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Abstract

Due to the extreme imbalance of training data between seen classes and

unseen classes, most existing methods fail to achieve satisfactory results in the

challenging task of Zero-shot Learning (ZSL). To avoid the need for labelled

data of unseen classes, in this paper, we investigate how to synthesize visual

features for ZSL problem. The key challenge is how to capture the realistic

feature distribution of unseen classes without training samples. To this end,

we propose a hybrid model consists of Random Attribute Selection (RAS) and

conditional Generative Adversarial Network (cGAN). RAS aims to learn the

realistic generation of attributes by their correlations in nature. To improve the

discrimination for the large number of classes, we add a reconstruction loss in the

generative network, which can solve the domain shift problem and significantly

improve the classification accuracy. Extensive experiments on four benchmarks

demonstrate that our method can outperform all the state-of-the-art methods.

Qualitative results show that, compared to conventional generative models, our

method can capture more realistic distribution and remarkably improve the

variability of the synthesized data.
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Attribute Selection

1. Introduction

Conventional image classification relies on supervised learning with sufficient

training samples for each category. Due to the fast increase of new concepts,

collecting high-quality data for each of them is infeasible. Towards intelligent

image classification, Zero-shot Learning (ZSL) [1, 2, 3, 4, 5, 6, 7] aims to learn5

a classification model with limited training classes, but in the hope of transfer-

ring to novel unseen classes. Conventional zero-shot learning methods rely on

projecting visual features into semantic embedding space in order to infer the

class labels through pre-defined human knowledge, such as attributes. However,

since the projection is learned based on the seen classes only, the learnt models10

often suffer from the severe domain shift problem, i.e. the classification has

strong bias towards seen classes. Therefore, despite recent zeal on ZSL, most

of existing work is based on the unrealistic assumption that all of test images

come from unseen classes. How to classify images from both seen and unseen

classes remains challenging, which is known as Generalised Zero-shot Learning15

(GZSL).

A recent survey [8] shows that most of state-of-the-art ZSL approaches suffer

from sever performance degradation. The first proposal of GZSL [9] considers

to use anomaly detection to first differentiate seen and unseen classes, and then

apply conventional ZSL approaches. Recently, a promising solution is to gen-20

erate unseen visual data from semantic attributes so as to convert ZSL into

a conventional supervised classification. In this way, seen and unseen classes

are trained together and the bias is mitigated. Long et al. studied a embed-

ding framework from attributes to visual features with visual-semantic structure

preservation [10]. However, their approach requires expensive instance-level at-25

tributes. Y. Guo et al. estimated the the probability distribution of unseen

classes by using the knowledge from seen classes and the class attributes [11],

and then synthesised samples based on the distribution. This method needs to
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assume a certain distribution for the unseen data, e.g the Gaussian distribution,

which is distinctive to the reality and leads to un reliable classifiers.30

Therefore, the core issue is: How can we capture the realistic distribution

of unseen images? Such a problem is similar to human imagination. Given a

semantic description, humans can imagine how does the object looks like. Sim-

ilarly, Generative Adversarial network (GAN) [12] trains a generative network

and a discriminative network, where discriminative network intends to classify35

real data from synthesised data, while generative network tries to generate fake

data to cheat the discriminative network. Inspired by GAN, we consider to

generate unseen data from semantic attributes. To address the problem of do-

main shift, we extend the conditional GAN with a reconstruction loss and a

classification loss. In addition, to solve the problem that the generated data40

has the same distribution with the initialised noises, we embed a policy called

Random Attribute Selection (RAS) to process the conditional class attribute

during synthesising unseen new data. RAS selects maximal correlated attribute

entries randomly according to the attributes correlation matrix, and cuts down

all the left entries.45

Without losing the generality, we carry out our experiments for both ZSL and

GZSL on four benchmarks. Detailed analysis on synthesised data distribution

and the importance of reconstruction item are also performed to convince the

effectiveness of our method. It is worthwhile to list the contributions of our

method:50

a) We propose a novel method for zero-shot learning, which construct a condi-

tional generative network to synthesis unseen class features from attributes.

