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Abstract 

The intrinsically poor electrical conductivity and insufficient number of 

electrochemically active sites of transition-metal oxides hamper their wide application 

in high-performance supercapacitors. Herein, we demonstrate an effective strategy of 

creating phosphorus-containing cobalt molybdate (CoMoO4) with oxygen vacancies 

(P-CoMoO4-x) on nickel foam for use as a supercapacitor electrode. Experimental 
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analyses and theoretical calculations reveal that the electronic structure of 

P-CoMoO4-x can be efficiently modulated by incorporating P heteroatoms and O 

vacancies, thereby simultaneously reducing the energy band gap and increasing 

electrical conductivity. Moreover, incorporating P into P-CoMoO4-x weakens the 

Co-O bond energy and induces the low oxidation states of molybdenum species, 

facilitating surface redox chemistry and improving electrochemical performance. 

Accordingly, the optimized P-CoMoO4-x electrode exhibits a high specific capacity of 

1368 C g
−1

 at a current density of 2 A g
−1

, and it retains 95.3% of the initial capacity 

after 5000 cycles at a high current density of 10 A g
−1

. An asymmetric supercapacitor 

assembled with the optimized P-CoMoO4-x as positive electrode and activated carbon 

as negative electrode delivers a high energy density of 58 W h kg
−1

 at a power density 

of 850 W kg
−1

 as well as achieves excellent cycling lifespan. 

Graphical Abstract 
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We have demonstrated a facile strategy for creating O vacancies and incorporating P 

atoms in P-CoMoO4-x nanosheets on conductive Ni foam. Experimental and 

theoretical studies provide insight into the effect of the introduction of P and of O 

vacancies on structural and electrical properties of P-CoMoO4-x. Moreover, P 

incorporation into the P-CoMoO4-x lattice induces reduction in bond energy of Co-O 

and the formation of Mo species with a lower oxidation state, resulting in 

substantially enhanced redox reaction kinetics and electrochemical performance. 
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Accordingly, the optimized P-CoMoO4-x achieves a high specific capacity of 1368 C 

g
−1

 at a current density of 2 A g
−1

, and excellent electrochemical stability. The 

asymmetric supercapacitor P-CoMoO4-x//AC delivers superior energy densities of 58 

W h kg
−1

 at a power density of 850 W kg
−1

. 

Keywords:  

CoMoO4, phosphorus incorporation, oxygen vacancy, electrochemical performance, 

supercapacitors 

1. Introduction 

Supercapacitors are one of the most efficient classes of electrochemical storage 

devices because of their higher power density, faster charge–discharge rate, and 

longer lifespan than those of lithium-ion batteries [1, 2].
 
With regard to the charge 

storage mechanism of electrode materials, conventional carbonaceous materials store 

electrical energy through electrostatic accumulation of surface charge [3, 4], whereas 

transition-metal oxides involve fast reversible Faradaic reactions at the surface or at a 

near-surface region, producing higher energy densities [5, 6]. However, the high 

energy density of transition-metal oxides is achieved by sacrificing power density and 

cycling lifetime, impeding their large-scale practical application in supercapacitors [7, 

8]. The demand for supercapacitors with favorable energy and power densities has 

stimulated tremendous research interest on the exploration of novel nanostructured 

electrode materials. 



 

5 

 

Among transition metal oxides, multiple metal oxides have been widely investigated 

as promising alternatives for supercapacitors because of their accessible oxidation 

states, higher reversible capacities, and better electrical conductivity than unitary 

metal oxides [9-11]. Recently, cobalt molybdate (CoMoO4) is attracting ever-growing 

interest for electrochemical energy storage because of its high theoretical capacity, 

natural abundance, and environmental friendliness [12]. However, the electrochemical 

properties of CoMoO4-based systems remain unsatisfactory because of their 

intrinsically sluggish reaction kinetics and limited electrochemically active sites, 

which must be effectively addressed.  

In tackling these problems, several approaches have been explored. For instance, 

surface modification of transition metal oxides has been considered an effective 

strategy to accelerate and intensify reaction kinetics, realizing high electrochemical 

performance. A representative example is the recently reported phosphate 

ion-functionalized Co3O4 nanosheets [13], whose electrochemically active reaction 

sites and surface reactivity were efficiently increased, resulting in an improved charge 

storage capacity. Alternatively, defect engineering by introducing oxygen vacancies or 

heteroatoms is a promising approach to increase the electrochemically active sites and 

to improve the reaction kinetics of materials, resulting in enhanced electrochemical 

performances [14, 15]. For instance, Lu et al. reported that the incorporation of O 

vacancies into Fe2O3 exhibited higher electrochemical performance than pure Fe2O3 

[16], which is attributed to the O vacancies serving as shallow donors and 
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electrochemically active sites, ultimately leading to the accelerated reaction kinetics at 

the surface. Wang et al. reported that the inclusion of P atoms in Co3O4 improved the 

electrocatalytic properties due to the reduced reaction free-energy and the tuned 

electronic structure after the introduction of the P dopant [17]. As a consequence, 

simultaneous introduction of P and O vacancies into a lattice structure would be 

expected to improve energy-storage performance of CoMoO4, but such phenomenon 

in supercapacitors has been scarcely reported.  

Here, we propose a promising strategy to boost the electrochemical performance of 

CoMoO4 nanosheets grown on Ni foam through the introduction of O vacancies and P 

atoms to the parent material. Density functional theory (DFT) calculations provide 

insight regarding the contribution of O vacancies and P incorporation on the structural 

and electronic properties of P-CoMoO4-x. The novel P-CoMoO4-x exhibits greatly 

improved electrochemical properties compared to the pristine CoMoO4. Moreover, an 

assembled asymmetric supercapacitor (ASC) consisting of the optimized P-CoMoO4-x 

as positive electrode and activated carbon (AC) as negative electrode shows a high 

energy density of 58 W h kg
−1

 at a power density of 850 W kg
−1

, and excellent cycling 

performance with 98.7% capacity retention after 10 000 cycles at a high current 

density of 10 A g
−1

. 

