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Abstract

Commensal bacteria often have an especially rich source of glycan-degrading enzymes which allow them to utilize
undigested carbohydrates from the food or the host. The species Ruminococcus gnavus is present in the digestive tract of
$90% of humans and has been implicated in gut-related diseases such as inflammatory bowel diseases (IBD). Here we
analysed the ability of two R. gnavus human strains, E1 and ATCC 29149, to utilize host glycans. We showed that although
both strains could assimilate mucin monosaccharides, only R. gnavus ATCC 29149 was able to grow on mucin as a sole
carbon source. Comparative genomic analysis of the two R. gnavus strains highlighted potential clusters and glycoside
hydrolases (GHs) responsible for the breakdown and utilization of mucin-derived glycans. Transcriptomic and functional
activity assays confirmed the importance of specific GH33 sialidase, and GH29 and GH95 fucosidases in the mucin utilisation
pathway. Notably, we uncovered a novel pathway by which R. gnavus ATCC 29149 utilises sialic acid from sialylated
substrates. Our results also demonstrated the ability of R. gnavus ATCC 29149 to produce propanol and propionate as the
end products of metabolism when grown on mucin and fucosylated glycans. These new findings provide molecular insights
into the strain-specificity of R. gnavus adaptation to the gut environment advancing our understanding of the role of gut
commensals in health and disease.
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Introduction

The human gastrointestinal (GI) tract contains a dynamic

community of trillions of microorganisms leaving in a symbiotic

relationship with the host [1]. Two phyla, Bacteroidetes and

Firmicutes, dominate gut microbiota biodiversity [2], [3]. These

symbionts have adapted to maximise metabolic access to a wide

variety of dietary- and host-derived carbohydrates (mucin glycans),

and competition for these nutrients is considered as a major factor

shaping the structure-function of the microbiota [4]. The gut

microbiota provides many crucial functions to the host including

calorie extraction from the diet, generation of short-chain fatty

acids (SCFAs), metabolism of xenobiotics, development of immune

system and pathogen exclusion [5], [6]. In healthy subjects, the

composition of the adult gut microbiota is remarkably stable [7].

In contrast, deviation away from gut microbial balance, or

‘dysbiosis’, has been repeatedly reported in diseases such as

inflammatory bowel diseases (IBD) including ulcerative colitis

(UC) and Crohn’s disease (CD) [8]. Some changes in the microbial

community are shared in CD and UC including reduced

biodiversity (in particular Firmicutes), temporal instability and

increased mucosa-associated bacteria [9], [10], [11].

The epithelial cells of the mammalian intestine are covered with

a mucus layer that prevents direct contact with intestinal microbes

but also constitutes a substrate for mucus-adapted bacteria [12].

Mucins are O-linked N-acetylgalactosamine (GalNAc) glycopro-

teins, constituting the major structural components of mucus [13].

The O-glycan structures present in mucin are diverse and complex

and consist predominantly of core 1–4 mucin-type O-glycans

containing GalNAc, galactose (Gal) and N-acetyl-glucosamine

(GlcNAc) [14]. Gastric and duodenal mucins generally contain the

core-1 (Galb1–3GalNAca1-Ser/Thr) and the core-2 (Galb1–

3(GlcNAcb1–6)GalNAca1-Ser/Thr) structures. Recent studies

revealed that MUC2 in the sigmoid colon mainly contains the

core-3 structure (GlcNAcb1-3GalNAca1-Ser/Thr) [15]. These

core structures are further elongated and frequently modified by

fucose and sialic acid residues via a1-2/3/4 and a2-3/6 linkages,

respectively. The proportion of sialic acid in human intestinal

mucin increases proportionally from the ileum to the rectum [16].

Microbial communities that are strongly associated with the

mucosa are different from those that are frequently sampled from

the faeces, with an overrepresentation of bacteria that degrade

mucins [17], [18], [19], [20]. Given the diversity and complexity

of mucin structures found within the gut, strategies for decon-

structing these molecules rely on the cooperative action of a

number of carbohydrate-active enzymes (CAZymes) encoded by

the genome of mucin-using bacteria [21]. The ability of certain
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microorganisms to utilize these endogenous glycans may thus

facilitate their close location to the host cells where they may exert

a disproportionate effect on human health, especially during states

of dysbiosis [22].

Ruminococcus gnavus is a Gram-positive anaerobic bacterium,

belonging to the Firmicutes division, Clostridia class and XIVa

cluster, Lachnospiraceae family [23]. A recent molecular inven-

tory revealed that R. gnavus is widely distributed amongst

individuals, and is represented in the most common 57 species

present in $90% of individuals [24]. Colonisation by R. gnavus was

found in infants during the first days of life [25]. R. gnavus is in the

top 15 species showing abundance in both adult and infant gut-

enriched genes, supporting R. gnavus adaptation to the intestinal

habitat throughout life [26]. Among Firmicutes, R. gnavus appears

to be particularly over-represented in CD patients. Comparison

between ileal mucosa samples of healthy individuals with patients

suffering from ileal CD revealed an increased abundance of R.

gnavus with a reduced abundance of Faecalibacterium prausnitzii in the

CD patients [27]. The same findings were observed in faecal

samples from CD patients compared to unaffected controls [28].

An earlier study reported that colonic biopsies from CD-afflicted

patients compared with biopsies from normal control subjects had

an increase in anaerobic bacteria; in small bowel, CD patients had

an increase in the R. gnavus subgroup with a decrease in the

Clostridium leptum and Prevotella nigrescens subgroups [29]. Further-

more R. gnavus was increased in macroscocopically and histolog-

ically normal intestinal epithelium of both CD and UC patients

[30]. A different pattern was observed in patients with active UC,

where R. gnavus was found abundantly present in the colonic

mucosa of healthy subjects but lost during active UC [31]. These

studies point towards an important role of R. gnavus in modulating

gut inflammatory response at the mucosal surface.

Here we investigated the ability of R. gnavus strains to utilise

mucins, providing molecular insights into features that determine

bacteria adaptation to the gut mucosal environment in health and

disease.

Materials and Methods

Materials
All the monosaccharides, D-glucose (Glc), D-galactose (Gal), N-

acetyl-D-glucosamine (GlcNAc), N-acetyl-D-galactosamine (Gal-

NAc), L-fucose (Fuc), D-lactose (Lac), N-acetylneuraminic acid

(Neu5Ac), N-glycolylneuraminic acid (Neu5Gc) as well as 29-(4-

Methylumbelliferyl)- a-D-N-acetylneuraminic acid (4MU-

Neu5Ac) and type III pig gastric mucin (PGM) were purchased

from Sigma-Aldrich (St Louis, MO). Purified pig gastric mucin

(pPGM) was obtained as previously described [32]. The oligosac-

charides, 29-fucosyllactose (29FL), 3-fucosyllactose (3FL), lacto-N-

neo-tetraose (LNnT) lacto-N-tetraose (LNT) and 69-O-sialyllactose

(69SL) were kindly provided by Glycom A/S (Lyngby, Denmark).

39-sialyllactose (39SL) and N-acetyl-D-lactosamine (LacNAc) were

purchased from Carbosynth Limited (Campton, UK).

