
Quasi-hereditary Covers and Derived

Equivalences of Higher Zigzag Algebras

A thesis submitted to University of East Anglia in partial

fulfilment of the requirements for the degree of Doctor of

Philosophy

Gabriele Bocca
School of Mathematics, UEA, Norwich NR4 7TJ England

July, 2018

c© This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognise that its copyright rests with the author and that use of

any information derived there from must be in accordance with current UK Copyright

Law. In addition, any quotation or extract must include full attribution.





Abstract

In this thesis we look at higher zigzag algebras Zds of type A as a generalization of

Brauer tree algebras whose tree is a line. We recall the presentation of these algebras

as path algebras with relations and their relation with higher preprojective algebras of d-

representation finite and Koszul algebras. The algebras Zds are not Koszul, since simple

modules do not have linear projective resolutions. To overcome this lack of regularity

we give an explicit construction of a quasi-hereditary cover for Zds as a quotient algebra

of Zds+1 and we study different Koszul properties of these quasi-hereditary algebras.

We prove that they are Koszul in the classical sense, standard Koszul and, endowed

with an appropriate grading, Koszul with respect to the standard module ∆. This

more general Koszul property leads to a well-defined notion of duality, generalizing the

classical Koszul duality. We will show that the ∆-Koszul dual of our quasi-hereditary

cover is again a Koszul algebra in the classical sense. Using the fact that Koszul algebras

are quadratic we will be able to give a presentation of the ∆-Koszul dual algebras as

path algebras with relations.

The last chapter of this thesis will be about derived Morita theory and silting objects

for higher zigzag algebras. Since in the case of Brauer tree algebras the Okuyama–

Rickard method to obtain two-term tilting complexes leads to the complete classification

of the derived equivalence class, we focus our attention on two-term tilting complexes in

the derived category Db(Zds ). For Zds we give a more explicit description of irreducible

Okuyama–Rickard mutations of Zds . To conclude we describe the derived equivalence

class of Z2
3 by showing all the algebras derived equivalent to it.
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Introduction

Zigzag algebras and, in particular, type A zigzag algebras have made their appearance

in many areas of representation theory of algebras and finite groups. First examples of

these algebras appeared for instance in modular representation theory of finite groups,

since some zigzag algebras are Morita equivalent to blocks of finite groups with cyclic

defect ([Alp86]). They have also been studied in relation with the action of braid

groups on derived categories ([ST01], [RZ03] and [HK01]). In [HK01] the authors give

an explicit construction for the zigzag algebra A(G) of a connected graph G without

loops or multiple edges and they show that this algebra is a graded, quadratic, trivial

extension algebra, hence symmetric. Moreover Brenner, Butler and King in [BBK02]

also show that, when the graph G is bipartite, then the quadratic dual of A(G) is

isomorphic to the preprojective algebra of G.

For an acyclic quiver Q, the preprojective algebra ofQ was introduced by Gelfand and

Ponomarev ([GP79]), who gave an explicit construction as path algebra with relations.

Then Baer, Geigle and Lenzing gave a more abstract construction for these algebras

as direct sums of spaces HomkQ(kQ, τ−lkQ), where τ and τ− denote the Auslander–

Reiten translate and its inverse respectively. Hence these algebras decompose as the

direct sum of preprojective modules, from which their name.

More recently, Iyama developed a higher-dimensional version of Auslander–Reiten

theory ([Iya07]), with higher analogues of translates τd and τ−d as well as higher versions

of preprojective algebras ([HI11b], [IO11], [IO13], [HIO14]). Trying to find a more

explicit presentation for higher preprojective algebras, Grant and Iyama prove the

following result (see Definition 2.1.1 for the definition of Trivd):

Theorem 1 ([GI]). Let Λ be a Koszul algebra of global dimension d and Π its higher

preprojective algebra.

1. There exists a morphism of graded k-algebras φ : Π! → Trivd(Λ
!).

2. If Λ is d-hereditary then φ is surjective; in this case φ is an isomorphism if and

only if Trivd(Λ
!) is quadratic.

d-hereditary algebras were defined by Herschend, Iyama and Oppermann in [HIO14].

A particularly nice set of examples of d-hereditary and d-representation finite algebras
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is given by type A d-Auslander algebras T
(d)
s (k) defined by Iyama in [Iya11]. Applying

the previous result to this family of algebras Grant and Iyama showed that, in this

case, φ gives an example of almost Koszul duality.

Having in mind the duality between preprojective algebras and zigzag algebras, Grant

defined higher zigzag algebras of Koszul algebras of finite global dimension d:

Definition 2 ([Gra17], Definition 2.5). Let Λ be a Koszul algebra of finite global

dimension d. The (d+ 1)-zigzag algebra of Λ is Zd+1 = Trivd+1(Λ!).

These algebras are the main objects of study of this thesis. Historically higher zigzag

algebras were first defined in [Guo16] and [GL16] under the name of d-cubic pyramid

algebras, in relation with translation quivers appearing in higher representation theory.

Independently they appeared in [Gra17] and [GI] where the authors focused on their

connection with higher preprojective algebras. In this thesis a special role will be played

by higher zigzag algebras of d-Auslander algebras of type A, T
(d)
s (k): Iyama’s “cone”

construction is recursive, so we have examples of higher zigzag algebras of algebras

T
(d)
s (k) with any given global dimension. Since they come from higher Auslander

algebras of type A quivers, these algebras have been called type A higher zigzag algebras.

In [Gra17] the author proved that they are symmetric and have a nice presentation as

path algebras of some quivers modulo quadratic relations, so it will be easier to explain

some particular constructions in this case.

Some particular quotients of type A classical zigzag algebras Z1
s , often denoted in

the literature by As+1, appeared also in the work of many authors about

quasi-hereditary algebras (Definition 1.2.5; see also [Erd93] and [KS02]). Working

with fields of positive characteristic, Erdmann showed that the algebras As describe

certain blocks of polynomial representations of general linear groups (see [Erd93],

Section 3.1 and Proposition 4.1). More recently, in the case k = C, Brundan and

Stroppel in [BS11] described the category Op in the case g = gl(l + s) and when p is

the parabolic subalgebra with Levi component gl(l + s) ⊕ gl(m). When l = 1 the

algebra associated to the principal block of Op is isomorphic to As+1 (see [BJ77],

[Irv85]). The algebra As+1 is a quasi-hereditary cover for the classical zigzag algebra

Z1
s which can be defined as a quotient of the algebra Z1

s+1. The definition of

quasi-hereditary cover that we use is due to Rouquier:

Definition 3 ([Rou08]). Let Λ be a quasi-hereditary algebra and P a finitely generated

projective Λ-module. The pair (Λ, P ) is a quasi-hereditary cover for Λ′ = EndΛ(P ) if

the restriction of the functor

F = HomΛ(P,−) : mod Λ→ mod Λ′

to the subcategory proj Λ of projective Λ-modules is fully faithful.

An interesting feature of the quasi-hereditary algebras As+1 is that they are Koszul
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and, when endowed with different gradings, provide an interesting example of ∆-Koszul

algebras (or Koszul with respect to the standard module ∆, see Definition 1.2.2). This

is a special instance of the following generalized Koszul property:

Definition 4 ([Mad11]). Let Λ =
⊕

n≥0 Λ[n] be a graded algebra such that gldim Λ[0] <

∞ and let T be a graded Λ-module concentrated in degree zero. Denote by T 〈j〉 the

graded shift in the category of finitely generated graded Λ-modules. Then we say that

Λ is Koszul with respect to T, or T-Koszul, if:

1. T is a tilting Λ[0]-module.

2. T is graded self-orthogonal as a Λ-module, that is

ExtigrΛ(T, T 〈j〉) = 0, whenever i 6= j.

The theory of such a generalization of Koszul properties was first introduced in

[GRS02], then developed by Madsen in [Mad11] and, focusing on the quasi-hereditary

case, in [Mad13]. The above notion of T -Koszul algebras is of particular interest since

it leads to a well defined T -Koszul duality that specializes to the classical one when

the algebra Λ is Koszul. The quasi-hereditary covers of Z1
s provide a nice example

for which the ∆-Koszul dual algebras admit a nice presentation as path algebras with

relations. The ∆-Koszul dual is precisely the extension algebra of the standard module

Ext∗(∆,∆) and these algebras are again Koszul in the classical sense. Moreover, a

presentation as path algebras of quivers with relations has been computed for instance

in [KS12] and [MT13].

The first part of this thesis is devoted to generalizing this construction of quasi-

hereditary covers to the case of higher zigzag algebras and to showing that they satisfy

different Koszul properties. In particular we will show that the results proved in [Mad13]

about generalized Koszul duality apply for such algebras and we will compute explicitly

their ∆-Koszul dual. The main results of Chapter 3 can be summarized as follows:

Theorem 5. Let Γ be the quasi-hereditary cover of the higher zigzag algebra Zds as

defined in Section 3.1.

• If we put all arrows of the quiver of Γ in degree one, the graded algebra Γ is Koszul

in the classical sense. Moreover the standard module ∆ (see Definition 1.2.2) has

a linear projective resolution (hence Γ is standard Koszul).

• If we put degαi = 1 for i 6= 0 and degα0 = 0, then the corresponding graded

algebra Γ is Koszul with respect to ∆.

• The ∆-Koszul dual of Γ is the bound path algebra described in Theorem 3.3.7.

Moreover it is a Koszul algebra in the classical sense.
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In the last chapter we study silting (equivalently, tilting) mutations in the bounded

derived category Db(Zds ) focusing on two-term tilting complexes. Our interest in this

topic is motivated by existing results about Brauer tree algebras. As their name

suggests, Brauer tree algebras can be represented by a tree T endowed with a cyclic

ordering on the edges with a common vertex. The simple modules of a Brauer tree

algebra are in one to one correspondence with the edges of the tree T and each

indecomposable projective module P (e), for some edge e of T , has simple top and

socle both isomorphic to S(e) (the simple module corresponding to e). Moreover

radP/ socP is the direct sum of two uniserial modules whose composition factors are

given by the two cyclic orderings in which the edge e appears. A lot of results have

been proved about these algebras which are, for instance, a special case of Brauer

graph algebras. We are particular interested in them since, when the tree is a line

with, e.g., s edges and without exceptional vertex, then the associated Brauer tree

algebra coincides with the zigzag algebra Z1
s , so it is natural to try to generalize some

of the already known results to higher zigzag algebras Zds . In particular, the derived

equivalence class of Brauer tree algebras has been completely classified using results

by Rickard, Gabriel and Riedtmann ([Ric89a], [GR79]).

Theorem 6 ([Ric89a], Theorem 4.2). Let B = B(T, s,m) be a Brauer tree algebra

over a Brauer tree T with s edges and exceptional vertex with multiplicity m ∈ N.

Then B is derived equivalent to the Brauer tree algebra B(s,m) whose tree is a star

with exceptional vertex in the center.

Moreover, by Theorem 2 in [GR79], any algebra derived equivalent to a Brauer tree

algebra is Morita equivalent to a Brauer tree algebra, so the derived equivalence class

consists precisely of Brauer tree algebras with s edges and exceptional vertex with

multiplicity m. Rickard showed that this derived equivalence can be decomposed in a

sequence of equivalences given by two-term tilting objects, called Okuyama–Rickard

complexes. In the more general setting of silting mutation introduced by Iyama and

Aihara ([AI12]) these complexes correspond to irreducible silting mutations of the

algebra viewed as a silting object. Hoping to generalize some of these results to higher

zigzag algebras, we will look at iterated derived equivalences given by

Okuyama–Rickard complexes with respect to irreducible idempotents (irreducible

Okuyama–Rickard mutations) and we will prove that, with some conditions on the

algebra Λ, the operation µx(−) of mutation at the simple Sx “commutes” with taking

the trivial extension of Λ:

µx(Triv(Λ)) ∼= Triv(µx(Λ)).

As a corollary we will have the following result:

Corollary 7. Every algebra that is a tilting mutation of a type A higher zigzag algebra

Zds is a trivial extension algebra.
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This thesis is organized as follows. In Chapter 1 we fix the notation that will be

used in the thesis and we recall known classical results. We start by giving the

definition of triangulated categories and derived categories of modules, in order to

introduce Rickard’s theorem characterizing derived Morita equivalences. Then we

recall the definition and basic properties of quasi-hereditary algebras, as well as

Koszul algebras, T -Koszul algebras and the respective dualities.

In Chapter 2 we recall the definition of higher zigzag algebras paying particular

attention to the type A case. In this case we give the presentations of the algebras Zds

as path algebras with relations. All the results of this chapter are taken from [Gra17]

and [GI].

Chapter 3 is about our results on quasi-hereditary covers for Zds . We present the

construction of our quasi-hereditary covers and we prove that they are Koszul with

respect to the radical grading, standard Koszul (the standard module has a linear

projective resolution) and, with a different grading, Koszul with respect to the standard

module ∆. Then we compute the ∆-Koszul dual as the path algebra of a quiver with

relations and we show that it is again a Koszul algebra.

To conclude, in Chapter 4, we present some result about irreducible tilting mutations

in the bounded derived category of finitely generated Zds -modules. In particular we

give a description of Okuyama–Rickard mutation via the mutation of some particular

quotient of trivial extension algebras. At the end of this last chapter we also give

a full description of the algebras in the derived equivalence class of Z2
3 . This result

has been achieved by brute force, computing iterated Okuyama–Rickard mutations,

after realizing that Z2
3 is of finite representation type, every derived equivalence can be

decomposed into irreducible mutations.



1

Background results

In this chapter we set the notation that will be used through this thesis and we recall

classical results from the literature. We start with an overview on triangulated

and derived categories, derived functors and derived Morita equivalences. Then we

recall basic properties of quasi-hereditary algebras, Koszul algebras and T -Koszul

algebras.

Throughout this thesis k will denote an algebraically closed field and we will only

consider algebras of finite dimension over k. All modules will be finitely generated

right modules and the composition of morphisms fg means that g is applied first and

then f . For a k-algebra Λ, we will denote by mod Λ the category of finitely generated

Λ-modules and by HomΛ(M,N) the vector space of Λ-module morphisms between M

and N . If Q = (Q0, Q1) is a quiver and α ∈ Q1 is an arrow of Q, s(α) denotes the

source of α and t(α) the target: s(α)
α−→ t(α). For two consecutive arrows

α−→ β−→ their

concatenation is denoted by αβ so that, in the path algebra kQ, αβ 6= 0 and βα = 0.

1.1 Derived categories and equivalences

In this first section we will recall the definitions of triangulated category and derived

category necessary to state and understand the theorem of Rickard about derived

equivalences between categories of modules over k-algebras. An example will be given

at the end of the section. All the arguments are taken from [Kel07] and [RS07].

1.1.1 Basic notions

LetA be an abelian category and C(A) be the category of chain complexes inA. For any

chain complex C = (Cn, dn) in C(A), the shift of complexes [−] acts as C[1]n = Cn−1,

hence shifting the complex to the left. The homology groups of C are defined as

Hn(C) = Ker dn/ Im dn+1, ∀n ∈ Z.

Similarly, if (Cn, dn) is a cochain complex, the cohomology groups are defined as

Hn(C) = Ker dn/ Im dn−1, ∀n ∈ Z.
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Any morphism of chain (cochain respectively) complexes f : C → D induces a

morphism of groups Hn(f) : Hn(C) → Hn(D) (Hn(f) : Hn(C) → Hn(D)

respectively) in each degree; we say that f is a quasi-isomorphsm if Hn(f) is an

isomorphism (respectively if Hn(f) is an isomorphism) for every n.

Note that we can think of objects of A as complexes concentrated in degree zero:

this correspondence gives a well defined additive fully faithful functor:

A → C(A).

The derived category of A, D(A), is obtained from C(A) by formally inverting all

quasi-isomorphisms. This construction is motivated by the fact that in homological

algebra we deal usually with projective resolutions of objects, which are unique up to

quasi-isomorphisms.

Example 1.1.1. Let Λ be a finite dimensional algebra over a field k. Let us recall the

notions of projective cover and injective envelope.

Definition 1.1.2. 1. Let M be a Λ module and L a submodule of M . The module

L is called superfluous if for any submodule X of M , the equality L + X = M

implies X = M . The module M is called an essential extension of L if for any

submodule X of M , the equality X ∩ L = {0} implies X = {0}.

2. An epimorphism h : M → N in mod Λ is called minimal if Kerh is a superfluous

submodule of M .

3. An epimorphism p : P → M in mod Λ is called a projective cover of M if P is

projective and Kerh is a superfluous submodule of P . Dually, an inclusion of M

into an injective module 0 → M → I is called an injective envelope of M if I is

an essential extension of M .

The category mod Λ has enough projectives since every module admits a projective

cover.

Assume that A has enough projectives and let F : A → Ab be a covariant right exact

functor from A to the category of abelian groups. Then any M in A has a projective

resolution, i.e. a complex of projective objects P• = . . . → P1 → P0 → 0 → . . . with a

morphism P•
π−→M such that the following complex is exact:

. . .→ P2 → P1 → P0
π−→M → 0.

If we think of M as a complex concentrated in degree zero, this is equivalent to

requiring that the morphism of complexes P• →M is a quasi-isomorphism.

For n ≥ 0, the n-th left derived functor LnF (−) : A → Ab is defined on the objects

of A as LnF (M) = Hn(F (P•)) that is the n-th homology group of the complex

. . .→ F (P2)→ F (P1)→ F (P0)→ 0→ . . .
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Let M ′ be another object of A with a projective resolution P ′• →M ′ and let f : M →
M ′ be a morphism in A. By the Comparison Theorem ([Wei94, Theorem 2.2.6]) f lifts

to a morphism of complexes f̃ : P• → P ′• that is unique up to homotopy equivalence.

Since F is an additive functor, it can be extended to functors F : C(A) → C(Ab) and

F : H(A) → H(Ab). Hence the image F (f̃) induces well defined maps between the

homology groups F (f̃)n : Hn(F (P•))→ Hn(F (P ′•)) and we set LnF (f) := F (f̃)n.

Note that since F is right exact we always have L0F (M) ' F (M); moreover LnF is

a well-defined functor since projective resolutions are unique up to quasi-isomorphisms.

For a left exact covariant functor, the n-th right derived functor RnF (M) is defined

in a similar way.

From the previous construction we can see that it can be useful to work in the

derived category instead of C(A). However, in order to give an explicit definition of

D(A), it is better to proceed by steps and invert all the quasi-isomorphisms in the

homotopy category H(A). This category has by definition the same objects of C(A)

and as morphisms homotopy equivalence classes of morphisms in C(A),

HomH(A)(A,B) = HomC(A)(A,B)/ ∼

where f ∼ g if and only if for every n ∈ Z there exists sn : An → Bn+1 such that

fn − gn = dBn+1sn + sn−1d
A
n . In this case we say that f is homotopic to g.

The homotopy category is a well-defined additive category and the quotient functor

C(A)→ H(A) is an additive functor.

1.1.2 Triangulated categories

The main reason for defining the derived category starting from the homotopy

category lies in the fact that, even though it is not abelian, H(A) has another

important structure, that will allow us to construct the derived category more

explicitly.

Let T be an additive category with an additive auto-equivalence T : T → T .

Motivated by the shift functor on complexes, we will write X[n] and f [n] instead of

Tn(X) and Tn(f) respectively. A triangle in T is a diagram of the form

X
f−→ Y

g−→ Z
h−→ X[1]

denoted by (X,Y, Z, f, g, h) (or X
f−→ Y

g−→ Z
+−→); a morphism of triangles is the data

of three morphisms

(α, β, γ) : (X,Y, Z, f, g, h)→ (X ′, Y ′, Z ′, f ′, g′, h′)

such that the following diagram is commutative in T :
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X
f //

α

��

Y
g //

β
��

Z
h //

γ

��

X[1]

α[1]
��

X ′
f ′ // Y ′

g′ // Z ′
h′ // X ′[1]

A morphism of triangles is said to be an isomorphism if α, β and γ are isomorphisms.