2. Results and Discussion 
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A facile and efficient strategy for the fabrication of P-CoMoO4-x nanosheets is 

proposed (Fig. 1). Typically, CoMoO4 nanosheets are first grown onto Ni substrate 

through a facile hydrothermal method followed by a post-annealing treatment. Typical 

scanning electron microscopy (SEM) images show that Co-Mo precursor nanosheets 

are fully deposited on the surface of the Ni foam. Magnified SEM images (Fig. S1a 

and S1b) show that the precursor nanosheets are interconnected with one another and 

perpendicularly anchored on the Ni substrate, forming hierarchical nanosheet arrays. 

The magnified view in Fig. S1c shows that the nanosheets have a lateral size of ~600 

nm and a thickness of ~20 nm. The interconnectedness and being ultrathin of these 

nanosheets not only facilitate the ion diffusion but also produce highly exposed 

electrochemically active sites, which are possibly responsible for high charge storage 

capacity. After a post-annealing treatment, the Co–Mo precursor is converted into 

crystalline CoMoO4, whose overall hierarchical structures are well preserved (Fig. 

S1d–S1f). Finally, the obtained CoMoO4 is further thermally transformed into 

P-CoMoO4-x under flowing Ar in the presence of NaH2PO2·H2O through 

solid/gas-phase phosphorization. To investigate the effect of phosphorization on the 

morphology, we used different P source dosages (0.2, 0.4, 0.8, and 1.2 g 

NaH2PO2·H2O) to synthesize samples denoted as P-CoMoO4-x-n (n = 1, 2, 3, and 4). 

The corresponding morphological evolution was investigated using SEM (Fig. S2). 

The P-CoMoO4-x-1 sample prepared from a low dosage (0.2 g) of P source displays a 

well-retained overall 3D interconnected network structure (Fig. S2a and S2b), but the 
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surfaces of the nanosheets have become rough with a small amount of disconnected 

particles decorated on them. When the P source dosage was increased to 0.4 g, more 

nanoparticles are deposited on the nanosheets (Fig. S2c and S2d). These nanoparticles 

become even more obvious when 0.8 g P source was used (Fig. 2a, 2b, S2e, and S2f), 

producing abundant edge sites derived from small-size effects on the surfaces of the 

nanosheets [18]. EDS elemental mapping images confirm the existence of Co, Mo, O, 

and P elements in P-CoMoO4-x-3 sample (Fig. S3). With the increase of P source 

dosage (1.2 g), the interconnected nanosheets become locally jammed (Fig. S2g and 

S2h), which possibly has reduces the ion-accessible area and impedes electrolyte 

accessibility, thus limiting the utilization efficiency of the electroactive material. 

Considering that P-CoMoO4-x-3 shows the best electrochemical performance among 

the studied samples, as discussed below, we characterize this sample in detail.  

Structural features of the prepared materials before and after the phosphorization 

process were further investigated using transmission electron microscopy (TEM). A 

low-magnification TEM image (Fig. S4a) of CoMoO4 nanosheet presents a smooth 

surface, consistent with the SEM results. A high-resolution TEM (HRTEM) image of 

CoMoO4 (Fig. S4b) shows that the lattice fringes have a spacing of 0.232 nm, 

corresponding to the (040) plane of the monoclinic CoMoO4 phase. A scanning TEM 

(STEM) image and the corresponding element mapping (Fig. S4c‒S4f) reveal 

homogeneous elemental distribution throughout the nanosheet. For the P-CoMoO4-x-3 

sample, an individual sheet consists of numerous interconnected nanoparticles (Fig. 
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2c and 2d). As determined by N2 adsorption−desorption isotherm (Fig. S5), the 

P-CoMoO4-x-3 shows an increased specific surface area of 113.1 m
2
 g

−1
 compared to 

pure CoMoO4 (49.7 m
2
 g

−1
). The P-CoMoO4-x-3 and CoMoO4 show a type-IV 

isotherm with H3-type hysteresis loops at relative pressure (P/P0) of 0.6−1.0, 

corresponding to the characteristic of meso-macroporous materials [19], which thus 

facilitates transport and migration of electrolyte ions within electrode materials [20].
 

The
  

2D nanosheet morphology of the P-CoMoO4-x-3 offers sufficient 

electrochemically active sites to facilitate affluent electrochemical reactions [21], 

which are expected to enhance electrochemical performance. The HRTEM image in 

Fig. 2e shows two sets of lattice fringes with interplanar distances of 0.223 and 0.309 

nm, corresponding to the spacing of the (003) and (310) planes of the CoMoO4 phase. 

A magnified view (Fig. 2f) shows a disordered lattice, which is possibly caused by the 

existence of O vacancies. To examine the presence of oxygen defects in the 

P-CoMoO4-x-3, EPR spectroscopy was carried out. Compared to CoMoO4, the 

P-CoMoO4-x-3 exhibits a much higher EPR signal at g = 2.005 (Fig. 2g), 

corresponding to the unpaired electrons trapped at the site of oxygen vacancies, which 

is consistent with previous report [22]. The selected area electron diffraction (SAED) 

pattern of the P-CoMoO4-x-3 nanosheet reveals a polycrystalline feature and 

diffraction rings that correspond to the (400), (310), and (002) planes (Fig. S6). The 

homogeneous elemental distribution of Co, Mo, O, and P across the P-CoMoO4-x-3 

structure is confirmed by STEM-EDS mapping images (Fig. 2h).  
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X-ray diffraction (XRD) patterns (Fig. 3a) of both CoMoO4 and P-CoMoO4-x-3 

scraped from the substrate are well indexed to monoclinic CoMoO4 (JCPDS: 21-0868) 

in the C2/m (No. 12) space group [23], indicating that incorporation of P into 

CoMoO4 lattice does not significantly alter the crystal structure. The peaks of 

P-CoMoO4-x gradually shift to lower diffraction angle compared with those of 

CoMoO4 (Fig. S7a), which is caused by the expansion of the unit cell as a result of the 

larger atomic radius of P than that of O [24]. The Raman spectra of the as-prepared 

samples are shown in Fig. 3b. For CoMoO4, the peaks located at 200–1200 cm
−1

 can 

be indexed to characteristic bending and stretching vibrations of α-CoMoO4 [23]. 

