mf
respectively.

The spiral diffraction scheme could be exploited for the generation of an atom Ferris
wheel beam [161]. This is the atomic counterpart of the light Ferris wheel beam because
the probability distribution at a plane transverse to the atomic propagation direction
has archaracteristic petal-like structure similar to the optical Ferris wheel transverse
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intensity pattern [101]. The fact that the generated AVBs are all focussed on a straight
line is the main advantage of the spiral diffraction scheme. If we can shift the fogcus,of
one AVB with winding number —m, without disturbing the focus of all the other AVBs,
then we can make it interfere with the AVB of winding number +m and generate the
atom Ferris wheel. This can be achieved by the interaction of a suitably tailored vortex
light field which can cause a second phase imprint on the AVB with winding number
—m. This imprint does not act on the other AVBs if we apply a spatially inhomogeneous
magnetic field that makes all the rest of the AVBs very far detuned from the lightifield,
so the associated phase shift is negligible.

The realization of atom vortex beams would open up a new area of@tom optics
in which atoms carrying orbital angular momentum interact with each other, or with
other forms of matter. Further theoretical studies and various.applications should
be anticipated including atom interferometry; the functioning of LG/light mask as a
dispersive prism for de Broglie wavelengths; the encoding and processing of quantum
information in atom vortex states entangled with other states such as motional or spin
atomic states; the interference of atomic vortices with opposite winding numbers and
building quantum entanglement in the infinite dimensional Hilbert space of atom vortex

states.
4

15. Artificial gauge fields and their/origins

The significant advances made in the cooling anditrapping of atomic motion have had
impact on diverse branches of modeérmyphysies. In particular there have been related
activities in condensed matter physiesy[43]. This is mainly due to the possibility of
engineering different forms of/ptical lattices,which led to the creation of new synthetic
condensed matter [262] paving the way to the demonstration of exotic topological phases
of such systems [263]. Such applications involving light-matter interactions are a part
of a broader area of investigatiql in modern physics, namely quantum simulations.

Quantum simulationg area striking vindication of Feynman’s prophecy that instead
of modelling quantum, effects with the help of conventional computers we might use
simple and controllable, quantum systems as quantum simulators [264]. One area of
physics where quantum,simulations have found application is condensed matter physics.
Many condensed' matter effects are very hard to simulate on a classical computer,
including high-temperature superconductivity and quantum magnetism. Computer
simulations are speciallyphard in cases where electrons are strongly interacting.

Cold atoms interacting with coherent light fields are ideal quantum simulators for
such cages since some of the parameters involved in the interaction can be engineered
almost at, will to suit a given model [265], [266]. The Hubbard model and the superfluid
Mott-insulator transition are two famous examples of problems that can be simulated
with cold atoms in optical lattices [267], [268]. One of the major problems of quantum
simulations is the fact that atoms are electrically neutral. Therefore it is, at first sight,
quite difficult to simulate effects involving interactions with electric and magnetic fields.
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Over the last decade schemes have been developed that can generate artificial Abelian
and non-Abelian magnetic and electric fields when cold atoms interact with coherent

light fields [269].

15.1. Two-level atoms

Currently there are different schemes which have been shown to lead to the,generation
of artificial magnetic and electric fields when atoms either in free space or when trapped
in optical lattices interact with suitably structured light fields [262].In the case of
free atoms, their interaction with the light results in an atomic motion that mimics
that of a charged particle subject to a magnetic field. This means that the atom is
subject to a Lorentz-like force [269] causing the atom to move along a elosed path. How
does this type of motion arise? The physical origin of this foree is the creation of a
Berry phase acquired by a particle moving in a closed path [270]..The realisation of
artificial magnetism requires the engineering of situations where @ neutral particle is
made to acquire a geometrical phase when it moves aleng anclosed path C. Thus the
focus turned to the Berry phase effect in atom-light interaetions [271], [272]. In this
case the atom-light coupling gives rise to the so-called dressed states [273]. These states
vary on a short spatial scale (typically the wayvelength ofylight) and so the generated
artificial gauge fields can be quite intense.

