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Abstract

The dispersion behaviors of wave propagation in waveguides of piezoelectric
helical structures are investigated. By using the tensor analysis in the helical
curve coordinate, the general strain−displacement relationship of piezoelec-
tric helix is firstly considered. This paper’s formulation is based on the spec-
tral finite element which just requires the discretization of the cross-section
with high-order spectral elements. The eigenvalue matrix of the dispersion
relationship between wavenumbers and frequencies is obtained. Numerical
examples on PZT5A and Ba2NaNb5O15 helical waveguides of a wide range
of lay angles are presented. The effects of the piezoelectric on the disper-
sive properties and the variation tendency of dispersion curves on helix angles
are shown. The mechanism of mode separation in piezoelectric helical waveg-
uides is further analyzed through studying waves structures of the flexural
modes.

Keywords: Dispersion behavior Piezoelectric helical structures
High-order spectral elements Spectral finite element

1. Introduction

Piezoelectric devices with helical structures are widely used as sensors
and actuators in a variety of mechanical, civil and aerospace applications at
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various scales, such as helical piezoelectric springs[1], net shape formed spiral
actuators[2],helical-shaped piezoelectric motors[3], helical piezoelectric fiber
actuators[4] and magnetic helical micro-machines[5]. All these applications
require the accurate knowledge of the dispersive properties for designing and
optimizing piezoelectric devices, seeing that new opportunities are opened
for the control of the electric field using dynamic elastic waves.

Currently, the system of theories of common piezoelectric structures has
achieved a satisfactory level. Tiersten[6] developed the linear piezoelectric
equations of the infinite thick anisotropic plate and discussed the dispersive
characteristics of wave propagation. Paul et al.[7] derived the dispersion
relation of axial motion of a hollow circular cylinder of piezoelectric ceramics
by using Fourier transform method. The cut-off frequencies on electric and
elastic wave propagation of piezoelectric composite plate can be found in
Stewart et al.[8]. Wang[9] investigated the wave propagation in a piezoelectric
coupled cylindrical shell structure based on a membrane shell model. The
characteristic surfaces of waves in a hybrid multilayered piezoelectric circular
cylinder was considered by Han et al.[10] through an analytical-numerical
method.

Maradudin et al.[11] firstly presented the orthogonal function method to
study wave propagation in homogeneous semi-infinite wedges. This method
had the material coefficient relation instead of the stress-free and electric
boundary condition by using the pulse function and then simplified the dy-
namic differential equation into the quadratic eigenproblem. Yu[12] proposed
Legendre polynomials method to investigate the waveguide behavior in con-
tinuous functionally graded plates. The wave propagation in multilayered
hollow cylinders was analyzed by Yu[13] through an extension of an improve-
ment of the Legendre polynomial approach. However, the orthogonal func-
tion method is only applicable to simple cross section and develops the dis-
symmetric eigenmatrix to the disadvantage of the solution of the dispersion
curves. In this paper, the spectral finite element(SFE) is presented to analyze
the dispersion properties of elastic waves in piezoelectric helical waveguides.
If geometrical and material parameters of waveguides are invariant along the
wave propagation direction, SFE as an efficient tool can extract the dispersion
relationship. As an improvement of the finite element method(FEM), SFE
can reduce a three-dimensional problem of waveguides to a two-dimensional
one. So only the cross section is needed to mesh through this approach. In
addition, the higher-order spectral elements(Gauss-Lobatto-Legendre) can
increase the computational efficiency compared the traditional linear and

2



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

quadratic elements. Because the integration points coincide with the ele-
ment nodes, many entries of the coefficient and mass matrices become zero.
The mass matrix becomes diagonal and the stiffness matrix is diagonal in the
case of isotropic material behavior and block-diagonal otherwise, particularly
to the benefit of the computation of matrix inversion. The final solution of
the dispersion equation derived by SFM becomes an eigenvalue problem of a
Hamiltonian matrix.

SFE algorithms was originally proposed by Lysmer[14](1970) to analyze
the behavior of Rayleigh waves in semi-infinite multilayered elastic waveg-
uides. Subsequently, The work of Treyssede[15] had demonstrated that the
structures possessing the property of translational invariance along its axis,
such as composite cylinders[16], fluid filled cylinders[17], functionally graded
cylinders[18], straight bars of arbitrary cross section[19], helical rods[20] can
be considered to investigate the dispersion behavior of elastic wave by us-
ing the SFE formulation.. As for applications of piezoelectric waveguides,
Taciroglu et al.[21] presented SFE to study wave propagation of laminated
piezoelectric cylinders. Cortes [22] presented the dispersion relation of phase
and group velocities in a periodic array of multi-layered piezoelectric plates
with finite and arbitrary cross sections and presented useful information for
the design and optimization of such transducers.

