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Abstract. An interaction of the moving submerged circular cylinder with elastic solid ice
cover is investigated. The method of reduction to integral-differential system of equations is
extended to the case of elastic ice sheet floating on the fluid surface. The elastic properties of
the ice are accounted for by the Euler’s beam theory. A special iterative procedure is developed
to construct small-time asymptotic solution for the cylinder moving with constant acceleration
from rest. Elastic-gravity waves in the ice cover are studied in a wide range of parameters.

1. Introduction
In this paper we study analytically the deflection of an elastic ice-plate floating on the surface of
ideal fluid caused by unsteady motion of submerged circular cylinder. The most recent theories
and data related to the problem of external loading on the surface of the ice were discussed
in [1]. The problem of unsteady motion of submerged body under ice cover in homogenous or
stratified fluids was considered in linear statement in [2]. The linearised problem on hydroelastic
behaviour of the floating plate of finite size was investigated in [3]. Our analysis uses reduction
of the Euler equations to the nonlinear boundary integral-differential system of equations for the
wave elevation together with normal and tangential fluid velocities [4]-[6]. In this method the
key role is played by the integral equation for a normal fluid velocity that discribes interaction
of the cylinder with the floating ice-cover.

2. Formulation of the problem
The plane irrotational flow of a heavy inviscid deep fluid is considered in the coordinate system
Oxy with a vertical y-axis. The circular cylinder moves totally submerged under ice cover.
Trajectory of the cylinder center (xc(t), yc(t)) is known at any time moment t > 0. The ice cover
is modeled by an elastic solid plate with constant small thickness h and density ρice floating
freely on the free surface. The shape of the plate y = η(x, t) is unknown and to be determined
during solution of the problem. Initially, the fluid, ice plate and cylinder are at rest. The line
y = 0 corresponds to undisturbed contact surface between ice and fluid (Figure 1). Let h0, u0,
and ρ be initial submergence depth of the cylinder center, characteristic speed of the cylinder,
and fluid density, respectively. The dimensionless variables use the depth h0 as a length scale,
the speed u0 as a velocity scale, the quantity ρu20 as a pressure unit, and the ratio h0/u0 as
a time unit. Unsteady flow of incompressible fluid under ice cover is described by the Euler
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equations for the velocity of the flow u = (U, V ) and hydrodynamic pressure p
Ut + UUx + V Uy + px = 0,

Vt + UVx + V Vy + py = −λ,
Ux + Vy = 0, Uy − Vx = 0,

(1)

where λ = gh0/u
2
0 is the square of the inverse Froude number and g is the gravity acceleration.
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Figure 1. Scheme of motion.

We assume in our considerations that fluid remains to be in contact with an ice cover.
Moreover, in contrast to the free surface flow, the pressure at the ice-covered surface depend
on the deflection of the ice-plate. Therefore the following boundary kinematic and dynamic
conditions should be satisfied

ηt + Uηx = V, p = αηtt + βηxxxx (y = η(x, t)), (2)

where α = ρiceh/(ρh0) and β = Eh3/(12ρh30u
2
0) are dimensionless parameters responsible for

inertia and elasticity of the ice cover respectively. Here E is Young modulus. The boundary
condition at the moving cylinder surface has the form

(u− ucyl) · n = 0
(

(x− xc(t))2 + (y − yc(t))2 = r2
)
, (3)

where n is the unit normal and r is non-dimensional radius of the cylinder. We assume that the
fluid is at rest at infinity, so we have U, V, η → 0 as |x| → ∞. The initial velocity field u|t=0 = u0

should be irrotational
U0x + V0y = 0, U0y − V0x = 0,

and also it should satisfy the compatibility condition

(u0 − ucyl(0)) · n0 = 0
(

(x− xc(0))2 + (y − yc(0))2 = r2
)
.

