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Abstract

The tight-span of a finite metric space is a polytopal complex that has ap-

peared in several areas of mathematics. In this paper we determine the poly-

topal structure of the tight-span of a totally split-decomposable (finite) metric.

These metrics are a generalization of tree-metrics and have importance within

phylogenetics. In previous work, we showed that the cells of the tight-span

of such a metric are zonotopes that are polytope isomorphic to either hyper-

cubes or rhombic dodecahedra. Here, we extend these results and show that

the tight-span of a totally split-decomposable metric can be broken up into a

canonical collection of polytopal complexes whose polytopal structures can be

directly determined from the metric. This allows us to also completely deter-

mine the polytopal structure of the tight-span of a totally split-decomposable

metric. We anticipate that our improved understanding of this structure may

lead to improved techniques for phylogenetic inference.
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1. Introduction

In this paper, X will denote a finite set with |X| ≥ 2. Given a metric d

on X, the tight-span of d is the polytopal complex T (d) which consists of the

bounded faces of the polyhedron

{f ∈ RX : f(x) + f(y) ≥ d(x, y), for all x, y ∈ X}.

The tight-span of an arbitrary metric was first introduced by Isbell [22] (where

it was called the injective hull), and was subsequently redisovered in [5, 7]. It

has appeared in various areas of mathematics including group theory [8, 24],

phylogenetics [3, 15], network flow theory [18], tropical geometry [6] and the

theory of low distortion embeddings [2].

In this paper we are interested in determining the polytopal structure of

the tight-span of a special type of metric on a finite set called a totally split-

decomposable metric [3]. We picture the 1-skeleton for an example of the tight-

span of such a metric in Figure 1. This type of metric originated from the study

of tree-metrics arising in evolutionary biology, and is now commonly used in the

phylogenetic analysis of molecular DNA sequence data [21]. Recently, infinite

versions of these metrics have also appeared in the study of certain finitely

generated groups [25].

The tight-span of a totally split-decomposable metric has an interesting

polytopal structure. In [1] it was shown that the tight-span of a totally split-

decomposable metric arising from a bipartite graph is a cubical complex. Then,

some of the first results concerning this structure for totally split-decomposable

metrics in general appeared in [14, 15]. Amongst other things, in these pa-

pers it was shown that the tight-span of a certain subclass of the totally split-

decomposable metrics can be considered as a special type of median complex

called the Buneman complex (cf. [4] for more concerning median complexes).

Subsequently, in [20] it was shown that the cells in the tight-span (i.e. the poly-

topes from which the tight-span is comprised) of a totally split-decomposable

metric are zonotopes that are polytope isomorphic to either hypercubes or rhom-
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bic dodecahedra. In this paper, we shall extend this result by completely deter-

mining the polytopal structure of the tight-span of a totally split-decomposable

metric.

Figure 1: An example of the 1-skeleton of the tight-span of a totally split-decomposable metric
defined on the set {0, 1, 2, . . . , 9, 10} (the metric is defined in the next section). It is a polytopal
complex consisting of 5 blocks: two 1-cubes, a 3-cube, a rhombic dodecahedron and a pair of
2-cubes with an edge in common.

We now summarize the rest of the paper. In Section 2 we begin by presenting

some terminology and results concerning split systems, structures which form

the basis for defining totally split-decomposable metrics. We then present a

structural result (cf. Corollary 2) concerning a certain graph that can be asso-

ciated to a split system (called the incompatibility graph). This result provides

a key to breaking up the tight-span of a totally split-decomposable metric into

easier to understand pieces.

In Section 3, we study properties of the Buneman complex, a polytopal com-

plex that can be associated to a weighted split system (S, α). As we shall ex-

plain, we can break this complex down into pieces or blocks (maximal connected

subcollections of cells, which cannot be disconnected by removing a vertex or

0-cell) which are in bijective correspondence with the connected components of

the incompatibility graph of S. In Section 4, we then prove a result concerning

the blocks of the Buneman complex (Theorem 7), which ultimately allows us

in Section 7 to reduce the problem of understanding the polytopal structure of

the tight-span of a totally split-decomposable metric to that of understanding
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its blocks.

In Section 5 we begin to relate properties of the Buneman complex to those

of the tight-span. We do this by considering a map κ that maps the Buneman

complex onto the tight-span, which was defined in [11] and further studied in

[20]. In particular, we show that the map κ has certain properties relative to

the blocks of the Buneman complex, which allows us to prove in Section 6 that

the map κ induces a bijection between the blocks of the Buneman complex and

the blocks of the tight-span (Theorem 15).

In Section 7 we conclude by showing that, for most of the blocks in the

Buneman complex, κ induces a polytopal complex isomorphism between the

blocks in the Buneman complex and their corresponding blocks in the tight-span

(Theorem 18). Moreover, we see that the remaining blocks in the tight-span have

a very simple structure: they are all rhombic dodecahedra (Theorem 15). As

we shall also explain in Section 7, this allows us to completely determine the

polytopal structure of the tight-span of a totally split-decomposable metric.

In future work it could be of interest to understand how our results may

extend to the case of infinite, totally split-decomposable metrics defined in [25].

In addition, it could be of interest to understand how tight-spans of totally

split-decomposable metrics fit the theory of CAT(0) complexes [4]. Ultimately,

we anticipate that better understanding the structure of the tight-span of a

totally split-decomposable metric might be useful within phylogenetics. For

example, this structure is closely-related to the block-realization of a metric [16],

which may give insights on how to decompose metrics that are of importance

in phylogenetics.

Throughout the paper we will follow and extend the notation and definitions

presented in [20]. For the reader’s convenience, we shall briefly recall relevant

notation from [20], but we refer the reader to that paper for more detail.

2. The incompatibility graph of weakly compatible split system

We begin by recalling some terminology and results concerning split systems,

structures which form the basis for defining and understanding totally split-
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decomposable metrics. A split of X is a bipartition of X, and a set S of splits of

X is a split system (on X). We denote a split {A,B} of X with ∅ 6= A,B ⊂ X

by A|B (= B|A). For a split S of X and some elements x ∈ X we denote by

S(x) the element of S that contains x and by S(x) the complement of S(x) in

X. Two distinct splits S, S′ ∈ S are compatible if there exists A ∈ S and A′ ∈ S′

such that A ∪ A′ = X, otherwise S and S′ are incompatible. We call a split

system S incompatible if every pair of distinct splits in S is incompatible. We

also define a split system with 1 element to be incompatible. Following [3], we

call a split system weakly compatible if there exist no three splits S1, S2, S3 ∈ S

and four elements x0, x1, x2, x3 ∈ X such that

Sj(xi) = Sj(x0) if and only if i = j.(1)

Note that in [13] weakly compatible split systems where characterized as those

split system S for which for any three splits S1, S2, S3 ∈ S and all x ∈ X,

we have S1(x) ∩ S2(x) ∩ S3(x) ∈ {S1(x) ∩ S2(x), S2(x) ∩ S3(x), S1(x) ∩ S3(x)}.