The present paper is organized as follows: in Section 2, the helical coor-
dinate system is proposed based on Frenet-Serrets principle and the helical
coordinate with a set of orthogonal unit basis (introduced as the contravari-
ant basis) is considered, where components of tensor retain the dimension of
original quantity.

The general strain−displacement relationship of piezoelectric helix in-
cluding the relationship of electric field strength and electric potential is
then obtained via the tensor analysis method in Section 3.

In section 4, the formulation of the SFM of piezoelectric helical waveg-
uides is presented based on the Fourier transform and the variational princi-
ple.

In section 5, the combination between modified modal assurance criterion
(M-MAC) and the Pade expansion is used to sort modes, which takes ad-
vantage of the convenient programming of M-MAC and the fast and reliable
alternative of the Pade expansion. Mode differentiation is helpful for the
study of the trends of influence factors on wave propagation.

Finally, some dispersion curves of helical structures of a wide range of lay
angles on PZT5A and Ba2NaNb5O15 are given in section 6. The piezoelectric
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effect on wave propagation of piezoelectric helical waveguides is analyzed
and the change rule on the waveguide behavior is obtained by compared
with the dispersion relations of phase and group velocities of different lay
angles. Furthermore, the properties of cut-off frequency and mode transition
for elastic wave propagation is discussed in details and the wave structures of
the flexural modes is calculated to explain the mechanism of mode separation.

2. Helical coordinate system

As shown in Fig.1, the helix centerline with the arclength parameter s
can be described in the Cartesian orthonormal (ex, ey, ez) as

 

Z

X Ys=0

s=L

L s

(x, y)

T 

N

B

Fig. 1. Helix coordinate system based on the Frenet-Serret formula

R(s) = R0 cos

(
2π

l
s

)
ex +R0 sin

(
2π

l
s

)
ey +

L

l
sez (1)

where l is the length of one turn of the helix centerline, R0 and L are the
radius of the helix and the pitch along Z axis, respectively. The unit tangent,
normal, and binormal vectors to the helix centerline, expressed by T, N

and B (see Fig.1), or collectively the Frenet-Serret frame, are obtained from
T (s) = dR/ds and the Frenet-Serret principle: dT/ds = −κN, dN/ds =
τB+κT, dB/ds = −τN, which together form an orthonormal basis spanning
the three-dimensional Euclidean space. Note that N is oriented outward the
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curvature. For the helix, the curvature κ and the tortuosity τ are constants,
which can be expressed as 4π2R2

0/l
2 and 2πL/l , respectively.

A local coordinate system(x − y) can be built on the (N − B) plate.
Any point in a helical coordinate can be written from the orthonormal basis
(N,B,T) as a position vector Φ:

Φ(x, y, s) = R (s) + xN (s) + yB (s) (2)

In the sequel, the notation (x, y, s) is denoted as (x1, x2, x3) for simplicity.
Utilizing the Frenet-Serret formula, we obtain the non-orthogonal natural
basis from the expression gi = ∂Φ/∂xi (i = 1, 2, 3):

g1 = N (s)

g2 = B (s)

g3 = −τyN (s) + τxB (s) + (1 + κy)T (s)

(3)

Then, the covariant metric tensor yields Gij = gigj , given in matrix form
by

G =




1 0 −τy
1 0 τx

−τy τx τ 2(x2 + y2) + (1 + κx)2


 (4)

If the governing equation is directly deduced based on the natural basis by
using the tensor analysis method, the physical components of the tensor must
be consistent with the original dimension of physical quantities in mathemat-
ical physics. Since the non-orthogonal natural basis considered in this paper
is not holonomic, which may not have the property of retaining the original
dimension. We need to introduce a set of orthogonal unit vectors gi as the
covariant basis. Here, the Frenet-Serret frame is chosen as

g(1) = N (s) , g(2) = B (s) , g(3) = T (s) (5)

The transformation between the above two bases is given by

g(i) = βijgj or gi = β
′

ijg(j) (i, j = 1, 2, 3) (6)
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where β and β
′

are given by

β =
1

1 + κx




1 + κx 0 τy

0 1 + κx −τx
0 0 1



 (7)

β
′

=




1 0 0
0 1 0

−τy τx 1 + κx


 (8)

The contravariant basis gi of the helical coordinate defined by gig
i = δji is

given by

g1 = N (s) +
τy

(1− κx)
T (s)

g2 = B(s)− τx

(1 + κx)
T (s)

g3 =
1

(1 + κx)
T (s)