Bacterial strains and growth conditions
The E1 strain has been isolated from the predominant faecal

microbiota of a healthy human adult [33] and further identified as

R. gnavus [34]. R. gnavus ATCC 29149, originally designated as

Ruminococcus AB, has also been isolated from fecal sample of a

healthy human adult [35].

R. gnavus strains were routinely grown in an anaerobic cabinet

(Don Whitley, Shipley, UK) in brain heart infusion broth

supplemented with yeast extract and hemin [BHI-YH; BHI

(Oxoid LTD, Basingstoke, UK) supplemented with 5 g.L21 of

BactoTM yeast extract (Becton, Dickinson and Company, Sparks,

MD) and 5 mg.L21 of hemin (Sigma-Aldrich)]. Growth on single-

carbon sources utilized anaerobic basal YCFA medium supple-

mented with 27.7 mM of specific mono- or oligosaccharides as

indicated or 1% (wt/vol) of purified pig gastric mucin. YCFA

medium consisted of (per 1 L): 10 g casitone, 2.5 g yeast extract,

4 g NaHCO3, 1 g L-cysteine hydrochloride, 450 mg K2HPO4,

450 mg KH2PO4, 900 mg NaCl, 90 mg MgSO4.7H2O, 90 mg

CaCl2, 1 mg resazurin, 10 mg hemin, 10 mg biotin, 10 mg

cobalamin, 30 mg p-aminobenzoic acid, 50 mg folic acid and

150 mg pyridoxamine [36]. Note that YCFA medium usually

contain (NH4)2SO4 as later described [37]. Final concentrations

of short-chain fatty acids (SCFA) in the medium were 33 mM

acetate, 9 mM propionate and 1 mM each of isobutyrate,

isovalerate and valerate. The pH was adjusted to 6.5. The

medium was prepared under a headspace of 85% N2, 10% H2 and

5% CO2 gas mix. Thiamine and riboflavin were added

anaerobically to the medium to give a final concentration of

50 mg.L21 each and then the medium was autoclaved. Growth

was determined spectrophotometrically by monitoring changes in

optical density at 600 nm compared to the same medium without

bacterium (OD600 nm). The in-house-developed DMFit program

(http://www.combase.cc/index.php/en/downloads/file/53-dmfit-30)

was used with the scale-free option to compare the effect of the

carbon source on growth rates [38].

Comparative CAZome analysis
The translated protein sequences of R. gnavus ATCC 29149 and

R. gnavus E1 were compared to the full length sequences derived

from the Carbohydrate-Active enZymes (CAZy) database (www.

cazy.org; [39]) using BLAST [40]. The sequences that had an e-

value .0.1 were assigned to GH, GT, PL, CE and CBM families

using a parallel procedure involving a BLAST search against

partial sequences corresponding to individual GH, GT, PL, CE

and CBM modules and a HMMer search [41] using hidden

Markov models built for each CAZy module family[39]. The

counts for each CAZy family of each strain were then compared

and the putative function of the proteins of interest was evaluated

by alignment with the sequences of biochemically characterized

enzymes [39].

Total RNA extraction from R. gnavus ATCC 29149
Total RNA was extracted from 3 mL of mid- to late exponential

phase cultures of ATCC 29149 in YCFA supplemented with one

carbon source (Glc, GalFuc, 29FL, 3FL, 39SL or pPGM). Two

biological replicates were performed for each carbon source except

Glc. The RNA was stabilized prior to extraction by using

RNAprotect Bacteria Reagent (Qiagen, Crawley, UK) according

to supplier’s advice. The RNA was then extracted after an

enzymatic lysis followed by a mechanical discruption of the cells,

using the RNeasy Mini Kit (Qiagen) according to manufacturer’s

instructions. Genomic DNA contamination was removed by

DNAse treatment using TURBO DNA-free kit (Life Technologies

Ltd, Paisley, UK) according to supplier’s recommendations. The

purity, quantity and integrity of the extracted RNA were assessed

before and after DNAse treatment, with NanoDrop 1000 UV-Vis

Spectrophotometer (Thermo Fischer Scientific, Wilmington, DE)

and with Agilent RNA 600 Nano kit on Agilent 2100 Bioanalyzer

(Agilent Technologies, Stockport, UK).

Genomic DNA extraction from R. gnavus ATCC 29149
For the isolation of R. gnavus ATCC 29149-chromosomal DNA,

cells from a 50 mL-overnight culture were harvested by centrifu-

gation (10,000 g, 5 min, 4uC). The cell pellet was washed with
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5 mL of TES buffer (10 mM Tris, 1 mM EDTA, 0.1 M NaCl,

pH8), resuspended in 5 mL of TES buffer supplemented with

lysozyme (20 mg.mL21) and incubated for 15 min at 37uC. Then,

complete lysis was achieved by addition of 1 mL of 20% sodium

dodecyl sulfate (SDS) and incubation for 10 min at 50uC. The

mixture was then extracted by three consecutive treatments: first,

with 5 mL of phenol pH 7.9 then with 5 mL of phenol-

chloroform-isoamyl alcohol (25:24:1) and finally with 5 mL of

chloroform-isoamyl alcohol (24:1). After precipitation with cold

absolute ethanol, the genomic DNA was resuspended in 2 mL of

TE buffer (10 mM Tris, 1 mM EDTA, pH8). Traces of RNA

were removed by a treatment with RNAse ONE (Promega,

Madison, WI) used as recommended by the manufacturer. The

DNA was again precipitated with 0.3 M sodium acetate (pH5.2)

and 70% ice-cold ethanol. Finally, it was dissolved in 1.5 mL of

TE. Quality and quantity were assessed using NanoDrop 1000

UV-Vis Spectrophotometer.

Transcriptional profiling by microarray
A total of 1499 60-mer probes were designed for microarray

experiments based on R. gnavus ATCC 29149 genome information

using Array Designer 3.0 software (PREMIER Biosoft Interna-

tional, Palo Alto, CA) and printed on Agilent Custom Oligonu-

cleotide Microarrays 8615 k. For sample preparation, the

Sau3AI-digested ATCC 29149 genomic DNA (gDNA) and each

cDNA were fluorescently labelled using the BioPrimeH Array

CGH Genomic Labeling System (Life Technologies Ltd) accord-

ing to supplier’s instructions, and Cy3-dUTP or Cy5-dUTP

respectively (GE Healthcare UK Ltd, Little Chalfont, UK). The

microarrays were then hybridized overnight at 63uC with Cy5-

cDNA/Cy3-gDNA mixtures prepared according to supplier’s

advice. The slides were scanned on GenePixH 4000B scanner

(Molecular Devices, Inc., Sunnyvale, CA). Image processing was

done with GenePix Pro 6.0 software (Molecular Devices, Inc.).

Data analysis was performed using GeneSpringGX version 7.3

software (Agilent Technologies). A per spot and per chip intensity-

dependent normalization (also called LOWESS normalization)

was applied using corrected signal obtained for Cy3-gDNA at

532 nm as a control signal (see Protocol S1 for detailed

information).

