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Atoms in complex twisted light 5

Abstract. The physics of optical vortices, also known as twisted light, is now a

well-established and a growing branch of optical physics with a number of important

applications and significant inter-disciplinary connections. Optical vortex fields of

widely varying forms and degrees of complexity can be realised in the laboratory by a

host of different means. The interference between such beams with designated orbital

angular momenta and optical spins (the latter is associated with wave polarisations)

can be structured to conform to various geometrical arrangements. The focus of this

review is on how such tailored forms of light can exert a controllable influence on atoms

with which they interact.

The main physical effects involve atoms in motion due to application of optical

forces. The now mature area of atom optics has had notable successes both of

fundamental nature and in applications such as atom lasers, atom guides and Bose-

Einstein condensates. The concepts in atom optics encompass not only atomic beams

interacting with light, but atomic motion in general as influenced by optical and other

fields. Our primary concern in this review is on atoms in structured light where, in

particular, the twisted nature of the light is made highly complex with additional

features due to wave polarisation. These features bring to the fore a variety of physical

phenomena not realisable in the context of atomic motion in more conventional forms

of laser light. Atoms near resonance with such structured light fields become subject

to electromagnetic fields with complex polarisation and phase distributions, as well

as intricately structured intensity gradients and radiative forces. From the combined

effect of optical spin and orbital angular momenta, atoms may also experience forces

and torques involving an interplay between the internal and centre of mass degrees

of freedom. Such interactions lead to new forms of processes including scattering,

trapping and rotation and, as a result, they exhibit characteristic new features at

the micro-scale and below. A number of distinctive properties involving angular

momentum exchange between the light and the atoms are highlighted, and prospective

applications are discussed. Comparison is made between the theoretical predictions in

this area and the corresponding experiments that have been reported to date.

PACS numbers: 42.50.-p, 42.50.Tx, 42.25.JA

Keywords: Twisted Light, Atoms, Optical Angular Momentum; Structured Light,

Optical vortex, Singular Optics, Optical polarisation, Laser Trapping, Laser Cooling,

Optical Manipulation, Selection Rules, Quantum Electrodynamics.

1. Introduction

The term ‘twisted light’ refers to various states of light which are endowed with the

property of orbital angular momentum (OAM). These encompass a wide range, including

twisted light in freely propagating beams such as Laguerre-Gaussian and Bessel beams

[1] and other forms of twisted light inside optical fibres [2] and on fibres supporting

twisted light [3], as well as wave guide arrays [4]. Twisted light modes have also

featured in nonlinear waveguides [5] and as so-called surface optical vortices (SOVs)

[6]. The reference to the twisted nature stems from the observation that the OAM

property of the light makes the normal to its wave-fronts twist in a helical fashion with
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Atoms in complex twisted light 6

a degree of twisting depending on the OAM content. Freely propagating twisted beams

are proto-typical twisted light and were the first to be explored; they are also referred

to as optical vortex beams. It has been realised [7] that associated with the wave-front

of such a state of light is a topological structure due to a singularity in phase. In

cylindrical polar coordinates (ρ, φ, z) the phase of a pure vortex state takes the form

exp (ilφ) where l is the topological charge, also called the ‘winding number’ and the

‘azimuthal quantum number’. The value of |l| also quantifies, in terms of the reduced

Planck constant ~ the orbital angular momentum conveyed per photon. Nye and Berry

were the first to describe the topological features of the wave-front as a screw dislocation

in a manner similar to that encountered in crystal defects [8].

This review is concerned with the principles, recent developments and applications

in the context where atoms interact with twisted light. Here we begin with the

background theory of the interaction of atoms with electromagnetic fields in general,

emphasising the division of the atom dynamics into gross motion associated with

the centre of mass (which is dominated by the nuclear mass) and the internal

motion involving the bound electrons, and the distinction between optical spin and

optical orbital angular momentum densities. This is followed by brief descriptions

of conventional laser cooling and trapping of atoms, including Doppler and Sisyphus

mechanisms. The essential formalism for twisted light fields is given next with emphasis

on Laguerre-Gaussian light as the most widely discussed form of twisted light. The

inclusion of optical wave polarisation (photon spin) as one of the main sources of

complexity of the twisted light is discussed with special emphasis on polarisation

gradients arising in co- and counter- propagating twisted light beams with circular

polarisations. This background sets the scene for the main aim of this review, namely

the description arising when complex twisted light interacts with atoms.

One of the first issues to be addressed in the context of twisted light interaction

with atoms is the possibility of exchange of OAM. Could the well known selection rules

in the case of emission and absorption of ordinary (Gaussian) polarised light with atoms

be modified with the involvement of the new ingredient in the form of OAM carried by

twisted light? The theory of this process is based on the analysis of the transition matrix

element for dipolar and quadrupolar active transitions and on the division between the

centre of mass and the internal (electronic-type) motion of the atom. We highlight

experiments carried out to date on this issue. The interaction also gives rise to modified

optical forces that act on the centre of mass of the atom with additional characteristic

features associated with the orbital angular momentum content of the twisted light,

including azimuthal Doppler shifts along with azimuthal forces and torques about the

beam propagation direction and an azimuthal Sisyphus effect. Multiple beams are shown

to lead to ‘twisted molasses’ and other novel forms of optical trapping, including the

formation of ‘Ferris wheels’ and ‘helical optical tubes’ which arise when co-propagating

beams with opposite and identical winding numbers are formed.

Totally internally reflected twisted light can generate surface optical vortices as

evanescent waves carrying orbital angular momentum and in the presence of a metallic
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Atoms in complex twisted light 7

film deposited on the surface, the evanescent modes acquire a plasmonic character. Such

evanescent fields interact with atoms in the vicinity of the surface and the atoms may

become trapped in the surface region.

Laguerre-Gaussian twisted light beams have anomalous additional phase effects due

to being focussed beams with a well-defined waist plane at focus. The additional phase

terms in the form of a Gouy phase and a curvature phase term are normally ignored

but become significant for atoms localised the vicinity of the focus plane, particularly

for Laguerre-Gaussian light with large values of winding number l and/or radial number

p. Under these circumstances the atoms experience enhanced anomalous phase effects

in the form of modified gradient forces which can diminish the axial force component

acting on the atom, or even reverse its direction.

Besides LG and Bessel beams where the dominant phase involves integer winding

number l, light beams with fractional orbital angular momentum have been considered.

In particular, Götte et al [9] reported the generation of light carrying fractional OAM

by limiting the number of Gouy phases in a superposition of LG light beams.

A well defined beam of atoms, like an optical beam, is essentially a de Broglie wave

with a wavelength that depends on the atomic axial velocity. Diffraction through light

masks, in techniques somewhat akin to, but rather different from, those used for the

generation of twisted light, are expected to lead to the generation of twisted beams of

atoms, so-called ‘atom vortex beams’. Finally, we describe how the gross motion of

atoms in twisted light gives rise to artificial gauge fields for atoms in donut modes and

in Ferris wheel patterns.

In the conclusions section we briefly identify a number of other treatments of atoms

in twisted light that are beyond our scope in this review, including the trapping of ions in

donut beams, the effects on cyclotron motion of ions in twisted light, spin-orbit coupling

effects in this context and non-linear effects.

2. Coupling light to atoms

The essential background physics describing the interaction of twisted light with atoms

stems from conventional non-relativistic quantum electrodynamics [10] and considerable

work has been carried out on this (see references ([11] to [18]). An atom subject to

light typically exhibits two kinds of dynamics, namely the dynamics involving the gross

motion of the atom as a whole, in terms of its centre of mass, and processes involving

the internal dynamics in the form of transitions between quantum (electronic) states

due to the emission and absorption of light quanta. These features play central roles

in the context of twisted light interacting with atoms and it is helpful to tailor the

formalism in a manner that highlights the roles of the internal and gross motions. It is

common practice to explore interactions of atoms and molecules in terms of multipole

moments, both electric and magnetic, coupled to the electromagnetic fields [13, 16].

The treatment becomes particularly simple, but perfectly adequate and transparent,

when the atom comprises an outer electron and a nucleus surrounded by a closed-shell
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Atoms in complex twisted light 8

electron core. The corresponding particles have nett charges e1 = −|e| (electron) and

e2 = +|e| (nucleus and core) and masses m1 = me (electronic mass), m2 = mc (nucleus

and core). Any inner transitions of the core need not concern us. We must bear in

mind that m2 ≫ m1, but it is important not to impose this condition from the outset,

in order to fully take account of the centre of mass motion and its coupling to both the

relative motions of the outer electron and core and the light fields. The two-particle

atom coupled to the electromagnetic field has the following non-relativistic classical

Lagrangian in the transverse (radiation) gauge [16]

L =
1

2
m1q̇

2
1 +

1

2
m2q̇

2
2 −

e1e2
4πǫ0|q1 − q2

+

∫
Ldr, (1)

where

L = J ·A⊥ +
1

2
ǫ0

[
Ȧ⊥2 − c2(∇×A⊥)

2
]
, (2)

with qα and q̇α, α = 1, 2, the particle position variables and corresponding velocity

vectors. In the radiation gauge (∇· A⊥ = 0) the Coulomb effects reside in the static

inter-particle interaction and we only have A⊥ as the canonical field variable. Besides

the Coulomb interaction, the coupling between the field and the particles occurs via the

total current density

J(r) = e1q̇1δ(r− q1) + e2q̇2δ(r− q2) (3)

The dynamical variables in this canonical procedure are q1, q2 and A⊥(r), and the

corresponding canonical momenta are p1, p2 and Π⊥(r). These canonical momenta

emerge from the Lagrangian as follows

pα =
∂L

∂q̇α

= mαq̇α − eαA
⊥(qα); α = 1, 2, (4)

Π⊥ =
∂L
∂Ȧ⊥

= ǫ0Ȧ
⊥
= −ǫ0E⊥, (5)

and we obtain the total Hamiltonian in the form

H =
[p1 + e1A

⊥(q1)]
2

2m1

+
[p2 + e2A

⊥(q2)]
2

2m2

+
e1e2

4πǫ0|q1 − q2|
+

1

2
ǫ0

∫ (
E⊥2

+ c2B2
)
dr. (6)

The transition to the corresponding quantum theory follows once we identify the

canonical momentum and coordinate variables as operators obeying commutation rules

[pαi, qβj] = −i~δαβδij, [A⊥
i (r, t),Π

⊥
j (r

′, t)] = i~δ⊥ij(r− r′), (7)

where δ⊥ij(r) is the transverse delta function [10]. The above framework constitutes the

non-relativistic QED theory for the two-particle atom interacting with light. However,

so far the theory deals with two individual charged particles interacting with each other

and with electromagnetic fields. We need to devise means of identifying features of the

dynamics which recognise its division into types belonging to internal and gross motions.

The most useful form occurs when we seek to express the Hamiltonian in Eq.(6) in
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Atoms in complex twisted light 9

a multipolar form. The complete theory can be generalised to a many-body system

involving atoms and molecules with well defined centres. Such a theory is now known

as the Power-Zienau-Woolley (PZW) theory, with numerous groups contributing to its

development and analysis (see [11] to [29]). The key point is the observation that it is

possible to take account of all multipoles, both electric and magnetic in closed forms and

formally include inter- as well as intra-centre interactions [12]. As we emphasise above,

the version of the theory in which we deal with a one-centre atom is both instructive

and relatively simple. Our ultimate aim in the context of this model is to arrive at

a Hamiltonian which is valid to all multipolar orders, but ultimately we shall need to

highlight applications involving the leading electric dipole and quadrupole interactions,

as these are the multipolar orders currently accessible to experimental work, including

recent experiments on OAM exchange between atoms and twisted light.

We begin by introducing the total electric polarisation vector field P(r) for the

two-particle system in the form

P(r) =
∑

α=1,2

eα(qα −R)

∫ 1

0

dλδ[r−R− λ(qα −R)], (8)

in which λ is an integration parameter and R is the centre of mass position vector

R =
m1q1 +m2q2

M
; M = m1 +m2. (9)

The above expression of the electric polarisation field of the two-particle system is a

closed expression representing contributions from all electric multipoles excluding any

net monopole (which can be included separately, e.g. in the case of an atomic ion). The

multipoles manifest themselves on expanding the delta function appearing in P(r) in

powers of (qα −R), α = 1, 2. These two vectors are related to the internal coordinate

of the two-particle system denoted by q

q = q1 − q2, (10)

and it is easy to show that q1 − R = m2q/M and q2 − R = −m1q/M . Making use

of these relations, the polarisation vector field can be written entirely in terms of the

internal coordinates q and the field position variable r. By expanding the delta functions

in (8) in powers of q followed by integration over λ yields the ith Cartesian component

of the expanded polarisation field vector P . Up to the quadrupole moment we have

(using the Einstein convention that a repeated index is summed over a set of mutually

orthogonal coordinates)

Pi(r) ≈
[
di +

1

2
Qij∇j

]
δ(r−R), (11)

where d = |e|q is the electric dipole moment and Qij = |e|qiqj is a (ij)th component of

the electric quadrupole moment tensor. For electric dipole-active transitions only the

first term is applicable, while the second (quadrupole) term dominates in case of dipole

forbidden transitions.

In practice one seldom goes beyond this truncated form of the electric polarisation

as given in Eq.(11) and, unless otherwise stated it is this form that we shall need when
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Atoms in complex twisted light 10

it comes to applications involving the coupling of the twisted light to atomic systems.

Ultimately it will prove convenient to use the notation PT (r) to refer to the truncated

polarisation vector field which we will subsequently define as follows

PT (r) ≈ Dδ(r−R), (12)

where D is a quadrupole-corrected dipole moment operator with components given by

Di = di +
1

2
Qij∇j. (13)

2.1. Canonical transformation

The coupling of the light to all the atomic multipoles is achievable via a PZW canonical

transformation or, equivalently, a gauge transformation involving a characteristic

generating function S in the form [13, 16]

Λ = eiS = e
−i
~

∫
P (r)·A⊥(r)dr. (14)

This unitary transformation gives rise to a new Hamiltonian Hnew which has the same

form as the old Hamiltonian H, and to mark the distinction we now represent all

transformed canonical variables with a prime. We have

Hnew =
[p′

1 + e1A
⊥(q1)]

2

2m1

+
[p′

2 + e2A
⊥(q2)]

2

2m2

+
e1e2

4πǫ0|q1 − q2|
+

1

2

∫ (
Π′⊥2

ǫ0
+

B2

µ0

)
dr. (15)

After transformation the new momenta p′
α and Π′⊥ are given by

p′
α = e−iSpαe

iS = pα + i [pα, S] , (16)

Π′⊥ = e−iSΠ⊥eiS = Π⊥ + i
[
Π⊥, S

]
. (17)

The evaluations of Eqs.(16) and (17) both involve a commutator series, but it is easy to

verify that both series terminate at the first commutator in each case due to the form

of S in Eq.(14). We find

p′
α = pα + ~∇

αS, (18)

Π′⊥(r) = Π⊥(r)− P⊥(r), (19)

where ∇
α in Eq.(18) denotes differentiation with respect to the canonical coordinate

qα. The vector field P
⊥ appearing in Eq.(19) stands for the transverse vector field

part of the electric polarisation vector field given in Eq.(8), having made use of the

commutation relations in Eq.(7).

The formal multipolar Hamiltonian follows from Eq.(15) by direct use of Eqs.(18)

and (19). The next steps involve the division of the motion into the internal motion

(which is characterised by the appearance of the relative coordinate q), and the gross

motion involving the centre of mass coordinate R.
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Atoms in complex twisted light 11

2.2. Decoupling of motions

Although we can continue the treatment without further recall of a multipolar expansion,

it is instructive to focus again on the approximation in which the electric polarisation

vector field takes its truncated form in Eq.(11) with leading contributions including only

the electric dipole and the electric quadrupole terms. We obtain for ∇
αS after some

algebra

~∇
αS = −eαA⊥(qα) +

1

2
D×B(R). (20)

Hence we can write for the transformed momenta, Eqs.(18) and (19)

p′
α = pα − eαA

⊥(qα) +
1

2
D×B(R), (21)

Π′⊥(r) = Π⊥(r)− P⊥(r). (22)

Note that the last term in Eq.(21) does not depend on α. Finally, substituting from

Eqs.(21) and (22) in Eq.(15) we obtain the transformed Hamiltonian in the following

form

Hnew =
∑

α=1,2

[
pα + 1

2
D×B(R)

]2

2mα

− e2

4πǫ0q
+

1

2

∫ {
[Π⊥(r)− P⊥(r)]

2

ǫ0
+

B(r)2

µ0

}
dr. (23)

To arrive at a theory with explicit division of the motion into internal and gross motions

we have to define the centre of mass momentum P conjugate to the centre of mass

position vector R, as defined in Eq(9)

P = p1 + p2 (24)

and the internal momentum p conjugate to the internal variable q by

p =
m2p1 −m1p2

M
; q = q1 − q2. (25)

We can then express p1 and p2 in terms of P and p as follows

pα =
mα

M
P+ (−1)α+1

p; α = 1, 2. (26)

Equation (26) enables the explicit change from the particle canonical variables

qα and pα to internal variables (q,p) and gross motion variables (R,P). That

the new pairs are independent canonical variables can easily be checked. We have

[Pi,Rj ] = −i~δij; [pi, qj ] = −i~δij and [Pi, qj ] = 0 = [pi,Rj] which follow by direct use

of the commutator [pαi, qβj] = −i~δαβδij . The above commutator relationships ensure

that the new variables conform with the requirements for independent sets representing

two independent motions in the absence of coupling. Substituting from Eq.(26) in
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Atoms in complex twisted light 12

Eq.(23) we get

Hnew =
∑

α=1,2

([
P

M
mα + (−1)α+1

p+ 1
2
D×B(R)

]2

2mα

)
− e2

4πǫ0q
+

1

2

∫ [[
Π⊥(r)− P⊥(r)

]2

ǫ0
+

B2(r)

µ0

]
dr. (27)

The Hamiltonian (27) simplifies considerably on expanding the square and we find

Hnew =
P2

2M
+

(
p2

2µ
− e2

4πǫ0q

)
+

1

2

∫ (
Π⊥(r)

2

ǫ0
+
B2(r)

µ0

)
dr+

1

ǫ0
D.Π⊥(R) +

1

2M
(P.D×B(R) +D×B(R).P) +

[D×B(R)]2

8µ
+

1

2ǫ0

∫
P⊥(r)

2
dr+M·B(R), (28)

where µ is the reduced mass µ = (m1m2)/M and coupling terms are given in the

truncated approximation. The ultimate term involves the magnetic moment M

coupling to the magnetic field also in the truncated approximation. This term arises

from the product between p and D×B. In the dipole approximation where D = d, the

leading contribution to the magnetic dipole moment is

M =
1

2me

d× p. (29)

Equation (28) is the non-relativistic Hamiltonian for the electrically neutral two-

particle atom in interaction with light. It is seen that the internal electronic-type motion

is essentially separated from the gross motion, but these two subsystems of the atom

are coupled by mutual interactions between charges and with the light fields. Amongst

the various terms there are three that essentially represent unperturbed components of

the system; these are the (zero-order) Hamiltonians representing the gross (centre of

mass) motion, the internal (electronic-type) motion and the light fields - which appear

as the first three terms of Eq.(28). Other terms represent couplings between the three

subsystems; the fourth term represents the coupling of the atomic dipole as well as the

quadrupole moments to the transverse part of the displacement field Π⊥ (evaluated at

the centre of mass coordinate R); the fifth constitutes the leading interaction involving

the centre of mass with the truncated multipole moment and the magnetic field; the sixth

is the diamagnetic field-type energy and the seventh term is an integral of the square of

the polarisation field. The latter is a self energy contributing to the Lamb shift and may

be absorbed in any renormalised energies pertaining to the internal motion. Finally, the

last term is the leading interaction between the magnetic dipole of the atom and the

magnetic field of the light, evaluated at the centre of mass R.
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Atoms in complex twisted light 13

2.3. Mechanical momentum and pressure force

A prominent feature of the Hamiltonian in Eq.(28), when taken in the truncated

multipole approximation is the appearance of the term D × B. In the electric dipole

approximation, this can be written as eAR where AR = q×B. Clearly AR plays the

role of an electrodynamic vector potential. The significance of this can readily be seen

by considering the particle canonical momenta. From Eq.(21) we can write

(
p′

α + eαA
⊥(qα)

)
= pα +

1

2
D×B(R). (30)

The left hand side is equal to mαq̇α, so we can write

mαq̇α = pα +
1

2
D×B(R). (31)

Summation over α = 1, 2 in all terms we get
∑

α=1,2

mαq̇α =
∑

α=1,2

pα +D×B(R). (32)

Using Eq.(9), the left hand side of Eq.(32) is exactly MṘ while the first term on the

right hand side is just P. We therefore have

MṘ = P+D×B(R). (33)

The relationship in (33) is between the canonical momentum P and the mechanical

momentum MṘ of the centre of mass in the truncated multipole approximation. The

result also follows as a Heisenberg operator equation based on the Hamiltonian in

Eq.(28). We have,

Ṙ =
i

~
[Hnew,R] =

(P+D×B(R))

M
. (34)

The radiation pressure force acting on the centre of mass in the dipole approximation

follows from Eq.(33) by total time differentiation

F =
d

dt
(MṘ) =

dP

dt
+
d

dt
(D×B). (35)

The force also follows from Eq.(34) as a Heisenberg operator equation in the form

MR̈ =
i

~
[Hnew, (P+D×B)] = −∇ (D · E(R)) +

d

dt
(D×B), (36)

where∇ refers to differentiation with respect to the components ofR. We have explicitly

evaluated the first commutator i
~
[Hnew,P] = ∇(D ·E) but left the second commutator

as a time derivative. The last term is referred to as the Röntgen force, generalised here

to include the quadrupole contribution. The so-called Röntgen effect arises when an

electrically neutral system possessing a dipole moment is in motion in a magnetic field

[19]. Here we have shown that the corresponding interaction arises from a treatment

incorporating the motion of the atomic centre of mass as a dynamical variable. Other

effects that have been predicted to arise from the motion of neutral quantum systems

include the rotational motion of a Bose-Einstein condensate with a form of distribution

effectively associated with either a magnetic monopole distribution or an electric charge
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Atoms in complex twisted light 14

distribution [20]. We have therefore established that both dynamical attributes, namely

the momentum and the corresponding pressure force, receive contributions directly

attributable to the Röntgen interaction. The complete Hamiltonian in the truncated

pole approximation is essential for studying processes involving the coupling of the

atomic system to electromagnetic fields.

The multipolar theory of atom-field interactions, beginning with the seminal

work by Power and Zienau [21] was subsequently developed and applied by several

contributors. The reader is referred to the following sources for further information (see

references [22] to [27]).

2.4. Quantum amplitudes and motion

Before proceeding further, it is helpful to recognise two quite distinct forms of mechanical

response that arise in describing the evolution of a given atom + radiation state. As

fully discussed elsewhere [30, 31], gradient forces are generally produced in response to

interactions in which the initial and final states are identical, resulting in mechanical

motion through response to a potential energy surface sculpted by the structure of a

light-beam. Here, forces arise essentially as a secondary result from a position-dependent

shift in the electronic energy, ∆E, which in the quantum framework is identifiable with

the real part of a corresponding quantum amplitude. With no exchange of energy

taking place between the radiation and the atom, the response has to be mediated by

an isotropic property - one that has the full three-dimensional symmetry of the atom.

Most commonly this is polarizability, denoted here by α̃, and when this engages with

a radiation field with a locally variable strength there will be a resulting optical force

given by;

MR̈ =
1

2
α̃∇E2(R). (37)

This expression of this form is commonly used to determine an optical trapping force.

In contrast are non-conservative interactions, in which radiation directly produces

mechanical effect through quantum transitions that impart linear or angular momentum.

Since the atomic and the radiation states both change, these interactions engage

transition moments that are intrinsically non-isotropic. A further significant difference

is that since the initial and final states differ, any observable will have a direct relation

to the process rate - the latter normally associated with the modulus square of a

quantum amplitude. In either case, in connection with imparted linear momentum the

changes in matter state are generally associated with translational motion amenable to

representation by classical physics; with angular momentum, however, internal changes

in electronic state are necessarily quantum events and must be dealt with accordingly.

2.5. Optical momentum density and OAM density

A helical structure can be associated with two important and largely distinct aspects

of light; most familiarly the sweep of the field vectors in circular polarization, and for
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Atoms in complex twisted light 15

twisted light the phase structure. Circular polarizations represent radiation states that

are eigenfunctions of the operator for optical spin angular momentum, whose density

operator is given by;

S̃(r) = ǫ0
{
E⊥(r)×A⊥(r)

}
. (38)

As such, each circularly polarized photon conveys a well-defined quantum spin, precisely

σ~ , where σ = ±1 according to left/right helicity[32]. Photons of twisted or vortex

forms of structured light in principle represent quantum eigenstates of an orbital angular

momentum density operator, expressible as follows;

L(r) = ǫ0
{
E⊥

i (r×∇)Ai

}
. (39)

Both of the above results, Eq. (38) and (39), represent gauge-dependent quantities,

cast in terms of the vector potential A(r). However, the separation of angular

momentum into spin and orbital parts is a simplification that applies only in the paraxial

approximation. More generally the separation is not absolute; there are transverse

components and spin-orbit coupling in any significantly structured beam [33, 34] and

there is indeed recent experimental proof of their interconversion in a cylindrically

symmetric optical fibre [35]. For an objective perspective it is therefore expedient to

introduce more definitive, generalized measures of chirality for the radiation field. One

suitable measure is the optical chirality density, defined as;

χ(r) =
1

2
ǫ0
{
E⊥(r)·∇× E⊥(r) + c2B(r)·∇×B(r)

}
, (40)

whose expectation value relative to the energy density in cognate units is bounded within

the interval [-1, 1], the two limits signifying right- and left-handed circular polarizations

[36]. We can also define a corresponding chirality flux;

ϕ(r) =
1

2
ǫ0
{
E⊥(r)× (∇×B(r))−B⊥(r)× (∇× E(r))

}
, (41)

to satisfy the continuity equation

∂χ(r)

∂t
+∇·ϕ(r) = 0. (42)

The volume integrals of both χ(r) and ϕ(r) are also directly related to the scalar field

helicity [37]

κ =

∫
{A(r) ·B(r)} d3r. (43)

For plane waves, χ(r) and ϕ(r) effectively quantify a net spin angular momentum in

terms of a difference in the number of left- and right-handed photons, for example [38]
∫
χ(r)d3r = ~c

∑

k

k2
{
N̂ (L)(k) + N̂ (R)(k)

}
(44)

in which the right-hand side contains a difference between the corresponding photon

number operators. When vortex modes are entertained, the key optomechanical
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Atoms in complex twisted light 16

parameter is represented by the orbital angular momentum operator. In the paraxial

approximation, for a mode with topological charge l this operator is expressible as;

~

∑

k,l

lk̂
{
N̂ (L)(k)− N̂ (R)(k)

}
, (45)

so that the spin and orbital parts of the total angular momentum effectively depend

on the difference and sum, respectively, of the number operators for modes of opposite

polarization helicity. From a different perspective this result is also consistent with the

fact that fields whose mode expansions convey a phase factor exp(ilφ), are eigenfunctions

of the angular momentum operator L [7]. The wide variety of other beams conveying

orbital angular momentum includes several other kinds of modified-Gaussian vortex

beams [39], described as having a perfect optical vortex structure [41] and propagation-

invariant Bessel beams [40]. For mode structures cast in a form that necessarily involves

summation over an additional parameter (as is the case with perfect vortex beams, for

example) the associated quanta are correspondingly associated with state superposition

[41].

3. Laser cooling and trapping

3.1. Overview

The term ‘laser cooling’ refers to various methods in which an interaction of laser light is

made to systematically cool atomic, molecular and condensed matter systems to lower

temperatures. For general reviews (see references [42] to [46]). The primary processes

involve the exchange of laser photons leading to momentum and hence velocity changes.

Doppler cooling is the simplest of a number of techniques leading to the systematic

reduction of the temperature of atomic or molecular ensembles while Raman anti-Stokes

techniques are used for cooling condensed matter systems. Besides Doppler cooling, the

list of laser cooling schemes includes, among others: Sisyphus cooling [47]; Raman

sideband cooling [48]; Velocity-Selective Coherent Population Trapping (VSCPT); [49],

[50] and Electromagnetically Induced Transparency (EIT) cooling [51]. In addition to

laser cooling the laser light can be made to trap atoms in the minima of optical potential

wells set up by the laser light.

The atoms to be cooled are normally in the form of a dilute atomic gas and the

Doppler mechanism is employed for cooling down to a microkelvin limit; for 85Rb the

limit is commonly around 150 µK. The physical principles underlying Doppler cooling

can be summarised succinctly as follows. When the frequency of the laser light is

below a strong atomic transition frequency (a scenario referred to as red-detuning),

then for an atom travelling in the direction of the laser source the light is blue-shifted

in accordance with the Doppler effect. The atom absorbs a photon and so is slowed

down on recoil. Consider now the effects of two counter-propagating laser beams of the

same wavelength on a representative atom in a dilute atomic gas. Each atom absorbs

more photons belonging to the laser beam opposite to its direction of motion in each
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Atoms in complex twisted light 17

event, thereby losing a linear momentum equal to the photon momentum. This atom

is now in the excited state and so discharges its excitation by spontaneous emission in

a random direction. The total effect of this basic cycle of photon absorption followed

by emission is a reduction of the momentum of the atom, and so the atom loses speed.

Repeated cycles then lead to a reduction of the centre of mass kinetic energy, which

signifies cooling of the atom since (when compared with the case of molecules) they

have no other centre of mass degrees of freedom.

Currently the most prominent use of laser cooling is in preparing samples of atomic

ensembles with temperatures just above absolute zero, widely used for experiments that

lead to a variety of effects, most notably Bose-Einstein condensation. Laser cooling

has primarily been applied to atoms, but recently there has been progress leading to

the cooling of more complex systems such as molecules [52, 53] and macro-scale objects

[54, 55]. Depending on the size of the molecule, the problem of dissipating the energy

from internal vibrational and rotational levels can present a considerable additional

challenge [56].