Hereafter, these features can be used to train a conventional supervised clas-

sifier for image recognition.

b) Reconstruction loss are added to the generative network to solve the domain55

shift problem. With this constraint, the synthesised features are much more

accurate than those generated without it.

c) To solve the problem that the synthesised features have the same distribution

3
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as the input noises, we propose a strategy called random attribute selection,

which is used to choose the most correlated attribute entries randomly to re-60

construct the unseen class features. This strategy can generate more similar

features as real ones.

d) The experiments on four popular datasets for both ZSL and GZSL show that

our method is more effective than the state-of-the-art methods.

The rest of this paper is organized as follows. In Section ‘Related Work’, we65

give a brief review of recent zero-shot learning methods and generative adver-

sarial network. The details of our method for common attributes annotation

and projection models are both described in Section‘Methodology’. Section ‘Ex-

periments’ reports the experimental results on ZSL and GZSL, and analysis the

distribution of synthesised data and the importance of reconstruction item in70

detail. Finally, we conclude this paper and discuss the probable future works in

Section ‘Conclusion’.

2. Related Works

Zero-shot Learning Since visual attribute learning has been proposed,

many researchers [13, 14, 15] conduct their work on how to find the intermediate75

attribute classifiers for zero-shot learning. Compatibility learning is the most

popular framework, which learns linear or non-linear mapping functions using

only seen data and attributes, and apply on unseen data. Direct Attribute

Prediction (DAP) [16] is one of the earliest compatibility frameworks, which

learns probabilistic attribute classifiers and estimate the label by integrating80

the ranks of the learnt classifiers. Label Embedding (ALE) [13], Structured

Joint Embedding (SJE) [17], and Deep Visual-Semantic Embedding (DeViSE)

[18] employ bilinear compatibility function to project features into semantic

embedding space, where the features and attributes belongs to same class have

maximal correlation, otherwise have minimal correlation. Latent Space Encod-85

ing (LSE) [19] exploits an encoder-decoder to connect the semantic relations of

different modalities. In addition, Z. Ji et al. proposed a method called Manifold

4
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regularized Cross-Modal Embedding (MCME) [20] to preserve the locally visual

structure in the embedding process by formulating the manifold constraint for

intrinsic structure of the visual features as well as aligning pairwise consistency.90

There are also some non-linear compatibility learning frameworks [21], which

extends linear models into non-linear ones to improve the recognition accuracy.

Since it is not available to obtain the distribution of unseen classes in com-

patibility learning, transductive learning related methods [22, 23, 24, 25] were

proposed to use the unseen data in training process to solve the domain shift95

problem. Though this type of methods can greatly improve the classification

accuracy, the setting of it violates the original purpose that the unseen data is

strictly not accessible during training.

Synthetic learning is a novel type method, which synthesis pseudo features

from semantic attributes, and training classifiers using conventional algorithms100

such as Decision Tree (DT), Support Vector Machine (SVM). Unseen Visual

Data Synthesis (UVDS) [26] and Adversarial Sample Synthesis (ASS) [27, 28,

29, 30] are partial typical methods of this type. Our method also belongs to

this type.

ZSL related methods often rely on the intermediate attributes, which rep-105

resent the semantic embeddings of both seen and unseen classes. Conventional

attributes [31] are high dimensional, and usually annotated by experts with real

values, Demire et al. [32] turn to use Word2Vec [33] to generate attributes based

on the dataset ‘Wikipedia’. Another semantic attribute representation is based

on similarity, which can be annotated by humans [34] or the textual descriptions110

[32].

Generative Adversarial Network GAN is a very interesting learning method,

which can generate synthesised samples with noise input. GAN was first pro-

posed by I. Goodfellow et al.[12], till now there are a large quantity of impressive

progresses have been achieved, e.g. image generation [35], text generation [36],115

image editing [37] and conditional image generation such as text2image [38].