Notably, the Raman spectrum of P-CoMoO4-x-3 sample matches that of CoMoO4, 

confirming the successful incorporation of P into the CoMoO4 lattice without altering 

the crystal structure. The Raman peaks gradually become broader, and the peak 

intensity decreases as P content increases; this phenomenon implies crystallinity 

degradation, which possibly arises from the formation of defects, such as O vacancies 

and heteroatom impurities [25]. With increased P content, the peaks of P-CoMoO4-x 

slightly shift to higher wavenumbers compared with those of CoMoO4 upon partial P 

incorporation (Fig. S7b), which is due to a shortening of metal-P distance [26].  

X-ray photoelectron spectroscopy (XPS) measurements were conducted to explore the 

compositional evolution and surface electronic states of CoMoO4 nanosheets upon P 

incorporation. The surface atomic ratios of Co, Mo, O, and P in CoMoO4 and 

P-CoMoO4-x samples are listed in Table S1. The O/P atomic ratio gradually decreases 
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with increased amount of P source during phosphorization. Co/Mo atomic ratios in 

these samples are approximately 1.0, approaching the stoichiometric ratio for 

CoMoO4. The binding energies of Co 2p peaks for CoMoO4 located at 780.6 and 

797.0 eV correspond to Co 2p3/2 and Co 2p1/2 peaks, indicating the existence of Co
2+ 

[27]. The observed binding energies for Co 2p3/2 and Co 2p1/2 levels in the 

P-CoMoO4-x samples shift to a higher binding energy compared with those for 

CoMoO4, and this result is attributed to the high electronegativity P, which reduces 

the electron density of Co species (Fig. 3c and S8a) [17]. The slight change in the Co 

2p spectra suggests that the oxidation state of Co is not affected by P incorporation, 

consistent with previous results [24, 28]. Besides, two weak peaks in the Co 2p region 

of all P-CoMoO4-x samples are observed at 778.5 and 793.5 eV (Fig. 3c), which are 

ascribed to the local structural distortion induced by P incorporation. The main peak 

of the Mo 3d binding energy (Fig. 3d) slightly up-shifts from 232.2 eV of CoMoO4 to 

232.4 eV of P-CoMoO4-x, along with a shift in the Mo 2p3/2 position from 235.4 eV to 

235.6 eV, and the splitting width of 3.2 eV in CoMoO4 and P-CoMoO4-x corresponds 

to Mo
6+ 

[29]. The broad Mo 3d signal for the P-CoMoO4-x samples can be 

deconvoluted into two typical components at 229.6 and 230.4 eV, corresponding to 

Mo
4+

 and Mo
5+ 

[30, 31]. Notably, a comparison of the integrated area under the fitted 

curve shows that the atomic ratio for Mo
6+

/(Mo
4+

+Mo
5+

) decreases with increased 

P-incorporation, indicating the greater formation of low-oxidation-state Mo species 

(Fig. S8b). Similar studies have shown that redox reactions attributed from 
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low-oxidation-state Mo species contribute to enhanced electrochemical performance 

[32-35]. The P 2p core level spectra of the P-CoMoO4-x samples present two peak 

regions (Fig. 3e and S8c), with the regions located around 129.3 and 130.1 eV (P 

2p3/2 and 2p1/2, respectively) corresponding to P anions, whereas the other region 

centered at 134.4 eV is a characteristic of P-O species [36, 37]. The O 1s core-level 

spectrum (Fig. 3f) of the CoMoO4 displays four characteristic peaks centered at 530.4, 

531.3, 531.9, and 533.0 eV, which can be assigned to the lattice O, hydroxyl group, O 

defects (Ov), and physically adsorbed molecular water, respectively [38-40]. In the O 

1s spectrum of P-CoMoO4-x, two peaks are identified at 531.6 and 532.6 eV, 

corresponding to the O species of H2PO4
−
 and PO3

−
, which are attributed to the 

replacement of the hydroxyl group species by the phosphate ion species during 

phosphorization [13]. It can be observed that the peak density of Ov component in 

P-CoMoO4-x gradually increases with increased P source (Fig. S8d), indicating the 

formation of more O vacancies. This finding reveals that metal oxide tends to produce 

O vacancies in the crystal lattice under a reducing atmosphere, consistent with 

previous findings [41, 42]. The quantitative atomic contents of the as-synthesized 

P-CoMoO4-x samples were measured using an inductively coupled plasma mass 

spectrometer (ICP-MS). Table S2 shows that more O vacancies are generated with 

increased P incorporation into P-CoMoO4-x, whereas the atomic ratio of Co/Mo 

remains constant, which are in good agreement with the XPS results. 
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On the basis of the above structural analysis of P-CoMoO4-x, a possible formation 

mechanism was proposed. First, NaH2PO2·H2O was decomposed to generate PH3 

vapor by using a thermal annealing process under Ar flow (Equation 1). Given the 

low hopping barriers and weak metal–O bonds, O vacancies can be induced via 

reduction of CoMoO4 [43, 44]. The generated PH3 acts as a highly active reducing 

agent that reacts with CoMoO4 to produce intrinsic O defects in the lattice structure 

[45, 46]. Hydrolysis of HPO4
2− 

promotes generation of H2PO4
−
 at the surface of 

materials (Equation 2) [47]. The nonequilibrium diffusion process between the 

outward OH
−
 and the inward H2PO4

−
 species results in the formation of nanoparticles 

on the surface of nanosheets, consistent with the nanoscale Kirkendall effect reported 

in other nanostructures [13, 48]. The formed PH3 then reacts with CoMoO4, forming 

P-CoMoO4-x (Equation 3). From a thermodynamic point of view, dissociation and 

incorporation of PH3 as a P-containing species are more favorable in O-deficient 

CoMoO4 surface than in pristine CoMoO4 surface, as revealed by DFT calculations in 

below (Table S3).  

                                      (1) 

        
        

                 (2) 

CoMo   𝑥    CoMo 
  

 

 
 
   

 

 
𝑥            (3)  

The electrochemical properties of the as-fabricated samples on Ni foam as binder-free 

electrodes for supercapacitors were investigated in a three-electrode cell configuration, 

with 1 M KOH as aqueous electrolyte. Fig. 4a compares the cyclic voltammetry (CV) 
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curves of the CoMoO4 and P-CoMoO4-x electrodes recorded at a scan rate of 15 mV 

s
−1

 within the potential range of 0–0.7 V (vs. saturated calomel electrode (SCE)). It is 

worth pointing out that the areal capacity contribution from bare Ni foam to 

P-CoMoO4-x-3 electrode is about 3.49%, which is negligible (Fig. S9). A pair of redox 

peaks with an anodic peak at ~0.57 V (vs. SCE) and a cathodic peak at ~0.30 V (vs. 