When laser light is employed in the context of the laser cooling techniques

mentioned above, it is commonly regarded as ordinary laser light in the sense that

it is not endowed with orbital angular momentum unless this feature is specifically

introduced. The aim in the following is to highlight what has been achieved to date

as regards the modifications to processes involving cooling and trapping of atoms when

the laser light is twisted.

3.2. The Sisyphus effect

Soon after Doppler cooling appeared to be well-explained theoretically the experimental

evidence showed that the existent theory was inadequate [57], as the measured kinetic

temperatures achieved were significantly lower than those predicted by the Doppler

mechanism. The failure of the Doppler mechanism to account solely for the lower

temperatures achieved meant that a new theory was needed. This paved the way for the

development of so-called sub-Doppler cooling mechanisms, most notably the mechanism

based on the Sisyphus effect [58],[59]. As we discuss later, the Sisyphus effect is modified

when the laser light is endowed with orbital angular momentum, so it is helpful to first

review the salient features of this effect.

There are two main differences between the Sisyphus cooling mechanism and

Doppler cooling. In Sisyphus cooling the main process involves the interaction of

atoms with a light field characterised by spatial polarisation gradients. The specific

polarisation gradients which have been utilised in the Sisyphus effect can be created by

the superposition of two (for one-dimensional cooling) counter-propagating plane wave

laser beams, with either mutually orthogonal linear polarisations [58], or with opposite

circular polarisations [59]. The former is known in the literature as the lin ⊥ lin case,

while the latter is represented as the σ+ − σ−.

Consider now the first case where the two fields have mutually orthogonal
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Atoms in complex twisted light 18

polarisations. The electric field vectors of two identical, but counter-propagating laser

beams, of frequency ω and axial wavevector |k| = k travelling in opposite directions

along the z-axis, are given by E±(z) = ê±E0e
±ikz where ê± are the corresponding

polarisation vectors and E0 is the amplitude or its quantum operator counterpart.

We assume that the two beams have mutually orthogonal polarisations, ê+ = êx and

ê− = êy. The total the total electric field is the vector sum:

E
+(z) =

√
2E0

{
cos (kz)

êx + êy√
2

+ i sin (kz)
êx − êy√

2

}
. (46)

As depicted in Fig.1, the interference of two counter-propagating laser beams with

mutually orthogonal linear polarisations results in a total polarisation of left- and right-

handed circularity alternately σ+ and σ− at planes separated by an axial distance of

λ/4. Between planes the polarisation is linear with polarisation vector pointing at

angles ±450. This spatial variation of the wave polarisation along the common axis of

the interfering beams constitutes a polarisation gradient which - as will be explained -

can lead to a spatially-dependent population differential.

To explain how Sisyphus cooling works, we consider an atom that possesses a

Jg = 1/2 ground state which has only two Zeeman sub-levels g±1/2. Most laser cooling

experiments use optical transitions Jg → Je = Jg + 1, the energy gap between the two

states defined as ~ω0. We, therefore, consider a Jg → Je = 3/2 transition. As in Doppler

cooling, we assume red-detuning ∆0 < 0 where ∆0 = (ω − ω0) [43]. The polarisation

gradients created by the interfering counter-propagating beams affect the light shifts and

the populations of the atomic levels which now become spatially dependent. This can be

explained as follows. When the atom interacts with a non-resonant light field, then in the

weak-field limit the ground state levels acquire light shifts U±. Similarly the populations

of the Zeeman sub-levels (for an atom at rest) are now given by Πst
1/2(z) = sin2(kz) and

Πst
−1/2(z) = cos2(kz), so that these light shifts are spatially dependent and different for

the Zeeman sub-levels g±1/2 as illustrated in Fig. 1. The optical potentials associated

with the two Zeeman sub-level shifts are given by

U± =
2

3
~∆′

0 [2∓ cos(2kz)] , (47)

where ∆′
0 and the saturation parameter s0 are given by

∆′
0 = s0∆0/2; s0 =

Ω0/2

∆2
0 + Γ2/4

. (48)

Note that U± are the optical potentials of the ground state sub-levels
∣∣g±1/2

〉
. It is

easy to see that the minima of U+ correspond to the maxima of U− and vice versa and

the maxima and minima correspond to positions where the polarisation is σ̂± (purely

circular).

Early theoretical works which sought to explain the Doppler cooling argued that

the damping of the atomic gross motion arises from the fact that the atomic internal

state does not follow adiabatically the variations of the laser field resulting from

atomic motion [60]. Such an effect may be described by a non-adiabaticity parameter
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Atoms in complex twisted light 19

Figure 1. Variations of the populations (spots) and energy level shifts of the ground

state sub-levels along the z-axis. Reproduced with permission from [58].

ǫ = vτP/λ = v/(λΓ), defined as the ratio between the distance vτP covered by the

atom with a velocity v during its internal relaxation time τP (τP = Γ−1), and the laser

wavelength. For multi-level atoms we can similarly define a non-adiabaticity parameter

ǫ′ = vτ ′P/λ = v/(λΓ′). At low intensities, since Γ′ << Γ it follows that ǫ′ ≫ ǫ. Thus

non-adiabatic effects can appear at much lower velocities (kv ≈ Γ′) than those required

by Doppler cooling, and thus can ensure the presence of damping forces even at very

low velocities.

Dalibard et al [58] explained how the damping of the atomic motion is generated.

The key point is that, as a condition, the atom must have internal states with energy sub-

levels with a strong position-dependence, and which therefore experience large changes

as the atom moves. The creation of polarisation gradients can ensure this condition. Let

us assume that the atom moves along the z-axis, and it has a speed such that during the

optical pumping time τP = Γ′−1 it travels a distance of the order of the laser wavelength

λ. If the atom starts from the bottom of a valley in a given Zeeman sub-level, then it has

sufficient time to reach the top of the hill. At this position it has a large probability to be

optically pumped to the other sub-level and be shifted to the bottom of a valley, and so

on: see Fig.2. The atom is running uphill more frequently than downhill. This is called

a low intensity Sisyphus effect, which arises from the correlations between the spatial

modulations of light shifts and optical pumping rates. It is important to emphasise the

term ’low intensity’ as the Sisyphus effect we are discussing is valid in the low intensity
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Atoms in complex twisted light 20

Figure 2. When the optical pumping time is sufficiently long, an atom, initially in

the g+1/2 Zeeman sub-level, has sufficient time to remain in the position-dependent

sub-level which changes in energy (vertical scale) from its value at the bottom of the

valley to its value at the top of the hill as the atom moves (from left to right in the

figure). At this position the atom has a large probability of being optically pumped

into the higher state from which it then gets de-excited to the other sub-level g−1/2

at the bottom of the corresponding valley. This basic set of steps is repeated in each

cycle. Reproduced with permission from Ref. [58]

regime. This is in contrast to another Sisyphus effect which is valid at high intensities,

which we shall not discuss any further here [61].

In the process of Sisyphus cooling an atomic sample eventually reaches an

equilibrium temperature. In each optical pumping cycle we have the emission of a

fluorescence photon. Each such photon has an energy higher than the energy of the

absorbed photon, by an amount in the order of the light shift |U±|. The excess energy

is transferred from the atom to the light field leading to a decrease of the atomic energy

by the same amount. Repeated pumping cycles, thus, lead to a stepwise decrease of

the atomic energy until its total energy is so low that the atom becomes trapped in

the optical potential wells associated with the spatially modulated light shifts. The

equilibrium temperature of sub-Doppler cooling is therefore expected to be given by:

kBTSis ≈ U± =
~Ω2|∆0|
4∆2

0 + Γ2
, (49)

which for large detuning ∆0 ≫ Γ takes the form,

kBTSis ≈ U± =
~Ω2

4|∆0|
. (50)
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The detailed quantitative treatment of these predictions has been given in [58]. At low

intensity, the magnitude of the light shift |U±| of the ground state is much smaller than

the natural width ~Γ of the excited state. This explains why it is possible to attain

temperatures about two orders of magnitude lower than the Doppler limit, which itself

scales as ~Γ. The Sisyphus cooling leads to a damping force which for large detuning is

in the form,

FSis = −αFv, αF = ~k2
∆0

Γ
. (51)

The friction coefficient αF which applies in the case of low intensity Sisyphus cooling, as

given in Eq.(51), is much larger than the friction coefficient of Doppler cooling: the latter

is of the order of ~k2s0, where the saturation parameter s0 must be smaller than one.

In typical experiments both cooling mechanisms come into play. Although the friction

force of the low intensity Sisyphus cooling acts within a much smaller velocity interval

than the Doppler cooling, both mechanisms are useful. The Doppler cooling that acts

over a relatively large velocity interval drags the atoms towards the velocity region where

the Sisyphus cooling operates. Thus use of the Doppler mechanism as a first step serves

to increase dramatically the number of atoms affected by the sub-Doppler mechanism.

We have seen that the equilibrium temperature is proportional to the square of the

Rabi frequency, which means that it is directly proportional to the laser intensity. This

may incorrectly imply that lowering the intensity can lower the temperature indefinitely.

But we must take into account the fact that the scheme is based on spontaneously

emitted photons in each pumping cycle. Each photon imparts a recoil momentum ~k

to the atom which, according to its direction relative to the atomic motion, may either

decrease or increase the atomic kinetic energy. The atomic motion continues to be

cooled only so far as the decrease of the total atomic energy due to the Sisyphus effect,

remains larger than the increase of the kinetic energy, of the order of Erec, due to recoil

associated with the spontaneously emitted photon.

The qualitative description of low intensity Sisyphus cooling, as given above, is

based on a classical description of the position of the atomic centre of mass. This

means that the moving atom is treated as a classical point particle. This is a reasonable

assumption only if the atomic wave packet, which describes quantum mechanically the

centre of mass, is well localised in the laser wave. This assumption breaks down when

the minimum temperature is achieved and this leads to the conclusion that we must

then treat both internal and external variables quantum mechanically. In this case

we can take advantage of the fact that in the Sisyphus effect the motion of the atom

occurs in spatially periodic potential wells. This is reminiscent of the electron motion in

solid state lattices. Thus the description of atomic motion could also be given in terms

of Bloch states and energy bands [62],[63],[64]. In this regime, low intensity Sisyphus

cooling is a result of optical pumping processes that accumulates the atoms into the

lowest energy bands.

The above arguments may suggest that the photon recoil energy Erec should be

the ultimate cooling limit. However, to cool the atomic motion to kinetic energies
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Atoms in complex twisted light 22

below the photon recoil energy, atoms with velocity v smaller than the recoil velocity

vrec must be prevented from absorbing light [49],[50]. This condition can be satisfied

by the creation of atomic dark states for which the fluorescence rate depends on the

atomic velocity at the excitation, by a Raman process. When the velocity is zero, or

close to zero, the atom does not absorb photons; it thus does not fluoresce, and so it

does not experience recoil. We can also use selective Raman processes in which the

excitation of the atoms is velocity-selective [65]. However these mechanisms have basic

physical differences from Doppler and Sisyphus cooling. First the cooling with velocity-

dependent dark states is not based on a force. It is rather the result of an inhomogeneous

random walk in momentum space which vanishes as the atomic velocity tends to zero.

Secondly, in Doppler and Sisyphus cooling the system reaches a steady state as a result

of the competition between the cooling introduced by the friction, and the heating due

to fluctuations associated with the random spontaneous emission processes. Such a

competition does not exist in sub-recoil cooling.

As a corollary, it is interesting to note why the mechanism in question is called the

Sisyphus effect. The name comes from Sisyphus, a hero of ancient Greek mythology

who was punished by Zeus by being forced to transport a heavy rock to the top of a

hill. Just before reaching the top, the rock slipped away and rolled downhill to the

bottom. The Sisyphus effect is an allusion to his condemnation to repeat this eternally

just as the atom loses kinetic energy through transitions involving the potential hills of

its space modulated energy levels.

4. Twisted light

Light possessing optical spin angular momentum is well known, where optical spin

is identified with the intrinsic property of wave polarisation. The much more recent

discovery of twisted light began with the work in 1992 by Allen et al. [7] who suggested

that it should be possible to generate light beams possessing quantised orbital angular

momentum (OAM) in the laboratory. The experimental confirmation followed soon

after, with experiments carried out in a number of laboratories. Research on twisted light

continues apace more than three decades later and it has led to fundamental advances

in both concepts and applications (see references [1] to [69]). The most prominent

mechanical applications of twisted light include the optical spanner as the rotational

version of the optical tweezer which has also featured in a variety of other applications

(see refs. [71] to [76]). Other developments involving the application of twisted light

include micro-manipulation [77]; quantum communications and cryptography [78, 79, 80]

and phase contrast imaging (see refs. [81] to [83]). Twisted light has been presented

in some recent reviews which the reader is referred to, beginning with the 1999 review

by Allen et al. [1] followed by a number of edited books, reviews and theme issues (see

refs. [66] to [70]). This topical review is concerned primarily with the interaction of

twisted light with atoms and we feel it is helpful to begin by considering applications

involving Laguerre-Gaussian (LG) light as the prototypical form of twisted light. We
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Figure 3. Left: continuous phase ramps in transverse planes perpendicular to the

beam axis for l = 1 (left, top) and l = 3 (left, bottom). Here, colours through the

spectrum denote the optical phase, repeating on a 2π interval with an arbitrary zero.

Right: the l = 3 three-part wavefront, a helical surface of constant phase.

shall also deal with complex twisted light, which we define as polarised twisted light

arising in single or multiple beams and in various geometrical arrangements, including

co-propagating or counter-propagating twisted beams with specified wave polarisations

in one, two or three dimensional configurations. These sources of complexity gives rise to

novel interactions with atoms in processes involving both the internal and gross atomic

degrees of freedom.

4.1. Laguerre-Gaussian (LG) light

It is a general feature of twisted light, exemplified by the Laguerre-Gaussian beams,

that different modes have helical wavefronts consisting of intertwined helices, as shown

schematically in Fig.3. Modes of the Laguerre-Gaussian type, denoted LGklp, have

a wavevector component k along the propagation direction and are characterised by

the two integer indices: an azimuthal integer index l, representing the number of

intertwined helices and a radial integer index p which arbitrates the number of radial

nodes. These directly equate to the degree and order of the associated (generalised)

Laguerre polynomial that modifies the Gaussian radial profile. The integer l can be
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positive or negative, representing two senses of helical wavefront rotation. When both

l and p are zero, the mode (k, 0, 0) becomes simply a Gaussian distribution with no

angular momentum.

In the paraxial approximation the electric field associated with a Laguerre-Gaussian

mode, of wavelength λ = 2π/k and frequency ω propagating in the z-direction, and

polarised in the x− direction is given by

Eklp(ρ, φ, z, t) =
1

2
u|l|p (ρ, z)e

iΘklp(ρ,φ,z)e−iωtx̂, (52)

where u
|l|
p (ρ, z) is the amplitude or mode distribution function

u|l|p (ρ, z) = Ek00

C|l|p
(1 + z2/zR2)1/2

(√
2ρ

w(z)

)|l|

L|l|
p

(
2ρ2

w2(z)

)
× e−ρ2/w2(z) (53)

and Θklp is the phase function

Θklp(ρ, φ, z) = skz + lφ− s(2p+ |l|+ 1) tan−1(z/zR) + s
kρ2z

2(z2 + z2R)
. (54)

Here L
|l|
p is the associated Laguerre polynomial, w(z) is the beam waist at position z

defined by w2(z) = 2(z2+z2R)/kzR, and zR is the Rayleigh range, which is related to w0,

the waist at focus, by zR = πw2
0/λ where λ the wavelength of the light. In Eq.(54), the

third term is the Gouy phase for the LG mode and the fourth term is referred to as the

curvature phase term. The factor s = ±1 takes into account propagation in the opposite

directions along the ±z-axes, while the factor C|l|p is given by C|l|p =
√

2p!/π(|l|! + p!).

An important feature of all twisted light fields is the existence of the phase factor

eilφ. However, the full phase Θklp(ρ, φ, z) is essential for describing the various effects

including rotational effects when the light interacts with atoms and molecules

A Laguerre-Gaussian beam characterised by the electric field Eklp(ρ, φ, z) has a

linear momentum ~k and carries an angular momentum equal to l~ per photon. The

quantum number l is called the winding number (or the topological charge) and we

re-emphasise that l can take both negative and positive integer values, corresponding

to right-hand and left-hand twisting of the wavefront. LG modes for which l 6= 0 but

p = 0 are called donut modes, since the light intensity is ring-shaped as shown Fig.4 for

the cases l = 1 and l = 3. Figure 4 also shows the case of a double ring mode arising

when l = 1, p = 1.

It is often sufficient to focus on the form of twisted light without explicit details of

the Laguerre-Gaussian form. An electromagnetic light mode of frequency ω and orbital

angular momentum l~ possesses an electric field vector distribution which can be written

in cylindrical polar coordinates r = (ρ, z) as follows

Ekl(r, t) =
1

2
ǫ̂F (ρ)ei(kz−ωt)eilφ, (55)

where ǫ̂ is a wave polarisation vector and F (ρ) is a scalar distribution function which

depends only on the radial coordinate ρ. Note that, unless a paraxial approximation is

deployed, the polarisation vector need not necessarily reside in the plane represented by
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Figure 4. The intensity distributions of modes, respectively, for LG1,0 (donut mode),

LG3,0 (donut mode) and LG1,1 (two-ring). These radial intensity distributions are at

the waist plane z = 0. The insets exhibit graphically the corresponding radial intensity

distributions with radial distance in units of wavelength.

ρ. The field in Eq.(55) emerges from the familiar Laguerre-Gaussian light distribution

in the limit of large Rayleigh range zR → ∞, a situation which is often encountered and

is realisable in practice. This simplified form of field is advantageous for a number of

reasons. It has the desired feature in being endowed with orbital angular momentum,

by virtue of the azimuthal phase factor, and is free from the curvature problems which

often distract from the fundamental issues involving orbital angular momentum of light

in a real Laguerre-Gaussian beam, i.e. with a finite Rayleigh range.

4.2. Other types of twisted light - Bessel beams

Besides the Laguerre-Gaussian beam, a second, somewhat simpler, type of vortex beam

is the Bessel beam [86]. This is characterised by a transverse electric field which is also a

solution to the electromagnetic vector Helmholtz equation, with the modes characterised

by only one integer number l, that can take either positive or negative values. We have
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Figure 5. In-plane field intensity distributions as for for the corresponding positive

value of l of Bessel beams: l = 1 (left) and l = 2 (right). Here the colours denote an

arbitrary intensity scale from a dark blue denoting zero through to bright yellow for

the highest intensity regions. The corresponding Bessel modes with l < 0 have the

same intensity distribution. However, the phase has the opposite sign. (Adapted with

permission from [84])

in cylindrical polar coordinates r = (ρ, φ, z)

E(r, t) = ε̂E0lJl(k⊥ρ)e
ikzeilφe−iωt, (56)

where E0l is the amplitude and the unit vector ε̂ designates a wave polarisation. The

radial function Jl(k⊥ρ) is the Bessel function of order l where, as in LG beams, l is the

winding number and the vortex beam carries l~ OAM per photon. The wavevectors k⊥
and k stand for in-plane and axial wavevector variables.

5. Complexity due to wave polarisation

5.1. Multiple polarised beams

The superposition of multiple beams endowed with orbital angular momentum can

give rise to various field distributions and associated properties which become more

complex when wave polarisation is included. The simplest cases are those in which two

beams are involved and arranged to be co-axial identical or otherwise and may have

different magnitudes and signs of winding numbers. They can be co-propagating or

counter-propagating and may have the same polarisation. The influence of such states

of twisted light on the near resonant optical forces and torques leading to the trapping

and dynamics of the atoms immersed in them is discussed in section 7. It has been

shown [85] how further complexity arises when the twisted light beams have circular

wave polarisations (optical spins), giving rise to spatio-temporal polarisation gradients.

We discuss below the simplest cases involving only two beams, as done in [85].
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5.2. Co-propagating LG beams

Consider the case of two co-propagating LG beams, labelled 1 and 2 of the same

frequency ω and axial wave vector k, with coinciding centres. The beams have the

same magnitude of winding number l, but differ only in the sign of l. The total electric

field vector distribution is then given by

E(ρ, φ, z, t) =
{
F+(ρ, φ, z)e−iωt + c.c.

}
eikz, (57)

where c.c. denotes complex conjugation and F+(ρ, φ, z) arises from the sum of the two

electric fields. We have

F+(ρ, φ, z) = f1(ρ, z)e
ilφê1 + f2(ρ, z)e

−ilφê2, (58)

where f1,2 describe any LG light beam expressible through Eqs.(52) to (54) with

appropriate choice of quantum numbers and parameters. However, for the applications

we consider here, the beams differ in the sign of l such that l1 = l and l2 = −l.
The vectors ê1 and ê2 specify the wave polarisations of the beams, which in general

involve any combination of linear polarisations, but more specifically we consider circular

polarisation.

5.2.1. Co-propagating with σ+−σ− When the two co-propagating beams have opposite

l, as well as opposite circular polarisations we write

ê1 = σ+ = − 1√
2
(êx + iêy), (59)

ê2 = σ− =
1√
2
(êx − iêy), (60)

where êx and êy are the usual linear wave polarisation vectors along the x and y axes.

Substituting for ê1,2 in Eq.(58) we have

F
+(ρ, φ, z) =

1√
2

{
[f2(ρ, z)− f1(ρ, z)]Σ̂−(φ)− i[f2(ρ, z) + f1(ρ, z)]Σ̂+(φ)

}
, (61)

where Σ̂±(φ) are polarisation vectors that depend on only the azimuthal angular

position.

Σ̂−(φ) = êx cos (lφ)− êy sin (lφ), (62)

Σ̂+(φ) = êx sin (lφ) + êy cos (lφ). (63)

Thus the polarisation of the interference fields is, in general, locally elliptical with an

ellipticity given by
(f2(ρ, z)− f1(ρ, z))

(f2(ρ, z) + f1(ρ, z))
.

To illustrate the polarisation distribution in the resultant field of the above scenario

involving co-propagating LG beams, we make use of the fact that the two beams are

Page 27 of 132 AUTHOR SUBMITTED MANUSCRIPT - JOPT-105253.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Atoms in complex twisted light 28

Figure 6. Polarization distributions in the (x, y) plane for σ+ − σ− co-propagating

LG beams for two cases, l = ±1 (a) and l = ±2 (b). The dashed red circles show

the radial position of maximum intensity. The distances are measured in units of the

beam waist w0. The arrows represent polarisation directions.

identical, except for the sign of l. This means that f1 = f2 = f . We then have from

Eq.(61)

F
+(ρ, φ, z) = − i

√
2f(ρ, z)Σ̂+(φ)

= − i
√
2f(ρ, z) {êx sin (lφ) + êy cos (lφ)} . (64)

The polarisation is linear throughout, but its direction is independent of the axial

position and depends only the in-plane positions (ρ, φ). Figure 6 displays the

polarisation distributions for two cases, l = ±1 and l = ±2. The dashed red circles

coincide with the radial positions of maximum intensity.

5.2.2. Co-propagating with lin ⊥ lin polarisations When the co-propagating beams

have opposite winding numbers, but with wave polarizations that are linear and

orthogonal, we have

F
+(ρ, φ, z) = f1(ρ, z)e

ilφê1 + f2(ρ, z)e
−ilφê2, (65)

where now ê1 = êx and ê2 = êy. Substituting in Eq.(65) we get:

F
+(ρ, φ, z) =

√
2f(ρ, z)

{
cos (lφ)

êx + êy√
2

+ i sin (lφ)
êx − êy√

2

}
. (66)

Clearly the polarization direction distribution does not depend on the axial position, but

its form varies with angular position and is in general elliptical, displaying both linear

and circular forms, as the azimuthal angle varies. This is illustrated in Table 1. For a

donut mode where p = 0 and a general value of l > 0, the region of maximum intensity

occurs at a radial position, ρ0 = w0

√
l/2, the polarisation changes from linear to circular

along the arc of length ∆s = πw0/4
√
2l. Thus the spatial extent of the polarisation

depends on the beam waist and the magnitude of the orbital angular momentum.
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Atoms in complex twisted light 29

φ Polarization

0 Linear

π/4l Circular σ−

π/2l Linear

3π/4l Circular σ+

π/l Linear

Table 1. Variation with azimuthal angle φ of the type of polarization for two co-

propagating donut modes at fixed radial position ρ0 = w0

√
(l/2). It is seen that as φ

changes from 0 to π/l, the type of polarization switches between linear and circular.

5.3. Counter-propagating LG beams

Now consider counter-propagating beams with opposite signs of winding numbers. The

electric field distribution associated with an LG beam travelling along the negative z-

axis can be found from the standard form by a simple transformation. This involves

rotating the LG beam as a rigid body about the Cartesian y-axis by an angle π, which

amounts to the substitution x → −x; y → y and z → −z. In terms of cylindrical

polar coordinates, we have ρ → ρ; φ → −φ and z → −z. It is easy to see that this

transformation affects only the phase factors but leaves the function f(ρ, z) unchanged.

The polarisation of the light field in this case depends also on the axial position z.

5.3.1. Counter-propagating with σ+ − σ− Here two counter-propagating beams have

opposite circular polarisations, but the same winding number. The total electric field

vector is now given by the analogue of Eq.(57)

E(ρ, φ, z, t) =
{
F

+(ρ, φ, z)e−iωt + c.c.
}
, (67)

where now we have

F
+(ρ, φ, z) = f1(ρ, z)e

i(kz+lφ)ê1 + f2(ρ, z)e
−i(kz+lφ)ê2, (68)

where ê1 and ê2 are given by Eqs.(59) and (60), respectively. On substituting for these

vectors in Eq.(68), we find

F
+(ρ, φ, z) =

1√
2

{
[f2(ρ, z)− f1(ρ, z)]Σ̃−(φ)− i[f2(ρ, z) + f1(ρ, z)]Σ̃+(φ)

}
, (69)

where Σ̃±(φ, z) are polarisation vectors that now depend on both the azimuthal angular

position φ and the axial position z.

Σ̃−(φ, z) = êx cos (kz + lφ)− êy sin (kz + lφ), (70)

Σ̃+(φ, z) = êx sin (kz + lφ) + êy cos (kz + lφ). (71)

Once again we shall consider the case where the beams are similar in which case

we have

F
+(ρ, φ, z) = − i

√
2f(ρ, z)Σ̃+(φ, z)

= − i
√
2f(ρ, z) {êx sin (kz + lφ) + êy cos (kz + lφ)} . (72)
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Atoms in complex twisted light 30

Figure 7. Helices of constant linear polarisation. The red solid line corresponds to

points where kz + lφ = 0, where the polarisation is êy, while the blue dashed line to

points where kz + lφ = π/2, where the polarisation is êx. The helices correspond to

points of maximum intensity.

In this case the polarisation distribution is z-dependent as well as angular dependent.

The polarisation is linear and is constant in direction along spirals which result from

the equation kz + lφ = constant. For example, the polarisation vector is êy along the

spiral kz + lφ = 0 and êx along the spiral kz + lφ = π/2, as shown in Fig. 7.

Figure 8 displays the polarisation distributions on the planes z = 0;λ/4;λ/2; 3λ/4

and λ in the case where l = 1. It is easy to see that the polarisation gradient distribution

on the plane z = 0 for the counter-propagating fields is identical to that for the co-

propagating LG beams for any z value.

5.3.2. Counter-propagating with lin ⊥ lin polarisations The second case is the one

where the two beams have mutually orthogonal polarisations. The total electric field

vector is now given by the analogue of Eq.(57)

E(ρ, φ, z, t) =
{
F

+(ρ, φ, z)e−iωt + c.c.
}
, (73)

where now we have

F
+(ρ, φ, z) = f1(ρ, z)e

i(kz+lφ)êx + f2(ρ, z)e
−i(kz+lφ)êy. (74)
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Atoms in complex twisted light 31

Figure 8. Polarisation distributions on different z planes, but for σ+ − σ− counter-

propagating Laguerre-Gaussian (LG) beams with the same magnitude and sign of

l. The distances are measured in units of the beam waist w0. Arrows represent

polarisation direction. The red circles correspond to points of maximum intensity.

The figures are labelled (a), (b), (c), and (d) corresponding to the axial positions

z = 0, λ/4, λ/2, and 3λ/4, respectively.

On substituting for these vectors in Eq.(74), we find

F
+(ρ, φ, z) =

√
2f(ρ, z)

{
cos (lφ+ kz)

êx + êy√
2

+ i sin (lφ+ kz)
êx − êy√

2

}
.(75)

Now the polarisation is also in general elliptical, displaying both linear and circular

forms, as the function kz + lφ varies. This is illustrated in Table II.

As shown in Table 2 the polarisation acquires certain forms along the spiral lines

defined by kz+lφ = constant. Figure 9 displays two sets of helices in separate plots, one

set representing two helices of constant linear polarisation and the other set represents

two of opposite circular polarisations. The helices correspond to points of maximum

intensity

5.4. Rotating mode patterns

Finally consider the case where the intensity pattern of the light fields rotates in time.

This is achieved when the interfering beams have a slight difference in their frequencies.

The selection of different values of beam winding numbers and polarizations gives rise
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Atoms in complex twisted light 32

kz + lφ Polarisation

0 Linear

π/4 circular σ̂−
π/2 linear

3π/4 circular σ̂+

π linear

Table 2. Variation with axial and azimuthal position (z, φ)) of the type of

polarisation for two counter-propagating donut modes at fixed radial position

r = w0

√
|l|/2. As (kz + lφ) changes from 0 to π, the type of polarisation

switches between linear and circular.

Figure 9. (a): Helices of constant linear polarisation. The red solid line corresponds

to points where kz + lφ = 0 while the blue dashed line to points where kz + lφ = π/2.

Figure (b): Helices of constant circular polarisation polarisation. The black solid line

corresponds to points where kz + lφ = π/4 while the red dashed line to points where

kz + lφ = 3π/4. The helices correspond to points of maximum intensity
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Atoms in complex twisted light 33

to temporal polarization gradients. Here we present two such schemes.