GAN’s success depends on the variants of adversarial loss which tries to make

the generated data to be indistinguishable from real images or features. As

5
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Figure 1: Illustration of our network structure for zero-shot learning. The training phase do

not have the process of Random Attribute Selection (RAS), while the testing phase have it.

we know that GAN often fall into collapse, to handle this problem and make

its training more stable, many training strategies have been proposed, such as120

Wasserstein GAN [39], least square GAN [40]. Furthermore, Cycle GAN [41]

and Dual GAN [42] have been developed to address the problem of unpaired

images training, which also described as unsupervised GAN.

3. Methodology

3.1. Notations125

Let Y = {y1, · · · , ys} and Z = {z1, · · · , zu} denote a set of s seen and u

unseen class labels, and they are disjoint Y ∩ Z = ∅. Similarly, let AY =

{ay1, · · ·, ays} ∈ Rl×s and AZ = {az1, · · ·, azu} ∈ Rl×u denote the corre-

sponding s seen and u unseen class level attributes respectively. Given the

training data in 3-tuple of N seen samples: (x1,a1,y1), · · · , (xN ,aN ,yN ) ⊆130

Xs ×AY × Y , where Xs is d-dimensional features extracted from N seen im-

ages. When testing, the preliminary knowledge is u pairs of attributes and

labels:(â1, ẑ1), · · · , (âu, ẑu) ⊆ AZ × Z. Zero-shot Learning aims to learn a

classification function f : Xu → Z to predict the label of the input image from

unseen classes, where xi ∈Xu is totally unavailable during training.135
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3.2. Conditional GAN for ZSL

In this subsection, we will introduce our proposed generative model. As

shown in Figure 1, our proposed model contains four parts: 1) the generative

network G; 2) the discriminative network D; 3) the classification network C; 4)

and the reconstruction network R.140

The generative network G generates feature x̂ through sampling from a

learned distribution p(x̂|z,ac), where ac is the class attribute of category c,

and z is the randomly generated noise. The function of network G and D is the

same as those in the conventional GAN. The network G intends to learn the

real data distribution via the gradients computed by the discriminative network145

D, which learns to distinguish between ‘real’ and ‘fake’ samples. The function

of network C is to calculate the posterior probability p(c|x). The function of

network R is to preserve the structure of the generated samples by using the `2

loss.

In the training dataset, we have the prior knowledge that each feature be-150

longs to a certain class among total K categories, so it is easy to train the

classification network C with a standard full connection network. Taking the

training sample x as input and K dimensional vector as output, the classifier

C turns into computing class probabilities with a softmax function. Each entry

of the output vector p(c|x) stands for the probability of each category of the155

input feature x. In the training phase, the classifier C intent to minimise the

softmax loss,

LC = −Ex∼pdata(x)
[p(c|x)]. (1)

The classification network (Classifier) contains four full connection layers,

which can be seen in Figure 2. The purpose of the discriminative network D is

to distinguish real training data from synthesized feature, while the generative160

network G tries to deceive the discriminator D. Concretely, the network D

7
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Figure 2: The architecture of classification network (Classifier).
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Figure 3: The architecture of discrimination network (Discriminator). The input of discrim-

inator can be fake image or real image. The output is encouraged to generate 1 for the real

image as input and 0 for the fake image as input respectively when training the discriminator.

While training the generator, the output is only constrained to be 1.

should minimize the following loss function,

LD =− Ex∼pdata(x)
[logD(x)]

− Ez∼pz(z)
[log(1−D(G(ac, z)))].