Definition 1.1.3. A structure of triangulated category on T is given by a translation

functor T as above and a class of triangles, called distinguished triangles, satisfying the

following axioms:

TR1 Every triangle isomorphic to a distinguished one is distinguished;

TR2 For any object X in T , (X,X, 0, idX , 0, 0) is a distinguished triangle;

TR3 Every morphism X
f−→ Y can be embedded in a distinguished triangle

(X,Y, Z, f, g, h);

TR4 (Rotation) A triangle (X,Y, Z, f, g, h) is distinguished if and only if

(Y,Z,X[1], g, h,−f [1]) is distinguished;

TR5 (Morphisms) Every commutative diagram

X
f //

α

��

Y
g //

β
��

Z
h // X[1]

X ′
f ′ // Y ′

g′ // Z ′
h′ // X ′[1]

whose rows are distinguished triangles can be completed to a morphism of

triangles by a morphism Z → Z ′;

TR6 (Octahedral axiom) Given X
f−→ Y and Y

g−→ Z morphisms in T , and

distinguished triangles

(X,Y,X ′, f, f ′, s), (X,Z, Y ′, gf, h, r), (Y, Z, Z ′, g, g′, t)

there exist morphisms X ′
u−→ Y ′,Y ′

v−→ Z ′ such that

(X ′, Y ′, Z ′, u, v, f ′[1]t)
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is a distinguished triangle and

X
f //

idX
��

Y
f ′ //

g

��

X ′
s //

u

��

X[1]

idX [1]

��
X

gf //

f

��

Z
h //

idZ
��

Y ′
r //

v

��

X[1]

f [1]

��
Y

g //

f ′

��

Z
g′ //

h
��

Z ′
t //

idZ′
��

Y [1]

f ′[1]

��
X ′

u // Y ′
v // Z ′

w // X[1]

is a commutative diagram.

The notion of homological δ-functor between abelian categories generalizes to

triangulated categories in a natural way:

Definition 1.1.4. Let T be a triangulated category and A an abelian category. An

additive functor H : T → A is called a homological functor if, for any distinguished

triangle (X,Y, Z, f, g, h) in T , we get an exact sequence in A:

Hi(X)
Hi(f)−−−→ Hi(Y )

Hi(g)−−−→ Hi(Z)

for every i ∈ Z, where Hi := H ◦ T i = H(−[i]).

Note that by the Rotation axiom, if (X,Y, Z, f, g, h) is a distinguished triangle then

also (Y,Z,X[1], g, h,−f [1]) is distinguished. So, if H is a homological functor, the

sequence

Hi(Y )
Hi(g)−−−→ Hi(Z)

Hi(h)−−−→ Hi−1(X)

is exact and we get a long exact sequence in A:

. . .→ Hi(X)
Hi(f)−−−→ Hi(Y )

Hi(g)−−−→ Hi(Z)
Hi(h)−−−→ Hi−1(X)→ . . .

Remark 1.1.5. Cohomological functors are defined in a similar way, the only difference

being that the indices in the long exact sequence are increasing:

. . .→ H i(X)
Hi(f)−−−→ H i(Y )

Hi(g)−−−→ H i(Z)
Hi(h)−−−→ H i+1(X)→ . . .

Corollary 1.1.6. 1. If (X,Y, Z, f, g, h) is a distinguished triangle,

then gf = 0;

2. For any object U ∈ T , the functors HomT (U,−) : T → Ab, and HomT (−, U) :

T op → Ab are cohomological functors;

3. Any distinguished triangle is determined up to isomorphism by one of its
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morphisms.

Proof. Let (X,Y, Z, f, g, h) be any distinguished triangle.

1. From TR2, (X,X, 0, idX , 0, 0) is a distinguished triangle and by TR5 we know

that there exists a morphism of triangles

X
id //

id
��

X //

f

��

0 //

��

X[1]

id[1]

��
X

f ′ // Y
g // Z

h // X[1]

then gf = 0.

2. We have to show that the sequence

HomT (U,X)→ HomT (U, Y )→ HomT (U,Z)

is exact, i.e. we can complete the following diagram to a morphism of triangles:

U
id // U //

f

��

0 //

��

U [1]

X
f ′ // Y

g // Z
h // X[1]

and this can be done using axioms TR2-4-5. The statement can be proved

similarly for HomT (−, U).

3. From TR4 it suffices to prove that the distinguished triangles (X,Y, Z, f, g, h) and

(X,Y, Z ′, f, g′, h′) are isomorphic. By TR5 there exists a morphism of triangles

X
f //

id

��

Y
g //

id

��

Z
h //

t
��

X[1]

id[1]

��
X

f // Y
g′ // Z ′

h′ // X[1]

If we apply the cohomological functors HomT (−, Z) and HomT (Z ′,−) we get two

maps

t∗ : HomT (Z ′, Z)→ HomT (Z,Z), t∗ : HomT (Z ′, Z)→ HomT (Z ′, Z ′)

that are isomorphisms by the 5-lemma. It follows that t has a right and left

inverse and thus it is an isomorphism.

Now let C(A) be the category of complexes over A and [1] : C(A) → C(A) the

shift functor on complexes. [1] is an additive automorphism; moreover, since f [1]
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is homotopic to zero if and only if f is homotopic to zero, it induces an additive

automorphism [1] : H(A)→ H(A) on the homotopy category of A.

In order to define the triangulated structure of H(A) we have to show what the

distinguished triangles are. Recall that for every morphism X
f−→ Y in C(A), the

mapping cone of f is the complex cone(f) defined by cone(f)n = Xn−1 ⊕ Yn and with

differential

dfn =

[
−dXn−1 0

fn−1 dYn

]
: Xn−1 ⊕ Yn → Xn−2 ⊕ Yn−1.

Definition 1.1.7. A triangle in H(A) is a distinguished triangle if and only if it is

isomorphic in H(A) to one of the form

X
f−→ Y

α(f)−−−→ cone(f)
β(f)−−−→ X[1]

where, in each degree, α(f) and β(f) are the canonical immersion and projection

respectively.

Theorem 1.1.8. The category H(A) with translation functor [−] and the class of

distinguished triangles as above is a triangulated category.

A complete proof can be found for instance in the book by C. Weibel “An introduction

to homological algebra”, Proposition 10.2.4 [Wei94]. We can point out some remarks:

Remarks 1.1.9. (a) TR1 and TR3 are obvious.

(b) TR4 follows from the following lemma:

Lemma 1.1.10. For every morphism f : X → Y in C(A) there exists φ : X[1]→
cone(α(f)) such that

• φ is iso in H(A) and

• the following diagram is commutative in H(A):

Y
α(f)//

id
��

cone(f)
β(f) //

id
��

X[1]
−f [1] //

φ

��

Y [1]

id[1]

��
Y

α(f)// cone(f)
αα(f)// cone(α(f))

βα(f) // Y [1]

(For a proof see the book of Kashiwara-Schapira “Sheaves on Manifolds” [KS94]).

This result doesn’t hold in C(A), thus TR3 holds only in the homotopy category.

(c) TR2 holds by TR4 since the mapping cone of the zero map 0 → X gives the

distinguished triangle 0→ X → X → 0 and we can conclude applying TR3.

(d) Also TR5 holds only in H(A).
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1.1.3 Localization and Derived category

The formal process by which we “add” inverses of quasi-isomorphisms to the category

C(A) is called localization. This construction can be defined for any category C.

Definition 1.1.11. Let C be any category and S a family of morphisms of C. The

localization of C by S is the data (CS , Q) where CS is a category and Q : C → CS is a

functor, satisfying the following universal property:

• for every s ∈ S, Q(s) is an isomorphism in CS ;

• for every functor F : C → D such that F (s) is an isomorphism for every s ∈ S,

there exists a unique functor FS such that F = FS ◦Q.

In this case Q is called the localization functor.

Definition 1.1.12. The derived category D(A) of an abelian category A is the

localization of H(A) by the class Σ of all the quasi-isomorphisms.

Since the previous definition is too abstract to work with, we will give an equivalent,

more explicit construction of CS .

Definition 1.1.13. A family of morphism S of C is said to be a multiplicative system

if it satisfies the following axioms:

S1 For every object X of C, idX ∈ S;

S2 For every f, g ∈ S then fg ∈ S, if the composition exists;

S3 Any diagram

C

s
��

A
f // B

with s ∈ S, fits into a commutative diagram

D
g //

t
��

C

s
��

A
f // B

with t ∈ S (Same with arrow reversed for the right version).

S4 For every f, g : A⇒ B, if there exists t : B → C in S such that tf = tg, then there

exists s : D → A in S such that fs = gs.

If S is a multiplicative system, we can define CS , the localization of C by S, by setting

Ob CS = Ob C, HomCS (X,Y ) = {(f, s) : x
f−→ Y ′

s←− Y, s ∈ S}/ '

where the equivalence relation is given by: (f, s) ' (f ′, s′) if and only if there exists a

commutative diagram

Y ′

��
X

f
==

g //

f ′

!!

Y ′′′ Y
t
oo
s

aa

s′}}
Y ′′

OO
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with t ∈ S. The composition law is given by using S3: (f, s) ◦ (g, t) = (hf, rt):

W

Y ′

h ==

Z ′

r∈Saa

X

f ==

Y
s

aa g ==

Z
t

``

Using this construction, the localization functor Q : C → CS is defined by Q(X) = X

on any object X and Q(X → Y ) = [X → Y
id←− Y ].

If C is moreover a triangulated category and H : C → D is a homological functor, we

say that the family of morphisms S arises from the homological functor H if S consists

precisely of those morphisms s of C such that Hn(s) is an isomorphism for every n.

Proposition 1.1.14. If S arises from a homological functor then:

1. S is a multiplicative system;

2. the localization CS is a triangulated category and the localization functor Q is a

triangulated functor in the sense that Q is additive, commutes with the translation

functor T = (−)[1] and sends distinguished triangles to distinguished triangles.

Proof. See for instance the book by Weibel, “An introduction to homological algebra”,

Proposition 10.4.1. [Wei94]

Remark 1.1.15. In the proof of Proposition 1.1.14 the distinguished triangles of CS
are defined to be the images under Q of the distinguished triangles in C.

In the case of the homotopy category H(A), the family of all the quasi-isomorphisms

Σ arises precisely from the homology functorH0 = Ker d0/ Im d1, so it is a multiplicative

system and we can define the derived category of A as D(A) = H(A)Σ. Moreover we

know that D(A) is a triangulated category with translation functor induced by the shift

functor (note that it sends quasi-isomorphisms to quasi-isomorphisms, thus factorizes

uniquely through the localization functor) and distinguished triangles given by images

of distinguished triangles in H(A).

Remark 1.1.16. The category of complexes C(A) is not a triangulated category and

the family of all the quasi-isomorphism between complexes is not a multiplicative

system. Then starting from C(A) we could not describe the triangulated structure of

D(A) or use “calculus of fractions” dealing with morphisms.

Proposition 1.1.17. The composition A → C(A)→ H(A)
Q−→ D(A) is a fully faithful

functor.

Proof. See for instance [RS07], Proposition 4.6.

Then we can identify the category A as complexes concentrated in degree zero in

D(A). If X is an object of A we will denote always by X the corresponding complex
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in the derived category. Note that D(A) is no longer abelian, as the following example

shows:

Example 1.1.18. Let 0→ X
f−→ Y

g−→ Z → 0 be a short exact sequence in A, so that

the same sequence can be viewed as a short exact sequence in C(A). Since

. . . // 0 //

��

X
f //

��

Y //

g

��

0 //

��

. . .

. . . // 0 // 0 // Z // 0 // . . .

is a quasi isomorphism between complexes, in D(A) we can replace the complex Z[0]

with the complex W := · · · 0 → X
f−→ Y → 0 · · · appearing in the first line of the

previous diagram. Thus we obtain the following sequence in D(A):

0 // X
f // Y //W // 0

0

��

// 0

��

// 0

��

// 0

��

// 0

��
0

��

// 0

��

// 0

��

// X
f ��

// 0

��
0

��

// X

��

f // Y

��

Y

��

// 0

��
0 // 0 // 0 // 0 // 0

which is not an exact sequence of complexes.

Nevertheless, from the short exact sequence 0 → X
f−→ Y

g−→ Z → 0 in A we obtain

a triangle in D(A):

X
f // Y //W // X[1]

0

��

// 0

��

// 0

��

// 0

��
0

��

// 0

��

// X
f ��

X

��
X

��

f // Y

��

Y

��

// 0

��
0 // 0 // 0 // 0

with complexes in the columns and morphisms of complexes from left to right.

Since the functor A → D(A) is fully faithful we know that if X and Y are

complexes concentrated in degree zero, then HomD(A)(X,Y ) ∼= HomA(X,Y ).

Moreover HomD(A)(X[n], Y [m]) = HomD(A)(X,Y [m− n]).

Now let (X
f−→ Z

s←− Y [n]) be a representative of a map from X to Y [n]. Since s is a

quasi-isomorphism, the complex Z has homology zero except in degree n,

corresponding to the non-trivial degree of the complex Y [n]. Consider the following

quasi-isomorphism:
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Z
u ��

. . . // Zn+1
dn+1 //

��

Zn //

��

Zn−1
// . . .

U . . . // 0 // Zn/ Im dn+1
// Zn−1

// . . .

If n < 0 then uf = 0 and s−1f ∼ (us)−1(uf) ∼ 0. Thus HomD(A)(X,Y [n]) = 0 for

every n < 0.

Proposition 1.1.19. (a) If I is a left bounded complex with injective components, then

for every X in H(A) we have HomD(A)(A, I) ∼= HomH(A)(A, I).

(b) If P is a right bounded complex with projective components, then for every X in

H(A), HomD(A)(P,A) ∼= HomH(A)(P,A).

(c) Assume that A has enough injectives, then for every X,Y in A,

HomD(A)(A,B[n]) ∼= ExtnA(A,B), for every n ≥ 0.

Proof. (a) Consider a morphism from A to I in the derived category, i.e. equivalence

classes of diagrams A → Y
s←− I with s ∈ Σ. Our claim is that every quasi

isomorphisms I
s−→ Y admits a quasi-inverse, that is, it is invertible in H(A). So

every equivalence class as above determines a well defined morphism A → I in

the homotopy category and this gives a bijection between the spaces of morphisms

HomD(A)(A, I) ∼= HomH(A)(A, I) sending the class [A→ Y
s←− I] to A→ Y

s−1

−−→ I.

To prove the claim let Z = cone(s) be the mapping cone of the quasi-isomorphism

s:

Z = I[1]⊕ Y, dZ =

[
−dI 0

s dY

]
.

Z is acyclic since it is the mapping cone of a quasi-isomorphism, so the projection

v = [idI[1], 0] : Z → I[1] is null-homotopic. Thus there exists a map [k, t] : Z → I

such that v = [k, t]dZ + dI[1][k, t], i.e.

[
k t

] [−dI 0

s dY

]
−
[
dIk dIt

]
=
[
−kdI + ts tdY

]
−
[
dIk dIt

]
that gives idI[1] = −kdI + ts− dIk

tdY = dIt.

But this means exactly that t is a morphism of complexes and is the quasi-inverse

of s.

(b) The proof is similar to the first case.

(c) If I is any injective resolution of B, then we have a quasi-isomorphism B
s−→ I.
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Hence we have isomorphisms

HomD(A)(A,B[n]) ∼= HomD(A)(A, I[n]) ∼= HomH(A)(A, I[n]) = ExtnA(A,B)

where the first isomorphism is given by the fact that s is invertible in D(A) and

the second is given by point (a).

1.1.4 Total derived functors

Let A and B be two abelian categories and F : A → B an additive functor between

them. Then F induces a well defined functor, always denoted by F , between the

corresponding homotopy categories F : H(A)→ H(B) but, if F is not exact, it doesn’t

preserve in general the quasi-isomorphisms. So it doesn’t induce a functor between the

derived categories. Before we go on we need the notion of triangulated functor that is

a functor that preserves the structure between triangulated categories.

Definition 1.1.20. Let (T , T ) and (T ′, T ′) be two triangulated categories. A

triangulated functor is given by a pair (F, η) where F : T → T ′ is a functor which

sends distinguished triangle to distinguished triangles and η : F ◦ T 'nat T ′ ◦ F is a

natural isomorphism. If moreover F is an equivalence, the it is called a triangle

equivalence.

Since for technical reasons it is better to avoid dealing with unbounded complexes and

all the results of this thesis concern bounded complexes, we will give the construction

of left and right total derived functors for the categories Cb(A), Hb(A) and Db(A) of

bounded complexes.

We can look at the following example as a motivation for the formal definition of

total derived functor.

Example 1.1.21. Let F : A → B be an additive functor between abelian categories.

Assume that the category A has enough injectives and let Hb(I) be the homotopy

category of bounded complexes of injective objects. In the proof of Proposition 1.1.19

we proved that every quasi-isomorphism in Hb(I) is invertible, so Hb(I) is isomorphic

to its derived category Db(I). Remember that we denoted by Q : Hb(−) → Db()
the localization functor from the homotopy category to the derived category of any

abelian category. The functor QFQ−1 : Db(I)
∼=−→ Hb(I) → Hb(B) → Db(B) satisfies

QF ∼= (QFQ−1)Q, so it makes the following diagram commutative (up to a natural

isomorphism of functors):

Hb(I)
F //

Q
��

Hb(B)

Q

��
Db(I)

QFQ−1
// D(B)

Since it not always possible to find a commutative diagram as in Example 1.1.21, the

definition of total derived functor has to be more general.
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Definition 1.1.22. Let F : Hb(A) → Hb(B) be a triangulated functor. A total right

derived functor of F is a triangulated functor RF : Db(A) → Db(B) together with a

natural transformation η : QF → (RF )Q satisfying the following universal property:

• For any triangulated functor G : Db(A) → Db(B) equipped with a natural

transformation ζ : QF → GQ, there exists a unique natural transformation

ζ ′ : RF → G such that ζA = ζ ′Q(A) ◦ ηA for every A ∈ Db(A).

Dually, a total left derived functor of F is a triangulated functor LF : Db(A)→ Db(B)

together with a natural transformation η : (LF )Q→ QF satisfying the dual universal

property.

Remark 1.1.23. The universal property of Definition 1.1.22 assures that if right/left

total derived functors exist, then they are unique up to natural isomorphism.

Example 1.1.24. In Example 1.1.21, QFQ−1 is both the right and left total derived

functor of F .

Remark 1.1.25. IfA has enough projectives/injectives then Theorem 10.5.6 of [Wei94]

assures that the left/right derived functor of F exists (at least for bounded derived

categories).

Now we will focus on the example of the tensor product functor, since the

corresponding total derived functor will be used to state the generalization of the

Morita theorem for derived categories.

If C = (Cp,q, dp, dq) is a bounded double complex with elements in an abelian category

A, the total complex Tot⊕(C) is a complex in Cb(A) defined by

Tot⊕(C)n =
⊕
p+q=n

Cp,q

with differential

d = dp + dq : Tot⊕(C)n → Tot⊕(C)n−1

Example 1.1.26. If R is any ring and (A, dA) and (B, dB) are two complexes of right

and left R-modules respectively, then we can construct the double complex A⊗R B by

setting

(A⊗R B)p,q = Ap ⊗R Bq

and with differential defined using the sign rule, i.e., the horizontal arrows are given by

dA⊗ 1 and the vertical by (−1)p⊗ dB. Tot⊕(A⊗RB) is called the total tensor product

complex of A and B.

If A is a bounded complex in Cb(A) we can construct explicitly a projective resolution

for A by giving a double complex P = (Ppq, dp, dq) whose entries are projective modules

together with a map P
π−→ A such that:

• P is an upper half-plane complex, i.e. P•q = 0 if q < 0,
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• Pp•
πp−→ Ap with differential given by (−1)pdv is a projective resolution of Ap.