5.4.1. Circular polarisation σ+ − σ− Consider first two co-propagating LG beams, of

opposite l but slightly different frequencies. Assume that beam 1 has frequency ω1 and

a positive circular polarisation σ+ and beam 2 has frequency ω2 and a negative circular

polarisation σ−. The electric field vector for the two co-propagating circularly polarised

LG beam with different frequencies is given by the analogues of Eqs.(57) and (58). We

have

E(ρ, φ, z, t) =
{
F

+(ρ, φ, z, t) + c.c.
}
eikz, (76)

where

F
+(ρ, φ, z, t) = f1(ρ, z)e

i(lφ−ω1t)ê1 + f2(ρ, z)e
−(ilφ+ω2t)ê2 (77)

On following analogous steps to those in section 2, we have the analogue of Eq.(64)

F
+(ρ, φ, z, t) = −i

√
2f(ρ, z)e−i

(ω1+ω2)
2

{
êx sin

[
(2lφ+∆t)

2

]
+ êy cos

[
(2lφ+∆t)

2

]}
(78)

where ∆ is the frequency difference ∆ = ω2 − ω1. We now see the polarisation varying

in both space and time. At a given axial plane, the polarisation pattern rotates at a rate

which depends on the frequency difference ∆ and the magnitude of the winding number

l. Figure 10 displays a graphical illustration of the rotation of the polarisation vector in

two different cases. The first is the case in which the beam 1 of frequency ω1 has l = 1

while beam 2 of frequency ω2 has l = −1, shown for different times t = 0 (left) and

t = π/∆ (right). The second the case in which beam 1 of frequency ω1 has l = −1 and

beam 2 of frequency ω2 has l = 1 again shown for two different times t = 0 (left) and

t = π/∆ (right). It is interesting to see that in the second case the polarisation changes

from fully azimuthal to radial. Finally we note that in the limit where the beams have

the same frequency, .i.e when ∆ ≡ ω2−ω1 = 0, Eq.(78) reduces to Eq.(58), as it should.

5.4.2. The lin ⊥ lin case Finally, we deal with the case where the two co-propagating

LG beams, of opposite l but slightly different frequency have mutually orthogonal linear

polarisations. Assume that beam 1 has frequency ω1 and polarisation êx and beam 2

has frequency ω2 and and a polarisation êy. In this case we have

E(ρ, φ, z, t) =
{
F

+(ρ, φ, z, t) + c.c.
}
eikz, (79)

where

F
+(ρ, φ, z, t) = f1(ρ, z)e

i(lφ−ω1t)êx + f2(ρ, z)e
−(ilφ+ω2t)êy. (80)

Since f1(ρ, z) = f2(ρ, z) = f(ρ, z) we find

F
+(ρ, φ, z, t) = f(ρ, z)e−i

(ω1+ω2)
2

{
ei(lφ−∆t/2)êx + ei(−lφ+∆t/2)êy

}
(81)

Figure 11 displays the evolution of the polarisation vector, at z = 0, for the light field

arising from the interference of two LG beams with mutually orthogonal polarisations,

opposite winding numbers and slightly different frequencies. Two different cases
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Atoms in complex twisted light 34

Figure 10. The rotation of the polarisation vector, at z = 0, for the light field that

is made up from the interference of two LG beams with opposite helicity, opposite

circular polarisations and slightly different frequencies: (a) The case where the first

beam of frequency ω1 has l = 1 and the second beam of frequency ω2 has l = −1 at

two different times t = 0 (left) and t = π/∆ (right), (b) The case where the first beam

of frequency ω1 has l = −1 and the second beam of frequency ω2 has l = 1 at two

different times t = 0 (left) and t = π/∆ (right). The red circles correspond to points

of maximum intensity

.

involving two different time instants are shown, Note in particular how the polarisation

changes from linear to circular and vice versa at different azimuthal angles.

In summary of this section, we have investigated the spatial and temporal

polarisation of light fields created by the interference of either co-propagating, or

counter-propagating LG beams when they have opposite winding number l and for

the cases where they possess opposite circular polarisations, σ+ and σ− and mutually

orthogonal linear polarisations.

When the LG beams are co-propagating and possess opposite circular polarisations

we have found that for a fixed value of |l|, the polarisation is independent of the axial

position z, so that within a normal beam cross-section, it is everywhere locally linear

but the direction changes, depending on its polar position (ρ, φ). When the beams have

mutually orthogonal polarisations the total polarisation again does not depend on the

radial position, but now it can change from linear to σ− and then back to linear and σ+
as the azimuthal angle changes from 0 to 2π.

When the LG beams are counter-propagating, the polarisation distribution depends

on the axial position as well as the in-plane polar position (ρ, φ). Note the interesting
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Atoms in complex twisted light 35

Figure 11. The evolution of the polarisation vector, at z = 0, for a light field made

up from the interference of two LG beams with mutually orthogonal polarizations,

opposite helicity and slightly different frequencies: (a) The first beam of polarisation

along the x−axis has frequency ω1 and l = 1 and the second beam of polarisation

along the y−axis has frequency ω2 and l = −1 at two different times t = 0 (left) and

t = π/∆ (right), (b) The first beam of polarisation along the x−axis has frequency ω1

and l = −1 and the second beam of polarisation along the y−axis has a frequency ω2

and l = 1 at times t = 0 (left) and t = π/∆ (right). The dashed circles correspond to

points of maximum intensity

.

symmetry in which the the distribution for z = λ/4 is the mirror reflection of that at

z = 3λ/4. Similarly, the polarisation distribution for z = λ/2 is the mirror reflection of

that for z = 0. The distributions at z = 0 and z = λ are identical.

A case in which the polarisation shows both temporal and spatial variations

is that of interfering beams with slightly different frequency and opposite signs of

winding number. We may again consider two different cases when the beams have

opposite circular polarisations and mutually orthogonal polarisations. This difference

in frequency has been shown to give rise to a rotation of the polarisation pattern. The

temporal evolution is very similar to the sequence exhibited by the spatial dependence

and so similar patterns will emerge, except that position-dependence is now replaced by

a time-dependence.
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6. Atom control and interactions

6.1. Overview

As an area of atomic and optical physics, atom optics is primarily concerned with the

manipulation and control of the gross motion of atoms. The word ‘optics‘ in ‘atom

optics‘ is in many respects an indication of realising and manipulating atoms in beam

format, just as laser photons are realised in optical beam format. The analogy has

led to the realisation in the laboratory of analogues of ordinary optical elements, such

as atom mirrors, atom beam splitters and atom-guides [87], with the main control of

atomic motion provided by optical forces.

The principal basis for the frequency-tuned optical confinement of atoms has its

origin in forces associated with beam profile effects: Eq.(37) highlights the key role of the

atomic polarizability. Resonance damping of the polarizability is attributable to several

physically distinct processes responsible for the finite lifetimes of electronic excited states

which are not, in general, solely attributable to radiative decay. The accommodation

of damping serves to represent dissipative and essentially stochastic effects, but it

is impossible to fully accommodate the condition of time-reversal invariance - the

Hamiltonian for an implicitly non-conservative system is necessarily non-Hermitian [88].

Accounting for the spherical symmetry of an ion or atom, the result is cast as:

α̃(ω) =
1

3

∑

r

∣∣dr0
∣∣2
{

1

Er − ~ω − i~Γr/2
+

1

Er + ~ω ± i~Γr/2

}
(82)

where the sum is taken over all excited electronic levels r of energy Er. The effect of

the damping is primarily significant in the first, potentially resonant term in Eq.(82),

and on approach to resonance with a specific excited state, ∆X = ω − EX/~ → 0 , it

delivers signals with an approximately Lorentzian lineshape and FWHM linewidth ΓX .

Specifically, we have:

α̃(ω) = − 1

3

[
|dX0|2

∆X + i~ΓX/2
−

∣∣dX0
∣∣2

EX + ~ω ± i~ΓX/2

+
∑

r 6=X

{
|dr0|2

Er − ~ω − i~Γr/2
+

|dr0|2

Er + ~ω ± i~Γr/2

}]
(83)

Different arguments support varying conclusions on the sign and magnitude of the

damping in the anti-resonant terms the second and fourth in Eq.(83) (see refs. [88] to

[91]). However, the results for alternative signs cannot be experimentally discriminated,

so these correction can effectively be neglected.

In principle, red- and blue-detuning from a resonance leads to opposite signs for

the dominant leading term - the principle is exploited in securing forces of opposite

direction towards, or away from regions of highest intensity, according to Eq.(37) and

the first term in Eq.(83). However, it should be borne in mind that the presence of the

third terms in Eq.(83) means that any switch in sign generally occurs at a frequency

displaced from exact resonance.
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Atoms in complex twisted light 37

Besides atom trapping as a useful property, optical forces can also lead to the

transport of atoms in atom guides [92]. When Bessel beams are used as atom guides the

atoms can be confined within the central region of the beam. The non-diffracting nature

of the central region facilitates atom transport over long distances without transverse

spreading as expected from the use of a non-vortex structured light beam. The width

of the atom guide in the central region of the beam can be arranged to be as small as

the order of the optical wavelength.

A Laguerre-Gaussian-based dipole trap for atoms was first realized in 1997, in

which approximately 108 Rb atoms were confined in the LG core region using a blue-

detuned LG beam and two in-plane light beams [93]. A three-dimensional dark core

region surrounded by bright light, referred to as a bottle beam, has subsequently been

constructed using suitable combinations of LG beams [94]. Such beams have been used

to trap samples of cold atoms [95, 96], including single Rb atoms [97] which could be

trapped for several seconds. Theoretical work on atom trapping in bottle beams has

been reported by Aldossary [98]. Furthermore, LG beams and their superpositions have

been exploited in the construction of optical ring traps and ring lattices. A dark ring

trap, generated at the focus of an LG10 mode, was shown to hold Rb atoms with a decay

time of 1.5 s [99].

With suitable superpositions of co- or counter-propagating LG beams, ring lattices

can be realized for trapping in bright or dark intensity regions. These may be used

to simulate condensed matter effects: adjusting the phase twist can generate persistent

currents [100, 101], and adjusting the boundary between the lattice sites should allow the

realization of Mott insulator transitions. A large number of different trapping geometries

is possible by combining LG modes of different OAM and radial mode number [102].

Single Rb atoms have been trapped at individual lattice sites of a bright rotating optical

Ferris wheel [103]. The transfer of atoms between a bright and dark ring trap, simply

by modifying the laser detuning, has also been observed [104]. OAM beams have also

been used in the creation of dark spontaneous optical force traps [105].

6.2. OAM transfer

One of the issues that quickly arose in the context of the interaction of twisted light

with atoms is whether OAM can be exchanged between the twisted light and the

internal atomic degrees of freedom in a process involving transition between the energy

levels in analogy with the photon spin angular momentum manifestation in a radiative

transition. Electromagnetically driven transitions between atomic states occur whenever

the exciting field properties match the redistribution of the atomic charge and the phase

of the material wavefunction. As we have seen at the outset, atomic transitions are

categorised as dipole-allowed, quadrupole-allowed and higher multipolar-allowed orders.

The relatively clear-cut distinction between transitions allowed at different levels of

multipolarity is one of the key simplifications, due to symmetry, that arise when dealing

with atoms - in contrast to molecules where electronic transitions are frequently allowed
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Atoms in complex twisted light 38

by more than one form of multipole. In a dipole-allowed transition the atom engages

with the optical field strength while in a quadrupole transition it engages only with the

field gradient. The field gradients in atom-field interactions can lead to transitions for

atoms localised in the dark regions of the light beam where there is weak light intensity

but relatively strong field gradients.

6.3. Theory

Theoretical work has necessarily focused on the distinction between the internal motion

and the gross motion of an atom (or molecule) due to interaction with fields possessing

orbital angular momentum, with due consideration of the selection rules involved in

transitions [106, 107]. Initial forays into the theory were followed by some experimental

work [109, 110] which confirmed the theoretical finding of reference [107] that no

exchange of angular momentum arises between the light and the internal degrees of

freedom in a dipole-allowed transition.

Here we outline the underlying theory of OAM transfer as given in reference [107].

We focus on the two-particle model of the neutral atom as a system consisting of

a negatively charged electron of mass m1 and a positive atomic core of mass m2 as

emphasised at the outset. The Hamiltonian of this system in interaction with the light

field can be written as the following sum of four parts, to be discussed in turn

H = H0
M +H0

µ +H0
field +Hint (84)

H0
M is the centre of mass Hamiltonian, which is essentially the kinetic energy of the

centre of mass

H0
M =

P 2

2M
(85)

where P is the centre of mass momentum withM = m1+m2 the total mass. The centre

of mass momentum is conjugate to the centre of mass coordinate R, defined in terms

of the particle position vectors qi; i = 1, 2, by

R =
m1q1 +m2q2

M
(86)

We are, however, interested in the possibility of the centre of mass rotating about a

beam axis, so that the in-plane motion of the centre of mass kinetic energy is rotational.

The appropriate form of the centre of mass Hamiltonian is then given by

H0
M =

L2
z

2I
+

P 2
z

2M
(87)

where Lz is the angular momentum operator. Here I stands for the moment of inertia of

the atomic centre of mass about the z-axis and Pz is the centre of mass momentum axial

vector component. The second term in Eq.(84), namely H0
µ, pertains to the internal

‘electronic-type’ motion

H0
µ =

p2

2µ
− e2

4πǫ0q
(88)
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where µ = m1m2/M is the reduced mass and p is the momentum conjugate to the

internal coordinate q = q1 − q2. The second term in Eq.(88) is the Coulomb potential

binding the two-particle system, with q = |q|. The third term in the total Hamiltonian

is defined by

Hfield = ~ωa†klakl (89)

which is the field Hamiltonian in quantised form with akl the annihilation operator (its

Hermitian conjugate being the corresponding creation operator) of the light mode in

question of frequency ω, orbital angular momentum l~ and axial wavevector k = kẑ.

For present purposes any radial index p can be suppressed; the assumption is a donut

mode of the lowest order for any given value of l. Finally, the last Hamiltonian term

is the interaction Hamiltonian describing the coupling between the light and the two-

particle bound system, representing the molecule. In the PZW scheme this can be

written as

Hint = −
∫
d3r P(r) · Ẽkl(r, t) (90)

where Ẽkl(r, t) is the second quantised form of the electric field; P(r) is the electric

polarisation defined in a closed integral form as in Eq.(8).

For simplicity we have ignored all magnetic interactions. Note that, although the

electric polarisation field defined in Eq.(8) appears to be a function of the individual

particle coordinates q1 and q2, it can be written entirely in terms of the relative

coordinate q using the relations

q1,2 −R = ±m2,1q/M. (91)

Any quantum-mechanical treatment of the interaction between the light and the

atomic system must start by specifying the zero-order states of the overall motion,

comprising the centre of mass motion (rotational and translational), the internal

‘electronic-type’ motion and the field state. The appropriate states are product states

of the three-subsystem Hamiltonian H0 = H0
M +H0

µ +H0
field and can be written as

|Pz, Lz; j; {Nkl}〉 (92)

The unperturbed motion of the centre of mass in this product state is represented by an

axial translational state with linear momentum Pz, together with a rotational eigenstate

of the angular momentum operator Lz with corresponding eigenvalues ~Lz. The internal

motion enters in terms of the hydrogenic excited discrete states |j〉 ≡ |e〉 of energy Ee

and a ground state |j〉 ≡ |g〉 of energy Eg. The shorthand notation |e〉 and |g〉 stand for

|ne; le;me〉 and |ng; lg;mg〉, respectively, where nj, lj ,mj with j ≡ e, g are hydrogenic

state quantum numbers. Finally the ket |{Nkl〉 is the number state of the light field.

The evaluation of the coupling between matter and field involves working out the

interaction matrix element Mif where

|i〉 ≡ |Pz, Lz; e; {Nkl}〉 ; |f〉 ≡ |P ′
z, L

′
z; g; {N ′

kl}〉 (93)
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Specifically, we have

Mif = −〈Pz, Lz; e; {Nkl}|
∫
d3r P(r) · Ẽkl(r, t) |P ′

z, L
′
z; g; {N ′

kl}〉 (94)

To evaluate this matrix element we begin by expressing the interaction Hamiltonian in

the following form

Hint = e

∫
d3r

∫ 1

0

dλ
{m2

M
qδ[r−R− λ

m2

M
q] +

m1

M
qδ[r−R+ λ

m1

M
q]
}
· Ẽkl(r, t) (95)

We cannot carry out the usual multipolar expansion, whereby the two delta functions

are each expanded in powers of λm1,2/M , leading to a series of terms multiplied by

δ(r−R) which ultimately gives rise to a dipole term, a quadrupole term and higher

multipole terms. The reason why the multipolar expansion is inappropriate at this stage

is that the hydrogenic system has a centre of mass R which is significantly off-axis. To

proceed we now carry out the volume integral involving the full delta functions, but

keeping the λ integral untouched for the time being. We have

Hint =
e

M
q ·
∫ 1

0

dλ
{
m2Ẽkl(R+ λm2q/M, t) +m1Ẽkl(R− λm1q/M, t)

}
(96)

Note that the interaction is now such that the electric field of the twisted light is now

evaluated at the r = R + λm2q/M in the first term and at r = R − λm1q/M in the

second term.

The azimuthal dependence of the atomic internal motion is referred to the centre

of mass coordinates, while the twisted beam has an axis coinciding with the z-axis of

the laboratory coordinate system. The position vector variables of the centre of mass

R and the atomic internal coordinate q in polar coordinates are written as follows:

R = (R‖,ΦR, Rz); q = (q‖, φ, qz) (97)

We need to incorporate the full azimuthal angular dependence which must be split into

internal and centre of mass dependences. To be able to establish the azimuthal angular

dependence, we consider projections of relevant vectors in a plane parallel to the (x, y)

plane. The situation is shown in Fig.12 for the vectors R‖, λm2q‖/M and their sum

V1 = R‖ + λm2q‖/M

in the context of the first interaction term. Similarly the vectors R‖ and (−λm1q‖/M)

and their sum

V2 = R‖ − λm1q‖/M

would apply in the context of the second interaction term.

In pursuit of a multipolar expansion of the interaction Hamiltonian, the next step

is to express the azimuthal dependence of the two vectors V1 and V2 in terms of the

azimuthal angle ΦR of the centre of mass relative to the laboratory frame, and the

azimuthal angle of the internal ‘electronic’ position vector φ relative to the centre of

mass. This is followed by applying the approximations

λm2q‖/M << R‖; λm2qz/M << Rz (98)
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Atoms in complex twisted light 41

Figure 12. The vector projections in the (x, y) plane and the corresponding azimuthal

angles for the vectors R‖, λm2q‖/M and their sum R‖ + λm2q‖/M in the context of

H
(1)
int. Reproduced with permission from [107]
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6.4. Transfer of OAM to centre of mass only - electric dipole interaction

We then find that the interaction Hamiltonian up to the quadrupole term consists of

four contributions which we can write as

Hint = H
(1)
int +H

(2)
int +H

(3)
int +H

(4)
int (99)

The leading term is identifiable as the electric dipole term, which emerges from the sum

of the terms linear in the vector components of the internal coordinate q. We have

H
(1)
int = eǫ̂.qeikRzF (R‖)e

ilφRe−iωtakl + h.c. (100)

where F (R‖) is a function of the centre of mass coordinate R‖ only. We see that,

besides the internal position operator eǫ̂.q, this interaction Hamiltonian involves the

centre of mass cylindrical coordinates (R‖,ΦR, Rz). Remember that the eigenstates of

the internal dynamics are as for a hydrogen atom, with the position vector q expressible

in spherical polar coordinates where φ is the azimuthal angle, as is the case in cylindrical

coordinates. Substitution of this in the transition matrix element, Eq.(94), writing the

explicit forms of the translational and rotational eigenstates of the centre of mass motion

and performing the space integrals, we obtain

Mif = (2π)2 〈e|ǫ̂.d|g〉N1/2
kl e

−iωtδ(Lz−L′
z),lδ(Pz − P ′

z − ~k)M‖ (101)

where d = eq is the electric dipole moment vector and M‖ is the integral

M‖ =

∫ ∞

0

dR‖R‖F (R‖) (102)

The Dirac delta function in Eq.(101) exhibits conservation of the centre of mass axial

linear momentum with conventional linear momentum transfer between the light and

the centre of mass. The Kronecker delta expresses conservation of orbital angular

momentum and there is clearly orbital angular momentum transfer of magnitude l~

between the light and the centre of mass rotational motion. This transfer is not to

the internal motion, and it should be emphasised again that the internal motion does

not participate in any exchange of momentum between the atom and the vortex light,

neither linear momentum nor orbital angular momentum. Only the centre of mass

responds to the vortex. As we explain later, this is the process that leads to mechanical

action involving the gross dynamics of the atom as a whole, through the motion of its

centre of mass, and in which the atom experiences both rotational and translational

forces.

6.5. Quadrupole interactions: OAM exchange

Consider next the terms H
(2)
int , H

(3)
int and H

(4)
int . These interaction terms are quadratic in

the vector components of q and so correspond to quadrupole interactions. Explicitly we

have for the first type of quadrupole interaction

H
(2)
int = c1ǫ̂.qqze

ilΦRF (R‖)e
ikRze−iωtakl + h.c., (103)

Page 42 of 132AUTHOR SUBMITTED MANUSCRIPT - JOPT-105253.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Atoms in complex twisted light 43

where c1 is a constant. The next type is of the form

H
(3)
int = c2ǫ̂.qq‖e

iφei(l−1)ΦRG−
l (R‖)e

ikRze−iωtakl + h.c., (104)

where c2 is a constant. The last is of the form

H
(4)
int = c2ǫ̂.qq‖e

−iφei(l+1)ΦRG+
l (R‖)e

ikRze−iωtakl + h.c. (105)

Once H
(2)
int , Eq. (103), is inserted in the matrix element in Eq.(94), we can readily deduce

that this term cannot mediate any transfer of orbital angular momentum between the

light and the internal motion. However, transfer of orbital angular momentum does

occur between the light and the centre of mass motion, as in the electric dipole case.

This is essentially the next order of the multipolar process, over and above that due to

H
(1)
int . By contrast, we see in the expression for H

(3)
int in Eq.(104) that a factor eiφ now

appears in the matrix element between the internal states |e > and |g >, and the centre

of mass azimuthal phase factor is now ei(l−1)ΦR . This is indicative of a transfer of orbital

angular momentum from the light beam to the internal motion, leaving only (l − 1)~

units to be transferred to the centre of mass rotation. Similarly when H
(4)
int , Eq.(105),

is substituted in the matrix element, we can conclude that a transfer of orbital angular

momentum occurs between the internal motion and the light beam, with a balance of

(l+1)~ transferred to the centre of mass rotation. It is easy to check that the integrals

over the azimuthal angle φ for the internal motion lead to the usual quadrupole selection

rule |me − mg| = 0,±1,±2 where, as defined earlier, me and mg are the azimuthal

quantum numbers of the respective internal states |e〉 and |g〉 involved in the transition.

We have thus demonstrated by explicit analysis that in the interaction of light

possessing orbital angular momentum with atoms (or molecules, by a directly similar

mechanism) the major mechanism of exchange of orbital angular momentum occurs in

the electric dipole approximation and involves only the centre of mass motion and the

light beam. The internal ‘electronic-type’ motion does not participate in any orbital

angular momentum exchange with the light beam to this leading order. It is only in the

weaker electric quadrupole interaction that an exchange involving all three subsystems

(the light, the atomic centre of mass and the internal motion) can take place. This

involves one unit of orbital angular momentum being exchanged between the light beam

and the internal motion, with the remaining (l±1)~ units of orbital angular momentum

being transferred to the centre of mass motion. The quadrupole transitions thus involve

participation of two units of OAM. These conclusions rule out any experiments which

seek to observe orbital angular momentum exchange involving light beams and the

internal states of molecular systems via electric dipole transitions.

A different treatment of this problem was given by Lloyd et al. [86] in the

conventional QED framework using a coupling involving the vector potential A rather

than the electric field as above. Lloyd et al. confirmed theoretically that an optical

vortex cannot transfer OAM to the internal atomic motion in a dipole active transition,

although it could do so in a quadrupole transition.
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6.6. Experimental work and other theoretical work on OAM exchange

Following the publication of the work in Ref.[107], experimental research began to test

the validity of the main theoretical prediction, namely that OAM cannot be transferred

between an optical vortex in a dipole active transition. There was need to experimentally

find out whether the OAM can influence the internal electronic degrees of freedom of

the atoms, a requirement at the core of the theoretical analysis, both in the electric

dipole approximation and for higher order transitions. Mathevet et al. [115] gave

an intuitive argument for explaining the absence of magnetic orbital dichroism in an

isotropic medium as a function of the sign of the OAM. They suggested that this

effect cannot be observed in transitions essentially described by the electric dipole

approximation, but only when considering (at least) the higher quadrupole order.

As noted earlier the compartmentalisation of optical angular momentum into spin

and orbital parts cannot always be clear-cut, and when vortex radiation is associated

with circular polarizations, spin-orbit coupling can arise [33] Circular polarizations

are, of course, widely associated with chiroptical phenomena i.e. optical interactions

exhibiting a quantitative difference in an observable such as rate of excitation, for

molecules of opposite handedness engaging with a particular circular polarization or

equally vice versa. It is therefore not surprising that the possibility of engaging twisted

light with chiral matter has become a widely researched topic. Moreover, whilst the

manifestations of spin-orbit interactions do not require engagement with chiral matter

(see [33] to [35]) the latter offer additional scope for novel effects.

The first experimental report was by Araoka et al. [109] who showed that LG light

is not specific in interaction with chiral matter. This was followed by the work of Löffler

et al. [110] who concluded that they could not find any influence of the OAM on circular

dichroism in cholesteric polymers. Despite the experimental evidence provided by the

work of Aroaka et al [109] and Löffler et al [110], subsequent theoretical investigations

continued on the issue of the transfer of OAM to the internal degrees of freedom of

atoms and molecules with some regarding it as an unsettled matter (see refs. [108],

[111] to [121]) and it appeared that the community was not entirely decided upon a

matter which the theoretical analysis makes quite clear. As has recently been shown, it

is only possible to break this embargo under conditions that thoroughly undermine the

powerful spatial isotropy principles that otherwise generally apply. Specifically, they

require a chiral molecule (which can support transitions simultaneously allowed by both

electric dipole and quadrupole forms of coupling) held in a fixed orientation [122].

The most recent experimental work on OAM transfer in atoms is that by

Giammanco et al [124] whose results we outline below. Giammanco et al’s results

confirmed the earliest theoretical finding and subsequent experimental evidence [107,

109, 110] regarding the lack of influence of the photon orbital angular momentum on

electric dipole transitions.
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6.7. Giammanco et al. experiment

In their experiment Giammanco et al. [124] aimed to find out whether or not the orbital

angular momentum of light has the same ability and manner of interacting with atoms

as occurs for the spin angular momentum (SAM). They used laser light with different

combinations of OAM and SAM to excite Rb atoms. The laser radiation was selected

to inhibit or enhance the fluorescence according to the selection rules for the electric

dipole transitions between the ground state and the first excited doublet states. Their

experimental results showed that the orbital angular momentum does not engage with

the atomic internal (electronic) motion in dipole active transitions.

Figure 13 shows the absorption profiles in the case of left and right circularly

polarized untwisted light (without OAM) and twisted light (with OAM). By sweeping

the laser frequency in a range of 10 GHz across the Rb resonance profile, Giammanco

et al. were able observe the four minima in the transmission corresponding to the

transitions from the ground state of 85Rb (F3, F2, inner minima) and 87Rb (F2, F1, outer

minima). The Doppler width at their working temperature was about 529 MHz. This

enabled the resolution of the hyperfine structure of the ground state (3.03 GHz and 6.83

GHz for 85Rb and 87Rb, respectively).

Figure 14 shows the fluorescence signals measured under the same experimental

conditions as given in Fig.13. As expected, the fluorescence exhibits a complementary

behaviour with respect to the absorption. The profiles of the transition lines do not

exhibit significant variations within the limits of the experimental error; and with both

polarizations and OAM, no disappearance of the electric dipole transition effects was

observed.

As pointed out, the experiment was an attempt to verify whether the total angular

momentum of a light beam with an OAM component induces fluorescence excitation

on alkali atoms or inhibits it, depending on the values of the OAM and of the SAM of

the beam. Theoretical results [107, 86] suggested that this effect cannot be observed

in transitions essentially described by the electric dipole approximation, but only when

considering (at least) the higher quadrupole order. In short, these results corroborate

the theoretical predictions [107].

The first experimental confirmation of quadrupole transitions involving twisted

light interacting with a 40Ca+ ion was given in [123], in which Schmiegelow et al.

demonstrated that a transfer of OAM from the beam to the internal electronic degrees

of freedom could be observed for a quadrupole transition of a single trapped ion. This

paper is briefly summarised in the next section. More recent related work extended

research by both theory and experiment involving 40Ca+ ion is that by Afansev et al

[125] who also considered the effects of the position of the atom relative to the beam

axis.
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Figure 13. Transmitted radiation with modes OAM=0 (black open squares) and

OAM=1 (gray full squares) for left circular polarization (top) and right circular

polarization (bottom) of the laser beam transmitted radiation with modes OAM=0

(black open squares) and OAM=1 (gray full squares) for left circular polarization

(top) and right circular polarization (bottom). The black squares are not clearly

visible because they overlap with the gray squares. Reproduced with permission from

[124].

6.8. Schmiegelow et al. experiment: OAM transfer in quadrupole transitions

In their experiment Schmiegelow et al [123] excited an atomic transition with a vortex

laser beam and demonstrated the transfer of optical orbital angular momentum to the

valence electron (i.e. to the internal degrees of freedom) of a single trapped ion. They

observed strongly modified selection rules showing that an atom can absorb two quanta

of angular momentum from a single photon: one from the spin and another from the

spatial structure of the beam. Optical vortex beams possess both an axial field gradient

and a transverse (i.e. in-plane) gradient both of which can drive quadrupole transitions.
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Figure 14. Rb fluorescence with modes OAM=0 (black line) and OAM=1 (gray line)

for left circular polarization (top) and right circular polarization (bottom) of the laser

beam. The black squares are not clearly visible because they overlap with the gray

squares. Reproduced with permission from [124].

.

In particular, the core region of the LG1,0 beam possesses a strong field gradient, even

though the intensity at the core vanishes. The interaction of such a gradient field with

the quadrupole moment involves the transfer of OAM from the LG1,0 mode to the

internal dynamics of the trapped ion.

The experiment by Schmiegelow et al. involved a single laser-cooled 40Ca+ ion in a

microstructured, segmented Paul trap. The positioning of the ion along the beam was

achieved to a sub-micron accuracy by adjusting the voltages of the trapping electrodes.

