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Abstract

Phytopathogens have a limited range of host plant species that they can successfully para-

sitise ie. that they are adapted for. Infection of plants by nonadapted pathogens often results

in an active resistance response that is relatively poorly characterised because phenotypic

variation in this response often does not exist within a plant species, or is too subtle for

genetic dissection. In addition, complex polygenic inheritance often underlies these resis-

tance phenotypes and mutagenesis often does not impact upon this resistance, presumably

due to genetic or mechanistic redundancy. Here it is demonstrated that phenotypic differ-

ences in the resistance response of Brachypodium distachyon to the nonadapted wheat

stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst) are genetically tractable and simply

inherited. Two dominant loci were identified on B. distachyon chromosome 4 that each

reduce attempted Pst colonisation compared with sib and parent lines without these loci.

One locus (Yrr1) is effective against diverse Australian Pst isolates and present in two B.

distachyon mapping families as a conserved region that was reduced to 5 candidate genes

by fine mapping. A second locus, Yrr2, shows Pst race-specificity and encodes a disease

resistance gene family typically associated with host plant resistance. These data indicate

that some components of resistance to nonadapted pathogens are genetically tractable in

some instances and may mechanistically overlap with host plant resistance to avirulent

adapted pathogens.

Author summary

Plant pathogens are specialists and can colonise only a limited number of plant species

(hosts). Pathogen infection of a plant that is not a host of the disease often results in an

active plant defense response. This poorly characterised defense response is durable as

phytopathogens rarely successfully colonise new hosts. The ability to transfer this resis-

tance to host plants would be highly beneficial in protecting crops from disease. However,

this resistance has been difficult to genetically dissect as all members of a plant species are
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resistant. Here we show that some accessions of the model grass Brachypodium distachyon
show some variation in their ability to suppress colonisation by the wheat stripe rust path-

ogen Puccinia striiformis. Brachypodium is not a host species of wheat stripe rust disease

and no accessions are fully susceptible, however, some allow more pathogen growth than

others. We have exploited these relatively subtle phenotypic differences to genetically dis-

sect this difference in resistance and identified two Brachypodium loci that contribute

increased resistance to the nonadapted wheat stripe rust pathogen.

Introduction

Only a limited number of phytopathogen species are adapted to paracitise a given plant spe-

cies. The numerous phyopathogens unable of colonising a plant species (nonadapted) are

often suppressed by an active plant resistance response upon challenge [1, 2, 3, 4]. Plant resis-

tance against nonadapted pathogens is considered durable as pathogen colonisation of new

plant host species is rare, at least over short evolutionary time frames [5, 6]. However, nona-

dapted pathogen infection can result in a variety of outcomes varying from complete plant

immunity, to limited pathogen colonisation and reproduction [7].

Mechanistically resistance to nonadapted pathogens can range from a basic physical or

chemical incompatibility between a pathogen and potential plant host, to active recognition of

pathogen challenge by the nonhost plant leading to a complex defense response [1, 8, 9, 10].

Current molecular models of active defense invoke similar mechanisms used to protect host

plants against avirulent adapted pathogens, these being phytoalexin defences, callose deposi-

tion, reactive oxygen production and cell death in some instances [9, 10, 11].

Plant recognition of pathogen attack occurs by plant pathogen or damage associated molec-

ular pattern (PAMP/DAMP) receptors [12, 13, 14]. Adapted pathogens repress signalling by

these receptors by the introduction of pathogen effector molecules into infected plant cells.

Some members of a host plant species can recognise specific pathogen effector molecules or

their enzymatic activity and then activate a defense response (ie. effector triggered immunity)

[8]. Recognition of nonadapted pathogens is likely coupled with an inability of the nonadapted

pathogen effector complement to effectively supress PAMP/DAMP signalling [4, 8, 10, 15].

Effectors from nonadapted pathogens can also be recognised by incompatible plant species in

some instances thereby including effector triggered immunity, a typical host/pathogen defense

response, in nonadapted pathogen resistance [16, 17, 18, 19, 20].

At a molecular level resistance to nonadapted pathogens has often been difficult to investi-

gate. Within a species this resistance often shows no, or very subtle, phenotypic variation

negating classical mapping and positional cloning strategies [21, 22, 23]. In some cases varia-

tion can be observed but controlled by multiple genes, each with small additive affects making

isolation of the underlying QTL difficult [24, 25, 26, 27, 28, 29]. However, mutagenesis and

virus induced gene silencing, usually in model species, has had some success [4]. For example,

the isolation of the Arabidopsis PEN genes by mutagenesis has provided insights into the

mechanistic basis of penetration resistance faced by nonadapted mildew pathogens [30, 31,

32]. However, once these penetration barriers are overcome additional mutations are required

for increased nonadapted pathogen development consistent with a multiplicity of resistance

barriers being faced by an invading pathogen [31, 33, 34].

Increasing phylogenetic distance between two plant species reduces their likelihood of both

being hosts to the same morphological stage of a pathogen species [35]. This phylogenetic dis-

tance also appears to influence the extent of nonadapted pathogen growth on nonhost plants

Brachypodium resistance to nonadapted wheat rust pathogens
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[10, 11]. Previously we examined rice resistance to the nonadapted cereal rust pathogens Pucci-
nia graminis f. sp. tritici, P. triticina, P. striiformis f. sp. tritici and P. hordei. Each pathogen was

capable of infecting rice and on occasion colonising hundreds of mesophyll cells, however

sporulation was never observed [22]. Only subtle genetic variation in infection phenotypes was

observed between different rice lines and mutagenesis was unsuccessful in identifying plants

with perturbed resistance to these nonadapted fungal species [22]. The flax rust pathogen (Mel-
ampsora lini) of the dicotyledonous plant species Linum ussitatissimum (flax) was even less

able to colonise rice, rarely being able to identify stomates on the leaf surface to enter the leaf

[22]. These observations are consistent with increased phylogenetic distance between host and

nonhost plant species being associated with a reduced ability of nonadapted pathogens to colo-

nise. Similar poor colonisation was observed upon challenge of Arabidopsis thaliana with the

wheat leaf rust pathogen, P. triticina [27].

The model temperate grass Brachypodium distachyon is more closely related to cereal rust

hosts like wheat and barley than rice [36]. Unlike rice, B. distachyon is also parasitized by a rust

disease pathogen, P. brachypodii [37, 38]. Also unlike rice, the nonadapted cereal rust patho-

gens P. graminis. f. sp. tritici and P. striiformis f. sp. tritici are capable of occasionally producing

very small sporulating uredinia on B. distachyon [38, 39, 40, 41]. In contrast, the rust pathogen

(Puccinia emaculata) of Panicum virgatum (switchgrass) shows limited infection of B. distach-
yon [23] again suggesting that phylogenetic relatedness of host and nonhost species influences

nonadapted pathogen infection outcomes.

Those B. distachyon accessions that allow the most growth of cereal rust pathogens are

nonetheless still highly resistant when compared with a susceptible wheat genotype or even

some wheat genotypes that are classified as having resistance to rust disease. In fact, on most B.

distachyon accessions no macroscopic symptoms are observed and microscopic analyses show

limited infection by these nonadapted pathogens with sites usually consisting of an appresso-

rium, substomatal vesicle and a few infection hyphae [41]. B. distachyon accessions challenged

with cereal rust pathogens responded with an active defense response that involves callose

deposition and H2O2 accumulation, whereas autofluorescent cell death is relatively uncom-

mon [40, 41]. P. graminis. f. sp. tritici and P. striiformis f. sp. tritici are therefore not adapted to

parasitise B. distachyon, however for some accessions the resistance to these pathogens is not

as restrictive as that observed on rice.