IfA has enough projectives such a complex always exists, since we can find a standard

projective resolution for every term of A, Pp• → Ap, and we can construct horizontal

differentials using the comparison theorem. Moreover the induced map Tot⊕(P )→ A is

a quasi-isomorphism in Hb(A) and it is also possible to define chain homotopy between

double complexes, such that every two such resolutions of the same complex A are

homotopy equivalent.

Definition 1.1.27. Let A = modR, B = Rmod and A, B two complexes of modules

in A and B as above. Consider two projective resolutions P → A and Q → B of A

and B and P̃ = Tot⊕(P ), Q̃ = Tot⊕(Q). Then the total (left) derived tensor product

A⊗LR B is defined as

A⊗LR B = Tot⊕(P̃ ⊗R Q̃)

This defines a bifunctor

−⊗LR − : D(A)×D(B)→ D(Ab)

called the total derived tensor product.

1.1.5 Derived Morita equivalences

Here we state the theorem of Rickard that generalizes the classical theorem on Morita

equivalences in the context of derived categories of modules over k-algebras. We will

also give some examples of these equivalences from representation theory of quivers.

Let k be a field and Λ, Γ two k-algebras. The classical result on Morita theory

characterizes the equivalences between the corresponding categories of modules mod Λ

and mod Γ:

Theorem 1.1.28. The following statements are equivalent:

(a) there is a k-linear equivalence F : mod Λ→ mod Γ;

(b) there is a Λ-Γ-bimodule X such that the tensor product −⊗Λ X : mod Λ→ mod Γ

is an equivalence and any k-linear equivalence is naturally equivalent to −⊗Λ X;

(c) there is a finitely generated projective Γ-module P which generates mod Γ and whose

endomorphism ring is isomorphic to Λ.

The following generalization of Morita equivalence in the derived setting is due to

Rickard.

Theorem 1.1.29 ([Ric89a],[Ric89b]). Let Λ and Γ be k-algebras, Db(Λ),Db(Γ) the

derived categories of the corresponding categories of modules. Then the following are

equivalent:
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1. there is a k-linear triangle equivalence F : Db(Λ)→ Db(Γ);

2. there is a complex of Λ-Γ-modules X such that the total left derived functor

(−⊗LΛ X) : Db(Λ)→ Db(Γ)

is a triangle equivalence;

3. there is a complex T of Γ-modules that satisfies the following conditions:

(a) T is quasi-isomorphic to a bounded complex of finitely generated projective

modules,

(b) T generates Db(Γ) as a triangulated category,

(c) we have

HomDb(Γ)(T, T [n]) = 0 for n 6= 0 and HomDb(Γ)(T, T ) ∼= Λ.

By definition, if the conditions of the theorem hold, Λ is said to be derived equivalent

to Γ, T is called a tilting complex, X a two-sided tilting complex and the functor −⊗LΛX
a standard equivalence.

We know that dealing with categories of modules, every equivalence is naturally

isomorphic to one given by the tensor product by a bimodule. However, in the more

general setting of derived categories, it is not known whether or not every k-linear

triangle equivalence is isomorphic to a standard equivalence.

A useful special case of the previous theorem is when F (ΛΛ) is a complex concentrated

in degree zero. Then, following the proof of the classical Morita theorem, one can put

X = T = F (Λ) and T becomes a Λ-Γ-bimodule under the natural actions. Moreover

in this case T is a (generalized) tilting module of finite projective dimension, i.e.

1. as a Γ-module, T admits a finite resolution

0→ Pn → Pn−1 → . . .→ P0 → T → 0

of finitely generated projective modules;

2. ExtiΓ(T, T ) = 0 for every i > 0 and EndΓ(T ) ∼= Λ, and

3. there is a long exact sequence

0→ Γ→ T 0 → . . .→ Tm−1 → Tm → 0

in mod Γ, where T i is in addT for any i = 0, . . . ,m.

Recall that by addT we mean the smallest full subcategory of mod Λ containing T and

closed under direct sums and direct summands.
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Example 1.1.30. Our example consists of some algebras derived equivalent to the

path algebra Λ = kA3 where k is any field and A3 is the quiver

1
α // 2

β // 3

There are three simple modules S1, S2 and S3, generated by the trivial paths at each

vertex, e1, e2 and e3 respectively. If we represent every indecomposable Λ-module by

its Loewy-structure, we can easily see that the indecomposable projective modules in

mod Λ are the following:

P1 =
1
2
3
, P2 = 2

3 , P3 = S3 = 3.

The indecomposable injective modules correspond, via the duality

D(−) = Homk(−, k), to indecomposable projective of the dual DΛ = Homk(Λ, k)

considered as a right Λ-module. Then they can be computed dualizing the projective

indecomposable modules of kAop3 where Aop3 is the quiver obtained reversing the

arrows of A3:

1 2
αoo 3

βoo

Then we have

I3 = P1 =
1
2
3
, I2 = 1

2 , I1 = S1 = 1.

and we can represent (isomorphism classes of) indecomposable modules in the following

quiver:

P1 = I3

$$
P2

99

%%

I2

$$
P3 = S3

99

S2

::

I1 = S1

where the arrows are the obvious epimorphisms/monomorphisms between the modules.

Consider first of all the module T = P1 ⊕ P2 ⊕ S2 viewed as a complex concentrated

in degree zero and denote it always by T . Since S2
∼= P2/P3, T is quasi-isomorphic to

the complex

· · · → P3 → P1 ⊕ P2 ⊕ P2 → . . .

so T is a bounded complex of finitely generated projective modules. Moreover it has

zero homology in each degree i 6= 0, then we have that ExtiΛ(T, T ) = 0 for every i ≥ 1

and it is easily seen by direct computations that also Ext1
Λ(T, T ) = 0. Finally, since we

have an exact sequence

0→ Λ→ P1 ⊕ P2 ⊕ P2 → S2 → 0
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we can conclude that T is a tilting complex and we have a derived equivalence Λ 'd
End(T ). Straightforward computations show that End(T ) ' Γ = k( 1 2

γoo δ // 3 ).

If we repeat the previous calculations with T ′ = P1 ⊕ I2 ⊕ S2 where I2
∼= P1/P3 we

obtain that End(T ′) ' Γ′ = k( 1
η // 2 3

λoo ).

In this case we are not able to find an exact sequence

0→ Λ→ T 1 → . . .→ Tn → 0→ . . .

with T i ∈ addT because, differently from the first example, T ′ is not a generalized

tilting module of finite projective dimension. Nevertheless it is a tilting complex since

it generates D(Λ) as a triangulated category and thanks to the Rickard’s Theorem we

have the derived equivalence Λ 'd Γ′.

These examples show that the k−algebra of the quiver A3 is derived equivalent to

any k−algebra of a quiver obtained from A3 changing the orientation of an arrow.

As a last example we point out that the complex given by T ′′ = P3 ⊕ P1 ⊕ I1

concentrated in degree zero gives us a derived equivalence between Λ and

Γ′′ = End(T ′′) = k( 1
α // 2

β // 3 )/〈αβ〉.

Convention. In this thesis we will always work with chain complexes, hence every

complex will have decreasing indices:

X• : · · · dn+2−−−→ Xn+1
dn+1−−−→ Xn

dn−→ Xn−1
dn−1−−−→ · · ·

However, since when working with path algebras it is a standard notation to denote

by Px the indecomposable projective cover of the simple module Sx, we will use upper

indices for projective resolutions. We apologize for this little incongruence in the

notation and we hope that this will not cause too much confusion.

1.2 Quasi-hereditary algebras

In this section we recall some results from the theory of quasi-hereditary algebras that

will be used in Chapter 3. These algebras were defined originally by Cline, Parshall

and Scott in [Sco87] and [CPS88] and they can be seen as algebras whose category of

modules satisfies some “directedness” property. As before let Λ be a finitely generated

k-algebra and suppose that we can fix a partial order on a complete set of

non-isomorphic simple Λ-modules S1, . . . , Sr. To simplify the notation let

I = {1, 2, . . . , r} be a labelling set for the simple modules we have chosen and (I,≤)

the fixed partial order; this is often called a set of weights for Λ. Moreover, for x ∈ I,

let Px (resp. Ix) be the indecomposable projective cover (resp. injective envelope) of

Sx.

Recall also the definition of syzygy and cosyzygy modules:

Definition 1.2.1. For any Λ-module M , the syzygy module Ω(M) is the kernel of the
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projective cover of M :

0→ Ω(M)→ P →M → 0.

Dually, the cosyzygy module Ω−1(M) is the cokernel of the injective envelope of M :

0→M → I → Ω−1(M)→ 0.

Definition 1.2.2. For every x ∈ I the standard module ∆x is the largest quotient of

Px having no simple composition factor Sy for x < y. Here by largest quotient we mean

that if Sz is a composition factor of top Ω(∆x), then x < z. Dually the costandard

module ∇x is the largest submodule of Ix having no composition factor Sy for x < y

(i.e. soc Ω−1(∇x) has composition factors Sw such that y < w). Let ∆ =
⊕

x∈I ∆x and

∇ =
⊕

x∈I ∇x.

Remark 1.2.3 ([DR92], Lemma 1.1). For any x ∈ I, the standard module ∆x can

also be defined as the quotient Px/Im
(∑

y>x Py → Px

)
, where the module

Im
(∑

y>x Py → Px

)
is the maximal submodule of Px generated by the set of

projective modules {Py | y > x}.

Note that the duality D(−) = Homk(−, k) sends standard modules of mod Λ to

costandard modules of mod Λop so any statement about standard modules holds also

for the costandard ones.

From the definition we can deduce the following well known result (see e.g. [CPS88],

[DR89b]). The proof is taken from [Mad17].

Lemma 1.2.4. Let Λ be a k-algebra as above. Then Ext1
Λ(∆,∇) = 0.

Proof. Suppose Ext1
Λ(∆x,∇y) 6= 0 for some x, y ∈ X. Applying the functor

HomΛ(−,∇y) to the short exact sequence

0→ Ω(∆x)→ Px → ∆x → 0

we obtain the following long exact sequence:

0→ HomΛ(∆x,∇y)→ HomΛ(Px,∇y)→ HomΛ(Ω(∆x),∇y)→ Ext1
Λ(∆x,∇y)→ 0.

If Ext1
Λ(∆x,∇y) 6= 0 then HomΛ(Ω(∆x),∇y) 6= 0, so there must be a composition

factor Sz of top Ω(∆x) such that z ≤ y. But by definition of ∆x, the composition

factors of top Ω(∆x) must have index greater than x, hence x < z ≤ y. Dually, by

applying HomΛ(∆x,−) to

0→ ∇y → Iy → Ω−1(∇y)→ 0

we obtain that soc Ω−1(∇y) must have a composition factor Sw such that y < w ≤ x.

Therefore we have x < y and y < x that is a contradiction.
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Definition 1.2.5. The algebra Λ is said to be quasi-hereditary if the following hold:

(i) EndΛ(∆x) ∼= k for any x ∈ I.

(ii) ΛΛ admits a ∆-filtration, that is there exists a filtration

0 = M0 ⊂M1 ⊂ . . . ⊂Mn−1 ⊂Mn = Λ

such that Mk/Mk−1 is a standard module for every k = 1, . . . , n.

Example 1.2.6 ([DR89b], Theorem 2). Any semiprimary ring of global dimension

2 is quasi-hereditary. Hence any finite-dimensional algebra of global dimension 2 is

quasi-hereditary.

Lemma 1.2.7. Let Λ be any finite-dimensional k-algebra. If M is a Λ-module that

admits a ∆-filtration, then Ext1
Λ(M,∇) = 0.

Proof. This follows from Lemma 1.2.4 and by induction on the length of a ∆-filtration

of M . (See also [Mad17], Section 1 for a precise reference.)

The following result gives an equivalent self-dual definition of quasi-hereditary

algebra.

Proposition 1.2.8. The algebra Λ is quasi-hereditary if and only if the following

conditions hold:

(i) Ext2
Λ(∆,∇) = 0.

(ii) EndΛ(∆x) ∼= k for any x ∈ I.

Proof. See, for example, [Mad17], Theorem 1.6.

Corollary 1.2.9. The algebra Λ is quasi-hereditary if and only if Λop is

quasi-hereditary. In particular, ΛΛ is ∆-filtered if and only if the module D(Λ)Λ is

∇-filtered.

Proof. See, for example, [Mad17] Corollary 1.7.

From now to the end of this section we will assume that Λ is a quasi-hereditary

algebra. The following proposition gives two homological properties of quasi-hereditary

algebras that will be useful in the sequel: namely that there are no extensions in any

degree between the standard module ∆ and the costandard module ∇ and that any

quasi-hereditary algebra has finite global dimension.

Proposition 1.2.10. 1. For any n > 0, ExtnΛ(∆,∇) = 0.

2. Λ has finite global dimension.

Proof. See [Mad17] Theorem 2.1 and Theorem 2.5.
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Another important notion is given by the distance between indices of simple Λ-

modules.

Definition 1.2.11. For any x, y ∈ I such that x ≤ y the distance between them is

defined as

d(x, y) = max{n ∈ N : ∃ (x = x0 < . . . < xn = y)}.

If x and y are not comparable with respect with the partial order on I we set d(x, y) =

∞.

Lemma 1.2.12. If Λ is a quasi-hereditary algebra, then the following hold:

1. If x > y then HomΛ(∆x,∆y) = 0.

2. If l > 0 and x ≮ y then ExtlΛ(∆x, Sy) ∼= ExtlΛ(∆x,∆y) = 0.

3. If x ≤ y and l > d(x, y) then ExtlΛ(∆x, Sy) ∼= ExtlΛ(∆x,∆y) = 0.

Proof. See [Far08], Lemma 3.

The definition of quasi-hereditary cover was first introduced by Rouquier in [Rou08,

Section 4.2]. For instance, such covers play a fundamental role in the proof that the

category O for a rational Cherednik algebra of type A is equivalent to the category of

modules over a q-Schur algebra when q /∈ 1
2 + Z.

Let P be a finitely generated projective Λ-module and Λ′ = EndΛ(P ). Consider the

functors F = HomΛ(P,−) : mod Λ → mod Λ′ and G = HomΛ′(FΛ,−) : mod Λ′ →
mod Λ; the canonical natural isomorphism HomΛ(P,Λ) ⊗Λ −

∼=−→ HomΛ(P,−) makes

(F,G) an adjoint pair. Denote by ε : FG→ Id (resp. η : Id→ GF ) the unit (resp. the

counit) of the adjunction; note that ε is an isomorphism.

Definition 1.2.13. Let Λ be quasi-hereditary and P a finitely generated projective Λ-

module. The pair (Λ, P ) is a quasi-hereditary cover for Λ′ = EndΛ(P ) if the restriction

of the functor

F = HomΛ(P,−) : mod Λ→ mod Λ′

to the subcategory proj Λ of projective Λ-module is fully faithful.

Here we have two statements equivalent to the fact that the restriction of the functor

F is fully faithful.

Lemma 1.2.14. The following are equivalent:

• The canonical map Λ→ EndΛ′(FΛ) is an isomorphism of algebras.

• For all M ∈ proj Λ, the map η(M) : M → GF (M) is an isomorphism.

• F restricted to proj Λ is fully faithful.

Proof. For a proof see for example [Rou08], Lemma 4.33.
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Remark 1.2.15. Without further assumptions the uniqueness of quasi-hereditary

covers is not guaranteed. However, the existence of quasi-hereditary covers for any

finite-dimensional algebra (and more generally for any semiprimary ring) was proved

by Dlab and Ringel in [DR89a].

1.2.1 Strong exact Borel subalgebras

An important notion related to quasi-hereditary algebras are exact Borel subalgebras,

first defined by König in [Koe95]. The aim was, given a quasi-hereditary algebra Λ,

to find a subalgebra of Λ that somehow encodes the information about the standard

filtration of projective Λ-modules.

Definition 1.2.16. [Koe95] Let Λ be a quasi-hereditary algebra, I an index set for the

simple Λ-modules and ≤ the partial order on I. A subalgebra B of Λ is called an exact

Borel subalgebra if and only if the following three conditions are satisfied:

• The algebra B has the same partially ordered set of indices of simple modules as

Λ and B is directed, i.e. it is quasi-hereditary with simple standard modules;

• The functor −⊗B Λ is exact;

• The functor − ⊗B Λ sends simple B-modules to standard Λ-modules and this

correspondence preserves the indices.

An exact Borel subalgebra B of Λ is called strong if Λ has a maximal semisimple

subalgebra that is also a maximal semisimple subalgebra of B.

In general it is not true that every quasi-hereditary algebra has an exact Borel

subalgebra. Nevertheless it has been proved in [KKO14] that every quasi-hereditary

algebra is Morita equivalent to a quasi-hereditary algebra that has an exact Borel

subalgebra.

A useful tool to determine the existence of an exact Borel subalgebra is the following:

Theorem 1.2.17 ([Koe95], Theorem A). Let Λ be a quasi-hereditary algebra and B a

subalgebra of Λ. Suppose that the index set of simple Λ-modules I is in bijection with

the index set of simple B-modules so that we have an induced partial order on simple

B-modules. Then B is an exact Borel subalgebra of Λ if and only if B with the partial

order defined above is directed and satisfies the following condition:

• For each x ∈ I, the restriction from Λ-modules to B-modules gives an

isomorphism of costandard modules: (∇x)Λ
∼= (∇x)B.

1.3 Koszul properties for algebras

In this section we will recall the definition of (classical) Koszul algebras and the main

results on Koszul duality. Then we will focus on a more general form of Koszul property
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that leads to an equivalence between certain derived categories of graded modules. Since

we will be interested in the study of algebras that are quasi-hereditary and Koszul, we

will also recall from [Mad13] some properties about quasi-hereditary algebras that are

Koszul with respect to the standard module ∆.

We will work with non-negatively graded algebras: if Λ =
⊕

n≥0 Λn is a graded k-

algebra, then we denote by grΛ the category of finitely generated graded Λ-modules with

graded shift 〈·〉 acting as (M〈j〉)i = Mi−j for any graded Λ-module M . HomgrΛ(M,N)

is the vector space of graded morphisms of degree zero between M and N and we have

HomΛ(M,N) =
⊕

i≥0 HomgrΛ(M,N〈i〉).

1.3.1 Koszul algebras and Koszul duality

We refer to [BGS96] for the definition of (classical) Koszul algebras and their basic

properties.

Definition 1.3.1 ([BGS96], Definition 1.2.1). A Koszul algebra is a non-negatively

graded algebra Λ =
⊕

n≥0 Λn such that:

1. Λ0 is semisimple and

2. Λ0, considered as a right Λ-module, admits a projective resolution of graded

modules

· · · → P 2 → P 1 → Λ0 → 0

such that each P i is generated in degree i, that is P i = P iiΛ.

Definition 1.3.2. A finitely generated graded Λ-module M is called linear if M admits

a graded projective resolution

· · · → P 2 → P 1 → P 0 →M → 0

such that P i is generated by its component of degree i, for any i ≥ 0.

Remark 1.3.3. By the definition of linear module, condition (2) of Definition 1.3.1 is

equivalent to: (2’) Λ0 is a linear Λ-module.

Recall that, following our notation, a graded morphism between graded Λ-modules

is a module homomorphism of degree zero. Moreover, for each graded morphism f :

M → N , Ker f and Coker f are graded modules and the morphisms Ker f → M and

N → Coker f are graded as well. Therefore, if we define standard modules ∆x as in

Definition 1.2.2, each ∆x is a graded module generated in degree zero.

Definition 1.3.4. [ÁDL03] A graded quasi-hereditary algebra is called standard Koszul

if the standard module is linear.

Theorem 1.3.5 ([ÁDL03], Theorem 1.4). If Λ is quasi-hereditary and standard Koszul

then it is Koszul.
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Proposition 1.3.6. Let M be a finitely generated graded Λ-module. The following are

equivalent:

1. M is linear.

2. ExtigrΛ(M,Λ0〈j〉) = 0 unless i = j.

Proof. See [BGS96], Proposition 1.14.2.

