
1

Multi-Slot Allocation Protocols for Massive IoT
Devices with Small-Size Uploading Data

Tsung-Yen Chan, Yi Ren, Yu-Chee Tseng, and Jyh-Cheng Chen

Abstract—The emergence of Internet of Things (IoT) applica-
tions introduces new challenges such as massive connectivity and
small data transmission. In traditional data transmission proto-
cols, an ID (i.e., IP address or MAC address) is usually included in
a packet so that its receiver is able to know who sent the packet.
However, this introduces the big head-small body problem for
light payload. To address this problem, the Hint protocols have
been proposed. The main idea is to “encode” information in a
tiny broadcast Hint message that allows devices to “decode” their
transmission slots. Thus, it can significantly reduce transmission
and contention overheads. In this paper, we extend eHint to
support multi-slot data transmissions. Several efficient protocols
are proposed. Our simulation results validate that the protocols
can significantly increase the number of successfully transmitted
devices, channel utilization, and payload of transmitted devices
compared with eHint.

Index Terms—Internet of Things (IoT), Machine-to-Machine
(M2M) Communication, Multi-Slot Allocation, Random Access,
Wireless Networks.

I. INTRODUCTION

INTERNET of Things (IoT) traffic characterized by small
data transmission introduces new challenges to research

community. There are various types of IoT devices ranging
from small tags, sensors, to complicated actuators and ma-
chines [1]. Statistics show that 50% of IoT packets are less
than 100 bytes [2]. Collecting small data from such massively
connected IoT devices introduces new challenges. In most
protocol designs, an ID (e.g., IP address or MAC address)
is included in a packet so that its receiver is able to identify
the sender. When IoT data is small, however, the overhead of
its ID becomes relatively large, leading to the big head-small
body problem.

Connection-oriented network architectures have been stud-
ied in [3]–[6]. When a device intends to send data to the
Base Station (BS), a connection is established by using the
Random Access (RA) procedure. As the number of devices
increases, it may cause significant collision in RA [7], leading
to a long delay. To solve the problem, several solutions have
been proposed, including Access Class Barring (ACB) [3], dy-
namic resource allocation [4], slotted access [5], deep learning
scheduling [6]. The idea of ACB is to control the number of
User Equipment (UE) terminals intending to join RA. The BS
broadcasts a parameter (e.g., probability) such that UEs can
perform RA probabilistically. In dynamic resource allocation,
the BS can dynamically allocate resources of RA channel

T.-Y. Chan, Y.-C. Tseng, and J.-C. Chen are with the Department of
Computer Science, College of Computer Science, National Chiao Tung
University, Taiwan. E-mail: {tychan, yctseng, jcc}@cs.nctu.edu.tw.

Y. Ren is with the School of Computing Science, University of East Anglia
(UEA), Norwich, UK. He was with the Department of Computer Science,
National Chiao Tung University, Hsinchu, Taiwan. E-mail: e.ren@uea.ac.uk.

and data channel. It also derives an optimal trade-off problem
to maximize the Machine-to-Machine (M2M) throughput. In
slotted access, each Machine-Type Communication (MTC)
device is assigned a dedicated RA slot to access RA. The
dilemma is that short RA cycles may lead to collision while
long RA cycles may lead to long delay.

To address the big head-small body problem, a series of
Hint protocols [8]–[10], which remove IDs from data packets,
have been proposed. In these protocols, a tiny Hint message
is broadcast to allow IoT devices to decode their assigned
transmission resources. Interestingly, the assigned location of
these resources also imply the sender’s ID, thus eliminating
a large part of packet header. Therefore, even the device’s
ID is not transmitted, its receiver (usually a BS) is still able
to know its identity. In [8], we proposed a set of Hint-
based frameworks for small data transmission. Later, a Chinese
remainder theorem based Hint protocol [9] is applied to LTE-
A networks to reduce the signaling cost in random access
procedures. However, the both Hint protocols [8], [9] are based
on a strong assumption that the small data has the same size
and is carried by the same size channel resource, i.e., a time
slot. To release the assumption, the Hint protocols are then
enhanced by supporting multi-slot data transmission in [10].
However, when the number of transmitting devices is large, the
multi-slot Hint protocol requires intensive computation capac-
ity to find a satisfactory seed, which may lead to transmission
latency. To address this issue, in this paper we use a novel
iterative approach to reduce computation overhead and enable
more devices to transmit. Through extensive simulations, we
demonstrate that the proposed iterative approach significantly
outperforms eHint [10] in terms of the number of successfully
transmitted devices, channel utilization, and the total payload
of transmitted devices.