(9)

3. General strain-displacement relation of piezoelectric helix

In the helical coordinate, the displacement field is decried in a way of the
metric tensor as

U=uig(i)=u1g(1) + u2g(2) + u3g(3) (10)

where ui is the components of the displacement tensor. As the elastic wave
propagation is considered in this paper, Small strain is needed only to con-
sider, whose strain-displacement relation is linear. The strain tensor can be
defined by the second order tensor as

ε = εijg(i)g(j) = 1/2 (∇U+U∇)

=
1

2

(
gi∂U

∂xi

+
∂U

∂xi

gi

)
(11)

where ∇ represents the gradient operator of the metric tensor.
For most of piezoelectric devices, their sizes are much smaller than wave-

lengths with respect to work frequencies, therefore the electric-magnetic field
associating with the stress field is regarded as an electrostatic field. The func-
tion of the electric-field intensity can be described as a gradient of the electric
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potential as follow

E = Eig(i)
= −∇φ = − ∂φ

∂xi

gi (12)

where E and φ are the electric-field intensity and electric potential, respec-
tively.

Rewriting above two equations, the general strain is obtained as

ε̄ = [ε11g(1)g(1), ε22g(2)g(2), ε33g(3)g(3),

2ε12g(1)g(2), 2ε13g(1)g(3), 2ε23g(2)g(3),

− E1g(1),−E2g(2),−E3g(3)]
T

= b1ū,x + b2ū,y + bsū,s + b0ū

(13)

where the general displacement tensor is given by ū =
[
u1 u2 u3 −φ

]T
,

and the differential operation matrices b0,b1,b2,bs are shown in Appendix
A.

4. Numerical method

When studying the dispersive behavior of the piezoelectric helical waveg-
uides, the length of the structure is considered to be infinite. As the curvature
and tortuosity of the helix are constants, the curvature degree does not vary
along its axis. Besides that, the shape and material parameters are invari-
ant with respect to s. Due to these two reasons, the piezoelectric helical
structure has the property of translational invariance, in which waves can
generally travel without reflection.

The constitutive relationship of the linear stress−strain −electrical field
in matrix form is given by

σ̄ = [σ11g(1)g(1), σ22g(2)g(2), σ33g(3)g(3),

σ12g(1)g(2), σ13g(1)g(3), σ23g(2)g(3),

D1g(1),D2g(2),D3g(3)]
T = H∗ε̄

(14)

where σ̄ is a metric tensor of the general stress containing the stress com-
ponents and the electric displacements, and H∗ is the constitutive matrix
containing the elastic constants C, dielectric constants v and the piezoelec-
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tric constants e[23]

H∗ =

[
C −eT

e v

]
(15)

The vibrational formulation of electrodynamics based on the Hamilton
principle can be obtained as

δ

∫

t

∫

V

(
1

2
ε̄THε̄+

1

2
˙̄uTρ ˙̄u

)
dV dt− δ

∫

t

∫

Γ

ūf̄dΓdt = 0 (16)

with

H =

[
C −eT

−e −v

]
ρ =




ρ
ρ

ρ
0


 (17)

The load vector f̄ on the cross section Γ is described as

f̄(r, θ, z, t) = [tzz tzx tzy Dr]
T (18)

The cross section of the waveguides is discretized by using high-order spectral
elements. In the following steps, we show the derivations of SFM formulation
by using the isoparametric element. In an element of order p, there are p+1
nodes. The position of nodes ξi, ηj ⊆ [−1, 1], i, j in 1, 2, · · · , (p + 1) are
obtained as roots of the following polynomial:

(1− ξ2)P ′
p(ξ) = 0

(1− η2)P ′
p(η) = 0

(19)

and weights obey:

wi,j =
2

p(p+ 1)(Pp(ξi))
2 × 2

p(p+ 1)(Pp(ηj))
2 (20)

where P ′
p denotes the first derivative of Legendre polynomial degree p. The

Lagrangian interpolation is expressed as

Ni,j(ξ, η) =

p+1∏

k=1,j 6=i

ξ − ξi
ξk − ξi

p+1∏

l=1,j 6=j

ξ − ξj
ξl − ξj

(21)
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And The transformation between the local coordinate (ξ, η) and the global
coordinate (x, y) is given via the mapping function Ni(ξ, η) as

x(ξ, η) = NM(ξ, η)xM

y(ξ, η) = NM(ξ, η)yM
(22)

where xM and yM are global coordinates of the corresponding nodes. M in
NM(ξ, η) equals to (j − 1)× p+ i.

