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ABSTRACT 

In recent years, evaluating the emissions embodied in trade (EEIT) has become an 

important area of policy and research. Multiregional input-output (MRIO) analysis, which 

links producers and final consumers, is a widely-used method for quantifying the EEIT. 

However, the role of intermediate trade in driving changes in the EEIT is still not fully 

incorporated in MRIO analysis and as a result poorly understood. Here, we present a 

framework that separately identifies the drivers of the emissions embodied in the trade of 

final and intermediate products. We implement this framework in a case study in which we 

analyse the changes in CO2 emissions embodied in interprovincial trade in China from 

2007 to 2012. We find that the largest changes are a rising final demand, which is 

associated with increased emissions that are to some extent offset by decreasing 

emissions intensity and changing interregional dependency. Regionally, the rising imports 

and the growth in final demand in less developed regions in the north and central (e.g., 
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Hebei and Henan) reduced the CO2 emissions outsourced by central coastal regions and 

drove the traded embodied CO2 flows between the central and western regions. The 

framework enriches our understanding of the role played by intermediate trade in the 

relocation of emissions.  

 

KEYWORDS: Structural decomposition analysis; multiregional input-output analysis; CO2; 

Trade; intermediate products 

 

 

Highlights 

 We present a framework that splits the emissions flow between the original emission 

sources and final consumers.  

 We decompose the change in emissions flow embodied in final and intermediate 

products.  

 The framework can enrich our understanding of the role played by intermediate trade.  

 We analyse the changes in CO2 emissions embodied in interprovincial trade in China 

from 2007 to 2012. 
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1. Introduction 

Along with rapid growth in economic activity, humanity’s demand for resource 

endowments (e.g., energy, water, land and biodiversity) has increased substantially, 

particularly over the past 20 years (Wu and Chen 2017; Yu et al. 2013; Chen et al. 2018) 

Since globalisation entails the separation of production and consumption, a key 

consideration when calculating national emissions is whether to use production-based or 

consumption-based accounting principles (Davis and Caldeira 2010a; Peters et al. 2011). 

The difference between these two accounting methods is given by the emissions 

embodied in trade (EEIT). It is increasingly recognised that changes in trade patterns and 

volume have considerable effects on regional resource consumption and EEIT (Meng et al. 

2016; Lenzen et al. 2013; Lenzen et al. 2012; Oita et al. 2016). Thus, evaluating EEIT has 

become a hot issue in policy and research. The predominant approaches for measuring  

EEIT are the emissions embodied in bilateral trade (EEBT approach) and the 

multiregional input-output analysis (MRIO) approach (Peters 2008). The EEBT approach 

has the same geographic limits as single region input-output (SRIO) analysis cannot 

identify the final consumers of products (Peters and Hertwich 2008; Zhang et al. 2014; Su 

and Ang 2013). The MRIO approach endogenously determines intermediate trade for 

further processing and links the consumption of finished goods (i.e., final demand, as 

opposed to the intermediate products) to the original source of physical production. The 

main difference between MRIO and EEBT, i.e., a country's indirect absorption patterns 

and its indirect trade balance of emissions from bilateral trade with other countries, has 

clearly been addressed by Su and Ang (2011). Recently, MRIO is widely used to measure 

the emissions that are generated to satisfy the needs of consumers in a region, regardless 

of the location of generation (Davis and Caldeira 2010b). 

Previous studies have reported that CO2 emissions embodied in international trade 

and interregional trade changed dramatically in the past decade (Mi et al. 2017b; Peters 

and Hertwich 2008; Arto and Dietzenbacher 2014). Similar patterns have also been 

observed for many environmental issues, such as air pollution (Moran and Kanemoto 

2016; Li et al. 2018; Malik et al. 2016), energy (Su and Ang 2012), and raw material 

(Weinzettel and Kovanda 2011). Thus, there have been attempts to quantify the 

contribution of socioeconomic drivers to the change in EEIT (Malik and Lan 2016; Arto 

and Dietzenbacher 2014) by using structural decomposition analysis (SDA) 

(Dietzenbacher and Los 1998). These studies typically considered the Leontief inverse 

matrix effect, which reflects the intra- and inter-regional dependency of sectors as one 

factor reflecting the entire supply chain. However, these decompositions considering 

Leontief inverse matrix as a factor provide insufficient information on the role of 
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intermediate products in embodying and driving the EEIT (Meng et al. 2016; Li et al. 2016; 

Liu et al. 2016; Davis and Caldeira 2010b) 

In a world characterised by fragmented interregional production processes along the 

value chain of final products, trade in intermediate products--the parts and materials 

imported to make products for consumption domestically and abroad--reflects the 

interregional dependency of production and is a growing force in interregional trade (De 

Backer and Yamano 2011; Sturgeon and Gereffi 2009). More than half of the CO2 

emissions embodied in international and interprovincial trade in China have been 

attributed to trade in intermediate goods (Davis and Caldeira 2010a; Feng et al. 2013). 