II. MULTI-SLOT ALLOCATION PROBLEM

We consider a set D = {d1, d2, · · · , dm} of m IoT devices
covered by a BS. Each IoT device di, i = 1..m, needs to report
its data at a regular pattern to the BS. Our goal is to allocate
radio resources to D to transmit data to the BS. We make the
following assumptions:

1) The value of m is quite large.
2) Each di switches between two modes, active and sleep.

When intending to transmit data, di goes to the active
mode; otherwise, it switches to the sleep mode.

3) The active pattern of di is denoted by a binary period-
ical function Pi(t), where t is time (by frame count).
Pi(t) = 1 if di intends to transmit data at the t-th frame;
otherwise, Pi(t) = 0. For example, if di is attached to
a temperature sensor which needs to report in every 3

2

…

T1
T1 T1 T1

T3 T3

𝑀(𝑡)= {d1, d2, d3, …} 𝑀(𝑡 + 1)={d1, ...} 𝑀(𝑡 + 2)={d1, d2,…} 𝑀(𝑡 + 3)={d1, d3, …}

P1(t) of d1

… …
Time (frame count)

T2
T2

Bcast UpSubframe DnSubframe

…

Rand

P2(t) of d2

P3(t) of d3

Alloc

…

𝑡 + 1 𝑡 + 2 𝑡 + 3𝑡

Fig. 1: The proposed frame structure.

minutes, Pi(t) has a period of 3 minutes. If one more
humidity sensor which needs to report in every 5 minutes
is attached to di , Pi(t) is a function of the combination of
two periodical functions with periods = 3 and 5 minutes,
respectively.

4) Whenever Pi(t) = 1, device di needs to send ni slots of
data to the BS at t. Note that ni is also quite small (such
as less than 3 or 5 slots).

5) When our Hint protocol starts, the BS is informed of its
Pi(t) and ni , for each di ∈ D.

To solve the multi-slot allocation problem, the communica-
tion channel is divided into a sequence of fixed-length frames.
Each frame consists of three parts: (1) Broadcast (Bcast): It
is for the BS to broadcast and announce resource allocation
information (i.e., Hint) to devices. (2) Allocated (Alloc):
It consists of multiple slots for uplink data transmission (no
transmitter’s ID required in our case). (3) Random (Rand): It
is for any unscheduled/unpredicted transmission not arranged
in Alloc. Our goal is to design an efficient access protocol
for such transmission.

Fig. 1 shows the frame structure. In this example, the active
periods of d1, d2, and d3 are T1, T2, and T3, respectively. Their
requirements are n1 = 2, n2 = 1, and n3 = 3 slots, respectively.
At frame t, all devices will transmit. At t + 1, only d1 will
transmit. At t+2, d1 and d2 will transmit. The BS will schedule
their transmissions in Alloc, through the announcement in
Bcast. Details will be discussed later. For exceptions (such
as transmission errors or emergency traffics), devices can use
Rand.

III. PROPOSED PROTOCOLS

The main idea of the Hint protocol is to arrange a common
function shared by the BS and all devices. The function takes
two inputs: (i) a small piece of information computed by
the BS, and (ii) a device’s ID. The BS will broadcast the
information computed in (i) by using Bcast. Each device
then can use the broadcast information and its ID to retrieve
the transmission slots allocated to it through the function.
The broadcast Hint is thus more efficient than typical 1-by-1
notifications. Next, we first review the VF proposed in [10].
We then propose two more efficient protocols called 2VF and
IVF.