Consider an atom prepared in a dfessed stateny (ro)) moving sufficiently slowly
to follow adiabatically the local dressed state |x(r;)). On completing the trajectory C
it returns to the dressed state |x(rp)) having acquired a phase factor that contains a
geometric component. The quantum motionef the atom is formally equivalent to that of
a charged particle in a static magnetic fields, Such models have been studied for different
beam configurations for two-levelas well as three-level atoms [269]. It is important to
note that the emergence of these artificial fields requires a coherent interaction between
the light fields and the atomss Thus the interaction time must be limited in values
t < I'"!, with T being the/spontanéonis emission rate of the excited state.

It is well established that if we make the assumption that the particle is initially
prepared in the internal dressedsstate |x(r1(¢)) and proceeds in an adiabatic elimination
of the state |x(rz(),.then, the interaction of the atom with the light field is formally
equivalent to the motion of a charged particle in a vector field B and a scalar field V/(R)
given by [273]

Q(R)

(A + *(R))*>
A A3 .. OR) 2
MR = o3 |7 r o (R))Q(ﬁg(R)) t T ® (Vom)) } (221)

Here (R) is the Rabi frequency and ¢(R) is the phase of the coherent light field.

Notethat the generation of an artificial vector field B demands that both the amplitude

¢B(R)= 2hA, V(QR)) x V(¢(R)), (220)

and the phase of the electric field have a spatial dependence and that a scenario where
an atom is initially prepared in the state |x(rz) instead of |x(r;) will result in the same
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scalar potential energy V but opposite magnetic field B(R). The scalar potential V' can
be interpreted as the kinetic energy associated with the fast micromotion of the partiele.
This was first explained for a classical continuous internal degree of freedom by Aharonev
and Stern [274]. The magnetic field is related to the Berry’s phase that appears when
a quantum system, here the two-state system associated with the internal degree of
freedom of the particle, is slowly transported round a contour C, while remaining in.one
of the eigenstates of its Hamiltonian [270].

The above theory is valid in the case where the light-atom coupling strengthiis far
larger than the recoil energy associated with the exchange of a photonsbetween the atom
and the light field i.e, hQ) >> h*k*/2M. However, when we consider(the intefaction of an
atom with an optical vortex we need to take into account the fagtithat the/processes of
exchange between light and matter involve both linear and orbital-afigular momentum.
The recoil energy in this case is given by:
h2k? h21?

20 " ap

The second term in Eq.(222) is due to the angular momentum exchanged for an atom

Eree = (222)

localised at a radial position p from the beam axis. At first sight it seems that this
angular momentum should be considerably large at smal.l radial positions. However,
an LG beam has a dark core at small radial pesitions and thus the probability of an
interaction between the beam and thedatem near.thé core is negligibly small. The
interaction probability is considerable at regions where the vortex beam intensity is
large. For a LG beam, with p = 0, the intensity i§ maximum at the radial coordinate
po = wo+/|l|/2 where the ratio of the values,of the angular to the translational recoil
kinetic energy terms is equal to 2|I|/(k%wg). It is easy to see that this ratio becomes
larger as either the angular momentum [/ carried by the vortex photon becomes larger,
or the beam waist wy becomes’smaller. For the parameters and the particular atom
interactions which we focus on here the rotational recoil energy is negligible but it
can be comparable to thesfranslatienal recoil energy for smaller beam waists (tighter
focussing) and high winding aumbers.

Consider next the case where the two-level atom is irradiated by a monochromatic
LG beam propagating along the z—direction and plane-polarised, say, along the
r—direction. In this case the atom, which is considered to be near the focus z = 0,
experiences thefollowing artificial vector field:

hk AP (R)
B(R) =
(R) quo (AF + P(R))?/2
2y . 20 lz\ . l(z*—y*) [ 2 I\ .
_2Y o AV L Y 223
K w§+p2)x+<w3 p2>y+ e \wgp2)" 229)