The following result gives an alternative definition of Koszul algebra based on

extension groups:

Proposition 1.3.7. Let Λ =
⊕

n≥0 Λn be a graded algebra such that Λ0 ' ks is

semisimple. The following conditions are equivalent:

1. Λ is Koszul.

2. For any two graded Λ-modules M,N concentrated in degree m and n respectively,

we have ExtigrΛ(M,N) = 0 unless i = n−m.

3. ExtigrΛ(Λ0,Λ0〈n〉) = 0 unless i = n.

Proof. See [BGS96], Proposition 2.1.3.

Recall that a graded algebra Λ is quadratic if Λ0 is semisimple, Λ is generated by Λ1

as a tensor algebra over Λ0 and the ideal of relations is generated by elements in degree

2. More explicitly this means that Λ is isomorphic to a quotient of the tensor algebra

TΛ0Λ1 = Λ0 ⊕ Λ1 ⊕ (Λ1 ⊗Λ0 Λ1)⊕ · · · =
⊕
i≥0

Λ⊗i1

by an ideal I := (R) such that R ⊂ Λ1 ⊗Λ0 Λ1.

Theorem 1.3.8. Let Λ be graded with Λ0 semisimple. The following conditions are

equivalent:

1. Ext1
grΛ(Λ0,Λ0〈n〉) 6= 0 only if n = 1.

2. Λ is generated by Λ1 over Λ0.

Under the above equivalent assumptions, if Ext2
grΛ(Λ0,Λ0〈n〉) 6= 0 implies n = 2 then

Λ is quadratic.

Proof. The equivalence between the two statements is Proposition 2.3.1 in [BGS96].

The last statement is Theorem 2.3.2 in [BGS96].

Corollary 1.3.9 ([BGS96], Corollary 2.3.3). Any Koszul algebra is quadratic.
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Let Λ = kQ/I be the path algebra of the quiver Q with relations given by a

homogeneous admissible ideal I = (R) ⊆ kQ2, where Qi denotes the set of paths of

length i. Let B =
⋃
i≥0 Bi be a basis of Λ consisting of paths such that B0 = Q0,

B1 = Q1 and Bi ⊆ Qi. Suppose moreover that there is a total order < on Q1 that we

extend to each Qi lexicographically, then to each Bi ⊂ Qi and finally to the union

B+ =
⋃
i>0 Bi, by refining the degree order.

Definition 1.3.10. The pair (B, <) is a PBW basis for Λ if the following hold:

• if p and q are paths in B then either pq is in B or it is a linear combination of

elements r ∈ B such that r < pq as paths in Qi, for some i > 0 .

• a path π = α1α2 · · ·αi of length i ≥ 3 is in B if and only if for each 1 ≤ j ≤ i− 1

the paths α1 · · ·αj and αj+1 · · ·αi are in B.

The following fact is a generalization of [Pri70, Theorem 5.2]:

Theorem 1.3.11 ([Gra17], Theorem 2.18). If Λ has a PBW basis then it is Koszul.

For any k-vector space V , let V ∗ = Homk(V, k) be the dual vector space via the

standard duality D(−) = Homk(−, k). Recall that, for any quadratic algebra Λ, the

quadratic dual is the (quadratic) algebra V ! = TΛ0Λ∗1/(R
⊥). Moreover let E(Λ) =

Ext∗Λ(Λ0,Λ0) be the graded algebra of self-extensions of Λ0.

Theorem 1.3.12 ([BGS96], Theorems 2.10.1, 2.10.2). Let Λ be a Koszul algebra, then

E(Λ) ∼= (Λ!) and E(E(Λ)) ∼= Λ canonically.

This “duality” between Λ and E(Λ) gives rise to an equivalence of triangulated

categories as explained in the following Theorem:

Theorem 1.3.13 ([BGS96], Theorems 2.12.5, 2.12.6). Let Λ = kQ/I be a finite

dimensional Koszul k-algebra with a presentation as path algebra with relations. There

exists an equivalence of triangulated categories

K : Db(Λ)→ Db(Λ!)

between the (graded) bounded derived category of Λ and that of Λ! such that:

(a) K(M〈n〉) = (KM)[−n]〈−n〉 canonically for any M ∈ Db(Λ).

(b) Let Sx = exΛ0 be the simple Λ-module associated to the vertex x, Ix its injective

envelope and Px = exΛ! the projective cover of the simple Λ!-module exΛ!
0 = Tx,

then K(Sx) = Px and K(Ix) = Tx.

The functor K is called the “Koszul duality functor”.
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In Sections 2.13 and 2.14 of [BGS96] the authors characterized the class of linear

modules of Λ! (see also the Remark following Theorem 2.12.5 in the same paper). Let

grΛ↑ = {M ∈ grΛ |Mj = 0 for j � 0}

and

grΛ↓ = {M ∈ grΛ |Mj = 0 for j � 0}

be the subcategories of grΛ consisting of modules whose degree is bounded below and

above respectively.

Proposition 1.3.14. The class of linear modules of Λ! consists precisely of gr(Λ!)↑ ∩
K(grΛ↓).

Proof. See [BGS96], Corollary 2.13.3.

1.3.2 T-Koszul algebras and generalized Koszul duality

In what follows we will consider a grading that is different from the radical grading.

To avoid confusion in the notation, given a graded algebra Λ, we will denote its

graded subspaces by Λ[i] whenever the grading is not the radical grading. Later on

(Subsection 1.3.3) this grading will coincide with the 〈·〉[-grading. The definition

T-Koszul algebra is taken from [Mad13], [Mad11].

Definition 1.3.15. [Mad11] Let Λ be a graded algebra such that gldim Λ[0] <∞ and

let T be a graded Λ-module concentrated in degree zero. Then we say that Λ is Koszul

with respect to T or T-Koszul if:

1. T is a tilting Λ[0]-module.

2. T is graded self-orthogonal as a Λ-module, that is

ExtigrΛ(T, T 〈j〉) = 0, whenever i 6= j.

We recall the following results about graded self-orthogonal modules:

Lemma 1.3.16. Let Λ =
⊕

i≥0 Λ[i] be a graded algebra (with Λ[0] not necessarily

semisimple) and T a finitely generated Λ-module concentrated in degree zero.

1. If T is linear then it is graded self-orthogonal.

2. If ExtigrΛ(T,Λ[0]〈j〉) = 0 unless i = j, then T is linear.

Proof. To prove the first statement, let P i be a projective module in a minimal

graded projective resolution of T ; then P i is generated in degree i and, since T 〈j〉 is

concentrated in degree j, we have that HomgrΓ(P i, T 〈j〉) = 0 if i 6= j. Hence

ExtigrΓ(T, T 〈j〉) = 0 whenever i 6= j.
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The proof of the second statement can be found in [BGS96], Proposition 2.14.2, in

the case when Λ[0] is semisimple and the part of the proof we are interested in is still

true without any assumption on Λ[0]. We include the proof here for the convenience of

the reader.

Since T is concentrated in degree zero over Λ, its projective cover consists of a

projective module P 0 generated in degree zero. We want to find a linear graded

projective resolution for T by induction, so let us assume that we have a projective

resolution

P i → P i−1 → · · · → P 0 → T → 0

such that P i is generated in degree i over Λ and the differential is injective on the degree

i part of P i, P i[i]. Then if we put K = Ker(P i → P i−1), we have that K[j] = 0 for j <

i+1. IfN is any Λ-module that is concentrated in one single degree then Exti+1
grΛ(T,N) =

HomgrΛ(K,N). But then our assumption means that HomgrΛ(K,Λ[0]〈j〉) = 0 unless

i+ 1 = j, that is, K is generated in degree i+ 1 over Λ. Then we can find a projective

cover P i+1 of K that is generated in degree i+1 and we can conclude by induction.

It is important to underline that in general the two conditions in part (1) of Lemma

1.3.16 are not equivalent as the following example shows.

Example 1.3.17. Let Λ be the path algebra of the following quiver:

1 2
a
hh
c

vv
3

d
vv

b

hh

with relations ba = 0, da = bc. Define a grading | · | on Λ by setting |a| = |b| = 0 and

|d| = |c| = 1 and let Λ[0] be the subalgebra of Λ concentrated in degree zero. Then Λ is

Koszul with respect to DΛ[0] but the simple module S3 is a direct summand of DΛ[0]

and its (graded) projective resolution is:

0→ P1 ⊕ P1〈1〉 → P2 ⊕ P2〈1〉 → P3 → S3 → 0

hence it is not linear.

Lemma 1.3.18. Let Λ be a graded k-algebra with Λ[0] not necessarily semisimple and

T a graded self-orthogonal module. Then

ExtiΛ(T, T ) ∼= ExtigrΛ(T, T 〈i〉)

for each i ≥ 0. Moreover there is an isomorphism of graded algebras⊕
i≥0

ExtiΛ(T, T ) ∼=
⊕
i≥0

ExtigrΛ(T, T 〈i〉).

Proof. See [Mad11], Proposition 3.1.2 and Corollary 3.1.3.
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An analogous of Koszul duality holds for T -Koszul algebras:

Theorem 1.3.19 ([Mad11], Theorem 4.2.1). Let Λ be a graded k-algebra such that

gldim Λ[0] < ∞ and suppose that Λ is T -Koszul for a module T . Let Λ† = Ext∗Λ(T, T )

endowed with the Ext-grading, then:

1. gldim Λ†[0] <∞ and Λ† is Koszul with respect to DTΛ†.

2. There is an isomorphism of graded algebras Λ ' Ext∗Λ†(DT,DT )

If this is the case we say that the pair (Λ†, DT ) is the Koszul dual of (Λ, T ).

When Λ is T -Koszul there exists a complex of bigraded Λ-Λ†-modules X that defines

two functors

FT = −⊗LgrΛ† X : D(grΛ†) 
 D(grΛ) : GT = RHomgrΛ(X,−)

such that (FT , GT ) is an adjoint pair ([Mad11], Section 3 and [Kel94]).

In general the two functors above are not quasi-inverses of each other but they induce

an equivalence on certain subcategories. Let FgrΛ be the full subcategory of grΛ of

modules M having a finite filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mt = M with factors that

are graded shifts of direct summands of T . Let Lb(Λ†) be the category of bounded

linear complexes of graded projective Λ†-modules.

Theorem 1.3.20 ([Mad11], Theorem 4.3.2 and Theorem 4.3.4). The functor

GT : D(grΛ) → D(grΛ†) restricts to an equivalence GT : FgrΛ → Lb(Λ†). If moreover

Λ is Artinian, Λ† is Noetherian and gldim Λ† < ∞, then there is an equivalence of

triangulated categories GbT : Db(grΛ) → Db(grΛ†) between the bounded derived

categories.

The following Proposition gives some useful properties of the adjoint pair (FT , GT ):

Proposition 1.3.21. Let T be a graded self-orthogonal Λ-module, M a finitely

cogenerated Λ-module and N an object in D(grΛ). Then, for every i, j ∈ Z, we have:

(a) GT (T ) ∼= Λ†.

(b) If φ : FTGT → idD(grΛ) is the counit of the adjunction, then φT : FTGT (T )→ T is

an isomorphism.

(c) There is a functorial isomorphism GT (N〈j〉) ∼= GT (N)〈−j〉[−j].

(d) There is a functorial isomorphism FTGT (N〈j〉) ∼= FTGT (N)〈j〉.

(e) (H iGT (M))j ∼= Exti+jgrΛ(T,M〈j〉).

(f) GT (DΛ) ∼= DTΛ†.

Proof. See Proposition 3.2.1 in [Mad11].
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1.3.3 Bigraded ∆-Koszul algebras

We are particularly interested in the case when a quasi-hereditary algebra is Koszul

with respect to the standard module ∆. Example 2.4 and 4.7 in [Mad13] show that if Z

is the Brauer algebra associated to the Brauer line, then there exists a quasi-hereditary

cover Γ that is standard Koszul with grading given by path-length but it is also possible

to define another grading in order to make it ∆-Koszul.

Example 1.3.22. [Mad11] [Mad13] Consider the case of the Brauer tree algebra when

the tree is a line with s edges. It can be presented as the path algebra of the following

quiver:

1
α
((
2

β

hh
α ** · · ·
β

hh
α ,,

s− 1
α
((

β

jj s
β
ll

with relations α2 = β2 = 0 and exαβ = exβα for any x = 2, . . . s − 1. Then a quasi-

hereditary cover Γ is the path algebra of the following quiver:

1
α
((
2

β

hh
α ** · · ·
β

hh
α
((
s

α ,,

β

jj s+ 1
β

hh

bound by the ideal of relations I =
(
αβ − βα, α2, β2, es+1βα

)
. We can see that Γ is

Koszul (and standard Koszul) or Koszul with respect to ∆ depending on the grading

that we put on the algebra:

1. If all the arrows are given degree 1 then Γ is Koszul in the classical sense and

standard Koszul.

2. If we put degα = 1 and degβ = 0, this define an algebra grading on Γ and the

conditions of Definition 1.3.15 are satisfied with T = Γ[0] = ∆. Hence Γ is Koszul

with respect to ∆ and the Koszul dual algebra Γ† = Ext∗Γ(∆,∆) is the path

algebra of the following quiver:

1 2
β

hh
α∗
vv · · ·

β

hh
α∗
vv

s
α∗tt

β

jj s+ 1
α∗

vv

β

hh

with relations I ′ =
(
β2, α∗β − βα∗

)
. Moreover it is shown in [Mad13] that Γ† is

Koszul in the classical sense.

We will need to consider a bigraded structure on Λ. Suppose we can define two

gradings | · |[ and | · |] on Λ, with shifts 〈·〉[ and 〈·〉], and corresponding categories of

graded modules gr[Λ and gr]Λ respectively. Let |·|tot be the total grading on Λ obtained

by adding the | · |[-degree and the | · |]-degree. For i ≥ 0, denote by Λ[i] the degree-i

subspace of Λ with respect to | · |[, and by Λi the degree-i subspace of Λ with respect to

| · |tot; then Λ0 ⊆ Λ[0]. Suppose moreover that (Λ, | · |[) is Λ[0]-Koszul and let (Λ†, DΛ[0])

be the Koszul dual of (Λ,Λ[0]).



Chapter 1: Background results 39

The grading | · |] on Λ induces a grading on Λ† in the following way. Since Λ[0] is

concentrated in | · |[-degree zero, the | · |]-degree on Λ[0] coincides with | · |tot, so Λ[0]

inherits a graded structure from |·|] by defining the graded parts (Λ[0])n = Λn∩Λ[0]. Put

Vn,j = Extngr]Λ(Λ[0],Λ[0]〈j〉]); the Yoneda extension groups of Λ[0] are graded k-vector

spaces:

ExtnΛ(Λ[0],Λ[0]) =
⊕
j≥0

Extngr]Λ(Λ[0],Λ[0]〈j〉]) =
⊕
j≥0

Vn,j .

Setting V•,j =
⊕

n≥0 Vn,j gives a grading on Λ† =
⊕

j≥0 V•,j that we will denote

again by | · |]. The algebra Λ† = Ext∗Λ(Λ[0],Λ[0]) is also a graded algebra with respect

to the Ext-grading since, for any n,m ≥ 0 we have

ExtnΛ(Λ[0],Λ[0]) ExtmΛ (Λ[0],Λ[0]) ⊆ Extn+m
Λ (Λ[0],Λ[0]).

Note that, since Λ[0] is graded self-orthogonal with respect to | · |[, the Ext-grading

on Λ† is precisely the one induced by | · |[; hence we will denote the Ext-grading on Λ†

again by | · |[. The decomposition of Λ† in bigraded subspaces is Λ† =
⊕

n,j≥0 Vn,j =⊕
n≥0

(⊕
j≥0 Vn,j

)
. We can define Vn =

⊕
i+j=n Vi,j so that

V0,0 = Homgr]Λ(Λ[0],Λ[0])(∼= Λ0),

V0,1 = Homgr]Λ(Λ[0],Λ[0]〈1〉]),

V1,0 = Ext1
gr]Λ(Λ[0],Λ[0]),

. . .

.

Then we can write Λ† =
⊕

n≥0 Vn and this defines a new graded structure on Λ† as

a k-vector space. From the above we have that

VnVm =

 ⊕
i+j=n

Extigr]Λ(Λ[0],Λ[0]〈j〉])

 ⊕
h+l=m

Exthgr]Λ(Λ[0],Λ[0]〈l〉])


⊆

⊕
i+j+h+l=n+m

Exti+h
gr]Λ

(Λ[0],Λ[0]〈j + l〉])

hence this gives us a graded structure on Λ† as a k-algebra. Finally we will denote this

grading on Λ† by | · |tot and the category of (finitely generated) graded modules by tgrΛ.

Example 1.3.23. Consider the algebra from Example 1.3.22:

1
α
((
2

β

hh
α ** · · ·
β

hh
α
((
s

α ,,

β

jj s+ 1
β

hh

We can take as [-grading the one considered in part (2) of the example, so deg[α = 1

and deg[β = 0 and as ]-grading the grading such that deg]α = 0 and deg]β = 1. Then

the total grading coincides with the radical grading (by path length).
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The first result of the following is essentially Proposition 4.2 of [Mad13] when Λ is

quasi-hereditary and ∆-Koszul, with [-grading given by | · |[ so that Λ[0] = ∆. Recall

that G∆ = HomD(gr[Λ)(∆,−).

Proposition 1.3.24 ([Mad13]). Let Λ be a bigraded quasi-hereditary algebra, with

gradings | · |[ and | · |] as before, that is also ∆-Koszul with respect to | · |[. Then

1. G∆(∇x) ∼= Sx

2. Sx〈j〉] ∼= G∆(∇x〈j〉])

where ∇x denotes the costandard Λ-module of weight x and Sx is the simple Λ†-module

whose projective cover is G∆(∆x).

The original statement in [Mad13] is about standard Koszul algebras admitting a

particular height function but the proof is still valid in the case of ∆-Koszul algebras.

We include the original argument here for the convenience of the reader.

Proof. 1. By Proposition 1.3.21(e), we have

(HkG∆(∇x))j ∼= Extk+j

gr[Λ
(∆,∇x〈j〉[) = 0

whenever k 6= 0 or j 6= 0. Then

G∆(∇x) ∼= (H0(G∆(∇x))0

∼= Homgr[Λ(∆,∇x)

∼= Homgr[Λ(∆x,∇x),

that is a one-dimensional k-vector space. Moreover, if y 6= x,

HomD(gr[Λ†)(G∆(∆y), G∆(∇x)) ∼= HomD(gr[Λ)(∆y,∇x) = 0

so we must have G∆(∇x) ∼= topG∆(∆x).

2. We have

Sx〈j〉] ∼= G∆(∇x)〈j〉]

∼= HomD(gr[Λ)(∆,∇x)〈j〉]

∼=
⊕
k∈Z

HomD(tgrΛ)(∆,∇x〈0, k + j〉) ∼= G∆(∇x〈j〉])
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Higher zigzag algebras

In this chapter we recall the definition of higher zigzag algebras as described in [Gra17].

After giving the general construction, we will focus on the case of type A higher zigzag-

algebras, since they are the central object of this thesis.

2.1 General construction

We start by recalling some basic facts. Given any algebra Λ and a Λ-Λ-bimodule M ,

the extension of Λ by M , denoted by ΛnM , is the algebra whose vector space is Λ⊕M
with multiplication given by (a,m)(b, n) = (ab,mb+ an). When M = Λ∗, this is called

the trivial extension algebra of Λ, Triv(Λ) = Λn Λ∗.

If φ ∈ Aut(Λ) is an automorphism of Λ and M a (left/right/bi-) Λ-module, we

denote by Mφ the (resp. left/right/bi-) Λ-module given by M with action twisted by

φ: m · λ = mφ(λ).

Now let Λ =
⊕

i≥0 Λi be graded, with Λ0 semisimple and generated in degree 1 as

a tensor algebra over Λ0. We have an automorphism ζ ∈ Aut(Λ) defined by ζ(λ) =

(−1)iλ, for λ ∈ Λi an homogeneous element of degree i.

