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ABSTRACT 18 

Although PM2.5 (particulate matter with aerodynamic diameters of less than 2.5 μm) in the air originates 19 

from emissions, its concentrations are often affected by confounding meteorological effects. Therefore, 20 

direct comparisons of PM2.5 concentrations made across two periods, which are commonly used by 21 

environmental protection administrations to measure the effectiveness of mitigation efforts, can be 22 

misleading. Here, we developed a two-step method to distinguish the significance of emissions and 23 

meteorological factors and assess the effectiveness of emission mitigation efforts. We modeled ambient 24 

PM2.5 concentrations from 1980 to 2014 based on three conditional scenarios: realistic conditions, fixed 25 

emissions, and fixed meteorology. The differences found between the model outputs were analyzed to 26 

quantify the relative contributions of emissions and meteorological factors. Emission-related gridded PM2.5 27 

concentrations excluding the meteorological effects were predicted using multivariate regression models, 28 

whereas meteorological confounding effects on PM2.5 fluctuations were characterized by probabilistic 29 

functions. By combining the regression models and probabilistic functions, fluctuations in the PM2.5 30 

concentrations induced by emissions and meteorological factors were quantified for all model gridcells and 31 

regions. The method was then applied to assess the historical and future trends of PM2.5 concentrations and 32 

potential fluctuations on global, national, and city scales. The proposed method may thus be used to assess 33 

the effectiveness of mitigation actions. 34 

35 



 

INTRODUCTION 36 

PM2.5 (particulate matter with aerodynamic diameters of less than 2.5 μm) is a major environmental and 37 

health concern1,2. PM2.5 in the air originates from the direct emissions of primary aerosols and from the 38 

secondary formation of aerosols from various precursors3 and ambient PM2.5 concentrations are shaped 39 

primarily by the emission rates 4-6. In addition to emissions, meteorological conditions are critical to the 40 

formation and transport of PM2.5 through the air7-9. Interannual climate variability can also affect regional 41 

pollution levels10. Therefore, spatiotemporal variations in PM2.5 concentrations in the atmosphere are 42 

mainly driven by the combined effects of emissions, chemical reactions, and meteorology11. 43 

Although the impacts of emissions and meteorological confounding effects on PM2.5 pollution have been 44 

studied extensively12-14, a lack of understanding of interactions between them has often led to confusion 45 

among the public and policymakers. For example, local governments often report on the effectiveness of 46 

their mitigation efforts from observed reductions in annual mean PM2.5 concentrations ignoring 47 

considerable fluctuations in meteorological conditions occurring between years. Such a practice is 48 

misleading whenever strong positive or negative meteorological interferences occur. For example, an 49 

abnormal increase in PM2.5 concentrations occurred following a period of PM2.5 decline in northern China 50 

in early 2017. The average PM2.5 concentration in the first half-year of 2017 (66 μg/m3) was slightly higher 51 

than that during the same period in 2016 (64 μg/m3) in Beijing although comprehensive mitigation efforts 52 

have been made in recent years. The event has stimulated debate on the effectiveness of recent mitigation 53 

actions15 even though these efforts have already led to a continuous decrease in annual mean PM2.5 54 

concentrations in this area in recent several years16. A recent study has suggested that the abnormal increase 55 

during the first six months of 2017 was strongly associated with anomalies in humidity.17 56 

To quantify the contributions of emissions and confounding meteorological factors to ambient PM2.5 57 

concentrations, a two-step approach was developed. In brief, global PM2.5 concentrations from 1980 to 58 

2014 were simulated based on three conditional modeling scenarios: 1. realistic conditions, 2. fixed 59 

meteorology (realistic daily emission estimates but fixed meteorological parameters for 2014) and 3. fixed 60 

emissions (realistic daily meteorological variables with mean emissions from 1980 to 2014). Based on the 61 

results of the simulations, regression models were developed for individual gridcells to predict 62 

emission-driven PM2.5 trends. Probabilistic functions were established to characterize superimposed 63 



 

meteorology-associated fluctuations. By combining the regression models and probabilistic function, PM2.5 64 

concentration trends to be induced by changes in emissions and meteorological factor-associated 65 

fluctuations could be distinguished. The effectiveness of emission mitigation measures could thus be 66 

evaluated. Moreover, future trends of ambient PM2.5 concentrations can be predicted based on projected 67 

changes in emissions. 68 

METHODS 69 

Overall Approach. Fig. 1 shows the overall scheme of the proposed approach including 1) a simulation 70 

based on three scenarios and 2) the development of regression models and probabilistic functions. 71 



 

 72 

Atmospheric Chemical Transport Modeling and Validation. The MOZART4 (Model for Ozone and 73 