To transform the differential operator of Eq.22 to the local coordinate,
the coordinate relation is required:

[
∂ξ
∂η

]
= J

[
∂x
∂y

]
, ∂s = ∂s (23)

with the Jacobian matrix

J =

[
x,ξ x,ξ

y,η y,η

]
(24)

The general displacement amplitudes of one element on the cross section
in terms of the local coordinate are interpolated by shape functions. Hence,
with the nodal general displacements Ū such displacements is approximated
by

ū(ξ, η, s) = N(ξ, η)Ū(s) (25)

whereN denotes the matrix of shape function. Substituting Eq.25 into Eq.12,
the general strain is obtained as

ε̄ = B1Ū(s) +BsŪ(s),s (26)

where
Bs = bsN (27)

B1 =
1

|J|(y,ηb1 − x,ηb2)N,ξ

+
1

|J|(−y,ξb1 + x,ξb2)N,η + b0N
(28)

Substituting Eq.18, Eq.25 and Eq.26 into Eq.16, after the integration by
parts, we can obtain

9
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∫

t

∫

s

nel⋃

e=1

δ ¯(Ue)
T [

Ee
3Ū

e
, ss+

(
Ee

2 − (Ee
2)

T
)
Ū

e
, s−E1Ū

e −MeŪ
e

,tt + Fe
]
dsdt = 0

(29)
where nel is a number of high order spectral elements; The superscript e
of Ū presents the sequence number, of element; Ee

1,E
e
2,E

e
3,M

e and Fe are
expressed in Appendix A

Base on the approach of the finite element method, we assemble the above
element mass and stiffness matrices into global matrices in the standard
manner to yield a discrete system of dispersion equation. Besides, the weak
form of Eq.28 is replaced by the below equation in the integral symbol.

[
E3Ū, ss+

(
E2 − (E2)

T
)
Ū, s−E1Ū−MŪ,tt + F

]
= 0 (30)

After application of the two-dimension Fourier transform in terms of
the time and axial evolution, Eq.30 can be changed to the equation in the
frequency-wavenumber domain for the consider disperser point (ω.k)

[
E1 + ik

(
E2 − ET

2

)
− k2E3 + ω2M

]
Ũ = F̃ (31)

where the F̃ and Ũ can be expressed as

F̃(k,ω) =

∫ +∞

−∞

∫ +∞

−∞

F(s, t)e−i(ωt−ks)dωdt

Ũ(k,ω) =

∫ +∞

−∞

∫ +∞

−∞

Ū(s, t)e−i(ωt−ks)dωdt

(32)

where Ũ denotes the amplitude of the general displacement with respect to
the k − ω domain.

The high-order spectral element is employed. Owing to the superposition
between the integration points and the nodes and the Kronecher delta of
the interpolation basis function, the above stiffness and mass matrixes can
all be simplified into diagonal sparse matrixes to reduce the memory space
consumption and improve the computational efficiency. So the above general
eigenvalue problem can be predigested into a linear standard problem.

(λI−A)ϕ = B (33)
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with

A =

[
E−1

3 ET
2 −E−1

3

ω2M− E1 + E2E
−1
3 ET

2 −E2E
−1
3

]
B =

[
0

F̃

]
(34a)

ϕ = [Ũ, Q̃]T λ = ik (34b)

where I is unit matrix, whose size is the same asA; λ andϕ are the eigenvalue
and eigenvector of the matrix A , and Q̃ denotes the nodal force matrix

Q̃ = (λE3 + E2) Ũ (35)

Non-trivial solutions of Eq.34 are obtained by imposing that the determinant
of the coefficient’s matrix of ϕ must vanish:

det [λI−A] = 0 (36)

If there are n nodes in the cross section, A is a 8n × 8n matrix. At a given
frequency ω, the wave numbers λ can be calculated by using the Choleshy
decomposition of the eig functions in MATLAB software. J is defined by

J =

[
0 I4n

−I4n 0

]
(37)

where I4n is a 4n× 4n unitary matrix. We can find that

(JA)T = (JA) (38)

Here shows that A is a Hamiltonian matrix. So, if λ is an eigenvalue of Eq.33,
−λ, then λ∗ and −λ∗ are also eigenvalues, where the subsript ∗ denotes the
complex conjugate. The ± of wave numbers respresent postive-going and
negative-going wave types, respectively. All eigenvalues are classified into
two categories:

{
λi, if ℜ (λi) < 0 or ℜ (λi) > 0 and ℘ (λi) > 0
λm+i, if λi + λm+i = 0, i ∈ [1, 2, 3 · · ·m]