These relations are satisfied, in particular, when the cylinder starts moving smoothly from rest.
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3. Integro-differential equations on the free surface
We introduce the tangential velocity u(x, t) = (U + ηxV )|y=η and normal velocity v(x, t) =
(V −ηxU)|y=η of the fluid particles at the interface y = η(x, t) between ice and fluid, and reduce
the basic equations (1)-(2) to an equivalent system of boundary integral-differential equations
for the unknown functions u, v, η

ηt = v, ut +
1

2

∂

∂x

(
u2 − 2ηxuv − v2

1 + η2x

)
+ ληx + αηttx + βηxxxxx = 0. (4)

[I +A(η) + r2Ar(η)]v = [B(η) + r2Br(η)]u+ vd(η). (5)

The integral operators A and B are given by

A(η)u(x) =
1

π

+∞∫
−∞

η(x)− η(s)− (x− s)η′(x)

(x− s)2 + [η(x)− η(s)]2
u(s)ds,

B(η)u(x) =
1

π

+∞∫
−∞

x− s+ [η(x)− η(s)]η′(x)

(x− s)2 + [η(x)− η(s)]2
u(s)ds,

(6)

The operators Ar and Br act by the formulae

Ar(η)u(x) =
1

π

+∞∫
−∞

[η(s)− yc − r2P (x)]Q′(x)− [s− xc − r2Q(x)]P ′(x)

[η(s)− yc − r2P (x)]2 + [s− xc − r2Q(x)]2
u(s)ds,

Br(η)u(x) =
1

π

+∞∫
−∞

[η(s)− yc − r2P (x)]P ′(x) + [s− xc − r2Q(x)]Q′(x)

[η(s)− yc − r2P (x)]2 + [s− xc − r2Q(x)]2
u(s)ds,

(7)

with Poisson kernels

P (x) =
η(x)− yc

(x− xc)2 + (η(x)− yc)2
, Q(x) =

x− xc
(x− xc)2 + (η(x)− yc)2

.

Functions vd in (5) is defined by relation

vd(η) = 2r2
(
ẏcQ(x)− ẋcP (x)

)′
. (8)

Prime superscript (. . . )′ in formulae (6)–(8) denotes partial differentiation with respect to the
spatial variable x. Respectively, the time variable t was omitted from the functions η, u, v in
formulae (5)–(8) for simplicity since it appears there only as a parameter.

4. Small-time asymptotic solution
We consider the unsteady flow which starts from rest, η(x, 0) = u(x, 0) = v(x, 0) = 0, and is
caused by two-dimensional motion of the cylinder with constant acceleration. The trajectory of
the cylinder can be taken in dimensionless form as xc(t) = t2 cos θ, yc(t) = −1 + t2 sin θ. The
solution of system (4)-(5) is derived by the small-time expansion method in the form

η(x, t) = t2η2(x) + t3η3(x) + t4η4(x) + . . . ,

u(x, t) = tu1(x) + t2u2(x) + t3u3(x) . . . ,

v(x, t) = tv1(x) + t2v2(x) + t3v3(x) + . . . .
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where the coefficients ηn and un may be evaluated via vn by formulae following from differential
equations (4)

ηn+1 =
vn

n+ 1
(n ≥ 1),

u1 = −αv′1, u2 = 0, u3 =
1

6
[v21 − λv1 − βv

(4)
1 ]′ − αv′3,

u4 = 0, u5 =
1

20
[4v1v3 − λv3 − βv(4)3 ]′ − αv′5, . . .

(9)

Using the power expansion of the free surface elevation η we can determine similar power series
for the integral operators defined by formulae (6) and (7)

A(η) = t2A(2) + t3A(3) + . . . , B(η) = B(0) + t2B(2) + . . . ,

Ar(η) = A(0)
r + t2A(2)

r + t3A(3)
r + . . . , Br(η) = B(0)

r + t2B(2)
r + . . .

Here the leading-order coefficients of the operators A and B have the form:

A(2)u(x) =
1

π

+∞∫
−∞

η2(x)− η2(s)
(x− s)2

u(s)ds−η′2(x)
1

π

+∞∫
−∞

u(s)ds

x− s
, B(0)u(x) = Hu(x) =

1

π

+∞∫
−∞

u(s)ds

x− s
,

where H denotes the Hilbert transform. Operators A
(0)
r and B

(0)
r can be evaluated as follows

A(0)
r v(x) =

1

π

+∞∫
−∞

(1− r2p(x))q′(x)− (s− r2q(x))p′(x)