SCE) is observed in the CV curve of CoMoO4, which is ascribed to the Faradaic 

redox reactions of Co
2+

/Co
3+

/Co
4+ 

associated with OH
−
 [49, 50]. Obviously, the 

P-CoMoO4-x samples show a larger CV integration area than pristine CoMoO4 at the 

same scan rate, and P-CoMoO4-x-3 exhibits the largest enclosed CV area. The 

pronounced enhancement of energy-storage capacity for P-CoMoO4-x can be 

attributed to available redox couples of Mo
4+

/Mo
5+

/Mo
6+

 with an anodic peak at 

~0.29 V (vs. SCE) and a cathodic peak at ~0.17 V (vs. SCE) provided by the reduced 

Mo species, which are consistent with previous findings [32, 51, 52]. Accordingly, 

the electrochemical Faradaic reactions of P-CoMoO4-x materials can be illustrated by 

the below equations [32, 49, 50, 52, 53].  

3[Co(  ) ]
  Co    4      

   e                       (4) 

Co          
  3Co     e                              (5) 

Co        Co       e
                                 (6) 

Mo  
   (𝑥  1)     𝑥e

  Mo   x  ( 𝑥   )  
                 (7) 

The redox reaction reactants of Co and Mo species are based on the Pourbaix diagram, 

which was reported in literature [23]. The Pourbaix diagram maps out possible stable 
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equilibrium phases of an aqueous electrochemical system and can be used for 

dynamic analysis. In our prepared P-CoMoO4-x, the pH is 14 and the potential range is 

0 to 0.7 V (vs. SCE), the Co element at the interface of electrode and electrolyte will 

be present in the form of [Co(OH)3]
 –
 and Co3O4. The Mo element at the interface of 

electrode and electrolyte will be present in the form of Mo  
  

. 

The CV curves of CoMoO4 and various P-CoMoO4-x electrodes collected at different 

scan rates are presented in Fig. 4b and S10. These CV curves are somewhat 

asymmetric with increased scan rate, and this result is ascribed to the undesired 

resistance of the electrode materials [54]. To further investigate the charge storage 

mechanism of as-synthesized samples, we evaluated the relationship between cathodic 

peak response (ip) and scan rate (ν) by using the power law (ip = a·v
b
) [55]. b can be 

determined from the slope of log(ν)–log(ip) plot. Typically, b = 0.5 represents a 

diffusion-controlled current response, whereas b = 1.0 indicates a surface-controlled 

process. As shown in Fig. 4c, the calculated b-values for CoMoO4 and P-CoMoO4-x-n 

(n = 1, 2, 3, and 4) are in the range of 0.539–0.616, which are close to 0.5, indicating 

the dominant diffusion-controlled behavior. This is in good agreement with previous 

reports on the nature of battery-type materials [55]. The largest b-value of the 

P-CoMoO4-x-3 among other samples suggests that P-CoMoO4-x-3 possesses the fastest 

reaction kinetics, signifying the prominent electrochemical performance. 
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Galvanostatic charge–discharge (GCD) tests for CoMoO4 and P-CoMoO4-x-n (n = 1, 2, 

3, and 4) electrodes were conducted at different charge–discharge current densities 

(Fig. 4d and S11). The GCD curves at various current densities are nearly symmetric, 

indicative of the highly reversible and fast responses of the electrodes. The discharge 

time of P-CoMoO4-x increases with increased P source content (Fig. 4e) until the 

optimal usage of P source (0.8 g). The discharge time of P-CoMoO4-x-4 decreases due 

to surface aggregation caused by excessive phosphorization (Fig. S2g and S2h), 

which in turn reduces utilization rate of electroactive materials. The calculated 

specific capacities of the pristine CoMoO4 and P-CoMoO4-x-n (n = 1, 2, 3, and 4) 

based on GCD curves at a current density of 2 A g
−1

 are 651, 884, 985, 1368, and 

1106 C g
−1

, respectively (Fig. 4f). Notably, the optimized P-CoMoO4-x electrode 

delivers a maximum specific capacity of 1368 C g
−1

 that exceeds the theoretical 

Faradaic capacity value (979.4 C g
−1

 at a potential window of 0.6 vs. SCE/V; 

Calculation details in Supporting Information). The ultra-high capacity is attributed to 

the P-CoMoO4-x nanostructure possessing highly exposed active sites and abundant 

mesoporous (Fig. S5) that enable high contact area between the active materials and 

the electrolyte and lead to rapid ion/electron transports [56]. As a result, the 

P-CoMoO4-x nanostructure could fully benefit from charge contributions of both 

Faradaic and non-Faradaic processes. The significant enhancement of specific 

capacity of P-CoMoO4-x indicates that the simultaneous incorporation of O vacancies 

and P atoms into the lattice of CoMoO4 plays a critical role in charge-storage capacity. 
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When the current density increases from 2 A g
−1 

to 20 A g
−1

, the P-CoMoO4-x-n (n = 1, 

2, 3, and 4) electrodes retain high specific capacities of 409, 545, 833, and 672 C g
−1

, 

respectively. Notably, the superior specific capacity of the optimized P-CoMoO4-x is 

highly competitive with those of the most previously reported CoMoO4-based 

materials (Table S4).  

Cycling performance was evaluated by successive GCD tests performed at a high 

current density of 10 A g
−1

 for 5000 cycles (Fig. 4g). The P-CoMoO4-x-3 exhibits a 

superior cycling stability, with 95.3% retention of the initial capacity after the cycling 

test; by contrast, the capacity retention of the pristine CoMoO4 electrode is 85.9% 

after the same number of cycles. As shown in Fig. S12, the P-CoMoO4-x-3 retains a 

Coulombic efficiency of ~97.9% during the entire cycling process; this value is higher 

than that of CoMoO4 (~91.4%) possibly due to the increased electrical conductivity of 

P-CoMoO4-x-3.
 