(39)

where ℜ and ℘ demotes the real and imaginary part of eigenvalues, respec-
tively.
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Associated with each eigenvalue λi and λi are the ϕi and ϕj complex
eigenvectors representing the modal displacement amplitudes, also known as
wave structures. The complex eigenvectors satisfy the following symplectic
orthogonality relation:

{
ϕT

i Jϕj = 0, ϕT
j Jϕi = 0, when λi + λj 6= 0

ϕT
i Jϕm+i = di, ϕT

m+iJϕi = −di, when λi + λm+i = 0
(40)

In the same time, they also satisfy this condition:

{
ϕT

i JAϕj = 0, when λi + λj 6= 0
ϕT

i JAϕm+i = diλi, when λi + λm+i = 0
(41)

where di is a complex coefficient.
Given ω and suppressing excitation, the solution Ũ of Eq.33, which is the

forced response under the excitation F̃, is now expanded as a sum of guided
modes:

Ũ =

8n∑

j=1

αjŨj (42)

where 8n is the numbers of modes, but truncated in practice.
Substituting the eigenmode expansion into Eq.33 and Pre-multiplying

this equation with J, we can obtain

ϕT
m+j

8n∑

k=1

[JA− λJ]αkϕk = ϕT
m+jJB (43)

Taking advantage of symplectic orthogonality relation, αj are calculated:

αj =
ϕT

m+jJB

dj (λ− λj)
(44)

The displacement response in the wavenumber-frequency domain is

Ũ(ω, k) =

8n∑

j=1

ϕT
m+jJB

dj (λ− λj)
Ũj(ω, k) (45)

We evaluate the displacement in the space-frequency domain by using the
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inverse Fourier transform as

Ū(ω, s) =
1

2π

8n∑

j=1

+∞∫

−∞

ϕT
m+jJB

dj (λ− λj)
Ũj(ω, k)e

iksdk (46)

Assuming that B is holomorphic, based on the Cauchy’s residue theorem,
the displacement yields to

Ū(ω, s) =
8n∑

j=1

ϕT
m+jJB

idj
Ũj(ω, k)e

λjs (47)

The phase velocity vp is given by ω/k, and the group velocity cg can be
defined as

cg =
∂ω

∂k
= i

∂ω

∂λ
(48)

Group velocities are obtained as utilizing the above gradient algorithm, which
requires to group the results that represent the same mode by using modal
differentiation. Besides that, the accuracy relates to the given step of the
frequency ω. This paper directly calculates group velocities via the operation
of above eigenmatrices. ϕL = (ŨL, Q̃L) and ϕR = (ŨR, Q̃R) associated with
each eigenvalue λ are defined as the right and left-hand side eigenvectors of
Eq.36. They yield to, respectively

−ATϕL = λϕL, −AϕR = λϕR (49)

By taking the derivative of Eq.31, we obtain

(
(E2 − ET

2 ) + 2λE3 − 2iωcgM
)
ŨR = 0 (50)

Pre-multiplying this above equation with Ũ
T

L and simultaneously post-multiplying

with ŨR, we obtain

Ũ
T

L

(
(E2 − ET

2 ) + 2λE3 − 2iωcgM
)
ŨR = 0 (51)

The displacement vector and nodal force vector should satisfy

Q̃R = (λE3 + E2) ŨR Q̃L = (−λE3 + E2) ŨL (52)
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Substituting Eq.52 into Eq.51, the group velocity is given by

cg = i
Ũ

T

LQ̃R − Q̃
T

LŨR

2ωŨ
T

LMŨR

(53)

5. Mode sorting

The scatter plot of dispersion behavior is calculated from Eq.33. It is
difficult to sort those dispersion curves in the form of modal differentiation,
which groups those information that belongs to the same mode. However,
modal differentiation is conducive to interpret properties of different modes.
It is also necessary to analyze some further problem, such as wave scattering,
time-transient response and source influence. Via the symplectic property of
Eq.40 instead of the similarity of the normalized eigenvetors belonging to the
same mode[24], modified modal assurance criterion (M-MAC) establishes the
principle about solution points of the two-adjacent frequencies:

macNM
ij =

((
ϕN

i

)T
JϕM

M+j

)
(54)

where N and M are indices of mode group, and i and j are two adjacent
points of one frequency step. The minimum value macNM

ij represents that the
eigenvector ϕN

i and ϕM
j belong to the same mode. However, in a frequency

range of mode transition where wave structure changes very fast, M-MAC
does not guarantee that ϕN

i and ϕM
j belong to the same mode. Moreover,

this convergence result highly depends on the frequency step.
The Padé expansion is employed by [24], which takes advantage of the