Quantitative real-time PCR (qPCR)
qPCR was carried out in an Applied Biosystems 7500 Real-

Time PCR system (Life Technologies Ltd). One pair of primers

was designed for each target gene using ProbeFinder version 2.45

(Roche Applied Science, Penzberg, Germany) to obtain an

amplicon of around 60–80 bp long. The primers were between

18 and 23 nt-long, with a Tm of 59–60uC (Table S1). Calibration

curves were prepared in triplicates for each pair of primers using

2.5-fold serial dilutions of R. gnavus ATCC 29149 genomic DNA.

The standard curves showed a linear relationship of log input

DNA vs. the threshold cycle (CT), with acceptable values for the

slopes and the regression coefficients (R2). The dissociation curves

were also performed to check the specificity of the amplicons. Each

DNAse-treated RNA (1 mg) was converted into cDNA using

QuantiTectH Reverse Transcription kit (Qiagen) according to

supplier’s advice. DNAse-treated RNA was also treated the same

way but without addition of the reverse-transcriptase (RT2). Each

qPCR reaction (10 mL) was then carried out in triplicates with

1 mL of a 20-fold diluted sample (cDNA or RT2) and 0.2 mM of

each primer, using the QuantiFast SYBR Green PCR kit (Qiagen)

according to supplier’s advice (except that the combined

annealing/extension step was extended to 35 s instead of 30 s).

Data obtained with cDNA were analyzed only when CT values

above 36 were obtained for the corresponding RT2. For each

cDNA sample, the 3 CT values obtained for each gene were

averaged. The data were then analyzed using the 22DDCT method

using housekeeping gyrB (RUMGNA_00867) gene as a reference

gene and glucose as a reference condition. For each gene in each

condition, the final value of the relative level of transcription

(expressed as a fold change in gene transcription compared to

glucose) is an average of 2 biological replicates. Data were

analysed using 1-way ANOVA. A post-hoc test (Dunnett’s) was

used to examine if there were any significant differences in each

treatment (versus the control treatment).

1H nuclear magnetic resonance analysis
1H NMR was used to identify the presence, absence, and

concentration of several metabolites in R. gnavus growth medium.

Supernatant samples were thawed at room temperature and

prepared for 1H NMR spectroscopy by mixing 400 mL of spent

medium with 200 mL of phosphate buffer (0.2MNa2HPO4,

0.038 M NaH2PO4 [pH 7.4]) made up in 100% D2O and

containing 0.06% sodium azide, and 1.5 mM DSS (sodium 2,2-

dimethyl-2-silapentane- 5-sulfonate) as a chemical shift reference.

The sample was mixed, and 500 mL was transferred into a 5-mm

NMR tube for spectral acquisition. The 1H NMR spectra were

recorded at 600 MHz on a Bruker Avance spectrometer (Bruker

BioSpin GmbH, Rheinstetten, Germany) running Topspin 2.0

software and fitted with a cryoprobe and a 60-slot autosampler.

Each 1H NMR spectrum was acquired with 128 scans, a spectral

width of 8,012.8 Hz, an acquisition time of 2.04 s, and a

relaxation delay of 2.0 s. The ‘‘noesypr1d’’ presaturation sequence

was used to suppress the residual water signal with a low-power

selective irradiation at the water frequency during the recycle

delay and a mixing time of 100 ms. Spectra were transformed with

a 0.3-Hz line broadening, manually phased, baseline corrected,

and referenced by setting the DSS methyl signal to 0 ppm.

Enzymatic assays
Sialidase activities of R. gnavus ATCC 29149 and E1 were

examined as follows. R. gnavus strains were inoculated into 5 mL of

YCFA broth supplemented with a single carbon source for up to

28 h under anaerobic conditions (as described above). The cell

density was monitored at OD600 nm and 1 mL aliquots removed

from the culture at 6, 9 and 28 h. The cells were removed by

centrifugation (17,000 g, 5 min, 4uC). The supernatant was stored

at 220uC until required. For the enzymatic assay, the supernatant

(at 1/5 total reaction volume) was added to a reaction mixture

consisting of 500 mM 4MU-Neu5Ac as a substrate in PBS pH 7.4.

The enzymatic reactions were carried out at 37uC for up to 2 h in

an incubated platereader (BMG Labtech, Ortenberg, Germany).

The fluorescence of the liberated 4MU was quantified at

Excitation 340 and Emission 420 nm automatically at 5 min

intervals in the plate reader. The rate of MU release/min was

calculated using data from the linear portion (,20–40 min) of the

reaction using Prism 6 (GraphPad Software CA, USA), and

corrected by subtracting the ‘‘No enzyme’’ control rates. This rate

was then divided by the OD600 for the cell culture at this time. 1H

NMR was used to analyze the reaction products. For this, an

appropriate amount of R. gnavus ATCC 29149 supernatant (1/5 to

1/10 reaction volume) was incubated with the following substrates

in PBS pH 7.4 at 37uC: 39SL (1.5 mM); 4MU-Neu5Ac (0.5 mM)

for 2 h to 24 h. The reaction was stopped by denaturing the

enzyme by boiling for 20 min, the denatured enzyme and any

particulate material was removed by centrifugation at 17 000 g,

4uC for 10 min, and the supernatant was analyzed by 1H NMR

Mucin Utilisation by Ruminococcus gnavus Strains
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(see above) by mixing 400 mL of medium with 200 mL of D2O and

20 mL of a solution of 1 mM d4-TSP (sodium 3-(trimethylsilyl)-

propionate-d4).

Nucleotide and protein sequence analyses
Protein sequence homologies were searched using the blastp

software (http://blast.ncbi.nlm.nih.gov/Blast.cgi). SignalP 4.1

server (http://www.cbs.dtu.dk/services/SignalP/) and CW-

PRED software (http://bioinformatics.biol.uoa.gr/CW-PRED/)

were used to predict signal peptides and cell-wall anchored

proteins, respectively. These analyses were completed by a

prediction of the cellular localisation of the protein using PSORTb

version 3.0.2 (http://www.psort.org/psortb/). Putative transcrip-

tional terminators were predicted in silico using the RNAfold

program (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi). Pre-

diction of the promoters was performed using the BPROM

program (http://linux1.softberry.com/berry.phtml?topic = bprom&

group = programs&subgroup = gfindb).