The cycling stability is verified from the SEM images of the samples 

obtained after the cycling measurements (Fig. S13); the images show that the 

morphology and structural integrity of the P-CoMoO4-x-3 are well maintained. By 

contrast, the structure of the pristine CoMoO4 suffers from obvious pulverization and 

agglomeration, leading to the loss of electrochemical contact and fast capacity fade. 

Electrochemical impedance spectroscopy (EIS) was performed to further explore the 

reaction kinetics of the studied electrodes, and the obtained Nyquist plots are 

presented in Fig. 4h. The Nyquist plot consists of three main distinguishable regions: 

high-frequency semicircle, mid-frequency Warburg impedance, and low-frequency 
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capacitive behaviour (Fig. S14) [57]. The measured impedance data are analyzed by 

fitting to an equivalent electrical circuit, which is composed of equivalent series 

resistance (Rs), charge-transfer resistance (Rct), constant-phase element (CPE), and 

Warburg impedance (W). The Rs includes the intrinsic resistance of active materials, 

ionic resistance of electrolyte, and contact resistance at the active material/current 

collector interface [58]. The diameter of the semicircle corresponding to Rct displays 

the charge-transfer process at the electrode-electrolyte interface [59]. Meanwhile, the 

W is associated with the electrolyte ion diffusion length and diffusivity within 

electroactive materials [57]. The fitting parameters for both electrodes are obtained 

using the equivalent circuit, as summarized in Table S5. The P-CoMoO4-x-3 displays 

smaller Rs (0.85 Ω cm
2
) and Rct (0.97 Ω cm

2
) than those of the pristine CoMoO4, 

implying higher electrical conductivity and faster charge transfer. The optical band 

gaps of the CoMoO4 and P-CoMoO4-x-3 are ∼2.01 and 1.22 eV, respectively (Fig. 

S15), which were measured using UV-VIS-NIR absorption spectra. The reduced band 

gap value of P-CoMoO4-x-3 indicates a high electrical conductivity, which is 

favorable for the enhancement of electrochemical performance. The EIS results for 

CoMoO4 show an obvious increase in Rct before and after the cycling tests (Fig. S16a), 

whereas the resistance of P-CoMoO4-x-3 has slightly changed after cycling (Fig. 

S16b). The increased of Rct of the samples after cycling test is possibly ascribed to the 

loss of adhesion of electrochemically active materials with the current collector and 
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agglomeration of electrochemically active materials upon long‐ term cycling (Fig. 

S13), resulting in the decreased charge-transfer kinetics. 

To better understand the roles of oxygen vacancies and P heteroatoms in the 

electrochemical performance of P-CoMoO4-x structure, we performed DFT 

calculations to investigate the local atomic environment. Fig. S17 and S18 show the 

ball-and-stick models of the atomic structure of CoMoO4 and P-CoMoO4-x, 

respectively. These models show that P atom in P-CoMoO4-x is surrounded by the four 

nearest neighboring O atoms and the six next nearest neighboring transition metal 

atoms (Fig. S18). That is, the P atom in P-CoMoO4-x forms a PO4 cluster and thus 

possesses a phosphate-like chemical characteristic, although the PO4 does not form a 

standard tetrahedral structure. The lower electronegativity of phosphate ion relative to 

oxygen ion that results in decreasing energy for the electron transport during the 

redox reaction [13]. Three Co-O bond lengths (2.03, 2.08, and 2.16 Å) are observed in 

the pristine CoMoO4 (Fig. S17), and these Co-O bonds become elongated (2.09, 2.16, 

and 2.19 Å) after P incorporation. The increased bond length in Co-O that leads to the 

weakening of the attraction for the 3d electrons of Co
2+

 or Co
3+

 in CoMoO4, and thus 

providing enhanced surface reactivity and electrochemical reaction kinetics.  

To gain insight into the influence of the P incorporation on electronic structure of 

P-CoMoO4-x, we analyzed the optimal lattice parameters and the formation energies 

of CoMoO4 and P-CoMoO4-x, as summarized in Table S3. The structural analysis 

reveals that two types of O atoms exist in the lattice of CoMoO4 (Fig. S17), namely, 2- 
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and 4-coordinated O atoms. The formation of O vacancies at 2-coordinated O sites is 

energetically more favorable than that at 4-coordinated O sites. Furthermore, the O 

vacancy-formation energy of P-CoMoO4-x is 2.76 eV, which is lower than that of 

CoMoO4-x (3.23 eV), suggesting that formation of O vacancies is more energetically 

favored in P-incorporated CoMoO4 than in CoMoO4 (Fig. S19 and Table S3). 

Moreover, the a-axis constant increases substantially from 9.87 Å to 10.62 Å upon P 

incorporation, whereas the c-axis constant decreases from 7.83 Å to 7.43 Å. 

Consequently, the unit cell volume increases from 628.24 Å
3
 to 659.74 Å

3
 upon P 

incorporation, and this phenomenon is expected to increase the diffusion kinetics of 

electrolyte ions within the electrode materials, and thus boost the electrochemical 

performance of the electrode material. The results are supported by the previous 

studies. For example, Lee at al. reported that TiNb6O17 exhibited a larger unit cell, 

which enabled more open lithium insertion/insertion sites and better lithium diffusion 

coefficients than TiNb2O7 [60]. Similarly, Lou et al. reported that FeNb11O27.9 resulted 

in a larger unit-cell volume than FeNb11O29, which facilitated numerous and larger Li
+
 

ion transport paths in FeNb11O27.9, thus leading to a higher Li
+
 ion diffusion 

coefficient [61]. 

To analyze the effect of P incorporation on the oxidation states of Co and Mo, we 

further studied the projected density of states (DOS) of the Co-3d and Mo-4d states. 