(1− r2p(x))2 + (r2q(x)− s)2
v(s)ds,

B(0)
r u(x) =

1

π

+∞∫
−∞

(1− r2p(x))p′(x) + (s− r2q(x))q′(x)

(1− r2p(x))2 + (r2q(x)− s)2
u(s)ds,

with functions

p(x) = P (x)|{η=0, xc=0, yc=−1} =
1

1 + x2
, q(x) = Q(x)|{η=0, xc=0, yc=−1} =

x

1 + x2
. (10)

The dipole term vd has the power expansion vd(x, t) = tv
(1)
d (x) + t3v

(3)
d (x) + . . . with coefficients

v
(1)
d (x) = 4r2(q′(x) sin θ − p′(x) cos θ),

v
(3)
d (x) = 4r2(p′′(x) cos 2θ − q′′(x) sin 2θ) + 4r2(η2(x)[p′(x) sin θ + q′(x) cos θ])′.

(11)

Thus, integral equation (5) for normal fluid velocity v leads to the set of equations for
coefficients vn

[I + r2Ar(0)]vn = ϕn, (n > 1)

where functions ϕn can be evaluated explicitly due to relations (9) via the coefficients v1, v2,
. . ., vn by the formulae

ϕ1 = v
(1)
d +Hu1 + r2B(0)

r u1, ϕ2 = 0,

ϕ3 = v
(3)
d +Hu3 + r2

(
B(0)
r u3 −A(2)

r v1

)
−A(2)v1, ϕ4 = 0, . . .

(12)
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The main difficulty created by the presence of an ice cover is that small-time expansion for
the tangential velocity u(x, t) starts with the first order of time variable t, which is due to the
presence of the terms ηttx in differential equation (4). This fact prevents us from formulating
explicit formulae expressing vn via the previous coefficients v1, . . . , vn−1 as it was made in [6] in
case of the free surface problem. Instead of that we have series of integro-differential equations

v1 + α(H + r2B(0)
r )∂xv1 = v

(1)
d , v2 = 0,

v3 + α(H + r2B0
r )∂xv3 = v

(3)
d +

1

6
H∂x(v21 − λv1)+

+ r2
(

1

6
B(0)
r ∂x(v21 − λv1)′ −A(2)

r v1

)
− β

6

(
H + r2B(0)

r

)
∂5xv1,

(13)

To solve these equations we apply the method of successive approximations. By this approach
we suppose α = β = 0 (i.e. we ignore the presence of ice cover in the first order) and calculate
vi from equations (13). Coefficients obtained by this way correspond to the problem on free
surface waves caused by circular cylinder. Expansion for the wave elevation η(x, t) can be found
from the first relation in formulae (9) as follows

I0(η2(x)) = 2r2
(

1− r2

4

)(
q′(x) sin θ − p′(x) cos θ

)
+O(r6), η3(x) = 0,

I0(η4(x)) = r2
(

1− r2

4

)(
p′′(x)

[
cos 2θ +

λ

6
sin θ

]
+
[λ

6
cos θ − sin 2θ

]
q′′(x)

)
+

+
r4

4

(
p′(x)

[
sin 2θ − λ

3
cos θ

]
+
[λ

3
sin θ + cos 2θ

]
q′(x)

)
+

+
r4

9

(
p′′′′(x) cos 2θ − q′′′′(x) sin 2θ

)
+
r4

3

(
p′′(x)− 7

4
q′(x)

)
+O(r6).

(14)
Operator I0 means that η2 and η4 were found at the zeroth step. Then we substitute obtained
coefficients (14) into equations (13), which get the following form

I1(v1) + α(H + r2B(0)
r )∂xI0(v1) = I0(v1), v2 = 0,

I1(v3) + α(H + r2B(0)
r )∂xI0(v3) = I0(v3)−

β

6

(
H + r2B(0)

r

)
∂5xI0(v1),

(15)

The values of coefficients η2 and η4 at the next itaration step can be evaluated directly from
equations (15):

I1(η2(x)) =
r2

2

(
4 + r2(α− 1)

)(
q′(x) sin θ − p′(x) cos θ

)
+

+
αr2

2
(4− r2)