(2)

The discrimination network (Discriminator) contains four full connection

layers, which can be seen in Figure 3. The generative network G should have

three objectives. Firstly, it should fool the discriminator D and make D recog-165

nise the synthesised feature as the real one, thus, the generator G should min-

imise the following loss function,

LGD = −Ez∼pz(z)
[logD(G(ac, z))]. (3)

Secondly, the generated feature x̂ should also cheats the classifier and obtains

8
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Figure 4: The architecture of generation network (Generator).

highest probability with its corresponding class, hence we try to minimise the

classification loss with the following formulation,170

LGC = −Ez∼pz(z)
[p(c|G(ac, z))]. (4)

Finally, the synthesised feature should preserve the structure of the domain

distribution and can reconstruct the original feature x, so we use the `2 loss to

keep the constraint, and minimise the following function,

LGR = ‖x−G(ac, z)‖2F , (5)

where, ‖·‖F denotes the Frobenius norm. We combine the above three con-

straints, and optimise them simultaneously with Equation 6,175

G = min
G
LG = min

G
(LGC + αLGD + βLGR), (6)

where, α and β are the balance parameters to control the importance of the last

two items. The generation network (Generator) also contains four full connec-

tion layers, which can be seen in Figure 4. The total network of the generator

G, the discriminator D, and the classifier C can be iteratively optimized with

Stochastic Gradient Descent (SGD). The total training procedure can be found180

in Algorithm 1.
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Algorithm 1 Adversarial training of feature synthesis.

Input:

Training image set XS , Corresponding attributes AY , Class labels Y .

Hyper-parameters: α, β, iteration times T ;

Output:

Parameters of the Generator.

1: for each i ∈ [1, T ] do

2: Fix the Discriminator D and the Generator G, train the Classifier C with

Equation 1;

3: Fix the Classifier C and the Generator G, train the Discriminator D with

Equation 2;

4: Fix the Discriminator D and the Classifier C, train the Generator G with

Equation 6;

5: end for

6: return the Parameters of the Generator;

0.3 0.4 0.2 0.7 0.4 0.3 0.2 0.1 0.4 …… 0.8 0.1 0.5 0.3 0.5 0.6 0.7 0.1 0.9 0.3Class Attribute

1 2 3 4 5 6 7 8 9 …… 303 304 305 306 307 308 309 310 311 312

1 120 … 270 4

2 230 … 137 65
Attribute

l

27 55 183 …… Rando

Random Integers

… … … … …

311 20 … 75 92

312 18 … 56 258

Correlation
Rank

m
 Attribute

27 311 289 2 93 8 74 88 306 …

55 76 89 5 308 3 59 7 303 …

183 305 7 39 8 5 308 160 234 …

0.3 0.4 0.2 0.7 0.4 0.3 0.2 0.1 0.4 …… 0.8 0.1 0.5 0.3 0.5 0.6 0.7 0.1 0.9 0.3

e Selection

… … … … … … … … … …

√ √√ √√

√ √ √

√√ √

√

√

√

0 0.4 0.2 0 0.4 0 0.2 0.1 0 …… 0.8 0 0.5 0.3 0 0.6 0 0 0.9 0New Attribute

√ √ √ √ √

Figure 5: Illustration of the process of Random Attribute Selection (RAS) in our method.
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3.3. Random Attribute Selection

Conventional GAN usually utilize noise as input to generate samples, which

often causes the synthesised samples also have the same distribution as the input

noise. For example, if the input noise follows Gaussian distribution, the output185

synthesized samples usually obey the same Gaussian distribution. However,

in most realistic scenarios, we often cannot obtain what distribution the data

should follow previously, thus, it is unreasonable to employ a fixed function to

postulate the distribution of the data.

Generally speaking, each entry of class attribute vector has its realistic visual190

or semantic meaning, e.g., the 23th entry of the attribute for AWA [43] is ‘paws’,

which represents for whether the animal has paws. Therefore, if we keep parts

of the entries of a class attribute vector and set the left to 0, we will get a new

attribute vector but corresponding to the same original class, which means that

we create a new image which keep part of its original visual content, but still195

belongs to the same original class, e.g. in dataset CUB [44], if we keep the

head and body related entries of a class attribute vector, and remove the foot

related ones, it represents that the corresponding synthesized feature only have

the head and body parts, but still belongs to the original bird type.