The key aspects of the experiment are the use of a quadrupole transition, the focusing

of the probe beam close to the diffraction limit and the use of a well-localized atomic
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(ionic) system.

7. Radiation pressure forces and torques

As pointed out earlier, the Doppler effect has been exploited in laser cooling of atoms by

a process called ‘optical molasses’ (see refs. [42] to [46]). The principles of laser cooling

have been explained in section (3.1). When two counter-propagating light beams are

used, the atoms in both directions are slowed down. For atomic motion in directions

transverse to the original axis one needs further pairs of orthogonal configurations which

act to slow the motions in an analogous manner, leading to the cooling of the motion

in all three directions: this is essentially the optical molasses effect (see refs. [126] to

[129]).

The effects of structured light on atom dynamics, in both its forms, namely the

gross motion and the internal motion have been thoroughly investigated (see references

(refs. [130] to [137]). These investigations have shown that the interaction of light

carrying OAM with atoms introduces new significant features, namely that (i) there

is, in addition to translational effects, a light-induced torque which causes a rotational

motion of the atoms about the beam axis and; (ii) there are characteristic regions of

maximum and minimum intensity in the beam cross-section. The forces and torque are,

in general, time-dependent as well as position-dependent. As we discuss below, the full

space- and time-dependence of the motion is, in general, characterised by a transient

regime, followed by a steady state regime after a sufficiently large time has elapsed from

the instant in which the beam is switched on (typically for elapsed times much larger

than the characteristic time-scale of the problem).

7.1. Derivation of optical forces and torques

To derive the optical forces acting on a hydrogenic atom or molecule due to application of

laser light we initially adopt a quantum mechanical approach based, once again, on the

simple picture in which the atomic motion is described in terms of the gross dynamics of

the centre of mass and the internal dynamics is in terms of a two-level system [132]. We

shall see how the optical forces emerge naturally from the quantum-mechanical approach

by appeal to the classical limit.

The total Hamiltonian of the light and atom and their interaction can be written

as follows

H = ~ωa†a+
P2

2M
+ ~ω0π

†π − i~
[
π̃†f(R)− h.c.

]
(106)

where π̃ and f(R) are given by

π̃ = πeiωt; f(R) = (D12 · ǫ̂)Fklp(R)eiΘklp(R)/~ (107)

where π and π† are the ladder operators of the two-level atom; P is the momentum

operator of the centre-of-mass with M the total mass and ω0 the transition frequency;

a and a† are the annihilation and creation operators of the laser light of frequency ω.
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Our goal is to derive expressions for the forces acting on the atomic centre of

mass appropriate for the case of a coherent optical beam whose close approximation

to classical wave means that the a and a† operators for the light become c-numbers

involving a parameter b such that

a(t) → be−iωt; a†(t) → b∗eiωt. (108)

The interaction between the two-level atom and the laser light is given by the last term

in Eq.(106). This is given above in the truncated multipole approximation as well as the

rotating wave approximation and is evaluated at the centre of mass position vector R.

The function f(R) in Eq.(107) involves D12, the transition matrix element of the atom,

including both dipole allowed and quadrupole allowed transitions. The atom is subject

to a Laguerre-Gaussian light mode characterised by the wave polarisation vector ε̂, the

mode amplitude function, Fklp(R) and phase Θklp(R), given by expressions of the forms

in Eqs. (52) to (54) with s = 1 (denoting forward propagation) in the latter case. Here

we have

Fklp(R) = Ek00

Cp|l|
(1 + z2/z2R)

1/2

(√
2ρ

w(z)

)|l|

L|l|
p

(
2ρ2

w2(z)

)
e−ρ2/w2(z), (109)

Θklp(R) =
kρ2z

2(z2 + z2R)
+ lφ+ (2p+ |l|+ 1) tan−1(z/zR) + kz, (110)

The mode indices l and p determine the field intensity distribution and are such

that l~ is the orbital angular momentum content carried by each quantum.

The classical limit demands that the position R and the momentum operator P

of the atomic centre of mass should take their average values r and P0 = MV, where

V is the velocity vector of the centre of mass. This scheme treats the centre of mass

motion classically while the internal atomic motion in terms of the two-level system

continues to be treated quantum mechanically. This is a good approximation provided

that the atomic wavepacket spread is much smaller than the laser wavelength, and that

the centre of mass recoil energy in a transition is much smaller than the linewidth. The

density matrix of the system can then be written as

ρS = δ(R− r)δ(P−MV)ρ(t), (111)

where ρ(t) is the density matrix of the internal two-level system. This follows the

standard time evolution

dρ

dt
= − i

~
[H, ρ] +Rρ, (112)

where Rρ is an added term representing relaxation in the two-level system. The

evolution of the density matrix is governed by the optical Bloch equations which are as

follows


˙̂ρ21(t)
˙̂ρ12(t)

ρ̇22(t)


 =




−(Γ2 − i∆) 0 2f(r)

0 −(Γ2 + i∆) 2f ∗(r)

−f ∗(r) −f(r) −Γ1






ρ̂21(t)

ρ̂12(t)

ρ22(t)


+




−f(r)
−f ∗(r)

0


 (113)
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The relaxation processes in general involve two types of rates Γ1,2 and are assumed to

include both elastic and inelastic collision rates Γcoll and such that

Γ1 = Γ; Γ2 =
Γ

2
+ Γcoll, (114)

where Γ is the de-excitation rate of the upper state of the atomic transition. In the

optical Bloch equations ∆ is the effective velocity-dependent detuning given by

∆ = ∆0 −∇Θ ·V; ∆0 = ω − ω0, (115)

so that ∆0 is the static detuning. We have also set

ρ̂ = ρ̃ exp(−itV ·∇Θ). (116)

and applied the sum rule ρ11(t) + ρ22(t) = 1. The average force acting on the centre of

mass is given by

〈F〉 = −〈tr(ρ∇H)〉 (117)

and this leads to a total force that is the sum of two different forces: a dissipative force

〈Fdiss〉 and a dipole force 〈Fdipole〉. The two radiation forces are related to the density

matrix elements as follows

〈Fdiss(r, t)〉 = − ~∇Θ(ρ̂∗21f(r) + ρ̂21f
∗(r)), (118)

〈Fdipole(r, t)〉 = i~
∇Ω

Ω
(ρ̂∗21f(r)− ρ̂21f

∗(r)). (119)

where Ω(R) is the position-dependent Rabi frequency

~Ω(R) = 2|(d12 · ǫ̂)F(R)|; f(R) = Ω(R)eiΘ(R)/2. (120)

The gross motion is that of the centre of mass in response to the light fields. Once

the total force 〈F(t)〉 is known the atom dynamics can be determined by application of

Newton’s law, written in the form

M
d2R

dt2
= 〈F(t)〉 . (121)

This, together with the initial conditions, namely the initial position vector components

R(0) and initial velocity vector componentsV(0), are sufficient to determine the classical

trajectory R(t) and the corresponding velocity V(t) = Ṙ(t). The solution also provides

information about the time-dependent torque acting on the atomic centre of mass.

A kind of transient atom dynamics arises initially, just after the light is switched

on, and depends on the characteristic time scale of the system. This type of dynamics

becomes important when the excited state of the atom has a relatively long lifetime Γ−1

(Γ is the de-excitation rate of the upper state of the atomic transition) [137, 138, 140].

An example of such a scenario was studied in detail by Carter et al. [138] for the case

of rare-earth ions such as Eu3+ ions whose transition 5D0 →7 D1 has a wavelength and

transition rate λ = 614 nm and Γ = 1111 Hz, respectively [139]. Although transient

dynamics is of interest, most attention has focussed on the the steady state forces as in

the case of laser cooling and trapping.
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7.2. The steady state forces and torque

The steady state forces emerge on taking the limit t→ ∞. This corresponds to setting

time derivatives in the optical Bloch equations to zero. In the steady state we have

Γt << 1, and we find that the steady state forces become position- and velocity -

dependent and consist of two types. The force acting on a moving atom subject to a

single LG beam propagating along the positive z axis turns out to be in the form

〈F〉klp = 〈Fdiss〉klp + 〈Fdipole〉klp , (122)

where 〈Fdiss〉klp is the dissipative force

〈Fdiss(R,V)〉klp = ~ΓΩ2
klp(R)

(
∇Θklp(R)/4

∆2
klp(R,V) + Ω2

klp(R)/2 + Γ2/4

)
, (123)

and 〈Fdipole(R,V)〉klp is the dipole force

〈Fdipole(R,V)〉klp = −1

2
~Ωklp(R)∇Ωklp

(
∆klp(R,V)

∆2
klp(R,V) + Ω2

klp(R)/2 + Γ2/4

)
, (124)

where ∆klp(R,V) is the detuning which is both position- and velocity-dependent

∆klp(R,V) = ∆0 −V ·∇Θklp(R,V). (125)

Both the dissipative and dipole forces involved in the context of non-vortex light are

well known in atom cooling and trapping. The dissipative force is a net frictional force

responsible for optical molasses, and the dipole force corresponds to a potential which

traps the atom in regions of extremum light intensity.

A steady state light induced torque acts on the atomic centre of mass due to

interaction with the twisted light as can be shown by examining the velocity-independent

force terms. Setting V = 0 and for motion near the beam waist, i.e. z << zR we have

〈
F0

diss(R)
〉
klp

=
~Γ

4

Ω2
klp(R)

∆2
0 + Ω2

klp(R)/2 + Γ2/4

[
kẑ+

l

ρ
φ̂

]
. (126)

There are two vector components of this force: an axial component and an azimuthal

one. Only the azimuthal component is responsible for the torque about the beam axis.

Associated with the light induced force is a torque given by

T = r× 〈F〉 . (127)

We find

T =
~Γ

4

Ω2
klp(R

∆2 + Ω2
klp(R)/2 + Γ2/4

lẑ. (128)

Berry and Shukla [140] referred to forces akin to the above azimuthal component as a

curl force. In the saturation limit of high intensity corresponding to Ω ≫ ∆0 and Ω ≫ Γ

we obtain

T ≈ 1

2
~lΓẑ. (129)

Page 51 of 132 AUTHOR SUBMITTED MANUSCRIPT - JOPT-105253.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Atoms in complex twisted light 52

This relation of the light-induced torque acting on the atom was first derived by Babiker

et al. [130] and has a simple interpretation as follows. Since a torque is, by definition,

angular momentum per unit time, the above saturation torque arises from an angular

momentum l~ delivered over a time period of (Γ/2)−1. The general form of the light-

induced torque displays both velocity- and position-dependences, and so has well defined

values along the atom trajectory.

7.3. Atom trapping: dipole potential

The dipole force is the gradient of the dipole potential

〈U(R)〉klp =
~∆0

2
ln

[
1 +

Ω2
klp(R)/2

∆2
0 + Γ2/4

]
, (130)

such that
〈
F0

dipole

〉
klp

= −∇〈U(R)〉klp . (131)

As in laser trapping with ordinary light, the dipole potential due to the LG beam traps

atoms either in the high intensity regions of the LG beam for ∆0 < 0 (red-detuning),

or in the case of blue detuning, ∆0 > 0, in the low-intensity (i.e. dark) regions.

As an illustration we consider the LG donut mode propagating along the z-axis

for which l = 1, p = 0. At focus, i.e. in the beam waist plane z = 0, the dipole

potential has a minimum at radial position ρ = ρ0 = w0/
√
2. The locus of the minimum

is therefore a circle in the (x, y) plane given by x2 + y2 = ρ20 and the atom is trapped

for ∆0 < 0. Expanding the potential expression at focus, i.e. 〈U(R, z = 0)〉k10 to a

harmonic approximation about ρ0 we have

〈U〉k10 ≈ U0 +
1

2
Λk10, (ρ− ρ0)

2 (132)

where |U0| is the depth of the potential

U0 =
1

2
~∆0 ln

[
1 +

Ω2
k10(R)/2

∆2
0 + Γ2/4

]
, (133)

and Λk10 is the effective elastic modulus given by

Λk10 = − 2~∆0

∆2
0 + e−1C2

|l|0Ω
2
k00/2 + Γ2/4

(
e−1C2

|l|,0Ω
2
k00

w2
0

)
. (134)

An atom of mass M, trapped in this potential would exhibit a vibrational motion about

ρ = ρ0 of angular frequency approximately equal to {Λk10/M}1/2.

8. Doppler shifts and atom dynamics

8.1. Azimuthal and other Doppler shifts

The light-induced force and torque involve the effective velocity and position-dependent

detuning ∆klp given by

∆klp = ω − ω0 −∇Θklp ·V. (135)
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This can be written as follows

∆klp = ω − ω0 − δ. (136)

Because of its dependence on velocity the term δ is identified as a Doppler shift. On

substituting for the LG phase function Θ(R) we obtain

δ =

(
kρz

z2 + z2R

)
Vρ +

lVφ
ρ

+

{
kρ2

2(z2 + z2R)

[
1− 2z2

z2 + z2R

]
+

(2p+ |l|+ 1)zR
z2 + z2R

+ k

}
Vz, (137)

where Vρ, Vφ and Vz are the velocity vector components in cylindrical polar coordinates.

It is seen that δ consists of four terms: an axial term δaxial, a term arising from the

Gouy phase δGouy, a beam curvature term δcurve and an azimuthal term δazimuth, so that

δ = δaxial + δGouy + δcurve + δazimuth. (138)

The axial term δaxial is identical to a Doppler shift due to a plane wave of wavenumber

k travelling along the beam axis

δaxial = kVz. (139)

and the Gouy phase Doppler shift is

δGouy =

(
(2p+ |l|+ 1)zR

z2 + z2R

)
Vz. (140)

For LG beam with low integer values of l and p the Gouy phase Doppler shift would be

negligibly small since typically zR ≫ w0. As will be discussed later, this term becomes

significant, for large values of l and/or p.

The curvature Doppler shift is given by

δcurve =

(
kρz

z2 + z2R

)
Vρ +

kρ2

2(z2 + z2R)

[
1− 2z2

z2 + z2R

]
Vz. (141)

This Doppler shift is caused by the wavefront curvature spreading of the beam in the

radial and axial directions and could be observable under appropriate conditions. Finally

a Doppler shift which arises directly from the vortex nature of the twisted light is the

azimuthal Doppler shift which is given by

δazimuth =
lVφ
ρ
. (142)

This is directly proportional to the winding number l characterising the angular

momentum property of the twisted light, but it is also inversely proportional to ρ

the radial coordinate of the atom. Note that the dependence on l includes both the

magnitude and the sign of the winding number.

Experimental work on the azimuthal Doppler shift was reported by Luo et al.

[141] and Aramaki et al. [142]. Luo et al detected the Doppler effect associated with

light beams carrying orbital angular momentum in ‘left-handed materials’ (LHMs).

However, they reported that the azimuthal Doppler shift, proportional to the orbital
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angular momentum of photons, was not reversed compared to conventional positive-

index materials. They attributed this result to two joint contributions, one from

the negative phase velocity and the other from the inverse screw of the wave-front.

Aramaki et al. performed a modified saturated absorption spectroscopy to separate the

components. The optical vortex and a plane wave are used as a probe beam and pump

beam, respectively. Although the plane-wave pump laser cancels the axial-direction

Doppler shift, the azimuthal Doppler shift remained in the saturated dip. The spatial

variation of the dip width provided information on the azimuthal Doppler shift.

8.2. Steady state atom trajectories

The dynamics of the atom is governed by Newton’s second law, together with well defined

initial conditions. The solutions leads to the trajectory R(t) as well as other dynamical

properties of the system. However, the analytical form of the trajectory R(t) cannot be

determined in general and there is, inevitably, a need to resort to computational analysis.

One of the significant properties that can be verified directly is that the trajectories for

two cases in which the atom is subject to single separate LG beams with opposite but

equal signs of l, are identical except for a reversal of the direction of atom rotation.

This is consistent with the dependence of the light-induced torque on the magnitude

and sign of l.

8.3. Atoms in multiple twisted beams

It is well known that Doppler cooling leads to the optical molasses effect in multiple

beams in one, two and three dimensions. We expect a form of optical molasses effect to

occur for twisted beams, but the description of optical molasses in this context demands,

as a first step, the specification of each of the multiple beam field distributions relative

to the same (the laboratory) coordinate frame. This step requires the application of

coordinate transformations. For relatively weak beams the nett light-induced force due

to all beams in the molasses configuration is the vector sum of individual light-induced

forces and the atom trajectory in the multiple beams arises from the solution of the

equation: mass times acceleration equals the vector sum of all forces entering Newton’s

law.

For illustration we consider a basic twisted light beam of frequency ω, axial

wavevector k and quantum numbers l and p coupled to an atom or an ion at a general

position vector R = (ρ, φ, z). In cylindrical coordinates, the phase Θklp(R) and the

Rabi frequency Ωklp(R) are taken as follows

Θklp = lφ+ kz (143)

and

Ωklp(R) = Ω0C|l|p

(
ρ
√
2

w0

)|l|

exp(−ρ2/w2
0)L

|l|
p

(
2ρ2

w2
0

)
(144)
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The above expressions apply for a Laguerre-Gaussian beam in the large Rayleigh range

limit z ≪ zR and also setting w(z) = w0, which also means disregarding beam curvature

effects.

The steady state light-induced forces acting on the centre of mass are given above

but with the approximate phase Θklp(R) and Rabi frequency Ωklp(R), as in Eqs.(143)

and (144). These expressions are in cylindrical polar coordinates with the direction of

propagation along the positive z-axis. However, in order to derive the dynamics for

multiple beams, we need to express the position dependence in Cartesian coordinates

R = (x, y, z), using ρ =
√
x2 + y2 and φ = arctan(y/x). The expression for an LG

beam whose axis of propagation is in an arbitrary direction is obtained by applying two

successive transformations with the first transformation involving a rotation about the

y-axis by an angle θ and the second is another rotation about the x axis by an angle ψ.

An appropriate choice of θ and ψ leads to the force distribution due to a twisted

light beam propagating in any desired direction. This procedure allows consideration

of geometrical arrangements involving counter-propagating beams (especially those

corresponding to one-, two- and three-dimensional optical molasses configurations).

As a specific application of the above scheme we consider optical molasses of

magnesium ions Mg+ in multiple beams. The requisite transition is of frequency ω0

corresponding to the wavelength λ = 280.1 nm and transition rate Γ/2 = 2.7 × 108

s−1. The Mg+ mass is M = 4.0 × 10−26 kg. To have trapping in regions of high field

intensities we must choose red-detuned light such that ∆0 = −Γ/2 and we assume a

value of the beam waist w0 = 35λ. The equation of motion for the Mg+ ion is written

as

M
d2

dt2
R(t) =

∑

i

〈Fi〉. (145)

The sum is over all individual force vector contributions due to all beams present in the

configuration. The simplest case is the one-dimensional molasses configuration, which

involves a pair of identical counter-propagating twisted light beams arranged along the

z axis. Figure 15 (top left) shows the trajectory of the Mg+ ion with l1 = −l2 = 1

and p1 = p2 = 0. The initial radial position is ρ = 10λ and the initial velocity is

V(0) = 5 m s−1ẑ. The motion is for a time duration equal to 4× 105 Γ−1.

Once the Mg+ ion is trapped in the high intensity ring which is located at the

fixed focus point z=0, it rotates clockwise about the common axis. This rotation is

due to the light-induced torque which, in the saturation limit, is given by |〈T 〉| ≈
l1~Γ/2− l2~Γ/2 = ~Γ.

It is easy to see that the motion of the trapped ions at azimuthal speed vs gives

rise to an electric current equal to e/τ ≡ evs/2πρ0 per rotating axially trapped particle.

With vs of about 2 m s−1 and ρ0 ≈ w0 = 35λ we have an ionic current of the order of a

fA per particle. Note that the electric current scales with the number of trapped ions;

if a million or so ions are involved they can produce an electric current on the nA scale.
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Figure 15. Top left: the path of a Mg+ ion in the one-dimensional twisted

optical molasses created by two counter-propagating Laguerre-Gaussian beans with

l1 = −l2 = 1 and p1 = p2 = 0 propagating along the z-axis. The initial velocity

is v = 5ẑ m s−1. Top right: trajectories of two Mg+ ions with different initial

locations subject to a two-dimensional optical molasses formed by two pairs of counter-

propagating twisted beams, with li = 1 and pi = 0 for i = 1 − 4. Each ion ends

up motionless on the locus of lowest potential energy minima corresponding to two

oblique orthogonal circles, as explained in the text. Bottom: Trajectories of eight

Mg+ ions in a three-dimensional twisted optical molasses formed by three pairs of

counter-propagating Laguerre-Gaussian beams with li = 1 and pi = 0 where i = 1− 8.

The initial velocity of each of the ions is vz = 5 ms−1. The ions end up motionless at

the corners of a cube of side w0.

.
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8.4. Twisted molasses in two- and three- dimensional configurations

The two-dimensional molasses configuration arises when we introduce in addition to the

pair along the z-axis of waist w0 a second pair of counter-propagating beams along the

x-axis of waist w′
0, which can be equal or different from w0. The net force in this case is

the vector sum of the individual forces from the four beams. The appropriate functional

dependences of three of the beams are obtained from the expression of a beam along the

z-direction using transformation equations for axis rotation. The trajectories in Fig.15

(top right) are of two Mg+ ions initially located at different points with each having

an initial velocity of vz = 5 m s−1. The ions are subject to the four beams where each

beam of has a waist w0, an azimuthal index, l = 1, and radial index, p = 0.

The total torque about the common axis arising from each pair is zero. This is

because the choice of l values produces identical torques of opposite senses which cancel

in this case. Thus each ion ends up at a specific fixed point, depending on the initial

conditions and it remains at that fixed point essentially motionless. To understand

this, we should note that the deepest dipole potential well is four times the depth due

to a single beam. The potential minima are situated on the locus of spatial points

defined simultaneously by two equations x2 + y2 = w2
0/2 and y2 + z2 = w′2

0/2. For

w′
0 = w0 these two equations describe two orthogonal oblique circles representing the

intersection curves of two cylinders of radii w0/
√
2. Solving for x and y we have x = ±z

and y = ±
√
w2

0/2− z2.

The locus of spatial points where the dipole potential is minimum can be described

by the parametric equations

x(u) = (w′
0/
√
2) cos u

y(u) = (w′
0/
√
2) sin u

z(u) = ±
√
w2

0/2− (w′2
0/2) sin

2 u (146)

All Mg+ ions in the two-dimensional configuration of orthogonal counter-propagating

pairs of twisted beams will be trapped at points lying on one of the two oblique circles,

as determined by the initial conditions. An ensemble of Mg+ ions with a distribution of

initial positions and velocities will populate the two circles, producing two orthogonal

essentially static Mg+ ion loops. Associated with this system of charges would be a

Coulomb field whose spatial distribution, for example, for ions uniformly distributed in

the ring can easily be evaluated. When the values of l are such that each pair of beams

generates a torque, the motion becomes more complicated, but the ions will seek to

congregate in the region of potential minima, while responding to the combined effects

of two orthogonal torques and orthogonal axial cooling forces.

When a third pair of counter-propagating beams is added to the two-dimensional

configuration, orthogonal to the plane containing the original beams, we have a three-

dimensional configuration. In this case the deepest potential minima are located at

eight discrete points defined by the coordinates: x = ±w0√
2
, y = ±w0√

2
, z = ±w0√

2
. These

coincide with the eight corners of a cube of side w0, centred at the origin of coordinates.
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Atoms in complex twisted light 58

Figure 16. Time-of-flight image showing the donut shape characteristic of a atomic

cloud with quantized rotation. Figure reproduced with permission from the Ph.D.

thesis by A. K. Ramanathan [146].

Figure 15 (bottom) exhibits the trajectories of 8 atoms which end up being trapped at

the eight corners of the cube.

8.5. The NIST-Gaithersburg experiments

A number of experiments by Anderson et al. [143] and Calde et al. [144] showed that

a Bose-Einstein condensate of sodium atoms can be trapped in the field of a donut

beam and a Gaussian beam or a sheet beam and with the atomic ensemble exhibiting a

quantised superfluid behaviour. The atoms were made to rotate in the donut ring by the

light-induced torque [130] and constituted a relatively long-lived persistent current for

a time more than twenty times the duration for the atoms confined in a spheroidal trap.

A snap-shot image of the trapped atom is presented in Fig.16. The flow was observed

to persist even when there was a large (80%) thermal fraction present in the toroidal

trap. These experiments open the possibility for investigations of the fundamental role

of flow in superfluidity and of realizing the atomic equivalent of superconducting circuits

and devices such as SQUIDs [145]. Atoms trapped in such ring-shaped traps could form

the basis of quantum motors. Generally such findings were hailed as paving the way

towards the realisation of atom circuits in the field of atomtronics [145, 147, 148].

9. Azimuthal Sisyphus cooling

9.1. Sisyphus effect with twisted light

As described earlier the Sisyphus effect which uses ordinary plane wave laser light has

been shown to provide an efficient cooling mechanism which has succeeded in cooling

atoms to temperatures well below the Doppler cooling limit [44]-[58]. The point to

emphasise here is that this cooling method is based on the creation of a standing

wave exhibiting polarisation gradients using counter-propagating laser beams. The
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Atoms in complex twisted light 59

polarisation gradients are responsible for the generation of spatially dependent light

shifts which result in spatially modulated energy levels along the beam axis. This

interaction landscape is characterised by potential hills which an atom has to climb

more than it descends in the processes of stimulated and spontaneous emission cycles

between the energy levels. The atom progressively loses its kinetic energy and slows

down.

An analogue of the Sisyphus mechanism has been predicted by Lembessis et al.

[149] concerned with the case of the azimuthal atomic motion in the annular region

of maximum intensity when the atom is irradiated by two LG beams with lin⊥lin
polarizations, i.e. having orthogonal linear polarisations. The azimuthal motion arises

in the context involving two co-centred, co propagating LG beams, labelled 1 and 2, of

the same frequency ω and axial wave vector of magnitude k. The beams have the same

magnitude of the winding number |l| but differ only in the sign of l.

In the focus plane z = 0, the electric field consists of two in quadrature fields with

the amplitudes proportional to cos(lφ) and sin(lφ). The wave polarisation form varies

with angular position and is in general elliptical, displaying both linear and circular

forms at certain angles, as φ varies. The situation is equivalent to the conventional

polarisation gradient due to two counter-propagating plane wave light beams where the

changes in polarisation are cyclic, with a spatial periodicity of the standing wave along

the z-axis equal to the wavelength of the light λ = 2π/k. Here the periodicity occurs

in the azimuthal direction. However, the spatial extent of the polarisation gradient

depends on the beam waist w0 as well as the winding number l.

We now consider the atom dynamics in such a light field and we focus on an

atom with transitions between a hyperfine ground state Jg = 1/2 and an excited

state Je = 3/2. The Clebsch-Gordan coefficients of the various possible transitions are

indicated by the numbers in the inset of Fig.17 with the squares of the numbers indicated

representing the corresponding transition probabilities. We also make the assumption

that the atomic motion is restricted in the annular region of radius ρ0 = w0

√
|l|/2 where

the intensity of the beams is highest (when p = 0). The optical potentials associated

with the two Zeeman sub-level shifts are given by

U± =
2

3
~∆′

0 [2∓ cos(2|l|φ)] , (147)

where s0 is the saturation parameter at ρ0 = w0

√
|l|/2 and ∆′

0 is given by

∆′
0 = s0∆0/2; s0 =

Ω2
max/2

∆2
0 + Γ2/4

. (148)

Here Ωmax is the Rabi frequency at ρ0 which, in the case where p = 0, is given by

Ωmax = Ωk00C|l|0e
−|l|/2(|l|/2)|l|/22|l|/2. For large values of |l|, we may use Stirling’s

approximation and we have Ωmax = Ωk00C|l|0|l|!/
√

2π|l|. The potentials U± are the

optical potentials for the
∣∣g±1/2

〉
sub-levels. It is easy to see that the minima of one

potential correspond to the maxima of the other and vice versa, and the maxima and

minima correspond to positions where the polarisation is σ̂± (purely circular).
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Suppose now that the angular position of the atom within the annular ring is

φ = π/4|l| and that the light field has a circular polarisation σ̂− . If we assume that

the atom is optically pumped to level
∣∣g−1/2

〉
, the population of the level

∣∣g+1/2

〉
is then

zero. Furthermore we consider that the detuning is negative so that both light shifts

are negative. If the atom is shifted within the annular trap to an angular position at

φ = 3π/4|l| the level populations are reversed. Finally if the atom is at angular positions

where the polarization is linear, the two sublevels are equally populated. This scenario

is summarized in Fig.17.

When the light intensity is sufficiently low so that the excited state population is

negligible the cooling of the atomic azimuthal motion can be explained with reference to

the inset to Fig.17. This shows the energy levels for the Jg = 1/2 ↔ Je = 3/2 transition

and the relevant transition probabilities. If the atom is located at φ = π/4|l| where
the polarization is σ̂−, the absorption of a σ− photon takes the atom from

∣∣g+1/2

〉
to∣∣e−1/2

〉
. This process is followed by a decay of the atom from the state

∣∣e−1/2

〉
to the

state
∣∣g−1/2

〉
. If the decay is from

∣∣e−1/2

〉
to
∣∣g+1/2

〉
, the atom can absorb a σ− photon

and have another chance to arrive at
∣∣g−1/2

〉
. By contrast, absorbing a σ− photon when

in
∣∣g−1/2

〉
promotes the atom to

∣∣e−3/2

〉
from which the atom can decay to

∣∣g−1/2

〉
.

It follows that in the steady state all the atomic population is optically pumped into∣∣g−1/2

〉
. If the atom is at φ = 3π/4|l| where the polarization is σ̂+, the above scenario

is reversed.

The damping of the atomic motion in the Sisyphus effect is characterised by a

damping coefficient which can be calculated as follows. Let us assume that initially the

atom performs circular motion at a radius ρ0 = w0/
√

2|l| with an azimuthal speed vφ.

As explained in Table 1 and with reference to Fig.17, the atom in effect sees an azimuthal

standing wave of an equivalent wavelength λφ = πw0/
√

2|l|. We define the two-level

relaxation time as τR = Γ−1 and an optical pumping time between sublevels τP = Γ′−1.