The growth in intermediate trade has been boosted by localizing stages of production in 

different regions and integrating them into global value chains (Meng et al. 2017). Lower 

trade barriers and falling communication and transportation costs have enabled the 

unbundling of factories and offices (Baldwin 2006), meaning that production and service 

activities can be more broadly distributed within a country or traded globally. In turn, it is 

likely that if there are increasing anti-globalisation and protectionist measures and if 

regional gaps in labour cost or production efficiencies shrink, the growth of intermediate 

trade will slow down. Thus, a better understanding of the CO2 emissions embodied in 

intermediate trade can provide insights into the environmental impacts of how production 

chains develop and of government policies to shape such production chains. However, 

the MRIO framework determines intermediate trade products endogenously as part of 

global supply chain. As a result, it is difficult to distinguish the effect of changes in 

intermediate trade structures from the whole production supply chain within the traditional 

MRIO approach. 

    To address this limitation in the MRIO framework, in this study, we quantify the 

socioeconomic contributions to change in CO2 emissions among 30 provinces in China 

from 2007 to 2012, with a particular emphasis on the impact of changes in traded 

intermediate products for further processing and final products. This approach involves 

two steps. Focusing on the change in trade, we first split EEIT between regions (e.g., from 

r to s) into three parts: (a) emissions released in region r due to the export of final products 

to s (first part), (b) emissions from the exported intermediate products related to goods 

consumed in region s, which are finalised in region s (second part), and (c) finalised in 

regions other than r and s (third part)). The second step is to decompose the three parts 

separately to quantify the driving forces of change in the emissions embodied in traded 

intermediate and final products.  

    This paper is organised as follows. In Section 2, we conduct a brief literature review 

on the MRIO-based SDA studies. In Section 3, we provide an introduction to MRIO-based 

SDA methodology, including a detailed mathematical formulation of the framework. In 

Section 4, we present the analysis of the drivers of changes in emissions embodied in 

China’s interprovincial trade from 2007 to 2012. Section 5 includes a discussion and 
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conclusions. 

2. Structural Decomposition Analysis   

Index decomposition analysis (IDA) and structural decomposition analysis (SDA) are 

two methods to quantify the driving factors behind the evolution of a dependent variable. 

SDA enables us to distinguish between a range of production effects and final 

consumption effects that IDA fails to capture (Feng et al. 2012; Ang 2004; Ang 2005). 

Moreover, SDA is capable of assessing both direct and indirect effects along entire supply 

chains (Miller and Blair 2009). Therefore, SDA has been widely used for identifying the 

drivers of changes involved in a range of environmental issues, such as energy use (Su 

and Ang 2012), CO2 emissions (Guan et al. 2008; Mi et al. 2017a; Mi et al.), air pollution 

(Liang et al. 2013; Guan et al. 2014a), water use (Roson and Sartori 2015), raw materials 

(Weinzettel and Kovanda 2011), and nitrogen emissions (Wier and Hasler 1999). SDA 

breaks down changes over time in a dependent variable into contributions from underlying 

factors, such as technological change, affluence, and population growth. These factors 

can act as either accelerators or retardants.  

Most SDA-related studies have focused on changes in endowments in individual 

regions (Su and Ang 2012), such as China (Mi et al. 2017a; Guan et al. 2008; Guan et al. 

2009; Guan et al. 2014a; Chang and Lahr 2016), the United States (Feng et al. 2015; 

Liang et al. 2016), the United Kingdom (Baiocchi and Minx 2010), Spain (Cansino et al. 

2016) and Norway (Yamakawa and Peters 2011). These studies typically explain changes 

in the ‘national’ budget of particular endowments as the sum of changes in underlying 

factors, such as the use of endowments, the Leontief inverse matrix, the commodity 

shares of final demand, the final demand category, the per capita total final demand and 

the population. However, SDA approaches applied in single region input-output (SRIO) 

analysis come with some limitations; e.g., it provides few insights into interregional trade. 

To incorporate interregional trade, a series of recent studies have conducted 

MRIO-based SDA to quantify the drivers of energy uses and CO2 emissions (Arto and 

Dietzenbacher 2014; Lenzen 2016). Within the MRIO framework, the changes in EEIT 

can be decomposed both structurally and spatially, thus highlighting the effects of regional 

industrial structure on interregional trade patterns. Jiang and Guan (2016), Lan et al. 