In real scenarios, the entries of a class attribute often have correlations with200

each other, e.g. in dataset AWA [43], the attribute unit ‘domestic’ often has

great relationship with the unit ‘ground’. Thus, we compute the attribute cor-

relation using R = ATA and sort each row of R in descending order. We ran-

domly generate k1 integers, and find the corresponding rows in R. Furthermore,

the top k2 positions of the found rows are extracted as the kept values, which205

are exploited to reserve the corresponding entries of original class attribute, and

set the left to zero. The total process of Random Attribute Selection (RAS) is

illustrated in Figure 5.

During training, the process of RAS is not included in the total network,

because the processed attributes can not well match with the features, which210

will result in bad reconstruction. While in testing, we attach the RAS into the

total generative network. Although RAS can introduce randomness, we still

11
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retain the random noise z as input, since the number of RAS is limited, while

z is infinite, which can bring in much more diversity of synthesised features.

When testing for GZSL, we combine generated synthesised features XF with215

the train seen set XS as total dataset, in which we find the nearest feature of

unseen data with Equation 7, and assign the corresponding label to the unseen

data as its category.

ci = arg max
xj∈XS∪XF

xT
i xj

‖xi‖2‖xj‖2
, (7)

where, xi ∈ XU is the test feature from unseen set, and ‖·‖2 denotes the `2

norm.220

4. Experiments

In this section, we will first give a brief review of the selected datasets for

evaluation our method, then detailed experiments will be carried out to show the

performance of our method both on the assessment of unseen classes accuracy

of Zero-shot Learning (ZSL) and harmonic accuracy of Generalised Zero-shot225

Learning (GZSL), finally we will analysis the influence of RAS with t-SNE [45]

in detail.

4.1. Datasets and Settings

In our experiments, we evaluate our zero-shot learning method on four pop-

ular datasets. The dataset split follows the setting of [8], and are listed as230

following,

(1) SUN (SUN attributes) [46] SUN is a fine-grained and medium-

sized dataset, which contains 14,340 images from 717 types of scene. Among

the total number of 717 classes, 1,440 samples of 72 classes are used as unseen

testing data, and the left 645 classes are divided into two parts, including 10,320235

seen training samples and 2,580 seen testing samples.

(2) CUB (Caltech-UCSD-Birds 200-2011) [44] CUB is also a fine-

grained and medium-sized dataset, which was composed with 11,788 images

12
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from 200 different categories of birds. In our experiments, 50 of the total 200

classes are set as the unseen training set, including 2,967 images, and the remains240

are set as the seen training set, which contains 7,057 seen training images and

1,764 seen testing images.

(3) AWA (Animals with Attributes) [43] AWA is a coarse-grained and

medium-scale dataset, which contains 30,475 images coming from 50 categories.

The literature [8] proposed a split strategy that 40 classes are used for training,245

in which 19,832 images are set as seen train set and 4,958 images are set as seen

test set, and 10 left classes of 5,685 images are used for testing, we also follow

this setting.

(4) aPY (Attribute Pascal and Yahoo) [16] aPY is a coarse-grained

and small-scale dataset, which has 15,339 image instances from 32 classes.250

Among all the 32 classes, 20 Pascal classes of 7,415 images are utilised for train-

ing and the left 12 Yahoo classes are utilised for testing in our experiments. For

the purpose of GZSL, the 20 Pascal classes are also divided into seen training

set of 5,932 images and seen test set of 1,483 images.

In our experiments, we use the features extracted from pre-trained ResNet[47]255

model on ImageNet [48], and each feature has 2,048 dimensions. When train-

ing, we set the balance parameters α = 1 and β = 5. During testing, suppose

the attribute dimension is l, the parameters of RAS are set as k1 = l/10 and

k2 = l/15, the total number of selected entries will be less than `2/150.

Moreover, to balance the number of each seen class in the dataset, we choose260

the quantity of each synthesised class equals to the average number of each seen

class in the training set, e.g. in dataset SUN, we synthesise 16 features for each

unseen classes. The synthesised number of unseen classes on four datasets are

listed in Table 1.