A. Review: Virtual Frame (VF)

Let h(s, ID) be a hash function which takes a device ID and
a seed s as inputs. In frame t, the Hint message = < s, v >,
where v is a vector. The length of v is |v | ≥

∑
di ∈M(t)

ni , where

M(t) = {di |Pi(t) = 1}. The i-th element of v (resp., Alloc),
is denoted by v[i] (resp., Alloc[i]). The value of v[i] falls in
{0, 1, 2}. v is for devices to decode whether they can transmit
or not. If it is safe to transmit in ni continuous slots in Alloc,
the corresponding elements in v will be: “1 2 · · · 2︸︷︷︸

ni−1

”, where

“1” means “starting slot” and “2” means “continuous slot”. If
it is not safe to transmit or a slot is not assigned to any device,
a “0” is used.

Next, we review the VF briefly:
1) The BS randomly picks a seed s and computes

h(s, di) mod |v | for each device di ∈ M(t). Next, the BS
selects a subset M ′ ⊆ M(t) of devices that can correctly
decode v for safe transmission.

2) The BS executes Step 1 a few times with different seeds
and then selects the s from the iteration leading to the
largest number of safe transmission slots.

3) After selecting, the BS encodes v.
4) The BS broadcasts < s, v > in Bcast.
5) Each device di ∈ M(t) checks whether it is allowed to

transmit or not.
6) If di ∈ M(t) can transmit safely, it uploads its data at

the corresponding Alloc. Otherwise, di can use random
access to contend for transmission in Rand.

Discussion: In VF, some devices may not receive slots
for transmission due to collision in v. Given a fixed v,
more devices may lead to higher collisions. This not only
reduces transmission opportunities in Alloc, but also lacks
of flexibility. These shortcomings motivate us to design two
new protocols, 2VF and IVF.

B. Two Virtual Frame (2VF)

To reduce computation overhead and enable more devices to
transmit in Alloc, the 2VF protocol divides Alloc into two
parts, Alloc_1 and Alloc_2, and uses two seeds s1 and s2
to achieve this goal. Two vectors v1 and v2 will be used. Also,
the length of v1 and v2 are set to |v1 | and |v2 |, respectively,
where |v1 | ≥

∑
di ∈M(t)

ni and |v2 | ≥
∑

di ∈M(t)−M′
ni .

It works as follows:
1) The BS repeats the following steps a few times.

• Randomly pick a seed s1 and compute
h(s1, di) mod |v1 | for each device di ∈ M(t).

• Select a subset M ′ ⊆ M(t) of devices such that
only devices in M ′ can correctly decode v1 for safe
transmission.

• A seed s2 is randomly picked. Compute
h(s2, di) mod |v2 | for each device di ∈ M(t) − M ′.

• Select a subset M ′′ ⊆ M(t) − M ′ of devices such
that only devices in M ′′ can correctly decode v2 for
safe transmission.

2) The BS then selects the s1 and s2 from the iteration
in Step 1, leading to the largest number of safe trans-
mission slots. (Note: once s1 and s2 are selected, the
corresponding M ′ and M ′′ are also selected.)

3) v1 and v2 are encoded as follows:
• (Collision-free) For each di ∈ M ′ such that k =

h(s1, di) mod |v1 |, set v1[k] = “1” and v1[k + 1 :

3

k + ni − 1] = “2 · · · 2︸︷︷︸
ni−1

”. For each di ∈ M ′′ such

that x = h(s2, di) mod |v2 |, set v2[x] = “1” and
v2[x + 1 : x + ni − 1] = “2 · · · 2︸︷︷︸

ni−1

” .

• (Empty/Collision) The rest of elements of v1 and v2
are all set to “0”.

4) The BS broadcasts < s1, v1, s2, v2 > in Bcast to all
devices.

5) For each device di ∈ M(t), receiving < s1, v1, s2, v2 >
in Bcast, di computes k = h(s1, di) mod |v1 | and x =
h(s2, di) mod |v2 |. To check whether di is allowed to
transmit or not, there are two cases:
• Case of ni = 1: If v1[k] =“1” and v1[k + 1] =“0” or

“1” , di is allowed to transmit; otherwise, it checks
v2. If v2[x] =“1” and v2[x + 1] =“0” or “1” , di is
allowed to transmit; otherwise, di cannot transmit.

