Serine-Rich Repeat Protein adhesins from Lactobacillus reuteri display strain specific glycosylation profiles

Latousakis, Dimitrios, Nepravishta, Ridvan, Rejzek, Martin, Wegmann, Udo, Le Gall, Gwenaelle, Kavanaugh, Devon, Colquhoun, Ian, Frese, Steven, MacKenzie, Donald, Walter, Jens, Angulo, Jesus, Field, Rob and Juge, Nathalie (2019) Serine-Rich Repeat Protein adhesins from Lactobacillus reuteri display strain specific glycosylation profiles. Glycobiology, 29 (1). pp. 45-58. ISSN 0959-6658

[img]
Preview
PDF (Accepted manuscript) - Submitted Version
Available under License Creative Commons Attribution.

Download (398kB) | Preview
[img]
Preview
PDF (Glycobiology_2019_Latousakis_etal) - Published Version
Available under License Creative Commons Attribution.

Download (967kB) | Preview

Abstract

Lactobacillus reuteri is a gut symbiont inhabiting the gastrointestinal tract of numerous vertebrates. The surface-exposed Serine-Rich Repeat Protein (SRRP) is a major adhesin in Gram-positive bacteria. Using lectin and sugar nucleotide profiling of wild-type or L. reuteri isogenic mutants, MALDI-ToF-MS, LC-MS and GC-MS analyses of SRRPs, we showed that L. reuteri strains 100-23C (from rodent) and ATCC 53608 (from pig) can perform protein O-glycosylation and modify SRRP100-23 and SRRP53608 with Hex-Glc-GlcNAc and di-GlcNAc moieties, respectively. Furthermore, in vivo glycoengineering in E. coli led to glycosylation of SRRP53608 variants with α-GlcNAc and GlcNAcβ(1→6)GlcNAcα moieties. The glycosyltransferases involved in the modification of these adhesins were identified within the SecA2/Y2 accessory secretion system and their sugar nucleotide preference determined by saturation transfer difference NMR spectroscopy and differential scanning fluorimetry. Together, these findings provide novel insights into the cellular O-protein glycosylation pathways of gut commensal bacteria and potential routes for glycoengineering applications.

Item Type: Article
Uncontrolled Keywords: chemistry,glycosylation,chemistry,mutation,nuclear magnetic resonance, biomolecular,repetitive sequences, amino acid
Faculty \ School: Faculty of Science > School of Pharmacy
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 26 Oct 2018 09:31
Last Modified: 18 Mar 2020 02:07
URI: https://ueaeprints.uea.ac.uk/id/eprint/68639
DOI: 10.1093/glycob/cwy100

Actions (login required)

View Item View Item