Related Chemical Tracers, version 4) was applied to simulate daily PM2.5 concentrations from 1980 to 2014 74 

on a global scale18. The model was set with a 1.895° (latitude) × 1.875° (longitude) horizontal resolution, 75 

with 28 vertical layers, and with a 15-minute time step. The species considered include black carbon (BC), 76 

 

Fig. 1 Flowchart showing the research scheme of this study. Gridded PM2.5 concentrations were simulated 

for the three scenarios from 1980 to 2014. Individual effects of emissions and meteorological factors 

were measured. Regression models were developed using the second model’s scenario simulation 

output to predict gridded PM2.5 concentrations based on emissions. Meteorological confounding 

effect-induced variations were quantified as probabilistic functions using the third model’s scenario 

simulation output. Using the models, trends in PM2.5 concentrations with a variability range were 

generated, and the effectiveness of mitigation measures were evaluated. The procedures were 

validated at various stages. 
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organic carbon (OC), unspecified PM2.5 (primary PM2.5 - BC - 1.3OC), SOA (Secondary Organic Aerosol), 77 

sulfate, nitrate, ammonium, dust, and sea salt. Emissions were obtained from the PKU (Peking 78 

University)-series for primary aerosols (PM2.5, BC, and OC), SO2 (sulfur dioxide) and NOx (nitrogen 79 

oxides)19. Emissions drawn from other inventories were also used in this study, including NH3 and 80 

nonbiogenic NMVOC (Nonmethane Volatile Organic Carbon) data collected from EDGAR (Emissions 81 

Database for Global Atmospheric Research) and HTAPv2 (Hemispheric Transport of Air Pollution, version 82 

2)20,21, biogenic VOC (Volatile Organic Carbon) data collected from MEGAN (Model of Emissions of 83 

Gases and Aerosols from Nature)22, and open-field biomass burning emission data collected from GFED4.1 84 

(Global Fire Emissions Database, version 4.1)23. NCEP/NCAR (National Centers for Environmental 85 

Prediction/National Centers for Atmospheric Research) reanalysis products24 were used as offline 86 

meteorological inputs. Aerosol optical depths from MODIS (Moderate Resolution Imaging 87 

Spectroradiometer)25 were used as a proxy to downscale the model predicted parameters into a fine gridcell 88 

of 0.125°×0.125°26. Model performance was evaluated against more than 220 thousand daily monitoring 89 

data points collected from around the world (Fig. S1), against time series observations for six major cities 90 

around the world (Fig. S2), and against major components (Fig. S3). It can be observed that the majority of 91 

data points fall around the 1:1 line without bias and that the deviation of the predicted concentrations from 92 

the observations increase as the time scale decreases. For the annual means primarily used in this study, 93 

87% of data points are within the two-fold range. 94 

Conditional Scenarios and Relative Contributions. The simulation was conducted based on three 95 

conditional modeling scenarios. The control run was conducted using realistic emission estimates and 96 

meteorological fields. For the fixed-meteorological condition scenario, meteorological parameters for 2014 97 

(a normal non-El Niño year) were applied to all years with realistic emission estimates data. For the 98 

fixed-emission scenario, 35-year-averaged emissions were applied to all years together with realistic 99 

meteorological conditions. Deviations in the fixed emissions and fixed meteorological condition 100 

simulations from the normal simulation (control run) were normalized to their respective fractions to 101 

quantify the overall contributions of emissions (RCE) and meteorological conditions (RCM) for a given 102 

region (from a gridcell to the globe) and for a given period (from a month to multiple years) of interest.  103 

Sensitivity Analysis. A sensitivity analysis was conducted to identify major air pollutants governing 104 

ambient air PM2.5 concentrations through a preliminary simulation for January 2010 (monthly resolution). 105 



 

Modeling was repeatedly performed by reducing or enhancing the emissions of individual pollutants by 106 

10%, 25%, 50%, 75%, or 100% each time. The 21 pollutants tested include primary PM2.5 (including 107 

primary BC, OC and unspecified PM2.5), SO2, NH3, NOx, CO, CH3SCH3, C6H5(CH3), BIGALK (lumped 108 

alkanes with C > 3), C2H4, BIGENE (lumped alkenes with C > 3), C3H6, CH2O, CH3CHO, CH3OH, 109 

CH3COCH2CH3, C3H8, C2H5OH, C2H6, CH3COCH3, C10H16, and C5H8. The results of the sensitivity 110 

analysis are listed in Table s1.  111 

Emission-based Regression Model. Based on the results of the sensitivity analysis, the four main air 112 

pollutants were used for regression model development. Using annual emissions of these pollutants as 113 

independent variables and PM2.5 concentrations from the fixed-meteorology simulation as a dependent 114 

variable for 35 years, multivariate regression models with both dependent and independent variables 115 

log-transformed were developed for individual gridcells to predict PM2.5 concentrations without 116 

meteorological confounding effects. The regression was established for all individual gridcells using data 117 

for 35 years. The uncertainty of the regression models based on the fixed-meteorology simulation was 118 

characterized by a 90% confidence interval of predicted PM2.5 concentrations. Model-predicted PM2.5 119 

concentrations were compared against those calculated from the fixed-meteorology simulation (the same 120 

data set used for model development). The method cannot be applied to model PM2.5 variation on a 121 

relatively short time scale such as a daily scale, which can be affected by many occasional extreme 122 

emission or meteorological events, as well as the nonlinearity of secondary formation of aerosol. 123 