Definition 2.1.1 ([GI], Section 5). The (d + 1)-trivial extension of Λ is the trivial

extension of Λ by the twisted bimodule Λ∗
ζd
〈d+ 1〉 and it is denoted by Trivd+1(Λ).

Hence, as a graded vector space, Trivd+1(Λ) = Λ⊕ Λ∗〈d+ 1〉 and the multiplication

is given by

(a, f)(b, g) = (ab, fb+ (−1)diag)

for a ∈ Λi.

We are now ready to give our main definition.

Definition 2.1.2 ([Gra17], Definition 2.5). Let Λ be a Koszul algebra such that

gldim Λ ≤ d <∞. The (d+ 1)-zigzag algebra of Λ is Zd+1(Λ) = Trivd+1(Λ!).

When gldim Λ = d (hence d is a parameter determined by Λ) we will refer to Zd+1(Λ)

as the higher zigzag algebra of Λ, denoting it by Z(Λ).

Remark 2.1.3. Given any graph G without loops or multiple edges, Huerfano and

Khovanov in [HK01] described the construction of the zigzag algebra A(G) of G and
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they proved that it is isomorphic to Triv(kQ!), where Q is the quiver obtained by taking

any orientation on the edges of G [HK01, Proposition 9]. Hence we can talk about the

zigzag algebra of any hereditary algebra kQ. In general though Definition 2.1.2 is

different from the classical one since A(kQ) is not always isomorphic to Z(kQ), as the

following example shows.

Example 2.1.4 ([Gra17], Example 2.11). Let Q be the following quiver:

2
α2

��
1

α1

@@

3α3

oo

Then the algebras A = Z2(kQ) and B = Triv(kQ!), graded by path length, both

have basis given by ei, αi, α
∗
i and e∗i for i = 1, 2, 3. Any graded isomorphism A

∼=−→ B

would permute the idempotents ei and this permutation would determine the images

of the arrows up to scalars. Without loss of generality we can suppose that ei is sent

to ei; suppose moreover that αi is sent to λiαi and that α∗i to µiα
∗
i . Then the relation

αiα
∗
i = −α∗i−1αi−1 implies that λiµi = −µi−1λi−1, so λ1µ1 = −λ2µ2 = λ3µ3 = −λ1µ1

and this is possible only if char k = 2.

Lemma 2.1.5. Let Λ = kQ/I be graded by path length and Koszul. If the underlying

graph of Q is bipartite then Zd+1(Λ) ' Triv(Λ!).

Proof. See [Gra17], Lemma 2.6.

2.2 Type A higher zigzag algebras

In this section we will focus on the construction of type A higher zigzag algebras and

their presentation as path algebras with relations [Gra17, Section 3]. This family of

algebras is the main object of this thesis because in the case d = 1 they coincide with

Brauer tree algebras whose underlying tree is a line. Brauer tree algebras have been

widely studied and Brauer line algebras appear in many different areas of

Representation Theory of algebras.

In order to motivate the construction of these higher zigzag algebras we start with

recalling some definitions from higher Auslander–Reiten theory [Iya11].

Definition 2.2.1 ([Iya11], Definition 1.1). Let d > 0. A module M ∈ mod Λ is called

d-cluster tilting if

addM = {X ∈ mod Λ | ExtiΛ(M,X) = 0 for any 0 < i < d}

= {X ∈ mod Λ | ExtiΛ(X,M) = 0 for any 0 < i < d}.

We say that the algebra Λ is d-representation finite if gldim Λ ≤ d and there exists

a d-cluster tilting module M ∈ mod Λ.
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Note that 1-cluster tilting module are additive generators of mod Λ. So Λ is 1-

representation finite if and only if it is representation finite and hereditary.

Definition 2.2.2 ([Iya11], Theorem 1.10). Let Λ be a d-representation finite algebra

with d-cluster tilting module M . We call the algebra Γ = EndΛ(M) the d-Auslander

algebra of Λ.

In [Iya11] Iyama defined recursively a family of algebras Λds , for d, s ≥ 1, such that

Λds is d-representation finite, with d-Auslander algebra Λd+1
s , and Λd+1

s is

d + 1-representation finite. Type A higher zigzag algebras are defined as

Zds = Zd+1(Λds) so let us recall Iyama’s construction.

Let Λ1
s be the path algebra of the linearly oriented quiver As:

1→ 2→ · · · → s

This algebra is hereditary and representation finite so Λ1
s is 1-representation finite;

let M1
s be the cluster tilting module in mod Λ1

s. By [Iya11, Corollary 1.16], Λ2
s =

EndΛ1
s
(M1

s ) is 2-representation finite so we can inductively define Λds by:

Λds = EndΛd−1
s

(Md−1
s )

where Md−1
s is a (d− 1)-cluster tilting module for Λd−1

s .

The following result is the last step we need to define higher zigzag algebras of type

A.

Proposition 2.2.3. For s, d ≥ 1 the algebra Λds is Koszul.

Proof. See [Gra17], Proposition 3.4.

Definition 2.2.4 ([Gra17], Definition 3.5). The (d + 1)-zigzag algebra of type As is

Zds = Zd+1(Λds).

The presentation of Zds as path algebra of a quiver with relations is the main result of

[Gra17, Section 3] and it is achieved using the fact that type A higher zigzag algebras

are quadratic duals of type A higher preprojective algebras.

Definition 2.2.5 ([IO11]). Assume that Λ has finite global dimension d. The (d+ 1)-

preprojective algebra of Λ, denoted by Π = Πd+1(Λ), is the tensor algebra, over Λ, of

the Λ-Λ-bimodule E = ExtdΛ(Λ∗,Λ):

Π := TΛ ExtdΛ(Λ∗,Λ).

In [GI] the authors established a connection between higher zigzag algebras and

higher preprojective algebras.
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Theorem 2.2.6 ([GI], Section 5). Let Λ be Koszul and of global dimension d and let

Π be its (d + 1)-preprojective algebra. Then Π is a quadratic algebra and there is a

morphism φ : Π! → Z(Λ) that is an isomorphism in degree 0 and 1.

In [GI] it is conjectured that, for type As higher zigzag algebra with s ≥ 3, the

morphism φ is an isomorphism and this has been proved in [Gra17]. As a consequence

it is possible to adapt the presentation of higher preprojective algebras as path algebras

with relations given by Iyama, Oppermann and Grant ([IO11], [GI]) to describe higher

zigzag algebras.

Theorem 2.2.7 ([GI], Theorem 3.1). The algebra Zds has a presentation

Zds
∼= kQds/I

d
s

where Qds is a quiver with set of vertices:

Q0 =

{
x = (x0, x1, . . . , xd) ∈ Zd+1

≥0 |
d∑
i=0

xi = s− 1

}
.

If s = 1 then Q0 consists of a single vertex and Qds has a single loop α in degree d+1.

In this case we put Id1 = (α2).

If s ≥ 2 the arrows of Qds are all in degree one and they are given by the following

set:

Q1 =
{
x

αi−→ x+ fi | i ∈ {0, . . . , d}, x, x+ fi ∈ Q0

}
,

where fi denotes the vector

fi = (0, . . . , 0,
i−1
−1,

i
1, 0, . . . , 0) ∈ Zd+1

and we put f0 = (1, 0, . . . , 0,−1).

If s = 2 then Qd2 consists of an oriented cycle of d+ 1 vertices and Id2 is the ideal of

paths of length d+ 2.

If s ≥ 3 then Ids is generated by the following relations:

for any x ∈ Q0 and i, j ∈ {0, . . . , d} satisfying x+ fi, x+ fi + fj ∈ Q0,

(x
αi−→ x+ fi

αj−→ x+ fi + fj) =

(x
αj−→ x+ fj

αi−→ x+ fi + fj) if x+ fj ∈ Q0,

0 if i = j.

Remark 2.2.8. To simplify the notation we will usually write the relations as

αiαj =

αjαi if αjαi 6= 0,

0 if i = j.
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Any vertex of the quiver is contained in a (d+ 1)-cycle of the form:

x→ x+ fσ(1) → x+ fσ(1) + fσ(2) → · · · → x+ fσ(1) + · · ·+ fσ(d) → x

for some permutation σ ∈ Sd+1 .

Example 2.2.9. As an example we show the quiver of the higher zigzag algebra Z2
4 :

030
α2

""
120

α2

""

α1

<<

021
α0oo

α2

""
210

α1

<<

α2

""

111

α1

<<

α2

""

α0oo 012
α0oo

α2

""
300

α1

<<

201

α1

<<

α0oo 102

α1

<<

α0oo 003
α0oo

and the quiver of Z3
3 :

0200

  
1100

>>

  

0110

  ++
2000

>>

1010

>>

++

0020

++

0101

  

ll

1001

>>ll

0011

**

ll

0002

ll

The following are important results that will be frequently used in the sequel:

Proposition 2.2.10. Zds
∼= Triv((Λds)

!), thus Zds is a symmetric algebra.

Proof. See [Gra17], Proposition 3.11.

Note that Proposition 2.2.10 tells us that for type A higher zigzag algebras we can

forget about the change of sign introduced by the twisted trivial extension in the general

definition. This very particular property is also reflected by the fact that we can express

the relations of these algebras as commutativity relations instead of anti-commutativity

relations, as the quadratic duality between Zds and Πd+1(Λds) suggests.

Proposition 2.2.11. • Let αi1αi2 · · ·αil be a path in the quiver of Zds starting at

the vertex x. If σ is a permutation in Sl and αiσ(1)αiσ(2) · · ·αiσ(l) is another path

starting at x, then the two paths are equal.
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• Let s ≥ 3. Then any path in the quiver of Zds that contains αi more than once is

zero.

Proof. The proofs of the two facts can be found in [Gra17], Lemma 3.17 and Lemma

3.19 respectively.

Proposition 2.2.12. Let Z = Zds be a higher zigzag algebra of type A and Px, Py two

indecomposable projective Z-modules. Then

• If x = y then dimk HomZ(Px, Px) = 2 and the Hom-space is generated by the

identity and the map εx : Px → soc(Px).

• If x 6= y then dimk HomZ(Px, Py) ≤ 1.

Proof. By Proposition 2.2.11 each minimal cycle as in Remark 2.2.8 is non-zero and

it is also a maximal path starting at the vertex x. Hence it corresponds in Z to the

generator of the socle of the indecomposable projective module Px and this shows the

existence of εx : Px → soc(Px). Since the vertices of each d + 1-cycle are distinct, for

any indecomposable projective Z-module P , the composition factors of P/ socP are all

distinct and the first claim is proved.

The second claim follows from the fact that the simple module Sx can appear as a

composition factor of Py at most once.

We also recall the following fact about the endomorphism ring of projective modules.

Proposition 2.2.13. Fix s, d ≥ 1, 1 ≤ n ≤ s, 0 ≤ m ≤ d and let Z = Zds . Let P be

the direct sum of the indecomposable projective modules exZ such that xm ≥ n. Then

EndZ(P ) ' Zds−n.

Proof. See [Gra17], Proposition 4.4.
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Quasi-hereditary covers

In this chapter we define some quasi-hereditary covers for higher zigzag algebras as

quotients of higher zigzag algebras of bigger size. We prove that these algebras are

quasi-hereditary and that they are Koszul in the classical sense, standard Koszul

and Koszul with respect to the standard module ∆. To conclude we compute the

∆-Koszul dual as a path algebra with relations.

3.1 Construction of quasi-hereditary covers

Let Z+ = Zds+1 be the (d+1)-zigzag-algebra of type As+1 and consider the presentation

of Z+ as the path algebra of the quiver Qds+1 = (Q0, Q1) with relations as given in

Section 2.2 (Theorem 2.2.7). Denote by I the set of vertices. In the quiver we have

arrows labelled by

αk : (x0, . . . , xk−1, xk, . . . , xd)→ (x0, . . . , xk−1 − 1, xk + 1, . . . , xd)

for k = 1, . . . , d and α0 is defined cyclically. Denote by Z = Zds the (d + 1)-zigzag-

algebra of type As; by Proposition 2.2.13 we can select a subset J ⊂ I such that

Z ∼= EndZ+(
⊕

y∈J P
+
y ) where P+

y is the projective cover of the simple Z+-module

associated to the vertex y. To be precise J = {(x0, x1, . . . , xd) ∈ I | x0 6= 0}. Put

P+
J =

⊕
y∈J P

+
y . For K = I \ J , let

Γ(Z) = Z+/ (ezα0α1|z ∈ K)

so that we have a surjective morphism of k-algebras: Z+ → Γ(Z) that induces a fully

faithful embedding: mod Γ(Z) → modZ+. Since Γ(Z) is defined as a quotient of Z+

by an admissible ideal, the underlying quivers of Z+ and of Γ coincide. Note that the

vertices in K are precisely the ones of the kind (0, x1, . . . , xd), so they are not the target

of any arrow α0. Viceversa, vertices in J are always the target of some arrow α0.

Example 3.1.1. Consider the 2-zigzag algebra Z = Z2
3 , with labels on the arrows

accordingly to Theorem 2.2.7:
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020
α2

##
110

α1
;;

α2 ##

011
α2

##

α0oo

200

α1
;;

101
α1

;;

α0

oo 002α0

oo

Then the quiver of Γ(Z) is

030
α2

""
120

α2

""

α1

<<

021
α0oo

α2

""
210

α1

<<

α2

""

111

α1

<<

α2

""

α0oo 012
α0oo

α2

""
300

α1

<<

201

α1

<<

α0oo 102

α1

<<

α0oo 003
α0oo

In this example we have J = {300, 210, 201, . . . , 102} and K = {030, 021, 012, 003}.

In the following we put Γ = Γ(Z).

Lemma 3.1.2. The action of Z+ on the module P+
J factors over Γ.

Proof. It is enough to show that, for any y ∈ J in the quiver of Z+, any element

e+
z α0α1 annihilates e+

y Z
+ = P+

y , where e+
z (resp. e+

y ) is the primitive idempotent in

Z+ associated to the vertex z ∈ K (resp. y ∈ J). Let e+
y αi · · ·αje+

z be a path from y

to z corresponding to a generator of P+
y , such that we can non-trivially multiply it on

the right by e+
z α0α1. By the relations αiαj = αjαi of Z+, such a path is equivalent to

e+
y αl · · ·α1e

+
z . Then, again using the commutativity relations, we have

e+
y αl · · ·α1e

+
z α0α1 ∼ e+

y αl · · ·α0α1α1 = 0

As a corollary we have that:

EndΓ(P+
J ) ∼= EndZ+(P+

J ) ∼= Z

where the first isomorphism comes from the fully faithful embedding mod Γ→ modZ+.

So P+
J is also a left Z-module and there is an adjunction

G = −⊗Z P+
J : modZ 
 mod Γ : F = HomΓ(P+

J ,−)

such that GF ∼= id when restricted to addP+
J .

Lemma 3.1.3. Let Py be an indecomposable projective Γ-module such that y ∈ J . Then

Py = Iy is also injective.
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Proof. Note that for any y ∈ J , every path in the quiver of Γ is contained in a minimal

cycle at the vertex y and this cycle is non-zero in Γ since Py is also a module over Z+.

Denote by εy the non-zero element in Γ corresponding to such a cycle (note that this is

well defined since by commutativity relations all the minimal cycles at y are equivalent).

Let π ∈ eyΓ = Py be a path starting at y and π′ be its complementary path in a minimal

cycle: εy = eyππ
′ey. Then the map π 7→ D(π′) extends to a morphism of Γ-modules

and it gives an isomorphism Py = eyΓ
∼=−→ Iy = D(Γey).

We can define a partial order on I by putting x < y if and only if there is a path

x
π // y in the quiver of Z+, such that π does not involve any arrow α0 (recall the

presentation of Z+ as in Theorem 2.2.7).

Lemma 3.1.4. The indecomposable standard modules of Γ are either simple or

uniserial with radical length two. Whenever we have an arrow α0 : x → y in the

quiver of Γ then the standard module ∆x has simple top Sx and simple socle Sy.

Therefore EndΓ(∆x) ∼= k for any x ∈ I.

Dually indecomposable costandard modules are either ∇x = exα0Γ ⊆ Ix, if x ∈ J , or

∇x = Ix, if x ∈ K.

Proof. By the construction of the quiver of Z+, there exists an arrow αl : y → x for

x < y only if l = 0. Hence ∆x is non simple if and only if there is an arrow x
α0−→ y;

Sy is the only composition factor in a radical filtration of Px such that y < x, since

α0α0 = 0. Then standard modules are uniserial with radical length at most 2.

Dually we show that, for any y ∈ J , the costandard module ∇y is given by eyα0Γ ⊆
Iy ∼= Py. First eyα0Γ ⊆ ∇y because α0 appears only once in any path starting at

y, so any composition factor Sz of eyα0Γ is such that z ≤ y. Also ∇y ⊆ eyα0Γ: if

not we could find an element eyαj · · ·αkez in ∇y with j, . . . , k 6= 0 and Sz would be a

composition factor of ∇y such that z > y, a contradiction.

To conclude, if z ∈ K then ∇z = Iz. Indeed, using commutativity relations and

ezα0α1 = 0, any path ending in z involving an arrow α0 is zero in Γ. So any composition

factor Sz of Iy satisfies z ≤ y.

Example 3.1.5. Consider the 2-zigzag algebra Z = Z2
3 as in Example 3.1.1:

020
α2

##
110

α1
;;

α2 ##

011
α2

##

α0oo

200

α1
;;

101
α1

;;

α0

oo 002α0

oo
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Then the quiver of Γ is

030
α2

""
120

α2

""

α1

<<

021
α0oo

α2

""
210

α1

<<

α2

""

111

α1

<<

α2

""

α0oo 012
α0oo

α2

""
300

α1

<<

201

α1

<<

α0oo 102

α1

<<

α0oo 003
α0oo

and the ideal of relations is generated by the usual relations of Z2
4 with moreover

e021α0α1 = e012α0α1 = e003α0α1 = 0. Note that in this example we have

J = {300, 210, 201, . . . , 102} and K = {030, 021, 012, 003}.
The quiver of the partial order on I is the following:

030

""
120

""

<<

021

""
210

<<

""

111

<<

""

012

""
300

<<

201

<<

102

<<

003

so that 300 < 210 < 201 < 111 . . ., 300 < 210 < 120 < 111 . . ., 300 < 210 < 120 <

030 . . ., etc.

Proposition 3.1.6. The algebra Γ = Γ(Z) is a quasi-hereditary cover of Z.

Proof. First we show that Γ is quasi-hereditary. By Lemma 3.1.4, EndΓ(∆x) ∼= k for

every x ∈ I so we only need to show that Γ is ∆-filtered.

We will prove that every indecomposable injective module is∇-filtered. Let x, y, z ∈ I
such that there are arrows z

α0−→ y
α0−→ x and consider the corresponding morphisms

between indecomposable injective modules Ix
α0·−−→ Iy

α0·−−→ Iz. Since the vertices x and

y must belong to J we have that Ix = Px = exΓ and Iy = Py = eyΓ. Hence Im(Ix
α0·−−→

Iy) = eyα0Γ = ∇y and, since by the relations we have Ker(Iy
α0·−−→ Iz) = eyα0Γ, the

sequence Ix
α0·−−→ Iy

α0·−−→ Iz is exact. If z ∈ K, then ∇z = Iz and Iy
α0·−−→ Iz is an

epimorphism since the image is the costandard module ∇z. Then for every x ∈ I such

that z
α0−→ y′

α0−→ · · · α0−→ y
α0−→ x is a subquiver of the quiver of Γ with z ∈ K, an

injective resolution of the costandard module ∇x is given by

0→ ∇x → Ix
α0·−−→ Iy

α0·−−→ · · · α0·−−→ Iy′
α0·−−→ Iz → 0.
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This means that for any x ∈ I, either x is in K and Ix = ∇x or there exists a short

exact sequence

0→ ∇x → Ix → ∇y → 0

so that Ix is ∇-filtered.