Previously we developed two B. distachyon genetic mapping families that segregate for dif-

ferential outcomes to P. striiformis f. sp. tritici (Pst) challenge [41]. In each family one parent

(BdTR10h and BdTR13k, respectively) had highly restricted Pst growth with infection sites

consisting of a substomatal vesicle and a few infection hyphae that colonised a limited number

of mesophyll cells with haustoria (Fig 1) [41]. In contrast, the other parent in the cross (Tek-4

and Bd21, respectively) was more extensively infected by Pst with hundreds of mesophyll cells

colonised (Fig 1). Occasionally these latter Pst infection sites produced tiny sporulating ure-

dinia, although only after long (3–4 week) post infection time periods and specific growth con-

ditions [41]. In a cross between B. distachyon accessions BdTR10h and Tek-4, these differential

infection outcomes segregated as a 3:1 ratio with restricted infection being inherited as a single

dominant gene [41]. In the second mapping family, BdTR13k x Bd21, highly restricted patho-

gen growth predominated amongst progeny and segregation data most closely supported a 1

dominant, 1 recessive gene model, or alternatively a two dominant, linked gene model, with

each gene independently suppressing pathogen growth [41].

In this report we undertake detailed fine mapping studies and demonstrate that a single

dominant locus highly restricts Pst growth in a BdTR10h x Tek-4 family, whereas two domi-

nant linked loci independently confer a similar phenotype in a BdTR13k x Bd21 family with

one locus being nearly identical to that present in the former family. These data show that in B.
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distachyon some components of resistance to the nonadapted pathogen Pst are genetically sim-

ply inherited. These resistance components are superimposed on a background of B. distach-
yon incompatibility to colonisation by these nonadapted cereal rust pathogens.

Results

The Yrr1 gene segregates in each mapping family

Previous analysis of B. distachyon accessions BdTR10h and Tek-4 showed that macroscopically

the former accession produced small brown lesions in response to challenge with Pst pathotype

104 E137 A–, whereas large, striped lesions were produced on Tek-4 plants [41] (Fig 1A and

1F). Each small brown lesion on BdTR10h corresponded to a small Pst infection site usually

comprising several infection hyphae, occasional haustoria and limited numbers of weakly

autofluorescent mesophyll cells, some of which contained nonfluorescent, brown pigments

Fig 1. Pst infection phenotypes on B. distachyon accessions. A) B. distachyon accession BdTR10h infected with Puccinia striiformis f. sp. tritici
(Pst) isolate 104 E137 A–. B-C) Pst pathotype 104 E137 A–infection sites on BdTR10h leaf tissue stained with wheat germ agglutinin conjugated to

fluorescein isothiocyanate (WGA-FITC), a lectin-fluorophore that specifically binds chitin. Green fungal infection hyphae can be seen ramifying

between mesophyll cells, some of which contain brown pigmentation. D-E) The same Pst infection site shown in C). Some autofluorescent

mesophyll cells are observed under UV light (D) while brown pigmentation is seen under bright light (E). F) Macroscopic infection symptoms of

Pst pathotype 104 E137 A–on B. distachyon accession Tek-4 showing obvious striped lesions. G) Staining of Pst pathotype 104 E137 A–infection

hyphae in a Tek-4 leaf. Large infection sites are observed. H) Macroscopic infection phenotype of Pst pathotype 104 E137 A–on B. distachyon
accession Bd21. I) Growth of infection hyphae of Pst pathotype 104 E137 A–throughout a Bd21 leaf. Tissue was stained with WGA-FITC and

observed under blue light. J) Extensive growth of Pst pathotype 104 E137 A–in leaf tissue of a yrr2 progeny plant derived from plant F4-56. K)

Limited Pst pathotype104 E137 A–development on leaf tissue of a Yrr2 progeny plant derived from plant F4-56. The leaf sample was stained with

WGA-FITC and photographed under UV light. No autofluorescent cell death was observed. L-M) A Pst pathotype 104 E137 A–haustorium

(arrowed) growing in leaf tissue from a Yrr2 F5 plant derived from F4 plant 56 (L). The haustorium infected plant mesophyll cell has not

undergone autofluorescent cell death when viewed under UV light (M). All images were taken approximately 21 days post infection (dpi).

https://doi.org/10.1371/journal.pgen.1007636.g001
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[41] (Fig 1B–1E). In contrast, larger infection sites that colonised hundreds of mesophyll cells

and formed striped lesions growing parallel to leaf veins occurred on Tek-4 plants (Fig 1G).

Infection of a BdTR10h x Tek-4 mapping family with Pst pathotype 104 E137 A–demonstrated

that amongst 213 F2 plants, 159 allowed very little pathogen development while 54 plants

showed more extensive pathogen growth [41] (S1 Fig). This single dominant locus (X2 3:1,

p = 0.90) that restricted Pst development was designated Yrr1 (Yellow rust resistance gene 1).

Genomic DNA deep sequencing was coupled with bulk segregant analysis [42] to rapidly

localise the Yrr1 locus. DNA samples from 153 BdTR10h x Tek-4 F2 plants that showed

restricted pathogen growth were pooled (Yrr1/Yrr1 and Yrr1/yrr1) while a second DNA pool

(yrr1/yrr1) was produced from 49 F2 plants that were more extensively colonised by Pst. Each

DNA pool was sequenced (40x coverage, 100 bp paired end reads) and compared with the

Bd21 reference genome [43]. Relative to the Bd21 genome 4,845,783 SNPs were identified in

the Yrr1 DNA pool while 5,014,386 SNPs were identified in the yrr1 DNA bulk. SNPs unique

to the Yrr1 DNA pool (ie. absent in the yrr1 pool) were identified and then aligned relative to

the Bd21 reference genome sequence. The number of SNPs present in 100 kb intervals across

the length of each Brachypodium chromosome was determined and graphed for these unique

Yrr1 SNPS (Fig 2). A background of approximately 500 SNPs per 100 kb window was observed

along each chromosome that was presumably due to sequencing errors and sequence misalign-

ment (Fig 2). However, a substantial increase in the number of unique SNPs present in the

Yrr1 DNA pool was observed in the 27–30 Mbp region of chromosome 4 with a single 100 kb

region containing in excess of 2,500 SNPs that were absent in the yrr1 pool (Fig 2). These data

locate Yrr1 within the 27–30 Mbp interval of chromosome 4.

To confirm the chromosome 4 map location of Yrr1 four polymorphic PCR sequencing

markers (SNP29017600, SNP29419400, SNP29800350 and SNP30968800 (S1 Table) that

spanned the region of interest were used to genotype 212 F2 plants that had been pheno-

typed for Pst infection (note SNP names indicate approximate nucleotide positions on the

B. distachyon Bd21 chromosome 4 reference sequence version 1.2 (http://www.plantgdb.

org/BdGDB)). Twenty six plants were identified with recombination events between

markers SNP29017600 and SNP30968800. These plants were further genotyped with addi-

tional markers throughout the region (S1 Table) and two Yrr1 plants (F2 lines 113 and

172) were identified as recombinant in a 400 kb interval between markers SNP29419400

and SNP29800350.

These two critical recombinants and their F3 progeny were genotyped with 14 SNP markers

throughout this 400 kb interval (S1 Table: SNP29419400—SNP29530590). Pst infection indi-

cated that the Yrr1 phenotype segregated in each F3 family (S2 Fig). Genotyping and pathology

analysis of F3 individuals from these two families confirmed that Yrr1 is located between mark-

ers SNP29419400 and SNP29517580 (Fig 3). Fifteen genes are annotated in this 100 kb region

of the Bd21 reference genome (JGI B. distachyon genome v 3, Bradi4g24244 –Bradi4g24350)

none-of-which encode proteins such as nucleotide binding site, leucine rich repeat proteins

(NLR) proteins which are often associated with disease resistance loci (S2 Table).

Two SNP markers from the Yrr1 interval, SNP29419400 and SNP29530590, were used to

PCR screen BAC libraries of B. distachyon accessions BdTR10h, BdTR13k and Tek-4. BAC

clones were isolated for each genotype and sequenced (Fig 3). Only a single BAC clone was iso-

lated from accession BdTR10h which did not cover the 98 kb Yrr1 interval in its entirety, miss-

ing approximately 19 kb of sequence adjacent to SNP29419400. Two Tek-4 BAC clones from

the yrr1 locus were sequenced that covered the interval apart from missing 6kb of sequence in

juxtaposition to SNP29419400 (Fig 3). The 80 kb of Yrr1 locus sequence available from

BdTR10h showed near sequence identity (99%) with the equivalent region from BdTR13k. In

contrast more sequence variation occurred between the yrr1 locus of Bd21 and Tek-4 and both
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of these sequences and the conserved Yrr1 locus present in BdTR10h and BdTR13k. This vari-

ation was further confirmed by the haplotype analysis described below with genetic distances

shown in Fig 4. From these data it is appears that the Yrr1 locus is present in both BdTR10h

and BdTR13k as part of a highly conserved genomic segment. The presence of Yrr1 in

BdTR13k was further confirmed by the genetic analysis described below.