differentiation of the group velocities. Compared with the Taylor polynomial,
the Padé expansion has faster convergence rate. The Padé expansion of order
[1/2] is given by

k̃N
i =

γ0
i + α1

i∆ω

1 + β1
i ∆ω + β2

i ∆ω2
(55)

where the above coefficients can be defined in Appendix A and ∆ω is the
frequency increment. By using the Pade expansion approach, k̃N

i is obtained
as an approximate wavenumber of the post-wavenumber of theN th mode. For
each mode, k̃N

i is compared with each real solution of the next wavenumber.
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Fig. 2. Modal differentiation of some selected modes ( Scatter − initial solution, Solid
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The deviation is given by

∆NM
ij =

∣∣∣∣∣
k̃N
i − kM

j

kM
j

∣∣∣∣∣ (56)

The minimum value ∆NM
ij indicates the pre-wavenumber kN

i and the post-
wavenumber kM

j belonging to the same mode. However, to compute the co-
efficients of Eq.A-3, the three wavenumbers kN

0 , k
N
1 , k

N
2 are needed, which

brings large difficulty into the program of modal differentiation. This paper
adopts the coupling method of MAC and the Padé expansion. M-MAC is
used to track mode in the global frequencies but the Padé expansion is em-
ployed to check modal differentiation in a frequency range of mode transition.
As shown in Fig.2, this proposed method obtains the desirable accuracy by
comparing scatter plot and curves of mode differentiation.

6. Numerical Results

Without loss of generality, we can choose variables adimensionalised with
some parameters, length a and time ω/cs. Thus, the dimensionless frequency
and wavenumber are given by Ω = ωa/cs and K = ka respectively, where a
and cs are the radius of the cross section and the shear wave velocity

√
C44/ρ,

respectively. In this section, we consider the dispersion relations of PZT5A
and Ba2NaNb5O15 helical structures with the cross section radius 2.5mm,
helix radius 5mm and various lay angles. The physical properties of the
PZT5A and Ba2NaNb5O15 material are listed in Table.1. cs is computed as
the material properties of PZT5A.

Table 1

Material properties on PZT5A and Ba2NaNb5O15

Property c11 c12 c13 c22 c23 c33 c44 c55 c66
Ba2NaNb5O15 24.7 5.2 10.4 13.5 5 23.9 6.5 7.6 6.6

PZT5A 12 7.51 7.51 11.1 7.51 12 2.1 2.1 2.1
Property v11 v22 v33 e14 e36 e21 e22 e23 ρ

Ba2NaNb5O15 201 28 196 3.4 2.8 -0.3 4.3 -0.4 5.3
PZT5A 916 830 916 8.4 8.4 -2.8 16.4 -2.8 7.75

Units cij(10N/m2),vij(10
−11), eij(C/m), ρ(kg/m3)[12]
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Fig. 3. Frequency spectrum and energy velocity curves of a circular bar for ranging from
0 and 5. Left: Ba2NaNb5O15. Right: PZT5A. Scatter − non-piezoelectric, solid line −
piezoelectric
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Fig. 5. Wave structures of the flexural on the PZT5A material for Ω = 2

We can observe from Fig.3(a) that the flexural mode F (1, 1) of non-
piezoelectric has two curves, which are denoted as F (1, 1)− and F (1, 1)+,
respectively. The phenomenon called mode separation may result from the
difference of elastic constants between the x and y direction. However, it is
difficult to check mode separation of the flexural modes of non-piezoelectric in
Fig.3(b). Compared with the frequency spectrum curves of non-piezoelectric,
the phenomenon of mode separation of the flexural mode F (1, 1) on the two
materials after considering the piezoelectric effect becomes even more obvi-
ous. The piezoelectric effect on the overall trend of the longitudinal L(0, 1)
is not apparent, the whole group velocity curve of piezoelectric just moves
a little bit to the right compared with the curve of non-piezoelectric. In an
intermediate frequency range, the group velocities of the longitudinal L(0, 1)
of piezoelectric are faster than those of the non-piezoelectric. Similar to the
steel helical waveguides, it is easy to observe that the modal transition be-
tween L(0, 1) and F (1, 2)+ occurs around the notch frequencies, as shown in
the rectangle box of Fig.3(a). Compared with the flexural F (1, 1) and lon-
gitudinal F (1, 1), the torsional T (0, 1) is less influenced by the piezoelectric
property.