Results

Comparative analysis of R. gnavus E1 and R. gnavus ATCC
29149 glycobiome

The genome of R. gnavus E1 was recently sequenced (Geno-

scope, Evry, France); genomic analysis identified 112 full length

and 5 fragments of genes encoding CAZymes (www.cazy.org) [39],

corresponding to approximately 3.7% of genes dedicated to

carbohydrate metabolism. R. gnavus E1 CAZome contains 23

glycoside transferases (GT), 6 carbohydrate esterases (CE), 11

carbohydrate binding module (CBM) and 84 GHs. Most of R.

gnavus E1 CAZome is represented by genes encoding GHs

distributed into 25 GH families. The most represented are the

GH2 (16.7%), GH13 (11.9%), GH3 (9.5%) and GH1 (7.1%)

families which mostly contain enzymes generally active on plant-

derived substrates. The larger R. gnavus ATCC 29149 genome

displays 60 predicted GHs across 24 GH families. A comparison of

R. gnavus E1 GH and CBM repertoire with that of R. gnavus ATCC

29149 strain is presented in Fig. 1. Both strains possess similar

number of GH13 enzymes while the E1 strain has a higher

number of GH1, GH2 and GH3, thus, together with a higher

number of GH36 (a-galactosidase), GH78 (rhamnosidase), GH43

(xylosidase/arabinosidase), GH29 and GH95 (a-fucosidases), and

strain-specific GH63 (a-glucosidase), GH16 (b-glucanase), GH91

(inulin fructotransferase), the E1 strain seems to be more adapted

to the degradation of a diversified array of dietary carbohydrate-

based substrates [42]. In contrast, the R. gnavus ATCC 29149

genome encodes less GHs than E1 but with a higher proportion of

enzymes putatively implicated in degradation of host-derived

oligosaccharides, including predicted GH33 sialidase and GH98

endo-b-galactosidase, which are absent in the R. gnavus E1

genome, and both predicted to be extracellular. CBMs that

recognize mammalian glycans presently belong to relatively few

CBM families – families 32, 40, 41, 47, and 51 [43]. CBM32s are

found in both R. gnavus E1 and ATCC 29149 strains whereas

CBM40 is specific to ATCC 29149 (Fig. 1). At present CBMs in

family 40 are the only known examples to bind sialic acid and are

exclusively associated with sialidases [43]. A CBM40 is associated

with the putative GH33 sialidase in R. gnavus ATCC 29149,

possibly enhancing the ability of the enzyme to attach and degrade

mucins. Moreover, the genomes of both R. gnavus E1 and ATCC

29149 encode many GH29 and GH95 fucosidases which may play

Figure 1. Comparison of the distribution of GHs and CBM between R. gnavus E1 and ATCC 29149. GHs and CBMs are represented by red
boxes for R. gnavus E1 and by blue boxes for R. gnavus ATCC 29149. CBMs associated with GH are represented by plain boxes, with the GH family
indicated inside the box. CBMs not associated with GH are represented by striped boxes.
doi:10.1371/journal.pone.0076341.g001
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a role in the degradation of host and/or dietary glycans. Apart

from this glycolytic potential, the molecular basis for transmem-

brane import of oligosaccharides is evident from various ATP-

binding cassette transporters and PTS (not shown).

R. gnavus E1 and R. gnavus ATCC 29149 strains
differentially consume mucin

We first monitored the anaerobic growth of R. gnavus E1 and R.

gnavus ATCC 29149 on basal medium supplemented with diverse

monosaccharides and host oligosaccharides as carbon sources

(Fig. 2 and Table 1). Spectrophotometric measurements were

made every hour for up to 40 h, and the growth curves analyzed

using the in-house-developed DMFit program, enabling quantita-

tive measurements of both growth rate and final culture density for

each sugar (Table 1). Both R. gnavus E1 and R. gnavus ATCC 29149

grew on monosaccharides Glc, Gal, Fuc, GlcNAc as substrates

whereas the strains were unable to grow in presence of GalNAc or

sialic acid (Neu5Ac or Neu5Gc) as sole carbon source (Table 1).

The lack of growth of these strains on sialic acid is surprising as the

R. gnavus ATCC 29149 genome possesses the complete cluster of

genes (the nan cluster) encoding proteins necessary for the

catabolism of sialic acid including putative transporters (see

below). Interestingly the R. gnavus strains were able to grow on

GlcNAc but not on GalNAc as sole carbon source; in enteric

bacteria, the aminosugars are transported by specific PTSs and

enter the aminosugar metabolic cycle after phosphorylation, via

the Leloir-like pathway consisting of common enzymes identified

in Bibidobacterium bifidum [44]. The nagE gene encoding GlcNAc

specific PTS (PTSIINag) is present in both E1 (RUGNEv3_10975)

and ATCC 29149 (RUMGNA_03053) whereas the GalNAc

specific PTS is only present in ATCC 29149 containing the IIA

(RUMGNA_00960), IIB (RUMGNA_00962), IIC

(RUMGNA_00963) and IID (RUMGNA_00964) components.

Only R. gnavus E1 was able to grow on Lac (Galb1-4Glc) as sole

carbon source. b-galactosidase activity (catalysing Lac hydrolysis)

can be found in GH1, 2, 35 and 42 families [45]. Homology

searches suggest that, in R. gnavus E1, b-galactosidases are

predicted in GH2 (RUGNEv3_10547, 10622, 50063, 50166,

60208, 60218 and 61117) and GH42 (RUGNEv3_10179), and

more surprisingly in GH43 (RUGNEv3_10174) families whereas

they are either absent or showing low identity with homologues in

ATCC 29149 and thus represent good candidates to explain the

differences in Lac utilisation between the two R. gnavus strains.

Both R. gnavus E1 and R. gnavus ATCC 29149 grew on 29-

fucosyllactose (Fuca1,2Galb1,4Glc, 29FL) and 3-fucosyllactose

(Galb-4[Fuca-3]Glc, 3FL) (Fig. 2 and Table 1) but not on type 1

Lacto-N-tetraose (Galb1-3GlcNAcb13Galb1-4Glc, LNT) or type-

2 Lacto-N-neo-tetraose (Galb1-4GlcNAcb13Galb1-4Glc, LNnT)

human milk oligosaccharides (HMOs). 1H NMR experiments

showed that R. gnavus growth on 29FL and 3FL coincides with the

release of Fuc from these substrates rather than transport of the

fucosylated oligosaccharides and assimilation inside the cells

(Fig. 3A/B), in agreement with the presence of predicted

extracellular GH29 and GH95 fucosidases in both R. gnavus

strains. In characterized HMO-degrading bifidobacteria strains,

type-2 HMOs are sequentially degraded by GH2 b-galactosidases,

acting on LacNAc and GH20 b-N-acetylhexosaminidases, specific

for GlcNAcb1–3Galb1-R [46] whereas degradation of type-1

chains relies on expression of GH20 lacto-N-biosidase which is

required for the release of lacto-N-biose I (Galb1-3GlcNAc, LNB)

from the tetrasaccharide [47]. Since Gal and GlcNAc are good

substrates of these strains, the lack of growth of R. gnavus E1 and

ATCC 29149 on LNnT suggests that R. gnavus lacks the enzymatic

specificity required for the release of Gal or GlcNAc from the

tetrasaccharide, despite the presence of 14 and 6 predicted GH2

b-galactosidases in R. gnavus E1 and ATCC 29149, respectively

and two putative GH20 b-N-acetylhexosaminidases in R. gnavus

E1. In addition, since R. gnavus E1, but not ATCC 29149, was able

to grow on N-acetyllactosamine (Galb1-4GlcNAc, LacNAc) (Fig. 2

and Table 1), these experiments suggest that no LacNAc could be

released from the type-2 tetrasaccharide, in agreement with

previous findings that enteric bacteria lack the required enzyme

specificity to catalyse the hydrolysis of the b1,3 linkage between

LacNAc and Lac [48]. Although GH2 is a very common

glycosidase present in intestinal bacteria, the presence of

membrane bound b-galactosidases is limited across strains even

across bifidobacteria [49]. All the b-galactosidase genes in R. gnavus

E1 and ATCC 29149 are predicted to encode intracellular

enzymes. The fact that, in the R. gnavus E1 genome, GH2 are often

found clustered with CAZymes involved in plant degradation

suggests that some of these enzymes may be involved in

metabolism of plant substrates, in agreement with previous studies

on transport and metabolism of plant cell wall oligosaccharides by

R. gnavus E1 [42]. The lack of growth of R. gnavus strains on LNT is

probably due to lack of an active GH20 lacto-N-biosidase; no

GH20 is present in the ATCC 29149 genome and the two R.