Also note that in [13, Theorem 4.1], the following result is proven. Suppose

that S = {S1, . . . , Sk} is a weakly compatible yet incompatible split system of

size 1 ≤ k. Then there exists a partition X = X1

·
∪ . . .

·
∪ X2k of X into 2k

non-empty pairwise disjoint subsets Xi such that either S is strictly circular,

that is Si = Xi

·
∪ . . .

·
∪ Xi+k−1|Xi+k

·
∪ . . .

·
∪ Xi−1 holds for 1 ≤ i ≤ k or

S is octahedral, that is, k = 4 and we can relabel the elements in S such that

Si = Xi

·
∪ Xi+1

·
∪ Xi+2|Xi+3

·
∪ Xi+4

·
∪ Xi+5 for 1 ≤ i ≤ 3 and S4 = X1

·
∪

X3

·
∪ X5|X2

·
∪ X4

·
∪ X6 (where we take indices modulo 2k). See Figure 2 for a

diagrammatic representation of an octahedral split system. For S a split system

on X, let Oct(S) = {S ′ ⊆ S : S ′ is octahedral}. We call S consistent if S is

weakly compatible and does not contain an octahedral subsystem, that is, if

Oct(S) is empty.

Using this last result we now present a key property of weakly compatible

split systems.

Theorem 1. Suppose that S ( S(X) is a weakly compatible split system and
that S1 ( S is an octahedral split system. Then every split S in S − S1 is
compatible with every element in S1.
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Figure 2: (a) An octahedral split system on the set {1, 2, 3, 4, 5, 6} consisting of the splits
{1, 2, 3}|{4, 5, 6}, {2, 3, 4}|{5, 6, 1}, {3, 4, 5}|{6, 1, 2}, and {1, 3, 5}|{2, 4, 6}, in which each split
is obtained by taking the labels of some face and its opposite face in the pictured octahedron.
(b) The Buneman complex associated to the split system in (a).

Proof: Suppose S1 = {S1, S2, S3, S4} and assume for contradiction that there

exists some split S5 ∈ S − S1 such that S5 is incompatible with some split in

S1. Then

S ′ = {S ∈ S1 : S5 and S are incompatible } 6= ∅.

Assume without loss of generality that Si = Xi∪̇Xi+1∪̇Xi+2|Xi+3∪̇Xi+4∪̇Xi+5,

i = 1, 2, 3 and S4 = X1∪̇X3∪̇X5|X2∪̇X4∪̇X6 for X = X1∪̇ . . . ∪̇X6.

If |S ′| = 1 then we may assume without loss of generality that S1 = {S1}.

But then S5 is compatible with all Si, i = 2, 3, 4. Since {S2, S3, S4} is strictly

circular, there exists some x ∈ X such that S5(x) ( Si(x), i = 2, 3, 4. Hence,

S5(x) ⊆
⋂
i=2,3,4 Si(x) = Xj , for some j ∈ {1, . . . , 6}. Thus, S5 and S1 cannot

be incompatible since either Xj ⊆ S1(x) or Xj ⊆ S1(x) holds; a contradiction.

Now suppose |S ′| = 2 and let x ∈ X. Without loss of generality we may

assume x ∈ X1 and S1 = {S1, S2}. Hence,

S1(x) ∩ S2(x) = S3(x) ∩ S4(x).(2)

Since {S1, S2, S5} is weakly compatible and incompatible, there exist i, j ∈
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{1, 2, 5} such that

∅ 6= Si(x) ∩ Sj(x) = S1(x) ∩ S2(x) ∩ S5(x) = S3(x) ∩ S4(x) ∩ S5(x).(3)

and so S3(x)∩S5(x) 6= ∅ and S4(x)∩S5(x) 6= ∅. Since S5 and S3 are compatible

it follows that either S5(x) ∩ S3(x) = ∅ or S3(x) ∩ S5(x) = ∅ must hold. If

S5(x)∩S3(x) = ∅ then S5(x)∩S4(x) 6= ∅ as otherwise (2) would imply S5(x) ⊆

S1(x) which is impossible. Since S5 and S4 are compatible S4(x) ∩ S5(x) = ∅

follows. Hence, S4(x) ⊆ S5(x). Combined with S5(x) ∩ S3(x) = ∅, it follows

that S4(x) ⊆ S3(x) which is impossible. Hence, S3(x) ∩ S5(x) = ∅.

Since S5 and S4 are compatible either S5(x)∩S4(x) = ∅ or S4(x)∩S5(x) = ∅

must hold. If S5(x) ∩ S4(x) = ∅ held, then S3(x) ( S5(x) ( S4(x) which is

impossible. Thus S4(x) ∩ S5(x) = ∅. But then S5(x) ⊆ S4(x) ∩ S3(x). Since S1

is weakly compatible yet incompatible (2) implies⋂
i=1,...,4

Si(x) = S1(x) ∩ S2(x) = S3(x) ∩ S4(x).

Hence, by [13, Lemma 2.1]⋂
i=1,...,4

Si(x) = S1(x) ∩ S2(x) = S3(x) ∩ S4(x).

Consequently, S5(x) ⊆ S1(x)∩S2(x) and so S5(x) ⊆ S1(x) which is impossible.

If |S ′| = 3 and x ∈ X, then we may assume without loss of generality that

x ∈ X1 and S ′ = {S1, S2, S3}. Hence,

S1(x) ∩ S2(x) = S3(x) ∩ S4(x)

and similar arguments to the case |S ′| = 2 imply that S4(x)∩S5(x) 6= ∅. Thus,

since S4 and S5 are compatible, either S4(x) ∩ S5(x) = ∅ or S5(x) ∩ S4(x) = ∅

must hold.

We first consider the case S4(x) ∩ S5(x) = ∅. Then X2∪̇X4∪̇X6 ( S5(x).

Hence, there exists some y ∈ S5(x)−(X2∪̇X4∪̇X6). Now, sinceX = X1∪̇ . . . ∪̇X6

it follows that we can pick some y ∈ Xi for some i ∈ {1, 3, 5}. Note that
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S5(y) = S5(x), and also that X3 is not a subset of S5(y). Indeed, if X3 ⊆ S5(y)

held, then X2∪̇X4∪̇X6 ( S5(y) would imply that S2(x) ⊆ S5(y). Hence, S2

and S5 would be compatible which is impossible. Similarly, we cannot have

X1 ⊆ S5(y) since in that case X2∪̇X4∪̇X6 ( S5(x) would imply S3(x) ⊆ S5(x),

and thus S3 and S5 are compatible which is impossible. It follows that there

exists x3 ∈ X3−S5(y) and x1 ∈ X1−S5(y). Let xj ∈ Xj , j ∈ {2, 4}. Then tak-

ing the four elements x1, x2, x3, x4 together with the three splits S2, S3, S5 ∈ S

violates Property (1), a contradiction.