We found that the electronic configuration of the Co-3d state is t
3
2g()e

2
g() t

2
2g() 

for both P-containing and P-free cases (Fig. 5a and 5b), illustrating that Co atoms 
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always possess a magnetic moment of 3 μB and an oxidation state of +2. Moreover, 

the electronic structure of Co atoms is not changed either by O vacancy introduction 

or P incorporation into CoMoO4 (Fig. S19). P incorporation into CoMoO4 elongates 

the Co-O bonds (Fig. S17 and S18) and lowers the Co-O bond energy, resulting in 

improved surface redox chemistry [62], which imparts favorable electrochemical 

properties to P-CoMoO4-x. However, substantial changes in PDOS are observed in the 

4d states (Fig. 5c and 5d) of the Mo atoms close to the P atoms. In CoMoO4, Mo 

atoms are present as Mo
6+

 with all 4d states empty in both spin channels, and all 

magnetic moments for Mo atoms are zero. In P-CoMoO4-x, the oxidation state of the 

Mo atoms neighboring the P atoms is reduced because some filled Mo-4d orbitals are 

located below the Fermi level. The magnetic moments of Mo atoms neighboring the P 

atoms are changed to 1 or 2 μB, corresponding to Mo
5+

 or Mo
4+

. These findings are 

consistent with the XPS results. The filled Mo-4d states appear as impurity states with 

their energy levels located within the band gap of CoMoO4. As a result, P 

incorporation substantially decreases the band gap via these impurity states; thus, 

electronic conductivity can be improved through P incorporation. The calculated total 

DOS (Fig. 5e) shows that the pristine CoMoO4 is a semiconductor with an energy gap 

of 2.18 eV. After O vacancies are created, the energy gap decreases to 1.29 eV (Fig. 

S20), and the impurity states remain below the Fermi level. Upon P incorporation, the 

band gap is further reduced to 1.09 eV because more impurity states appear in the 

band gap (Fig. 5f). We further examined the electrical properties of as-synthesized 
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samples using four-probe techniques. The P-CoMoO4-x-3 shows higher electrical 

conductivity (3.9 × 10
−2

 S m
−1

) than pure CoMoO4 (5.7 × 10
−3 

S m
−1

), which 

facilitates electron transport, thus enabling fast reaction kinetics. These results further 

explain why P-CoMoO4-x performs enhanced electrochemical performances.  

To evaluate the electrochemical properties of the P-CoMoO4-x for real applications, 

we assembled a two-electrode configuration by using P-CoMoO4-x-3 as the positive 

electrode material and AC as the negative electrode material (Fig. S21) in 1 M KOH 

aqueous electrolyte with cellulosic paper as separator (Fig. 6a). To achieve the 

maximum voltage window and the best electrochemical performance of the ASC 

device, we adjusted the mass ratio of P-CoMoO4-x-3 to AC to ~0.23 according to the 

CV curves obtained at a scan rate of 10 mV s
−1

 (Fig. S22). The CV curves (Fig. 6b) of 

the P-CoMoO4-x-3//AC device at different voltage windows at a scan rate of 30 mV 

s
−1 

show a quasi-rectangular behavior even at the voltage window of up to 1.7 V, 

indicating the feasibility of employing P-CoMoO4-x-3 and AC as negative and positive 

electrode materials, respectively [63]. Various GCD curves (Fig. 6c) of the device 

collected at different voltage windows at 1 A g
−1

 display a quasi-triangular shape, 

signifying the good electrochemical reversibility. However, when the voltage window 

is wider than 1.7 V, the GCD curve becomes less symmetrical, indicating a reduction 

in the reversibility of the ASC device. Therefore, the stable operating voltage can be 

extended up to 1.7 V. The CV curves of the device were obtained at various scan rates 

(Fig. 6d). The shapes of the CV curves remain undistorted with increased scan rate, 
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suggesting a superior rate performance that can be attributed to the fast ionic and 

electronic transport dynamics of the electrode materials [54]. For comparison, a 

reference ASC device was assembled using CoMoO4 and AC as the positive and 

negative electrode materials, respectively. The mass ratio of CoMoO4 to AC was 

~0.43 according to their individual electrochemical behaviors (Fig. S23a). The GCD 

curves obtained using the P-CoMoO4-x-3//AC display a more symmetrical shape 

compared with that obtained using the CoMoO4//AC at different current densities (Fig. 

6e and S23b); this result demonstrates the enhanced electrochemical reversibility of 

the P-CoMoO4-x-3//AC.  

The specific capacities calculated from GCD curves are presented in Fig. 6f. The 

specific capacity of the P-CoMoO4-x-3//AC is 220 C g
−1

 at a current density of 1 A g
−1

, 

which is higher than that of the CoMoO4//AC (156 C g
−1

) at the same current density 

(Fig. S23c). Notably, the P-CoMoO4-x-3//AC retains a specific capacity of 71 C g
−1

 

even at a high current density of 15 A g
−1

. Energy and power densities are two 

important indicators used to evaluate the electrochemical performance of 

supercapacitor technologies. According to the Ragone plot derived from the GCD 

curves of the P-CoMoO4-x-3//AC (Fig. 6g), the device delivers a favorable energy 

density of 58 W h kg
−1

 at a power density of 850 W kg
−1

, and it maintains an energy 

density of 18.8 W h kg
−1

 even at a high power density of 12 750 W kg
−1

. By contrast, 

the energy density of the CoMoO4//AC decreases from 40.8 W h kg
−1 

to 10.2 W h 

kg
−1

 as the power density increases from 850 W h kg
−1 

to 12 750 W kg
−1 

(Fig. S23d). 
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Furthermore, the high energy and power densities achieved for the 

P-CoMoO4-x-3//AC considerably exceed those of the reported CoMoO4-based ASC 

devices, such as α-CoMoO4//AC [64], Co3O4@CoMoO4//AC [65], 

CoMoO4@Co3O4//AC [53], CoMoO4-3D graphene foam//AC [49], 

CoMoO4-NiMoO4·xH2O//AC [66], and CoMoO4-NiMoO4//AC [67]. The cycling 

stability of the P-CoMoO4-x-3//AC was measured at a high current density of 10 A g
−1

 

for 10 000 continuous charge–discharge cycles (Fig. 6h). Remarkably, 98.7% of the 

initial capacity is retained after cycling test, illustrating the excellent cycling stability 

of the constructed device. The obtained value for the cycling performance is worth 

emphasizing and is way higher than that of the reported ASC devices with 

CoMoO4-based composites [49, 65, 68]. Moreover, Coulombic efficiency gradually 

increases over the first 1200 cycles and is maintained above 91.6% during the cycling 

test (Fig. S24). The EIS plots of the P-CoMoO4-x-3//AC show a slight change before 

and after cycling tests (Fig. S25), confirming the high cycling stability of our 

assembled device. Moreover, a good cycling performance is further demonstrated 

with the ~95.8% capacity retention after the same number of cycles at a high current 

density of 15 A g
−1

, with high Coulombic efficiency of ∼98.9% during cycles (Fig. 