Fig 2. SNP analysis of the BdTR10h x Tek-4 Yrr1 DNA bulk. SNPs were identified relative to the Bd21 reference

genome. Those SNPs that were unique to the Yrr1 DNA pool (ie. absent in the yrr1 DNA bulk sequence) were mapped

to Bd21 reference chromosome sequences. Each data point is the number of unique SNPs identified relative to a 100 kb

window of the reference chromosome sequence. A large peak of SNPs unique to the resistant DNA bulk was detected

at 29Mb on chromosome 4.

https://doi.org/10.1371/journal.pgen.1007636.g002
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Haplotype analysis identifies 5 gene candidates at the Yrr1 locus

To further understand the haplotype diversity at the Yrr1 locus the nucleotide variation in a

diverse panel of 47 resequenced B. distachyon accessions was examined. Alignment of reads to

the Brachypodium Bd21 reference genome spanning the region encompassing Bradi4g24244

to Bradi4g24350 identified 104 polymorphic nucleotide sites across 14.7 kb of coding sequence

derived from 11 genes at the Yrr1 locus (S3 Table). Phylogenetic analysis using maximum like-

lihood (Fig 4) and neighbor joining (S3 Fig) identified trees with similar topologies, which

established two distinct haplotypes (Yrr1.h1 and Yrr1.h2). The immune accessions BdTR10h

and BdTR13k contain Yrr1.h1 whereas Bd21 and Tek-4, which are more extensively colonized

by Pst, contain Yrr1.h2.

While 15 genes are annotated at the Yrr1 locus, four genes (Bradi4g24293, Bradi4g24330,

Bradi4g24336, Bradi4g24350) were excluded from the haplotype analysis due to the presence

of indels in the coding sequence that resulted in a frame shift or SNPs that led to the generation

of an early stop codon in some accessions (S4 Table). Bradi4g24330 and Bradi4g24350 are

pseudogenes in accession BdTR10h (Yrr1) while Bradi4g24293 is a pseudogene in BdTR13k

(Yrr1) (S4 Table). These three genes are therefore not Yrr1 candidates and were not considered

Fig 3. The Yrr1 locus. Location of BAC clones isolated from the Yrr1 locus. The upper image (line with black and white boxes) depicts genes

annotated in the Bd21 reference genome sequence. White boxes indicate genes present in the Yrr1 interval while black boxes indicate genes

flanking Yrr1. Grey boxes indicate genes not included in the Yrr1 haplotype analysis while genes marked with an asterisk were identified as

Yrr1 candidates. Gene annotation is as per the JGI Brachypodium reference genome sequence version 3. Lines beneath indicate the positions

of sequenced BAC clones isolated from BdTR10h, Tek-4 and BdTR13k genomic DNAs. Numbers correspond to nucleotide positions of the

Bd21 chromosome 4 reference sequence. The position of critical SNP markers defining the Yrr1 interval are labelled and indicated by

arrows.

https://doi.org/10.1371/journal.pgen.1007636.g003
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further. Bradi4g24336, while a pseudogene in some accessions, encodes an intact ORF in the

immune parents and was therefore analysed independently as described below.

Previously we had tested many of the resequenced accessions with either an Australian (104

E137 A–) or UK (08/501) Pst isolate, both of which are recognized by Yrr1 [41] (Fig 4). SNPs

from 10 of the 11 genes used in the haplotype analysis were compared between immune plants

known to contain Yrr1 ie. BdTR10h, BdTR13k and ABR6 (see accompanying paper by Bett-

genhaeuser et al. for ABR6 genotyping) and those that show more extensive Pst colonization

and therefore do not contain Yrr1 ie. Bd21, Tek-4, Tek-2 and Luc1 (Fig 4). Bradi4g24297 was

excluded from further analysis as it encodes a reverse transcriptase protein common to plant

retrotransposable elements and so is an unlikely Yrr1 candidate.

Only three genes (Bradi4g24270, Bradi4g24320, Bradi4g24333) contain SNPs that are

uniquely polymorphic between the two resistance classes (S5 Table, highlighted in blue). These

unique SNPs result in changes in the predicted proteins of Bradi4g24270 and Bradi4g24320

making these genes Yrr1 candidates (Table 1). For Bradi4g24333 this differential SNP is a syn-

onymous change. However, for both this gene and Bradi4g24315 (S4 Fig) no identical protein

is encoded by an immune and more susceptible accession therefore making both these genes

Yrr1 candidates (Table 1). For all the remaining genes at the locus at least one immune and

Fig 4. Two distinct haplotypes exist at the Yrr1 locus. The phylogenetic tree was constructed using maximum

likelihood with model GTRCAT and rapid hill-climbing mode. Scale bar units are substitutions per site, with the bar

representing 0.1 (based on polymorphic sites only). Bootstrap support was generated using 2,000 bootstrap runs, with

only support above 80% shown in the figure. For simplicity a single representative is shown for clades containing

multiple accessions (marked with an asterisk). A more complete phylogeny is shown in S3 Fig. Red labelling indicates

accessions that were immune to Australian Pst isolate 104 E137 A-, while those in green were immune to UK isolate

08/501. These accessions were tested with a single Pst isolate only. Accession labelled blue were immune to both

isolates [41]. Those accessions labeled purple allowed more extensive Pst growth although Luc1 and Tek-2 were tested

with only the UK and Australian isolate, respectively.

https://doi.org/10.1371/journal.pgen.1007636.g004
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one more susceptible accession encode identical proteins thereby excluding these genes as

Yrr1 (S5 Table, highlighted in grey).

Additional plants previously shown to be immune to Pst [41] (Fig 4) are also shown in S5

Table and, where sequence was determined, each maintains all highlighted (blue) SNPs unique

to the Yrr1 genotype, with the exception of the polymorphism in Bradi4g24270 in accession

Adi2. As Pst immunity has not been shown to segregate with the Yrr1 locus in these latter

plants they could contain a nonfunctional Yrr1 locus with immunity provided by an alternative

gene and hence Bradi4g24270 remains a candidate. None-the-less, these additional accessions

show a co-relation between Pst immunity and the SNPs unique to Yrr1.

Independent analysis of Bradi4g24336 showed that Yrr1 lines BdTR13k, BdTR10h and

ABR6 all encode identical coding sequences and consequently identical predicted proteins

(S6 Table). Proteins encoded by Bd21 (yrr1) and Luc1(yrr1) show approximately 97%

amino acid identity to each other and the protein encoded by the Yrr1 genotypes. In both

Tek-2 and Tek-4, Bradi4g24336 has a mutated gene start codon with no alternative start

site in immediate proximity suggesting that it is a pseudogene in these accessions. Seven

SNPs and three amino acids are unique to genes and proteins encoded by the more sus-

ceptible genotypes including the Tek-2 and Tek-4 pseudogenes (S6 Table). The Bra-

di4g24336 gene, which encodes a protein of unknown function containing a DUF4220

domain, is therefore a Yrr1 candidate (Table 1).

To test the Pst race-specificity of Yrr1, BdTR10h (Yrr1/Yrr1) and Tek-4 (yrr1/yrr1)

were challenged with a further three Pst pathotypes that represent the genetic diversity of

this pathogen in Australia. Twenty one days post infection leaves from each accession

were stained with wheat germ agglutinin conjugated to fluorescein isothiocyanate

(WGA-FITC), a lectin-fluorophore that specifically binds fungal chitin [22, 41]. Rust

infection sites were microscopically measured on each accession and median infection

site areas calculated. Each Pst isolate showed greatly reduced fungal growth on BdTR10h

compared with Tek-4 (Mann Whitney U-test, p < 0.05), providing no evidence for race-

specificity being conferred by Yrr1 (Fig 5).