4.2. Zero-shot Learning (ZSL)265

Image classification accuracy on single label usually evaluated with top-1

accuracy, i.e. if the predicted label is same as the real label, then we say the

prediction is correct. In some conventional evaluating methods [14], the zero-

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 1: Synthesised number of each class on four popular datasets.

Dataset training features training classes
synthesised features

of each class

SUN 10,320 645 16

CUB 7,057 150 47

AWA 19,832 40 496

aPY 5,932 20 297

Table 2: Results of Our Method on four popular datasets SUN, CUB, AWA, and aPY. Our

method outperform other 12 methods on three datasets except CUB. SAE*: Implemented by

us according to the algorithm described in its original paper.

Method SUN CUB AWA aPY

DAP 39.9 40.0 44.1 33.8

IAP 19.4 24.0 35.9 36.6

CONSE 38.8 34.3 45.6 26.9

CMT 39.9 34.6 39.5 28.0

SSE 51.5 43.9 60.1 34.0

LATEM 55.3 49.3 55.1 35.2

ALE 58.1 54.9 59.9 39.7

DEVISE 56.5 52.0 54.2 39.8

SJE 53.7 53.9 65.6 32.9

ESZSL 54.5 53.9 58.2 38.3

SYNC 56.3 55.6 54.0 23.9

SAE* 53.4 42.0 58.1 32.9

Ours 61.7 52.6 67.4 40.1

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

shot learning accuracy is averaged for all images, which will lead to the bad

situation that high performance on densely populated classes is encouraged,270

e.g. one of unseen aPY classes ‘person’, whose number accounts for 64% of

the total unseen samples will play more important role than other classes. But

we are interested in achieving high performance in all classes, even in sparsely

populated classes, hence we choose to use the average of each class accuracy [8],

which can be described as following,275

accS =
1

‖S‖

‖S‖∑

c=1

# correct predictions in c

# samples in c
, (8)

where, ‖S‖ is the number of test classes S. In zero-shot learning, we set S = Z,

and the search space is Z.

We compare our algorithm with 12 recently proposed baseline methods, in-

cluding DAP [16], IAP [16], CONSE [49], CMT [50], SSE [14], LATEM [51],

ALE [13], DEVISE [18], SJE [17], ESZSL [52], SYNC [9], and SAE [53], and280

record the results in Table 2, in which SAE is implemented by us according to

the algorithm described in its original paper [53].

From the Table 2, we can find that our method outperforms all the 12 state-

of-the-art methods on dataset SUN, AWA and aPY, and achieve the fifth place

on dataset CUB. Concretely, the result on dataset SUN exceeds the best com-285

petitor ALE 3.6%, and surpasses 1.8% over SJE on dataset AWA, the smallest

winner is on the dataset aPY, just obtains 0.2% promotion. On dataset CUB,

our method is not the best performer, and lower than the best algorithm SYNC

3%. Although it is the fact that our algorithm cannot win on all dataset for

ZSL, this does not indicate that the effectiveness of our method is bad, because290

it is not reasonable to search the unseen feature on unseen classes only. Instead,

the more practical way is to find the feature on all the seen and unseen classes,

and this searching method is named as GZSL, which will be described in the

following subsection.

15
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Table 3: The results of Generalized Zero-Shot Learning on four popular attribute datasets.

For unseen test accuracy and harmonic mean accuracy, our method outperforms all the other

12 methods. CMT*: CMT with novelty detection. SAE*: Implemented by us according to

the algorithm described in original paper.