Now in case S5(x) ∩ S4(x) = ∅, we have X1∪̇X3∪̇X5 ( S5(x). Hence, there

must exist some y ∈ S5(x) − (X1∪̇X3∪̇X5). Thus, we can pick some element

y ∈ Xi for some i ∈ {2, 4, 6}. Note that S5(x) = S5(y). Arguments similar

to the ones used in the case of S4(x) ∩ S5(x) = ∅ can now be employed to

show that there must exist some x2 ∈ X2 − S5(y) and some x6 ∈ X6 − S5(y).

Let xj ∈ Xj , j ∈ {1, 3}. Then taking the elements x1, x2, x3, x6 and the splits

S2, S3, S5 violates Property (1), which is again a contradiction. This completes

the proof for the case |S ′| = 3.

If |S ′| = 4, then S ′ = S1. Hence, S ′∪{S5} is a weakly compatible yet incom-

patible split system that contains an octahedral split system. By [13, Theorem

4.1], it follows that S ′ ∪ {S5} is octahedral. But then |S ′ ∪ {S5}| = 4 which is

impossible.

Given a split system S we define the incompatibility graph I(S) associated

to S to be the graph with vertex set S and edge set consisting of those pairs

{S, S′} of distinct splits S, S′ ∈ S which are incompatible (cf. e.g. [17]). We also

let C(I(S)) denote the set of connected components of I(S). To illustrate these

definitions, let S denote the split system on X = {0, 1, . . . , 9, 10} underpinning

the totally split-decomposable metric whose tight-span we picture in Figure 1.

Then I(S) is the graph depicted in Figure 3.

Corollary 2. Suppose that S is a weakly compatible split system, S ′ ⊆ S is an
octahedral split system, and I(S) is connected. Then S = S ′. In particular, if
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Figure 3: The incompatibility graph of a split system on the set {0, 1, . . . , 9, 10} underpinning
the tight-span pictured in Figure 1. Each vertex corresponds to the split A|A, with A being
the set of numbers labelling the vertex (so for, example, the vertex labelled 6, 9, 10 corresponds
to the split given by taking {6, 9, 10} and its complement).

S ′ ∈ C(I(S)), then S ′ is octahedral or consistent.

Proof: Suppose to the contrary that S 6= S ′. Let S denote a split in S − S ′

and let S′ denote a split in S ′. Since, by assumption, I(S) is connected, there

exists some path P in I(S) from S to S′. But then there must exist some edge

{S1, S2} on P such that S1 ∈ S − S ′ and S2 ∈ S ′. But this is impossible since

then S1 and S2 are incompatible in contradiction to Theorem 1.

3. The Buneman complex of a weighted split system

In this section we gather together some useful results concerning the Bune-

man complex. We begin by presenting some general definitions concerning poly-

hedral complexes (cf. e.g. [23]).

3.1. Polytopal complexes

A polyhedron in Rn, n ∈ N, is the intersection of a finite collection of half-

spaces in Rn and a polytope is a bounded polyhedron. A face of a polyhedron

P is the empty-set, P itself, or the intersection of P with a supporting hyper-

plane. We denote the fact that P is d-dimensional by putting dim(P ) = d. The

0-dimensional faces of P are also called its vertices and the 1-dimensional faces

its edges. A polyhedral complex C is a finite collection of polyhedra (which we

call cells) such that each face of a member of C is itself a member of C, and

the intersection of two members of C is a face of each. If all members of C are
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polytopes, we call C a polytopal complex. The 1-skeleton of C is the union of

its 0- and 1-dimensional cells (which we will also consider sometimes as being

a graph, whose vertices and edges correspond to vertices and edges in C). Note

that we will not usually distinguish between C and its underlying set
⋃
C∈C C.

For any c in the underlying set of C, we let [c] denote the minimal cell C in C

(under cell inclusion) that contains c. In this case we also call c a generator of

C.

Suppose that C is a connected polytopal complex. A vertex in C is a cut-

vertex if C − {v} is disconnected. Note that if v is a cut-vertex of C and C is

some connected component of C − {v}, then C+v = C ∪ {v} can be regarded

as a connected polytopal complex in the obvious way. A maximal collection of

cells in C that is connected and does not contain a cut-vertex is called a block of

C. We denote the set of blocks of C by B(C). Note that this is also a polytopal

complex.

3.2. The Buneman complex

A weighted split system (S, α) (on X), is a split system S on X together

with a map α : S → R>0. We now define the Buneman complex of such a split

system (cf. [20, Section 2.3]). First, we put

U(S) = {A ⊆ X : there exists S ∈ S with A ∈ S }.

Also, given any map φ : U(S)→ R, we define

supp(φ) = {A ∈ U(S) : φ(A) 6= 0}

and put

S(φ) = {S ∈ S : S ⊆ supp(φ)}.

Now, we let

H(S, α) = {φ ∈ RU(S) : φ(A) ≥ 0 and φ(A)+φ(A) =
α(A|A)

2
for all A ∈ U(S)}

(a polytope in RU(S) which is polytope isomorphic to an |S|-dimensional hyper-

cube) and define the Buneman complex associated to (S, α) to be the polytopal
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complex

B(S, α) = {φ ∈ H(S, α) : A1, A2 ∈ supp(φ) and A1∪A2 = X ⇒ A1∩A2 = ∅}.

Note that X can be considered as a subset of the set of vertices of B(S, α) via

the mapping which takes each x ∈ X to the map

φx : U(S)→ R≥0

given by φx(A) = α(A|A)/2 if x 6∈ A and 0 otherwise, for all A ∈ U(S). For

example, for the split system in Figure 2(a) on X = {1, 2, . . . , 6} in which all

splits are given weight 1, the Buneman complex is the 4-cube in Figure 2(b),

where the labelled vertices correspond to the elements in X.

We now present two simple observations concerning the Buneman complex

that will be useful later on.

Lemma 3. Suppose that (S, α) is a weighted split system on X, φ ∈ B(S, α)
and dim([φ]) > 0. Then for all S 6∈ S(φ) and all vertices φ̃ of [φ], we have
φ̃|S = φ|S.

Proof: This follows from the definition of B(S, α) (see also [20, Lemma 3.1(i)]).

Lemma 4. Suppose that (S, α) is a weighted split system on X, and φ ∈
B(S, α). Then any pair of distinct splits in S(φ) is incompatible.

Proof: If not, then there exist S1 = A1|B1 6= S2 = A2|B2 in S(φ) with

A1 ∩ A2 = ∅, say. So A1 ∪ A2 = X. Since A1, A2 ∈ supp(φ), we obtain

A1 ∩A2 = ∅ as φ ∈ B(S, α). Hence, A2 = A1, which contradicts S1 6= S2.