In general the atomic internal state does not follow adiabatically the variations of the

light field. To take into account this fact we introduce two adiabaticity parameters: one

is a two-level atom adiabaticity parameter ǫφ, defined as the ratio between the length of

the arc travelled by the atom during its internal relaxation. The other is a characteristic

length of the azimuthal spatial variations of the laser field (i.e., the wavelength λφ). For

ǫφ we write

ǫφ =
vφτR
λφ

=
vφ
√
2|l|

πw0Γ
. (149)

The corresponding multi-level parameter ǫ′φ is defined as

ǫ′φ =
vφτP
λφ

=
vφ
√
2|l|

πw0Γ′ . (150)

At low laser powers we have ǫ′φ ≫ ǫφ since Γ′ << Γ, i.e. τR << τP . The condition

for the non-adiabatic effects coming into play is then approximately given by ǫ′ ≈ 1,

which leads to

vφ
√

2|l|
πw0

≈ Γ′. (151)
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Atoms in complex twisted light 61

Figure 17. Variations of the light-shifted energy levels with azimuthal position φ and

the steady-state populations (full circles) for a Jg = 1/2 ground state interacting with

two counter-propagating LG light beams in the lin ⊥ lin configuration and negative

detuning. The ground state is light-shifted into the state g−1/2, which varies with φ

as shown by the full curve, and g+1/2, whose variation with φ is shown by the dotted

curve. The atom is trapped in the donut annular region and is assumed to be rotating

with velocity vφ. The most populated energy sublevel is the one with the largest

negative light shift. The inset shows the processes of emission and absorption involved

in the azimuthal Sisyphus effect between Je = 3/2 and Jg = 1/2 sublevels.The time lag

τP associated with the optical pumping is responsible for the atom climbing on average

more potential uphills than downhills as it rotates. Reproduced with permission from

[149].
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The resulting azimuthal damping force is then given by

Fφ = −αφvφ. (152)

where αφ is an azimuthal damping coefficient. This coefficient can be estimated

qualitatively following Dalibard and Cohen-Tannoudji [58] and is given by

αφ = ~

(
2π

πw0/
√

2|l|

)2
∆0

Γ
=

8~|l|∆0

w2
0Γ

. (153)

Associated with the friction force is a torque about the common beams’ axis directed

along ẑ, operative at ρ0 = w0/
√

2|l| and given by

T = r × F φ =
4
√
2|l|~vφ∆0

w0Γ
ẑ. (154)

It is seen that the damping coefficient is proportional to the magnitude of the winding

number l, while the torque is proportional to the square root of |l| through its dependence

on the radius of the annular region. Hence the higher the value of |l| the larger the

annular radius, and consequently the larger the number of potential hills there are for

the atoms to climb. Note that the damping coefficient and the torque are inversely

proportional to the beam waist w0. The larger the beam waist the further apart are the

potential hills and this amounts to less effective damping and smaller torque due to the

potential hill climbed by the atom.

As an illustration we consider Cs atoms interacting with a light field of wavelength

λ = 852.35 nm, which can thus excite the transition 62S1/2 − 62P3/2, where the upper

state 62P3/2 has a spontaneous emission rate Γ = 3.25× 107 s−1. We assume a detuning

∆0 = 2Γ and the Rabi frequency Ω is taken to be 0.1Γ. These atomic transitions and

orders of parameter were used in the pioneering experiment that confirmed the validity

of Sisyphus cooling mechanism [47]. Finally, for the LG beams we take |l| = 20 and the

beam waist w0 = 10λ. With these parameters Eq.(151) yields the azimuthal velocity at

which Sisyphus effect commences as vφ = 3.6 cm s−1. We have made use of the following

relationship [58] giving the pumping rate Γ′ in terms of Γ and the saturation parameter

Γ′ = 2Γs0/9. The value of the azimuthal damping coefficient corresponding to the

above parameters turns out to be αφ = 4.65 × 10−22kg s−1. For the same parameters,

the azimuthal velocity in the Doppler limit is vφ = 8.82 cm s−1 approximately twice the

azimuthal velocity at which the Sisyphus effect commences. Both are much larger than

the recoil velocity of 0.35 cm s−1.

9.2. Comparison with other azimuthal cooling mechanisms

It is instructive to compare the Sisyphus cooling mechanism with other azimuthal cooling

mechanisms. The Doppler regime for a twisted single (TS) beam involves a torque acting

on the two-level atom which has a magnitude at the radial coordinate ρ0 = w0

√
|l|/2

(where the Rabi frequency maximises), is given by:

TTS = ~Γl
Ω2

max/4

∆2
0 + Ω2

max/2 + Γ2/4
. (155)
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This torque is proportional to l and so can be positive or negative. It is easy to

verify that it depends on the radial but not the angular position of the atom. In the

saturation limit, achieved at high intensities, the torque becomes TTS ≈ l~Γ/2, which is

position-independent. In the twisted molasses (M) situation, which involves two counter-

propagating donut beams, also within the Doppler regime, the atom experiences a torque

of magnitude given by:

TM =
~kl∆0ΓΩ

2
max

(∆2
0 + Ω2

max/2 + Γ2/4)2
vz, (156)

where vz is the axial component of the velocity. This torque is also proportional to l and

in the high intensity limit we have T M ≈
(

4~kl∆0Γ
Ω2

max

)
vz. So this torque decreases with

increasing intensity. By contrast, here the general torque in the Azimuthal Sisyphus

effect emerges as

T S =
8~|l|∆0

w2
0Γ

vφρ, (157)

where ∆0 is the static detuning, applicable here as the Doppler effect is negligible at

low velocities. This torque is proportional to the azimuthal velocity and the magnitude

of l, and inversely proportional to the beam waist w0. It is a function of the radial

coordinate ρ, but it does not depend on the light intensity. Significantly, this torque

is proportional to the detuning ∆0, which can be positive, or negative. This suggests

that the Sisyphus effect is a mechanism with which we can accelerate or decelerate the

azimuthal atomic motion by simply changing the sign of the detuning, as in the twisted

molasses case. This may be exploited for controlling the azimuthal motion in different

types of atomic samples trapped in annular regions. We also see that the general torque

in the azimuthal Sisyphus effect is inversely proportional to the relaxation rate Γ while

in the case of Doppler cooling it is directly proportional to Γ. This reflects the different

physical processes that are behind the generation of the two cooling mechanisms.

A crucial parameter in this context is the beam waist. In the case of the azimuthal

Sisyphus effect the torque is inversely proportional to the square of the beam waist.

In the annular region, where ρ = w0

√
|l|/2, Eq.(157) yields T S = 4

√
2~|l|3/2∆0

w0Γ
vφ. Thus

twisted beams with large cross sections, i.e. weak focusing, will result in smaller torques.

This is because as the beam waist increases the characteristic length of the azimuthal

spatial variations of the laser field (i.e., the ”wavelength” λφ) becomes larger. This

is equivalent to a Sisyphus effect in a field with a larger wavelength and thus to a

smaller Sisyphus torque. The torque created by the Doppler mechanism does not depend

explicitly on the beam waist. This is clear in the case of irradiation by a single beam

in the saturation limit; for the case of twisted molasses as given by Eq.(156), a larger

beam waist (for a given power) results in a smaller Rabi frequency and thus to larger

torques.

Finally we must emphasise the role of the dependence on the winding number l.

In the Doppler mechanism a larger winding number leads to larger torques and this is

reasonable since it is associated with the angular momentum exchanged between the
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light and the atom. In the case of the azimuthal Sisyphus effect, again an increase

in l leads to a larger damping. This is because the equivalent wavelength λφ becomes

smaller and thus leads to a more effective Sisyphus effect.

10. Ferris wheels

A Ferris wheel is a typical example of an optical lattice field with cylindrical symmetry.

The term owes its origin to analogy with a rotating fairground ride. Ferris wheel light

fields were proposed by Franke-Arnold et al. in 2007 [101]. Since then there have been

theoretical as well experimental works concerning the atom dynamics in the trapping

sites of this light field. Using optical Ferris wheels it is possible to create both positive

and negative optical potentials that are either static or can rotate around the beam axis

at frequencies ranging from a few mHz to hundreds of MHz [102].

The generation of a Ferris wheel light field in its simplest form requires setting

up two co-propagating LG beams with equal and opposite optical angular momenta, i.e

such that l1 = −l2. This type of light field is characterised by bright petal-like regions in

a plane transverse to the propagation direction, and by using LG beams with different

indices l and p it is possible to create dark lattices of different geometrical patterns

[101]-[102]. Furthermore it has been shown that counter-propagating beams in three

dimensions would lead to exotic light fields where the bright regions have the form of

helical tubes twisted along the beams’ propagation direction [151]-[156]. However, prior

to the proposal of the optical Ferris wheel field, bright ring-shaped lattices had been

used in optical tweezing experiments [158]-[159].

A superfluid ensemble trapped in a rotating helical optical tube has been shown to

be associated with an artificial magnetic field [151]. The twisted tubes can be considered

as a waveguide for atomic motion over distances significantly smaller than the Rayleigh

range of the beam (z << zR) [152], while connections between Gaussian lattices and

helical optical tubes have been also considered [152].

This scheme has been also proposed as an atomic guide along a helical path

where the atom oscillates globally between two turning points [153]. However, a slight

difference in the angular frequencies of the LG beams produces rotating helical optical

tubes (HOTs), which have been used to study the flow of a cold bosonic ensemble

(superfluid) trapped in the helical pattern [151]. The rotation of the reference frame

(the helical pattern) can be used as laboratory equipment to demonstrate the difference

between quantum and classical fluids [154]. The rotating helical pattern can also be used

as a detector of the slow rotation of an interferometer [155]. The study of atom guiding

inside a rotating HOT has shown that this mechanism can serve as an Archimedes spiral

for elevating atoms [156].

Recently such a cylindrical lattice has been proposed as a mechanism for exhibiting

various realisations of a Hofstadter-Hubbard model with fermionic cold atoms, and it has

been shown that this set up in the presence of interaction might allow the observation of

fractional quantum Hall physics [160]. The Ferris wheel optical lattice has been used in
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an experiment where a trapped atom has been rotated and observed from its fluorescence

[97]. In another recent work the interaction of a two-level atom with a rotating Ferris

wheel light field has been shown to create artificial gauge electromagnetic fields which

propagate in closed paths [161]. Finally, besides lattices with cylindrical symmetry it is

also possible to create other types of lattices by proper interference of LG beams. One

such example is the stack of ring shaped traps which is created by the interference of

counter-propagating beams with the same winding number [162].

10.1. Ferris wheel: co-propagating LG beams with l1 = −l2
Consider a Ferris wheel light field composed of two LG beams labelled 1, 2 co-

propagating along the z−direction and both are polarised along the x−direction, but

with opposite optical angular momenta l1 = −l2 = l. The electric fields of these LG

beams are given by:

E1,2(z, ρ, φ) =
1

2
Ek00C|l|,pu

l
p(ρ, z) exp(ikz ± ilφ)x̂, (158)

with

ulp(ρ, z) =
1√

1 + z2/z2R

( √
2ρ

w0

√
1 + z2/z2R

)|l|

L|l|
p

( √
2ρ

w0

√
1 + z2/z2R

)

× exp

(
− ρ2

w2
0(1 + z2/z2R)

)
, (159)

The total electric field of the optical Ferris wheel light field is the sum

E(z, ρ, φ) = Ek00C|l|pu
l
p(ρ, z) cos(lφ) exp(ikz)x̂, (160)

The intensity of the light field is then I ∝ [ulp(ρ, z)]
2 cos2(lφ). The presence of the factor

cos2(lφ) leads to the appearance of 2l petal-like high intensity regions. Figure 18 displays

the spatial distribution of the Ferris wheel light field intensity (in arbitrary units) for

the case where l = 2 and p = 0 and for the case where l = 2 and p = 1 together with

the corresponding contour plots. These show the characteristic four petal-like intensity

distribution. The Ferris wheel petal-like structure is richer when the radial index p is

different from zero, in which case the intensity displays p+ 1 petal-like regions.

The above light fields are not the only ones that can be constructed. Other

cylindrically symmetric optical lattices can be realised by interfering beams with

opposite l but also different magnitudes. Such a scenario presents interesting features.

The maximum of the at-focus intensity of the field of a donut beam occurs at the radial

position ρ0 =
√
|l|/2w0. Thus LG beams with different magnitudes of the azimuthal

index l have their intensity maxima at different radial positions. The electric field of an

LG beam has a full-width at half-maximum (FWHM) equal to 2ln(2)w0 in the radial

direction. The interference of such beams is such that ρ1,0 − ρ2,0 = 2ln(2)w0. The two

LG fields have similar maximum amplitudes and are separated by one FWHM. This

leads to a dark Ferris wheel lattice with an approximately uniform depth in the radial

and azimuthal directions.
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Figure 18. (a)-(b):The intensity (arbitrary units) of a Ferris wheel light field at z = 0.

The field has been created from the superposition of two co-propagating LG beams

with l1 = −l2 = 2. In the contour plot we see the characteristic four petal-like regions

of maximum intensity. (c)-(d):The intensity (arbitrary units) of a Ferris wheel light

field at z = 0. The field has been created from the superposition of two co-propagating

LG beams with l1 = −l2 = 2 and p = 1. In the contour plot we see the characteristic

two zones of four petal-like regions of maximum intensity.

Furthermore, the optical Ferris wheel intensity patterns can be rotated in space

when the two beams have a slight difference in frequency ∆ω = ω2 − ω1. There are

various methods for the generation of precise laser frequency shifts, as for example

by passing the light through an acousto-optical modulator (AOM), or when circularly

polarized light is passed through a rotating half wave plate [163] which, due to an

accumulated geometric or Berry phase [164], shifts the frequency by twice the rotational

speed of the waveplate in the context of optical tweezers [165]. A rotating Ferris wheel

due to a frequency difference ∆ω has an the electric field of the form:

E(z, ρ, φ) =
1

2
Ek00C|l|,pu

l
p(ρ, z) exp(ikz) exp(ilφ) exp(iω1t)

× [1 + exp(−2ilφ) exp(i∆ωt)] x̂, (161)

The corresponding intensity is such that I ∝ [ulp(ρ, z)]
2 cos2(lφ − t∆ω/2), indicating

that the pattern rotates at a rate Ωrot = ∆ω/2|l|. This rotating pattern can be used

as an azimuthal optical conveyor belt for trapped atoms as in the experiment by Xu

et al. [97]. It is important to note that for both bright and dark Ferris wheel lattices,

the rotation is not subject to mechanical noise, which means that the pattern would be

extremely stable over rotational frequencies ranging from mHz to tens of MHz.
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Atoms in complex twisted light 67

10.2. Trapping of atoms

Consider now the interaction of atoms with a Ferris wheel light field. Once more we

concentrate on a two-level atom with a transition frequency ω0 interacting with a static

optical Ferris wheel light field. The interaction is characterised by a Rabi frequency

given by:

Ω(ρ, φ, z) = 2Ω0C|l|pu
l
p(ρ, z) cos(lφ). (162)

Assuming large detuning, the trapping optical dipole potential is given by:

U(ρ, φ, z) =
~∆0Ω

2(ρ, φ, z)

4
= ~∆0Ω

2
0C

2
|l|,p
(
ulp
)2

cos2(lφ), (163)

Here Ω0 is the Rabi frequency associated with a Gaussian beam of the same power

and beam waist as the two LG beams involved in setting up the optical Ferris

wheel light field. The trapping potential (for ∆0 < 0) has minima at the radial

positions (ρ0, φ|l|, z) = (w0

√
|l|/2, nπ/|l|, 0) where n = 0, 1, ..., 2|l| − 1. An atom deeply

trapped in such a rotationally symmetric potential is subject to the simple harmonic

approximation about the potential minimum and irrespective of the value of l the

potential has trapping regions on the common axis of the beams. In the trapping

region located on the positive x−axis and for red detuning the potential has a minimum

at (x0, y0, z0) = (w0

√
|l|/2, 0, 0), so performing a Taylor expansion about this minimum

we find

U(x, y) = U
|l|
0 − 1

2
kx

(
x− w0

√
|l|/2

)2
− 1

2
kyy

2 − 1

2
kzz

2, (164)

where the derived force constants kx, ky, kz and U
|l|
0 are given by:

kx =
16~Ω2

0|l||l|e−|l|

∆0w2
0π|l|!

, ky =
8~Ω2

0|l||l|e−|l|

∆0w2
0π(|l| − 1)!

, kz =
4~Ω2

0|l||l|e−|l|

∆0z2Rπ|l|!
,

U
|l|
0 =

2~Ω2
0|l||l|e−|l|

∆0π|l|!
. (165)

For large values of l application of the Stirling’s approximation gives l! ≈√
2π|l||l||l| exp(−|l|) and we then have

kx =
16~Ω2

0

∆0w2
0π

3/2
√

2|l|
, ky =

8~Ω2
0

√
2|l|

∆0w2
0π

3/2
, kz =

4~Ω2
0

∆0z2Rπ
3/2
√
2|l|

,

U
|l|
0 =

2~Ω2
0

∆0π3/2
√
2|l|

. (166)

where we have taken the detuning ∆0 to be negative. The parameters kx, ky are larger

than kz since in general zR ≫ w0. This means that in-plane trapping is much stronger

than axial trapping. A complete three dimensional trapping would then require an

additional trapping potential to be set up in the axial direction. In a Ferris wheel

scheme axial trapping can be considerable only for tightly focussed beams. Moreover

Eq.(166) shows an interesting dependence on the index l, such that as l increases

the potential U
|l|
0 becomes shallower and a similar behaviour is shown by the axial
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Atoms in complex twisted light 68

potential. The in-plane potential depth decreases in the x−direction and increases in

the y−direction. Furthermore other features arise at other trapping positions such as

the point (x0, y0, z0) = (w0

√
|l|/2, 0, 0) on the x−axis. At the corresponding trapping

point (x0, y0, z0) = (0, w0

√
|l|/2, 0) on the y−axis the force constant kx becomes ky and

vice versa. Since the intensity pattern is rotationally symmetric the potential at the

different trapping sites can be cast in the form

U(x, y) = U
|l|
0 − 1

2
kx′x′2 − 1

2
ky′y

′2 − 1

2
kzz

2, (167)

where the primed symbols are given by:

x′ =
(
x− w0

√
|l|/2

)
cos(φ|l|), y′ =

(
y − w0

√
|l|/2

)
sin(φ|l|),

k′x = cos2(φ|l|)kx + sin2(φ|l|)ky, k′y = sin2(φ|l|)kx + cos2(φ|l|)ky. (168)

Thus we have an anisotropic harmonic oscillator potential, and the harmonic

approximation leads to oscillation frequencies given by ωx′,y′,z′ =
√
kx′,y′,z′/M where

M is the atomic mass.

When two-level atoms are trapped in a dipole trap the trapping quality depends on

two important factors, namely the depth of the optical dipole potential and the photon

scattering rate. A numerical estimate of the trapping quality can be made as follows.

Consider the D2 52S1/2 − 52P3/2 transition of 85Rb for which the de-excitation rate is

Γ/2π = 5.98 MHz, the transition wavelength is λ= 780.9 nm, and the intensity is IS
= 16.4 W m−2. We assume a ring lattice laser of total power of 0.12W, focussed to

a beam waist of w0 = 10 µm and a negative detuning of 1064 nm for trapping. The

Rabi frequency associated with each beam is related to the saturation intensity IS by

I/IS = 2Ω2
0/Γ

2 where I = P/2w2
0, with P the total available laser power (such that P/2

is provided by each of the interfering beams). Also we have a scattering rate S ≈ UΓ
~∆

[166]. With these parameters it is possible to construct a ring lattice of depth about

25 µK and a scattering rate S ≈ 0.013 s−1. The spatial distribution of the trapping

potential is shown in Fig.19.

The above analysis indicates that the Ferris wheel lattice could provide a potentially

dynamic three-dimensional trap for atoms. The trapping is sufficient in the transverse

direction, though the potential is shallower in the z−direction. For a lattice that traps

in the intensity maxima (red lattice) we could use a tightly focussed Ferris field (short

Rayleigh range) but there is a trade-off between axial confinement and scattering rate.

However, it has been suggested that an additional localisation field can be set up along

the z−direction with a hybrid configuration of a Ferris light field and a quadrupole

magnetic trap [167],[168]. Alternatively it is possible to create an axial confinement in

a ring lattice by using counter-propagating laser beams forming a standing wave. This

leads to the generation of an axially separated stack of lattices similar to the ones in

[100]. However, by introducing a frequency shift between the forward and backwards

LG beams, the individual ring lattices will not only rotate but also translate along the

z-axis.

Page 68 of 132AUTHOR SUBMITTED MANUSCRIPT - JOPT-105253.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Atoms in complex twisted light 69

Figure 19. The trapping potential for a Ferris light field created from the

superposition of two co-propagating LG beams with l1 = −l2 = 5. The potential

is given in µK units.

10.3. Helical Optical Tubes (HOTs)

The twisted optical potential tubes or Helical Optical Tubes (HOT) are formed by the

interference of two counter-propagating LG beams, with opposite winding numbers l

and the same polarisation, which results in the generation of a three-dimensional twisted

standing wave. When a two-level atom interacts with such a light field the optical dipole

potential (in the far off-resonance case) is given by:

U(ρ, φ, z) =
~∆0Ω

2(ρ, φ, z)

4
= ~∆0Ω

2
0C

2
|l|p
(
ulp
)2

cos2(lφ+ kz), (169)

This HOT dipole potential is shown in Fig.20 for the case where l = 1 and p = 0. This

pattern has a left-handed helical shape with a pitch equal to 2πh (h = |l|/k) and has

two tubes where the maximum intensity is at the geometrical centre of each tube at

z = 0 and decreases in the radial direction away from the centre of each tube, and away
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Atoms in complex twisted light 70

Figure 20. The helical optical tube potential with mode l = 1 and p = 0. Reproduced

with permission from [153].

from the z = 0 plane along each tube.

The motion of an atom in such a potential has been analysed in the semi-

classical approximation which treats the external variables classically [153]. The atom

is considered as subjected to both the optical dipole potential and the gravitational

potential and depend on the helix orientation with respect to the lab frame. The

equations of motion can be derived using the Lagrangian formalism in cylindrical

coordinates, leading to three coupled non-linear differential equations of the second

order for which there is no exact general analytical solution. The atom trajectory can,

however, be calculated numerically and analytically in special cases. The numerical

solution is based on the fourth order Runge-Kutta method subject to initial conditions

for the cold atom inside the helical optical tube. For negative detuning the atom is

attracted towards the high intensity regions.

The initial position of the cold atom can be chosen at the maximum intensity point

(which is the minimum value of the dipole potential) which, in cylindrical coordinates is

(ρ0, φ0, z0) =

(
w0

√
|l|
2
, (n−1)π

|l| , 0

)
, where n = 1, 2, ..., 2l is the index of the tubes of the

helical optical potential. For example, for l = 1, the helical optical potential has two

tubes: the first tube has index n = 1 while the second one has index n = 2, as in Fig.

20. For the initial velocity we choose v = (vr, vφ, vz) =(5 cm s−1, 5 cm s−1, 0). This

is reasonable as the initial velocity of the cold atom should not be less than the recoil
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Atoms in complex twisted light 71

velocity vrec (in order to ensure the validity of the semi-classical approximation) and

must be greater than the Doppler velocity vD (so as to keep the interaction resonant),

i.e. vrec < v0 < vD.

For an atom in the region where z << zR, assuming that the small radial ‘wiggling’

of the motion does not affect the global oscillations in the z−direction, it is possible to

obtain an analytical solution of the equations of motion. We have

φ(t) = −

√
4φ̇2

0 + γ22ω2
s

sin
(ωst+Θ) +

γ

2ω2
s

, (170)

z(t) = −
h
√
4φ̇2

0 + γ22ω2
s

sin
(ωst+Θ)− h|φ̇0|

ωf t
sin(ωf t)−

γh

2ω2
s

, (171)

ρ(t) = −
√
l

2
w(z) +

ρ̇0
ωρ

sin(ωrt), (172)

where φ̇0 is the initial angular velocity, ωs = 4 tan3(θR)
2|l| sec(θR)

√
Erecǫ
~2

, γ = 2gh/(r2o + h2),

ωf =
2
√

Erecǫ(1+tan2(θR)

h
and ωρ = 2λ

√
Erecǫ

πw0~
, where Erec = ~

2k2/2M is the recoil energy,

θR = arctan(h/ρ0) is the pitch angle with h = |l|/k and ǫ = −4~Ω2
0C

2
|l|,p

∆0

|l||l|
|l|! exp(−|l|) is

the depth of the potential at the minimum point.

Figure 21 displays the trajectories, calculated both numerically and analytically,

for the following set of parameters. The transition is taken as 52S1/2 − 52P3/2 in 85Rb

for which λ = 780.2 nm, Is = 1.64 Wm−2, and Γ/2π=5.98 MHz. The recoil and

Doppler velocities for laser cooling of an 85Rb atom are vrec = 0.602 cm s−1 and

vD = 11.85 cm s−1, respectively [44]. The laser power is P = 80 mW, detuning

∆ = 2.57× 1013 Hz and the beam waist w0 = 4 µm [97]. Figures (a) and (b) in Fig. 21

provide an excellent agreement between the numerical and analytical calculations. Both

figures show the global oscillatory behaviour of the atom between two turning points

along the z-axis and following a helical trajectory due to the helical geometry of the

dipole potential.

The physical origin of this type of motion lies in the term cos2(lφ + kz) which is

responsible for the formation of 2l potential wells (each well corresponds to a tube in the

potential depicted in Fig.20 in the (z, φ) plane. Each of these wells has energy minima

along the line lφ + kz = (n − 1)π (n is the index of the tube of the potential). This

topological feature of the dipole potential drives the atom to oscillate locally about the

line lφ+ kz = (n− 1)π, which is the locus of the minima of the potential wells. Due to

the coupling of the equations of motion the local oscillations induce an average motion

along the line lφ+ kz = (n− 1)π, which guides the atom inside the tube of index n by

keeping lφ+ kz = (n− 1)π and a radial distance ρ = wz

√
|l|/2/2. This guiding elevates

the atom along the z-direction.

Another important parameter of the atomic motion is the beam width w(z) which

depends on the position in the z−direction. This dependence, which is shown in Fig.22,
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Atoms in complex twisted light 72

Figure 21. The 3D trajectory of 85Rb atom along the helical tube with index n = 1

with a time duration of 8 µs calculated: (a) numerically (red line) and; (b) analytically

(blue line).

has normally been ignored in previous works concerning the atomic motion in twisted

beams, being considered negligible. However, here it plays an important role. Due

to the factor 1/w(z) the depth of the potential is modified in the z−direction. It is

straightforward to understand that if the kinetic energy of the atom is less than the depth

of the dipole potential on this larger scale, the atom will perform a global oscillation

between two turning points. Thus the motion inside the twisted optical potential tubes

is made up of two component motions: a local atomic oscillation in the region 0 < z < λ

and 0 < φ < 2π and a global oscillation in the region λ < z < zR. The two types of

motion are due to the fact that the dipole potential has two different topological features

with different spatial scales.

The turning points of the atomic trajectory constitute one of the important features

of the atomic motion inside the twisted optical tube. This feature defines the furthest

point the atom can be guided along the helical optical tube. Additionally, the turning
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Atoms in complex twisted light 73

Figure 22. The scaled (in units of its maximum depth ǫ) twisted optical dipole

potential as a function of z along the minima line lφ+ kz = (n− 1)π.

points are a feature of the atomic gross motion that can be manipulated by changing

the characteristic parameters of the LG beams, namely the power, the detuning and the

beam waist. In general, the upper turning point of the atom can be higher when the

dipole potential is weaker. This can be achieved by making the beam waist larger, the

beam power smaller or the detuning larger. On the other hand, the lower turning point

of the atom occurs at a lower position and farther than the upper turning point when

the dipole potential becomes weaker.

The positions of the turning points are symmetric with respect to the origin when

the dipole potential is strong and therefore the influence of gravity is negligible. When

the dipole potential is dominant over the gravitational one, the trapped atom will

oscillate between the symmetrical positions of the upper and lower turning points,

a situation equivalent to an atom reflected between two mirrors of an atomic cavity.

When the dipole potential is weaker an asymmetry between the positions of the lower

and the upper turning points (where the lower turning point becomes more distant

from the origin than the upper turning point) arises since the influence of gravity is

then stronger. At the limit of very weak dipole potentials the motion of the atom is

governed almost entirely by gravity and thus has only one turning point. Its initial

velocity allows the atom to move up and reach the upper turning point, then the atom

starts to fall under the influence of gravity only and follows in its downward motion the

helical path determined by the topology of the optical tubes.
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10.4. An Archimedes screw for atoms

A HOT intensity pattern can also be rotated once we arrange for a slight frequency

difference between the two interfering LG beams [169]. The most interesting effect

on atomic motion is that for specific choices of the values and the sign of the rotating

angular frequency the trapped atoms can be dragged in an upward or downward motion.

In this case the action of the rotating HOT on atoms is reminiscent of the operation

of the Archimedes screw with which even today in several places of the world people

elevate water from rivers and lakes. This Archimedes screw for atoms was proposed and

presented in [156] and an experiment on this was reported by Hadad et al. [157]. Here

we outline the essential elements of the treatment by Al Rsheed et al. [156].

The potential in this scheme is given by

U(ρ, φ, z, t) =
~Ω2(ρ, φ)

4∆0

= ~Ω2
0C

2
|l|p∆0u

2(ρ, z) cos2(lφ+ kz −∆ωt/2). (173)

This potential rotates at an angular velocity ΩR = ∆0ω/2|l|. The study of the atomic

motion can be done in the rotating frame of reference, where the potential takes a form

similar to the one in Eq.(169) but for new coordinates (ρ′ = ρ, φ′ = φ − ΩRt, z
′ = z).

The equations of motion for the new coordinates are as follows:

ρ̈ = −∂U
∂ρ′

+mρ′φ̇′2 + 2mρ′ΩRφ̇
′ +mρ′Ω2

R,

mρ′2φ̈′ = −∂U
∂φ′ − 2mr′ρ̇′φ̇′ − 2mr′ρ̇′ΩR,

z̈′ = −∂U
∂z′

. (174)

The third term on the right-hand side of the first equation in (174) and the last term

in the second equation are Coriolis forces, while the last term in the first equation is a

centrifugal force. These are well known forces that appear because of the rotation of the

HOT. The above three equations of motion are coupled non-linear differential equations

of the second order for which there is no exact analytical solution, but a solution can

be obtained numerically using the fourth-order Runge-Kutta method.