Table 1. Amino acid differences in Yrr1 candidate proteins.

Gene Protein size a.a. posn. BdTR10h

Yrr1

BdTR13k

Yrr1

ABR6

Yrr1

Bd21

yrr1

Tek-2

yrr1

Tek-4

yrr1

Luc1

yrr1

Predicted

product

Bradi4g24270 563 a.a 92 D D D D D D N glyoxal oxidase

143 �T T T N N N N

#Bradi4g24315 197a.a sentrin/SUMO specific protease

Bradi4g24320 556 a.a 62 L L L H H H H CBS domain protein

147 S S S S L S S

552 I I I K K K K

Bradi4g24333 120 a.a 10 S S S S S S F unknown hypothetical protein

20 C C C C C Y C

22 S S S R R R S

29 M M K M M M M

33 P P P L L L P

68 G G G R G G G

74 R R R R R R I

#Bradi4g24336 718 a.a Unknown protein with DUF4220 domain

� polymorphisms unique to Yrr1 and yrr1 classes shown in bold.

# See S4 Fig and S6 Table for Bradi4g24315 and Bradi4g24336 protein comparisons.

https://doi.org/10.1371/journal.pgen.1007636.t001
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The Yrr2 gene

Previously we reported that infection of B. distachyon accession BdTR13k with Pst pathotype

104 E137 A–resulted in very limited pathogen growth, similar to that observed on BdTR10h

plants, although no brown lesions developed on the leaf surface and no macroscopic symp-

toms were evident ie. the plants showed macroscopic immunity [41]. In contrast, more exten-

sive Pst growth occurs on Bd21, similar to that observed on Tek-4, with larger infection sites

corresponding to obvious macroscopic lesions on leaves (Fig 1H and 1I). Amongst 316 F4

plants in a BdTR13k x Bd21 mapping family 228 individuals were macroscopically immune to

Pst infection while 88 individuals showed obvious lesions that were confirmed as Pst infection

sites by microscopy [41]. These data do not fit the segregation ratios expected of a single domi-

nant gene or two unlinked dominant genes in an F4 family.

To identify loci conferring resistance in this population, deep sequencing (40x coverage) of

F3 DNA bulks derived from 34 immune plants and 20 plants that showed macroscopic Pst
symptoms was performed. Relative to the Bd21 genome 915,562 SNPs were identified in the

immune pool and 781,411 SNPs in the second pool. In this DNA pooling experiment all SNPs

identified were theoretically derived from the BdTR13k parent as Bd21 was the reciprocal

Fig 5. The Yrr1 locus provides resistance to multiple Pst pathotypes. BdTR10h and Tek-4 were infected with three

Pst pathotypes, these being from left to right isolate 110 E143 A+, 134 E16 A+ and 108 E141 A-, respectively. In each

experiment the median infection site area was determined by staining infected leaf tissue with WGA-FITC and

microscopically measuring individual infection sites approximately 21 dpi. Numbers above each column indicate the

number of infection sites measured in each case. The minimum criteria to be counted as an infection site were spores

that had germinated and developed at least appressoria and substomatal vesicles. Significantly greater Pst growth

occurred on Tek-4 for all three isolates (Mann Whitney U-test, p< 0.05).

https://doi.org/10.1371/journal.pgen.1007636.g005
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parent in this cross and its genome was used for SNP identification. The immune DNA pool

was potentially derived from both heterozygous and homozygous plant genotypes. Two dis-

tinct peaks of SNPs were identified in the immune DNA bulk that were under-represented in

DNAs from plants showing Pst symptoms (Fig 6). Both SNP peaks were located on the chro-

mosome 4 reference sequence with one peak at 29Mb coinciding with Yrr1, consistent with

the sequence similarity with BdTR10h in this region described above, while a second locus was

identified at 8Mb on the other arm of chromosome 4. This locus was subsequently named

Yrr2.

To further refine the Yrr2 locus, F3 DNA samples from 52 plants (32 immune, 20 with

more Pst growth) used in the DNA bulking process were genotyped with a series of SNP mark-

ers spanning the 8 Mb region (S7 Table; SNP6716730 through to SNP11475500, excluding

CAPs and KASP marker) and also for two SNP markers that defined the Yrr1 interval (S1

Table, SNP29419400 and SNP29530590; Fig 3). All 20 plants that showed macroscopic symp-

toms (ie. that were more extensively colonised) were homozygous for Bd21 SNPs using the

two Yrr1 flanking markers as well as for SNP markers from SNP7761780 through to

SNP9888760 (S7 Table). Markers immediately outside this region (S7 Table, SNP7733430 and

SNP9983700) contained SNPs from the immune BdTR13k parent in some of these more

extensively Pst colonised plants. These data suggested that yrr2 is located between SNP7733430

and SNP9983700. Genotyping of the 32 immune F3 plants showed that 30 contained at least

one Yrr1 allele that conferred immunity. The remaining two immune plants (yrr1/yrr1) con-

tained BdTR13k SNPs across the SNP7733430 to SNP9983700 interval consistent with a sec-

ond locus that also suppressed Pst colonisation, Yrr2, being present in these latter two plants.

F5 families from the BdTR13k x Bd21 cross were screened to identify segregating families

monogenic for either Yrr1 or Yrr2. Two F5 families were identified, one from plant F4-93

(Yrr1/yrr1; yrr2/yrr2) and the other from plant F4-56 (yrr1/yrr1; Yrr2/yrr2). Repeated testing of

F5 progeny showed that Pst immunity segregated as a single dominant gene in each family

(examples shown in S5 Fig). Having developed a monogenic family segregating for Yrr2
microscopic analyses of Pst infection phenotypes were undertaken on F5 progeny. In Yrr2

plants Pst infection sites were again restricted to just a few limited infection hyphae with occa-

sional haustoria (Fig 1K–1M). Autofluorescent cell death was not common (Fig 1K and 1M).

In contrast, yrr2 sib plants had more extensive Pst colonisation similar to that observed on the

Bd21 parent (Fig 1J). The Yrr2 histological phenotype therefore appeared very similar to that

conferred by Yrr1. Plants that contained both Yrr1 and Yrr2 did not show enhanced suppres-

sion of rust infection compared with plants containing either gene singularly indicating that

these two resistance genes do not function additively.

However, in contrast to Yrr1, when F5 progeny of plant F4-56 (yrr1/yrr1;Yrr2/yrr2) were

challenged with a second Pst pathotype, 134 E16 A+, all seedlings developed macroscopic

symptoms regardless of the Yrr2 genotype. Microscopic analysis of lesions on these plants con-

firmed extensive fungal colonisation on both Yrr2 and yrr2 genotypes similar to that observed

on the Bd21 parent. These data indicate that the Yrr2 gene shows race-specificity to Pst and

does not restrict growth of Pst pathotype 134 E16 A+.

Genotyping of a critical F3 recombinant, plant 41 (yrr1/yrr1;Yrr2/Yrr2), whose progeny all

showed Pst immunity (20 plants screened with Pst and analysed microscopically in three inde-

pendent experiments) with SNP, KASP and CAPs markers (S7 Table), coupled with plant F3

237 which showed macroscopic lesions, defined the Yrr2 locus to a 300 kb interval between

nucleotides 9,583,752 and 9,888,760 bp of the chromosome 4 reference sequence (Fig 7A).

Within this genomic interval in the Bd21 genome 37 genes are annotated (S8 Table), 16 of

which encode NLR genes (Fig 7A). Five of these 16 NLR genes encode short truncated proteins
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and are likely pseudogenes (Fig 7A). The NLR proteins encoded by this gene family vary from

53% to 98% amino acid identity.