(2016) and Malik and Lan (2016) identified the drivers of the global and regional energy 

and CO2 footprints within an MRIO framework. They analyzed more than 180 countries, 

and separated domestic and trade effects. However, they did not explore the relationship 

between drivers and changes in bilateral energy or CO2 transfer.  

Recently, there have been some advances in the decompositions of emissions 

embodied in intermediate and finished products or services (Meng et al. 2017). Xu and 
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Dietzenbacher (2014) and Wu and Wang (2017) quantified the contribution of 

socioeconomic factors to changes in EEIT, in which the EEIT for a region means all the 

emissions embodied in products finalised and exported from this region to final 

consumers in other regions. This definition is different from that in the MRIO framework, 

which attributes the emissions associated with consumed goods to the original source that 

produced the emissions. In parallel, Hoekstra et al. (2016) evaluated the effects of 

changes in trade patterns by separating the exporters and importers into several groups of 

countries. This paper highlighted the importance of changes in outsourcing patterns and 

provided evidence that exploring intermediate trade patterns can provide substantial 

insights into the effect of different trade parts. Further, Zhang et al. (2017) divided the 

emissions embodied in bilateral trade by the border-crossing frequency associated with 

traded products, and decomposed the change in CO2 flows embodied in international 

trade from 1995 to 2009. The novelty of this latter study is that it evaluates the CO2 

emissions flow between the original emitters and the final consumers, which coincides the 

essence of MRIO framework.  

Our approach focuses on the factors shaping to the original source that produces the 

emissions and the final consumers. Thus, we use SDA to disentangle the changes in 

emissions embodied in three parts of interprovincial trade patterns from 2007 to 2012 

in China (Dietzenbacher and Los 1998). These three parts include emissions from 

producing finished goods ( ) and emissions from producing intermediates for 

further processing ( and ).  and  represents 

the emissions associate with the products finalised in region s (domestic) and the third 

regions (such as k), respectively.  is decomposed into four factors, 

specifically emissions intensity (CO2/output), intraregional dependency (interaction of 

sectors within the same region), trade volume (which includes only traded finished 

goods unless otherwise noted) and trade structure (which includes only traded 

finished goods unless otherwise noted).  is decomposed into four factors, 

specifically emissions intensity, the interregional dependency (i.e., intermediate 

exports for further processing), the final demand and the consumption structure. 

 is decomposed into the four factors:  emissions intensity, the 

interregional dependency, trade volume and trade structure.  

 

( )rs finf

( - )rs int Df ( - )rs int Mf ( - )rs int Df ( - )rs int Mf

( )rs finf

( - )rs int Df

( - )rs int Mf
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3. Methodological description 

3.1 Emissions embodied in trade  

Originally developed by Leontief (Leontief 1941), environmental input-output 

analyses (EIOs) (Leontief 1970) have been widely used to illustrate the economy-wide 

environmental repercussions triggered by economic activities (Meng et al., 2015). By 

extending EIOs to MRIO analyses, this method has been widely used to analyse the 

interconnection of sectors in different regions with respect to various environmental 

changes (Wiedmann 2009; Minx et al. 2009; Davis and Caldeira 2010b; Meng et al., 

2018a, 2018b). This paper uses the MRIO framework, which endogenously determines 

interregional trade, to analyse the CO2 emissions embodied in interregional trade in China. 

The MRIO framework with m regions and n sectors in each region begins with the 

accounting balance of monetary flows between industrial sectors and regions: 

1
1 11 12 1 1

22 21 22 2 2

1 2
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                 (1) 

where xs is a vector (n×1) representing the sectoral total outputs in region s (s=1,2, ⋯, 

m);  is a matrix (n×n) representing the coefficients of industry requirements for 

inputs from region r to s to produce one unit of output. The element of  is 

calculated by  , where (i, j=1, ⋯,n ) represents the inputs from sector i 

in region r to sector j in region s;  is a n×1 matrix, representing the final supply 

demand from region r to s (s=1,2, ⋯, m); when r=s,  means local consumption.

can also be divided into urban consumption, rural consumption, government 

consumption, capita formation and inventory growing. Then we use X, A and Y to 

represent the global economy matrix. Moreover, m is158 in 2007 and 169 in 2010 and 