The above artificial magnetic field vector has three components which appear to have
a complex ‘position dependence. But the field expressions can fortunately be simplified
furthers.'The component B, along the z—direction has a relatively small size compared
to.the other two components. This is easily seen because of the dependence on k in
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the denominator of the B, expression. Thus we can safely assume that the artificial
magnetic field at focus lies on the (z,y) plane. We can have a more detailed picture
of the properties of this field by plotting the magnitude of the magnetic field as well
as the corresponding field lines on the (x,y) plane. Figure 37 displays the magnitude
of the artificial magnetic field, and the inset to this figure is a vector plot which shows
the direction of the generated artificial field. We have assumed that the LG beam, has
a winding number [ = 1. In Fig.38 we also display the artificial gauge magnetic field
for a Gaussian (G) beam of the same power and beam waist. The light beamsyhave
a wavelength A = 852 nm and so can excite the transition 625/, =62 Psjsin a '*3Cs
atom which has an excited state transition rate I' = 27 x 5.15 MHz. We @ssume that
both beams have the same power, and a beam waist equal to 150%m._The interaction
is characterised by a detuning Ay = 2.5I" and a Rabi frequenay Qg 9. All the plots
shown below have been generated using the same parameters;, where the magnetic field
is in units of By = hk/qud.

From the comparison of the two figures, namely Fig.»37 and Fig. 38, it may be
deduced that the magnitude of the artificial magnetic field for a LG is larger than that for
a G beam. Note, however, that as the beam winding number {increases the magnitude
of the generated artificial magnetic field decreasesinThe magnetic field in the case of
the G beam has a cylindrical symmetry with a/maximumring area. In the case of LG
beam the magnetic field has cylindrical gsgymmetry but/ there are two concentric rings.
Moreover, the direction of the field is oppositerin the two rings and can be reversed with
a change of the beam winding number from{ to'=[. It seems that the LG beams offer
more possibilities for artificial magnetiesfield generation. There is thus the possibility
of using artificial magnetic fields generated by LG beams for the creation of extended
regions where the orbital magnetism can be be sufficiently strong to generate states
of non-zero circulation. This is.desirable in cases where a superfluid is placed in such
regions in order that its ground state will exhibit a vortex lattice. In addition to the
artificial magnetic vector field there is also a scalar artificial potential V' given by:
B AF*(R)

C2M (A2 + Q%(R))2

1] 20\ 2/ A2+ Q2(R) | 12 0 +1  kp*\’
- g | |- - = . 224
{ ( p (wi q A2 p? Tk 22p * 222 (224)

Figure 39 displays the artificial scalar potential in atomic recoil energy units while the

V(R)

inset represents the scalar potential when the same transition is excited by a Gaussian
beam with the/same power and beam waist. It can be seen that the magnitude of the
scalar field generated by a LG beam is smaller than that generated by the interaction of
the atom,with a G beam. There is however a striking difference, namely the appearance
of a’donut like profile of the potential in the case of a LG beam, but not in the G case.
This means that the potential will affect trapping in a LG beam as much as the artificial
magnetiefield in the inset affects the trapping in an ordinary Gaussian optical dipole
trap.
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Figure 37. Artificial magnetic field magnitude for a two-level atom (transition
6251/2 — 62P3/2 in a™®3Cgatom) irradiated by a LG beam with [ = 1, while ¢ = 9T’
and A = 2.5T". The magnetic field is in units of By = hk/qw3
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15.2. Three-level atons

The use of two-levelatomsfor the creation of artificial gauge fields has a serious drawback
arising from the fact the internal state of the atom is everywhere a linear combination
of the ground and the execited state. The short lifetime of the excited state imposes a
limit on the existence of such potentials. We may overcome this obstacle by considering
the so called ‘dark sates” which are possible when we consider atoms with a three-level
lambda configuration [276] - [278].

In the lambda configuration we have two ground states | 1 > and | 2 >, which can be
twodifferent hyperfine states of an atom, and an excited state | 0 >. The atom interacts
with two resonant coherent beams. The first one excites the transition | 1 >« 0 >
while the second excites the transition | 1 ><»| 0 >. These excitations are characterized

by Rabi frequencies (4(R) = [(h(R)|exp[¢1(R)] and Q(R) = [Q2(R)]exp[d2(R)]
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Figure 38. Artificial magnetic field magnitude for a two-level atom (transition
6251/2 — 62P3/2 in a™®3Csratom). The atom is irradiated by a G beam while ¢ = 9I'
and Jp = 2.5I". The magnetie field is in units of By = hk/quw3