• Case of ni ≥ 2: If v1[k] =“1” , v1[k + 1 : k +
ni − 1] =“2 · · · 2︸︷︷︸

ni−1

” , and v1[k + ni] =“0” or “1” ,

di is allowed to transmit; otherwise, it checks v2. If
v2[x] =“1” , v2[x + 1 : x + ni − 1] =“2 · · · 2︸︷︷︸

ni−1

” , and

v2[x + ni] =“0” or “1” , di is allowed to transmit;
otherwise, it cannot transmit.

6) For each device di ∈ M(t) that is allowed to transmit
safely in v1, di uploads its data at Alloc[j : j +ni −1],
where j is the number of 1’s and 2’s in v1[0 : k −1] and
k = h(s1, di) mod |v1 |. If di is not allowed to transmit in
v1, but is allowed to transmit in v2, di uploads its data at
Alloc[z : z + ni − 1], where z is the number of 1’s and
2’s in v1 and in v2[0 : x − 1] and x = h(s2, di) mod |v2 |.
If di is not allowed to transmit in v1 and v2, it may
consider to contend for transmission in Rand.

Fig. 2(a) shows the message flow of 2VF. As shown in
Fig. 2(b), there are 7 devices intending to transmit in frame t.
Hence, |v1 | = n1 + n2 + n3 + n4 + n5 + n6 + n7 = 13. Suppose
that devices d1, d4, and d7 are selected to transmit in v1 (i.e.,
M ′ = {d1, d4, d7}). Then v1 =“0122201201200” . Although
d2, d3, d5, and d6 are not allowed to transmit in v1, they can
perform VF again. Hence, |v2 | is set to n2 + n3 + n5 + n6 = 5.
After hashing, d5’s slot and d2’s second slot are overlapped.
Suppose that d2, d3, and d6 are allowed to transmit in v2 (i.e.,
M ′′ = {d2, d3, d6}). Then v2 =“10121” . d6 will transmit in
Alloc[8] because there are eight numbers of 1’s or 2’s in v1.
Also, d2 will transmit in Alloc[9 : 10] because there are nine
numbers of 1’s or 2’s in v1 and v2[0 : 1]. Similarly, d3 will
transmit in Alloc[11] because there are eleven numbers of
1’s or 2’s in v1 and v2[0 : 3]. Since device d5 finds v2[3] =“2” ,
it knows that it cannot transmit.

C. Iterative-Virtual-Frame (IVF)

2VF enables most of the devices to transmit data in Alloc
by running VF twice. However, as the number of IoT devices
becomes larger, the difficulty of finding satisfactory seeds also
grows accordingly. Also, the computation power of the BS has

Alloc

Bcast UpSubframe DnSubframe

Rand

Time

𝑑𝑖 ∈ 𝑀(𝑡) BS

4) broadcast , , ,

6) transmit in Alloc or
contend in Rand

Steps 1), 2) and 3)

Step 5)

(a)

(b)

frame 𝑡

frame t+1

frame 𝑡

d1 d1 d1 d1 d4 d4 d7 d7

: ℎ(𝑠, ID) mod

𝑣1𝑠1 𝑠2 𝑣2

1 0 1 2𝑣2

d2

1

Alloc_1 Alloc_2

0 1 2 2 2 0 1 2 0 1 2 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12

n1=4

n2=2
n3=1n4=2

n5=1

n7=2

n6=1

…
(Other devices ∉ M(t))

d1

d3
d2

d4

d5

d7

d6

0 1 2 3 4

𝑣1

d2 d3d6

0 1 2 3 4 5 6 7 8 9 10 11

|𝑣1| or |𝑣2|

Fig. 2: (a) The message flow of the 2VF. (b) An example of
2VF.

…

𝑙𝑡ℎ Round

…

Success Collision 1𝑠𝑡 Round

2𝑛𝑑 RoundSuccess
Collision

(Alloc_1)

(Alloc_2)

Alloc_𝑙

Alloc_3

Fig. 3: Alloc vector of IVF.

its limitation. There are two main concepts in IVF (refer to
Fig. 3):
• Iterative: The VF process is executed l times. The k-th

iteration takes the devices unable to transmit in the
previous iterations and tries to find a seed sk , where
k = 1, 2, ..., l.