3.3. The blocks of the Buneman complex

We now study the set B(S, α) of blocks of the Buneman complex. In what

follows, we consider the 1-skeleton G(S, α) of B(S, α) also as being a weighted

graph (where, in case an edge corresponds to a split S ∈ S in the natural way,

it is weighted by α(S)). This graph is also known as the (weighted) Buneman

graph of (S, α) (cf. e.g. [10]), and we shall exploit some of its well-known

properties.
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In particular, note that each block of the Buneman complex B(S, α) corre-

sponds to the union of all of those cells in B(S, α) whose 1-skeleta are contained

in some block (i.e. maximal 2-connected component) of G(S, α). Hence by [17,

Theorem 5.1] (which gives a 1-1 correspondence between the blocks of the Bune-

man graph of a split system S and the set C(I(S)) of connected components of

I(S)), each block in B(S, α) corresponds to precisely one element S ′ ∈ C(I(S))

and, in this case, is isomorphic as a polytopal complex to B(S ′, α|S′). We shall

denote the block of B(S, α) corresponding to S ′ ∈ C(I(S)) (considered as a

subpolytopal complex of B(S, α)) by BS′(S, α). In particular, it follows that

B(S, α) = {BS′(S, α) : S ′ ∈ C(I(S))}.

Associating to any cell C of B(S, α) the split system S(C) induced by C by

deleting parallel edges of C and to any collection C of cells in B(S, α) the split

system S(C) =
⋃
C∈C S(C), we obtain S(BS′(S, α)) = S ′.

We close this section by presenting a connection between the blocks of the

Buneman complex of a weighted split system (S, α) and the incompatibility

graph of S.

Lemma 5. Suppose that (S, α) is a weighted split system on X and S ′ ∈
C(I(S)).
(i) If φ ∈ BS′(S, α) and S ∈ S − S ′, then for all A ∈ S, φ(A) ∈ {0, α(S)/2}.
(ii) If φ1 ∈ BS′(S, α) and φ2 ∈ B(S, α) − BS′(S, α), then there exists a split
S ∈ S − S ′ and some A ∈ S such that φ1(A) = 0 and φ2(A) 6= 0.

Proof: (i): Since φ must be contained in a cell of BS′(S, α) this is an immediate

consequence of [20, Lemma 3.1(i)].

(ii): We first consider the case where φ2 is not a vertex of B(S, α). Then there

exists some split S = A|B ∈ S −S ′ such that φ2(A) = α and φ2(B) = α(S)
2 −α

where 0 < α < α(S)
2 . But, by (i), φ1(A) ∈ {0, α(S)

2 } for all A ∈ S. Hence,

without loss of generality, φ1(A) = 0 and φ2(A) 6= 0.

Now, suppose that φ2 is a vertex of B(S, α). Then as φ2 ∈ B(S, α) −

BS′(S, α) there is a path φ, ψ1, ψ2, . . . , ψm = φ2, m ≥ 1, in the 1-skeleton of

B(S, α) where φ is a cut-vertex of B(S, α) contained in BS′(S, α) such that φ2

is in one of the connected components of B(S, α) − {φ}. Let S = A|B be the
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split corresponding to the 1-cell in B(S, α) with end vertices ψm−1 and φ2. By

Lemma 5(i), φ1|S = φ|S follows. Using the isomorphism between the 0-cells of

B(S, α) and the vertices of the Buneman graph G(S, α) given in [9, Corollary

3.2] let φ′, φ′2 denote the vertices in G(S, α) corresponding to the vertices φ, φ2,

respectively. Without loss of generality, φ′2(S) = B. Hence φ2(B) = 0 and

φ2(A) = α(S)/2 in view of that isomorphism. By the choice of S, φ′(S) = A

follows, and so φ(A) = 0 using again that isomorphism. By the choice of S, it

follows that 0 = φ(A) = φ1(A).

4. A key result on the blocks of the Buneman complex

In this section we will prove a key result which, for a weighted split system

(S, α), allows us to decide whether or not two maps φ1, φ2 ∈ B(S, α), are

contained within the same block of B(S, α).

We begin with a lemma concerning cut-vertices of the Buneman complex.

Lemma 6. Suppose that (S, α) is a weighted split system on X, φ is a cut-
vertex of B(S, α), and C is some connected component1 of B(S, α)− {φ}.
(i) If S ∈ S(C+φ), and φ1, φ2 ∈ B(S, α)− C, then φ1|S = φ2|S.
(ii) If φ′ ∈ C then there exists some S ∈ S(C+φ) such that φ′|S 6= φ|S.

Proof: (i): In view of Lemma 3, it suffices to show that φ̃1|S = φ̃2|S holds for

any pair of vertices φ̃1 of [φ1] and φ̃2 of [φ2]. But for any such pair φ̃1 and φ̃2,

we have that φ̃1 and φ̃2 are connected by a shortest path in the 1-skeleton of

B(S, α) − C. As, by [9, Corollary 3.2], the 1-skeleton of B(S, α) is isomorphic

to the Buneman graph G(S ′, α) of (S, α) and for any two vertices ψ and ψ′ in

G(S, α) we have that ψ(S) = ψ(S′) for all S′ ∈ S not induced by an edge on a

shortest path from ψ to ψ′, it is straight-forward to check that φ̃1|S = φ̃2|S .

(ii): If φ′ is a vertex in B(S, α), then we can take any split S ∈ S induced

by some edge on a shortest path in the 1-skeleton of B(S, α) between φ and

φ′. So assume that dim([φ′]) ≥ 1. Let φ1 denote a vertex in [φ′] such that the

1Here we are using connected component in the topological sense – see e. g. [26, p.103]
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number m of edges on a path P from φ1 to φ in the 1-skeleton of B(S, α) is

as small as possible. If m = 0 then φ1 = φ and, so, there must exist some

S ∈ S(φ′) ⊆ S(C+φ) such that φ′|S 6= φ|S as φ′ is not a vertex in B(S, α)

whereas φ is.

If m 6= 0 then there must exist some edge e on P such that for the split

Se ∈ S induced by e we have φ1|Se
6= φ|Se

. Note that Se ∈ S(C+φ), as φ1 ∈ C.

Since, by the choice of φ1 we have φ′|Se
= φ1|Se

, (ii) follows in this case as well.

We now state and prove the main result of this section. For φ1 6= φ2 ∈

B(S, α), let

∆(φ1, φ2) = {S ∈ S : φ1|S 6= φ2|S}.

In addition, for φ ∈ B(S, α), note that

S(φ) = {A|B ∈ S : φ(A), φ(B) 6= ∅} = {S ∈ S : S ⊆ supp(φ)}.

Theorem 7. Suppose that (S, α) is a weighted split system on X, φ1 6= φ2 ∈
B(S, α), and S ′ ∈ C(I(S)). Then {φ1, φ2} ⊆ BS′(S, α) if and only if ∆(φ1, φ2) ⊆
S ′.