The functor

F = HomΓ(Z)(P
+
J ,−) : mod Γ(Z)→ modZ

is clearly full. To prove that it is faithful let Px and Pz be two indecomposable

projective Γ-modules and π : Px → Pz a morphism between them; hence π is given by

an equivalence class in Γ of a path from z to x. The image of π through F is

Fπ : HomΓ(P+
J , Px)→ HomΓ(P+

J , Pz) and it is given by composing with π on the left.

We consider two cases:

- If x ∈ J then idPx ∈ HomΓ(P+
J , Px). Suppose Fπ = 0, then Fπ(idPx) = π ·idPx =

0 implies π = 0.

- If x ∈ K, suppose π 6= 0 and let π′ be such that ππ′ is a maximal path contained

in a minimal cycle based at z ending in a vertex y ∈ J . Obviously in ππ′ any

arrow αi can appear at most once because it is part of a minimal cycle. Moreover

it does not contain any subpath α0α1: if this was the case, another α0 would

have to appear in ππ′ for this path to end in J . Then Fπ(π′) = ππ′ is a non-zero

morphism.

We have proved that π 6= 0 implies Fπ 6= 0 so the functor F is faithful and the proof

is complete.

Example 3.1.7. Let Γ = Γ(Z2
3 ) be the quasi-hereditary cover of Z2

3 . We give here

a slightly different presentation of Γ as path algebra with relations, in order to give

a cleaner description of the structure of indecomposable standard modules, projective

modules and their filtrations. To do that we label the vertices of the quiver with integers

and we keep the same notation for the arrows:

7
α2

��
4

α2

��

α1

@@

8
α0oo

α2

��
2

α1

@@

α2

��

5

α1

@@

α2

��

α0oo 9
α0oo

α2

��
1

α1

@@

3

α1

@@

α0oo 6

α1

@@

α0oo 0
α0oo

The ideal of relations is generated by αiαj−αjαi whenever the two compositions exist

in the quiver, αiαi and ezα0α1 for any i, j ∈ {0, . . . , d} and z ∈ K whereK = {7, 8, 9, 0}.



Chapter 3: Quasi-hereditary covers 52

Indecomposable projective modules have the following structure:

P1 =

1

2

3

1

, P2 =

2

3 4

1 5

2

, P3 =

3

1 5

2 6

3

, P4 =

4

5 7

2 8

4

, P5 =

5

2 8 6

4 9 3

5

,

P6 =

6

3 9

5 0

6

, P7 =

7

8

4

, P8 =

8

4 9

5

, P9 =

9

5 0

6

, P0 =
0

6
.

Indecomposable standard modules are as follows:

∆1 = S1, ∆2 = S2, ∆3 =
3

1
, ∆4 = S4, ∆5 =

5

2
,

∆6 =
6

3
, ∆7 = S7, ∆8 =

8

4
, ∆9 =

9

5
, ∆0 =

0

6
.

To conclude we show the filtration of some indecomposable projective modules by

standard modules. We will show the filtrations of P1, P2, P5 and P8 since, by the

symmetry of the structure of the projective modules, the other filtrations are very

similar.

P1 : 0 ⊂ 3

1
⊂

2

3

1

⊂

1

2

3

1

, P2 : 0 ⊂ 5

2
⊂

3

1 5

2

⊂
3 4

1 5

2

⊂

2

3 4

1 5

2

,

P5 : 0 ⊂ 9

5
⊂

8

4 9

5

⊂
8 6

4 9 3

5

⊂

5

2 8 6

4 9 3

5

, P8 : 0 ⊂ 9

5
⊂

8

4 9

5

.

Notation 3.1.8. Despite the non-uniqueness of quasi-hereditary covers, we will from

now on refer to Γ = Γ(Z) as the quasi-hereditary cover defined in this section.

Proposition 3.1.9. Quasi-hereditary covers of higher zigzag-algebras have strong exact

Borel subalgebras.

Proof. Let Q be the quiver of Γ and Q′ the subquiver of Q with the same set of vertices

Q′0 = Q0 and arrows Q′1 = {αi ∈ Q1 | i 6= 0}. The path algebra of Q′ bound by the ideal

of relations R′ = {αiαi | i ∈ {0, . . . , d}}∪{αiαj = αjαi | i, j ∈ {0, . . . , d} and αiαj 6= 0}
is a subalgebra of Γ and we will denote it by B. Since to obtain Q′ from Q we removed

exactly the arrows α0, we can identify the vertices of the two quivers and label them

with the same set I. Note that, by comparing their presentations, the algebras B and

the quadratic dual of the higher Auslander algebra Λds+1 of type A are isomorphic. The



Chapter 3: Quasi-hereditary covers 53

partial order on I that we gave before is still well defined in the quiver Q′ since we

have not removed any arrow αi for i 6= 0. Then B has simple standard modules and,

for every projective indecomposable B-module P , any composition series of P gives

a ∆-filtration. This means that B is a quasi-hereditary algebra with simple standard

modules. The restriction functor ι : mod Γ → modB sends costandard modules to

costandard modules, since they are generated by paths not involving arrows α0, and

the indices are preserved. Then the condition of Theorem 1.2.17 is satisfied and B is a

strong exact Borel subalgebra of Γ.

3.1.1 Koszulity of quasi-hereditary covers

Note that quasi-hereditary covers of higher zigzag-algebras are quadratic and we can

define an order on the arrows of the quiver of Γ such that exαi < exαi+1 for i =

1, . . . , d− 1. Moreover we set exαi < exα0 for every i 6= 0.

Proposition 3.1.10. If Z is a higher zigzag-algebra, then its quasi-hereditary cover Γ

is a Koszul algebra.

Proof. We want to show that Γ has a PBW basis, in order to use Theorem 1.3.11. Since

we already have an order on the arrows, we need to show that we can extend this order

lexicographically to paths of any length. Remember that if Z = Zds , then Γ is a quotient

of Zds+1, so we can label the vertices of the underlying quiver by x = (x0, x1, . . . , xd)

where
∑

i xi = s. If we want to extend our order we have to prove that, for every i < j,

if exαjαi 6= 0 then exαjαi = exαiαj . If this is the case then

B = {exαi1 · · ·αis | x ∈ Q0, i1 < i2, · · · < is}

is a PBW basis for Γ.

Now suppose we have i < j and exαjαi 6= 0:

x = (. . . , xi−1, xi, . . . , xj−1, xj , . . .)

αj
��

(. . . , xi−1, xi, . . . , xj−1 − 1, xj + 1, . . .)

αi
��

(. . . , xi−1 − 1, xi + 1, . . . , xj−1 − 1, xj + 1, . . .)

It is clear that the composition exαiαj always exists unless j = d, i = 0 and xi =

x0 = 0. But in this last situation we have that x ∈ K and exαjαi = exα0α1 = 0 in

Γ.

It is known that standard Koszul algebras are Koszul in the classical sense; this

follows from a characterization of standard Koszul algebras, that is Theorem 1.4 in

[ÁDL03]. However, in the case of our quasi-hereditary covers, we have to prove that

they are standard Koszul explicitly.
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Theorem 3.1.11. The quasi-hereditary algebra Γ is standard Koszul.

Proof. Every standard module ∆x is either simple or the extension of two simple

modules

0→ Sy〈1〉 → ∆x → Sx → 0

such that there exists an arrow x
α0−→ y in the quiver of Γ. Let P •(x) and P •(y) be

linear projective resolutions of Sx and Sy respectively (their existence is provided by

the Koszulity of Γ). Then in Db(Γ) there is a triangle:

∆x → P •(x)→ P •(Sy〈1〉)[1]
+−→

Now consider the Koszul duality functor

K : Db(Γ!)→ Db(Γ)

and denote its quasi-inverse by K−1. Applying K−1 to the previous triangle we obtain

a triangle in Db(Γ!):

C → K−1(P •(x))→ K−1(P •(Sy〈1〉)[1])
+−→

where K(C) ∼= ∆x, K−1(P •(x)) ∼= K−1(Sx) ∼= Ix and

K−1(P •(Sy〈1〉)[1]) ∼= K−1(Sy〈1〉[1]) ∼= K−1(K(Iy)〈1〉[1]) ∼= K−1K(Iy〈−1〉) ∼= Iy〈−1〉

where Ix and Iy are the injective envelopes of the simple Γ!-modules Tx and Ty

respectively.

We claim that the map Ix
f−→ Iy〈−1〉 is surjective. From this follows that C is

quasi-isomorphic to Ker f and then ∆x ∈ grΛ↑ ∩ K(gr(Λ!)↓) is a linear module.

The map Ix
f−→ Iy〈−1〉 is surjective if and only if the corresponding dual map between

left Γ!-modules

Γ!ey〈−1〉 → Γ!ex

is injective and this map is given by right multiplication by the arrow x
α0−→ y. If we

put B = (Γ!)op, we can equivalently show that the map given by left multiplication by

α0 between right projective B-modules is injective:

eyB
α0·−−→ exB.

To prove our claim we need the following really useful construction that we recall

from the proof of Theorem 3.5 in [HI11a]. Note that we will modify slightly the ideals

of relations to adapt to our quasi-hereditary setting.

First of all note that, since B = (Γ!)op, with a little abuse of notation we can describe
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the quiver Q of B using the same notation as in Definition 2.2.4

Q0 =

{
x = (x0, x1, · · · , xd) ∈ Zd+1

≥0 |
d∑
i=0

xi = s

}

and

Q1 =
{
x

αi−→ x+ fi | i ∈ {0, . . . , d}, x, x+ fi ∈ Q0

}
where fi = (0, . . . ,

i−1
−1,

i
1, . . . , 0) and f0 = (1, . . . ,−1). Remember moreover that we

called K the subset of Q0 consisting of vertices x such that x0 = 0. Then B = kQ/I

where I is the ideal generated by the elements

exαiαj =


exαjαi if x+ fj ∈ Q0

0 if x+ fj /∈ Q0 and (i, j) 6= (0, 1)

exαiαj if x+ fj /∈ Q0 and (i, j) = (0, 1)

for any x ∈ Q0 such that x+ fi, x+ fi + fj ∈ Q0. The elements ezα0α1, for z ∈ K are

non-zero in B (in contrast with the higher preprojective algebras described in [HI11a])

since in Γ we have ezα0α1 = 0 and B = (Γ!)op.

Define the quiver Q̂ by

Q̂0 =

{
x = (x0, · · · , xd) ∈ Zd+1 |

d∑
i=0

xi = s, x0 ≥ 0

}

Q̂1 =
{
x

αi−→ x+ fi | i ∈ {0, . . . , d}, x+ fi ∈ Q̂0

}
and let Î be the ideal of kQ̂ defined by all the possible commutativity relations αiαj =

αjαi. If we set B̂ = kQ̂/Î then we have a surjective morphism of k-algebras π : B̂ → B

with kernel

R =
∑
z /∈Q0

B̂ezB̂

and the residue classes of paths that are not in R are mapped bijectively to residue

classes of paths in Q. For two paths in Q̂ p, p′ from x to y, we will write p ≡ p′ if

p− p′ ∈ Î.

We define a Zd+1-grading g on B̂ by (g(αi))j = δij . This is a well-defined algebra

grading on B̂ since Î is generated by homogeneous relations. Let p be a path from x

to y, then y − x =
∑

i bifi, where b = (b0, · · · , bd) = g(p) is the degree of p. In fact we

can always write p ≡ px,b,y where

px,b,y = x
α0−→ · · · α0−→ x+ d0f0

α1−→ · · ·
αd−1−−−→ y − bdfd

αd−→ · · · αd−→ y.

hence, in B̂, p+ Î is determined by its degree b and either x or y. Moreover, for each
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path p′ from x to z, we have p ≡ p′q if and only if g(p′)i ≤ bi for all 0 ≤ i ≤ d (take

for example q = pz,b−g(p′),y). Hence the residue class p+ Î is in the ideal R if and only

if p ≡ p′q where p′ is a path from x to z and z /∈ Q0 and this is equivalent to say that

there exist an index j 6= 1 such that xj < dj+1 where we work modulo d + 1 on the

indices (equivalently p+ Î /∈ R if and only if xj ≥ dj+1 for all j 6= 1).

Lemma 3.1.12. Let Px = exB and π ∈ soc(Px). Then π corresponds to a maximal

path starting at x and ending at a vertex in K.

Proof. Note that since B ∼= B̂/R is finite dimensional over k, for any x ∈ Q0 there are

(a finite number of) maximal paths in Q starting at x, up to relations. We will show

that any non-zero path p from x to z with z /∈ K can be prolonged to a path ending

in z′ ∈ K. Let x = (x0, · · · , xd) ∈ I, z = (z0, · · · , zd) ∈ J and p a path in Q̂ from x to

z such that p + Î /∈ R. Then z′ = z + z0f1 ∈ K so, if q = ezα
z0
1 is the path from z to

z′ given by the arrows α1 and g(p) = b, we have b′ = g(pq) = b + (0, z0, · · · , 0). Since

p+ Î /∈ R we have xj ≥ bj+1 for every j 6= 1 and this implies xj ≥ b′j+1. So pq + Î /∈ R
is a non-zero path from x to z′ ∈ K.

Lemma 3.1.13. soc(Px) is simple for every x ∈ I.

Proof. Let p and p′ be two paths in Q̂ from x to z and z′ respectively, such that

p + Î , p′ + Î /∈ R. By the Lemma 3.1.12 we can suppose z, z′ ∈ K. Let g(p) = c

and g(p′) = b so that we can write z = x +
∑

i cifi and z′ = x +
∑

i bifi. Since

the full subquiver of Q that has K as set of vertices is directed, there exists a vertex

z′′ ∈ K and two paths q, q′ in K (hence not involving arrows α0 and α1) from z and

z′ respectively to z′′. Since q and q′ are paths in K we have that pq + Î , p′q′ + Î /∈ R
because zi ≥ g(q)i+1 and z′i ≥ g(q′)i+1 for any i 6= 0. Hence they must coincide (up to

equivalence) since z′′ − x =
∑

i g(pq)ifi =
∑

i g(p′q′)ifi. Hence dimk soc(Px) = 1 and

soc(Px) is simple.

Lemma 3.1.14. Let Px′
α0·−−→ Px be the irreducible morphism between indecomposable

projective B-modules given by left multiplication by x
α0−→ x′. Then α0 · (soc(Px′)) 6= 0

and Px′
α0·−−→ Px is injective.

Proof. Let p′ be a path in Q̂ from x′ to z such that π(p′ + Î) = p′ + I generates

soc(Px′). Lemma 3.1.13 guarantees the existence and the uniqueness of such path. We

want to show that α0p
′ + Î /∈ R. If g(p′) = b′, then g(α0p

′) = b′ + (1, 0, · · · , 0) =

(b′0 + 1, b′1, · · · , b′d). Since x′ = x + f0, we have xi = x′i for every i 6= 0, d; moreover

x′d = xd − 1 therefore xd = x′d + 1 ≥ b′0 + 1 and we conclude that α0p
′ + Î /∈ R. The

morphism Px′
α0·−−→ Px is injective since it doesn’t annihilate the socle of Px′ .

As a consequence of Lemma 3.1.14 we have that any irreducible morphism between

indecomposable projective B-modules is a monomorphism and the proof of

Theorem 3.1.11 is complete.
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3.2 ∆-Koszulity of quasi-hereditary covers

Motivated by Example 1.3.22, we want to show that similar results are true for our

quasi-hereditary covers of higher zigzag-algebras (see also Theorem 4.1 and 4.4 of

[Mad13]). We already know that for a higher zigzag-algebra Z, its quasi-hereditary

cover Γ is Koszul and standard Koszul. Now we want to prove that Γ is Koszul with

respect to ∆.

We define a new grading on Γ, that we will denote by | · |[, by setting

deg[(ex) = 0 ∀x ∈ I, deg[(αk) =

1 if k 6= 0

0 if k = 0

The fact that this is a well defined algebra grading is assured by the fact that every

non-monomial relation is of the form αiαj = αjαi. We will call this grading the [-

grading (according to Subsection 1.3.3); we denote by Γ[i] the [-degree i part of Γ and

by gr[Γ the category of finitely generated graded Γ-modules. We have the following:

Proposition 3.2.1. Let Γ be our quasi-hereditary cover of the higher zigzag-algebra Z.

1. Consider Γ with the ordinary grading. If ExtugrΓ(∆y, Sx〈v〉) 6= 0 then u = v =

d(x, y).

2. According to the [-grading, Γ[0]
∼= ∆ as graded Γ-modules.

3. If Γ is given the [-grading, then minimal resolutions of standard modules are

linear with respect to the [-grading.

Proof. 1. Suppose that ExtugrΓ(∆y, Sx〈v〉) 6= 0. Since Γ is standard Koszul we have

u = v. Consider a linear projective resolution of ∆y:

. . .→ P u → . . .→ P 1 → P 0 = Py → ∆y → 0

where the indecomposable projective module Px appears as a direct summand in

P u. By part (2) of Lemma 1.2.12 we have that y < x and so, by the definition of

the partial order on the set of weights of Γ, there exists a path π from y to x that

involves only arrows αk for k 6= 0. The length of this path π is equal to d(x, y)

and so we have d(x, y) ≤ u. On the other hand by part (3) of Lemma 1.2.12 we

deduce that u ≤ d(x, y) and this proves the claim.

2. This follows from the definition of [-grading.

3. By what has been proved in part (1), if P u → P v is a map in a linear projective

resolution of a standard module ∆x, then the image of generators of P u in P v are

linear combinations of elements of the form eaαkeb with k 6= 0, since d(a, b) = 1.

Then the resolution is also linear with respect to the [-grading.
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From the above results we have the following theorem:

Theorem 3.2.2. Consider Γ as a graded algebra according to the [-grading. Then Γ

is Koszul with respect to ∆.

Proof. The algebra Γ[0] can be decomposed in subalgebras each of which is isomorphic

to a type A algebra with underlying quiver:

x1
α0−→ x2

α0−→ · · · α0−→ xk

bound by relations α0α0 = 0, for 1 ≤ k ≤ s + 1. These algebras have all finite global

dimension, hence Γ[0] has finite global dimension as well. ∆ is a tilting Γ[0]-module

by part (2) of Proposition 3.2.1. Now let P i be a projective module in a minimal

graded projective resolution of ∆; then P i is generated in degree i and since ∆〈j〉
is concentrated in degree j we have that Homgr[Γ(P i,∆〈j〉) = 0 if i 6= j. Hence

Exti
gr[Γ

(∆,∆〈j〉) = 0 whenever i 6= j.

3.3 ∆-Koszul duality

In this last section we want to study the ∆-Koszul dual Γ† when Γ is the quasi-hereditary

cover that we defined for a higher zigzag-algebra. First we want to show that Γ† is a

bigraded algebra and that it is Koszul when endowed with the total grading | · |tot.
This is true when we consider the quasi-hereditary cover of the Brauer line by [Mad13,

Theorem 4.4] and the proof is based on the existence of a particular height function

on the set of vertices of the quiver of Λ (see [Mad13]). It is then reasonable to try to

generalize this result for higher zigzag-algebras (of type A). To conclude we compute

the quiver of the ∆-dual algebra and, using the fact that Koszulity implies quadraticity,

we determine its ideal of relations.

3.3.1 ∆-Koszul dual of quasi-hereditary covers

Let us describe the bigraded structure that we will consider on Γ and on its ∆-dual

Γ†. Recall that we have already defined the [-grading on Γ and we denoted by Γ[0] the

degree zero part with respect to this grading. We can define another grading | · |] on Γ

such that the total grading corresponds to the radical grading:

|ex|] = 0 ∀x ∈ I, |αk|] =

0 if k 6= 0

1 if k = 0.