A total of five BdTR13k BAC clones were isolated from the Yrr2 interval that collectively

covered the region in its entirety ie. from marker KASP9583752 through to marker

SNP9888760 (Fig 7A). These BAC clones were isolated by PCR screening using SNP9888760

primers (BAC9E and 3B) and CAPS9656179 primers (BAC 11A and 12B) (S7 Table), while a

nonpolymorphic set of primers (materials and methods—primers 9735685) were used to iso-

late BAC 1H (Fig 7A). These five BAC clones were sequenced and compared with the Bd21 ref-

erence genome sequence. Compared with Bd21 the number of NLR genes at the BdTR13k

Yrr2 locus was considerably reduced, consisting of just seven genes (Fig 7A). Three of these

genes (Bradi4g10141, Bradi4g10147, Bradi4g10153) encode truncated NLR proteins like their

Bd21 equivalents while Bradi4g10220 encodes a full length protein identical in sequence to

Fig 6. SNP analysis of BdTR13k x Bd21 bulked DNA sequences. SNPs were mapped relative to the Bd21 reference

genome chromosome sequences with each datapoint showing the number of SNPs identified in a 100 kb interval of

sequence. Datapoints in blue indicate SNPs found between both DNA bulk sequences and the Bd21 reference genome

(ie. essentially showing the distribution of SNPs between the BdTR13k and Bd21 genome). Superimposed on the blue

graph are SNPS that were unique to the DNA bulk derived from immune plants (ie. absent in the DNA bulk derived

from plants showing the greatest Pst growth). Two distinct red peaks in the immune DNA bulk data, at 8 Mb and 29

Mb on chromosome 4, can be seen that obscure underlying blue peaks.

https://doi.org/10.1371/journal.pgen.1007636.g006

Brachypodium resistance to nonadapted wheat rust pathogens

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007636 September 28, 2018 12 / 27

https://doi.org/10.1371/journal.pgen.1007636.g006
https://doi.org/10.1371/journal.pgen.1007636


Brachypodium resistance to nonadapted wheat rust pathogens

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007636 September 28, 2018 13 / 27

https://doi.org/10.1371/journal.pgen.1007636


that present in Bd21 (Table 2). The remaining three genes (Bradi4g10017, Bradi4g10030/

10060, Bradi4g10207) encode probable full length proteins distinct to those found at the Bd21

locus (90–98% amino acid identity–Table 2) making them potential gene candidates for Yrr2.

The sequences of these 3 candidate genes were compared between Tek-2 (yrr2), Tek-4

(yrr2), BdTR10h (yrr2), Luc1 (yrr2) and ABR6 (Yrr2 –see accompanying paper by Bettgen-

haeuser et al.). Proteins encoded by Bradi4g10017 genes were truncated in Tek-2 (314 a.a.),

Tek-4 (740a.a.), Bd21 (740 a.a.), BdTR10h (774 a.a.) compared with the 882 amino acid pro-

teins encoded by BdTR13K (Table 2), ABR6 and Luc1, with these latter proteins having 99%

identity. No accessions encoded proteins identical to the predicted BdTR13k Bradi4g10030/

10060 protein (1015 a.a) with ABR6 (658a.a), BdTR10h (830 a.a.) and Tek-4 (658 a.a.) encod-

ing truncated proteins. While all accessions appeared to encode full length Bradi4g10207 pro-

teins none, including the ABR6 protein, were identical to the BdTR13k protein with the Bd21

protein showing greatest identity (98%) (Table 2). This comparative analysis therefore did not

unambiguously resolve an obvious Yrr2 candidate amongst these three genes. (It should be

noted that small regions of some these genes derived from whole genome sequences did not

have full coverage and hence these small regions were excluded from identity calculations of

all proteins).

Sequence analysis indicated that differences in NLR gene numbers between the Bd21 and

BdTR13k loci were due to two insertion/deletion events of 55 and 60 kb, respectively. The

boundaries of these two events could be identified by flanking sequence homology. Assuming

each event was a deletion in BdTR13k, the first appeared to have arisen by recombination

between NLR genes Bradi4g10030 and Bradi4g10060, two genes with 92% ORF identity, to

produce a potentially functional chimeric NLR gene encoding the 5’ terminus of the former

Fig 7. Structure of the Yrr2 locus. A) Diagram depicting the Yrr2 locus. NLR genes present at the Bd21 yrr2 locus are

shown as white boxes labelled with gene accession numbers (numerous other genes at this locus are not shown).

Beneath are the equivalent regions of sequenced BAC clones from BdTR13k with equivalent nucleotide co-ordinates of

the Bd21 chromosome 4 sequence shown. NLR genes absent in these BACs are shown with dashed lines. Deleted

regions are marked on the upper Bd21 sequence in parentheses with deletion sizes indicated. The structure of the

BdTR13k Yrr2 locus is shown beneath. Coloured ovals represent nonNLR genes described in Fig 8. Grey boxes

represent truncated NLR genes. B) DNA blot analysis of B. distachyon BdTR13k x BdTR10h F4 DNAs. DNAs were

restricted with HindIII and hybridised with a probe that encoded a 387 bp sequence derived from NLR genes at the

Yrr2 locus. DNAs from parental lines BdTR13k (Yrr2 haplotype) and Bd21 (yrr2 haplotype) are shown in lanes 1 and

12, respectively. The remaining lanes contain DNAs from F4 progeny of these lines which segregate for the Yrr2 locus.

Band intensities reflect DNA loadings. Arrowheads indicate molecular weight mobilities of 8, 5 and 2 kb.

https://doi.org/10.1371/journal.pgen.1007636.g007

Table 2. Proteins encoded by NLR genes present at the Yrr2 locus of B. distachyon accession BdTR13k compared with nearest equivalent Bd21 proteins.

Protein No. of a.a. in

BdTR13k

No. of a.a. in Bd21 % identity

Bradi4g10017 882 740 98%

�Bradi4g10030/10060 1015 (Bradi4g10030) 1012 92%

�Bradi4g10030/10060 1015 (Bradi4g10060) 1022 90%

Bradi4g10141 216 216 100%

Bradi4g10147 277 452 100%

Bradi10153 345 487 99%

Bradi4g10207 1015 1014 98%

Bradi4g10220 973 973 100%

�Bradi4g10030/10060 appears to be a chimeric gene formed by recombination between Bradi4g10030 and Bradi4g10060 genes hence its product is compared with both

proteins.

https://doi.org/10.1371/journal.pgen.1007636.t002
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gene and 3’ of the latter. This deletion was found in three different BAC clones demonstrating

that it was not a cloning artefact. The second deletion occurred between conserved regions

immediately 5’ of NLR genes Bradi4g10171 and Bradi4g10207. The differential haplotype

complexity of the Yrr2 locus in Bd21 and BdTR13k was confirmed by DNA blot analysis of 54

F4 individuals from the BdTR13k x Bd21 family (examples shown in Fig 7B). It cannot be

ruled out, however, that both events may be diverged duplications in the Bd21 genome arising

from unequal crossing over. Regardless of the mechanism, significant variation has evolved

between the BdTR13k and Bd21 Yrr2 haplotypes.

Identification of rice and wheat homologues of genes present at Yrr1 and

Yrr2
Homologues of the Yrr2 locus are present in both the rice and wheat genomes. In rice this

NLR gene family consists of 10 tandemly duplicated genes located on chromosome 11 that

encode proteins with approximately 60% identity to protein homologues encoded by the B.

distachyon Yrr2 (BdYrr2) locus (Fig 8A). To further investigate the syntenic relationship of this

locus in rice and B. distachyon additional nonNLR genes in the region were also examined. Six

nonNLR genes were identified at BdYrr2 that encode proteins with substantial homology (65–

85% identity) to proteins encoded by the equivalent rice locus, although the relative order of

these genes has diverged between these two species (Fig 8A). For both species numerous other

genes were also present at the locus for which no reciprocal homologue was present at the

locus of the other species. In addition, a NLR gene (Os11g45330) unrelated to the rice Yrr2
NLR family was located at the locus while the equivalent B. distachyon gene (Bradi4g09247)

was located approximately 1Mb distal to the locus. Previous comparisons between the B. dis-
tachyon and rice genomes have shown that chromosome 4 of B. distachyon has substantial sim-

ilarity in gene order and content to rice chromosomes 11, 12 and 4 [43].