gnavus E1 GH20 enzymes (RUGNEv3_30022 and

RUGNEv3_30140) show very little identity with functionally

characterized GH20 lacto-N-biosidase from Bifidobacterium bifidum

JCM1254 [47]. These predictions are further supported by the fact

that R. gnavus E1 does not grow on LNT but grows on Lac, which

indicates that R. gnavus E1 lacks lacto-N-biosidase specificity to

cleave LNT into LNB and Lac.

The R. gnavus strains did not grow on 69-sialyllactose

(Neu5ACa2-6Galb1-4Glc, 69SL) but the ATCC 29149 strain

grew well on 39-sialyllactose (Neu5ACa2-3Galb1-4Glc, 39SL)

(Fig. 2). The lack of R. gnavus E1 growth on these substrates is

consistent with the absence of a GH33 encoding gene in the

genome while it is present in the ATCC 29149 strain (Fig. 1).

These results suggest that R. gnavus ATCC 29149 GH33 sialidase is

specific for the a2,3- rather than a2,6-linkages. However since R.

gnavus ATCC 29149 is unable to grow using either with Lac or

sialic acid (Neu5Ac or Neu5Gc) as a sole source of carbon, the

growth of R. gnavus ATCC 29149 on 39SL was not expected (see

below).

Previous work has reported that R. gnavus was well adapted to

mucin-degradation [50], [51], [52]. We grew R. gnavus ATCC

29149 and E1 strains in purified porcine gastric mucin (pPGM) to

elucidate its competence in mucin degradation and utilisation.

pPGM is a heavily glycosylated protein containing approximately

9.1% Fuc, 5.4% mannose (Man), 34% Gal, 28.9% GlcNAc, and

22.4% GalNAc in the N-glycans and 9.8% Fuc, 17.4% Gal, 32.3%

GlcNAc, and 39.7% GalNAc in the O-glycans as determined by

GC-MS and 1% (wt-%) sialic acids [32]. Despite its proficiency at

using mucin-oligosaccharides (Gal, Fuc, GlcNAc) as carbon

source, R. gnavus E1 failed to grow on mucin as sole carbon

source, highlighting the importance of specific GHs in breaking up

mucin complex carbohydrate chains to release assimilable

oligosaccharides. In contrast, R. gnavus ATCC 29149 showed the

ability to utilise mucin as source of carbon although to a lower

density compared to oligosaccharides. While ATCC 29149 grew

exponentially with almost no lag period on most oligosaccharides

tested, a 1.5 h-lag period was observed in mucin-supplemented

medium (Table 1, Fig. 2). 1H NMR analysis showed that there was

a clear decrease in Fuc bound to mucin in the presence of R. gnavus

ATCC 29149, suggesting that extracellular fucosidase activity

plays an important role in the ability of this strain to grow on

mucins (Fig. 3D). The ability of R. gnavus ATCC 29149 to utilise
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Fuc from fucosylated sources is in agreement with the metabolite

analysis of R. gnavus supernatants, showing increasing propanol

and propionate production (assumed to be via the propanediol

pathway, [53]) when the bacteria are grown in presence of 3FL,

29FL, Fuc and pPGM (Fig. 4, Fig. S1).

In order to further characterize the mechanisms by which R.

gnavus ATCC 29149 grows on mucins, the supernatants of both R.

gnavus strains grown on Glc and sialylated sources, 39SL and

mucin, were tested for sialidase activity using the synthetic

substrate, 29-(4-Methylumbelliferyl)-a-D-N-acetylneuraminic acid

(4-MU-Neu5Ac). Sialidase activity (as measured by fluorescent

assay) was detected in the spent media of R. gnavus ATCC 29149

grown in presence of 39SL and mucin as compared to Glc

(Table 2), whereas no sialidase activity was detected in the control

Figure 2. Growth curves of R. gnavus E1 and ATCC29149 with different carbohydrates as sole carbon source. For each sugar and each
strain, the growth curve represent the average growth, measured at OD600 nm, of 3 biological replicates (Black, Glc; Red, GlcNAc; Green, Gal; Orange,
Fuc; Blue, 29FL and Pink, 3FL).
doi:10.1371/journal.pone.0076341.g002

Table 1. Growth rate and density of R. gnavus E1 and ATCC 29149 growth supplemented with different carbohydrates.

E1 ATCC

Sugar: Growth
Relative growth
rate* DODmax Growth

Relative growth
rate* DODmax

Glc (Positive control) + 0.87 4.81 + 1.00 4.00

GlcNAc + 0.63 5.41 + 0.92 3.73

Gal + 0.17 3.50 + 0.53 2.00

GalNAc 2 n/a n/a 2 n/a n/a

Fuc + 0.25 2.21 + 0.72 2.10

Neu5Ac 2 n/a n/a 2 n/a n/a

Neu5Gc nt n/a n/a 2 n/a n/a

Lac + nd nd 2 n/a n/a

29FL + 0.84 5.32 + 0.86 1.57

3FL + 0.81 5.06 + 0.80 0.49

LNT 2 n/a n/a 2 n/a n/a

LNnT 2 n/a n/a 2 n/a n/a

LacNAc + nd nd 2 n/a n/a

69SL 2 n/a n/a 2 n/a n/a

39SL 2 n/a n/a + nd nd

pPGM 2 n/a n/a + 1.18 0.44

2 = no growth; + = growth; nt = not tested; nd = not determined; n/a = not applicable.
*All growth rates are expressed as a relative value to the growth rate of ATCC 29149 with Glc.
doi:10.1371/journal.pone.0076341.t001
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experiment (without R. gnavus ATCC 29149) (data not shown),

demonstrating that an active extracellular GH33 sialidase is

produced by R. gnavus ATCC 29149.

R. gnavus ATCC 29149 transcriptomics reveal the
importance of a functional nan gene cluster in mucin
utilisation

To examine the molecular basis underlying host glycan

utilisation of R. gnavus ATCC 29149, we then compared the

CAZome transcriptome of R. gnavus ATCC 29149 grown on

mucin, mucin glycans and HMOs. We used Custom Oligonucle-

otide Microarrays representing all predicted ORFs encoding

CAZymes. Four probes per gene were designed for 96 of 98

CAZyme genes (see Protocol S1 for details) and were printed in

duplicate on the array. The specific transcriptional response to

growth on a particular glycan was determined after normalization

using the signal obtained with genomic DNA hybridization. The

level of expression was then compared to a reference dataset of the

strain grown in minimal medium with Glc as the sole carbon

source (Fig. S2). A distinct set of GHs were upregulated when R.

gnavus ATCC 29149 consumed mucins and fucosylated glycans.