Meteorology-related Probabilistic Functions. For each individual gridcell, the frequency distribution of 124 

the annual mean PM2.5 concentrations for a 35-year period derived from the fixed-emission simulation was 125 

used as a meteorology-related probabilistic function to quantify random variations of PM2.5 induced by 126 

changes in meteorology at each gridcell. The function can also be generated for a region (such as a country) 127 

at other time scales (such as a month) of interest. At 84% of all model gridcells, the probabilistic functions 128 

calculated follow a normal distribution with a zero mean (K-S test, p > 0.05). 129 

Characterization of Emission-Driven Trends with Meteorology-Induced Fluctuations. This was done 130 

by combining emission-based trends with meteorology-induced variations from 1980 to 2030. Using 131 

emissions and PM2.5 concentrations for 2014 as baselines, the gridcell-specific models were applied to 132 

project the trajectory of PM2.5 concentrations induced by given emission changes for all gridcells across the 133 



 

globe. When superimposed on predicted PM2.5 concentrations derived from regression models, variations 134 

induced by fluctuations in meteorological variables presented as UI50 (intervals between the 25th and 75th 135 

percentiles) and UI95 (intervals between the 2.5th and 97.5th percentiles) were derived using the distribution 136 

pattern discussed in the previous section. Prior to future projections, combined model simulations were 137 

conducted for a period from 1988 (when the first valid observation was available) to 2014 and were 138 

validated against 2940 field observations collected from IMPROVE (Interagency Monitoring of Protected 139 

Visual Environments) for the United States and from EMEP (The European Monitoring and Evaluation 140 

Programme) for European countries at annual scale, and corresponding results are shown in Fig. S4.  141 

Other Analysis. Statistical analysis was conducted using SPSS 23.027 with a significance level of 0.05. 142 

Monte Carlo simulations were performed using MATLAB R2016b28 to generate the frequency distribution 143 

functions associated with variation of meteorological parameters for individual gridcells. 144 

Limitations and Uncertainties. The methodology is affected by limitations and uncertainties. For example, 145 

the emission inventories are subject to uncertainty, and meteorological conditions for a single year (2014) 146 

are not truly representative. Like other atmospheric chemical transport models14, MOZART cannot provide 147 

model uncertainty information, while Monte Carlo simulation for complex atmospheric chemistry 148 

modeling would be unrealistic due to extremely high computation loading. Moreover, many 149 

physicochemical processes were not even included29,30. Contribution of SOA to PM2.5 formation is often 150 

underestimated by the modeling. To date, very limited multiple-year observation data are available on a 151 

global scale, which are critical for model validation. Last but not the least, the overall uncertainty of the 152 

two-step procedure was unable to be characterized due to the limitations listed above. Nevertheless, there is 153 

still room to further improve the method. In addition to updating the inventories, quantifications of the 154 

effects of individual pollutants and meteorological factors could help to mitigate such uncertainties.155 



 

RESULTS AND DISCUSSION 156 

Effects of Emissions and Meteorological Factors. Based on the results of a sensitivity analysis, the 157 

relative contributions of various air pollutants to PM2.5 concentrations and the responses of PM2.5 to these 158 

pollutants are shown in Fig. S5. As is shown, 97% of the variations in PM2.5 concentrations are attributable 159 

to the emission of primary PM2.5 (56.9±28.6%) followed by the emission of SO2 (18.9±8.8%), NH3 160 

(12.9±6.6%), and NOx (8.3±6.8%), respectively. Similar results have recently been reported31,32. 161 

Significant (p < 0.05) correlations between the emissions of the four pollutants and PM2.5 concentrations 162 

derived from the fixed-meteorology simulation were found for 70% of land gridcells around the world, 163 

denoting the feasibility of predicting emission-driven PM2.5 concentrations based on emission densities of 164 

these pollutants while excluding confounding meteorological effects. Those land gridcells (30%) not 165 

showing significant correlations between pollutant emissions and ambient PM2.5 concentrations were 166 

mostly identified in desert areas and high-latitude regions with low emissions, such as the Sahara Desert 167 

and the Arctic Archipelago. 168 

Fig. 2 presents maps of partial correlation coefficients between emissions and PM2.5 concentrations on an 169 

annual basis. The four major pollutants in terms of their respective contribution to PM2.5 concentrations, 170 

including primary PM2.5, SO2, NOx, and NH3, are shown. Primary PM2.5-dominated partial correlations 171 

were found for China and India, where coal and biomass fuels used for power generation, industry, 172 

residential sectors, and cement production are the most important emission sources33,34. In the United States, 173 