Proof: First note that without loss of generality we can assume |C(I(S))| ≥ 2,

since otherwise S = S ′ and B(S, α) = BS′(S, α) and so the theorem clearly

holds.

Assume for contradiction that ∆{φ1, φ2} ⊆ S ′ but {φ1, φ2} 6⊂ BS′(S, α). It

suffices to consider the following two cases:

Case 1: There is a cut-vertex φ of B(S, α) so that φ1 and φ2 are both contained

in B(S, α)−C for C the connected component of B(S, α)−{φ} with BS′(S, α) ⊆

C+φ. Then since S ′ ⊆ S(C+φ), Lemma 6(i) implies for all S ∈ S ′ that φ1|S =

φ2|S . Hence ∆(φ1, φ2) is not a subset of S ′, a contradiction.

Case 2: There is a cut vertex φ of B(S, α) so that φ1 is in a connected compo-

nent C of B(S, α)−{φ} with BS′(S, α) not a subset of C+φ, and φ2 is contained

in D+φ for D the connected component of B(S, α)−{φ} with BS′(S, α) ⊆ D+φ.

If φ1 6= φ then, by Lemma 6(ii), there exists some S ∈ S(C+φ) such that

φ1|S 6= φ|S . Moreover, as S ∈ S(C+φ) we have S 6∈ S ′ as S(C+φ)∩S(D+φ) = ∅.
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Hence, S 6∈ ∆(φ1, φ2). But this is impossible since, by Lemma 6(i), φ|S = φ2|S ,

and so φ1|S 6= φ2|S .

So assume φ1 = φ. By Lemma 6(ii), it follows that there must exist some

S ∈ S(D+φ) such that φ1|S 6= φ2|S . Hence, S ∈ ∆(φ1, φ2) ⊆ S ′. But this is

impossible since S ′ ⊆ S(C+φ1) and S(C+φ1) ∩ S(D+φ1) = ∅.

Conversely, suppose {φ1, φ2} ⊆ BS′(S, α). Let S ∈ S − S ′. Then there is

some cut-vertex φ of B(S, α) and some connected component C of B(S, α)−{φ}

with S ∈ S(C+φ) and φ1, φ2 ∈ B(S, α)−C. Hence by Lemma 6(i), φ1|S = φ2|S ,

i.e. S 6∈ ∆(φ1, φ2).

5. The κ map

In this section, we begin to relate properties of the Buneman complex and

the tight-span of a totally split-decomposable metric.

First, recall that a metric d on X is totally split-decomposable if there exists

a weighted weakly compatible split system (S, α) on X with

d = dS,α =
∑
S∈S

α(S)δS

where, for any split S of X and all x, y ∈ X, δS(x, y) = 1 if S(x) 6= S(y) and

δS(x, y) = 0 else. If d is such a metric, then it follows by results in [3] that if

d = dS′,α′ for some weakly compatible split system S ′ and some weighting α′

on S ′, then S = S ′ and α = α′. Thus, in what follows we are interested in

determining the polytopal structure of T (dS,α) for (S, α) some weighted weakly

compatible split system. For this, we will exploit properties of a certain map κ

from the Buneman complex B(S, α) to the tight-span T (dS,α) which is defined

as follows.

Given a weighted split system (S, α) on X, we define the map

κ : RU(S) → RX : φ 7→ (X → R : x 7→ d1(φ, φx)),
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where d1 denotes the metric on RU(S) defined by setting, for φ, φ′ ∈ RU(S),

d1(φ, φ′) =
∑

A∈U(S)

|φ(A)− φ′(A)|.

Note that κ(B(S, α)) = T (dS,α) if and only if S is weakly compatible [11].

Moreover, in case S is weakly compatible, the map κ′ defined by taking any

maximal cell C in B(S, α) to the cell [κ(φ)], where φ is any generator of C,

is a well-defined map which induces a bijection between the maximal cells of

B(S, α) and the maximal cells of T (dS,α) [20, Theorem 6.1]

We now prove a useful observation (which is essentially also shown in the

proof of (i) ⇒ (ii) in [15, Theorem 7.1]).

Theorem 8. Suppose that (S, α) is a weighted weakly compatible split system
on X, and φ1, φ2 ∈ B(S, α) distinct with κ(φ1) = κ(φ2). If φ = (φ1 + φ2)/2,
then S(φ) is an octahedral split system.

Proof: As H(S, α) is convex, φ ∈ H(S, α). As κ is linear, κ(φ) = κ((φ1 +

φ2)/2) = (κ(φ1) + κ(φ2))/2, which is in T (dS,α). Therefore φ ∈ B(S, α) (as κ

maps B(S, α) surjectively onto T (dS,α) and B(S, α) = κ−1(T (dS,α)) ∩H(S, α)

since S is weakly compatible – see e. g. [11, p. 305]). Put S ′ = S − S(φ),

S ′′ = S(φ), κ∗ = κ|RU(S′) , and κ′ = κ|RU(S′′) .

Note that, as φ1, φ2 distinct, ∅ 6= ∆(φ1, φ2) ⊆ S ′′. So, by Lemma 4, S ′′ is

incompatible. Thus B(S ′′, α|S′′) = H(S ′′, α|S′′), by [10, Proposition 3.3].

Moreover, φ′1 = φ1|U(S′′), φ
′
2 = φ2|U(S′′) ∈ B(S ′′, α|S′′), and φ′1 6= φ′2 since

∆(φ1, φ2) ⊆ S ′′. But these considerations imply

κ′(φ′1) = κ(φ1)− κ∗(φ1|U(S′)) = κ(φ2)− κ∗(φ2|U(S′)) = κ′(φ′2)

since, by [20, Lemma 3.1(i)], φ1|U(S′) = φ2|U(S′) holds. Thus, κ′ is not injective.

Hence S ′′ is not strictly circular by [15, Proposition 5.1].

Since S ′′ is weakly compatible, S ′′ is either strictly circular or octahedral,

and so S ′′ is octahedral.

Using this last result we now prove two results which relate properties of κ

to the blocks of the Buneman complex. The first result shows that κ is injective
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when restricted to any block of the Buneman complex that does not correspond

to an octahedral split system.

Theorem 9. Suppose that (S, α) is a weighted weakly compatible split system
on X and that S ′ ∈ C(I(S)) is not octahedral, then κ|BS′ (S,α) is injective.

Proof: Suppose φ1 6= φ2 ∈ BS′(S, α) with κ(φ1) = κ(φ2). By Theorem 7,

∅ 6= ∆(φ1, φ2) ⊆ S ′. Put φ = (φ1 +φ2)/2. By Theorem 8, S(φ) is an octahedral

split system. Since S ′ is not octahedral we cannot have S(φ) ⊆ S ′, by Corol-

lary 2. Hence, ∆(φ1, φ2) ⊆ S(φ) ∩ S′ = ∅ which is impossible.