GH29 (RUMGNA_03411) and GH95 (RUMGNA_00842) were

specifically upregulated when grown on 29FL and 3FL. GH29

RUMGNA_03411 and GH95 RUMGNA_00842 a-L-fucosidases

possess an N-terminal signal sequence and a C-terminal LPxTG-

like motif, suggesting that they act as extracellular membrane-

bound enzymes. Another GH95 a-L-fucosidase,

RUMGNA_03121, was preferentially upregulated when R. gnavus

ATCC 29149 was grown in 3FL supplemented medium, although

there is no predicted signal sequence. The GH33 sialidase

(RUMGNA_02694) was specifically upregulated in presence of

mucins, in agreement with the implication of this extracellular

enzyme in enabling R. gnavus ATCC 29149 to grow on mucin (see

above). Other mucin-specific upregulated genes include a predict-

ed GH2 b-galactosidase (RUMGNA_01638) and a putative GH36

a-galactosidase (RUMGNA_03611), although both seem to be

intracellular enzymes because of the lack of an N-terminal signal

sequence.

qRT-PCR analysis was performed on RNA extracted from R.

gnavus ATCC 29149 grown on different sugars. The data were

normalized using gyrB (RUMGNA_00867) as a reference gene and

expressed as a fold change in gene expression compared to Glc.

These experiments revealed the physiological significance of the

nan cluster in mucin metabolism (Fig. 5). This gene cluster contains

11 open reading frames (ORFs) (Fig. 6). The first gene of the

cluster encodes a protein of unknown function. The second gene

(RUMGNA_02700) encodes a putative sugar isomerase involved

in sialic acid catabolism. The following one (RUMGNA_02699)

encodes a protein with homology with transcriptional regulators of

the AraC family. The following 3 genes code for a predicted

solute-binding protein (RUMGNA_02698) and two putative

Figure 3. H1 NMR analysis of R. gnavus ATCC 29149 culture supernatant. YCFA medium supplemented with29FL (A), 3FL (B), 39SL (C) or
pPGM (D) were analysed by H1 NMR before (control) or after 8 h or 23 h of growth of R. gnavus ATCC 29149 to assess substrate utilization. Peaks were
assigned by using the appropriate sugar standards and based on literature.
doi:10.1371/journal.pone.0076341.g003
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permeases (RUMGNA_02697, RUMGNA_02696), components

of a sugar ABC transporter; RUMGNA_02696gp has specific

homology with putative sialic acid transporters of the SAT2 family

[54]. The following gene has no known function. The sialidase

gene nanH (RUMGNA_02694) predicted to encode the GH33

enzyme comes next. Then nanE (RUMGNA_02693), which

encodes a predicted ManNAc-6-P epimerase converting Man-

NAc-6-P into N-acetylglucosamine-6-P (GlcNAc-6-P) followed by

nanA (RUMGNA_02692) encoding a putative Neu5Ac lyase

involved in the breaking down of Neu5Ac into N-acetylmanno-

samine (ManNAc) and phosphoenolpyruvate (PEP). nanK

(RUMGNA_02691) is the last gene of the cluster, coding for a

predicted ManNAc kinase. This 11.7-kb region thus contains

genes that appear to be involved in the metabolism and transport

of sialic acid (Fig. 6A). Indeed, almost all the genes putatively

involved in sialic acid utilization (nan genes) as well as the potential

SAT2 transporter RUMGNA_02696gp were upregulated when

the bacterium was grown with mucin as sole carbon source. The

qRT-PCR also confirmed induction of RUMGNA_02694 coding

for a GH33 sialidase as shown by R. gnavus ATCC 29149 CAZyme

microarray analyses. Only the nanE gene (RUMGNA_02693) was

not upregulated but high level of expression was already present

when R. gnavus ATCC 29149 was grown in Glc (Fig. 5).

Transcriptional terminator prediction suggests that the 10 genes

from RUMGNA_02701 to nanA form part of a single operon.

To confirm this bioinformatics analysis, RT-PCR analysis using

primer sets encompassing the neighboring ORFs

(RUMGNA_02696 to RUMGNA_02691) was performed on total

RNA extracted from a mid-logarithmic phase culture of R. gnavus

ATCC 29149 grown with mucins or 39SL as sole carbon source.

The data showed that genes encoding the potential SAT2

transporter RUMGNA_02696gp, GH33 sialidase (RUMG-

NA_02694gp), NanE (RUMGNA_02693gp) and NanA (RUMG-

NA_02692gp) were co-transcribed. Interestingly, nanK

(RUMGNA_02691) also seemed to be co-transcribed with nanA

while a transcriptional terminator was predicted between the two

genes (Fig. 6B). Taking together, our data suggest that the 11 genes

of the cluster are organized in an operon, which is transcribed

from the promoter upstream of the RUMGNA_02701 gene.

The presence of a complete nan cluster (nanE, nanA, nanK), and

potential GH33-coding nanH and SAT2 transporter-coding

RUMGNA_02696 in R. gnavus ATCC 29149 operon, together

with their increased expression in response to mucins and 39SL,

suggest that this strain has adapted to scavenge sialic acid from

sialylated substrates. However this is in disagreement with the lack

of R. gnavus ATCC 29149 growth in presence of sialic acid as sole

carbon source (see above). In order to further investigate the

underpinning mechanisms of ATCC 29149 growth on a sialylated

carbon source, the supernatant of R. gnavus ATCC 29149 grown

on mucin or 39SL and shown to produce an active sialidase (see

above), was used in an in vitro assay in presence of 4-MU-Neu5Ac

or 39SL as substrate and the products of the reaction monitored by
1H NMR (Fig. 7). The spectra clearly showed the presence of

peaks identified as 2,7-anydro-a-N-actetylneuraminic acid (2,7-

anhydro Neu5Ac) [55], [56] when R. gnavus ATCC 29149 grown

on mucin or 39SL was used as a ‘‘source of sialidase’’ (Fig. 7 A/B).

The signals of 2,7-anhydro Neu5Ac and their chemical shifts are

shown in Table S2. This product was absent in control

experiments using supernatant containing 39SL or mucin in

absence of R. gnavus ATCC 29149 (Fig. 7 C/D), confirming the

specificity of the enzymatic reaction.

Figure 4. Quantification of propanol and propionate produced
by R. gnavus ATCC 29149. The amount of propanol (A) and
propionate (B) in the YCFA medium supplemented with different
sugars has been quantified by 1H NMR before (control, white box) and
after (grey box) growth of R. gnavus ATCC 29149. At least 3 replicates
have been performed in each condition (except YCFA+29FL control). For
each sugar (except for 29FL where there were insufficient number of
replicates), a Mann-Whitney test was performed to compare the
concentration of propanol or propionate in the medium before and
after R. gnavus ATCC 29149 growth. Only the production of propanol by
R. gnavus ATCC 29149 grown on pPGM was significant (*, p,0.05) but
R. gnavus ATCC 29149 also seemed to produce both propanol and
propionate when grown with Fuc as sole carbon source, and propanol
when grown with 3FL as sole carbon source (#, p = 0.06). n/a: Not
applicable.
doi:10.1371/journal.pone.0076341.g004

Table 2. Enzymatic activity of R. gnavus ATCC 29149
supernatant grown on mucin and 39SL on substrate 4-MU-
Neu5Ac.