A S

respectively. In thesanalysis of the artificial gauge fields with three-level atoms in the
lambda-configuration there are two factors that play important roles, namely the ratio
of the two Rabi frequencies ¢‘and the phase difference of the two beams S. These factors
are defined as follows

0 (R)

S 20fR-a®), (=gl

Assumingsthat the two ground states are at the same energy, we can neglect the two-

= [(] exp(iS). (225)

photon/detuning eo; = 0. In this case the interaction Hamiltonian has two eigenstates -
namely, the dark one | D > and the bright one | B > which are given by:

1 1
V¢

| D>= (I1>=¢"[2>), |B>= C11>—]2>) (226)

V1+[CP

It has been shown that when the atom is in the dark state the artificial vector and scalar
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Figure 39. Artificial scalar field magnitude for a two-level atom (transition 625, /2 —
62P; )5 in a '¥3Cs atom) irradiated by a LG beam. Qg = 9" and A¢ = 2.5T. The field
values are given in recoil energy units

A S

fields are given respectively‘by [277]:

V.S x VI|¢|?
(TH1¢?)?

From this we_deduce that there is a non-vanishing artificial magnetic field only when

R (VIC)? + ¢ (VS)*?

PPN M (1+ PP

V(R) =

(227)

there are non-zero gradients of the relative intensity and phase. This means that such
a field cannot be created using plane waves interacting with the three-level atom.
There is a_.deeper physical meaning of the variables and parameters involved in
Eq.(227):, The gradient V.S is proportional to the relative momentum of the two beams,
while (V[CP2/(1 + |¢]*)? is a vector associated with the centre of mass of the two
beams. The suggestion is that to create an artificial magnetic field the two beams
must have a relative orbital angular momentum. This is the key feature of the scheme
which has been proposed. Note that the above formalism is valid provided that the
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atoms move sufficiently slowly to remain in the dark state during their motion. This
is the adiabaticity requirement which is formally given by the condition €2 >> K with

€21]% + |22]? the rms (root mean square) Rabi frequency, which characterizes the
energy difference of the dark state with the remaining ones, and F' = |V(v|/ (L& {¢]2),
where v is the velocity vector. The adiabatic condition implies that Q~! should.be much
smaller than the time taken by an atom to travel a characteristic length over which, the
amplitude or the phase of the ratio ¢ changes considerably. For atoms,moving along
the y-axis the relevant length is 1/k ~ 107 m. On the other hand, the;Rabi frequency
can be of the order of 107 to 108s~!. Therefore, the adiabatic conditienrshould hold for
atomic velocities up to meters per second. These estimations do not take into account
the possible lifetime of the dark state due to adiabatic coupling{278]:

Assume that the two beams are different and carry different orbital angular
momenta so they are characterized by wavevectors ky, ko, winding numbers [, ls and
Rabi frequencies 2;(R), Q2(R). We then have ¢ = Q1(R)/Q(R) and S = ¢, where
[ = l; — Iy is the difference of the beams winding numbers:, This scheme generates an
artificial magnetic field B given by:

hl
¢BR) = ————=6 x VI([*. (228)
p(1+ IC ) )
which for fields with a cylindrical symmetry as for I.G beams has the final form:
hl 1
¢BR)= 42— ————IC 229
) == i (22

and there is also a scalar potential given by:
R (VI + [¢Ps)?
2m - (e [C?)?

Unfortunately this scheme again suffers from a drawback: namely that the two LG

(230)

beams are simultaneously zero at points where p = 0. Thus the adiabaticity condition
is violated. However, the scheIQe can/be adopted when one of the two beams is a LG
beam while the other one is Gauissian as shown in Fig. 40. This then offers the advantage
that the effective magnetiefield can now be shaped by choosing proper beams.

Consider an atom irradiated by a LG beam of winding number [ and a G beam. In
this case we end up'with the following artificial magnetic field:

B(R)—MCP){2{(I<:1 k) — ‘”]¢+—} (231)

@+ |cI? ZR P’

Equation (231) shows that, the magnetic field is directed along the beam propagation
axis, whemthe two beams are co-propagating with equal wave numbers so k; — ky = 0.
By contrast, iféthe beams are counter-propagating then the field has an azimuthal
compenent, which dominates over the axial one. However the azimuthal component
comes mainly from the counter-propagating character of the two beams while the axial
component’ comes from the optical angular momentum of the beam.