Thirty genes with high confidence annotation are present in the Chinese Spring wheat

genome that encode proteins with approximately 60% identity to the BdTR13k NLR homo-

logue of Bradi4g10207 (Fig 8A). These are located on chromosomes 2B (1 gene), 3A (8), 3B

(14), 3D (3), 4B (1), 5A (1), 5B (1) and 7A (1) (Fig 8A). Nineteen of these 30 genes, present on

chromosomes 2B (1), 3A (6), 3B (7), 3D (2), 5A (1), 5B (1) and 7A (1), encode predicted full

length proteins. The remaining genes encode either truncated proteins or pseudogenes,

although these former proteins could potentially play a role in disease resistance [44]. Addi-

tional low confidence and unannotated homologues are also present on these chromosomes

(Fig 8A).

The larger NLR gene families present on wheat chromosomes 3AS, 3BS and 3DS are located

at the 41, 52 and 30 Mb regions of these chromosomes, respectively, suggesting that they are

homoeologous loci. Each locus encompasses 1 (3AS), 1.6 (3BS) and 0.25 Mbs (3DS) of

sequence, respectively. Interestingly the non-NLR genes common to the B. distachyon and rice

loci are not located at these wheat 3S loci. Wheat genomic analyses have identified little gene

collinearity existing between wheat chromosome 3 and either B. distachyon chromosome 4 or

rice chromosome 11 [45, 46, 47]. It is noteworthy that this wheat chromosome shows less con-

servation of gene collinearity when compared with other grass chromosomes [47]. Similar

potential homoelogous wheat NLR loci are present on wheat chromosome 2L, albeit encoding

low confidence and unannotated genes, while related loci are present on two out of three

homoleogous chromosomes of 5L and 7L (Fig 8A). Related sequences are also located on chro-

mosome 4B and 4D at 673 and 467 Mb, respectively (Fig 8A).

A number of race specific and adult plant wheat stripe rust resistance loci have been

mapped to wheat chromosomes 3BS (eg. Yr4/YrRub [48] Yr30 [49] Yr57 [50], Yrns-B1 [55]),
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3DS (Yr49 [49], Yr66 [49]) and 3AS (Yr76)[52]. Comparative genomics was used to locate

these wheat Yrr2 NLR homologues (TaYrr2) on chromosome 3S relative to these known wheat

Pst resistance genes (Table 3). Although there are numerous stripe rust resistance genes on

wheat chromosomes 3S none could be definitively located at the TaYrr2 loci (Table 3).

Of further interest is a region on wheat chromosome 4 that has some similar gene co-linear-

ity to the non-NLR genes present at the Brachypodium Yrr2 locus (S6 Fig). At each wheat

chromosome 4 locus non-NLR genes with homology to those found at the Brachypodium

Yrr1 locus are present in the same gene order apart from one large inversion event. In contrast,

those regions that encode NLR genes at the Brachypodium Yrr2 locus have been replaced at

these wheat loci with additional unrelated sequence ranging from 70 kb to 3.6 Mb in length.

The NLR sequences in the wheat genome that are homologous to those present at the Brachy-

podium Yrr2 locus have therefore undergone significant expansion and relocation since the

divergence of wheat and Brachypodium.

A similar sequence to the Bd21 yrr1 locus is also located on rice chromosome 11 (Fig 8B).

Homologues of eight genes from the Bd21 yrr1 locus are present in a similar collinear gene

order in the rice genome, although seven B. distachyon gene sequences are absent in this rice

interval (Fig 8B). Numerous other genes are also present at both the rice and Brachypodium

Fig 8. Synteny of B. distachyon Yrr loci in wheat and rice. A) Structure/location of loci present in B. distachyon, rice

and wheat that encode NLR homologues present at BdYrr2. The upper diagram depicts the B. distachyon yrr2 locus

present in accession Bd21, with NLR genes shown as white boxes. Six additional nonNLR genes are shown as coloured

ovals that are also present at the homologous rice locus located on chromosome 11 (middle diagram), albeit in a

different linear order. Rice NLR genes at this locus are shown as white boxes. In the lower diagram the location of

sequences in the wheat genome with homology to the Yrr2 NLR gene Bradi4g10207 are depicted with arrows on the

relevant chromosome. Red, black and white arrows indicate high confidence, low confidence and unannotated wheat

genes, respectively. Numbered arrows indicate the number of high confidence NLR genes at the wheat locus while

unnumbered arrows depict a single gene only. Red dots show loci on wheat chromosome 4 that are regions with some

gene co-linearity to non-NLR genes present at the Brachypodium Yrr2 locus, while white dots on the same wheat

chromosomes show the location of potential Yrr1 homologous loci. Note each diagram depicts relevant genes only and

not all genes present at these loci are shown. B) Structure/location of loci present in rice and wheat that show some

sequence similarity to the Bd21 yrr1 locus. Conservation of gene order is shown between the yrr1 locus of B. distachyon
accession Bd21, a region of rice chromosome 11 and a region of wheat chromosome 4DS. Genes are depicted as boxes

with homologous genes aligned vertically. Only rice and wheat genes with homologues in the B. distachyon genome are

illustrated. Arrows show a loss of one of two related genes in the rice genome compared with Bdyrr1 and a change in

gene order. The black boxes indicate Brachpodium genes that lie immediately outside of the yrr1 locus. All wheat genes

begin with the prefix (TraesCS). Genes TraesCS4D01G106100LC and TraesCS4D01G108000 are a duplication of the

Bradi4g24310 homologue. Note the wheat locus is inverted relative to the Brachypodium and rice locus with

nucleotide co-ordinates indicated in Mb.

https://doi.org/10.1371/journal.pgen.1007636.g008

Table 3. Proximity of wheat stripe rust resistance genes to NLR loci on wheat chromosome 3 that are homologous to the Brachypodium Yrr2 locus.

Yr gene Chr Yr gene location relative to molecular marker Relationship to TaYrr2 Ref

Yr4/YrRub 3BS 5cM distal to Barc75 Barc75 is 10 Mb distal to TaYrr2 -3BS [48]

Yr57 3BS Between BS00062676 and gwm389 Markers are distal to TaYrr2-3BS [50]

Yr30 3BS Distal to Xgwm493 Xgwm493 is 40 Mb distal to TaYrr2- 3BS [49], [51], [53],

[54]

QYr.ucw-3BS
QTL

3BS Distal to Xgwm493 Xgwm493 is 40 Mb distal to TaYrr2- 3BS [51], [53], [54]

Yrns-B1 3BS 2.5cM proximal to Xgwm493 Yrns-B1 is an APR gene making TaYrr2-3BS an unlikely candidate. [55]

Yr49 3DS 1cM from gwm161 gwm161 is located at 7 Mb while TaYrr2-3DS is located at 60 Mb [49] [56]

Yr66 3DS distal to Yr49 and 2.9 cM from marker

IWB18087
TaYrr2-3DS is proximal to Yr49 and located at 60 Mb region [49] [57]

Yr76 3AS distal to wmc532 with this marker at 22Mb TaYrr2-3AS is proximal to wmc532 and Yr76 and is located at

41Mb

[52]

https://doi.org/10.1371/journal.pgen.1007636.t003
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loci for which no homologue is present at the locus of the reciprocal species. Potential regions

of synteny with Bdyrr1are also present on wheat chromosome 4 as illustrated for the 86 Mb

region of chromosome 4DS (Fig 8B), while similar genes are also present on chromosomes

4AL (500Mb) and 4BS (123 Mb) (S7 Fig; Fig 8A). A number of wheat stripe rust resistance

genes are located on wheat chromosomes 4DS and 4AL, however, none are closely associated

with TaYrr1-DS or TaYrr1-4AL (Table 4). No stripe rust resistance genes have been reported

in proximity of the TaYrr1-4BS locus.