Culture time (h) Glc pPGM 39SL

6 233637 ND 898664

9 302613 1296645 479614

28 358622 2160687 613622

ND-not detected, the rate of MU release was less than the negative control.
Abbreviations; 39SL-39-sialyllactose, 4-MU-Neu5Ac-29-(4-Methylumbelliferyl)-a-
D-N-acetylneuraminic acid, MU-methylumbelliferone.
doi:10.1371/journal.pone.0076341.t002
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Discussion

Most gut bacteria species belong to the phyla Firmicutes,

Bacteroidetes, Actinobacteria, Proteobacteria and Verrucomicro-

bia but only a few members have been studied for their ability to

degrade mucins [57]. This is in particular the case of the Gram-

negative human gut symbiont, Bacteroides thetaiotaomicron which, in

the absence of dietary nutrients, relies on host-derived glycans

(mucins) for colonization [58]. Genome analysis of Bacteroides

revealed a subset of polysaccharide utilization loci (PULs)

dedicated to host mucin O-glycans [59], [60]. Within the

Actinobacteria phylum, detailed genome analysis of Bifidobacteria

identified metabolic pathways for the degradation of mucin-type

O-glycan and HMOs and several GHs have been functionally

characterized supporting these findings [61]. Recently, another

constituent of the human gut microbiota, Akkermansia muciniphila, a

strictly anaerobic Gram-negative bacterial species, was identified

as an important mucin-degrader of the Verrucomicrobia phylum

[62]. In sharp contrast, the mucin glycan acquisition strategies of

Firmicutes, which are prominent members of the human

microbiota, remain ill-defined.

The Gram-positive R. gnavus belongs to the C. coccoides group

within the Firmicutes phylum. On average, sequenced Firmicutes

encode fewer CAZymes than Bacteroidetes but possess more ABC

transporters that transport carbohydrates [4]. Although both R.

gnavus strains under study dedicate a similar percentage of their

genome to CAZymes (,2.5–3.7%), a close inspection of their

CAZomes, highlighted differences in specific GH families. The

capacity of R. gnavus ATCC 29149 and not R. gnavus E1 to utilise

mucins suggests that the difference in mucin-utilization pathways

is most likely due to the expression of specific GH extracellular

enzymes in ATCC 29149.

In mucins, fucosyl residues can be found at the extremity of the

O-glycosidic chain linked to galactose by a-1,2 linkage or to

GlcNAc by a-1,3 linkage whereas it is most commonly linked a-

1,6 to the reducing terminal b-GlcNAc in human N-linked

glycans. Since Fuc was shown to be a good substrate for both R.

gnavus ATCC 29149 and E1, and both strains possess a great

number of fucosidase-encoding genes, the growth difference

between the two strains on mucin may be due to the substrate

specificity of the R. gnavus ATCC 29149 enzymes for the release of

Fuc from pPGM. Genome analysis showed that R. gnavus ATCC

29149 encodes two putative GH29 (RUMGNA_03411 and

RUMGNA_03833) and three putative GH95 a-L-fucosidases

(RUMGNA_00842, RUMGNA_01058 and RUMGNA_03121).

Among these, RUMGNA_03411 and RUMGNA_00842, are

upregulated in presence of 29FL and 3FL and and both predicted

to be anchored to the cell wall. Furthermore GH95

RUMGNA_00842 and GH29 RUMGNA_03411 show around

62.5% and 55.5% homology to Bifidobacterium bifidum JCM1254

GH95 AfcA specific for the a1,2-linkage [63] and GH29 AfcB

specific for the a1,3- and a1,4-linkages [64], which can remove

Fuc at the non-reducing termini except for any that are a1,6-

linked. Furthermore AfcA catalytic residues are conserved in

GH95 RUMGNA_00842 and although AcfcB catalytic residues

have not been functionally determined, RUMGNA_03411 has the

conserved nucleophile in GH29 family (the general acid/base of

GH29 cannot be unambiguously assigned by multiple alignments).

Together these data suggest that RUMGNA_03411 and

RUMGNA_00842 play a key role in the ability of R. gnavus

ATCC 29149 to grow on mucins.

The release of sialic acids from non-reducing ends is an initial

step of sequential degradation of mucins since sialic acid residues

may prevent the action of other GHs. In bacteria, the genes

involved in sialic acid metabolism are usually found clustered

together forming what is denominated as the Nan cluster encoding

the enzymes N-acetylneuraminate lyase (NanA), epimerase

(NanE), and kinase (NanK), converting Neu5Ac into GlcNAc-6-

P whereas the genes encoding NagA (GlcNAc-6-P deacetylase)

and NagB (glucosamine-6-P deaminase) converting GlcNAc-6-P

into fructose-6-P (Fru-6-P), which is a substrate in the glycolytic

pathway, vary in their locations among the different genomes that

encode the Nan cluster [65]. R. gnavus is one of the few human gut

commensals that encode the Nan cluster along with Anaerotruncus

colihominis, Dorea formicigenerans, D. longicatena, F. prausnitzii, Fusobac-

terium nucleatum, Lactobacillus sakei, L. plantarum, and L. salivarius [66].

The majority of the bacteria that encode the Nan cluster colonize

mucus regions of the human body, such as the gut, lung, bladder

or oral cavity, where sialic acid is highly abundant and can serve as

a source of energy, carbon, and nitrogen [66]. However, prior to

its catabolism, sialic acid has to be cleaved off from sialylated

glycans by a GH33 sialidase (NanH) and transported into the cell.

To date there are three functionally characterised sialic acid

transporters: NanT, a single component system, a tripartite ATP-

independent periplamic C4-dicarboxilate (TRAP) multicompo-

nent transport system and an ATP-binding cassette (ABC)

transporter (SAT). In addition four new putative types of sialic

acid transporters were recently identified i.e. two other types of

ABC-transporters (SAT2 and SAT3), a sodium-glucose/galactose

cotransporter (SSS) and a Na+/proline symporter (Sym) [54].