PM2.5 concentrations are more SO2 emission-dependent, which is consistent with the large fraction of 174 

sulfates in total PM2.5 concentrations observed in the country35. For most Western European countries, 175 

primary PM2.5 and SO2 made a synthetic contribution to PM2.5 mass concentration (such was the case in 176 

Germany36), whereas NOx has a stronger effect on France. The influence of NH3 mainly occurred in 177 

Eastern European countries and Russia (west) because NH3 exhausted from the agriculture sector (e.g., 178 

fertilizer and domesticated animals) is the leading factor affecting formation of ammonium sulfate and 179 

nitrate1. The significance of the correlation increased as the time scale changed from annual to daily. For 180 

example, median correlation p values of SO2 are 0.14 (0.012-0.46), 0.011 (0.0000038-0.29), and 9.410-31 181 

(3.110-105-710-7) on annual, monthly, and daily scales, respectively. 182 



 

Similarly, significant partial correlations (p < 0.05) were found between the main meteorological 183 

parameters and PM2.5 concentrations derived from the fixed-emission scenario simulation. On average, the 184 

most important parameter is air temperature (T), with a correlation of 0.22 followed by wind speed (WS, r 185 

= -0.16), planetary boundary layer height (PBLH, r = -0.16), relative humidity (RH, r = 0.14), and surface 186 

pressure (SP, r = -0.14). These results correspond with those of a previous study7,14,37 The geospatial 187 

distribution of the main meteorological parameters is shown in Fig. S6. In cold, high-latitude regions of 188 

North America and Siberia and in warm regions extending from northern Africa to the Arabian Peninsula, 189 

PM2.5 concentrations are mostly sensitive to temperature, which is partially associated with 190 

temperature-sensitive SO2
38. The effects of WS or PBLH are stronger in regions with relatively high 191 

elevations, where strong winds facilitate dispersion7,14,37, whereas the presence of low PBLH levels predict 192 

a stable atmosphere39. WS and PBLH are also important in many other regions, including Southeast Asia, 193 

Brazil, and the eastern seaboard of Australia, where tropical or subtropical monsoons prevail40. In dry 194 

inland regions such as central Eurasia, the formation of secondary PM2.5 is more sensitive to RH41. To 195 

characterize the relationship between emissions and meteorological effects, the relative contributions of 196 

 

Fig. 2 Geospatial distribution of partial correlation coefficients between the emissions of major air 

pollutants and PM2.5 concentrations. The four pollutants are primary PM2.5, SO2, NOx, and NH3. 
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emissions (RCE) and meteorological conditions (RCM) were measured across all model gridcells based on 197 

the results of the three conditional scenario simulations. The mean daily/weekly RCM values for PM2.5 198 

(68%±5%/63%±5%) are much higher than the mean daily/weekly RCE values for PM2.5 199 

(32%±5%/37%±5%) (p < 0.05). Emissions become more significant on a seasonal/annual basis. For 200 

example, mean seasonal RCE is 54%±7%. Changes in emissions on these longer time scales are largely 201 

driven by seasonal emission cycles23,42 and by long-term socioeconomic patterns43. 202 

In addition to annual mean PM2.5 concentrations, the number of severely polluted days (NSPD, defined as 203 

the number of days with daily PM2.5 values of > 150 μg/m3) is of particular interest not only because the 204 

annual mean concentrations are significantly associated with these high values44 but also because public 205 

responses to extreme conditions are stronger45. The occurrence of heavy pollution episodes is often 206 

associated with stable meteorological conditions, as emissions do not usually change dramatically on a 207 

daily basis46. Fig. S7a compares temporal variations of the NSPD for Beijing (from the realistic-case 208 

simulation) to emissions of major air pollutants for the surrounding area (Beijing-Tianjin-Hebei) for the 209 

winter months from 2000 to 2014. Although the NSPD and emissions undergo similar increasing trends, 210 

they are not always synchronous on an annual basis due to the influence of meteorological conditions. For 211 

example, a sharp increase in the NSPD observed from 2012 to 2013 was not driven by emission increases 212 

but by unusual meteorological conditions46,47. During that winter, the seasonal averaged WS dropped from 213 

a long-term mean of 2.94 to 2.33 m/s, and the number of days of abnormally high humidity (RH > 75%) 214 

and extremely low PBLH (< 150 m) increased from 3% to 10% and from 6.3% to 8.4%, respectively (Fig. 215 