When considering the dual algebra Γ†, we will denote the Ext-grading by | · |[ (since

it is induced by the [-grading) and the grading induced by | · |] always by | · |]. For every

bigraded Γ-module (or Γ† in the same way) M , we will denote by M〈i, j〉 the bigraded
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module obtained by shifting M of i with respect to | · |[ and of j with respect to | · |].
Then we will denote by | · |tot the total grading on Γ (and on Γ† similarly).

Let Γ† = Ext∗Γ(∆,∆) so, by Theorem 1.3.19, Γ† is Koszul with respect to D∆ and

(Γ†, D∆) is the Koszul dual of (Γ,∆). The | · |[-degree zero part of Γ† is EndΓ(∆) '
EndΓ[0]

(∆) ' ∆Γ† considered as a right Γ†-module. We have the following corollary of

Theorem 3.2.2, Theorem 1.3.19 and Theorem 1.3.20:

Corollary 3.3.1. There is an isomorphism

Γ ∼= Ext∗Γ†(D∆, D∆)

as ungraded algebras. Moreover, if Γ is given the [-grading and Γ† the Ext-grading, then

there is an equivalence of triangulated categories G∆ = RHomgrΛ(∆,−) : Db(gr[Γ) →
Db(gr[Γ†) which restricts to an equivalence G∆ : Fgr[Γ(∆)→ Lb(Γ†).

Proof. Since, by Theorem 3.2.2, Γ with the [-grading is Koszul with respect to ∆,

the isomorphism follows from Theorem 1.3.19. By Theorem 1.3.20 the functor G∆ :

D(gr[Γ) → D(gr[Γ†) restricts to an equivalence G∆ : Fgr[Γ(∆) → Lb(Γ†). Moreover,

since Γ has finite global dimension, Γ† is finite dimensional and it is directed since

the extension algebra of standard modules is always directed [Par98, Theorem 1.8(b)].

Then Γ†, being directed, has finite global dimension and, again by Theorem 1.3.20,

we also have an equivalence between the bounded derived categories G∆ : Db(gr[Γ)→
Db(gr[Γ†). Since obviously ∆ ∈ Db(gr[Γ), the category Fgr[Γ(∆) is a subcategory of

Db(gr[Γ). Therefore the restriction of G∆ : Db(gr[Γ)→ Db(gr[Γ†) to Fgr[Γ(∆) gives the

desired equivalence Fgr[Γ(∆) ' Lb(Γ†).

The following lemma gives a useful description of the graded parts of Γ† = Ext∗Γ(∆,∆)

when Γ is the quasi-hereditary cover of a higher zigzag algebra.

Lemma 3.3.2. Let x, y be two vertices in the quiver of Γ and b = d(x, y) their distance

in the quiver. If Extigr]Γ(∆x,∆y〈j〉]) 6= 0 for some i, j ≥ 0, then i = b − dj. As a

consequence we have that

|Extigr]Γ(∆x,∆y〈j〉])|tot = b− j(d− 1).

Proof. We proceed by induction on b = d(x, y). Recall that d(x, y) is the length of a

path from x to y not involving any arrow α0, if such a path exists, and it is∞ otherwise.

The distance between two vertices is infinite precisely when they are not comparable in

the partial order on the set of vertices. But this can not happen under our assumptions

since, by Lemma 1.2.12(2), ExtiΓ(∆x,∆y) 6= 0 implies x < y, for any i > 0.

Note first that if b = 0 then x = y and Ext∗Γ(∆x,∆x) ∼= HomΓ(∆x,∆x) by quasi-

heredity.

Suppose b = 1: by Lemma 1.2.12, if x > y then ExtiΓ(∆x,∆y) = 0, so we can assume

x < y. In this case ExtiΓ(∆x,∆y) 6= 0 only if i ≤ b = 1. We must have i 6= 0 since b = 1
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implies that there exists an arrow x
αk−→ y with k 6= 0. So, since d > 1, there can not

be an arrow y
α0−→ x and HomΓ(∆x,∆y) = 0. Therefore j = 0 and i = b = 1.

Assume now b > 1 and, for any vertex y′ such that b′ = d(x, y′) < b, if

Extigr]Γ(∆x,∆y′〈j〉]) 6= 0 then i = b′ − dj. Let P •(x) be a projective resolution of ∆x,

linear with respect to the [-grading on Γ, and consider a morphism f : P i(x) → ∆y

that gives a non-zero homogeneous element in Extigr]Γ(∆x,∆y〈j〉]). If (Sy, Sy′) are the

composition factors of ∆y then b′ = d(x, y′) = b− d. We distinguish two cases:

• If f is epi, then Py is a direct summand of P i(x) and so i = b and j = 0.

• If f is not epi then it factors through the morphism ∆y′ → ∆y and we have the

following commutative diagram:

P i(x)

g

��

f

""
∆y′

// ∆y

where g is non-zero and epi, hence it belongs to Extigr]Γ(∆x,∆y′). Since b′ =

b− d < b, by induction we have that g ∈ Extigr]Γ(∆x,∆y′〈k〉]) for k ≥ 0 such that

i = b′ − dk. Therefore we have

f ∈ Homgr]Γ(∆y′ ,∆y〈1〉]) · Extb
′−dk
gr]Γ

(∆x,∆y′〈k〉]) ⊆ Extb
′−dk
gr]Γ

(∆x,∆y〈k + 1〉])

and we know that

Extb
′−dk
gr]Γ

(∆x,∆y〈k + 1〉]) = Extigr]Γ(∆x,∆y〈j〉]),

so i = b′ − dk = b− d− dk = b− d(k + 1).

Denote by tgrΓ† the category of graded Γ†-modules with respect to the total grading.

Lemma 3.3.3. If Qx〈s〉 → Qy is a non-zero morphism between indecomposable

projective modules in tgrΓ†, then s = b− j(d− 1) for some j ≥ 0 and b = d(x, y).

Proof. Any non-zero morphism Qx〈s〉 → Qy is given by left multiplication by an

element in Extigr]Γ(∆x,∆y〈j〉]) ⊆ Ext∗Γ(∆x,∆y) whose total grading is b− j(d− 1) by

Lemma 3.3.2. Hence s = b− j(d− 1).

We can now prove the following:

Theorem 3.3.4. Let Γ be our quasi-hereditary cover of an n-zigzag algebra with n > 1,

and let Γ† = Ext∗Γ(∆,∆). Then Γ† endowed with the total grading | · |tot is Koszul in

the classical sense.
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Proof. We want to show that, for any two simple Γ†-modules Sx, Sy, if

ExtstgrΓ†(Sx, Sy〈i, j〉) 6= 0 then i + j = s. First recall that Sx ∼= G∆(∇x) by

Proposition 1.3.24. Moreover

Sx〈i, j〉 ∼= G∆(∇x)〈i, j〉 ∼= G∆(∇x〈−i, j〉[−i])

by Proposition 1.3.24 and Proposition 1.3.21, (c). Then we have:

ExtstgrΓ†(Sx, Sy〈i, j〉) ∼= HomD(tgrΓ†)(Sx, Sy〈i, j〉[s])
∼= HomD(tgrΓ)(∇x,∇y〈−i, j〉[s− i])
∼= Exts−itgrΓ(∇x,∇y〈−i, j〉).

Recall also that from Proposition 3.1.6, an (ungraded) injective coresolution of ∇y
is:

0→ ∇y → Iy → Iy1 → · · · → Iyk = ∇z → 0

such that

z
α0−→ · · · α0−→ y1

α0−→ y

is a subquiver of the quiver of Γ.

Each (indecomposable) injective module in such a coresolution is cogenerated in

| · |[-degree zero since applying the duality D = Homk(−, k) the corresponding maps

between projective Γop-modules are given by right multiplication by α∗0 that are in

degree zero. Moreover, for the same reason, we see that the coresolution is also linear

with respect to | · |]:

0→ ∇y〈−i, j〉 → Iy〈−i, j〉 → Iy1〈−i, j−1〉 → · · · → Iyk〈−i, j−k〉 = ∇z〈−i, j−k〉 → 0.

Hence if ∇x → Iys−i〈−i, j − s+ i〉 is a non-zero map that gives a non-trivial element

in the Ext-group, we must have j = s− i since ∇x is concentrated in | · |]-degree zero.

3.3.2 Presentation of Γ† as bound quiver algebra

Let (QΓ†
0 , QΓ†

1 ) be the quiver of Γ†. The set of vertices QΓ†
0 is in bijection with the set

of vertices of the quiver of Γ since standard Γ-modules correspond bijectively to simple

Γ†-modules via the functor G∆; we will index this set always by I. By Theorem 3.3.4

Γ† is Koszul with respect to the total grading so Γ† is generated by elements of degree

one over its semisimple subalgebra in degree zero. Then the arrows of the quiver of Γ†

can be divided in two spaces:

1. Arrows in Ext-degree zero: they correspond to the generators of HomΓ(∆x,∆y)

whenever we have an arrow y
α0−→ x in the quiver of Γ. This Hom-space is clearly

one dimensional and gives us an arrow a0 : y → x.
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2. Arrows in Ext-degree one: they correspond to the generators of Ext1
Γ(∆x,∆y) that

do not factor through a morphism as in point (1). Suppose that Ext1
Γ(∆x,∆y) 6= 0

and let P • → ∆x be a (graded linear) projective resolution of ∆x (note that

P 0 = Px). The first Ext-space is the first cohomology group of the complex

HomΓ(P •,∆y) so its elements are equivalence classes of morphisms P 1 → ∆y. But

since standard modules are concentrated in only one ∆-degree and the differentials

of P • are in ∆-degree one, the cohomology classes correspond to the Hom-spaces.

By Lemma 3.1.4 the standard module ∆y is either the simple module Sy or, in

case there exists an arrow y
α0−→ z, it is uniserial with radical length two and

composition factors Sy(= top ∆y) and Sz(= soc ∆y). If Im(P 1 → ∆y) = Sz then

the morphism factors through ∆z hence is not irreducible; we have a (unique

up to scalar multiplication) irreducible morphism f : P 1 → ∆y if and only if

P 1 = P ′⊕Py and f = 0⊕ (Py � ∆y). Therefore we have an arrow in Ext-degree

one ai : y → x ∈ QΓ†
1 whenever there is an arrow αi : x→ y ∈ QΓ

1 for i 6= 0, since

this happens if and only if the linear projective resolution of ∆x is the following:

· · · → P 2 → P 1 = P ′ ⊕ Py
[g,αi·]−−−→ Px � ∆x

for some g in degree one.

This means that Ext1
Γ(∆x,∆y) decomposes, as a k-vector space, in the direct sum of

two at most one-dimensional vector spaces U⊕V where U = Ext1
Γ(∆x,∆y)0 is generated

by an irreducible morphism and V = Ext1
Γ(∆x,∆y)1 is generated by a morphism that

factors through a morphism between standard modules.

Example 3.3.5. Let Z = Z2
3 and remember the quiver of Γ from Example 3.1.5. Then

the quiver of Γ† = Ext∗Γ(∆,∆) is obtained by the quiver of Γ by keeping the same

arrows in ∆-degree zero and reversing the arrows in ∆-degree one:

030

a1||
120

a1||

021

a2

bb

a1||

a0oo

210

a1||

111

a2

bb

a1||

a0oo 012
a0oo

a1||

a2

bb

300 201

a2

bb

a0oo 102

a2

bb

a0oo 003
a0oo

a2

bb

By Theorem 3.3.4, the ideal of relations of Γ† is generated by homogeneous elements

of degree two (with respect to the total grading). Then we need to find all the degree

two relations of Γ†.

Proposition 3.3.6. Let (QΓ†
0 , QΓ†

1 ) be the quiver of Γ†.

(I) There are quadratic commutativity relations given by:
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(a) For any relation αiαj = αjαi with i, j 6= 0 in Γ:

y αj

  
x

αi >>

αj !!

z

w
αi

>> , in Γ† we have

the relation aiaj = ajai:

y
ai
~~

x z

aj``

ai~~
w

aj

aa .

(b) For any relation α0αi = αiα0 in Γ:

y
αi
  

x

α0 >>

αi !!

z

w
α0

>> , in Γ† we have the relation

aia0 = a0ai:

y

x

a0 >>

z

ai``

w
ai

aa
a0

>> .

(II) There are quadratic monomial relations given by:

(a) a0a0 = 0

(b) aiaj = 0 for any i, j 6= 0 such that αiαj is not defined in the quiver of Γ.

Proof. For any v ∈ I denote by P •(v) a projective resolution of the standard module

∆v.

(I) (a) Consider the first three terms of a linear projective resolution of ∆x

· · · → P 2(x)→
⊕

x
αi−→x′,i 6=0

Px′ = P 1(x)
f−→ Px

In particular Py and Pw are direct summands of P 1(x) and the restriction

of f on these modules is Py ⊕ Pw
[αi·,αj ·]−−−−−→ Px. The element eyαjez − ewαiez

is such that f(eyαjez − ewαiez) = exαiαjez − exαjαiez = 0 hence it lies in

the image of P 2(x)→ Py ⊕ Pw. But this is a linear map between projective

modules, so we must have that eyαjez−ewαiez is in the image of Pz
[αj ·,αi·]−−−−−→

Py ⊕ Pw and then Pz must be a direct summand of P 2(x). In particular

aiaj ∈ Ext2
Γ(∆x,∆z) is non-zero. Moreover aiaj and ajai are respectively

represented by the following diagrams:

· · · // Pz ⊕Q2

[αj · ∗
αi· ∗∗ ∗

]
//

id
��

Py ⊕ Pw ⊕Q1

[ 1 0 0 ]

��

[αi· αj · ∗ ]// Px

0

��

0 // 0

· · · // Pz ⊕Q′2
[ id 0 ]

��

[αj · ∗ ] // Py

0

��

0 // 0

· · · // Pz
0 // 0
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and

· · · // Pz ⊕Q2

[αj · ∗
αi· ∗∗ ∗

]
//

id
��

Py ⊕ Pw ⊕Q1

[ 0 1 0 ]

��

[αi· αj · ∗ ]// Px

0

��

0 // 0

· · · // Pz ⊕Q′′2
[ id 0 ]
��

[αi· ∗ ] // Pw

0

��

0 // 0

· · · // Pz
0 // 0

where Q1, Q2, Q
′
2 and Q′′2 are projective Γ-modules such that Py⊕Pw⊕Q1 =

P 1(x), Pz ⊕Q2 = P 2(x), Pz ⊕Q′2 = P 1(y) and Pz ⊕Q′′2 = P 1(w). Therefore

we see that aiaj = ajai ∈ Ext2
Γ(∆x,∆z).

(b) An element aia0 ∈ Ext1
Γ(∆x,∆w) HomΓ(∆y,∆x), i 6= 0, is given by a

diagram:

· · · // P 2(y) //

��

Pz ⊕Q
[αi· ∗ ] //

[α0· 0
∗ ∗ ]

��

Py

α0·
��

0 // 0

· · · // P 2(x)

��

// Pw ⊕Q′

[ id 0 ]

��

[αi· ∗ ]// Px

0

��

0 // 0

· · · // P 2(w) // Pw
0 // 0

where Q and Q′ are projective modules such that Pz ⊕ Q = P 1(y) and

Pw ⊕ Q′ = P 1(x). Note that the map Pz ⊕ Q
[α0· 0
∗ ∗ ]−−−−→ Pw ⊕ Q′ has to be in

∆-degree zero. Therefore the top-right entry of the corresponding matrix is

zero since Pz → Pw is the unique ∆-degree zero map with codomain Pw.

On the other hand the element a0ai ∈ HomΓ(∆z,∆w) Ext1
Γ(∆y,∆z) is given

by:

· · · // Pz ⊕Q
[αi· ∗ ]//

[ id 0 ]

��

Py

0

��

0 // 0

· · · // Pz

α0·
��

0 // 0

0
��

· · · // Pw
0 // 0

Hence we can conclude that aia0 = a0ai since

[ id 0 ] [ α0· 0
∗ ∗ ] = [ α0· 0 ] = α0 [ id 0 ].

(II) (a) Obvious, since by the structure of standard modules we have

HomΓ(∆y,∆z) HomΓ(∆x,∆y) = 0 for any x, y, z ∈ I.
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(b) Assume i, j 6= 0, so that aiaj comes from some non-zero composition x
αj−→

y
αi−→ z in the quiver of Γ and we have no paths x

αiαj // z . Let · · · →
P 2(z) → P 1(z) → Pz � ∆z be a graded linear projective resolution of ∆z;

under our assumptions Px can not appear as a direct summand of P 2(z)

since the composition P 2(z) → P 1(z) → Pz restricted to Px must coincide

with αjαi· and so it would be non-zero. This means that Ext2
Γ(∆z,∆x) ∼=

HomΓ(P 2(z),∆x) = 0.

Theorem 3.3.7. The algebra Γ† is isomorphic to the path algebra of the following

quiver:

QΓ†
0 = QΓ

0

QΓ†
1 =

{
x

a0−→ y : there exists x
α0−→ y ∈ QΓ

1

}
∪{

w
ai−→ z : there exists z

αi−→ w ∈ QΓ
1 , i 6= 0

}
bound by the ideal of relations R generated by elements as in Proposition 3.3.6.

Proof. We are left to prove that the relations of Proposition 3.3.6 are the only quadratic

relations of Γ†. First of all note that, by the description of the quiver QΓ given in

Definition 2.2.4 and after reversing the arrows αi with i 6= 0, given any two vertices

x, z ∈ QΓ†
0 the k-basis of the vector space z(kQΓ†)2x is either (1) the element aiai with

i ∈ {0, . . . , n}, or (2) the set {aiaj , ajai} or (3) the element aiaj with i, j ∈ {0, . . . , n},
i 6= j, such that the composition ajai is not defined in the quiver. Case (2) occurs

precisely when the path aiaj is part of a mesh

y
ai
~~

x z

aj``

ai~~
w

aj

aa for i, j ∈ {0, 1, · · · , n}, as

described in Proposition 3.3.6. Let us discuss the possible relations in these three cases:

(1) The elements a0a0 are zero in Γ† by Proposition 3.3.6 (II)(a). The elements aiai

for i 6= 0 are non-zero since the same argument used in Proposition 3.3.6 (I)(a)

for i = j shows an explicit extension.

(2) Any element aiaj that is part of a square is subject to the commutativity relation

aiaj = ajai by Proposition 3.3.6 (I)(a,b). Moreover such an element is non-zero

since, as before, an explicit extension is given in the proof of Proposition 3.3.6.

(3) Let aiaj be a path of length two and suppose that i = 0 and j 6= 0. Then

any composition a0aj in the quiver of Γ† comes from two arrows

y αj

  
z

w
α0

>> in the
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quiver of Γ. But any such couple of arrows is part of a square

y αj

  
x

α0 >>

αj !!

z

w
α0

>> where

α0αj 6= 0 is defined. Moreover the corresponding square in QΓ† is commutative

by Proposition 3.3.6 (I)(b) . The case for j = 0 and i 6= 0 is similar. Hence,

for elements aiaj such that ajai is not part of the quiver, we can always assume

i, j 6= 0 and these elements are zero by Proposition 3.3.6 (II)(b).

We have shown all the possible quadratic relations so the proof is complete.



4

Irreducible mutations

In this chapter we describe some derived equivalences for the category of finitely

generated modules over higher zigzag algebras of type A. We start by recalling the

notions of silting objects, silting mutation and Okuyama–Rickard complexes. Then

we focus on two-term tilting complexes, characterizing two-term partial tilting

complexes for higher zigzag algebras of type A. To conclude we study irreducible

mutations of tilting objects in the derived category Db(Zd+1(Λ)), showing that the

operation of mutation “commutes” with taking the trivial extension.

4.1 Silting objects and mutation

In this section we introduce the notion of silting objects and silting mutation in derived

categories, as presented in [AI12]. Let T be a triangulated category; we will always

assume that T is k-linear and Hom-finite. Silting objects are a generalization of tilting

objects (recall Theorem 1.1.29).

Definition 4.1.1. Let T ∈ T .

(a) T is called pre-silting (respectively, pre-tilting) if HomT (T, T [i]) = 0 for any i < 0

(respectively, i 6= 0).