As for axisymmetric waveguides bars , the wave structures of the F (1, 1)+

mode are the same as that of the F (1, 1)− mode. Phase velocities and
wavenumbers of the two modes are identical for any frequencies, thus the
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(c) Group velocity curves of F (1, 1) on Ba2NaNb5O15
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Fig. 6. Frequency spectrum and energy velocity curves of the flexural F (1, 1) mode
for ranging from 0 and 5. Left: Ba2NaNb5O15. Right: PZT5A. Black-00 , Red-150 ,
Green-300 Blue-450 , Magenta-600
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Fig. 7. Wave structures of the flexural F (1, 1) of piezoelectric helical waveguides on the
PZT5A and Ba2NaNb5O15 material for Ω = 2

two frequency spectrum curves overlap each other perfectly. So the phe-
nomenon of mode separation does not occur. The dynamic basis of the 1st
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order flexural along the axis s is only one and the vibration space of the 1th
order flexural is one-dimensional. In other words, the displacement along any
central axis are all the same.

Fig.4 and Fig.5 give wave structures of the flexural F (1, 1) on PZT5A and
Ba2NaNb5O15, respectively. Real components of above wave structures is
comparatively infinitesimal with imaginary components and can be ignored.
It is easy to check that the central axes of wave structures of cross sections
of the F (1, 1)− and F (1, 1)+ modes are two symmetric axes for the material
parameters (the x and y directions). The relationship between the clouds
plots of two modes is not symmetry perfectly and the vibration forms along
wave propagation is different and the wavenumber of one mode for a given
frequency along the axis s does not equal to the other mode. So the dispersion
curves of the F (1, 1)− and F (1, 1)+ modes do not overlap perfectly in the
phenomenon called as mode separation. By contrast of the wave structures
on PZT5A and Ba2NaNb5O15, it is discovered that the phenomenon of mode
separation becomes much more obvious with increasing the difference of the
material parameters between the x and y directions. The vibration space
of the 1th order flexural is two-dimensional. The displacement deformations
along any central axis should consist of the F (1, 1)− and F (1, 1)+ modes.

The frequency spectrum and group velocity curves of the flexural F (1, 1)
mode of piezoelectric helical waveguides are shown in Fig.6. The helical
geometry has a large impact on wave propagation, which means that the
piezoelectric helical rod cannot be simplified into the piezoelectric bar. In
a low-intermediate frequency range, the wavenumber gap between the two
modes increases as the lay angle increases. In other words, the phenomenon
of mode separation becomes much more obvious with the lay angle increasing.
In the meantime, energy velocities of the corresponding modes decrease as
the lay angle increases. If the length of one turn of the centerline becomes
longer with the increment of the lay angle, the time of wave propagation
along the z direction is shortened. As the frequency tends to infinity, the
limit value of the 1st order flexural mode decreases with the increase of the
lay angle.

In Fig.7, we show the wave structures of the flexural F (1, 1) mode of
piezoelectric helical waveguides corresponding to 300, 600. Due to the impact
of the helical geometry, the eigenmatrix A becomes asymmetric so that the
real components of eigenvectors do not equal zero . We find that the imagine
wave structures change sharply around near points which inside the cross
section is nearest from the Z axis but the gradient variation becomes smaller
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around far points. Moreover, there is only one symmetry axis along the
x direction. Compared with the cloud maps of the imagine displacements,
the real wave structures become very complex. Their central axes are not
straight lines but curves. So the two central axes of the 1st flexural mode after
vectors superposition of the imagine and real clouds maps are not orthogonal.
Changes of wave structures become much more obvious as the lay angle
increases and convex-concave shapes arise in the real clouds map.

Fig.8 and Fig.9 present the group velocity vs. frequency curves of the
longitudinal L(0, 1) and torsional T (0, 1) respectively, for a wide range of
lay angles. In a frequency range , the group velocities of above two modes
decrease as the lay angle increases.In a high frequency range, their disper-
sive behaviors are very distinct, which exhibits the increasing helix effect on
wave propagation with an increasing lay angle. As shown in Fig.9(a), it is
easy to check mode transition between L(0, 1) and F (1, 2) in energy velocity
curves of all lay angles on the Ba2NaNb5O15 material. These previous curves
run backwards in order to avoid a collision between L(0, 1) and F (1, 2) in the
neighborhood of Ω = 2.4, thanks to the piezoelectric effect. The phenomenon
of mode transition between L(0, 1) and F (1, 2) doesn’t appear in the disper-
sive behavior of 00 and 600 helical waveguide on the PZT5A material.