The second result shows that if φ1, φ2 ∈ B(S, α) are distinct and not in the

same block of B(S, α), then their images under κ are distinct.

Theorem 10. Suppose that (S, α) is a weighted weakly compatible split system
on X. If φ1, φ2 ∈ B(S, α) are distinct, and {φ1, φ2} 6⊆ BS′(S, α), for any
S ′ ∈ C(I(S)), then κ(φ1) 6= κ(φ2).

Proof: Suppose for contradiction that κ(φ1) = κ(φ2). Let φ = (φ1 + φ2)/2. By

Theorem 8, S(φ) is an octahedral split system. Since S(φ) ⊆ S ′ must hold for

some S ′ ∈ C(I(S)), Corollary 2 implies S ′ = S(φ). Thus, ∆(φ1, φ2) ⊆ S ′ and

so, by Theorem 7, {φ1, φ2} ⊆ BS′(S, α), a contradiction.

6. Relating blocks in B(S, α) to blocks in T (dS,α)

In this section we use the map κ to provide an explicit bijection between the

blocks of the Buneman complex and the tight-span for the metric dS,α associated

to a weighted weakly compatible split system (S, α).

We begin by proving that κ maps the underlying set of any maximal cell

in the Buneman complex onto the underlying set of some maximal cell in the

tight-span.

Lemma 11. Suppose that (S, α) is a weighted weakly compatible split system on
X, [φ] is a maximal cell in B(S, α) with generator φ ∈ B(S, α), and κ′([φ]) = C,
with C a maximal cell in T (dS,α). Then κ([φ]) = C.
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Proof: First note that by the definition of κ′, κ(φ) is a generator for C, i.e.

C = [κ(φ)].

Now, suppose ψ ∈ [φ], then by [20, Theorem 5.1(iii)] κ(ψ) ∈ [κ(φ)] = C.

Hence κ([φ]) ⊆ C.

Conversely, suppose f ∈ C. Since κ is surjective, there is some ψ ∈ B(S, α)

with κ(ψ) = f . But as κ(ψ) ∈ [κ(φ)], by [20, Theorem 5.1(iii)], ψ ∈ [φ]. Hence

f ∈ κ([φ]), and so C ⊆ κ([φ]).

We now show that the image under κ′ of any pair of maximal cells in the

Buneman complex can intersect in at most one point.

Lemma 12. Suppose that (S, α) is a weighted weakly compatible split system
on X, S ′,S ′′ ∈ C(I(S)) distinct, and that Ω,Ω′ are maximal cells in BS′(S, α)
and BS′′(S, α), respectively. Then |κ′(Ω) ∩ κ′(Ω′)| ≤ 1.

Proof: Let C = κ′(Ω) and C ′ = κ′(Ω′) and, for the purposes of obtaining a

contradiction, that |C ∩ C ′| > 1. Then as C ∩ C ′ is a cell in T (dS,α), dim(C ∩

C ′) ≥ 1.

Now, suppose that g, g′ are distinct generators for C ∩C ′, which must exist

since dim(C ∩C ′) ≥ 1. Since κ(Ω) = C and κ(Ω′) = C ′ and, by [11, Theorem],

κ is surjective there must exist φ, φ′ ∈ Ω distinct with κ(φ) = g and κ(φ′) = g′,

and φ′′, φ′′′ ∈ Ω′ distinct with κ(φ′′) = g and κ(φ′′′) = g′.

Note that |Ω ∩ Ω′| ≤ 1 since Ω,Ω′ are contained in distinct blocks of

B(S, α). If |Ω ∩ Ω′| = 0, then we obtain a contradiction to Theorem 10, since

κ(φ) = g = κ(φ′′) and {φ, φ′′} is not contained in any block of B(S, α). More-

over, if |Ω ∩ Ω′| = 1, then at least one of φ 6= φ′′ and φ′ 6= φ′′′ must hold.

Without loss of generality we may assume that φ 6= φ′′. Then {φ, φ′′} is not

contained in any block of B(S, α). By Theorem 10, g = κ(φ) 6= κ(φ′′) = g which

is also impossible.

We now show that if a block in the Buneman complex consists of a single

maximal cell, then its image under κ is the underlying set of some block in the

tight-span.
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Proposition 13. Suppose that (S, α) is a weighted weakly compatible split sys-
tem on X, S ′ ∈ C(I(S)), and the block BS′(S, α) consists of a single maximal
cell Ω in B(S, α). Then κ′(Ω) is a block in T (dS,α).

Proof: First note that C = κ′(Ω) is a maximal cell in T (dS,α). Suppose that C

is not a block of T (dS,α). Then there is some cell C ′ distinct from C in T (dS,α)

with C ′ 6⊆ C and C∩C ′ is a cell with dimension at least 1. Let C ′′ be a maximal

cell in T (dS,α) containing C ′. Note that C ′′ 6= C and C ∩ C ′ ⊆ C ∩ C ′′. Let

Ω′ 6= Ω be a maximal cell in B(S, α) with κ′(Ω′) = C ′′, which exists since, by

[20, Theorem 6.1], κ′ is bijecitve. Note that since BS′(S, α) contains a single

maximal cell, Ω′ and Ω must be contained in different blocks of B(S, α). Since

|κ′(Ω) ∩ κ′(Ω′)| > 1, this is impossible in view of Lemma 12.

We now extend the previous result, and show that the image under κ of

any block of the Buneman complex is the underlying set of some block in the

tight-span.

Theorem 14. Suppose that (S, α) is a weighted weakly compatible split system
on X and S ′ ∈ C(I(S)). Then κ(BS′(S, α)) is equal to some block of T (dS,α).

Proof: By Proposition 13 and Corollary 2, it suffices to assume that S ′ is con-

sistent and that BS′(S, α) contains at least 2 maximal cells.

We first show that κ(BS′(S, α)) is a subset of some block of T (dS,α). Suppose

that Ω,Ω′ are two distinct maximal cells in BS′(S, α) with dim(Ω ∩ Ω′) ≥ 1,

which must clearly exist as BS′(S, α) is a block of B(S, α). We claim that

dim(κ′(Ω) ∩ κ′(Ω′)) ≥ 1.

To see that this claim holds, first note that by Lemma 11

κ(Ω ∩ Ω′) ⊆ κ(Ω) ∩ κ(Ω′) = κ′(Ω) ∩ κ′(Ω′).

Hence, κ′(Ω) ∩ κ′(Ω′) 6= ∅ as dim(Ω ∩ Ω′) ≥ 1 and so Ω ∩ Ω′ 6= ∅. Suppose

dim(κ′(Ω)∩κ′(Ω′)) < 1. Then κ′(Ω)∩κ′(Ω′) = {g}, with g a vertex of T (dS,α).