We now analyse the magnetic field in the case of co-propagating and counter-
propagating beams when the two beams irradiate a Cs atom and excite a A-transition
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(a) ——
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123

Cloud of wltra-cold atoms

Figure 40. (a) The energy level scheme for the A-type three-level atom interacting
with the two beams$ (b) Schematic representation of the experimental set-up with
the two light beams incident on the cloud of atoms. The first field is of the form
Q) ~ expileg , Whexq each photon carry an orbital angular momentum [/ along the
propagation axis z/ Reproduced with permission from [277].

in the D2 line of thesatomy where the common upper level is the 62P3/2 excited state
while the two lower levels\are the F' = 3 and I = 4 hyperfine states of 6251 /5. As we
see in Fig. 41, in the case of counter-propagating fields we obtain a stronger magnetic
field which has a hole at the center. This is not the case in the scenario involving
co-propagating/beams, but the magnetic field in that case is much weaker.

It hés been shown, [278], that in this scheme the effective magnetic flux through a
circle of radius py is given by:

P
0= § Ad = 2o S PR (232)

where 27k is the Dirac flux quantum, and [](o|?

is the intensity ratio at the radius
p =upp. The flux @ reaches its maximum of 27hl if the ratio |(o|> >> 1, i.e., if the
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Figure 41. (Left)thesmagnetic field arising from the irradiation of a Cs atom by a
LG beam and a Gauissian beam which are co-propagating. (Right) the magnetic field
when the Cs atom is irradiated by a LG beam and a Gaussian beam which are counter-
propagating. The magnetic field is in units of By = hk/quwi. The Rabi frequency
associated with the/'LG beam is Q¢ o = 9I', while the Rabi frequency associated with

the Gaussian beam is Q¢ o = 5I'.

intensity of the probe field exceeds the control field at the selected radius py. Since
the winding number of the light beams can currently be as large as several hundreds,
it is possiblefto induce a substantial flux ® in the atomic cloud. This might enable us
to study phenomena related to filled Landau levels with a large number of atoms in
quantum gases.

15.30580Vs

One\case where it is possible to achieve the requirement of large gradients which is
necessary for the creation of large magnitudes artificial fields is when a surface optical
vortex, (SOV) interacts with an atom in the vicinity of a dielectric/vacuum interface
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[279].  As discussed earlier, it is reasonable to adopt a geometrical optics model in
which the light beams involved in the total internal reflection, leading to the creation
of evanescent light, are specularly reflected at the interface of a dielectric with vacuum
- see Fig. 26. The SOVs are endowed with OAM; they are strongly localisedfand so
have very large field gradients. These gradients depend crucially on the refractive index
of the dielectric material and/or the angle of incidence of the laser béam. This gives
us more control parameters with which we can monitor the properties of the artificial
magnetic fields, specifically their strength and/or their spatial structure: Indeed we can
choose a dielectric with a higher index of refraction, a larger angle ofsincidence as well
as the parameters that determine the field magnitude in the free-space case like beam
intensity, beam waist, Rabi frequency and detuning. There is also another parameter
that will play an important role, namely the beam winding namberl. It appears that
as [ increases the magnitude of the magnetic field increasesiy/This point requires some
detailed explanation. As the winding number increases the beam,power is spread in a
larger area. Thus the intensity of the beam decreases andiso does the Rabi frequency.
Thus the argument that the artificial magnetic fields beceme stronger as the winding
number of the beam increases is true only providedsthat the Rabi frequency is properly
adjusted, either by increasing the intensity or bysdéereasing the beam waist [280]. The
strongest field is created if the incident angle of the plan® wave is much greater than
the critical angle for the total internal reflection 6. Then, however, the magnetic field
is considerable in a short range in vacuum {279]. This makes difficult to trap atomic
clouds sufficiently far away from the surface of the,prism-vacuum interface to avoid the
influence of the van der Waals intetaction.between the atom and the dielectric material
of the prism.