S7b-f), favoring the growth of secondary aerosols and the accumulation of air pollutants at the ground 216 

level48,49.  217 

Emission-based Prediction. As discussed above, annual mean PM2.5 concentrations for the 35-year period 218 

derived from the fixed-meteorology simulation are significantly correlated with emissions observed across 219 

individual model gridcells. Such a correlation suggests that a set of regression models can be developed to 220 

predict PM2.5 concentrations based on emissions with meteorological confounding effects excluded. If such 221 

models can be validated against the output of the fixed-meteorology simulation, they can be applied to 222 

simulate historical PM2.5 trends-based exclusively on emissions and to predict emission-driven future PM2.5 223 

trends. As confounding meteorological effects are eliminated by these models, the proposed method 224 



 

enables us to evaluate the effectiveness of emission-reduction efforts. To do so, the emissions of the four 225 

most important air pollutants identified based on a sensitivity analysis, primary PM2.5, SO2, NH3, and NOx, 226 

were used as independent variables in developing multivariate regression models, whereas PM2.5 227 

concentrations derived from the fix-meteorology simulation were used as a dependent variable. As both 228 

emission densities and PM2.5 concentrations are log-normally distributed (Fig. S8), the multivariate 229 

regression models were fitted to all model gridcells using log-transformed data and were applied to 230 

calculate annual mean PM2.5 concentrations for these gridcells. As the formation of secondary aerosols in 231 

the air does not linearly respond to precursor emissions3, several nonlinear equations were tested with no 232 

significant improvements observed in the results. Given that the statistical regression models were 233 

established to predict annual PM2.5, the nonlinearity of the secondary aerosol formation, which occurred in 234 

a short time ranging from seconds to diurnal, was filtered out by the annual means. As such, the following 235 

linear model was adopted. 236 

log PM2.5 =  ai logEi + b, 237 

where PM2.5 is annual mean PM2.5 concentration, Ei are annual emissions of the ith pollutants, ai and b are 238 

regression coefficients. Fig. S9 shows the spatial distribution of R2 values of the regression models, 239 

indicating that results for areas characterized by high emission levels and population densities are much 240 

better (R2 values are close to one) than those found for other regions, which is helpful in reducing overall 241 

uncertainty. The regression models were validated by plotting the predicted PM2.5 concentrations against 242 

those derived from the fixed-meteorology scenario simulation shown in Fig. S10 for China, India, the 243 

United States, and Germany. This good agreement suggests that the models could be used to predict annual 244 

PM2.5 concentrations with reasonable accuracy, while confounding meteorological effects were not taken 245 

into account. It should be pointed out that the potential impact of climate change was not taken into 246 

consideration. 247 

The simplified approach to predicting annual mean ambient PM2.5 concentrations at the ground level based 248 

on annual total emissions omits the exchanges occurring among gridcells due to transport. Although the 249 

association between the emissions and PM2.5 concentrations at a given gridcell can be disturbed by the 250 

atmospheric transport across gridcells, the influence of the atmospheric transport on the association is 251 

weaken by similarities among adjacent model gridcells. Such similarities were demonstrated by the spatial 252 



 

autocorrelation of the regression model parameters. On a global scale, the calculated Moran's 253 

autocorrelation indexes are valued at 0.39 (intercepts), 0.50 (slopes for primary PM2.5), 0.33 (slopes for 254 

SO2), 0.36(slopes for NOx), and 0.30 (slopes for NH3) and are statistically significant (p < 0.05). As was 255 

expected, such autocorrelation is also significant for the gridded emissions and PM2.5 concentrations and 256 

Moran's autocorrelation indexes vary from 0.25 to 0.52 for gridded emissions of the four pollutants and are 257 

as high as 0.75 for gridded PM2.5 concentrations (p < 0.05). The most significant autocorrelation of PM2.5 258 

concentrations is attributed to the dispersion of PM2.5 in the air. Due to the autocorrelation of emissions, 259 

emissions observed at individual gridcells also shape emissions from the surrounding gridcells. 260 

Meteorology-related Variations. As discussed above, interannual trends of emission-driven PM2.5 261 

concentrations excluding meteorological confounding effects can be predicted based on annual emissions 262 

from data generated from the fixed-meteorology simulation. Similarly, the outputs of the fixed-emission 263 

simulation provide the information on variations in PM2.5 concentrations caused by confounding 264 

meteorological effects. As the influence of meteorological factors randomly fluctuates based on 265 

emission-induced PM2.5 concentrations, the following probabilistic function was used to characterize such 266 

random effects: 267 

F(PM2.5) = (2)-0.5exp(-PM2.5
2/22), 268 

where F(PM2.5) is a probability function, PM2.5 is annual mean PM2.5 concentration, and  is standard 269 

deviation associated with change in meteorological conditions under the fixed emission. Based on annual 270 

mean PM2.5 concentrations calculated from the fixed-emission simulation for the 35 years spanning from 271 