As shown in Fig.10, back-ward waves occur in the frequency spectrum
curves of F (1, 1)+ of all lay angles on the two materials in a low frequency
range. The frequency range of back-ward wave becomes larger with an in-
creasing lay angle, while the phase velocities of the flexural modes get smaller.
Compared with piezoelectric bars, both the longitudinal L(0, 1) and the tor-
sional T (0, 1) of the piezoelectric helical waveguides have cut-off frequencies.
Moreover, as the lay angle increases, cut-off frequency of corresponding mode
increases. For a given lay angle, the cut-off frequency on the PZT5A material
is larger than that of the corresponding mode on the Ba2NaNb5O15 mate-
rial, which further proves that the dispersive behavior becomes much more
obvious as the average ratio of piezoelectric parameters to elastic constants
increases or the average ratio of piezoelectric parameters to elastic constants
decreases.

7. Conclusions

This paper presents the utilization of the SFM to study wave propagation
of piezoelectric helical waveguides. The helical coordinate system is chosen
to describe the geometry of the helical structure. The Frenet-Serrets frame
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Fig. 8. Frequency spectrum and energy velocity curves of the flexural L(0, 1) mode for
ranging from 0 and 5. Black-00 , Red-150 , Green-300 Blue-450 , Magenta-600
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(a) Frequency spectrum of T (0, 1) on Ba2NaNb5O15
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Fig. 9. Frequency spectrum and energy velocity curves of the flexural T (0, 1) mode for
ranging from 0 and 5. Black-00 , Red-150 , Green-300 Blue-450 , Magenta-600
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Fig. 10. Frequency spectrum and energy velocity curves of piezoelectric helical waveguides
in a low frequency range. Left: Ba2NaNb5O15. Right: PZT5A. Black-00 , Red-150 ,
Green-300 Blue-450 , Magenta-600.
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is introduced as the contravariant basis, where the tensor components retain
the dimension of original quantity. Then, the general strainCdisplacement re-
lationship is established via the tensor analysis method. The dispersion equa-
tion of discretization of piezoelectric helical waveguides is obtained based on
the Fourier transform and the variational principle. Finally, we present the
spectrum frequency and group velocity curves of PZT5A and Ba2NaNb5O15

helical structures for a wide range of lay angles. We point out that the trend
of the piezoelectric effect on wave propagation of piezoelectric helical waveg-
uides and discuss the cut-off frequency, mode transition and mode separation
on elastic wave propagation in details. Furthermore, wave structures of the
flexural modes are calculated to explain the mechanism of mode separation.
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APPENDIX. Equations related to Section 3-5

In Section 3, the differential operation matrices in Eq.13 are given by

bs =




0 0 0 0
0 0 0 0
0 0 A 0
0 0 0 0
A 0 0 0
0 A 0 0
0 0 0 0
0 0 0 0
0 0 0 A




(A-1a)
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b0 =




0 0 0 0
0 0 0 0
Aκ 0 0 0
0 0 0 0
0 −Aτ −Aκ 0
Aτ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




(A-1b)

b1 =




1 0 0 0
0 0 0 0
0 0 Aτy 0
0 1 0 0

Aτy 0 1 0
0 Aτy 0 0
0 0 0 1
0 0 0 0
0 0 0 Aτy




(A-1c)

b2 =




0 0 0 0
0 1 0 0
0 0 −Aτx 0
1 0 0 0

−Aτx 0 0 0
0 −Aτx 1 0
0 0 0 0
0 0 0 1
0 0 0 −Aτx




(A-1d)

where A = (1 + κx)
The stiffness and mass matrices shown in Eq.?? can be expressed as

M =

∫

Γe

NT ρ̄N |J| √gdξdη (A-2a)
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E1 =

∫

Γe

BT
1HB1 |J|

√
|g|dξdη (A-2b)

E2 =

∫

Γe

BT
1HBs |J |

√
|g|dξdη (A-2c)

E3 =

∫

Γe

BT
s HBs |J|

√
|g|dξdη (A-2d)

The coefficients of the Padé expanssion are given as

γ0
i = kN

i (A-3a)

γ1
i =

1

cNgi
(A-3b)

γ2
i ≈ 1

2∆ω

(
1

cNgi
− 1

cN
g(i−1)

)
(A-3c)

γ3
i ≈ 1

6∆ω2

(
1

cNgi
− 1

cN
g(i−2)

+
1

cN
g(i−1)

)
(A-3d)

β2
i =

(γ2
i )

2 − γ3
i γ

1
i

(γ1
i )

2 − γ2
i γ

0
i

(A-3e)

β2
i = −γ2

i + γ0
i β

2
i

γ1
i

(A-3f)

α1
i = γ1

i + γ0
i β

1
i (A-3g)
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