2017, and n is 30 for Chinese regions and 57 for other regions, the equation (1) can 

be rearranged as, 

1( ) = X I A Y LY                       （2） 

where  L= (I-A)-1 is a g×g (g=m×n) Leontief inverse matrix, which captures both the 

direct and indirect inputs required to satisfy one unit of final demand in terms of 

rs
A
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A

/rs rs s
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monetary value. g is the total number of the sectors in the focused economies (m 

regions and n sectors in each region).  is a n×n matrix. This study aims to provide 

a framework to analyse the drivers of the changes in EEIT and focuses on 

interprovincial trade only. Y is a g×m final demand matrix. Using this framework, CO2 

emission transfers from region r to region s can be calculated as follows: 

               
1( ) =  

r r
rs s rk ks

k

f e I A y e L y                 (3) 

where is a n×1 matrix , calculated as each sector’s CO2 emissions divided by that 

sector’s total output (Lin et al. 2014),  means direct emission intensity matrix. is 

a diagonal n×n matrix.  

3.2 Structural decomposition analysis 

 

 

Figure 1. Schematic diagram showing the splitting of EEIT in the MRIO framework for a 

three-region economy with two sectors. The three regions are denoted by r, s and k and the 

two sectors are 1 and 2. The value of shaded elements is used throughout the matrix L and y 

algebra, while all other elements are zero in this stylized representation. 

 

Notes: L – Leontief inverse matrix, in which the element 𝑙11
𝑟𝑠  captures both the direct and 

indirect inputs from sector 1 in region r to satisfy one unit of final demand in sector 1 in region s; 

y –final demand (MRIO); q – direct carbon emissions. 

 

MRIO attributes the emissions associated with consumed goods to the original 

L
rs

e
r

e
r
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sources of the emissions (Davis and Caldeira 2010b). Focusing on the role of different 

trade patterns on the change in EEIT, we first split EEIT between regions (e.g., from r to s) 

into three parts (Figure 1). Here,  refers to the emissions embodied in the 

products finalised in region r and imported by region s (i.e., the final demand). Note 

that region r is the final producer, and these final products are directly used by region 

s and do not enter any further production stages.  refers to the emissions 

embodied in the intermediate products exported by region r to other regions for further 

production and finally consumed in region s. Region r is part of a supply chain, rather 

than the final producer. According to the destination of the final producer in the supply 

chain,  can be further divided into  and .  

represents the emissions released in region r induced by products finalised in region s 

and consumed in region s.  represents the emissions released in region r 

induced by products finalised in region k (k=1,2, ⋯, m and k≠r, s) but consumed in 

region s. Isolating the three parts of the EEIT allows us to assess the roles of 

intermediate and final products in driving the EEIT.  

 

 

 
Figure 2. Schematic of MRIO-based structural decomposition models in this study. 

 

    This study divides  into three parts (equation (5) and equation (6)) to study 

the emissions embodied in different production processes. 

  

( ) ( )= ( ) ( - ) ( - )   rs rs rs rs rs rsfin int fin int D int Mf f f f f f      (4) 

( )rs finf
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( ) 
r

rs rr rsfinf e L y                                       (5) 

,

( )  

             =  

             = ( - ) ( - ) 

r
rs rk ks

i ij

i i k r

r r
re ss rk ks

i iij ij

i i i i k r s

rs rs

int

int D int M













 

f e L y

e L y e L y

f f

                    (6) 

where Lrk represents both the direct and indirect inputs from region r to satisfy one unit 

of final demand in region k; Lrr represents the local part of the supply chain, reflecting 

the intraregional dependency. As shown in Figure 1, to split the and Y, we keep the 

values for the shaded elements in the matrix but make all other elements zero. The split of 

, and Y changes the value of matrix rather than size of matrix. 

The three parts of EEIT are decomposed separately as below: 

  

( )
r

rs rr rs rs
i ij j j

i j

fin f e L T m                                     (7) 

,s

( ) +

             = ( - ) ( - )

mr r
rs rs ss ss rk ks ks

i iij j j ij j j

i j i j k r

rs rs

int

int D int M







 f e L C y e L T m

f f

                  

(8) 

where  is the share of the exports of products in sector j in region s that are 

imported from region r, representing the trade structure (which includes only traded 

finished goods unless otherwise noted);  represent the import volume (final 

demand) for products in sector j in region s from region k;  is the share of the 

final demand in region b for products in sector j in region k, representing the 

consumption structure (Figure 2). and  characterize the final products that 

are directly imported from region r by region s (yrs）. 
ks

jT and 
ks

jm  characterize the final 

products imported from region k by region s (yks）that also induce emissions in region 

r.  