Thus, κ(Ω∩Ω′) = {g}. But, since dim(Ω∩Ω′) ≥ 1, there must exist φ, φ′ ∈ Ω∩

Ω′ ⊆ BS′(S, α) distinct with κ(φ) = κ(φ′) = {g}, which contradicts Theorem 9

and therefore proves the claim.
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Containment of κ(BS′(S, α)) in some block of T (dS,α) now follows since, as

BS′(S, α) is a block of B(S, α), we can find an ordering Ω1,Ω2, . . .Ωk, k ≥ 2,

of the maximal cells of BS′(S, α) so that for all 1 < i ≤ k, there exists some

1 ≤ j < i such that dim(Ωi ∩ Ωj) ≥ 1. Hence by the claim and Lemma 11 it

immediately follows that

κ(BS′(S, α)) ⊆
k⋃
i=1

κ(Ωi) =

k⋃
i=1

κ′(Ωi)

is contained in some block T of T (dS,α).

Now, suppose for contradiction that κ(BS′(S, α)) is a strictly proper sub-

set of T . Then there must exist two maximal cells C,C ′ in T (dS,α) with

dim(C ∩ C ′) ≥ 1, C ⊆ κ(BS′(S, α)) and C ′ ⊆ T − (κ(BS′(S, α)) ∪ (C ∩ C ′)).

Let Ω,Ω′ be distinct maximal cells in B(S, α) with κ′(Ω) = C and κ′(Ω′) = C ′.

Then Ω ⊆ BS′(S, α) (since C ⊆ κ(BS′(S, α))), and Ω′ ⊆ BS′′(S, α) with

S ′′ ∈ C(I(S)) − {S ′} (since C ′ 6⊆ κ(BS′(S, α))). But dim(C ∩ C ′) ≥ 1 and

so, in view of the claim, we obtain a contradiction to Lemma 12.

Putting our results together we now show that, by mapping the underlying

set of each block of the Buneman complex onto the underlying set of some block

in the tight-span, the map κ in fact induces a bijection from the blocks of the

Buneman complex onto the blocks of the tight-span. Before proving this we

recall some definitions and results from [20].

First, for any cell Ω in the Buneman complex B(S, α) and any x ∈ X

there exists some map γx ∈ Ω called the gate for x in Ω such that d1(φx, ψ) =

d1(φx, γ
x)+d1(γx, ψ), for all ψ ∈ Ω. Second, to any x ∈ X associate the map hx :

X → R in T (dS,α) given by hx(y) = dS,α(x, y), for all y ∈ X. Then, similarly,

for any cell C in T (dS,α) and any x ∈ X there exists a (necessarily unique) map

gx ∈ C called the gate of C for x such that d∞(hx, h) = d∞(hx, g
x)+d∞(gx, h),

for all h ∈ C.

We now prove the aforementioned result.

Theorem 15. Suppose that (S, α) is a weighted weakly compatible split system
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on X. The map

K : B(B(S, α))→ B(T (dS,α)) : BS′(S, α) 7→ κ(BS′(S, α))

is a well-defined bijection. Moreover, K induces a bijection between the set of
blocks {BS′(S, α) : S ′ ∈ Oct(S)} in B(S, α) and the set of cells in T (dS,α)
that are rhombic dodecahedra. In particular, if a cell in T (dS,α) is a rhombic
dodecahedron, then it must also be a block of T (dS,α).

Proof: By Theorem 14, the map K is well-defined.

To see thatK is surjective, suppose T ∈ B(T (dS,α)). Let C be some maximal

cell in T . Let Ω be the maximal cell in B(S, α) with κ′(Ω) = C, and let

BS′(S, α), S ′ ∈ C(I(S)), be the block in B(S, α) containing Ω. Then Lemma 11

combined with Theorem 14 implies K(BS′(S, α)) = T .

To see that K is injective, suppose there exist two distinct blocks BS′′(S, α),

BS′(S, α), S ′,S ′′ ∈ C(I(S)), in B(S, α) with K(BS′(S, α)) = K(BS′′(S, α)).

Then there must exist f ∈ K(BS′(S, α)), φ1 ∈ BS′(S, α) − BS′′(S, α) and

φ2 ∈ BS′′(S, α) − BS′(S, α) with κ(φ1) = κ(φ2) = f . But this contradicts

Theorem 10. Thus, K is a bijection.

Now, let R denote the set of cells in T (dS,α) that are rhombic dodecahedra.

Suppose S ′ ∈ Oct(S). Then, by Corollary 2, BS′(S, α) is a block of B(S, α) con-

sisting of a single cell Ω. Hence, Ω is a maximal cell of B(S, α). Let ω ∈ B(S, α)

denote a generator for Ω. Then S(ω) ⊆ S(BS′(S, α)) = S ′. Since S(ω) is maxi-

mal incompatible and S ′ is incompatible it follows that S(ω) = S ′. Hence, S(ω)

is octahedral. To see that then κ′(Ω) must be a rhombic dodecahedron, we

next consider the underlying graphs2 UG(G(κ′(Ω)), d′ := d∞|G(κ′(Ω))) – where

G(κ′(Ω)) is the set of gates of κ′(Ω) – and UG(Γ(Ω), d1|Γ(Ω)) – where Γ(Ω) is

the set of gates of Ω.

Note first that by the remark directly following the proof of [20, Claim 2,

p.476] d′ is cell-decomposable as dS,α is totally split-decomposable. By [19, The-

orem 1.1], (G(κ′(Ω)), d′) is a proper antipodal metric space and T (G(κ′(Ω)), d′) is

2For any finite metric space (Y, d) the underlying graph, denoted by UG(Y, d), has vertex
set Y and edge set consisting of those 2-sets {x, y} ⊆ Y for which there exists no z ∈ Y −{x, y}
such that d(x, y) = d(x, z) + d(z, y)
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polytope isomorphic to κ′(Ω). Since κ induces an isometry between (G(κ′(Ω)), d′)

and (Γ(Ω), d1|Γ(Ω)) the proof of [20, Claim 2, p.476] implies that UG(Γ(Ω), d1|Γ(Ω))

and UG(G(κ′(Ω)), d′) are isomorphic graphs. By [20, Lemma 3.1], d1(γx, γy) =∑
S∈S(ω) α(S)δS(x, y) for all x, y ∈ X. A straight forward check shows that

UG(Γ(Ω), d1|Γ(Ω)) is isomorphic to K3×2. Thus, UG(G(κ′(Ω)), d′) is isomorphic

to K3×2. Hence T (G(κ′(Ω)), d′) is polytope isomorphic with a rhombic dodeca-

hedron [19, Theorem 4.3] and, so κ′(Ω) is polytope isomorphic with a rhombic

dodecahedron. Therefore K({BS′(S, α) : S ′ ∈ Oct(S)}) ⊆ R.