The motion of an atom that is trapped inside a rotating HOT can be explained in

terms of inertial forces. Initially, an atom at rest inside a rotating HOT will experience

a centrifugal force Fr = mr0Ω
2
R and will then move along the radial direction. Once in

motion it acquires a radial velocity and an associated Coriolis force F = −2mρ̇′ΩR along

the azimuthal direction. This drives the rotating atom in a direction opposite to that of

the angular velocity of the HOT. Finally, the atom will have a global motion along the

HOT due to the coupling between the motions along the z- and the azimuthal directions.

Consequently, the cold atom, which is initially at rest, will acquire a clockwise azimuthal

velocity if it is trapped inside a counter-clockwise rotating HOT, while it will acquire a

counter-clockwise azimuthal velocity if it is trapped inside a clockwise rotating HOT. In

other words, the angular momentum that is transferred from the rotating HOT to the

atom is directed opposite to the angular velocity of rotation of the HOT, in agreement

with the prediction by Bekshaev et al. [170].
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We now demonstrate with a specific example that with a judicious choice of

parameters the rotating HOT can be used for elevating atoms. To elevate an atom we

must obey two conditions: first, the atom must be able to escape from the oscillations

along the vertical z-direction and, second, it must simultaneously be kept trapped in

the potential tube without escaping along the radial direction. Again the light field

is assumed to excite the transition 52S1/2 − 52P3/2, in
85Rb for which λ = 780.24 nm,

Is = 16.4 W m−2 , Γ/(2π) = 5.98 MHz, the laser power is P = 80 mW, the detuning is

∆0 = −2.57 × 1013 Hz and the beam waist is w0 = 5 µm. The initial velocity is taken

as (vx = 5 cm s−1, vy = 5 cm s−1, vx = 0).

Figure 23 shows the helical motion of the atom in the rotating frame of reference

for two different angular velocities of the HOT: ΩR = 70 kHz; ΩR = −70 kHz. In the

first case the atom is performing an oscillation in the upward z−direction and in the

second case the atom is is performing an oscillation in the downward z−direction. Note,

however, that the atom oscillates between two vertical positions and it is not elevated

or dragged downwards.

Figure 24 displays the time evolution of the vertical displacement of the atom.

The atom can be elevated along the z-axis when the HOT rotates at angular velocities

greater than 146 krad s−1 counter-clockwise. It can also move downwards when the

HOT rotates at angular velocities greater than 150 krad s−1 clockwise. In these cases

the rotating HOT operates as an Archimedes screw for atoms. For other values of

the rotational angular velocity it clearly performs an oscillation along the z-axis, which

means that it remains trapped in this direction.

The operation of the rotating Ferris wheel as an Archimedes screw for atoms is

possible for those angular velocities ΩR for which the atom during the elevation remains

trapped in the radial direction. The angular frequency of the axial oscillations is given

by:

ω′
s ≈

√
ω2
s −

λ

4π4

|l|2
w4

0

Ω2
R, (175)

The angular frequency ω′
ρ in the radial direction can be computed numerically. Here

ωs is the angular frequency of the axial oscillations in the static HOT case. Figure

25 displays the angular frequencies in the axial and radial directions and from the

figure it can be seen that there are values of the HOT angular frequency ΩR for which

the oscillation frequencies along the axial and radial direction, ω′
s and ω′

ρ respectively,

become zero. We also see that the atomic radial frequency ω′
ρ is always larger than the

atomic global frequency ω′
s and that there are rotation angular velocities for which these

frequencies can be zero. In Fig.25 these are denoted by Ωs
R and Ωρ

R, respectively. These

are important since if the HOT rotates within the following range of angular velocities:

|Ωs
R| < |ΩR| < |Ωρ

R| then the atom can be elevated to any desired height along the

z-axis while simultaneously remaining trapped in the radial direction. The atom can

be transported upwards or downwards along the HOT by changing the direction of the

rotation of the HOT. The values of Ωs
R and Ωρ

R can be controlled by changing the dipole
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Atoms in complex twisted light 76

Figure 23. The trajectory of a 85Rb atom with respect to the HOT frame of reference:

(a) ΩR = 70 kHz, represented by the black line and (b) ΩR = −70 kHz, represented

by the red line.

potential parameters such as the winding number l, the beam waist w0, the beam power

P , and the detuning ∆.

11. Atomic interaction in evanescent waves

11.1. Goos-Hänschen and Imbert-Federov shifts

It is well established in elementary geometrical optics that when plane wave light is

totally internally reflected at the interface between a dielectric material (like a glass

prism) and vacuum then evanescent waves that propagate along the boundary are

developed. An evanescent wave has an amplitude that decreases with distance away

from the boundary so that its intensity falls away with a typical decay length of the

order λ/2π where λ is the wavelength. The light fields associated with the evanescent
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Figure 24. The variation of a 85Rb atom elevation with initial velocity (vx = 5 cm

s−1, vy = 5 cm s−1, vz = 0) for different angular rotation velocities of the HOT:

147 krad s−1 (black solid line), 146 krad s−1 (red dashed line), -151 krad s−1 (blue

dash-dotted line), and -150 krad s−1 (brown dotted line) (w0 = 5 m and l = 1).

wave have strong intensities and are localised within a small volume. There are thus

strong spatial field gradients, which can influence atomic properties.

In addition to optical forces due to evanescent light atoms experience van der

Waals attraction to the surface. Atoms can dwell in the vicinity of surfaces either as

a result of chemisorption (producing bond formation) or physisorption. Here we focus

on physiosorbed atoms where binding energies are much smaller and the equilibrium

distance to the surface is comparatively larger. Physisorbed atoms will respond to

surface optical forces because they can represent a displacement from equilibrium, in a

planar motion that leaves the distance to the surface unchanged. Undoubtedly, atomic-

scale irregularity in the surface itself will modulate the atomic motions we describe, but

these will be only minor perturbations to the main effects.

The physics of light at surfaces is in reality a little more involved when one is dealing

with a light beam with finite spatial variations in the plane perpendicular to the axis

of propagation. The first effect experienced by a light beam, such a Gaussian beam, on

reflection is a Goos-Hänschen shift of the plane of incidence [171]. This is a lateral shift,

which is distinct from a second, so-called, Imbert-Fedorov shift that is perpendicular to

the plane of incidence [172, 173].

The reflection of a beam carrying OAM changes the vortex beam and creates

additional modes of higher and lower orders. On reflection, a vortex beam has been
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Figure 25. The variation of ω′
s (red dashed line) and ω′

r (black solid line) of a trapped
85Rb atom as a function of ΩR. The atom starts motion from rest, the beam waist of

LG beams is w0 = 5 µ m, and the orbital winding number is l = 1.

shown to experience further shifts associated with the additional angular degrees of

freedom. These are the angular Goos-Hänschen and Imbert-Federov shifts, both of

which have been analysed and demonstrated [174, 175]. The angular shifts are in fact

shifts in wavevector space (see refs.[176] to [177]). Merano et al [178] demonstrated both

theoretically and experimentally that the spatial and angular shifts are in fact coupled.

However, the intensities of the additional modes responsible for the above shifts

are typically small. A reasonable approximation is to ignore such effects and adopt a

geometrical optics model in which the light beams are specularly reflected. When the

totally internally reflected light is an LG beam that is assumed specularly reflected, the

effect, as we explain shortly, is to produce surface optical vortices (SOVs)[6]. These are

evanescent waves endowed with angular momentum.

11.2. Atoms at surfaces

Electromagnetic surface modes can have strong interactions with two-level atoms in the

vicinity of the interface, leading to considerable optical trapping potentials, forces and

associated torques. We have seen that when the detuning of the laser light is positive,

then the dipole force acts to repel the atoms away from the high intensity regions. With

the potential barrier so created any incident atoms can be elastically reflected if their

kinetic energy is smaller than the maximum of the optical dipole potential, and the

system operates as an evanescent mode atom mirror (EWAM) [179]. A laser intensity
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of 1 W, focused on a surface area of the order of 1 mm2, creates an atom mirror on

which an atom can be reflected if the component of its velocity normal to the mirror is

lower than a few meters per second, which corresponds to kinetic temperatures on the

order of few mK [43].

The evanescent wave atom mirror (EWAM) has been used in both the technological

and fundamental research of atomic physics for many years [92]-[184]. The EWAM

allows one to reflect ultra-cold atoms [185] in order to probe quantum electrodynamic

retardation effects [186]. It is also the basic component for the creation of gravito-

optical traps [187]-[188]. The first demonstration of an EWAM was in 1987, where it

was used to reflect thermal atoms at grazing angles [189]. In 1990 it was used with

cold atoms at normal incidence [190]. Since then, EWAM has been extensively studied

by several groups, both experimentally [191]-[196] and theoretically [197]-[200]. The

control of the effective potential barrier has been demonstrated in the case of a two-

level atom interacting with surface plasmons [191]-[193], a dielectric waveguide structure

[202] and a metallic film [203] deposited on the surface of the mirror. Multiple bounces

of atoms have been observed when evanescent waves were created on concave surfaces

[204]. The EWAM has also been used to investigate atom optics in the time domain

[205]. One of the most spectacular properties of an EWAM is the quantum state-

selective character of the atomic reflections which were demonstrated by Balykin and

colleagues[206]. An atom mirror of a three-level atom in the so-called Λ−configuration

has also been proposed [207]. Finally evanescent wave mirrors have been considered for

small objects at surfaces [208]-[210], rather than for near-resonance atoms and molecules.

The intensity of the evanescent wave in an EWAM can be increased by a few orders

of magnitude by introducing a thin metal layer into the dielectric-vacuum interface

due to the excitation of surface plasmons produced, or by introducing a dielectric film

of high refractive index, which essentially produces a dielectric optical fibre for the

laser radiation. The repeated reflection of the laser light from the dielectric-vacuum

and dielectric-dielectric interfaces substantially increases the intensity of the evanescent

wave [211]. When an EWAM with a thin metal film is irradiated by an LG beam we have

the so-called Surface Plasmon Optical Vortices (SPOVs). These specifically plasmonic

modes which are once again features with an intrinsic angular momentum [212]-[213].

11.3. Surface Optical Vortices (SOVs)

We now ignore the small beam effects in the forms of the Goos-Hänschen and Imbert-

Federov shifts and adopt a geometrical optics model in which the twisted light beams

are totally internally reflected at a planar interface between a dielectric material and

vacuum. The result of the total internal reflection is the generation of an evanescent light

which carries an in-plane distribution of the incident beam and its angular momentum

properties. This is a surface optical vortex (SOV) endowed with the orbital angular

momentum of the incident light. Figure 26 schematically shows the total internal

reflection leading to evanescent light carrying OAM.
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Atoms in complex twisted light 80

Figure 26. Total internal reflection of an LG beam at an angle greater than the

critical angle (schematic) . The incident beam is arranged such that at θ = 0 the

beam waist coincides with the surface at z = 0. The evanescent light possesses angular

momentum properties, but is confined near the surface, exponentially decaying in the

direction normal to the surface. Reproduced with permission from [275].

The electric field of an LG beam travelling along the z-axis in a medium of a

constant refractive index n, characterised by the integers l and p, frequency ω and axial

wavevector k = nk0 where k0 = ω/c is the wavevector in vacuum. If the interface

with the vacuum occupies the plane z = 0 and the angle of incidence, θ, exceeds the

total internal reflection angle, an evanescent mode is created in the vacuum. The main

requirements are the applicability of the standard phase matching condition of boundary

reflection and the condition that the electric field vector component tangential to the

surface is continuous across the boundary. Figure 27 displays the intensity distribution

of an SOV due to an internally reflected LG mode on the planar surface of a dielectric.

The assumed paramters are given in the caption to this figure.

The evanescent light possesses well-defined intensity maxima and minima that can

be used to trap adsorbed atoms or to reflect incident atoms with transition frequencies
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Figure 27. The intensity distribution for the SOV created by the total internal

reflection of a LG beam with l = 2; p = 1. The LG beam has a waist w0 = 200 µm

and a power P=1 mW. The beam has a wavelength λ = 589.16 nm and is incident at

angle θ = 30o at the interface of a piece of glass made of GaP with a refractive index

n = 3.365. The glass is transparent at this wavelength which can excite the transition

32S1/2−32P3/2 in
3Na. The beam has an intensity I0 = 25 kW m−2=390.25Isat, where

Isat = 64 W m−2 is the saturation intensity for the sodium 32S1/2− 32P3/2 transition.

The intensity distribution is plotted in the (x,y) plane at z=0.

appropriately detuned from the frequency ω of the light. We also see that the spatial

profile of the intensity distribution is, in fact, no longer circular, but elliptical, because

the light strikes the surface at the angle of incidence θ and the ellipticity increases with

increasing θ.

11.4. Surface Plasmonic Optical Vortices (SPOVs)

Consider now the case of co-propagating incident beams of opposite winding number l

creating an interference of two surface vortices, in a manner similar to that discussed

in the previous section which leads to the generation of the optical Ferris wheel [101].
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Figure 28. Schematic total internal reflection of two LG beams at a planar dielectric

interface with a metallic film, creating a surface plasmon from counter-propagating

evanescent modes.

The total electric field in the vacuum region results from the interference of the two

evanescent light beams in the azimuthal direction.

Twisted light can also lead to the generation of surface plasmonic optical vortices

[215]-[216]. An experimentally accessible scenario is the case where a thin metallic film is

deposited on the surface of a glass prism and, as before, a LG beam is totally internally

reflected on the inner interface as shown in Fig.28.

The metallic film enhances greatly the evanescent fields and the interaction with a

two-level atom in the vicinity is stronger than in the absence of the metallic film, so the

corresponding mechanical effects should be larger. FromMaxwell’s equations the electric

field vector components emerge with in-plane polarisation in the three regions of the

layered structure as shown in Fig. 28, namely a dielectric, occupying the region z < −d;
a surface film occupying the region −d < z < 0, and the vacuum region occupying the

space z > 0. These fields are then subject to boundary and phase-matching conditions.

This procedure leads to the evanescent field in the vacuum region.

An atom in the vacuum region with position vectorR(t) = (x(t), y(t), z(t)) interacts

with the surface plasmon vortex and the interaction is characterised by the Rabi

frequency Ω(R(t)) and the phase Θ(R(t)).

To confine the atom to an angular path in the plane parallel to the surface, it is

necessary to use two internally reflected incident beams as shown in Fig.28. Here two

LG beams, labelled 1 and 2, are incident at angles φ1 and φ2. The two beams, which are

assumed as identical, are totally internally reflected and have field components within

the film, and surface plasmonic components in the vacuum region. Once the forces
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acting on the centre of mass of the atom are specified, the motion of the atom in the

vicinity of the surface can be determined. The dynamics again follows a Newtonian

equation of motion, driven by a sum of the forces delivered by each beam.

To illustrate the results of the theory leading to typical trajectories, we consider

a sodium atom in two confocal, counter-propagating Laguerre-Gaussian beams as in

Figs 29 and 30 assuming the same magnitude of detuning, but one beam has positive

detuning and the other negative detuning . It is seen that the trajectories of the sodium

atom are very different in the two types of detuning. The confinement regions are now

concentric elliptical valleys defined by the intensity distributions, radial confinement

leading to vibrational motion in a radial direction and resulting in an overall zigzag

trajectory.

11.5. Extraordinary spin in evanescent waves

In recent years there has been a growing interest in extraordinary spin in evanescent light

modes. The reference here is to spin directed transverse to the direction of propagation.

Much of the work has been done for subwavelength optical fibres (see for example,

[217][218]), but the phenomenon is general in this setting [219]. Note, however, that the

twisting here is not in the phase of the optical field.

Bliokh et al [219] explored the local momentum and spin distributions of evanescent

waves. The electric field of their evanescent wave emerges from that of an elliptically-

polarised plane wave propagating along the z-axis carrying momentum and spin in the

form E = A(x̂ + mŷ) exp (ikz)/
√
(1 + |m|2) where k = ω/c. A rotation of the plane

wave field by an imaginary angle iθ leads to the electric field Eevan of an evanescent

mode in the half-space x > 0, occupied by vacuum

Eevan =
A√

1 + |m|2

(
x̂+m

k

kz
ŷ − i

κ

kz
ẑ

)
exp (ikzz − κx) (176)

where kz = k cosh θ > k. In the above, A is the wave amplitude and caret denote unit

vectors; m is a complex number that determines the polarisation state. The evanescent

mode propagates along the z-axis and its field decays exponentially along the x-axis. It

is characterised by the longitudinal wavenumbers kz and κ, the spatial decay rate. These

combine to form the complex wavevector k = kzẑ+ iκx̂. The calculated density of each

of the canonical momentum π0, spin momentum πs and spin angular momentum s of

this evanescent wave are as follows

π0 =
w

ω
kzẑ; πs =

w

ω

(
κ2

kz
ẑ + σ̃

κk

kz
ŷ

)
s =

w

ω

(
σ̃
κ

kz
ẑ +

κ

kz
ŷ

)
(177)

where (in Gaussian units) w = (8πω)−1ω|A|2 exp (−2κx) is the spatially-inhomogeneous

energy density of the wave and σ̃ = 2ℑ(m)(1 + |m|2)−1 is the helicity (ellipticity of

polarisation).

The three expressions presented in Eq.(177) are the main findings of the work by

Bliokh et al Bliokh2014 who emphasised the remarkable peculiarities of the momentum

and spin. In particular,
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Figure 29. Trajectory of the sodium atom in the evanescent fields generated by

counter-propagating LG beams, with positive detuning, at a planar dielectric interface

coated with a metallic film where l1 = l2 = 1; p = 0. The trajectory is superimposed

on a rendering of the associated potential well. The parameters are as follows. The

beam waist is taken as w0 = 35λ, with λ = 589.0 nm. The intensity is assumed

to be I = 2.0 × 106 W m−2. The layer structure consists of a thin silver film of

thickness d = 59 nm and electron density n = 5.57 × 1028 m−3, deposited on glass of

dielectric constant ǫ2 = 2.298. The magnitude of the detuning is |∆0| = 100Γ, where

Γ = 6.13× 107 s−1. The dipole moment is taken as d = 2.6eaB where aB is the Bohr

radius.
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Figure 30. Trajectory of the sodium atom in the evanescent fields generated by

counter-propagating LG beams, with negative detuning, at a planar dielectric interface

coated with a metallic film where l1 = l2 = 1; p = 0. The trajectory is superimposed

on a rendering of the associated potential well.

(1) since kz > k, the evanescent wave possesses a longitudinal canonical momentum

component πz which is greater than the plane wave momentum π = wk/ω that created

it.

(2) The group velocity in the evanescent wave is vgz = ckz/k > c which confirms that

the evanescent wave is superluminal in the direction of propagation.

(3) The theory predicts a super-momentum transfer per photon (i.e. larger than ~k)

from the evanescent wave to a dipole particle via the radiation force Fz ∝ π0
z. This is

in conformity with the super-momentum transfer [220] which was observed earlier by

Howard and Imbert [221] in the resonant interaction between a moving atom and an

evanescent wave.
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(4) The results show that there are transverse y-components of the momentum and

spin of the evanescent wave propagating in the (x,y) plane. The y-component of the

momentum π0
y ∝ σ̃wκk/kz, which depends on the helicity σ̃. The y-component of the

spin is sy ∝ wκ/kz, which is helicity-independent.

So far we have assumed that the evanescent wave exists in the vicinity of a planar

surface. There are other contexts in which evanescent modes feature prominently, most

notably in waveguides and in whispering galleries. Here too, it has been found that the

polarisation of an allowed evanescent mode exhibits a longitudinal component along the

direction of propagation. The work by Junge et al. [217] investigated the interaction

of a single atom with a whispering gallery mode in a microresonator, taking account

of the effects of the non-transversal polarisation of the whispering gallery mode in the

interaction.

12. Enhanced quadrupole effects with twisted light

12.1. Quadrupole transitions

The development of laser cooling and trapping has been based on the interaction of

coherent light with atoms in the electric dipole approximation. Other higher multipolar

effects have been ignored since they are considered to be too small [223]. The next in

the multipolar order is the electric quadrupole. Electric quadrupole transition rates are

typically smaller by a factor g = (a0k)
2 in comparison with electric dipole transitions,

where a0 is the Bohr radius and k is the wavenumber of the ordinary laser light. For

processes involving transitions in the optical region we have g ≈ 10−6.

Although usually weak, quadrupole effects become important at high intensities or

when the light is tightly focussed [225], or when the transition in question is driven

between two long lived states, in which case the Rabi frequency may be larger than

the linewidth, leading to coherent oscillations of the upper state population [226],[227].

Further advancements in optical techniques have allowed more quadrupole transitions

to be observed and utilised. In particular, very weak quadrupole transitions have been

detected in hydrogen molecules and these have been regarded as of particular interest

in probing the atmospheres of various celestial objects [229]. Enhancements of optical

absorption of an electric quadrupole transition in caesium atoms interacting with an

evanescent field have also been observed [230]. Indeed quadrupole transitions can be

significantly enhanced in the vicinity of material surfaces, including microstructures

where enhancements by two orders of magnitude are predicted and have been

experimentally observed [231],[232].

12.2. Quadrupoles in twisted light

Here we seek to explore what mechanical effects a LG beam would create on a two-level

atom when the atomic transition is electric quadrupole allowed. The aim is to find

out whether we can achieve mechanical effects of substantial strength when LG beams
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with high orbital angular momentum content interact with atoms by quadrupole allowed

transitions. Once more, we consider a two-level system with a ground state, denoted |1〉
of energy E1 and an excited state |2〉 of energy E2, such that the resonance frequency is

ω0 = (E2 − E1)/~. The atom interacts with an LG beam characterised by the quantum

numbers l and p propagating along the z- axis with an axial wave-vector k.

The basic quantum mechanical Hamiltonian formalism in this case follows an

analogous initial set of steps to those followed in the case of atoms interacting with light

in the electric dipole approximation. The only difference here is that the interaction

Hamiltonian is

ĤQ = −1

2
exixj∇iEj(R), (178)

where the Einstein summation convention applies. Here xi are the components of the

internal position vector x = (x, y, z) and ∇j are components of the gradient operator

which act only on the spatial coordinates of the transverse electric field vector E as a

function of the centre of mass variable R = (X, Y, Z).

We assume that the LG mode is linearly polarised along the x−direction and that

its quantised electric field as a function of the centre of mass coordinateR now expressed

in cylindrical coordinates R = (ρ, φ, Z) (with ρ =
√
X2 + Y 2) has the familiar form of

Eqs.(52) to (54). Here, for simplicity, we shall ignore the Gouy phase such that the

phase of the LG beam at position R is given by Θklp(R) = kZ + lφ. With the electric

field polarized along the x-direction, the quadrupole interaction Hamiltonian Eq.(178)

now takes the form

ĤQ = −1

2

{
Q̂xx

∂Ex

∂X
+ Q̂xy

∂Ex

∂Y
+ Q̂xz

∂Ex

∂Z

}
(179)

where Q̂ij = exixj are the elements of the quadrupole tensor operator, which for the

two-level atom can be written in terms of ladder operators as

Q̂ij = Qij(π + π†), (180)

where Qij =
〈
1
∣∣∣Q̂ij

∣∣∣ 2
〉
are quadrupole matrix elements between the two atomic levels.

Substituting for the fields we can write the quantised quadrupole interaction

Hamiltonian in the form

ĤQ = ~âklpΩ
Q
klp(R)eiΘklp(R) + h.c. (181)

Here ΩQ
klp(R) is the complex Rabi frequency defined as follows

~ΩQ
klp(R) = Ek00C|l|pu

l
p(R) {QxxF +QyxJ + ikQzx} , (182)

where, at z = 0,

F =

(
|l|X
ρ2

− 2X

w2
0

− ilY

ρ2
+

1

L
|l|
p

∂L
|l|
p

∂X

)
;J =

(
|l|Y
ρ2

− 2Y

w2
0

+
ilX

ρ2
+

1

L
|l|
p

∂L
|l|
p

∂Y

)
. (183)

The form of the interaction Hamiltonian is similar to the one for the electric dipole

transitions. The only difference is the way that the Rabi frequency has been defined. The
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theoretical and experimental justification of this model has been extensively discussed

in [233]. With both the phase and the complex Rabi frequency defined, the steady state

force on the moving atom due to the LG laser mode is written in a manner similar

to case of electric dipole transitions. As in the case of electric dipole transitions the

dissipative force can now be understood as a result of quadrupole absorptions followed

by spontaneous emissions of the light by the atom, while the quadrupole force, which is

proportional to the gradient of the Rabi frequency, is responsible for confining the atom

to the maximal or minimal intensity regions of the field, depending on the detuning

∆klp. The quadrupole force is derivable from a quadrupole potential

Uquad(R) =
1

2
~∆klp ln

(
1 +

|ΩQ
klp(R)|2/2

∆2
klp + Γ2

Q/4

)
. (184)

In experimental situations where we have large detuning |∆klp| ≫ |ΩQ|; |∆klp| ≫ ΓQ the

quadrupole potential can be written to a good approximation as

Uquad(R) ≈ ~

4∆klp

|ΩQ
klp(R)|2. (185)

It is clear from the above expressions that if we wish to compare the corresponding

expressions for forces and potentials in the electric dipole and electric quadrupole

transitions we need to investigate the modulus squared Rabi frequency |ΩQ
klp(R)|2 which

is rather different from the corresponding case in electric dipole transitions.

For illustration we now consider the case of an LG donut mode of winding number

l, but for which p = 0. In this case the derivative in F in Eq.(183) is equal to zero, since

L
|l|
0 is a constant for all l. We also assume that the atom is constrained to move in the

X-Y plane and the quadrupole transition is such that Qxy = 0 = Qxz. this can occur for

example in a Y m=0
l=0 → Y m=0

l=2 transition. In this case the Rabi frequency Eq.(182) takes

the following simpler form,

~ΩQ
kl0(R) = Ek00u

l
0(ρ)Qxx

( |l|X
ρ2

− 2X

w2
0

− ilY

ρ2

)
. (186)

Expressing lengths in units of w0, so that R̄ = R/w0, etc., we find for the modulus

square of the Rabi frequency entering the dissipative force

~
2|ΩQ

kl0|2 = E2
k00C

2
|l|,p|ul0|2

(
Qxx

w0

)2
{( |l|X̄

ρ̄2

)2

+

( |l|Ȳ
ρ̄2

)2

+ 4X̄2

[
1− |l|

ρ̄2

]}
.(187)

The topology of the Rabi frequency will be imprinted in the topology of the quadrupole

potential in the case of large detuning. It is interesting to explore the relevant depth

and the spatial structure of the trapping potential given by Eq.(185) and how these

are affected by the choice of the vortex and atomic parameters. To be specific, we

consider Cs as an atom recently explored for its quadrupolar transition 62S1/2 → 52D5/2,

specifying the de-excitation rate ΓQ and a quadrupolar matrix element Qxx. The optical

vortex is such that the amplitude E000 is related to the intensity by I = ǫ0cE
2
k00/2.

We also need a suitable value for the detuning ∆ and, since we wish to maximise

the quadrupolar effects we take a large value of winding number l. The parameters
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Atoms in complex twisted light 89

are w0 = 10 µm; λ = 675 nm; Qxx ≈ 10ea2B; ΓQ = 7.8 × 105 s−1; and

∆ = 102ΓQ; P = 1W; I = 3.18 × 109 Wm−2. It is also convenient to define a

scaling parameter Ω0 as follows

Ω0 =
1

~

(
2I

ǫ0c

)1/2
Qxx

w0

= 136ΓQ, (188)

where the last equality emerges on substituting the relevant parameters defined above.

Figure 31 displays the quadrupole potential and the corresponding contour plots in two

different cases namely when l = 3 and l = 300. Experimentally, winding numbers as

large as l = 300 can be achieved, as emphasised in [234]. The trapping potentials are

given in absolute temperature units. It is obvious that the increase of the winding

number l gives a deeper trapping potential. From the contour plots we also see a

different spatial structure of the potential. As l increases we obtain two crescent-like

trapping regions. This spatial structure can be explained by an analysis of Eq.(187) on

substituting for |u|l|p |2, expressed in terms of the dimensionless variables. In the large l

case we have a distribution with two regions of variation and there are high symmetry

points. To identify the dependence on l we consider the points (X̄, Ȳ ) = (0,±1),

the expression between the curly brackets in |ΩQ
kl0|2 becomes equal to l2, while at the

points (X̄, Ȳ ) = (±1, 0) the curly bracket reduces to (l− 2)2, both of these observations

effectively scale as l2 for large l. We have also verified that the maxima and minima of

|ΩQ
kl0|2 actually occur at the following (X̄, Ȳ ) points

(X̄, Ȳ ) = (±
√

|l|/2, 0) (minimum); (X̄, Ȳ ) = (0,±
√

[|l| − 1]/2) (maximum) (189)

It is seen that the positions where the Rabi frequency maximises are different from

those in the case where we have an electric dipole transition. In this case the Rabi

frequency maximises at points where R̄ =
√
|l|/2. The reason is that the strength of

the electric quadrupole interaction depends on the gradient of the electric field. Thus

such an interaction can be maximum even at points where the electric field and thus the

intensity are zero [235]. This counter-intuitive observation has been demonstrated in

an experiment where a single ion was positioned at different locations inside an optical

cavity [236].

The depth of the quadrupole trap is sufficiently large to lead to the trapping of

atoms. Moreover, as our analysis has shown the photon scattering rate is very low, so

ensuring long trapping lifetimes. This means that the interaction of LG light with an

atom in a quadrupole-allowed transition can lead to significant mechanical effects on the

atoms. The facility to generate LG light in the laboratory with large values of l [234]

indicates that the quadrupolar mechanical effects should be amenable to experimental

verification.

It seems reasonable to suggest that a further enhancement of quadrupolar vortex

interactions could be achieved by placing the atoms near the surface of plasmonic

structures and arranging the generation of surface plasmonic modes endowed with the

vortex properties. Dipole allowed transitions are subject to strong enhancement under
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Atoms in complex twisted light 90

Figure 31. The quadrupole potential and the corresponding contour plots for two

cases: (a)-(b) for l = 3, (c)-(d) for l = 300. Data as given in the text.

these conditions, as recent theoretical and experimental work have shown [149]-[150]

and corresponding enhancements of quadrupolar effects are also to be expected.