Artificial magnetic fieldsthave been shown that can be used for creating atomic
mirrors [279]. Typically, atom mirrers have been based on the optical dipole potential
created by evanescent fields. [Howeverjin this context the atoms behave like charged
particles inside an artificialsmagnetic field, thus they follow curved trajectories. If
evanescent fields are properly tailored the atoms may be pushed away from the dielectric-
vacuum interface due te a Liorentz-like force. Thus in practice we will have atom mirrors
for three level atoms: In Ref.([279]) the authors have shown that if a BEC trapped in a
MOT is released and understhe influence of the gravity is directed towards the prism-
vacuum interface then the artificial magnetic field can act to reflect the falling atoms.
Their scheme imvolves the interaction of a three-level atom with two coherent light fields:
one an evanescent wave created by the total internal reflection of a Gaussian beam and
the other_is an‘ordinary Gaussian beam propagating in free space close to the surface.
In the ¢ase of three-level atoms. very strong magnetic fields can be created when two
Gaussiambeams are laterally displaced. These fields can be even larger when the atoms
intéract with two laterally displaced evanescent fields [275]. It remains to be investigated
if and how schemes involving different combinations of SOVs could lead to enhanced
artificialrgauge magnetic fields.

Artificial gauge fields with twisted beams have been realised in more complicated
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cases involving a tripod scheme of the light-atom coupling [281],[282]. This is a scheme
where three laser beams drive transitions from three ground states to a common excited
state. This scheme is interesting in the particular case where two of the beams
are circularly polarised with opposite winding numbers [ = +1 propagating along
the z—direction, while the third one is linearly polarised along the y-direetion and
propagates along the x—direction. In this case the generated artificial magnetic field
has a leading term which corresponds to the field of a magnetic monopole at the origin:

Finally, once again, we note that the schemes presented here congern the creation
of artificial magnetic fields when twisted beams interact with atoms imsfree space. Such
fields have also been generated for atoms trapped in optical lattices with the possibility of
creating very strong artificial magnetic fields. The whole idea is based.on the induction
of a non-vanishing phase of atoms moving along a closed path on'the lattice. This
phase, proportional to the enclosed area, allows us to simulate a magnetic flux through
the lattice [283]. A scheme with twisted beams based on this ideashas been proposed to
study realizations of a Hofstadter-Hubbard model on a cylinder geometry with fermionic
cold atoms in optical lattices. The authors showed that the eylindrical optical lattices
achieved with twisted beams can provide a landscape for the exhibition of fractional

quantum Hall physics observed in this set-up [284]:
4

16. Summary, conclusions and outloek

This review has focussed on the interaction of atoms with structured light, most notably
the case of light endowed with thé preperty of the orbital angular momentum. The
analysis of a wide variety of phenomena,has illustrated how interactions with this kind
of light can give rise to novelsfeatures, entirely distinct from (and in addition to) the
phenomena experienced when atoms interact with more conventional forms of laser light.
This wide range of new effects includesithe controllable transfer of OAM from the light
to the centre of mass motion t{f individual atoms or, under certain circumstances, to
internal (electronic-type)/motions.

The prospect of engaging OAM with electronic transitions is a matter that has long
been of sustained interest, with investigations continuing in both theory and experiment.
The potential significance of this issue is brought to a sharp focus on recognizing that, in
twisted light, the property of angular momentum is quantitatively different in individual
photons. Nonetheless one of the first findings was that OAM cannot be transferred to
the internal/degrees of freedom of the atom in an electric dipole transition though
this might oeeur in ¢onnection with the normally much weaker quadrupole transitions.
This difference seems now to have been established unequivocally, through a range of
experimental and theoretical studies, including the excitation of an electric quadrupole
atomic transition involving OAM transfer to a valence electron in a trapped ion.
However, the strong symmetry principles that play into the difference between dipole
and quadrupole transitions are undermined in molecular systems, which are necessarily
of lower symmetry than atoms.
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One of the most prominent and striking features emphasised by this review is the
optical response of atoms involving azimuthal motion with respect to the input,beam
a response that can only arise due to the orbital angular momentum of the light. 't
has been shown how dipole interactions between the light and the atomic centre of
mass, with the participation of dipole transitions between energy levels near resonance,
lead to optical forces and a light-induced torque. Moreover the interaction leads 6
an optical dipole potential acting to trap the atom in well defined regions of . maximal
intensity, while the optical torque acts to keep them rotating in a ring at therhigh
intensity regions a phenomenon most readily observed in the simplest donut modes
where quantised superfluid behaviour may be manifested.