1980 to 2014, probabilistic functions were derived for all individual gridcells on an annual scale. For most 272 

of the gridcells (84%) the functions are normally distributed (p > 0.05). Deviations from the normal 273 

distribution are mostly observed in deserts or surrounding areas (Fig. S11). For the fixed-meteorology 274 

simulation the year 2014 is assumed to be a "normal" year for which most meteorological parameters are 275 

approximately equal to the 35-year mean with a standardized deviation of 0.120.25. This assumption is 276 

confirmed by calculating the average deviation of annual PM2.5 concentrations derived from 2014 277 

meteorology trends to average values for 1980 to 2014 based on the fixed-emission simulation. It was 278 

found that relative deviations for 95% of all model gridcells are less than 5%, and the overall mean value of 279 

deviation for all gridcells is 0.072%±1.1% (mean and standard deviation), which is not significantly 280 



 

different from zero (p < 0.05) as was expected. Therefore, the frequency distribution generated from the 281 

fixed-emission simulation represents random variations resulting from confounding meteorological effects. 282 

The robustness of the function was also tested using a Jackknife test for a randomly selected gridcell. The 283 

test was conducted 35 times by removing calculated 35 PM2.5 concentrations from the fixed-emission 284 

simulation one by one and by generating probabilistic distributions based on the 34 remaining datasets. The 285 

mean and standard deviation of the 35 repeated calculations are 310-17510-17 and 0.040.001, 286 

respectively, indicating a very high degree of robustness.  287 

In fact, the probabilistic functions can be derived either on an annual basis or on any temporal scale from a 288 

daily to seasonal basis. Fig. 3 shows typical examples of the probabilistic functions for a typical gridcell 289 

(Guangzhou, China) on annual (a), monthly (b), and daily (c) scales. The majority of these functions reflect 290 

typical normal distributions, which is more evident on a shorter time scale. On an annual scale, the annual 291 

mean PM2.5 concentration changes considerably with a coefficient of variation (CV) of 14%. Even without 292 

any change in emissions, the annual mean PM2.5 concentration presents a 48% chance of increasing or may 293 

decrease by more than 10%. This means that while emission-mitigation measures can reduce ambient PM2.5 294 

concentrations by 10% in a single year for this gridcell, there is a more than 20% chance of the observed 295 

annual mean concentration not declining at all or even of increasing. Similarly, the likelihood of the annual 296 

mean decreasing by more than 20% is also higher than 20%. Therefore, simply comparing annual mean 297 

PM2.5 concentrations of two consecutive years without taking meteorological conditions into consideration 298 

can be misleading. Upon reducing the time scale from annual to monthly and daily, the variation in 299 

probabilistic functions increases. CV values for monthly and daily PM2.5 concentrations increase to 29% 300 

and 38%, respectively, for the selected gridcell, which are significantly higher values than those found for 301 

annual data and which can be explained by the fact that daily and monthly meteorological conditions vary 302 

more dramatically than emissions. Therefore, monthly meteorological factor-forced changes are more 303 

random than those observed on an annual scale. With constant emissions there is a more than 50% 304 

probability of a 20% change occurring in monthly mean PM2.5 concentrations. Therefore, it is even riskier 305 

to directly compare mean PM2.5 concentrations of a given month to those for the same period of a previous 306 

year while disregarding random confounding meteorological effects. 307 



 

The random variation observed in the calculated probabilistic function is a direct indicator of the extent of 308 

confounding meteorological effects on individual gridcells. To quantify overall variations on a global scale, 309 

annual mean-based CVs were calculated for all gridcells. Corresponding results are shown in Fig. S12 as a 310 

cumulative distribution of CVs for all gridcells. The mean and standard deviation of the CV values are 311 

16±11% (median is 14.2%) with a maximum value of 109%. On average, confounding meteorological 312 

factors can lead to more than one-sixth of a variation at 28% for all model gridcells. The contribution can 313 

be as high as 100% in extreme cases. As discussed above, short-term variations observed over less than one 314 

year are even larger. When monthly data are used, the mean and standard deviation of the CV values are 315 

65±35%, showing stronger seasonal variations. The maximum CV of an individual gridcell can reach 200% 316 

on a monthly scale. Again, significant autocorrelations (Moran’s index = 0.59, p < 0.05) were found for the 317 

probabilistic functions (CVs) on an annual scale, denoting continuity in meteorological effects across 318 

space. 319 

The annual change in confounding meteorological effects on globally averaged PM2.5 concentrations, 320 

defined as a normalized global average PM2.5 anomaly for individual year from the 35-year mean, was 321 

calculated from 1980 to 2014 based on the fixed-emission simulation. The deviations observed reflect the 322 

average influence of annual meteorological conditions on annual mean PM2.5 concentrations on a global 323 

scale. It should be noted that the annual deviation observed in 2014 was the smallest, showing that using 324 

meteorological parameters for 2014 as a "normal" year for our fixed-meteorological simulations is the best 325 

choice for the 35 years studied. Such annual changes are often affected by global atmospheric circulation50. 326 