13. Mechanical effects for large l and p

The study of the mechanical effects of LG beams with atoms has mostly been limited to

cases of the lowest values of the winding number l. Furthermore, studies have ignored

modes with non-zero values of the radial mode index p. As pointed out earlier, advances

in technology and experimental techniques for the generation of twisted light have

recently made possible the realisation of LG beams with very large values of both the

winding number l and the radial index, p [237], [238]. The radial index p has in fact been

dubbed as the ”ignored” quantum number, although its role in quantum communications

has been emphasized in [234] and a quantum mechanical theory featuring the effects of

p has been presented [239]. As the current experimental activity on the production of

optical vortices with extremely large values of l and p continues [237], [238] we expect

that more light will be shed on the physical role of the radial index p. For example,

it has been suggested that LG beams with high values of p can be exploited in the

creation of concentric cylindrical lattices which can offer a platform for the exhibition

of quantum Hall physics with cold atoms [160].

It turns out that in the study of the mechanical effects of LG light on atoms the

consideration of large l and p values brings to the fore optical phase terms which have
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Atoms in complex twisted light 91

so far been discarded because for small l and p values they are justifiably negligible.

We show here that considerable modifications arise in the physics involving atomic

gross motion primarily because the radiation forces exerted by the light on the atoms

are modified. The modifications stem from phase gradients originating from the beam

curvature and the Gouy phase most prominently near the focus plane of the LG light

mode. Both the Gouy and the curvature phase terms have so far been ignored in the

analysis, with the Gouy phase strongly dependent on the values of l and p.

The Gouy phase is a basic property of all focussed beams. Although frequently

discussed with reference to focussed light beams, it is also known to arise in the cases

of focussed acoustic and electron beams. It was first discovered over 11 decades ago by

Gouy who made direct measurements in the case of optical beams [240], [241]. Over

the years the Gouy phase has been shown to play significant roles in a number of

contexts as described in the interesting paper by Feng and Winful [242] who provided a

physically transparent interpretation of the Gouy phase as originating from the in-plane

spatial confinement of the focussed beam. Hariharan and Robinson have given another

explanation of the Gouy phase as a geometrical quantum effect which arises as a result

of the uncertainty principle whenever there is a modification of the volume of space in

which the light beam is transmitted [243]. One of the most prominent manifestations

of the Gouy phase is in the context of optical tweezers, where it plays a role in the in-

plane trapping of particles and leads to super-luminal phase velocities vφ at focus. This

suggests a sub-luminal group velocity vg of the light in vacuum which is in conformity

with the product rule vφvg = c2. Recent experiments suggest that light in vacuum

travels at sub-luminal speeds for all beams, including Gaussian, Hermite- Gaussian and

Laguerre-Gaussian ones, which are endowed with lateral intensity spread. Of course,

light only has its normal speed c in vacuum when propagating in the form of a plane

wave [244].

13.1. Gouy phase and beam curvature effects

The mechanical effects of the Gouy and curvature phase terms on the gross motion of

two-level atoms have been explored by Lembessis and Babiker [245]. The outlines of

their arguments are as follows. In the paraxial approximation the electric field associated

with a Laguerre-Gaussian mode, of wavelength λ = 2π/k propagating in the z-direction

and polarised in the x− direction is given by Eqs.(52) to (54). In Eq.(54) the third term

is identified as the Gouy phase term, namely

ΘGouy = −(2p+ |l|+ 1) tan−1(z/zR), (190)

and the curvature term is the last term, namely

Θcurve =
kρ2z

2(z2 + z2R)
. (191)
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The beam is characterised by a wavevector given by K = ∇Θlp where the gradient of

the phase function is given by:

K = ∇Θlp = k

[
1− (2p+ |l|+ 1)

zR
k(z2 + z2R)

+
ρ2(z2R − z2)

(z2 + z2R)
2

]
ẑ+

l

ρ
φ̂+

kzρ

(z2 + z2R)
r̂.(192)

In fact not just the wavevector, but also the Poynting vector expressions are significantly

modified compared with the expressions that are valid for low values of the indices l

and p provided that we work with parameters that can make the contributions from

the Gouy phase Eq (190) and the curvature phase Eq.(191) of appreciable sizes. This

conclusion, whilst it introduces additional complexity, suggests that when experimental

results are assessed, it may be important to consider such effects if simpler formulations

give imprecise agreement.

13.2. Modified radiation pressure forces

Recall that radiation pressure gives rise to two distinct forces, namely the dissipative

force and the dipole force. In the saturation limit where Ωlp ≫ ∆, Γ, the dissipative

force can be approximated to

〈Fdiss〉lp ≈
1

2
~Γ∇Θlp =

1

2
~ΓK. (193)

Consider the situation in which the atoms move near the focus plane of the LG mode

such that z << zR. In this case the wave-vector of the beam K takes the following

effective form

K = keff ẑ ≈ k

[
1− (2p+ |l|+ 1)

kzR
+

ρ2

2z2R

]
ẑ. (194)

When the gradient terms originating from the Gouy phase and the curvature phase

terms are considerable in size they amount to an effective axial wavevector denoted by

keff , so that the phase gradient in the vicinity of the focus plane can be written as

∇Θpl ≈ keff ẑ+
l

ρ
φ̂. (195)

The above relations show clearly that the axial wavevector is modified from k to

keff . In the specific case p = 0 and making use of the relation zR = πw2
0/λ we find that

the winding number l should be close to (kw0)
2 and since, kw0 ≫ 1, only LG beams

with large value of l could exhibit a non-negligible effect, i.e. such that keff differs

significantly from k.

To understand better the relevant size of the modifications we consider the following

numerical estimations. Consider an LG mode of wavelength λ = 2π/k = 852.35 nm,

with azimuthal and radial indices l = 300, p = 3, respectively. We focus on four different

cases of beam waist with respective values w0 = 3λ, 5λ, 10λ and 20λ, and seek to explore

how the effective wavevector keff changes with the radial position r near the focus plane

i.e. in the region at z ≈ 0 of the beam. The plot of keff as a function of radius ρ,

scaled in beam waist units, is shown in Fig.32 in which we clearly see that keff becomes

considerably different from that of k as the beam waist decreases in value. The effect is
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Figure 32. The ratio keff/k as a function of the radial position, scaled in beam waist

units, for a LG mode of wavelength λ = 852.35 nm and indices l = 300, p = 3. The

ratio is given for four different beam waists: w0 = 3λ (dotted), w0 = 5λ (dashed),

w0 = 10λ (dott-dashed) and w0 = 20λ (long dashed). The solid curve is a scaled

plot of the intensity highlighting the regions where the beam intensity and thus its

mechanical effects on atoms are considerable. The radial distance ρ is scaled in w0

units. Reproduced with permission from [245]

even more interesting since as we also see for w0 = 3λ the effective axial wavevector keff
takes negative values at certain radial positions: the interpretation is that locally the

atom ”sees” a beam travelling in the opposite direction. We must, however, be careful

in interpreting this scenario since, as has recently been pointed out, when the focussing

is very tight the generated LG beam is not a pure state as we have the production of

modes with higher and lower winding numbers due to a small field component in the

propagation direction, so the above ideal picture does not precisely apply [160], [246].

A direct consequence of the modification of the axial wavevector is that the

dissipative force on a two-level atom is also modified. In the saturation limit this force
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is now given by:

〈Fdiss〉lp =
1

2
~Γ

{
keff ẑ+

l

ρ
φ̂

}
. (196)

Note that the axial (ẑ) dissipative force, which in the absence of the anomalous Gouy and

curvature phases is known to be given simply by 〈Fdiss〉lp = (1/2)~Γkẑ, is now modified

by the inclusion of the additional phase terms. By contrast these phase anomalies

have no effect on the azimuthal φ̂ force component. The analysis shows that, since the

effective wavevector is nullified on critical radial distances and changes its sign from

negative to positive around them, there may be novel ways to handle atoms via LG

light beams. A light beam can decelerate the atomic motion even in the case where it

propagates in the same direction with the atom.

The mechanical effects of light on atom are very sensitive to the Doppler shift

experienced by a moving atom. If the atom has a velocity V then the Doppler shift

is given by δD = {∇Θlp} · V. This topic has been investigated analytically by Allen,

Babiker and Power, [131], so it now seems clear (in view of the discussion in section 8.1)

that the Doppler shift too is subject to modifications due to Gouy and curvature phases

for highly twisted light and there are also consequences in the context of the dynamics

of the optical molasses in such LG beams [249].

14. Atom vortex beams

So far we have been dealing with optical vortex beams and their effects on atoms, and

the key feature of the vortex nature is the angular momentum property. Vortex beams of

a different nature have been contemplated, prompted by the creation in the laboratory

of electron vortex beams [84, 251]. Electron vortex beams are also endowed with the

property of orbital angular momentum and they are characterized by a wavefunction

bearing the phase factor eilφ, as appears in the case of the optical vortex fields. However,

there are marked differences in electron vortices when compared to optical vortices in

that electron vortices are characterized by the electron mass, electronic charge and

electron spin, all of which introduce new effects that are absent in the optical vortex

case. Studies of electron vortices and their interaction with matter are now progressing

in both the theoretical and experimental fronts.

The concept of a vortex beam should apply to any de Broglie particles and this

includes atoms, ions and molecules - provided that each can be produced in the form

of an initial well defined ordinary beam - but it is unclear how one can generate the

particle vortex in the case of a neutral atom beam. In both optical and electron vortices

the production relies on the generation of a material computer generated mask and

diffraction is the physical process through which the vortex beams are realized.

To create atom vortex beams we need a suitable mask. The use of an optical mask

suitably constructed from laser light as a diffracting agent appears at first sight as a

reasonable choice. The proposal is that a beam of neutral atoms diffracted from a

suitably constructed optical mask at near resonance with an atomic transition should
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lead to the generation of a discrete set of optical vortex states each endowed with the

property of quantized orbital angular momentum about the beam axis in units of ~.

We analyse this suggestion and seek to define criteria for the selection of separate atom

vortex beams and discuss prospects for potential applications.

When the atoms are cooled their speed is very small : consequently their de Broglie

wavelength is large and could be comparable to the laser light wavelength. In this

case the atomic gross motion exhibits a quantum behaviour with a dominant wave-

like character. One of the most important effects for the atomic motion where the

wave-nature is exhibited is diffraction [43]. This effect occurs whenever the atomic

wave-packet interacts with anything that shifts its phase or even its amplitude, through

absorption. Diffraction can split the atomic wavefunction into a coherent superposition

of momentum and/or angular momentum states. To achieve atomic diffraction atoms

are normally sent through a light field with which they interact for a short time, normally

smaller than Γ−1 which ensures that the probability of a spontaneous photon emission

is negligible. In this case, when the detuning is large, the potential which corresponds

to the atom-light interaction is real, acts as a pure phase object and the interaction

potential operates as a thin diffraction grating. This is known as the Kapitza-Dirac

scattering and occurs in the Raman-Nath limit [250]. Some experiments have shown

that similar effects may arise when the interaction time is larger than Γ−1, but in

addition we have far-detuning [252].

Over the years, diffraction of electromagnetic fields has played a key role for the

generation of electromagnetic waves with a phase topological charge such as the optical

LG beams [66]. But diffraction is a general wave effect and is not limited to light beams.

It can also be present in matter waves. The production of electron vortices (EV) is based

on the diffraction of electron waves. The EVs are beams of electrons with a quantised

angular momentum along the propagation axis [253, 84, 251]. The creation of such

beams has been achieved by passing a plane electron wave through spiral phase plates

[254] or holographic masks [255]. The quantised orbital angular momentum constitutes a

fundamentally new electron degree of freedom which could find application in a number

of research areas and raises fundamental issues such as the transfer of electron angular

momentum to matter [256].

As pointed out above, the proposal for the possible realisation of atom vortex (AV)

beams using a diffracting element sprang from this background. Prior to this there were

a few theoretical works dealing with atom diffraction. First it was shown that atom

diffraction through a cylindrical optical lattice with a petal-like structure could give

rise to AV beams with opposite winding numbers [257]. Subsequently, it was shown

theoretically that the existence of atom Bessel beams was possible [258].

This was followed by the experimental creation of a Bessel beam of de Broglie

matter waves [259]. The Bessel beam was produced by the free evolution of a thin

toroidal atomic Bose Einstein condensate (BEC) which has been set into rotational

motion.

The proposal of AV beams from free atoms involved similar ideas to those used in
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the generation of EV beams [248]. By free atoms we mean atoms in the form of a beam

(thermal, BEC etc) that propagates in free space and is diffracted by a properly tailored

light field (a light mask). The short interaction time during the diffraction results in a

phase imprint on the atomic wave function [260]. In a recent report it has been shown

that on using a light mask with a spiral like intensity pattern the diffraction gives rise

to AV beams. These could be used as a mechanism for the generation of atomic Ferris

wheel beams [161] whereby the diffraction involves a spiral-like light mask which plays

a role similar to that played by a spiral-like phase plate for the production of vortex

light and electron beams [261]. The new element here is, as is the case with the OV

and EV beams, that the generated AV beams are focussed at different points along the

beam propagation axis. By properly focussing these beams it is possible to make them

interfere. The interference of two AV beams with opposite winding numbers leads to

atom Ferris wheel beams. These are the atomic counterparts of the optical Ferris wheel

beams with the characteristic petal-like transverse intensity patterns [101]. In what

follows we discuss the creation of atom vortex beams first by using fork-like light masks

followed by the case of spiral light masks.

14.1. Diffraction through a fork-like light mask

The creation of a fork-like mask is achieved when we interfere a LG beam with a Gaussian

(G) beam. The propagation direction of the G wave is considered to be slightly tilted

at an angle β with respect to z−axis. Both beams are assumed to be polarised along

the y−direction. The electric field of the G beam is given by

EG(ρ, z) = ŷEG(ρ, z)e−ik ρ2

2R(z) eiζ(z)eikxxeikz, (197)

where EG(ρ, z) =
EG,0√

(1+(z/zR)2
e−ρ2/w2(z) with EG,0 being the Gaussian wave amplitude.

The total electric field of this configuration is :

E(x, y, z) = ŷE(x, y, z)/2 (198)

where E(x, y, z) is the field distribution given by the sum

E(x, y, z) = EG(ρ, z)ei(kxx+kz + ELGf(ρ, z)e−ilφeikz (199)

where ELG = E00(2/π(1 + |l|!)1/2 with l the winding number of the LG mode and the

function f(ρ, z) = [1+ z2/z2R]
−1/2

(
ρ
√
2

w(z)

)|l|
e−ρ2/w(z)2 . The above field is characterised by

an intensity I, which is proportional to |E(x, y, z)|2. Explicitly at z = 0 we have:

|E(x, y)|2 = E2
G + E2

LGf
2(ρ) + 2EGELGf(ρ) cos (kxr cosφ+ lφ). (200)

It is instructive at this stage to consider the following numerical example. We assume

that the LG beam has a beam waist wLG,0 = 15 µm. The winding number of the LG

beam is taken as l = 1 and its power is 81 µW. Both beams have wavelength λ = 589.16

nm. This is the wavelength which can excite the 32S1/2−32P3/2 transition in a Na atom

which has a saturation intensity IS = 64 Wm−2. The Gaussian beam has a beam waist

equal to wG,0 = 200 µm and its power is 8.2 mW. The G beam propagation direction
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Atoms in complex twisted light 97

Figure 33. Intensity of the total light field (at z = 0) made up by the interference

of the LG beam with a tilted Gaussian wave. The LG beam has a beam waist

wLG,0 = 15 µm. The winding number of the LG beam is taken as l = 1 and its power

is 81µW. Both beams have wavelength λ = 589.16 nm. This is the wavelength which

can excite the 32S1/2−32P3/2 transition in a Na atom which has a saturation intensity

IS = 64 Wm−2. The Gaussian beam has a beam waist equal to wG,0 = 200 µm and

its power is 8.2 mW. The G beam propagation direction is tilted at an angle equal

β = 50 with respect to the LG beam propagation direction. The inset displays the

corresponding contour plot.

is tilted at an angle equal β = 50 with respect to the LG beam propagation direction.

The spatial distribution of the total intensity is displayed in Fig.33.

A two-level atom interacting with the above field has a Rabi frequency Ω2(ρ, φ) ∝
I ∝ |E(x, y, z)|2, which at z = 0 is given by,

Ω2(ρ, φ) = Ω2
G(ρ) + Ω2

LGf
2(ρ, z) + 2ΩG(ρ)ΩLGf(ρ) cos (kxρ cosφ+ lφ) (201)

where ΩG(ρ) = ΩG,0 exp(−ρ2/w2
0) and ΩLG(ρ) = ΩLG,0f(ρ). On interacting with the

mask field, the atom experiences an optical dipole potential. In the case of far detuning

such that Ω/∆ << 1, we have for the dipole potential

U(ρ, φ) =
~Ω2(ρ, φ)

4∆
. (202)

The dipole potential acts on the atom in its ground state and results in the diffraction of

the atom over a short interaction time τ . We assume that the atom enters the potential

at the time t = −τ and its state function at that instant is Ψ(ρ, φ,−τ). After the
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Atoms in complex twisted light 98

Figure 34. (a) Diffraction of the atoms through the light mask involving an LG donut

beam of winding number l = 2. The LG beam travels along the z-axis and the tilted

beam is in the (x,z) plane in a direction tilted with respect to the LG beam. (b)

after the diffraction process different atom vortex states are shown separated in space

and are labelled n = 0,±1,±2, . . . with the n-th vortex carrying orbital angular

momentum nl~. Reproduced with permission from [248]

diffraction process the atomic state function is at time t = 0 and is given by

Ψ(ρ, φ, 0) = Ψ(ρ, φ,−τ)e−iUτ/~ (203)

On substituting for U from Eq.(202) we have

Ψ(ρ, φ, 0) = Ψ(ρ, φ,−τ)
(
− iτΩ

2(ρ, φ)

4∆

)
. (204)

The physical interpretation of the above expression is that the diffraction process

through the optical potential over the short period of time τ is in the form of a phase

imprint on the initial wave function [261]. This is the basic principle of vortex sorting

in Bose Einstein condensates. Substituting for Ω from Eq.(201) we have

Ψ(ρ, φ, 0) = Ψ(ρ, φ,−τ)e−iAτe−iBτe−iCτ cos(kxx+lφ) (205)
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Atoms in complex twisted light 99

where A,B and C are functions of ρ only and are defined by

A(ρ) =
Ω2

G(ρ)

4∆
; B(ρ) =

Ω2
LG(ρ)f

2(ρ)

4∆
; C(ρ) =

ΩLGf(ρ)Ω
2
G(ρ)

2∆
. (206)

The last exponential factor involving dependence on kx and φ can be expressed as a

sum over Bessel functions Jn(z) using the Jacobi-Anger identity, namely

eiz cos θ =
∞∑

−∞
inJn(z)e

inθ. (207)

We obtain

Ψ(ρ, φ, 0) = Ψ(ρ, φ,−τ)e−iAτe−iBτ

∞∑

−∞
inJn(Cτ)e

inlφeinkxx. (208)

The initial state function of the atoms prior to entering the interaction region (i.e. at

time t = −τ) is best discussed with reference to a practical scenario involving a cold

atomic wavepacket. Such a wavepacket is considered to have a transverse Gaussian

profile with a typical cross-section of dimensions of the order of tens of microns. Thus

we can write

Ψ(ρ, φ, z,−τ) = N exp

(
−4 ln 2

σ2
⊥
ρ2
)
e−iKdB

z z. (209)

where σ⊥ is the transverse size of the atomic wavepacket, KdB
z is the atomic wavevector

along the z-direction and N is a normalisation factor.

Equation (208) shows that the atomic state function is made up of a series of atom

vortex states each labelled by the index n = 0,±1,±2, .... and each is endowed with

angular momentum nl~ propagating at an angle θn relative to the z-axis given by

θn = sin−1

(
nkx
KdB

z

)
≈ n sin−1

(
kx
KdB

z

)
. (210)

The central component is such that n = 0, which is an Airy-type state function and

carries no angular momentum. Explicitly we have

Ψ0 = N exp

(
−4 ln 2

σ2
⊥
ρ2
)
e−iAτe−iBτJ0(Cτ)e

−iKdB
z z (211)

while the first order states are those for which n = ±1

Ψ±1 = Ni±1 exp

(
−4 ln 2

σ2
⊥
ρ2
)
e−iAτe−iBτJ±1(Cτ)e

±ilφe−iKdB
z z. (212)

These state functions correspond to atomic beams carrying orbital angular momenta

±l~. Note that l~ is the orbital angular momentum of the LG beam which was required

to construct the fork pattern. This angular momentum is seen here as having been

transferred to the atomic beams to the lowest diffraction order. The situation is

depicted schematically in Fig.34. For practical purposes it is desirable to be able to

ensure that the atomic vortex beams are well separated, with minimum or no overlap.

This requirement clearly depends on the parameters used to generate the diffraction

pattern and the amplitude of a given component depends on the initial state and
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Atoms in complex twisted light 100

the corresponding Bessel function. The process described above is in fact a Raman-

Nath diffraction and there are certain criteria in which the Raman-Nath regime applies,

namely (i) that the width of the initial atomic beam must be large compared with the

spatial extent of the diffracting potential and (ii) that the transverse kinetic energy of

the atoms as they enter the diffraction region should be smaller than the maximum

energy of the atom-light field interaction.

14.2. Diffraction through a spiral light mask

The creation of a spiral mask is achieved when a Gaussian beam is passed through a

thin lens of width d, refractive index n and focal length f . Then the electric field of the

Gaussian beam is given by:

E(ρ, z) = ŷEG(ρ, z)e−ikndeikρ
2/2feikzρ

2/(z2+z2R)e−i tan−1(z/zR)eikz/2. (213)

On interference of this beam with a LG donut beam l, p(= 0) we have for the total

electric field:

Etot(ρ, z) = ŷ
1

2
eikzeikρ

2/2(z2+z2R)e−i tan−1(z/zR)eikzρ
2/(z2+z2R) ×

[
EG(ρ, z)ei(−knd+kρ2/2f) + ELGf(ρ, z)ei(lφ−|l| tan−1(z/zR)

]
. (214)

This field has an intensity proportional to the |Etot(ρ, z)|2, which at z = 0 is given by:

|Etot(ρ)|2 = |ELG(ρ)f(ρ)|2 + |EG(ρ)|2 + 2ELGf(ρ)EG(ρ) cos
(
lφ+ knd− kρ2/2f

)
. (215)

The intensity of this light field has a spiral profile in the transverse plane, as illustrated

by the following numerical example. We assume that both beams have equal beam

waists w0 = 15 µm, equal wavelengths λ = 1083.33 nm. The Gaussian beam has a

power of 0.3 µW while the LG beam has a power 1.4 µW. The wavelength corresponds

to the transition 23S1 − 23P2 in the 4He atom. The winding number of the LG beam

is l = 2, while the lens is characterised by the following parameter values: d = 0.5 mm

and f = 100 µm. The intensity of the total light field with the characteristic spiral

transverse profile is presented in Fig.35.

The atom interacting with the above field experiences a potential given in Eq.(202)

with a Rabi frequency Ω(ρ, φ) whose square modulus is given by

|Ω(ρ, φ)|2 = |ΩLG(ρ)|2 + |ΩG(ρ)|2 + 2ΩLG(ρ)ΩG(ρ) cos
(
lφ+ knd− kρ2/2f

)
, (216)

where ΩG(ρ) = ΩG,0 exp(−ρ2/w2
0) and ΩLG(ρ) = ΩLG,0f(ρ).

In the scheme shown in Fig. 36, a BEC which has been released from a trap moving

in free space is directed towards the light mask and made to interact with it for a short

time interval and gets diffracted by the optical dipole potential. We assume that the

BEC initially occupying the ground state of the trap and immediately after its release

enters the interaction region at time t = −τ . To a good approximation the condensate

wave-function can be considered as a Gaussian one as described in Eq.(209).
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Atoms in complex twisted light 101

Figure 35. Intensity of the total light field (at z = 0) made up by the interference

of the LG beam with the G beam. The inset to this figure shows the corresponding

contour plot. The parameters used are as follows. Both beams have equal beam waists

w0 = 15 µm, equal wavelengths λ = 1083.33 nm. The Gaussian beam has a power of

0.3 µW while the LG beam has a power 1.4 µW. The wavelength corresponds to the

transition 23S1−23P2 in the 4He atom. The winding number of the LG beam is l = 2,

while the lens has d = 0.5 mm and f = 100 µm.

After the diffraction, the atomic wave function acquires a phase imprint and so has

the form,

Ψ(ρ, φ, 0) = Ψ(ρ, φ,−τ) exp
(
−2iτΩ2(ρ, φ)

∆1

)
, (217)

where ∆1 = ωL1 − ω0. Using Eq.(216) and the Jacobi-Anger equation this becomes:

Ψ(ρ, φ, 0) = Ψ(ρ, φ,−τ)e−iBτe−iCτ

∞∑

−∞
imJm(Eτ)e

imlφeimknde−imaρ2 , (218)

where, a = k/2f , B(ρ) = Ω2
LG(ρ)/4∆1, C(ρ) = Ω2

G(ρ)/4∆1 and E(ρ) =

ΩG(ρ)ΩLG(ρ)/2∆1. The diffraction pattern consists of AV beams, with a quantised

angular momentum along z-direction equal to m~. These AV beams are focussed at

the points mπ/λa = mf along the z-axis. This is a rather simpler diffraction pattern

than that in the case of the fork-like mask described in the previous subsection. Here

the different AV beams are in focus in different planes along the propagation direction,

while in the fork-like mask case they propagate in different directions. Equation (218)

indicates that the diffraction pattern is made up of a term Ψ0 with no OAM content
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Atoms in complex twisted light 102

Figure 36. Scheme of the diffraction set up. a) Schematic representation of the

diffraction of the atoms through the light mask made up of a Laguerre-Gaussian beam

interfering with a Gaussian beam; (b) after the diffraction process the different atom

vortices are focused at different planes along the propagation axis and are labelled

m = 0,±1,±2, ... with the m-th vortex carrying an orbital angular momentum equal

to lm~. Reproduced with permission from [248]

and different diffraction orders of opposite winding numbers Ψ±m which means there is

a quantized orbital angular momentum m~ along the propagation axis.

Ψ0 ∝ e−iBτe−iCτΨ(ρ, φ,−τ)J0(Eτ),
Ψ±m ∝ −ie−iBτe−iCτΨ(ρ, φ,−τ)J±m(Eτ)e

±imlφe±imknde∓imaρ2 . (219)

The two AVs with opposite angular momenta ∓m~ are defocused over mf and −mf
respectively.

The spiral diffraction scheme could be exploited for the generation of an atom Ferris

wheel beam [161]. This is the atomic counterpart of the light Ferris wheel beam because

the probability distribution at a plane transverse to the atomic propagation direction

has a characteristic petal-like structure similar to the optical Ferris wheel transverse
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Atoms in complex twisted light 103

intensity pattern [101]. The fact that the generated AVBs are all focussed on a straight

line is the main advantage of the spiral diffraction scheme. If we can shift the focus of

one AVB with winding number −m, without disturbing the focus of all the other AVBs,

then we can make it interfere with the AVB of winding number +m and generate the

atom Ferris wheel. This can be achieved by the interaction of a suitably tailored vortex

light field which can cause a second phase imprint on the AVB with winding number

−m. This imprint does not act on the other AVBs if we apply a spatially inhomogeneous

magnetic field that makes all the rest of the AVBs very far detuned from the light field,

so the associated phase shift is negligible.

The realization of atom vortex beams would open up a new area of atom optics

in which atoms carrying orbital angular momentum interact with each other, or with

other forms of matter. Further theoretical studies and various applications should

be anticipated including atom interferometry; the functioning of LG light mask as a

dispersive prism for de Broglie wavelengths; the encoding and processing of quantum

information in atom vortex states entangled with other states such as motional or spin

atomic states; the interference of atomic vortices with opposite winding numbers and

building quantum entanglement in the infinite dimensional Hilbert space of atom vortex

states.

15. Artificial gauge fields and their origins

The significant advances made in the cooling and trapping of atomic motion have had

impact on diverse branches of modern physics. In particular there have been related

activities in condensed matter physics [43]. This is mainly due to the possibility of

engineering different forms of optical lattices which led to the creation of new synthetic

condensed matter [262] paving the way to the demonstration of exotic topological phases

of such systems [263]. Such applications involving light-matter interactions are a part

of a broader area of investigation in modern physics, namely quantum simulations.

Quantum simulations are a striking vindication of Feynman’s prophecy that instead

of modelling quantum effects with the help of conventional computers we might use

simple and controllable quantum systems as quantum simulators [264]. One area of

physics where quantum simulations have found application is condensed matter physics.

Many condensed matter effects are very hard to simulate on a classical computer,

including high-temperature superconductivity and quantum magnetism. Computer

simulations are specially hard in cases where electrons are strongly interacting.

Cold atoms interacting with coherent light fields are ideal quantum simulators for

such cases since some of the parameters involved in the interaction can be engineered

almost at will to suit a given model [265], [266]. The Hubbard model and the superfluid

Mott-insulator transition are two famous examples of problems that can be simulated

with cold atoms in optical lattices [267], [268]. One of the major problems of quantum

simulations is the fact that atoms are electrically neutral. Therefore it is, at first sight,

quite difficult to simulate effects involving interactions with electric and magnetic fields.
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Over the last decade schemes have been developed that can generate artificial Abelian

and non-Abelian magnetic and electric fields when cold atoms interact with coherent

light fields [269].

15.1. Two-level atoms

Currently there are different schemes which have been shown to lead to the generation

of artificial magnetic and electric fields when atoms either in free space or when trapped

in optical lattices interact with suitably structured light fields [262]. In the case of

free atoms, their interaction with the light results in an atomic motion that mimics

that of a charged particle subject to a magnetic field. This means that the atom is

subject to a Lorentz-like force [269] causing the atom to move along a closed path. How

does this type of motion arise? The physical origin of this force is the creation of a

Berry phase acquired by a particle moving in a closed path [270]. The realisation of

artificial magnetism requires the engineering of situations where a neutral particle is

made to acquire a geometrical phase when it moves along a closed path C. Thus the

focus turned to the Berry phase effect in atom-light interactions [271], [272]. In this

case the atom-light coupling gives rise to the so-called dressed states [273]. These states

vary on a short spatial scale (typically the wavelength of light) and so the generated

artificial gauge fields can be quite intense.