• Time-bound: A timer Tk is set for iteration k such that the
search for sk would stop even if a satisfactory sk cannot
be found after this time bound. In this case, the best sk
so far will be used. Note that this only sacrifices the
transmission ratio, but our protocol still works correctly.

We summarize how IVF works as follows:
1) The BS computes Alloc_k for k = 1, 2, · · · , l as

follows. In iteration k, we define the length of vector
vk as

|vk | ≥

∑

di ∈M(t)
ni if k = 1∑

di ∈M(t)−
⋃k−1

k̂=1
Mk̂

ni if k = 2, 3, ..., l , (1)

where Mk̂ is the set of devices that can transmit in
Alloc_k̂ in iteration k̂. The BS repeatedly chooses a

4

20 65 110 155 200
0

20
40
60
80

100
120
140
160
180
200

(a) |M (t)|

N
u
m
b
er

o
f
tr
a
n
sm

it
te
d
d
ev
ic
es

VF [1∼3]
2VF [1∼3]
IVF [1∼3]

20 65 110 155 200
0

20
40
60
80

100
120
140
160
180
200

(b) |M (t)|

N
u
m
b
er

o
f
tr
a
n
sm

it
te
d
d
ev
ic
es

VF [1∼5]
2VF [1∼5]
IVF [1∼5]

20 65 110 155 200
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000

(c) |M (t)|

|A
l
l
o
c|
(b
it
s)

VF [1∼3]
2VF [1∼3]
IVF [1∼3]

20 65 110 155 200
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
x 10

4

(d) |M (t)|

|A
l
l
o
c|
(b
it
s)

VF [1∼5]
2VF [1∼5]
IVF [1∼5]

20 65 110 155 200
0.4

0.6

0.8

1

(e) |M (t)|

C
U

Traditional [1∼3]
VF [1∼3]
2VF [1∼3]
IVF [1∼3]

20 65 110 155 200
0.4

0.6

0.8

1

(f) |M(t)|

C
U

Traditional [1∼5]
VF [1∼5]
2VF [1∼5]
IVF [1∼5]

Fig. 4: The different effects of the number of successfully transmitted devices, |Alloc|, and CU with different parameters.

seed sk and computes vk until (i) a satisfactory seed sk
is found, or (ii) the time bound Tk spent on the search
has reached. In the later case, the best seed sk so far and
the corresponding vk is selected. After these l iterations,
the BS broadcasts

〈
{sk, vk}lk=1

〉
in Bcast.

2) Upon receiving Bcast, a device di with Pi(t) = 1 can
transmit in one of the l spaces (Alloc_1, Alloc_2,
· · · , Alloc_l) according to its hash results h(sk, di) and
vectors vk . If it is not allowed to transmit in Alloc, it
can contend in Rand.

IV. PERFORMANCE EVALUATION

We evaluate 2VF and IVF through simulations in terms of
three metrics, the number of successfully transmitted devices
in M(t), the length of Alloc (i.e., |Alloc|), and Channel
Utilization (CU). The results are compared with VF and
traditional polling protocol which collects data from each
device one-by-one. Each slot size is assumed to be 32 bits and
the length of s is set to 16 bits. Device address is assumed to
be 64 bits. The value of ni is small and it randomly falls in
the range of [1 ∼ 3] or [1 ∼ 5] slots.

The CU is defined as: CU =
payload

payload+packet header . For
2VF and IVF, CU =

|Alloc |
|Alloc | +2×16+2×(|v1 |+ |v2 |)

, and CU =
|Alloc |

|Alloc |+l×16+2×(|v1 |+ |v2 |+...+ |vl |)
, respectively. For VF, CU =

|Alloc |
|Alloc |+16+2×|v | . For traditional polling protocols, CU =

|Alloc |
|Alloc |+64×|M(t) | . For IVF, we execute VF until all the devices
are allocated in Alloc successfully.

Fig. 4(a) and Fig. 4(b) demonstrate the number of success-
fully transmitted devices in M(t) with ni = [1 ∼ 3] and
[1 ∼ 5], respectively. Both the figures show that IVF and
2VF outperform VF significantly. Considering Fig. 4(b) as an
example, when |M(t)| = 200, IVF and 2VF gain 44% and
30% transmitted devices compared with VF, respectively.