It is interesting to observe that the interannual anomalies of meteorological effects are significantly 327 

correlated with Arctic Oscillation (AO), which is shown as solid dots in Fig. 4 (r = 0.66, p < 0.05). Some 328 

regional studies also show a similar relationship. For example, it was reported that enhanced dust emissions 329 
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Fig. 3 Probabilistic functions derived from fixed-emission simulations of annual (A), monthly (B), and 

daily resolutions (C) for a representative gridcell. Bars denote the frequency distribution of the 

model-calculated PM2.5 concentrations normalized by corresponding mean values with a fitted 

normal distribution curve. The probabilities of individual segments are shown in the background. 



 

observed across Saharan regions and the increasing frequency of haze episodes recorded in northern China 330 

are associated with the positive phase of AO10,51. 331 

To further illustrate spatial variations in meteorological-induced variation, UI95 values are mapped in Fig. 332 

S13 in both absolute and relative terms. The global average UI95 of annual PM2.5 concentrations was 333 

measured as 4.9 μg/m3 (40%). Hot regions of absolute variation exhibit strong meteorological variations. In 334 

addition to areas around deserts (e.g., the southern Sahara and the Middle East) where dust forms a major 335 

component of PM2.5 emissions and where concentrations are subject to synoptic-scale weather patterns51, 336 

strong variations in PM2.5 concentrations can be observed in heavily polluted regions such as the North 337 

China Plain (NCP) and likely due to interactions between high emissions and highly variable 338 

meteorological patterns9,46. On the other hand, relatively large values of relative terms are often observed in 339 

regions with low levels of population density and low PM2.5 concentrations. For example, very high levels 340 

of relative variability were found in high-latitude regions and coastal areas, where background PM2.5 341 

concentrations are very low. In most high-emission regions (e.g., eastern China, India, Europe, the United 342 

States), although PM2.5 variations induced by meteorological conditions are lower, high PM2.5 levels can 343 

increase absolute variations on a considerable scale. For example, the UI95 for northern India and for the 344 

NCP are as high as 11.5 μg/m3 and 20.6 μg/m3, respectively. 345 

Model Application. When the regression model predictions and probabilistic functions are combined, 346 

annual mean PM2.5 concentration trends driven by emissions coupled with meteorological effects can be 347 

quantified. The concentration predicted by the regression model provides an estimation of the annual mean 348 
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Fig. 4 Normalized global average deviation of PM2.5 concentrations from the mean value for the 35 years 

spanning from 1980 to 2014 (bars). The results are based on a fixed-emission simulation conducted 

at the global scale. Standard deviations are shown as dark red lines. The blue dots denote Arctic 

Oscillation. 



 

PM2.5 under given emissions and average meteorological conditions, whereas a range derived from the 349 

probabilistic function at a fixed probability (e.g., 95%) shows fluctuation associated with random variations 350 

of meteorological parameters. This approach was then applied to simulate global historical temporal trends 351 

of PM2.5 concentrations from 1980 to 2014 and to project future trends from 2015 to 2030. Emission-driven 352 

trends of global annual mean PM2.5 concentrations prior to 2015 were calculated from the gridcell 353 

regression models based on PKU series emission inventories19 and from the RCP (Representative 354 

Concentration Pathways)2.6 and RCP8.5 emission scenarios model run for after 201452,53 using emissions 355 

for 2014 as a baseline. The results are denoted by the solid line shown in Fig. S14a. In the figure, 356 

meteorological condition-induced variation ranges are shown by the darkly shaded UI50 and lightly shaded 357 

UI95. We further assume that meteorological conditions for 2014 used as a "normal" year can be extended 358 

to future years. For the past 35 years, global annual mean PM2.5 concentrations decreased slightly from 13.1 359 

μg/m3 (10.4~16.1 μg/m3 as UI50) to 12.1 μg/m3 (9.8~14.6 μg/m3), and decreasing trends tend to continue in 360 

the future at a slightly faster rate, which could be attributed to increasing awareness and to 361 

emission-mitigation efforts made by many developing countries, especially China. We found slight 362 

differences in projected PM2.5 levels between the two emission scenarios on a global scale prior to 2030. It 363 

should be noted that the probability functions were developed based on gridded meteorological parameters. 364 