Discussion

This study demonstrates that some components of resistance to Pst in B. distachyon are under

simple genetic control with two dominant loci, Yrr1 and Yrr2, identified that confer highly

restricted pathogen growth, albeit on an underlying background of incompatibility. The B. dis-
tachyon accessions that allowed the most Pst colonisation in this study, however, are still obvi-

ously resistant indicating that genes additional to Yrr1 and Yrr2 underlie Pst resistance. The

observation that the Yrr2 locus is both race specific and encodes a polymorphic NLR gene fam-

ily suggests that a resistance mechanism typical of host resistance is likely to be involved in B.

distachyon resistance to Pst.
B. distachyon is more closely related to wheat than is rice, which may account for the more

apparent phenotypic variation in resistance to Pst, a nonadapted pathogen of this model grass

species [10, 11]. Paradoxically, however, the rice genome shows greater similarity to BdYrr2
than does the wheat genome. In wheat, NLR homologues of the BdYrr2 locus have expanded

to other chromosomal locations while a residual progenitor of the Yrr2 locus that encodes

nonNLR genes exists on chromosome 4. In contrast, rice maintains an NLR cluster that is

combined with nonNLR genes also present at the BdYrr2 locus. Unlike the extensive rear-

rangement of Yrr2 NLR homologues in the wheat genome both rice and wheat maintain simi-

lar levels of gene collinearity with the BdYrr1 locus.

While phenotypic variation within a species to nonadpated pathogen infection is often

under polygenic control [24, 25, 26, 27, 28, 29] exceptions, in addition to this B. distachyon
study, have been reported. In wheat, resistance to P. coronata f. sp. hordei [61] and P. striifor-
mis f. sp. hordei [62] was conferred by a single dominant gene in each case. Similarly mono-

genic resistance to Pst has been reported in barley [63, 64, 65]. It is noteworthy that these latter

examples involve closely related host and nonhost species and pathogen formae speciales.
Resistance to nonadapted pathogens is generally considered to be durable as pathogen colo-

nisation of new plant species is rare on short term evolutionary time frames [5, 6]. The results

reported here, however, indicate that not all components of this resistance are likely to be

durable. The B. distachyon Yrr2 gene shows Pst race specificity, only being effective against

some Pst isolates. The resistance provided by this locus, if functionally transferred to a host

species, is therefore likely to only be transiently effective against avirulent Pst races given viru-

lent pathogen races already exist.

Table 4. Wheat stripe rust resistance genes on wheat chromosome 4 and their proximity to a region with homology to the Brachypodium Yrr1 locus.

Yr
gene

Chr Close Marker Relationship to TaYrr1 Reference

Yr28 4DS between marker Xbcd265-

Xwgm634
Xwgm634 is located at 32.3Mb while TaYrr1 -4DS is located at 86 MB [58]

Yr51 4AL distal to marker sun154 sun154 (derived from wheat EST Genbank BE444404) is located at 715Mb while TaYrr1-4AL is at 500

Mb

[59]

Yr60 4AL distal to marker sun154 sun154 (derived from wheat EST Genbank BE444404) is located at 715Mb while TaYrr1-4AL is at 500

Mb

[60]

https://doi.org/10.1371/journal.pgen.1007636.t004
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Two alternative hypotheses may explain the race specificity of the Yrr2 gene. The geograph-

ical co-localisation of B. distachyon with wild wheat and its relatives suggest these species may

have a close co-speciation history [66, 67]. If so B. distachyon may have had a long exposure to

P. striiformis from inoculum provided by adjacent Pst susceptible wheat plants. The ability of

some Pst isolates to grow on yrr2 B. distachyon accessions and very occasionally sporulate may

represent the early initiation of a host species jump of this pathogen.

An alternative hypothesis is that it is unlikely that Pst has directly evolved to overcome the

B. distachyon Yrr2 gene as sporulation rarely occurs on this species. More likely is that Yrr2
recognises an effector or effector modification that is also recognised by a resistance gene pres-

ent in a host of Pst, thereby providing a clear selective advantage for loss or mutation of this

Pst effector in the host pathosystem. However, we could not identify a described wheat stripe

rust resistance that co-locates with the major NLR gene clusters on wheat chromosome 4 with

homology to BdYrr2 NLR sequences. A question of interest is whether the B. distachyon Yrr2
gene exists solely to provide resistance against Pst and potentially other nonadapted pathogens,

or if it also recognises adapted B. distachyon pathogens. Given that singularly this gene appears

to provide little selective advantage against Pst infection it seems likely that it may also provide

resistance against adapted B. distachyon pathogen species.

This possibility raises some interesting implications. Some components of resistance to

nonadapted pathogens that overlap with host resistance (eg. potential recognition of a com-

mon effector molecule or activity) may be profoundly affected by host/pathogen dynamics. In

the nonhost, a single resistance gene superimposed on an underlying polygenic background of

additional resistance is unlikely to result in nonadapted pathogen evolution as the pathogen

rarely sporulates. In contrast, it is well established that a host resistance gene that recognises a

pathogen effector will exert significant selective pressure for pathogen effector loss or alter-

ation as the end result is extensive pathogen reproduction. If the same effector is also recog-

nised by a gene in a nonhost plant, where it contributes to resistance to the nonadapted

pathogen, this latter gene will simultaneously be overcome as a consequence of coevolution

between the host and pathogen. Effector based resistance that is common with host resistance

is therefore unlikely to remain durable in the nonhost species.

However, it is possible that some NLRs present in nonhost species have evolved to recog-

nise effectors or effector activities in nonadated pathogen species that are essential and not

readily modified by mutation. The enforced conservation of these molecules would result in

ubiquitous recognition of a pathogen species (ie. broad spectrum). In an accompanying paper

Bettgenhaeuser and colleagues (2018) describe the identification of a third B. distachyon Pst
resistance locus, Yrr3, that is also possibly conferred by an NLR gene. However, this gene rec-

ognises all isolates of Pst tested in addition to P. striiformis f sp. hordei the causative pathogen

of barley stripe rust disease.

Genetic haplotype analysis has reduced the Yrr1 locus from 15 candidates to five genes that

are polymorphic between immune and more susceptible accessions (Table 1). For all 15 genes

at the locus, RNAseq analysis of uninfected tissue in the accompanying paper by Bettgenhaeu-

ser et al shows no consistent transcriptional differences between ABR6 (Yrr1) and yrr1 lines

that could account for resistance. A transcriptional difference existing between nonpoly-

morphic genes therefore appears unlikely to confer immunity, although differential pathogen

induction of gene expression cannot be excluded.

In contrast to Yrr2, no NLR genes are present at the Yrr1 locus suggesting a different resis-

tance mechanism. However, it is noteworthy that the resistance phenotypes of Yrr1 and Yrr2
are very similar both macroscopically and microscopically. In both instances cell death at

infection sites is limited, more so in BdTR13k than BdTR10h. Cell death, while commonly

associated with NLR protein signalling, is not always apparent [68]. The separation of
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browning at lesions and restricted Pst growth in the BdTR10h x Tek-4 family [41] demon-

strates that additional genes that are not essential for resistance also contribute to infection

phenotypes of nonadapted pathogens.

Our previous studies indicate that neither Yrr1 nor Yrr2 appear to function against other

nonadapted cereal rust pathogens; specifically P. graminis f. sp. tritici, the causal agent of wheat

stem rust disease, P. graminis f. sp. avenae (oat stem rust pathogen) and P. graminis f. sp. pha-
laridi (phalaris rust pathogen) [41]. When compared with other B. distachyon accessions

BdTR13k which contains both Yrr1 and Yrr2 did not further restrict the growth of these cereal

pathogens and was colonised with larger infection sites and small sporulating pustules. How-

ever, it can’t be ruled out that these Yrr genes may provide resistance to other P. graminis iso-

lates not tested in these studies.

Germplasm screening of natural accessions for relatively subtle differential infection out-

comes of nonadapted pathogens often identifies an underlying complex genetic inheritance

[24, 25, 26, 27, 28, 29]. Fine mapping and ultimately cloning of the genes underlying polygenic

resistance mechanisms is a difficult proposition due to the often minor effects conferred by

each locus coupled with subtle phenotype variation. Here, B. distachyon is an exception to this

generalisation with two independent, dominant loci each conferring readily discernible phe-

notypes. The Yrr1 locus has been refined to five candidate genes that encode a glyoxal oxidase,

a sentrin/SUMO protease, a CBS-domain protein and two proteins of unknown function,

respectively, while the race-specific Yrr2 locus has been reduced to three candidate NLR genes.