(b) T is called silting (respectively, tilting) if it is pre-silting (respectively, pre-tilting)

and it satisfies T = thickT , where thickT is the smallest triangulated subcategory

of T containing T and closed under direct summands. We denote by silt T the

set of isomorphism classes of basic silting objects in T and by tilt T the set of

isomorphism classes of basic tilting objects.

(c) T is called partial silting if it is a direct summand of a silting object.

Working with derived categories, or more in general with triangulated categories of

complexes, we say that a silting (resp. tilting) complex is a stalk complex if it is non-

zero in only one position and we say that it is a two-term silting (resp. tilting) complex

if it is non-zero in only two neighbouring positions.

The procedure of mutation of silting objects is often very useful in the study of silt T
since it gives a method to produce new silting objects from a given one. The definition
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of mutation we recall here is taken from [Aih13] but it is important to notice that this

notion is the result of the work of many other authors (for example [AI12]).

Definition 4.1.2 ([Aih13], Definition 2.3). Let T ∈ silt T be a silting object and X

a direct summand of T such that T = X ⊕M and addX ∩ addM = 0. Take a left

addM -approximation of X, f : X →M ′ and a triangle

X
f−→M ′ → Y → X[1].

Then we put

µ+
X(T ) := Y ⊕M

and we call it a left mutation of T with respect to X. Dually we can define a right

mutation µ−X(T ) of T with respect to X. A silting mutation is a right or left mutation.

We say that a mutation is tilting if both T and its mutation are tilting. Moreover a

mutation is called irreducible if X is indecomposable.

The following theorem tells us that mutation is well defined only between silting

objects.

Theorem 4.1.3 ([AI12], Theorem 2.30). Any mutation of a silting object is again a

silting object.

As pointed out in [AI12], Section 2.7, silting mutation specializes to other similar

techniques in the study of silting and tilting objects (e.g. APR-tilting modules, BB-

tilting modules and Okuyama–Rickard complexes). We will focus in particular on

Okuyama–Rickard complexes and their iterated mutations because this method provides

a solution to the problem of classifying Brauer tree algebras up to derived equivalence.

As before let Λ be a finite dimensional (basic) k-algebra. For any Λ-module X we

denote by P (X) its projective cover (Definition 1.1.2) and let ν = DHomΛ(−,Λ) :

mod Λ→ mod Λ be the Nakayama functor.

Definition 4.1.4. Let e ∈ Λ be an idempotent. The Okuyama–Rickard complex with

respect to e is defined as follows:

T :=


0

P (eΛ(1− e)Λ)
pe−→

−1
eΛ

⊕
(1− e)Λ

where pe gives the projective cover of the submodule eΛ(1− e)Λ of eΛ.

Okuyama–Rickard complexes were first introduced by Rickard in his PhD thesis in

some particular cases, then defined by Okuyama in [Oku97]. In the same document the

author proved that they are tilting complexes when Λ is a symmetric algebra ([Oku97],

Proposition 1.1). We summarise the key properties of Okuyama–Rickard complexes
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in the following theorem which also describes these complexes as irreducible (silting)

mutation of Λ.

Theorem 4.1.5 ([AI12], Theorem 2.50). Let e ∈ Λ be an idempotent and T the

Okuyama–Rickard complex with respect to e.

(a) T is isomorphic to right mutation µ−eΛ(Λ) of Λ with respect to eΛ.

(b) T is a silting object in Hb(proj Λ).

(c) The following conditions are equivalent.

(i) T is a tilting object in Hb(proj Λ).

(ii) HomΛ(eΛ/eΛ(1− e)Λ, (1− e)Λ) = 0.

(d) If Λ is a self-injective algebra and eΛ ' ν(eΛ), then T is a tilting object in

Hb(proj Λ).

4.2 Derived equivalences for higher zigzag-algebras

The purpose of this section is to study derived equivalences for derived categories of

higher zigzag algebras of type A (recall Definition 2.2.4). In particular we will look at

Okuyama–Rickard tilting complexes in the derived category of Zds and we will try to

describe the induced derived equivalence. Since for d = 1 the zigzag algebra of the path

algebra of a type A quiver is Morita equivalent to a Brauer tree algebra, we will look

also at two-term (partial) tilting complexes, generalizing some existing results from

[AZ13].

Consider the type A higher zigzag algebra Z1
s = Z2(kAs) for d = 1 (Definition 2.2.4),

where As is the linearly oriented type A Dynkin quiver with s vertices. By Lemma 2.1.5

this coincides with the classical zigzag algebra (see for example [HK01]). It is easy to

see that Z1
s is Morita equivalent to the Brauer tree algebra associated to the linear

tree with s edges and without exceptional vertex. Denote by B(s,m) the Brauer tree

algebra associated to the tree with s edges and with exactly one common vertex, that

coincides with the exceptional vertex and has multiplicity m. Rickard, in his paper

[Ric89a], proved that up to derived equivalence any Brauer tree algebra is determined

by the number of the edges of the tree and by the multiplicity of the exceptional vertex:

Theorem 4.2.1 ([Ric89a], Theorem 4.2). Let B = B(T, s,m) be the Brauer tree algebra

over a Brauer tree T with s edges and exceptional vertex with multiplicity m. Then B

is derived equivalent to B(s,m).

It is also important to notice that such a derived equivalence can be decomposed

into equivalences induced by Okuyama–Rickard complexes, hence iterated irreducible

silting mutations.
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Moreover Brauer tree algebras completely classify the derived equivalence class of

Z1
s . Indeed from Theorem 2.1 and Corollary 2.2 of [Ric89a], if B is a k-algebra derived

equivalent to Z1
s , and hence to B(s, 1), then B is symmetric (see [Ric91], Section 5)

and thus it is stably equivalent to B(s, 1). Therefore we can deduce that B is given by

a Brauer tree algebra by Theorem 2 of [GR79] (see also [ARS95], Theorem X.3.14).

Thus derived equivalence classes of zigzag algebras of type A are completely

characterized: every algebra derived equivalent to Z1
s is Morita equivalent to a Brauer

tree algebra over a tree with s edges and no exceptional vertex.

4.2.1 Okuyama–Rickard mutations

Motivated by the classical results about Brauer tree algebras we focus our attention

on Okuyama–Rickard complexes in Hb(projZds ). For the rest of this section we will

always assume that any quiver Q has no loops, no multiple arrows and every arrow in

Q is contained in an oriented cycle.

Definition 4.2.2. Let Λ = kQ/I, ex be a primitive idempotent of Λ and T the

Okuyama–Rickard complex for Λ associated to ex. We say that the algebra

µx(Λ) = EndDb(Λ)(T ) is the tilting mutation of Λ at the vertex x (equivalently, at the

idempotent ex).

Recall that, by Proposition 2.2.10, type A higher zigzag algebras are trivial extension

algebras, so it is useful to have a better description of the quiver of a trivial extension

algebra.

Proposition 4.2.3. Let Λ be the path algebra of the quiver QΛ with relations and

Λe = Λ ⊗ Λop its enveloping algebra. The quiver of the trivial extension Triv(Λ) is

given by:

1. (QTriv(Λ))
0 = (QΛ)0

2. (QTriv(Λ))
1 = (QΛ)1 ∪ {βp1 , . . . , βpt} where {p1, . . . , pt} is a k-basis of socΛe Λ

consisting of linear combinations pi of paths with the same origin s(pi) and the

same endpoint t(pi) and βpi is an arrow from t(pi) to s(pi).

Proof. See [Pla10], Proposition 2.2.

We also recall the following result about algebras with isomorphic trivial extensions:

Theorem 4.2.4 ([FP06], Theorem 3.6). Let Λ and Λ′ two finite dimensional algebras

such that Triv(Λ) ∼= Triv(Λ′). Assume moreover that any oriented cycle in QΛ is zero

in Λ. Then Λ′ ∼= Triv(Λ)/J where J is an ideal generated by exactly one arrow from

any non-zero oriented cycle in Triv(Λ).

The set of arrows generating the ideal of relations J are called a cut of the quiver Q.
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Definition 4.2.5 ([IO11], Definition 5.8). 1. A cutting set for Q is a set of arrows

C ⊂ Q1 such that C contains exactly one arrow from every oriented cycle of Q.

Denote by QC the quiver obtained by removing from Q all the arrows in C.

2. If x is a source of QC , we define a subset µ+
x (C) of Q1 by removing from C all

the arrows ending at x and adding all the arrows starting at x.

3. Dually, if x is a sink of QC , we define another subset µ−x (C) of Q1 by removing

from C all the arrows starting at x and adding the ones ending at x.

4. When x is a source or a sink, we call the procedure of replacing C by µ+
x (C) or

µ−x (C) mutation of cuts.

To make full sense of the definition of cut mutation we need to prove that mutations

of cuts are cuts.

Proposition 4.2.6. Let Q be a quiver, x a vertex of Q and C a cut such that x is a

source in QC . Then we have the following:

1. Any arrow in Q ending at x belongs to C and any arrow in Q starting at x does

not belong to C.

2. µ+
x (C) (equivalently µ−x (C)) is again a cut.

3. x is a sink of the quiver Qµ+x (C).

Proof. The proof of these facts can be found in [IO11, Proposition 5.14] when Q is the

quiver of higher zigzag algebras of type A. However the results are true more generally

under our assumptions on the quiver Q. We include here the proof for the convenience

of the reader.

1. Clearly any arrow ending at x belongs to C since x is a source in QC . Let α be

an arrow starting at x and assume α belongs to C. By our assumptions on Q, α

belongs to an oriented cycle c passing through x, which then contains two arrows

in C, contradiction.

2. Let c be an oriented cycle. We need to check that exactly one arrow of c belongs

to µ+
x (C). This is clear if c does not pass through x. Assume then that x is in

c and let α and β be the two arrows in c ending and starting in x respectively.

Then α is the unique arrow in c contained in C and β is the unique arrow in c

contained in µ+
x (C).

3. This is obvious from (1).

Lemma 4.2.7. Assume that Q admits a cut C such that QC has at least a source (or

a sink). Then for any vertex x of Q there exists a cut C ′ such that x is a source in

QC′.
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Proof. We can obtain the cut C ′ by iterated mutations of C. By the definition of cut

and by our assumptions on Q, the quiver QC has no oriented cycles so it is the Hasse

quiver of a partial order on the set of vertices. Denote by S the set of sources of QC .

These are the greatest elements with respect to the partial order defined by QC and

after mutating at every vertex in S we obtain a new quiver QµS(C) where the sources

are those vertices that were the immediate successors of vertices in S. Since Q is finite

and connected, by repeating this argument we will eventually obtain a quiver QC′ such

that the chosen vertex x is a source.

The following result relates the operations of taking trivial extension and mutation:

Proposition 4.2.8. Let Γ = kQ/I be a finite dimensional algebra with quiver Q without

loops and multiple arrows, such that any arrow of Q is contained in an oriented cycle.

Let x be a vertex of Q and suppose that

• there exists a cut C for Q such that x is a source in QC ;

• any oriented cycle is zero in the quotient Λ = Γ/C;

• Γ = Triv(Λ).

Then

• µx(Γ) ∼= Triv(µx(Λ));

• denote by TΛ (resp. TΓ) the Okuyama–Rickard complex at x in Db(Λ) (resp.

Db(Γ)). Then TΓ
∼= TΛ ⊗ Γ.

Proof. It is known that if Λ 'd Λ′ via an equivalence given by the tilting complex

TΛ, then T = TΛ ⊗Λ Γ is again a tilting complex and it gives a derived equivalence

Γ 'd T (Λ′) between the corresponding trivial extensions (see [Ric89a, Theorem 3.1]).

In order to prove the claims we have to show that TΛ is actually a tilting complex and

that its extension TΛ ⊗Λ Γ is exactly the Okuyama–Rickard complex for Γ associated

to the same vertex.

The fact that TΛ is tilting is provided by Theorem 4.1.5, since in our case we have:

HomΛ(exΛ/exΛ(1− ex)Λ, (1− ex)Λ) = HomΛ

Sx,⊕
y 6=x

Py

 = 0

where the last equality holds because, by the choice of the cut C, the simple Sx is not

in the socle of any projective module.

Let A = {α ∈ Q1
Λ | s(α) = x} be the set of all arrows in the quiver of Λ with source

x. Then since

TΛ =

⊕
y 6=x

Py → 0

⊕(⊕
α∈A

Pt(α)
ϕ−→ Px

)
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TΛ ⊗Λ Γ is the direct sum of the following two complexes:⊕
y 6=x

Py ⊗ Γ→ 0 and
⊕
α∈A

Pt(α) ⊗ Γ
ϕ⊗id−−−→ Px ⊗ Γ.

Now, if Py is an indecomposable projective module over Λ, then Qy = Py ⊗Λ Γ is

the indecomposable projective Γ-module still corresponding to the vertex y. So T is

the Okuyama–Rickard complex for Γ associated to the vertex x if Coker(ϕ ⊗ id) has

composition factors isomorphic to Sx only. This is true if Im(ϕ⊗ id) = radQx since in

this case Coker(ϕ⊗ id) ∼= topQx = Sx.

Since Qy = Py ⊗Λ Γ for any y and ϕ⊗ id :
⊕

α∈A Pt(α) ⊗ Γ→ Px ⊗ Γ, we have that

ϕ⊗ id :
⊕
α∈A

Qt(α) → Qx

so our claim holds if in the quiver of trivial extension Γ, the set of arrows with source x

coincides with A. But this is true because, by Proposition 4.2.3, since x a source in the

quiver of Λ, we do not need to add any new arrow starting at x to obtain the quiver of

Γ.

We can apply the results of this section to the case of higher zigzag algebras of type

A to obtain the following corollary.

Corollary 4.2.9. Every algebra that is a tilting mutation of a type A higher zigzag

algebra Zds is a trivial extension algebra.

Proof. To apply Proposition 4.2.8 we only need to show that for any given vertex x of

the quiver Q of Zds there exists a cut C such that x is a source of QC . Obviously there

are cuts for Q such that the quiver obtained after removing the corresponding arrows

have sources or sinks: having in mind the presentation of Zds given in Section 2.2

we can choose for example C = {α0 ∈ Q1} the set of all the arrows α0, so that

x = (s + 1, 0, . . . , 0) is a source. Then we can use Lemma 4.2.7 to find the desired

cut.

Example 4.2.10. Consider the 2-zigzag algebra Z2
3 :

6

��
2

@@

��

4

��

α1oo

1

@@

3

@@

α2

oo 5α3

oo

The set Cα = {α1, α2, α3} is a cutting set such that in the quiver of Λ = Z2
3/Cα the
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vertex 1 is a source:

6

��
2

@@

��

4

��
1

@@

3

@@

5

By Proposition 4.2.8, the algebra µ1(Z2
3 ) is isomorphic to Triv(µ1(Λ)). It is easy to

see that the quivers of the two algebras coincides: the quiver of µ1(Λ) is the following

6
γ // 4

δ // 5

1

α @@

2
εoo ν // 3

η^^

and a k-basis of socΛe Λ is {p1 = εαγ = νη, p2 = ηδ}. So the quiver of Triv(µ1(Λ)) is

6
γ // 4
β1
��

δ // 5

β2��
1

α @@

2
εoo ν // 3

η^^

and we can see that the set Cβ = {β1, β2} is a cutting set for µ1(Z2
3 ) so that µ1(Z2

3 ) ∼=
Triv(µ1(Z2

3/Cβ).

4.3 Derived class of Z2
3

Here we describe the derived equivalence class of the 2-zigzag algebra Z2
3 :

6
α2

��
2

α1
@@

α2 ��

4
α2

��

α0oo

1

α1
@@

3
α1

@@

α0

oo 5α0

oo

by showing explicitly all the algebras in the class. This classification has been

achieved by brute force, computing iterated irreducible tilting mutations at every

vertex of any algebra found during the process. These computations produce

twenty-four non-isomorphic symmetric algebras, hence we only need to show that any

algebra derived equivalent to Z2
3 can be obtained by iterated tilting mutations. This

can be made more precise using the notion of tilting-connected symmetric algebras.

Definition 4.3.1. A symmetric algebra is called tilting-connected if the action of

iterated irreducible tilting mutation on the set of basic tilting complexes is transitive.

First of all it relatively easy to show that Z2
3 is derived equivalent to the (classical)
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zigzag algebra of kD6:

2

βww1
α
((
3

α
((

β

hh 5
α
((

β

hh 4
β

hh

α
77

α

��
6

β

VV

with relations: αβα = βαβ = 0, αβ = βα. This can be seen for example mutating the

algebra Z2
3 twice at vertex 2, then once at vertex 4 in the above presentation. Since

the zigzag algebra of kD6 is the trivial extension of an algebra of finite Dynkin type, it

is again representation finite (of the same Cartan class) by the following result.

Theorem 4.3.2. Let Λ be a (basic, connected) finite dimensional k-algebra and Triv Λ

its trivial extension algebra. Then Triv Λ is representation finite of Cartan class G if

and only if Λ is an iterated tilted algebra of Dynkin type G.

Proof. For a proof see [AHR84], Theorem 3.1.

The result we need was proved by Aihara in [Aih13]:

Theorem 4.3.3 ([Aih13], Theorem 1.2). Any representation-finite symmetric algebra

is tilting-connected.

Therefore any algebra derived equivalent to Z2
3 can be obtained via a finite number

of irreducible tilting mutations. We can then conclude by showing the presentations of

all the algebras derived equivalent to Z2
3 , up to isomorphism. Recall that the relations

are always such that any path passing through the same vertex twice is zero, any path

that is contained in more than one cycle but is not contained in the intersection of such

cycles is zero and any two non-zero paths with same starting and ending vertices are

equal.
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6

��
2

@@

��

4

��

oo

1

@@

3

@@

oo 5oo

6 // 4 //

��

5

��
1

@@

2oo // 3

^^ 6 // 4

��

5oo

��
1

^^

2oo

@@

3oo

6 //

uu

4 //

��

5

��
1

55

2

^^

// 3

^^ 6

��
2 // 4

��

^^

1 )) 3

^^

ii 5oo

6

��
2 )) 4

��

ii

TT

1 )) 3

@@

ii 5oo

2

��
1
''
3gg // 4

^^

��

''
6gg

5

^^

6

��uu

4oo

��

5oo

1

55

2

@@

// 3

@@ 6

��
2 // 4

��

^^

1

@@

3oo )) 5ii

6

��
2

��

4

��

TT

1 )) 3

@@

ii

TT

5oo

2

uu1
''
3
''

gg 5
''

gg 4gg

55

��
6

TT

6

����

4

��

5oo

1

@@

2oo

@@

3oo

@@

2

��
1

@@

��

5oo 4oo ''
6gg

3

@@

2

��
1

@@

��

4 // 5
''

ii 6gg

3

OO

1

��

5

uu3
''

^^

4gg

55

��
2

@@

6

TT

5

��
1
''
2
''

gg 3gg // 4

^^

��
6

^^

2

��
1 // 5 // 4

^^

��

''
6gg

3

^^

5

��
1
''
2
''

gg 3gg

@@

��

4oo

6

@@

2

xx
1 // 5 // 4 // 6

ff

xx
3

ff

1

��

// 5

��
2

��

4

��
3

OO

6oo

2

��

5

��
1

TT

uu

@@

4

��
3

55

6

^^

2

��

5

��

6 // 4

^^

��

@@

1

^^

3

^^

2

��

5

��

6

@@

��

4oo

@@

1

@@

3

^^

1

��

4

@@

2

^^

''
3gg
''
5gg

6

^^ @@

Note moreover that, as a direct consequence of Theorem 4.3.2, we can deduce that
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Z2
3 can not be derived equivalent to the path algebra of the following quiver

2

��

5oo

1

@@

��

4oo

@@

��
3

@@

6oo

with relations as before. This is because this algebra is an iterated tilting mutation of

the zigzag algebra of kE6, hence of a different Cartan class.
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