Method
SUN CUB AWA aPY

ts tr H ts tr H ts tr H ts tr H

DAP 4.2 25.1 7.2 1.7 67.9 3.3 0.0 88.7 0.0 4.8 78.3 9.0

IAP 1.0 37.8 1.8 0.2 72.8 0.4 2.1 78.2 4.1 5.7 65.6 10.4

CONSE 6.8 39.9 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.0 91.2 0.0

CMT 8.1 21.8 11.8 7.2 49.8 12.6 0.9 87.6 1.8 1.4 85.2 2.8

CMT* 8.7 28.0 13.3 4.7 60.1 8.7 8.4 86.9 15.3 10.9 74.2 19.0

SSE 2.1 36.4 4.0 8.5 46.9 14.4 7.0 80.5 12.9 0.2 78.9 0.4

LATEM 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 0.1 73.0 0.2

ALE 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 4.6 73.7 8.7

DEVISE 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 4.9 76.9 9.2

SJE 14.7 30.5 19.8 23.5 59.2 33.6 11.3 74.6 19.6 3.7 55.7 6.9

ESZSL 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 2.4 70.1 4.6

SYNC 7.9 43.3 13.4 11.5 70.9 19.8 8.9 87.3 16.2 7.4 66.3 13.3

SAE* 17.1 28.1 21.3 17.4 50.7 25.9 11.0 83.8 19.5 6.7 59.6 12.1

Ours 41.2 26.7 32.4 31.5 40.2 35.3 38.7 74.6 51.0 27.5 70.6 39.6

4.3. Generalised Zero-shot Learning (GZSL)295

In real world application, we do not know whether a new image belongs to

a seen class or an unseen class. Hence, in generalised zero-shot learning, the

search space for evaluating a novel image is expanded to both test classes and

train classes, which is more realistic. Furthermore, to get rid of the unbal-

ance situation of seen test and unseen test, we avoid to utilise the arithmetic300

mean, and turn to use the harmonic mean computed from training and testing

accuracy, following the setting of [8],

H =
2× acctr × accts
acctr + accts

, (9)
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where, acctr and accts are accuracy of the test seen features and test unseen

features respectively on all classes. acctr and accts are computed using the

Equation 8, and the search space is set as Y ∪ Z. S = Y and S = Z are305

executed when calculating acctr and accts respectively.

We compute the harmonic accuracy H and corresponding train accuracy tr

and test accuracy ts of our algorithm on above mentioned all four datasets,

and record all the results in Table 3. We also implemented the algorithm of

SAE according its original description, and cite the other results of current310

competitive algorithms from [8], which are also listed in Table 3.

From Table 3, we can discover that our algorithm can achieve best perfor-

mance on both ts and H among all the listed methods. For the test accuracy ts,

our algorithm can exceed current best methods 19.4% on SUN, 7.7% on CUB,

21.9% on AWA, and 16.6% on aPY respectively. For the harmonic accuracy315

H, our method also outperforms all the methods listed in Table 3, and obtains

6.1%, 0.9%, 23.5%, and 20.6% improvement on dataset SUN, CUB, AWA, and

aPY respectively. The biggest gap between our method and the best competitor

lies on AWA, and achieves more than 20%, which demonstrate the effectiveness

of our method.320

Although conventional algorithms such as SYNC, DAP, IAP, and CONSE,

have high train accuracies tr, their corresponding test accuracies are extremely

low, e.g. IAP achieves 72.8% on CUB, DAP gets 88.7% on AWA and CONSE

obtains 91.2% on aPY, but their relevant ts is zero or approximate zero, which

makes the harmonic accuracies to be zero too. SYNC has the largest tr on325

dataset SUN, which is 16.6% higher than our method, but has 33.3% lower

result for tr, which also lead to about 20% lower for the harmonic accuracy.

The results of high tr but low ts clearly reveals that those methods such

as DAP, IAP and CONSE over-fit on certain datasets. Those methods train a

very suitable classifier for training data, but are very terrible for testing data.330

Oppositely, our method obtain balanced results on both ts and tr, which lead to

high values on H for all four datasets, which strongly indicate the effectiveness

of our method.
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(a) SUN

(b) CUB

(c) AWA

Figure 6: The synthesised features of SUN, CUB, and AWA shown using t-SNE. The first

column shows the real features, the second column demonstrate the fake features generated

using cGAN, and the synthesised features of our method are illustrated in the third column.
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Table 4: The results of conventional GAN with RAS but without reconstruction network.