There is a homologue to SAT2-type transporter next to the R.

gnavus ATCC 29149 Nan cluster (RUMGNA_02696), sharing

high level of homology (72% identity/86% similarity) with the

putative sialic transporter from Streptococcus sanguinis SK36,

Figure 5. Relative level of transcription of R. gnavus ATCC
29149 nan genes. Fold change in gene transcription has been
determined by qRT-PCR for the nan genes when R. gnavus ATCC 29149
was grown in presence of pPGM (white box) or 39SL (grey box)
compared to Glc as sole carbon source. The results showed averages of
two biological replicates, each performed in 3 technical replicates. Data
were analysed using 1-way ANOVA. For each gene, a post-hoc test
(Dunnett’s) was used to examine if there were any significant
differences in each condition (versus Glc). The transcription of nanH
was significantly increased when R. gnavus ATCC 29149 was grown with
either pPGM or 39SL compared to Glc. The transcription of both nanK
and nanA was also significantly increased when ATCC 29149 was grown
with 39SL compared to Glc. *: p,0.05; **, p,0.01.
doi:10.1371/journal.pone.0076341.g005
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suggesting that R. gnavus ATCC 29149 is well equipped to utilise

Neu5Ac as carbon source. In addition the relative position of the

Nan genes in R. gnavus ATCC 29149 is identical to D. formicigenerans

ATCC 27755 and D. longicatena DSM 13814 and the one in

Clostridium perfringens SM101, an opportunistic pathogen in the gut.

However in these organisms, the transporter belongs to the SSS

type and is located between NanA and NanK. Interestingly we

showed that despite the presence of the Nan cluster and putative

sialic acid transporter, R. gnavus was unable to utilize sialic acid as

sole carbon source but selectively grew on a2-3 linked sialylated

substrate and mucins, showing sialidase activity as assessed using

synthetic fluorescent substrate (4MU-Neu5Ac), production of 2,7-

anhydro-Neu5Ac in vitro and upregulation of Nan genes, putative

GH33 sialidase and SAT2-type transporter in vivo. Taken together,

our data suggest that R. gnavus ATCC 29149 encodes an

intramolecular trans-sialidase (IT-sialidase) producing 2,7-anhy-

dro-Neu5Ac selectively from a2-3 linked sialic acid substrates.

This product may be transported into the bacteria by SAT2 and

further metabolized into the cell by the enzymes encoded by the

Nan cluster, supporting bacterial growth on 39SL or mucin. To

date only two enzymes with IT-sialidase activity have been

reported, NanL from Macrobdella decora (North American leech)

[67] and NanB from the human pathogen Steptococcus pneumoniae

[68]. This is the first report of intramolecular transialidase activity

in gut commensal bacteria, suggesting an unprecedented mech-

anism underpinning adaptation of gut bacteria to the mucosal

environment.

Conclusions

Our findings show that R. gnavus strains typically display a subset

of glycan-degrading phenotypes that may equip them to target just

part of the overall glycan repertoire present at certain times or

locations of the gastrointestinal tract. The ability of R. gnavus

ATCC 29149 to access the glycans attached to mucus may have a

role in early colonization by providing some bacteria with a source

of endogenous nutrients during a period when dietary glycans are

absent. A recent study showed that R. gnavus was predominant in

breast milk/goat milk-fed microbiotas compared to a more diverse

collection of Lachnospiraceae in cow milk-fed babies [69]. In

adults, the ability to metabolize the mucin O-linked oligosaccha-

rides is likely to be a key factor in determining which

microorganisms associate at the mucosal surface. Given the link

between the microbiota and gut inflammatory processes, mucin-

degraders may represent prime members influencing the host

immune response. As such, our results suggest that bacterial IT-

sialidases may play a key role in driving commensal and/or

symbiotic host associations. Dissecting the molecular strategies

used by R. gnavus strains to degrade and utilize mucin glycans is

important for understanding the genetic and associated metabolic

Figure 6. The nan locus in R. gnavus ATCC 29149. (A) Schematic representation of the nan genetic organization. Each block arrow indicates an
ORF; the length of the arrow is proportional to the length of the predicted ORF. RUMGNA_02702, 02701, 02700, 02699, 02698, 02697, 02695 and
02690 are shown in block arrow A to R, respectively. Circles above thick vertical lines indicate potential stem-loop structures that might act as Rho-
independent transcriptional terminators. The free energy of the thermodynamic ensemble is given on top, expressed as kcal.mol21. The inset shows
the DNA sequence of the promoter located upstream of the putative RUMGNA_02701 gene (B). The putative 235 and 210 regions and ribosome-
binding site (RBS) are underlined. (B) Confirmation of the nan operonic structure. The PCR products obtained following RT-PCR of RNA extracted from
R. gnavus ATCC 29149 grown on pPGM were obtained using primers set spanning the SAT2 to NanK ORFs and analysed by electrophoresis on
agarose gel. PCR from RT negative control (RT2) was performed to confirm the absence of genomic DNA contamination of the RNA sample prior to
RT. PCR negative (2) and positive (+) controls were carried out with water or ATCC 29149 genomic DNA as template, respectively. The positions of
the primers are shown in panel A and their sequences are provided in Table S1. M, DNA ladder size marker (with increments indicated in base pairs).
doi:10.1371/journal.pone.0076341.g006

Mucin Utilisation by Ruminococcus gnavus Strains

PLOS ONE | www.plosone.org 10 October 2013 | Volume 8 | Issue 10 | e76341



properties that underpin adaptation to the gut mucosal environ-

ment.

Supporting Information

Figure S1 1H NMR spectra of propanol and propionate
production by R. gnavus ATCC 29149. Culture supernatants

of R. gnavus ATCC 29149 grown in presence of different sugars as

sole carbon source were analysed by H1 NMR. These portions of

the H1 NMR spectra show a substantial increase of the peaks from

propanol at 1.53 ppm (A) and propionate at 2.17 ppm (B) when

the strain was grown with Fuc or fucosylated substrates. Black: no

sugar; light grey: Glc; Dark grey: GlcNAc; Dark blue: Gal; Light

pink: Fuc; Pink: 29FL; Purple: 3FL and Red: pPGM.

(TIF)

Figure S2 Microarray data of all CAZyme genes clus-
tered by family. Transcriptomic analysis of all R. gnavus ATCC

29149 CAZyme genes has been performed by microarray in

response to different carbon sources (Glc, Gal, Fuc, 29FL, 3FL or

pPGM). Details of the protocol regarding probe design, sample

preparation, microarray hybridization and data analysis can be

Figure 7. 1H NMR analysis of sialylated substrates incubated with spent media of R. gnavus ATCC 29149. R. gnavus ATCC 29149 was
grown in YCFA supplemented with pPGM or 39SL for 9 h and the cells removed by centrifugation. 39SL was incubated with spent media
supplemented with pPGM (A) and 39SL (B). 4-MU-Neu5Ac was incubated with spent media supplemented with pPGM (C) and 39SL (D). The control
media without inoculation with R. gnavus are shown in the lower trace of each panel. Abbreviations; 39SL-39-sialyllactose, Lac-lactose, A- 2,7-anhydro-
Neu5Ac, pPGM-purified porcine gastric mucin, med-unidentified media component.
doi:10.1371/journal.pone.0076341.g007
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found in Material and Methods and in Protocol S1. The level of

expression of the genes, clustered by family, is indicated by a color

code from blue (low level of expression) to red (high level of

expression). The shade of the color provides the level of trust based

on the variability obtained with different probes for one gene.

(TIF)

Table S1 Primers used for qRT-PCR and RT-PCR.
(DOCX)

Table S2 Signals of 2,7-anhydro Neu5Ac and their
chemical shifts.
(DOCX)

Protocol S1 Transcriptional profiling by microarray.
(DOCX)
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