S26).  

3. Conclusions 

We have demonstrated a facile strategy for creating O vacancies and incorporating P 

atoms in P-CoMoO4-x nanosheets on conductive Ni foam. Experimental and 
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theoretical studies provide insight into the effect of the introduction of P and of O 

vacancies on structural and electrical properties of P-CoMoO4-x. Moreover, P 

incorporation into the P-CoMoO4-x lattice induces reduction in bond energy of Co-O 

and the formation of Mo species with a lower oxidation state, resulting in 

substantially enhanced redox reaction kinetics and electrochemical performance. 

Additionally, the resulting 2D nanosheets decorated by the abundant nanoparticles are 

chemically self-assembled on the conductive substrate, which not only provide 

reduced path lengths for ion diffusion but also avoid “dead volume” caused by the 

addition of conductive agents and polymer binders. Owing to its superior features, the 

optimized P-CoMoO4-x achieves a high specific capacity of 1368 C g
−1

 at a current 

density of 2 A g
−1

, as well as excellent rate capability and electrochemical stability. 

The asymmetric supercapacitor P-CoMoO4-x//AC delivers superior energy densities of 

58 and 18.8 W h kg
−1

 at power densities of 850 and 12 750 W kg
−1

, respectively, 

while maintaining an ultra-long cycle life (98.7% retention after 10 000 cycles at 

10 A g
−1

). The proposed strategy may serve as guide in tuning intrinsic electrical 

properties and in designing structural configuration of other electrode materials for 

electrochemical storage applications. 

Notes  

The authors declare no competing financial interest. 
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4. Experimental Section 

4.1. Material Synthesis 

All reagents were of analytical grade and used as received without further purification. 

Prior to the preparation of CoMoO4, two pieces of Ni foam (2 cm × 3 cm) were 

cleaned ultrasonically for 10 min with 3 M HCl solution, ethanol, and deionized water 

in sequence to remove the surface oxide layer and oil contamination. In a typical 

synthesis, 2 mmol each of Co(NO3)2·6H2O and Na2MoO4·7H2O were dissolved in 80 

mL of deionized water under magnetic stirring to form a homogeneous pink solution. 

The pretreated Ni foam and reaction solution were subsequently transferred into a 

100 mL Teflon-lined stainless-steel autoclave. The autoclave was sealed and 

maintained at 160 °C for 10 h and then allowed to cool to room temperature. The Ni 

foam with attached products was rinsed with distilled water and ethanol for several 

times and subsequently dried under vacuum at 80 °C for 12 h. The dried products 

were finally calcined at 350 °C for 2 h at a ramp rate of 5 °C min
−1

 under Ar 

atmosphere. To prepare P-CoMoO4-x, a porcelain boat filled with NaH2PO2·H2O was 

placed at the upstream side of a tube furnace. The other porcelain boat loaded with Ni 

foam supporting the obtained products was placed at the downstream side. 

NaH2PO2·H2O was used as a precursor to generate PH3 via thermal decomposition. A 

series of P-CoMoO4-x-n (n =1, 2, 3, and 4) samples were obtained using different 

amounts of NaH2PO2·H2O, that is, n = 0.2, 0.4, 0.8, and 1.2 g through a 

solid/gas-phase reaction involving CoMoO4 and PH3 reactants; the reaction was 
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conducted at 400 °C for 2 h at a ramp rate of 5 °C min
−1

 under the flow of Ar gas. For 

comparison, CoMoO4 was prepared under the same condition without P source. 

4.2. Material Characterization  

The crystalline structure of the materials was characterized using a Rigaku Ultima 

X-ray diffractometer with Cu Kα radiation (XRD; SmartLab; λ=1.5418 Å). 

Morphological and structural characterizations were performed using FESEM 

(JEOL-7800F; JEOL) and TEM (JEM-2010; JEOL) equipped with an 

energy-dispersive X-ray spectrometer operated at 200 kV. Raman spectroscopy was 

conducted on a micro-Raman spectrometer LabRAM HR with a laser excitation 

wavelength of 514.5 nm. XPS (Thermo Scientific ESCALAB 250; Thermo UK) 

measurements were performed with monochromatic Al Kα radiation as radiation 

source to investigate the surface states. The elemental composition of the samples was 

determined by an inductively coupled plasma mass spectroscope (ICP-MS Agilent 

7900, Tokyo, Japan). The optical band gaps of the samples were measured from UV–

Vis–NIR absorption spectra (Agilent Cary 5000). Electron paramagnetic resonance 

(EPR) analysis was carried out using a Bruker EMX/Plus spectrometer equipped with 

a dual-mode cavity (ER 4116DM). The electrical conductivities of the sample pellets 

compressed from prepared powder were analyzed by a four-probe method using an 

electrometer (Keithley Model 2612). The specific surface area and pore size 

distribution were measured by an Autosorb-iQ 2ST/MP physisorption analyzer with 

nitrogen as an adsorptive agent at 77 K. 
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4.3. Electrochemical Measurements 

The electrochemical behavior of the samples was investigated using an Ivium-n-Stat 

electrochemical workstation (Ivium, Netherlands) in three-electrode mode in 1 M 

KOH electrolyte. The as-prepared samples (1×1 cm
2
) were used directly as the 

working electrodes. The masses of the pristine CoMoO4 and P-CoMoO4-x-n (n = 1, 2, 

3, and 4) weighted before and after the loading on Ni foam were approximately 3.2 

and 3.4 mg cm
−2

, respectively. Platinum sheet and SCE were used as counter and 

reference electrodes, respectively. EIS measurements were recorded at the frequency 

range of 100 kHz to 0.01 Hz with an alternating current amplitude of 5 mV at the 

open circuit potential. Specific capacity (Qs, C g
−1

) was calculated from the charge–

discharge profiles using the following equation [69].   

𝑄𝑠 =
𝐼 ∫ 𝑉𝑑𝑡
∆𝑡
0

𝑚×∆𝑉𝑚𝑒𝑎𝑛 
=
𝐼 ∫ 𝑉𝑑𝑡
∆𝑡
0

𝑚×
∆𝑉

 
 
=  

𝐼 ∫ 𝑉𝑑𝑡
∆𝑡
0

𝑚∆𝑉 
,                (8) 

where I, Δt, V, ΔVmean, m, and ΔV are the discharge current (A), discharge time (s), 

operating potential (V), mean value of operating potential (V), mass (g), and potential 

window (V) of electroactive materials, respectively. 