(
q′′(x) cos θ + p′′(x) sin θ

)
, (16)

I1(η4(x)) = r2
(

2 +
αr2

16
[λ+ 8]− r2

12
[λ+ 6 + 45β]

) (
p′(x) cos θ − q′(x) sin θ

)
+

+ 3r4
(

1− 3α

2

)(
p′(x) sin 2θ + q′(x) cos 2θ

)
+

+ r2
(
λ

6

[
1− r2

4

]
+ α

[
r2

2

(
1 +

λ

6

)
− 1

])
(p′′(x) sin θ + q′′(x) cos θ)+

+ r2
(

1 +
r2

4
[α− 1]

)
(p′′(x) cos 2θ − q′′(x) sin 2θ)+

(17)
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+
λαr2

6

(
1− r2

4

)
(p′′′(x) cos θ − q′′′(x) sin θ)− αr2

(
1− r2

4

)
(p′′′(x) sin 2θ − q′′′(x) cos 2θ)+

+
r4

9

(
[p(4)(x)− αq(5)(x)] cos 2θ − [q(4)(x) + αp(5)(x)] sin 2θ

)
+

+
2βr2

3

(
1− r2

4

)
(p(6)(x) sin θ + q(6)(x) cos θ)− r4

12

(
7q′(x) + [7α− 4]p′′(x) +

α

4
q′′′(x)

)
Consequently, repeating this procedure we can calculate ice deflection profile coefficients

In(η2) and In(η4) with any demanded accuracy with respect to parameters α and β from the
following formulae

In+1(η2) = In(η2)− α(H + r2B(0)
r )∂xIn(η2),

In+1(η4) = In(η4)− α(H + r2B(0)
r )∂xIn(η4)−

β

3
(H + r2B(0)

r )∂5xIn(η2).
(18)

Here In(η) denotes the value of η calculated at the n-th step of iterative procedure.
Having the explicit expression for ice deflection η(x, t) we can determine pressure p in the

fluid under the ice plate from dynamic boundary condition (2). If we look for a solution in the
form of power series then the pressure p at the n-th step of iterative procedure takes the form

In(p(x, t)) = 2αIn(η2(x)) + β∂2xIn(η2(x))t2 + (12αIn(η4(x)) + β∂4xIn(η4(x)))t4, (19)
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Figure 2. Deformation of the boundary y = η(x, t) at the time t = 0.85 caused by vertical
sumbersion of the cylinder of radius r = 0.5 with parameter λ = 10.

5. Analysis of the solution
Coefficients (16) and (17) determine the deformation of the boundary y = η(x, t) in wide range of
paramters: acceleration rate of the cylinder (parameter λ), direction of motion (angle θ), size of
the cylinder r, mass and elastic constant of the ice cover (parameters α and β). In particularly,
when α = β = 0 we have the case of the free surface flow; when β = 0 we have the case of the
flow under broken ice.

Figures 2 and 3 demonstrate the differences in the flow patterns generated by the cylinder
moving under ice plate and free surface. Indeed, in case of the free surface flow, the vertically
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submerging cylinder (θ = −π
2 ) causes inertial deflection of free boundary with subsequent

formation of intense vertical splash jet. In contrast, two additional deflection zones appear
symetrically above the cylinder submerging under elastic ice plate. Similarly, for horizontal
motion of the cylinder (θ = 0), the floating ice cover supress essentially impulsive response
of the fluid, but small-amplitude elastic waves are generated in this case. Figure 4 shows the
pressure distribution in the fluid under the ice plate. In accordance with this picture, the elastic
plate experiences the highest loads in two symetric zones of intense deflection above the cylinder.
Therefore we can predict that ice is more likely to break in these zones.
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a. Ice plate (α = 0.3, β = 0.002)
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b.
Free surface (α = 0, β = 0)

Figure 3. Deformation of the boundary y = η(x, t) at the time t = 0.85 caused by horizontal
motion of the cylinder of radius r = 0.5 with parameter λ = 10.
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Figure 4. Pressure distribution in the
fluid under the ice plate at the time
t = 0.85 for submerging cylinder of
radius r = 0.5; λ = 10, α = 0.4,
β = 0.001.
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