When the results are presented on an area with more than one gridcell, such as a country, a city, or even the 365 

globe, the calculated UI values are simply averaged over gridcells covering the area. This practice is based 366 

on the assumption that all meteorological confounding factors do not vary significantly within the region of 367 

concern. This applies to a relatively small region such as the NCP, where a somewhat uniform surface 368 

pressure with small pressure gradients is often observed, which in turn produces fewer altered wind and 369 

temperature fields across the NCP. However, for a larger region such as China or a region with complex 370 

terrain, this assumption would lead to an overestimation of UI values. Unfortunately, the accuracy of the UI 371 

estimation is difficult to enhance, as spatial similarities in changes of meteorological parameters are 372 

difficult to quantify. To further validate the model-calculated PM2.5 concentrations using the regression 373 

models, the calculated PM2.5 concentrations for before 2014 are compared to those observed from various 374 

monitoring stations (gridcells) over various years in Fig. S14b-c. Both calculated annual mean 375 

concentrations (dots) and UI values (bars, b. UI50 and c. UI95) are shown, indicating a good agreement. 376 

The method was further applied to various countries to predict annual mean PM2.5 concentrations subject to 377 



 

the changes in emissions. Corresponding results are shown in Fig. 5 for 12 countries. The projected PM2.5 378 

trend for 1980 to 2030 from the regression model was obtained based on RCP2.6 and RCP8.5 emission 379 

scenarios52,53. In general, these trends and UI values vary significantly across countries. Relatively high 380 

levels of variability observed for some countries are associated with stronger changes in meteorological 381 

conditions and especially for monsoon regions (e.g., China and Pakistan) where the strength of prevailing 382 

monsoons play an important role in aerosol production and dispersion10,54. The results also show that for 383 

developed countries such as the United States, France, and Japan, past declines in PM2.5 will remain with 384 

slight differences between RCP2.6 and RCP8.5 predictions. Trends for France are an exception, as the 385 

RCP2.6 assumes a much stronger decrease in pollutant emissions and hence in PM2.5 concentrations. 386 

Predicted PM2.5 concentration trends vary substantially across developing countries. In China, annual mean 387 

PM2.5 concentrations tend to decease continuously, which is consistent with considerable efforts made to 388 

curb air pollution in recent years16. For other developing countries such as India and Indonesia, PM2.5 389 

concentrations are projected to increase continuously until 2020 if the proposed emission scenarios are not 390 

altered. As the RCPs dataset provides emission data at a decadal temporal resolution, tipping points from 391 

emission incline to decline cannot be precisely identified. Nevertheless, these trends imply that although 392 

severe levels of air pollution have spurred widespread awareness and concern from governments and the 393 

public, efficient mitigation is still lacking in most developing countries. Meanwhile, it is very likely that air 394 

PM2.5 concentrations will increase continuously in coming years in developing countries such as Laos and 395 

in Central Africa. 396 

Fig. S15 shows three examples of predicted historical and future trends of PM2.5 concentrations for three 397 

cities for which recent monitoring data are available, based on the RCP2.6 and RCP8.5 emission 398 

scenarios52,53 for 1980 to 2030. For the city of New York, PM2.5 monitoring data for after 2014 suggest that 399 

emission-reduction rates likely range between the two scenarios, which are not remarkably different in the 400 

first place. For New Delhi, although the observed values still fall within the UI95 range, concentrations 401 

reported for the last three years exceed the predicted means. Although unusual meteorological conditions 402 

could play a critical role in increasing concentrations, relatively high levels of PM2.5 observed for 2014 and 403 

2016 may indicate accelerated increases in emission and pollution levels. Numerous studies have reported 404 

high levels of air pollution in India in recent years55. Beijing is one of the most heavily contaminated cities 405 

in northern China. Based on both RCP2.6 and RCP8.5 emission scenarios, we find a slight decline in PM2.5 406 



 

concentrations after 2014. However, the measured annual mean PM2.5 concentrations from 2014 to 2016 407 

are well below the predicted ones and even fall below the lower bound of the 95% uncertainty interval. It is 408 

likely that mitigation measures applied in the city were more effective than what was planned in RCP 409 

scenarios. 410 

In summary, the novel method developed in this study serves as a useful tool for quantifying 411 

emission-induced changes in PM2.5 concentrations by excluding confounding meteorological effects. The 412 

approach involves less computation than an atmospheric chemical transport model; hence it can be used in 413 

quantitative environments, for health assessments of PM2.5 and to evaluate the effectiveness of mitigation 414 

efforts. Importantly, we learned from this study that long-term trends rather than declines occurring over a 415 

single year are critical to consider when evaluating the effectiveness of mediation measures while 416 

considering meteorology-induced PM2.5 fluctuations. 417 
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Fig. 5 Temporal trends of PM2.5 concentrations for 12 countries for 1980 to 2030 based on the 

RCP2.6 (blue) and RCP8.5 (orange) emission scenarios. Emission-driven trends are shown 

as medians (black lines) with a 90% confidence interval (black dash lines). Potential 

fluctuations induced by meteorological confounding effects are shown as shaded areas as 

UI50 (dark shaded area) and UI95 (light shaded area). 
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