The negative electrode was prepared through slurry-coating onto Ni foam. The slurry 

comprised activated carbon (AC), acetylene black, and polyvinylidene fluoride at a 

weight ratio of 85:10:5 and dissolved in N-methyl pyrrolidone. Prior to the assembly 

of the device, the masses of the positive (m+) and negative electrode materials (m−) 

were balanced according to charge balance theory (Equation 9).  

  

  
=
  ×∆𝑉 

  
                                                        (9) 
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where Q+, C−, and ΔV− are the specific capacity of the positive electrode, the specific 

capacitance and potential window of AC electrode, respectively. 

For the fabrication of ASC device, the optimized P-CoMoO4-x-3 (3.4 mg in 1×1 cm
2
) 

and AC (18.2 mg in 1×1 cm
2
) were used as the positive and negative electrode 

materials, respectively; a piece of cellulose paper was used as separator to assemble a 

coin cell. Specific capacity (Qd, C g
−1

), energy density (E, W h kg
−1

) and power 

density (P, W kg
−1

) of device were calculated from current charging/discharging 

curves using the following equations, respectively [69, 70].  

𝑄𝑑 =  
𝐼 ∫ 𝑉𝑠𝑑𝑡
∆𝑡𝑠
0

𝑀∆𝑉𝑠
                                    (10) 

E =  
𝐼 ∫ 𝑉𝑠𝑑𝑡
∆𝑡𝑠
0

 .6 · 𝑀
                   (11) 

 =
 6   ·  

∆𝑡𝑠
                  (12) 

where I, M, ∆ts, Vs and ∆Vs are the discharge current (A), the total mass of the positive 

and negative electrode materials (g), discharge time (s), operating voltage (V), and 

voltage window (V) of the discharge process, respectively. 

4.4. Density Functional Theory Calculations 

DFT calculations were performed using the Vienna ab initio simulation package [71]. 

Core‒ion and valence‒electron interactions were described using the projector 

augmented wave method [72], whereas the electron exchange–correlation interactions 

were described using the spin-polarized generalized gradient approximation Perdew–

Burke–Ernzerh function [73]. A Hubbard U-term was used to determine the Co-3d 

and Mo-4d states, and the selected effective U values were 4.41 and 4.50 eV for Co 

and Mo, respectively [74]. The lattice parameters and atomic positions were fully 
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relaxed, and the final force of all relaxed atoms was less than 0.05 eV Å
−1

. The 

Monkhorst‒Pack scheme with a 3 × 3 × 3 k-point mesh was used for the integration in 

the irreducible Brillouin zone [75]. The selected cut-off energy of the plane waves 

was 520 eV. DOS smearing was achieved using the Gaussian smearing method with a 

smearing width of 0.05 eV. Here, we provide a short description of the theoretical 

calculations. The unit cell of CoMoO4 contains 8 Co atoms, 8 Mo atoms, and 32 O 

atoms. For the model of CoMoO4-x with O vacancies, one O atom was removed from 

the unit cell for band gap calculation. The concentration of the O vacancy is 1/32 (x 

value in CoMoO4-x is 1/8).  
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Fig. 1. (a) Schematic of the three-step strategy in preparing P-CoMoO4-x nanosheets. 
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Fig. 2. (a, b) FESEM images, (c, d) TEM images, and (e, f) HRTEM images of 

P-CoMoO4-x-3. (g) EPR spectra of CoMoO4 and P-CoMoO4-x-3 measured at room 

temperature. (h) STEM-EDS mapping images of Co, Mo, O, and P recorded from a 

single nanosheet of P-CoMoO4-x-3. 



 

41 

 

 

Fig. 3. Composition and chemical analyses of CoMoO4 and P-CoMoO4-x-3: (a) XRD 

patterns, (b) Raman spectra, and high-resolution XPS spectra of (c) Co 2p, (d) Mo 3d, 

(e) P 2p, and (f) O 1s. 
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Fig. 4. Electrochemical performances of CoMoO4 and P-CoMoO4-x-n (n = 1, 2, 3, and 

4) electrodes in a standard three-electrode system. (a) Comparative CV curves of 

CoMoO4 and P-CoMoO4-x electrodes obtained at a scan rate of 15 mV s
−1

. (b) CV 

curves of P-CoMoO4-x-3 electrode obtained at different scan rates. (c) Power law 

dependence of redox peak current on scan rate for CoMoO4 and P-CoMoO4-x 

electrodes. (d) GCD curves of P-CoMoO4-x-3 electrode obtained at different current 

densities. (e) Comparative GCD curves of CoMoO4 and P-CoMoO4-x electrodes 

obtained at a current density of 2 A g
−1

. (f) Specific capacities of CoMoO4 and 

P-CoMoO4-x electrodes as function of current density. (g) Cycling stability of 

CoMoO4 and P-CoMoO4-x-3 electrodes at a current density of 10 A g
−1

. (h) Nyquist 

plots with insets showing the magnified semicircles and electrochemical equivalent 

circuits of CoMoO4 and P-CoMoO4-x-3 electrodes. 
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Fig. 5. Projected DOS (PDOS) of the Co-3d states of Co atoms in CoMoO4 (a) and 

P-CoMoO4-x (b). PDOS of Mo-4d states for Mo atoms in CoMoO4 (c) and 

P-CoMoO4-x (d). Total DOS of CoMoO4 (e) and P-CoMoO4-x (f). Fermi level is set to 

0 eV. 
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Fig. 6. Electrochemical characterization of the assembled P-CoMoO4-x//AC device: (a) 

Schematic of device fabrication; (b) CV curves collected at various voltage windows 

at 30 mV s
−1

; (c) GCD curves collected at various voltage windows at 1 A g
−1

; (d) CV 

curves obtained at different scan rates; (e) GCD curves obtained at various current 

densities; (f) specific capacity as a function of various current densities; (g) 

comparison of the Ragone plots of the present and reported devices; and (h) cycling 

stability at a current density of 10 A g
−1

. 