In more intricate beam configurations it has been shown thatfintriguing new effects
can arise through the interplay of wave polarisation in multiple heams. The simplest
case the Sisyphus effect in which wave polarization providesia superior mechanism for
cooling atoms (as compared to the Doppler mechanism) gains amadditional capability
when twisted light is deployed. When atomic motion is eontrolled in the azimuthal
direction, co-propagating beams of slightly different frequency give rise to rotating
petal-like patterns in a manner similar to a Ferrisswheel. “Such configurations prove
to offer exotic field distributions that can act to trapranditransport atoms. Nonetheless,
our review has also highlighted some very useful experiméntal work on the azimuthal
Doppler shift, a topic that appears to beaworthy of further exploration.

In another range of developments, we have reported advances connected with the
response of twisted light to media surfaces; which,can lead to surface optical vortices
and plasmonic optical vortices and 40 eéxtraordinary spin in evanescent waves. An OAM-
endowed surface mode generated by total internal reflection, like other surface modes,
has a small mode volume andiean interact strongly with atoms localised in the vicinity
of the surface. When ions are trapped in large numbers in such potential energy wells,
which are of essentially elliptical shapeswhen donut modes are deployed, the resulting
circulation of charge can give Eise to@ significant current and an associated magnetic
field.

Whilst the relatively simple phase property of twisted light its linear dependence
on azimuthal angle is'well studied and widely characterized, there are other features of
mode structure that we have'shown also deserve attention. By analysing in detail the
case of Laguerre-Gaussian modes prototypical examples of twisted light it has been
shown that there are subtle and interesting features associated with beam curvature
and Gouy phase. 'These are features that are enhanced for highly twisted modes,
especially _for atoms' localised near the beam waist, where strong field gradients can
lead to/diminishing optical forces conceivably even their annulment and/or reversal.

We have also discussed the concept of artificial gauge fields, exploring their
application in the context of atom-field interactions whereby cold atoms interacting
with. coherent light fields constitute effective quantum simulators. Again, distinctive
featurestarise when two- or three-level atoms interact with structured light, including
surface optical vortices. The optical engineering of such features is another promising
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and active area of current research.

On the basis that twisted light beams in many respects represent special forms of.de
Broglie waves, their concept is clearly generalisable to other de Broglie beams, including
elementary particles such as electrons and neutrons even atomic and molecular/beains.
In the case of neutral atoms as de Broglie waves, it has been shown that generating an
atom vortex beam requires the construction of a light mask to diffract atoms into vortex
beam states. The predicted atom vortices are still to be realised in the.laboratory, as
indeed other types of de Broglie vortex beams. However, one can reasenably speculate
that their realization would open up a new area of atom optics in whichratoms carrying
orbital angular momentum interact with each other, or with other forms ofimatter.

Further theoretical studies and various applications may bes@nticipated, including
atom interferometry; the functioning of an LG light mask as. @ dispersive prism
for de Broglie wavelengths; the encoding and processing of, quantum information in
atom vortex states entangled with other states such as metional or spin atomic
states; the interference of atomic vortices with opposite helicity, and building quantum
entanglement in the infinite dimension Hilbert space ©f atom vortex states.

Although the main remit of this review has been to highlight the interaction of
individual atoms with structured light, larger mumbers, of atoms can be trapped in
ordered arrays known as optical lattices, ideally by the use’of holographic optical traps.
The possibility of controlled engagement with two or more particles introduces problems
that are only readily addressed with particles significantly larger than atoms. For
example, micron-sized particles or nanoparticles origroups of particles within groups can
be individually and programmably&teered by beam-dithering (time-sharing) techniques.