Consider an atom prepared in a dressed state |χ (r0)〉 moving sufficiently slowly

to follow adiabatically the local dressed state |χ(rt)〉. On completing the trajectory C

it returns to the dressed state |χ(r0)〉 having acquired a phase factor that contains a

geometric component. The quantum motion of the atom is formally equivalent to that of

a charged particle in a static magnetic field. Such models have been studied for different

beam configurations for two-level as well as three-level atoms [269]. It is important to

note that the emergence of these artificial fields requires a coherent interaction between

the light fields and the atoms. Thus the interaction time must be limited in values

t < Γ−1, with Γ being the spontaneous emission rate of the excited state.

It is well established that if we make the assumption that the particle is initially

prepared in the internal dressed state |χ(r1(t)〉 and proceeds in an adiabatic elimination

of the state |χ(r2(t)〉 then the interaction of the atom with the light field is formally

equivalent to the motion of a charged particle in a vector field B and a scalar field V (R)

given by [273]

qB(R) = −~∆0
Ω(R)

(∆2
0 + Ω2(R))3/2

−→∇(Ω(R))×−→∇(φ(R)), (220)

V (R) =
~
2

2M

[
∆2

0

(∆2
0 + Ω2(R))2

(
−→∇Ω(R))2 +

Ω2(R)

∆2
0 + Ω2(R)

(−→∇φ(R)
)2]

.(221)

Here Ω(R) is the Rabi frequency and φ(R) is the phase of the coherent light field.

Note that the generation of an artificial vector field B demands that both the amplitude

and the phase of the electric field have a spatial dependence and that a scenario where

an atom is initially prepared in the state |χ(r2〉 instead of |χ(r1〉 will result in the same
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Atoms in complex twisted light 105

scalar potential energy V but opposite magnetic field B(R). The scalar potential V can

be interpreted as the kinetic energy associated with the fast micromotion of the particle.

This was first explained for a classical continuous internal degree of freedom by Aharonov

and Stern [274]. The magnetic field is related to the Berry’s phase that appears when

a quantum system, here the two-state system associated with the internal degree of

freedom of the particle, is slowly transported round a contour C, while remaining in one

of the eigenstates of its Hamiltonian [270].

The above theory is valid in the case where the light-atom coupling strength is far

larger than the recoil energy associated with the exchange of a photon between the atom

and the light field i.e, ~Ω >> ~
2k2/2M . However, when we consider the interaction of an

atom with an optical vortex we need to take into account the fact that the processes of

exchange between light and matter involve both linear and orbital-angular momentum.

The recoil energy in this case is given by:

Erec =
~
2k2

2M
+

~
2l2

2Mρ2
. (222)

The second term in Eq.(222) is due to the angular momentum exchanged for an atom

localised at a radial position ρ from the beam axis. At first sight it seems that this

angular momentum should be considerably large at small radial positions. However,

an LG beam has a dark core at small radial positions and thus the probability of an

interaction between the beam and the atom near the core is negligibly small. The

interaction probability is considerable at regions where the vortex beam intensity is

large. For a LG beam, with p = 0, the intensity is maximum at the radial coordinate

ρ0 = w0

√
|l|/2 where the ratio of the values of the angular to the translational recoil

kinetic energy terms is equal to 2|l|/(k2w2
0). It is easy to see that this ratio becomes

larger as either the angular momentum l~ carried by the vortex photon becomes larger,

or the beam waist w0 becomes smaller. For the parameters and the particular atom

interactions which we focus on here the rotational recoil energy is negligible but it

can be comparable to the translational recoil energy for smaller beam waists (tighter

focussing) and high winding numbers.

Consider next the case where the two-level atom is irradiated by a monochromatic

LG beam propagating along the z−direction and plane-polarised, say, along the

x−direction. In this case the atom, which is considered to be near the focus z = 0,

experiences the following artificial vector field:

B(R) =
~k

qw0

∆0Ω
2(R)

(∆2
0 + Ω2(R))3/2[(

− 2y

w2
0

+
ly

ρ2

)
x̂+

(
2x

w2
0

− lx

ρ2

)
ŷ +

l(x2 − y2)

kρ2

(
2

w2
0

− l

ρ2

)
ẑ

]
. (223)

The above artificial magnetic field vector has three components which appear to have

a complex position dependence. But the field expressions can fortunately be simplified

further. The component Bz along the z−direction has a relatively small size compared

to the other two components. This is easily seen because of the dependence on k in

Page 105 of 132 AUTHOR SUBMITTED MANUSCRIPT - JOPT-105253.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Atoms in complex twisted light 106

the denominator of the Bz expression. Thus we can safely assume that the artificial

magnetic field at focus lies on the (x, y) plane. We can have a more detailed picture

of the properties of this field by plotting the magnitude of the magnetic field as well

as the corresponding field lines on the (x, y) plane. Figure 37 displays the magnitude

of the artificial magnetic field, and the inset to this figure is a vector plot which shows

the direction of the generated artificial field. We have assumed that the LG beam has

a winding number l = 1. In Fig.38 we also display the artificial gauge magnetic field

for a Gaussian (G) beam of the same power and beam waist. The light beams have

a wavelength λ = 852 nm and so can excite the transition 62S1/2 − 62P3/2 in a 133Cs

atom which has an excited state transition rate Γ = 2π × 5.15 MHz. We assume that

both beams have the same power, and a beam waist equal to 150 µm. The interaction

is characterised by a detuning ∆0 = 2.5Γ and a Rabi frequency Ω0 = 9Γ. All the plots

shown below have been generated using the same parameters, where the magnetic field

is in units of B0 = ~k/qw2
0.

From the comparison of the two figures, namely Fig. 37 and Fig. 38, it may be

deduced that the magnitude of the artificial magnetic field for a LG is larger than that for

a G beam. Note, however, that as the beam winding number l increases the magnitude

of the generated artificial magnetic field decreases. The magnetic field in the case of

the G beam has a cylindrical symmetry with a maximum ring area. In the case of LG

beam the magnetic field has cylindrical symmetry but there are two concentric rings.

Moreover, the direction of the field is opposite in the two rings and can be reversed with

a change of the beam winding number from l to −l. It seems that the LG beams offer

more possibilities for artificial magnetic field generation. There is thus the possibility

of using artificial magnetic fields generated by LG beams for the creation of extended

regions where the orbital magnetism can be be sufficiently strong to generate states

of non-zero circulation. This is desirable in cases where a superfluid is placed in such

regions in order that its ground state will exhibit a vortex lattice. In addition to the

artificial magnetic vector field there is also a scalar artificial potential V given by:

V (R) =
~
2

2M

∆2
0Ω

2(R)

(∆2
0 + Ω2(R))2{( |l|

ρ
− 2ρ

w2
0

)2

+

(
∆2

0 + Ω2(R)

∆2
0

)[
l2

ρ2
+

(
k − |l|+ 1

2zR
+
kρ2

2z2R

)2
]}

. (224)

Figure 39 displays the artificial scalar potential in atomic recoil energy units while the

inset represents the scalar potential when the same transition is excited by a Gaussian

beam with the same power and beam waist. It can be seen that the magnitude of the

scalar field generated by a LG beam is smaller than that generated by the interaction of

the atom with a G beam. There is however a striking difference, namely the appearance

of a donut like profile of the potential in the case of a LG beam, but not in the G case.

This means that the potential will affect trapping in a LG beam as much as the artificial

magnetic field in the inset affects the trapping in an ordinary Gaussian optical dipole

trap.
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Atoms in complex twisted light 107

Figure 37. Artificial magnetic field magnitude for a two-level atom (transition

62S1/2 − 62P3/2 in a 133Cs atom) irradiated by a LG beam with l = 1, while Ω0 = 9Γ

and ∆ = 2.5Γ. The magnetic field is in units of B0 = ~k/qw2
0

15.2. Three-level atoms

The use of two-level atoms for the creation of artificial gauge fields has a serious drawback

arising from the fact the internal state of the atom is everywhere a linear combination

of the ground and the excited state. The short lifetime of the excited state imposes a

limit on the existence of such potentials. We may overcome this obstacle by considering

the so called ‘dark sates’ which are possible when we consider atoms with a three-level

lambda configuration [276] - [278].

In the lambda configuration we have two ground states | 1 > and | 2 >, which can be

two different hyperfine states of an atom, and an excited state | 0 >. The atom interacts

with two resonant coherent beams. The first one excites the transition | 1 >↔| 0 >
while the second excites the transition | 1 >↔| 0 >. These excitations are characterized
by Rabi frequencies Ω1(R) = |Ω1(R)| exp[φ1(R)] and Ω2(R) = |Ω2(R)| exp[φ2(R)]
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Atoms in complex twisted light 108

Figure 38. Artificial magnetic field magnitude for a two-level atom (transition

62S1/2 − 62P3/2 in a 133Cs atom). The atom is irradiated by a G beam while Ω0 = 9Γ

and δ0 = 2.5Γ. The magnetic field is in units of B0 = ~k/qw2
0

respectively. In the analysis of the artificial gauge fields with three-level atoms in the

lambda-configuration there are two factors that play important roles, namely the ratio

of the two Rabi frequencies ζ and the phase difference of the two beams S. These factors

are defined as follows

S = φ1(R)− φ2(R), ζ =
Ω1(R)

Ω2(R)
= |ζ| exp(iS). (225)

Assuming that the two ground states are at the same energy, we can neglect the two-

photon detuning ǫ21 = 0. In this case the interaction Hamiltonian has two eigenstates -

namely the dark one | D > and the bright one | B > which are given by:

| D >=
1√

1 + |ζ|2
(| 1 > −ζ∗ | 2 >), | B >=

1√
1 + |ζ|2

(ζ | 1 > − | 2 >) (226)

It has been shown that when the atom is in the dark state the artificial vector and scalar
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Figure 39. Artificial scalar field magnitude for a two-level atom (transition 62S1/2 −
62P3/2 in a 133Cs atom) irradiated by a LG beam. Ω0 = 9Γ and ∆0 = 2.5Γ. The field

values are given in recoil energy units

fields are given respectively by [277]:

qB(R) = ~
∇S ×∇|ζ|2
(1 + |ζ|2)2 , V (R) =

~
2

2M

(∇|ζ|)2 + |ζ|2(∇S)2
(1 + |ζ|2)2 . (227)

From this we deduce that there is a non-vanishing artificial magnetic field only when

there are non-zero gradients of the relative intensity and phase. This means that such

a field cannot be created using plane waves interacting with the three-level atom.

There is a deeper physical meaning of the variables and parameters involved in

Eq.(227). The gradient ∇S is proportional to the relative momentum of the two beams,

while (∇|ζ|)2/(1 + |ζ|2)2 is a vector associated with the centre of mass of the two

beams. The suggestion is that to create an artificial magnetic field the two beams

must have a relative orbital angular momentum. This is the key feature of the scheme

which has been proposed. Note that the above formalism is valid provided that the
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atoms move sufficiently slowly to remain in the dark state during their motion. This

is the adiabaticity requirement which is formally given by the condition Ω >> F with

Ω =
√
|Ω1|2 + |Ω2|2 the rms (root mean square) Rabi frequency, which characterizes the

energy difference of the dark state with the remaining ones, and F = |∇ζv̇|/(1 + |ζ|2),
where v is the velocity vector. The adiabatic condition implies that Ω−1 should be much

smaller than the time taken by an atom to travel a characteristic length over which the

amplitude or the phase of the ratio ζ changes considerably. For atoms moving along

the y-axis the relevant length is 1/k ≈ 10−7 m. On the other hand, the Rabi frequency

can be of the order of 107 to 108s−1. Therefore, the adiabatic condition should hold for

atomic velocities up to meters per second. These estimations do not take into account

the possible lifetime of the dark state due to adiabatic coupling [278].

Assume that the two beams are different and carry different orbital angular

momenta so they are characterized by wavevectors k1, k2, winding numbers l1, l2 and

Rabi frequencies Ω1(R), Ω2(R). We then have ζ = Ω1(R)/Ω2(R) and S = lφ, where

l = l1 − l2 is the difference of the beams winding numbers. This scheme generates an

artificial magnetic field B given by:

qB(R) =
~l

ρ

1

(1 + |ζ|2)2 φ̂×∇|ζ|2. (228)

which for fields with a cylindrical symmetry as for LG beams has the final form:

qB(R) = −ẑ~l
ρ

1

(1 + |ζ|2)2
∂

∂ρ
|ζ|2. (229)

and there is also a scalar potential given by:

V =
~
2

2m

(∇|ζ|)2 + |ζ|2(∇S)2
(1 + |ζ|2)2 . (230)

Unfortunately this scheme again suffers from a drawback: namely that the two LG

beams are simultaneously zero at points where ρ = 0. Thus the adiabaticity condition

is violated. However, the scheme can be adopted when one of the two beams is a LG

beam while the other one is Gaussian as shown in Fig. 40. This then offers the advantage

that the effective magnetic field can now be shaped by choosing proper beams.

Consider an atom irradiated by a LG beam of winding number l and a G beam. In

this case we end up with the following artificial magnetic field:

qB(R) =
~|l||ζ|2

(1 + |ζ|2)2
{
2

ρ

[
(k1 − k2)−

|l|
zR

]
φ̂+

2l

ρ2
ẑ

}
. (231)

Equation (231) shows that the magnetic field is directed along the beam propagation

axis, when the two beams are co-propagating with equal wave numbers so k1 − k2 ≈ 0.

By contrast, if the beams are counter-propagating then the field has an azimuthal

component which dominates over the axial one. However the azimuthal component

comes mainly from the counter-propagating character of the two beams while the axial

component comes from the optical angular momentum of the beam.

We now analyse the magnetic field in the case of co-propagating and counter-

propagating beams when the two beams irradiate a Cs atom and excite a Λ-transition
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Figure 40. (a) The energy level scheme for the Λ-type three-level atom interacting

with the two beams (b) Schematic representation of the experimental set-up with

the two light beams incident on the cloud of atoms. The first field is of the form

Ω1 ≈ exp ilφ , where each photon carry an orbital angular momentum l~ along the

propagation axis z. Reproduced with permission from [277].

in the D2 line of the atom, where the common upper level is the 62P3/2 excited state

while the two lower levels are the F = 3 and F = 4 hyperfine states of 62S1/2. As we

see in Fig. 41, in the case of counter-propagating fields we obtain a stronger magnetic

field which has a hole at the center. This is not the case in the scenario involving

co-propagating beams, but the magnetic field in that case is much weaker.

It has been shown, [278], that in this scheme the effective magnetic flux through a

circle of radius ρ0 is given by:

Φ =

∮
Adl = −2π~

l|ζ0|2
(1 + |ζ|2)2 . (232)

where 2π~ is the Dirac flux quantum, and l|ζ0|2 is the intensity ratio at the radius

ρ = ρ0. The flux Φ reaches its maximum of 2π~l if the ratio |ζ0|2 >> 1, i.e., if the
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Figure 41. (Left)the magnetic field arising from the irradiation of a Cs atom by a

LG beam and a Gaussian beam which are co-propagating. (Right) the magnetic field

when the Cs atom is irradiated by a LG beam and a Gaussian beam which are counter-

propagating. The magnetic field is in units of B0 = ~k/qw2
0. The Rabi frequency

associated with the LG beam is ΩLG,0 = 9Γ, while the Rabi frequency associated with

the Gaussian beam is ΩG,0 = 5Γ.

intensity of the probe field exceeds the control field at the selected radius ρ0. Since

the winding number of the light beams can currently be as large as several hundreds,

it is possible to induce a substantial flux Φ in the atomic cloud. This might enable us

to study phenomena related to filled Landau levels with a large number of atoms in

quantum gases.

15.3. SOVs

One case where it is possible to achieve the requirement of large gradients which is

necessary for the creation of large magnitudes artificial fields is when a surface optical

vortex (SOV) interacts with an atom in the vicinity of a dielectric/vacuum interface
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[279]. As discussed earlier, it is reasonable to adopt a geometrical optics model in

which the light beams involved in the total internal reflection, leading to the creation

of evanescent light, are specularly reflected at the interface of a dielectric with vacuum

- see Fig. 26. The SOVs are endowed with OAM; they are strongly localised and so

have very large field gradients. These gradients depend crucially on the refractive index

of the dielectric material and/or the angle of incidence of the laser beam. This gives

us more control parameters with which we can monitor the properties of the artificial

magnetic fields, specifically their strength and/or their spatial structure. Indeed we can

choose a dielectric with a higher index of refraction, a larger angle of incidence as well

as the parameters that determine the field magnitude in the free-space case like beam

intensity, beam waist, Rabi frequency and detuning. There is also another parameter

that will play an important role, namely the beam winding number l. It appears that

as l increases the magnitude of the magnetic field increases. This point requires some

detailed explanation. As the winding number increases the beam power is spread in a

larger area. Thus the intensity of the beam decreases and so does the Rabi frequency.

Thus the argument that the artificial magnetic fields become stronger as the winding

number of the beam increases is true only provided that the Rabi frequency is properly

adjusted, either by increasing the intensity or by decreasing the beam waist [280]. The

strongest field is created if the incident angle of the plane wave is much greater than

the critical angle for the total internal reflection θcr. Then, however, the magnetic field

is considerable in a short range in vacuum [279]. This makes difficult to trap atomic

clouds sufficiently far away from the surface of the prism-vacuum interface to avoid the

influence of the van der Waals interaction between the atom and the dielectric material

of the prism.

Artificial magnetic fields have been shown that can be used for creating atomic

mirrors [279]. Typically, atom mirrors have been based on the optical dipole potential

created by evanescent fields. However, in this context the atoms behave like charged

particles inside an artificial magnetic field, thus they follow curved trajectories. If

evanescent fields are properly tailored the atoms may be pushed away from the dielectric-

vacuum interface due to a Lorentz-like force. Thus in practice we will have atom mirrors

for three level atoms. In Ref.([279]) the authors have shown that if a BEC trapped in a

MOT is released and under the influence of the gravity is directed towards the prism-

vacuum interface then the artificial magnetic field can act to reflect the falling atoms.

Their scheme involves the interaction of a three-level atom with two coherent light fields:

one an evanescent wave created by the total internal reflection of a Gaussian beam and

the other is an ordinary Gaussian beam propagating in free space close to the surface.

In the case of three-level atoms. very strong magnetic fields can be created when two

Gaussian beams are laterally displaced. These fields can be even larger when the atoms

interact with two laterally displaced evanescent fields [275]. It remains to be investigated

if and how schemes involving different combinations of SOVs could lead to enhanced

artificial gauge magnetic fields.

Artificial gauge fields with twisted beams have been realised in more complicated
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cases involving a tripod scheme of the light-atom coupling [281],[282]. This is a scheme

where three laser beams drive transitions from three ground states to a common excited

state. This scheme is interesting in the particular case where two of the beams

are circularly polarised with opposite winding numbers l = ±1 propagating along

the z−direction, while the third one is linearly polarised along the y-direction and

propagates along the x−direction. In this case the generated artificial magnetic field

has a leading term which corresponds to the field of a magnetic monopole at the origin.

Finally, once again, we note that the schemes presented here concern the creation

of artificial magnetic fields when twisted beams interact with atoms in free space. Such

fields have also been generated for atoms trapped in optical lattices with the possibility of

creating very strong artificial magnetic fields. The whole idea is based on the induction

of a non-vanishing phase of atoms moving along a closed path on the lattice. This

phase, proportional to the enclosed area, allows us to simulate a magnetic flux through

the lattice [283]. A scheme with twisted beams based on this idea has been proposed to

study realizations of a Hofstadter-Hubbard model on a cylinder geometry with fermionic

cold atoms in optical lattices. The authors showed that the cylindrical optical lattices

achieved with twisted beams can provide a landscape for the exhibition of fractional

quantum Hall physics observed in this set-up [284].

16. Summary, conclusions and outlook

This review has focussed on the interaction of atoms with structured light, most notably

the case of light endowed with the property of the orbital angular momentum. The

analysis of a wide variety of phenomena has illustrated how interactions with this kind

of light can give rise to novel features, entirely distinct from (and in addition to) the

phenomena experienced when atoms interact with more conventional forms of laser light.

This wide range of new effects includes the controllable transfer of OAM from the light

to the centre of mass motion of individual atoms or, under certain circumstances, to

internal (electronic-type) motions.

The prospect of engaging OAM with electronic transitions is a matter that has long

been of sustained interest, with investigations continuing in both theory and experiment.

The potential significance of this issue is brought to a sharp focus on recognizing that, in

twisted light, the property of angular momentum is quantitatively different in individual

photons. Nonetheless one of the first findings was that OAM cannot be transferred to

the internal degrees of freedom of the atom in an electric dipole transition though

this might occur in connection with the normally much weaker quadrupole transitions.

This difference seems now to have been established unequivocally, through a range of

experimental and theoretical studies, including the excitation of an electric quadrupole

atomic transition involving OAM transfer to a valence electron in a trapped ion.

However, the strong symmetry principles that play into the difference between dipole

and quadrupole transitions are undermined in molecular systems, which are necessarily

of lower symmetry than atoms.

Page 114 of 132AUTHOR SUBMITTED MANUSCRIPT - JOPT-105253.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Atoms in complex twisted light 115

One of the most prominent and striking features emphasised by this review is the

optical response of atoms involving azimuthal motion with respect to the input beam

a response that can only arise due to the orbital angular momentum of the light. It

has been shown how dipole interactions between the light and the atomic centre of

mass, with the participation of dipole transitions between energy levels near resonance,

lead to optical forces and a light-induced torque. Moreover the interaction leads to

an optical dipole potential acting to trap the atom in well defined regions of maximal

intensity, while the optical torque acts to keep them rotating in a ring at the high

intensity regions a phenomenon most readily observed in the simplest donut modes

where quantised superfluid behaviour may be manifested.

In more intricate beam configurations it has been shown that intriguing new effects

can arise through the interplay of wave polarisation in multiple beams. The simplest

case the Sisyphus effect in which wave polarization provides a superior mechanism for

cooling atoms (as compared to the Doppler mechanism) gains an additional capability

when twisted light is deployed. When atomic motion is controlled in the azimuthal

direction, co-propagating beams of slightly different frequency give rise to rotating

petal-like patterns in a manner similar to a Ferris wheel. Such configurations prove

to offer exotic field distributions that can act to trap and transport atoms. Nonetheless,

our review has also highlighted some very useful experimental work on the azimuthal

Doppler shift, a topic that appears to be worthy of further exploration.

In another range of developments, we have reported advances connected with the

response of twisted light to media surfaces, which can lead to surface optical vortices

and plasmonic optical vortices and to extraordinary spin in evanescent waves. An OAM-

endowed surface mode generated by total internal reflection, like other surface modes,

has a small mode volume and can interact strongly with atoms localised in the vicinity

of the surface. When ions are trapped in large numbers in such potential energy wells,

which are of essentially elliptical shape when donut modes are deployed, the resulting

circulation of charge can give rise to a significant current and an associated magnetic

field.

Whilst the relatively simple phase property of twisted light its linear dependence

on azimuthal angle is well studied and widely characterized, there are other features of

mode structure that we have shown also deserve attention. By analysing in detail the

case of Laguerre-Gaussian modes prototypical examples of twisted light it has been

shown that there are subtle and interesting features associated with beam curvature

and Gouy phase. These are features that are enhanced for highly twisted modes,

especially for atoms localised near the beam waist, where strong field gradients can

lead to diminishing optical forces conceivably even their annulment and/or reversal.

We have also discussed the concept of artificial gauge fields, exploring their

application in the context of atom-field interactions whereby cold atoms interacting

with coherent light fields constitute effective quantum simulators. Again, distinctive

features arise when two- or three-level atoms interact with structured light, including

surface optical vortices. The optical engineering of such features is another promising
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and active area of current research.

On the basis that twisted light beams in many respects represent special forms of de

Broglie waves, their concept is clearly generalisable to other de Broglie beams, including

elementary particles such as electrons and neutrons even atomic and molecular beams.

In the case of neutral atoms as de Broglie waves, it has been shown that generating an

atom vortex beam requires the construction of a light mask to diffract atoms into vortex

beam states. The predicted atom vortices are still to be realised in the laboratory, as

indeed other types of de Broglie vortex beams. However, one can reasonably speculate

that their realization would open up a new area of atom optics in which atoms carrying

orbital angular momentum interact with each other, or with other forms of matter.

Further theoretical studies and various applications may be anticipated, including

atom interferometry; the functioning of an LG light mask as a dispersive prism

for de Broglie wavelengths; the encoding and processing of quantum information in

atom vortex states entangled with other states such as motional or spin atomic

states; the interference of atomic vortices with opposite helicity, and building quantum

entanglement in the infinite dimension Hilbert space of atom vortex states.

Although the main remit of this review has been to highlight the interaction of

individual atoms with structured light, larger numbers of atoms can be trapped in

ordered arrays known as optical lattices, ideally by the use of holographic optical traps.

The possibility of controlled engagement with two or more particles introduces problems

that are only readily addressed with particles significantly larger than atoms. For

example, micron-sized particles or nanoparticles or groups of particles within groups can

be individually and programmably steered by beam-dithering (time-sharing) techniques.

While the obvious problem with atoms is the need to overcome thermal motion,

which is only feasible at very low temperatures, another quite different feature can

then come into play. Groups of atoms, optically trapped at temperatures sufficiently

low that their de Broglie wavelength is less than the mean atomic spacing, can undergo

transition into a Bose-Einstein condensate (BEC), in which the whole assembly responds

as a system with a single corporate wavefunction. A transnationally cold BEC assembly

of atoms can exhibit a limited number of bulk motions [285], and Lembessis and Babiker

have shown how the interference of counter-propagating LG beams, with opposite

sign so that their torque effects add, can produce rotation [286]. Furthermore, a

significant feature of rotating BECs is that they can exhibit vortices. Indeed, this

is the most significant kind of bulk behaviour that an essentially localized, rotating

assembly can exhibit. Here, the angular momentum conveyed by multiply-connected

Laguerre-Gaussian traps enables quantized vortex states to be identified, revealing the

distinctive BEC character [287].

In addition to the production of such states through the combined action of several

optical vortex beams, [288, 289, 290] it has also been shown how a single non-paraxial

LG beam can excite a superposition of such states [291]. Nonetheless, in most studies of

this topic, atomic condensate vortices are engineered without the use of optical vortices,

and the subject lies beyond the scope of the present review.
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The outlook for the interaction of twisted light with matter seems set to extend

in new work to explore different avenues in which either the form of structured light

in other forms plays the key ingredient in the interaction, or the matter with which

the light interacts is itself considered in different forms. There are rich possibilities to

explore in connection with multiple beams in various configurations, especially inviting

the development of both theory and experiment for the specific interaction of twisted

light with twisted matter in bulk solid-state materials.
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List of Symbols and abbreviations

A⊥ Transverse electromagnetic vector potential

B Magnetic vector field; also represents artificial vector

magnetic field

C|l|p Laguerre-Gaussian mode normalisation constant

d Electric dipole moment

E⊥ Transverse electric vector field

E Electric field vector

Erec Atom recoil energy

〈F〉 Average force

H Total Hamiltonian

Hint Interaction Hamiltonian

I Light intensity

IS Saturation intensity

J Current density

Jl(x) Bessel function of the first kind of order l

k wavevector

L Lagrangian density

L Total Lagrangian

L Orbital angular momentum density operator

l Winding number (azimuthal index) in a twisted beam

lin⊥lin linearly polarised light beams, with orthogonal polarisa-

tions

L
|l|
p Associated Laguerre polynomial

Mfi Matrix element of interaction Hamiltonian Hint between

quantum states i and f

M Mass of the two-particle atom

M Magnetic dipole moment

pα=1,2 Momentum canonically conjugate to qα=1,2

p Radial nodal index in a twisted beam

P Electric polarisation vector

PT Truncated electric polarisation vector (up to quarupole

term)

qα=1,2 Particle position vector in the two-particle (hydrogenic)

atom

Qij (ij)th component of the electric quadrupole moment

tensor

R Atomic centre of mass position vector variable

S̃ Optical spin angular momentum density

S Optical chirality flux

S Optical linear momentum density vector

s0 Saturation parameter
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T Torque on atomic centre of mass

〈U〉 Dipole potential

u
|l|
p LG amplitude distribution function

V = Ṙ Velocity vector of the atomic centre of mass

V (R) Artificial gauge scalar field of atom in an optical fields

vD The Doppler velocity

vrec Recoil velocity

vg group velocity

w(z) Beam waist at position z in the beam

zR Rayleigh range

αF Damping coefficient in Sisyphus cooling

αφ Azimuthal damping coefficient in Sisyphus cooling

α̃ Atomic polarisability

∆ Detuning of light frequency from atomic transition

frequency

∆0 Static detuning

δ Doppler shift

δ⊥ij(r− r′) Transverse Dirac delta function

ǫφ Two-level atom adiabaticity parameter

ǫ adiabaticity parameter

ǫ′ Non-adiabaticity parameter in Sisyphus effect

Φ Artificial magnetic flux

ϕ Optical chirality density

Γ Upper state de-excitation rate in a two-level atom

κ Scalar field helicity

λ wavelength

Λ Generating function in a Power-Zienau-Woolley (PZW)

gauge transformation

Λk10 Elastic modulus of LG donut dipole trap

Π⊥ Momentum canonically conjugate to A⊥

π0 Canonical momentum density of evanescent light

πs Spin momentum density of evanescent light

σ⊥ Wavepacket transverse spread

σ̃ Evanescent wave helicity

Θklp Laguerre-Gaussian phase function

σ± Left and right handed circular polrisation of light

Ω Rabi frequency

Ω0 Rabi frequency associated with beam amplitude Ek00

Ψ Atomic state function on diffraction in atom vortices
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AVB Atom Vortex Beam

HOT Helical Optical Tube

LG Laguerre-Gaussian

OAM Orbital Angular Momentum

SOV Surface Optical Vortex

SPOV Surface Plasmon Optical Vortices
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