Thus, the growth in the emission transfers between two regions in two points in 

time (indicated by the subscripts 0 and 1) can be expressed as . 

L

e L

rs

jT

rs

jm

ss

jC

rs

jT rs
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1 0

rs rs rs  f f f
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However, a unique solution for the decomposition is not available (Dietzenbacher and 

Los 1998; Guan et al. 2014b; Peters et al. 2007; Hoekstra and Van den Bergh 2003). 

For a case including m factors, the number of possible complete decompositions 

without any residual terms is m! (Dietzenbacher and Los 1998). We follow the 

methods used in previous studies and use the average of the so-called polar 

decompositions to approximate the average of all m! decompositions (Dietzenbacher 

and Los 1998; Arto and Dietzenbacher 2014). The two polar decompositions (  

and ) are as follows: 

01 1 1 1 1

0 00 1 0 0

( ) ( ) ( )

                ( ) ( )

                 =

r r
rs rr rs rs rr rs rs

i iij j ij j
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10 0 0 0 0

, ,

1 11 0 1 1 0

, ,

( - ) ( ) ( )

               + ( ) ( )

                =

r r
rs rk ks ks rk ks ks

i iij j ij j

i j k r s i j k r s

r r
rk ks ks rk ks ks

i iij j ij j

i j k r s i j k r s

int M

   

 

 

    

  

   

 

 

f e L T m e L T m

e L T m e L T m

E S T M

       

(10c) 

The average of the polar decomposition is determined as follows (Dietzenbacher and 

Los 1998): 

 

1
( ) [ ( ) ( )]

2

1 1 1 1
               ( ) ( ) ( ) ( )

2 2 2 2

                =

  

rs rs rsfin fin fin

   



   

    

               

      

f f f

e e S S T T m m

E P T M

               (11a)                         

1 1
( ) [ ( - ) ( )]+ [ ( ) ( )]

2 2

                =

  

rs rs rs rs rsint int D int D int M int M          

     

f f f f f

E S C Y T M                     (11b) 

where  is the growth in emission transfers between two regions from 2007 to 

2012. This quantity is decomposed into seven determinants: 

(1) , the effect of emission intensity change; technological changes or energy mix 

improvements leading to changes in emissions per unit of output. 

(2) , the effect of intraregional dependency, i.e., the inputs required in sector i in 

region r to produce per unit of output in sector j in in region r.  

(3) , the effect of interregional dependency (i.e., intermediate trade) change; the 

inputs required in sector i in region r ( ,) to produce per unit of output in 

sector j in region s. A positive effect of  on the exports of region r indicates 

that more products in region r are needed to produce unit output in other 

regions.  

(4) , the effect of trade structure change (final products); the proportion of (final) 

products produced in sector j exported from region r to region s in the (final) 

total trade volume from r to region s. The trade structure in equation (11a) and 

(11b) characterize different parts of trade.  

(5) , the effect of trade volume change (final products); the trade volume of final 

products from region r to region s. Unless stated otherwise, the trade volume 

and trade structure reported hereinafter correspond only to finished products for 

final consumption and do not include trade in intermediate goods that are used 

in further production stages. The trade volume in equation (11a) and (11b) 

characterize different parts of trade. 

(6) , the effect of consumption structure change; the proportion of the final 

demand for products in sector j in region s. 

rsf

E

P

S

r s

S

T

M

C
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(7) , the effect of local consumption change, we further split the consumption to 

household consumption, government consumption and capital investment. 

3.3 Data sources 

The underlying data in this case study implementing the framework includes data for 

26 provinces and 4 cities (30 regions in total). A multiregional input-output table (MRIOT) 

for China in 2007 was compiled by Liu et al. (2012) and has been widely used in previous 

studies (Li et al. 2016; Feng et al. 2013; Feng et al. 2014; Shao et al. 2016; Chen and 

Chen 2016). The 2012 input-output tables (IOTs) for each of the 30 provinces of China 

except Tibet were compiled and published by the Chinese National Statistics Bureau. The 

42 industrial sectors in the official 2012 IOTs are aggregated into 30 sectors (Table S1 in 

Supporting Information) to maintain consistency with the 2007 MRIOT. We then link the 

Chinese MRIOT to global MRIO models which are derived from version 9 of the GTAP 

database (Aguiar et al. 2016). This linked table has been complied built in our previous 

paper—this paper does not repeat the details here (Mi et al. 2017b). To improve the clarity 

of the analysis, the results for the 30 regions are aggregated into 8 regions (Table S2). 