While the obvious problem with ‘atems is the need to overcome thermal motion,
which is only feasible at verjnlow temperatures, another quite different feature can
then come into play. Groups of atems, optically trapped at temperatures sufficiently
low that their de Broglie wavelength is less than the mean atomic spacing, can undergo
transition into a Bose-Einstein eéondensate (BEC), in which the whole assembly responds
as a system with a single corporate wavefunction. A transnationally cold BEC assembly
of atoms can exhibit,a limited number of bulk motions [285], and Lembessis and Babiker
have shown how the interference of counter-propagating LG beams, with opposite
sign so that their"torque effects add, can produce rotation [286]. Furthermore, a
significant feature of rotating BECs is that they can exhibit vortices. Indeed, this
is the most significant kind of bulk behaviour that an essentially localized, rotating
assembly can exhibits “Here, the angular momentum conveyed by multiply-connected
Laguerre-Gaussian traps enables quantized vortex states to be identified, revealing the
distinctive BEC. character [287].

In addition to the production of such states through the combined action of several
optical vortex beams, [288, 289, 290] it has also been shown how a single non-paraxial
LG beam can excite a superposition of such states [291]. Nonetheless, in most studies of
this topie; atomic condensate vortices are engineered without the use of optical vortices,
and,the subject lies beyond the scope of the present review.
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The outlook for the interaction of twisted light with matter seems set to extend
in new work to explore different avenues in which either the form of structured, light
in other forms plays the key ingredient in the interaction, or the matter with which
the light interacts is itself considered in different forms. There are rich possibilities:to
explore in connection with multiple beams in various configurations, especially inviting
the development of both theory and experiment for the specific interaction of twisted
light with twisted matter in bulk solid-state materials.
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List of Symbols and abbreviations

Transverse electromagnetic vector potential

Magnetic vector field; also represents artificial vector
magnetic field

Laguerre-Gaussian mode normalisation constant
Electric dipole moment

Transverse electric vector field

Electric field vector

Atom recoil energy

Average force

Total Hamiltonian ~
Interaction Hamiltonian

Light intensity

Saturation intensity

Current density

Bessel function of the first kind of order [

wavevector

Lagrangian density IS

Total Lagrangian

Orbital angular momentum density operator

Winding number (azimuthal index) in a twisted beam
linearly polarised light'beams, with orthogonal polarisa-
tions

Associated Laguerreipolynomial

Matrix element of interaction Hamiltonian H;,; between
quantum statesw. and f

Mass of the two-particle atom

Magnetic dipole moment

Momentum' canonically conjugate to qu=12
Radial'modal index in a twisted beam

Electrie polarisation vector

Truncated electric polarisation vector (up to quarupole
term)

Particle position vector in the two-particle (hydrogenic)
atom

(ij)th component of the electric quadrupole moment
tensor

Atomic centre of mass position vector variable

Optical spin angular momentum density

Optical chirality flux

Optical linear momentum density vector

Saturation parameter
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T
(%)

V=R
V(R)

Torque on atomic centre of mass

Dipole potential

LG amplitude distribution function

Velocity vector of the atomic centre of mass
Artificial gauge scalar field of atom in an optical fields
The Doppler velocity

Recoil velocity

group velocity

Beam waist at position z in the beam

Rayleigh range

Damping coefficient in Sisyphus cooling

Azimuthal damping coefficient in Sisyplius cobling
Atomic polarisability

Detuning of light frequency from atomie transition
frequency

Static detuning

Doppler shift

Transverse Dirac delta function

Two-level atom adiabati¢ity paraméter

adiabaticity parameter

Non-adiabaticity parameter in Sisyphus effect
Artificial magnetic flux

Optical chirality density

Upper state de-exeitation rate in a two-level atom
Scalar field helicity

wavelength

Generating function in a Power-Zienau-Woolley (PZW)
gaugestransformation

Elasticanodulus of LG donut dipole trap

Moméntum canonically conjugate to A+

Canonical momentum density of evanescent light
Spin momentum density of evanescent light
Wavepacket transverse spread

Evanescent wave helicity

Laguerre-Gaussian phase function

Left and right handed circular polrisation of light
Rabi frequency

Rabi frequency associated with beam amplitude Fjg
Atomic state function on diffraction in atom vortices
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AVB
HOT
LG
OAM
SOV
SPOV

Atom Vortex Beam

Helical Optical Tube
Laguerre-Gaussian

Orbital Angular Momentum
Surface Optical Vortex

Surface Plasmon Optical Vortices
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