Future studies will delineate which specific gene(s) at each locus is responsible for macroscopic

immunity by transforming B. distachyon with these candidate genes.

Of great interest will be to test the ability of these genes to provide Pst resistance in wheat, a

host of this pathogen. Previous studies have demonstrated that in some instances genes that

provide resistance to nonadapted pathogens in one species can be transferred to host species

to provide resistance to virulent races of the same pathogen. Examples include the transfer of

the EF-TU (ERF) PAMP receptor (ERF) from Arabidopsis to Solanaceous species [69] the

maize Rxo1 NLR gene transferred to rice [70] and Arabidopsis resistance genes to Asian soy-

bean rust (Phakopsora pachyrhizi) transferred into soybean [71]. These observations demon-

strate that genes providing resistance against nonadapted pathogens can be a valuable source

of disease resistance for crop hosts of these diseases if they can be isolated amongst an often

complex background of genetic and mechanistic redundancy.

Materials and methods

Plant growth and rust propagation

B. distachyon plants were grown in a soil/compost (1:1) mixture at 18 oC under standard

greenhouse growth conditions or alternatively in growth cabinets at 18 oC with a 16 hour pho-

toperiod. Pst isolates were propagated on wheat cultivar Morocco and urediniospores har-

vested by shaking infected plants over aluminium foil. For Pst infection B. distachyon plants

were inoculated with freshly harvested urediniospores as an aerosol spray, lightly misted with

water and then incubated at 10 oC overnight before being returned to 18 oC constant growth

conditions. Rust symptoms were scored after approximately 3 weeks. Four Pst pathotypes

were used for infection assays; 110 E143 A+ [Plant Breeding Institute accession number (AN)

861725], 134 E16 A+ [AN 021510], 104 E137 A–[AN 821559] and 108 E141 A- [AN 832002].

Molecular biological analyses

DNA extractions, PCR analysis and DNA blot analyses were undertaken as previously

described [72]. A 387 bp fragment encoding a region of the NLR genes present at the Yrr2
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locus was amplified using primer 5’-TATTGAGAAGATCTTTGAGCA-3’ and primer 5’-TCC

CCTTCCATAGATGCTGCC-3’ and used as a probe for DNA hybridisation.

DNA sequencing and bioinformatics

DNA sequencing of genomic DNA pools was undertaken by the Australian Genome Research

Facility Ltd using Illumina sequencing with 100 bp paired end reads. DNA sequences were

aligned to the Bd21 reference genome and SNPs and indels called using PARTEK and

CASAVA programs. The Bd21 reference genome sequence is located at PlantGDB (http://

www.plantgdb.org) and the Joint Genome Institute Genome Portal (http://genome.jgi.doe.

gov/). Rice genome sequence comparisons were made using the rice genome database

OsGDB. Wheat genomic sequences were obtained from the International Wheat Genetics

Sequencing Consortium (IWGSC) data repository at URGI-INRA (https://wheat-urgi.

versailles.inra.fr/Seq-Repository/Assemblies) and NCBI wheat chromosome 3B nucleotide

sequence (Genbank HG670306).

Whole genome shotgun sequencing of BdTR10h and BdTR13k

Genomic DNA of BdTR10h and BdTR13k was extracted using a standard CTAB-based extrac-

tion protocol. TruSeq libraries were generated from gDNA and mean insert sizes were 840 bp

for BdTR10h and 993 bp for BdTR13k. Library preparation and sequencing was performed at

the Earlham Institute (previously known as The Genome Analysis Centre, Norwich, UK).

Sequencing was carried out using 100 bp paired-end reads on an Illumina HiSeq 2500

sequencer and yielded 71 and 61 million raw reads for BdTR10h and BdTR13k, respectively.

Haplotype and phylogenetic analysis

Resequencing data for several B. distachyon accessions were obtained from the Joint Genome

Institute Genome Portal (http://genome.jgi.doe.gov/) (S9 Table). These sequence data were

produced by the US Department of Energy Joint Genome Institute (http://www.jgi.doe.gov/)

in collaboration with the user community. Illumina reads were quality controlled using Trim-

momatic (Version 0.33) with the following parameters: ILLUMINACLIP:TruSeq3-PE.

fa:2:30:10 LEADING:5 TRAILING:5 SLIDINGWINDOW:4:15 MINLEN:36. Alignments to

the Bd21 reference (v3.0) were performed with bwa mem (version 0.7.5a-r405) with default

parameters. Samtools (version 0.1.19-96b5f2294a) was used to convert sam into bam files

(samtools view) with the requirement that reads mapped in a proper pair (-f2), sort the bam

file (samtools sort), remove duplicate reads (samtools rmdup), and generate an mpileup file

(samtools mpileup). Coverage of reads was determined using bedtools (version v2.17.0; bed-

tools genomecov -d -split). SNPs and InDels were called using VarScan (version 2.3.8) with

default parameters.

The QKgenome suite (version 1.1.2) of Python scripts were used to assess the haplotype

diversity within genes at the Yrr1 locus in several B. distachyon accessions. QKgenome_con-

version.py was used to evaluate nucleotide variation with the requirement of a read depth of

20 and masking of sequence under this threshold (-m command). Only the first gene model

for each gene was used. SNPs and InDels were called based on a frequency threshold of 90%.

All genes with InDels that disrupted the coding sequence and mutations with early stop

codons were not included in the analysis. A multiple sequence alignment of polymorphic sites

was generated using QKgenome_phylogeny.py. The phylogenetic tree was constructed with

RAxML (version 8.2.9) using the GTRCAT nucleotide model and rapid hill-climbing mode.

Bootstrap support was determined with 2,000 bootstraps, which were found to be sufficient

based on the bootstrap convergence test (command -I autoMRE). The neighbour joining tree
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was generated using Phylip (version 3.695) using default parameters. Bootstrap support was

performed with 1,000 bootstraps.

Accession numbers

Sequence raw reads and assemblies for BdTR10h and BdTR13k were deposited in NCBI under

BioProject PRJNA377287. Individual gDNA whole genome sequencing reads include acces-

sion numbers SRR5298268 (BdTR10h) and SRR5298269 (BdTR13k). The QKgenome suite of

Python scripts described in this manuscript have been deposited on GitHub (https://github.

com/matthewmoscou/QKgenome).

Microscopy

Microscopy of fungal infection structures was undertaken as previously described [22, 41].

Briefly, harvested leaf samples were autoclaved in 1M KOH and then neutralised in a 50 mM

Tris pH 7.5 solution. Samples were then stained with a 20 μg/ml solution of wheat germ agglu-

tinin conjugated to fluorescein isothiocyanate and visualised under blue light. The same tissues

were examined for autofluorescence using UV light.

Marker analysis

PCR products were amplified using a Phire Plant Direct PCR Kit (Thermo scientific, USA).

For sequencing based markers, PCR products were purified for sequencing using alkaline

phosphatase and exonuclease I [73] and sequenced using primer P1. For CAPS marker

9.656179, PCR product was digested with NarI (New England Biolabs, USA) and fragments

were resolved on a 1% agarose gel. For KASP marker 9.583752, competitive allele specific poly-

merase chain reaction was performed (KASP; LGC genomics, UK).

BAC clone library production and screening

B. distachyon BAC libraries for accession BdTR13k, Tek-4 and BdTR10h were produced by

Bio S and T (Quebec, Canada). Individual BACs were isolated by PCR screening of BAC clone

pools undertaken by Bio S and T. BAC DNA was purified using an Epicenter BACMAX DNA

purification kit and clones then deep sequenced at Kansas State University using Illumina

MiSeq sequencing. BAC1H was isolated using PCR primers 9735685F (TTGCTGAGCTTCA

AGTGGTG) and 9735685R (ATTCCATTGATGACCGCAGC).
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