We adopt the same method used in Liu et al. (2012) to derive the MRIOT for 2012 (Mi et 

al., 2017); details of this procedure are given in previous studies (Feng et al. 2013; Liu et 

al. 2012; Mi et al. 2017b). The MRIO table is publicly available online 

(http://www.ceads.net/data/input-output-tables/). To remove the impact of inflation on 

the monetary output, we use the producer price index (PPI) from the National Account 

Main Aggregates Database to convert the 2012 table, adjusting all of the monetary 

data based on prices in 2005 to provide a consistent analysis.  

Since the Chinese government does not publish annual CO2 emissions 

inventories, we estimate sectoral CO2 emissions of the 30 provinces based on China’s 

provincial energy statistics and the IPCC territorial emissions accounting approach 

(Shan et al. 2016; Shan et al. 2017; Guan et al. 2018). All of the emissions data we 

use to construct the dependent variable of EEIT are freely available from the China 

Emission Accounts and Datasets (CEADs; http://www.ceads.net/). The CO2 

emissions for all other regions are from GTAP database (Narayanan et al. 2015). 

4. Results 

4.1 Changes in emissions embodied in interprovincial trade  

We find that while emissions embodied in interprovincial trade witnessed a slight 

increase from 2007 to 2012, the pattern of EEIT flows within China changed 

dramatically. In 2007, 35.9% or 2211 Mt (million tons) of CO2 emissions resulting from 

Y
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fossil fuel combustion were generated during the production of goods or services that 

were ultimately consumed in other provinces in China. Further, 24.2% or 1491 Mt 

were related to the products finally consumed by foreign countries. The dominant 

feature from the 2007 analysis is that the final consumption in Beijing-Tianjin, the 

Central Coast region, and the South Coast region relies on emissions generated in 

less developed regions in China through the imports of large amounts of products 

(Figure 3) (Feng et al. 2013; Mi et al. 2017b). In 2012, the emissions embodied in 

interprovincial trade and international trade grew up to 2879 Mt, but accounted for a 

smaller share of national emissions (34.0% vs. 35.9% in 2007). In contrast, the 

emissions embodied in international trade declined to 1384 Mt (16.4% vs. 24.2% in 

2007). 

The interprovincial emissions flow in China also changed dramatically from 2007 

to 2012.The net emissions outflow equals to the emissions embodied in exports (EEE) 

less the emissions embodied in imports (EEI). The net emissions outflow in Shanghai 

and Zhejiang increased from -106 and -118 Mt to -9 Mt and -65 Mt, respectively 

(Figure S1). As shown in Table 1, among the top 10 largest net emissions flow, five of 

them relate to the emissions imported by Central Coast in 2007, while that is only one 

in 2012. The dominant feature is that net exported emissions from Central and 

Northern regions to Shanghai and Zhejiang declined substantially.  

The net emission outflow between the Northern and Central regions increased 

substantially. In contrast, the Southwestern and South Coast regions tended to 

outsource larger amounts of emissions to Jiangsu and Inner Mongolia (Figure S1).  

The net emission outflow from Hebei to Henan, from Anhui to Jiangxi, and from Hebei 

to Shandong increased from 1.5 Mt, 2.4 Mt and 3.8 Mt to 15.9 Mt, 14.9 Mt and 15.1 Mt, 

respectively. Surprisingly, Henan ceased to be a net exporter and became a net 

importer; its net exported emissions decreased by 83 Mt. To explain the change of 

emission flows, we decompose the changes into several factors.  

 

Table 1 

Top 10 net emissions flow in 2007 and 2012 (Mt).      

2007 2012 

From-To 

Top Net 

Flow (Mt) From-To 

Top Net 

Flow (Mt) 

Inner Mongolia-Jilin 39.7 Inner Mongolia-Shandong 20.2 

Hebei-Zhejiang 27.5 Inner Mongolia-Beijing  19.3 

Shanxi-Shandong 23.02.9 Shanxi-Shandong 16.5 

Inner Mongolia-Shandong 19.3 Hebei-Henan 15.9 

Henan-Zhejiang 18.6 Hebei-Shandong 15.1 

Hebei-Beijing 18.20 Anhui-Jiangxi 14.9 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

Jiangsu-Zhejiang 17.4 Hebei-Beijing 13.3 

Hebei-Shanghai 15.53 Hebei-Zhejiang 13.0 

Hebei-Jiangsu 15.04.9 Inner Mongolia-Henan 12.9 

Yunnan-Guangdong 13.1 Guizhou-Chongqing 11.9 

    

 