Dataset ZSL
GZSL

ts tr H

SUN 36.7 6.7 30.4 11.0

CUB 20.0 0.8 48.5 1.6

AWA 43.5 5.7 83.4 10.7

aPY 15.9 1.9 85.8 3.72

4.4. Detailed Analysis

Distribution Analysis of Synthesised Data The purpose of feature or335

image synthesis is to obtain the real or approximate real distribution of origi-

nal unseen dataset, so it is necessary to check whether our method can obtain

the realistic distribution. For the sake of demonstrating the effectiveness of our

method, we draw the distributions of the original unseen data, the synthesised

data generated with conditional GAN, and the synthesised data generated with340

our method, and show these figures in Figure 6. In Figure 6, for better compar-

ison, we set the synthesised feature number of each unseen class equals to the

number of corresponding unseen class in the test set.

As we known that the synthesised data with input from noise of a fixed

distribution have the same distribution of the noise, which can be convinced in345

the second column of Figure 6. In our experiments, Gaussian noise is exploited

as the input, and the results shown in the second column of Figure 6 also abbey

the Gaussian distribution, which are obviously very different from that shown

in the first column. The third column shows the results of our method, which

are more realistic and reasonable than the second column according to the first350

column.

Influence Analysis of Kept Dimension of Attribute There is only one

parameter for our proposed RAS, the kept dimension of attribute. Here, we

take AWA as an example to analyse the influence of different kept dimension

to the final performance. The result are illustrated in Figure 7, from which we355
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Figure 7: The accuracy of ZSL under different kept dimension of attribute when RAS applied.

can find that the best performance appears when the kept dimension equals 60.

This phenomenon is also consistent with the above generated data distribution

that the best result emerges when the proposed RAS is applied. In addition,

the results in Table 2 and Table 3 are computed when the kept dimension is

equal to 80% of the attribute dimension.360

Importance Analysis of Reconstruction Item Traditional conditional

GAN usually do not have the reconstruction item, following we will discuss the

importance of this item in our algorithm. We remove the reconstruction item

and compute the results of both ZSL and GZSL on all four datasets, and record

them in Table 4.365

For the test accuracy ts of ZSL, the results are much lower than the re-

sults with reconstruction item, and about the half of the value listed in Table

2. For the accuracy of GZSL, tr obtains higher performance than that with

reconstruction item, but ts and H are much lower than that recorded in Table

2. In addition, ts and H are more important than tr. These compared results370

indicate that the the conditional GAN without reconstruction item may cause

domain shift problem, which make the synthesised features shift compared to

real unseen data.

To verify the domain shift problem, we choose partial classes of the seen
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(c) without reconstruction

item

Figure 8: Scatter maps of real features and synthesised features. Purple points are synthesised

features, the left points are the seen training features.

training data and one class of the synthesised data, and draw the scatter map in375

Figure 8 after dimensionality reduction with PCA. In this figure, the synthesised

class is drawn in purple, the seen classes are in other colours. From the figure,

we can discover that the synthesised features with reconstruction item are much

more similar with real features than those without reconstruction item, and

have approximately the same position with real data, while the synthesised380

data without reconstruction item are much lower than the real data, which also

indicate that our method with reconstruction item can solve the domain shift

problem.

5. Conclusion

In this paper, we propose a novel algorithm which trains a conditional GAN385

to synthesis unseen features from attributes. our method add a reconstruction

item loss when training the network, which can resolve the problem of domain

shift. During testing, we utilise a policy of Random Attribute Selection to

choose the class attribute entries randomly, which can synthesis much realistic

features of unseen classes. Experiments on four popular dataset for both ZSL390

and GZSL show that our proposed method can outperform all the state-of-the-

art methods. We also draw the scatter maps of synthesised features, and discover

that our algorithm with reconstruction item is much better than conventional
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GAN without RAS.
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