Fig. 4(c) and Fig. 4(d) demonstrate the impacts of |M(t)|
on |Alloc| by varying ni = [1 ∼ 3] and [1 ∼ 5], respectively.
We observe that both 2VF and IVF outperform VF with large
margins, and IVF performs the best. Specifically, |Alloc|
increases as the number of devices intending to transmit grows.
We also observe that the three curves are linear. This means
that the proposed protocols are scalable and resilient to the
increasing of |M(t)|.

Fig. 4(e) and Fig. 4(f) show the impacts of |M(t)| on CU
when ni = [1 ∼ 3] and [1 ∼ 5], respectively. Overall, the Hint
protocols (i.e., VF, 2VF, and IVF) outperform the traditional
protocol significantly since we use a Hint message instead

of notifying devices by 64 × |M(t)| times. The CU of the
traditional scheme is around 0.5 and 0.6 in Fig. 4(e) and
Fig. 4(f), respectively, when |M(t)| increases. The traditional
protocol with [1 ∼ 3] has higher CU than [1 ∼ 5] since [1 ∼ 5]
has more payload to transmit. The values of CU gradually
converge for VF, 2VF, and IVF with the increase of |M(t)|.

Overall, Figs. 4(a)-(f) demonstrate that the iteration
based Hint protocol has much better performance compared
with [10] in terms of the number of successfully transmitted
devices, the total payload of transmitted devices, and channel
utilization.

V. CONCLUSIONS

In this paper, we propose two advanced Hint protocols,
2VF and IVF, which enable more devices to upload their data
in a collision-free manner. Compared to the eHint [10], the
proposed 2VF and IVF provide more flexibility and address
the issue when the number of devices intending to transmit
is large. We demonstrate, through extensive simulations, that
the proposed 2VF and IVF outperform both eHint [10] and
traditional polling protocol in terms of CU and slot allocation
capability. As to future work, designing a smart seed with low
computation cost is worth of exploring.

REFERENCES

[1] H. Li, K. Ota, and M. Dong, “Energy cooperation in battery-free wireless
communications with radio frequency energy harvesting,” ACM Trans.
on Embedded Comput. Syst., vol. 17, no. 2, p. 44, 2018.

[2] W. John and S. Tafvelin, “Analysis of Internet backbone traffic and
header anomalies observed,” in Proc. ACM SIGCOMM Conf. on Internet
Measurement, 2007.

[3] Z. Wang and V. WS, “Optimal access class barring for stationary
machine type communication devices with timing advance information,”
IEEE Trans. on Wirel. Commun., vol. 14, no. 10, pp. 5374–5387, 2015.

[4] D. T. Wiriaatmadja and K. W. Choi, “Hybrid random access and
data transmission protocol for machine-to-machine communications in
cellular networks,” IEEE Trans. Wirel. Commun., vol. 14, no. 1, pp.
33–46, 2015.

[5] 3GPP TR 37.868, Study on RAN improvements for machine-type com-
munications, (Release 11), 3GPP Std., Sep. 2011.

[6] H. Li, K. Ota, and M. Dong, “Learning IoT in edge: Deep learning for
the Internet of things with edge computing,” IEEE Network, vol. 32,
no. 1, pp. 96–101, 2018.

[7] 3GPP TR 38.912, Study on new radio (NR) access technology, 3GPP
Std., 2017.

[8] Y. Ren, R.-J. Wu, T.-W. Huang, and Y.-C. Tseng, “Give me a hint: An
ID-free small data transmission protocol for dense IoT devices,” in Proc.
IEEE Wireless Days, 2017.

[9] T.-W. Huang, Y. Ren, K. C.-J. Lin, and Y.-C. Tseng, “r-Hint: A message-
efficient random access response for mMTC in 5G networks,” in Proc.
IEEE PIMRC, 2017.

[10] T.-Y. Chan, Y. Ren, Y.-C. Tseng, and J.-C. Chen, “eHint: An efficient
protocol for uploading small-size IoT data,” in Proc. IEEE WCNC, 2017.