By isolating the trade patterns, the reversing interprovincial flows are mainly 

attributed to change in traded intermediate products. Totally, 82% (553 Mt) of the 

changes in emissions embodied in interprovincial trade are because of intermediate 

products. For the Central Coast region, emissions embodied in intermediate products 

in 2007 were closely related to final consumption in Shanghai (103 Mt) and Zhejiang 

(172 Mt), which declined to 679 Mt and 1317 Mt in 2012, respectively. The largest 

decreases were associated with the intermediate products exported by Shandong, 

Hebei and Henan (Figure 3a). In contrast, the southwestern and South Coast regions 

generally outsourced larger amounts of emissions to Jiangsu and Inner Mongolia 

(Figure 3 and Supporting Data). The emissions related to the production of 

intermediate exports in Inner Mongolia and Anhui increased from 164 Mt and 53 Mt in 

2007 to 349 Mt and 155 Mt in 2012. More than half of the change in emissions 

embodied in finished products related to Jiangsu’s exports, which increased from 38 

Mt in 2007 to 110 Mt in 2012. For the emissions embodied in international trade, the 

rapid decline in emissions embodied in intermediate trade (-184.8 Mt) outpaced the 

increase in final trade (74.4 Mt). This indicates the shift of production of intermediate 

products from north and central regions in China to other countries (Meng et al. 2018). 

Notably, the emissions embodied in Shanghai’s exports of final products also declined 

from 2007 to 2012.  

Figure 3. Changes in emissions embodied in interprovincial trade between 
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exporters and importers. (a) Changes in emissions embodied in intermediate 

products; (b) changes in emissions embodied in final products. 

 

Figure 4 shows the sectoral contributions to reversing flows between provinces 

within China. Electricity was one of the essential inputs for many industries. Changes 

in emissions related to intermediate trade were mainly attributed to power generation 

(Figure 4a). For example, 86.4%, 76.4% and 74.4% of the increase in emissions 

embodied in intermediate exports from Shanxi, Inner Mongolia and Anhui occurred in 

power generation sector. By contrast, majority of the change in emissions embodied 

in finished goods related to heavy industry, such as equipment and machinery. 

Moreover, 40% of the total increase in emissions embodied in exported finished 

products were in Jiangsu, because of the substantial increase in exported products in 

heavy industries and construction (Figure 4).  
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Figure 4. Changes in emissions embodied in exported intermediate products (a) and 

finished products (b) to other provinces by sector.  

 

4.2 Socioeconomic contributions to Changes in regional exported 

emission 

The rising final demands for local finalised products had greater effect than 

imported products on the increase in emissions embodied in trade (Figure 5), which 

contributed 1379 Mt and 1000 Mt, respectively, if other factors were constant. The 

negative effect of interregional dependency change indicated that the fragmented 

production has upgraded or transferred to the regions with lower emission intensities. 

Overall, growth in the EEIT was mainly driven by increasing final demand and trade in 

final products and was partly offset by improvements in emission intensity.  

 

 

 

Figure 5. Contributions to changes in emissions embodied in interprovincial trade in 

China (Mt). 

 

Regionally, the socioeconomic drivers exerted different effects across regions. 

Figure 6 shows the contribution of each factor to the changes in emissions embodied 

in exports (a) and imports (b). Inner Mongolia, Anhui, and Jiangsu witnessed the 
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largest increases in emissions embodied in exports, but these increases occurred as 

a result of different driving forces. Rising local demand in other provinces (especially 

capital investment) caused an increase in CO2 emissions of 98 Mt (98.5%) in Inner 

Mongolia if other factors were constant. This increase occurred primarily in the power 

generation sector (Figure 4). The growth in exported emissions in Anhui is attributed 

to changes in interregional dependency (49.6 Mt), trade volumes (63.1 Mt) and final 

demand (49.1 Mt). In contrast, changes in trade volume (142.2 Mt) were the main 

driver of the increase in exported emissions from Jiangsu (Figure 6a). Shandong 

province, which is traditionally an exporter, witnessed the largest decrease in 

exported emissions, due to the negative effects of improvements in emissions 

intensity and changes in interregional dependency. The emissions embodied in the 

imports of Central and Northwest regions have considerable increase, because of the 

growth in trade volume, final demand and consumption structure. For example, 

increasing final demand contributed to 869.5, 68 and 24 Mt to increase in imported 

emissions in Henan, Shaanxi and Inner Mongolia, respectively. The contributions of 

consumption structure change were also noticeable. Notably, the contribution of 

capital investment to emissions embodied in trade in in North (Hebei, Shandong) and 

Central regions (Henan) is larger than developed regions (Beijing, Shanghai), which 

indicates a faster expansion of capital investment. Moreover, the residents in the 

Central Coast region (Shanghai and Jiangsu) tend to have low-carbon lifestyles, and 

the consumption structure effect contributed to the reductions in emissions embodied 

in imports (Figure 6b).  
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Figure 6. Contribution of each factor to the changes in emissions embodied in 

interprovincial exports (a) and imports (b).  