Conversely, suppose R is a rhombic dodecahedron in T (dS,α). Since T (dS,α)

is a polytopal complex and, by [20, Corollary 7.3] every cell of T (dS,α) is poly-

tope isomorphic with either a hypercube or a rhombic dodecahedron, it follows

that R must be a maximal cell of T (dS,α). Thus, there exists some maximal cell

Ψ of B(S, α) such that κ′(Ψ) = R. Let ξ ∈ B(S, α) denote a generator of Ψ. As-

sume for contradiction that S(ξ) is circular. Then it is straight forward to verify

that UG(Γ(Ψ), d|Γ(Ψ)) is a 2m-cycle where m = |S(ξ)|. Since (Γ(Ψ), d1|Γ(Ψ))

and (G(R), d′′) are isometric metric spaces, where d′′ = d∞|G(R), it follows that

UG(G(R), d′′) is also a 2m-cycle. Hence, by [19, Theorem 4.2], T (G(R), d′′) is

an m-cube. Thus, R is also an m-cube which is impossible. Consequently, S(ξ)

must be octahedral. By Corollary 2, Ψ is the block BS(ψ)(S, α) of B(S, α).

7. The polytopal structure of T (dS,α)

In this section, we conclude by explaining how to obtain the polytopal struc-

ture of the tight-span of a totally split-decomposable metric directly from the

Buneman complex (and hence from its underlying split system). We shall do this

at the end of the section, but first we need to consider the polytopal structure

of the blocks in T (dS,α).

First, note that by Theorem 15 each maximal cell R in T (dS,α) that is a

rhombic dodecahedron is also a block of T (dS,α). Moreover, for such a cell,

there exists some S ′ ∈ Oct(S), such that κ maps the underlying set of the block

BS′(S, α) (which is polytope isomorphic to a 4-cube – see Figure 2) onto R. In
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particular, κ restricted to BS′(S, α) does not induce a polytope isomorphism

between BS′(S, α) and R. We shall now show that (see Theorem 18 below),

in contrast to octahedral split systems in S, in case S ′ ∈ C(I(S)) − Oct(S)

(i.e S ′ is a consistent split system), κ actually induces a polytopal complex

isomorphism between BS′(S, α) and the block of T (dS,α) that has underlying

set κ(BS′(S, α)). To prove this we shall require some further terminology.

Let V be a finite-dimensional R-vector space and P ⊆ V . A subset T ⊆ P

is an extremal subset of P if, for any u, v ∈ P , and any positive real numbers

γ, β > 0 with γ + β = 1, the assumption γu+ βv ∈ T implies u, v ∈ T (see [12,

p. 51]). For the following proposition we assume V = RX .

Proposition 16. Suppose that (S, α) is a weighted weakly compatible split sys-
tem on X, and S ′ ∈ C(I(S)). Then K(BS′(S, α)) is an extremal subset of
P (dS,α).

Proof: Let T = K(BS′(S, α)) = κ(BS′(S, α)). Suppose f, g ∈ P (dS,α), γ, β > 0,

γ + β = 1, and γf + βg ∈ T . We need to show that f, g ∈ T .

First note that T (dS,α) is an extremal subset of P (dS,α). Hence f, g ∈

T (dS,α). Moreover, as κ maps B(S, α) onto T (dS,α) there exist φ, φ′ ∈ B(S, α)

with κ(φ) = f and κ(φ′) = g. Since γφ+ βφ′ ∈ H(S, α) clearly holds, it follows

in view of B(S, α) = κ−1(T (dS,α)) ∩H(S, α) that γφ+ βφ′ ∈ B(S, α).

Now, as κ is linear, we have

κ(γφ+ βφ′) = γκ(φ) + βκ(φ′) = γf + βg ∈ T .

Hence, by Theorem 15 we have γφ+ βφ′ ∈ BS′(S, α).

Assume for contradiction that {φ, φ′} 6⊆ BS′(S, α). Without loss of gener-

ality φ 6∈ BS′(S, α). Put φ1 = γφ + βφ′ ∈ BS′(S, α) and φ2 = φ 6∈ BS′(S, α).

Then by Lemma 5(ii), there exists a split S ∈ S and some A ∈ S such that

0 = φ1(A) = (γφ+ βφ′)(A) = γφ(A) + βφ′(A)

and 0 6= φ2(A) = φ(A) which is impossible.

Hence {φ, φ′} ⊆ BS′(S, α). But then f = κ(φ), g = κ(φ′) ∈ T , as required.
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To establish the property of the map κ mentioned at the beginning of this

section, we shall use the following result from [12] which we recall for the con-

venience of the reader.

Theorem 17. [12, Theorem 1(ii)] Let V and V ′ be finite dimensional real
vector spaces, let P ⊆ V and P ′ ⊆ V ′ be convex sets and let f : V ′ → V be
some affine map with f(P ′) ⊆ P . Moreover let T be some extremal subset of
P and let x ∈ T ′ := f−1(T ) ∩ P ′. If f maps T ′ bijectively into T then f maps
the smallest extremal subset of P ′ containing x′ bijectively onto the smallest
extremal subset of P containing f(x).

Theorem 18. Suppose that (S, α) is a weighted weakly compatible split sys-
tem on X, and S ′ ∈ C(I(S)) − Oct(S). Then K(BS′(S, α)) is isomorphic to
BS′(S, α) as polytopal complexes.

Proof: Let V ′ = RU(S), V = RX , P ′ = H(S, α), P = P (dS,α), f = κ : V ′ → V ,

T = K(BS′(S, α)), and T ′ = f−1(T ) ∩ P ′. Then it is straight forward to see

that f(P ′) ⊆ P and T ′ = BS′(S, α) hold. Moreover, by Theorem 16, T is an

extremal subset of P , and by Theorems 15 and 9, f maps T ′ bijectively onto T .

The theorem now follows by applying Theorem 17.

We now explain how to determine the polytopal structure of T (dS,α) from

the weighted split system (S, α). By the results above, T (dS,α) has one block for

each S ′ ∈ C(I(S)), and each of these blocks is polytope isomorphic to a rhombic

dodecahedron in case S ′ ∈ Oct(S) and to the Buneman complex B(S ′, α|S′) oth-

erwise (for example, consider the weighted split-system (S, α) with α the all-one

weight function whose incompatibility graph is pictured in Figure 3 and whose

tight-span T (dS,α) is pictured in Figure 1). Moreover, we can obtain T (dS,α)

as a polytopal complex by starting with the Buneman complex B(S, α|S) and

replacing each 4-cube in B(S, α|S) corresponding to an element in Oct(S) by

a rhombic dodecahedron. This is done by first identifying the 6 vertices in the

4-cube within the Buneman complex which can be canonically identified as pic-

tured in Figure 2. Then we remove the 4-cube and replace it with a rhombic

dodecahedron in which the 6 vertices now correspond to the vertices labelled

2, 3, 7, 4 and the cut vertices in the rhombic dodecahedron forming the block in

Figure 1).
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