Note: trade volume and trade structure represent traded final products. 
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Figure 7. Regional net emissions outflow (a) and the contribution of interregional 

dependency change (b), trade volume change (c) and final demand change (d) (Unit: 

Mt).   

 

Figure 7 shows the total net emissions outflow change, and contributions of the 

interregional dependency effect, trade volume effect and local demand effect. The 

decrease in net emissions outflow in Central and Southwest were mainly attributed to 

the change in interregional dependency, which in contrast drove the increase in South 

coast. For example, the interregional dependency change contributed 66.2 Mt, 49 Mt 

and 46.9 Mt to the increase in net emissions transfer in Jilin, Jiangxi and Anhui, and 

reduced 103.1 Mt, 83 Mt and 69 Mt in Jiangsu, Hebei and Henan, respectively. The 

substantial contribution of final demand change to Shanxi and Inner Mongolia were 

because of rapid increase in exported electricity, while it was heavy industry (e.g., 

metal) in Hebei. 
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5. Conclusions and discussion 

Knowledge of the endowments embodied in interregional trade is becoming 

increasingly important in a globalised economy. MRIO that includes the feedback 

effects in the inter-regional trade (Su and Ang, 2011), has been a widely used method. 

Furthermore, identifying the driving forces of changes in the endowments embodied in 

trade can provide significant help in the development of policies to curb regional and 

global emissions and/or resource consumption. However, there is still a gap in our 

quantitative understanding of the role of trade and distinguishing the effects of 

intermediate and final products in relocating emissions and/or resource consumption. 

In this paper, we first present a MRIO-based SDA framework for investigating the 

emissions embodied in the final products traded between pairs of regions and the 

emissions embodied in intermediate goods that are used in further processing stages.  

By investigating the socioeconomic contribution to the reversing flows, we divide 

emissions flow between the original producer and final consumer according to where 

the products were finalised. The emissions embodied in final products are generated 

from production of a country’s GDP that are used to satisfied final demand of other 

countries, while the emissions embodied in intermediate products are related to 

fragmented interregional production processes. Our analysis shows that 82% (553 

Mt)of the changes in emissions embodied in interprovincial trade can be attributed to 

intermediate products. The decomposition of emissions embodied in intermediate 

trade can reveal the driving forces of the change in interregional supply chain related 

emissions. The results in this study shed light on the following aspects. 

First, the emissions flow among less developed regions will be new drivers in 

China. The emissions outsourced from the Central to Central Coast regions tend to 

decline and the consumption structure also offset part of the outsourced emissions. In 

contrast, the faster expansion of capital investment, household consumption and 

import volume in Henan, Shaanxi and Inner Mongolia have resulted in large increases 

in the emissions embodied in imports for those provinces. Moreover, Henan has 

ceased to be a net exporter and has become a net importer. This is because of the 

small catch-up of economic development in less developed regions in China. Poverty 

eradication is fairly carbon-intensive due to a larger carbon-footprint elasticity of 

consumption, strongly driving local emissions as well as imported emissions 

(Wiedenhofer et al. 2017; Hubacek et al. 2017).   

Second, a slight shift of production activities from Central and North regions 

(together with the CO2 emissions) relieved the pressures of emission reduction in 

China. The change in interregional dependency have driven increasing emission 
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outflow via China’s interprovincial trade from southern and western provinces, where 

the energy resources are richer and production efficiencies are lower. The exported 

emissions are mainly embodied in exported intermediate products. Moreover, the 

intraregional dependency has changed slightly in 2012 and contributed to the 

reduction in EEIT.  

Third, Central Coastal regions are still located in the downstream of the supply 

chain. The growth of emissions embodied in the final products, contributes to the 

increase in exported emissions from Central Coast regions. The exported emissions 

are embodied in their finished products and imported emissions are mainly embodied 

in intermediate products finalised locally. The Central Coastal regions use imported 

intermediate products to produce and finalized products which are exported to other 

regions. The emission embodied in China’s total exports to other regions via 

international trade has peaked after the global financial crisis, but further efforts on 

emissions embodied in interprovincial trade are needed. Thus, improving emission 

intensity in central and western regions or gradually upgrading the supply chain is 

crucial in reducing the CO2 relocation and total emissions in China. 
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