Hierarchical Co$_2$P Microspheres Assembled from Nanorods Grown On Reduced Graphene Oxide as Anode Material for Lithium-ion Batteries

Chi Zhang $^{a,+}$, Guanghua Jiao $^{a,+}$, Fanjun Kong a, Jian Wang a, Shi Tao a,*, Lei Zhang a, Bin Qian a,*, Yimin Chao b

a Department of Physics and Electronic Engineering, Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, China

b School of Chemistry, University of East Anglia, Norwich, NR47TJ, UK.

$^+$ The authors contributed equally to this work

*Corresponding author.

E-mail: taoshi@cslg.edu.cn(S.Tao) ; njqb@cslg.edu.cn(B.Qian).

ABSTRACT

Transition metal phosphides (TMPs) have been studied as promising electrodes for energy storage and conversion due to their large theoretical capacities and high activities. Herein, a hierarchically structured Co$_2$P coupling with the reduced graphene oxide (RGO) composite (Co$_2$P/RGO) was synthesized by a simple solid state method for Li storage. The Co$_2$P/RGO hybrid composite exhibits a high reversible capacity of 610 mAh g$^{-1}$ at 60 mA g$^{-1}$, good rate capability of 327 mAh g$^{-1}$ at 3000 mA g$^{-1}$ and long cycle life (397 mAh g$^{-1}$ at 500 mA g$^{-1}$ for after 1000 cycles). The excellent
electrochemical performance can be attributed to the synergistic effect of Co$_2$P micro/nano architecture and graphene modulation, which provide more activity sites for Li$^+$-ions and maintain the structural integrity of active material. This work may provide a new path for preparation of other metal phosphides as potential electrode materials for application in energy storage fields.

Keywords: Cobalt phosphide, Graphene, Hierarchical structure, Anode, Lithium-ion batteries

1. **Introduction**

With the increasing demand for renewable and sustainable energy sources, it is critical for developing advanced energy storage devices [1]. Among various energy storage devices, lithium-ion batteries (LIBs) have been widely used in application of electrical vehicles (EVs) and energy-storage systems (EESs), due to their high energy density, long lifespan and good rate performance [2,3]. Graphite is commonly used as commercial anode material, however, its limit theoretical capacity (372 mAh g$^{-1}$) and safety issues restrict its further application [4,5]. Therefore, it is an urgent task to search novel anode materials for next-generation LIBs. To date, various alternative anode materials have been investigated including transition metal oxides (Fe$_2$O$_3$ [6,7], NiO [8], Co$_3$O$_4$ [9], SnO$_2$ [10,11]), sulfides (CoS$_2$ [12,13], FeS$_2$ [14,15], SnS$_2$ [16,17], MoS$_2$ [18,19]) and phosphides (NiP$_2$ [20], CuP$_2$ [21], FeP [22], Co$_3$P [23,24], Sn$_3$P$_4$ [25])
due to their remarkable theoretical capacities, low cost and natural abundance. Among these novel anode materials, transition metal phosphides (TMPs) demonstrate relatively low charge-discharge potentials, good thermal stabilities, and metallic features [26-28].

In particular, Co$_2$P has received increased attention due to its specific crystal configuration, which exhibits good stability inserted by Li$^+$-ions and exhibits high redox reactivity and high capacity for LIBs [29-32]. However, its intrinsically low electronic conductivity and large volume expansion during the charging-discharging process result in poor rate capability and cyclability. The combination of functional carbon materials (e.g., carbon tubes and graphene) has been proven an effectively way to enhance the electrochemical performance [33-35]. In addition, most of the existing methods to prepare Co$_2$P composites use the toxic alkylphosphine, organic reagent and surfactants, which limit its practical application. Thus, a simple synthetic process for TMPs involve the use non-toxic and inexpensive raw materials is highly expected.

In this paper, we present a simple solid-state strategy to synthesize hierarchical Co$_2$P microspheres/reduced graphene oxide (RGO) composite, which consists of interconnected nanorods grown on the RGO layers. The electrochemical results confirm that the performance of Co$_2$P was greatly enhanced by the RGO modification. Benefitting from the RGO wrapping and the micro/nano architecture, which can release the
volume change and maintain the structural stability, the Co$_2$P/RGO hybrid composite delivers superior lithium storage properties.

2. Experimental section

2.1 Synthesis

Graphene oxide (GO) was synthesized by a modified Hummers method as the previous report [36]. For synthesis of Co$_2$P/RGO, 10 mg GO was dispersed in 30 mL distilled water and ultrasonic treatment for 1 h t. After that, 1 mmol Co(CH$_3$COO)$_2$ · 4H$_2$O were added into the above solution, then continuous stirring for another 2 h. The solution was transfer to air dry oven to evaporate water. The obtained powder was mixed 5 mmol NaH$_2$PO$_2$ and thoroughly ground to homogenous mixture in an agate mortar. The mixture was transferred to a porcelain boat, which was then wrapped with a piece of tinfoil paper. The half-sealed porcelain boat was put into a quartz tube, and then heated to 100 °C with a speed 5 °C/min under Ar atmosphere, maintaining at 100 °C for 30 min and then heated to 350 °C for 2 h. The obtained black powder was washed with distilled water and ethyl alcohol several times and dried in vacuum at 60 °C for 24 h. The bare Co$_2$P was prepared by direct mixing Co(CH$_3$COO)$_2$ · 4H$_2$O and Na$_2$HPO$_2$ and then was calcined at the same steps without using GO. The Co$_2$P-RGO mixture sample was synthesized by the simple direct ball mixing of Co$_2$P and RGO with a weight ratio of 10:1.
Materials characterization

The phase of as-prepared samples were tested by X-ray diffractometer (Bruker APEX) (Cu-K, $\lambda=1.5406$ Å). Scanning electron microscopy (FE-SEM, ZEISS) and transmission electron microscopy (TEM, JEOL- 2000CX) were applied to evaluated the morphology of samples. The thermogravimetric analysis (TGA, SDTA851) was used to estimate the graphene content in air. The X-ray photoelectron spectroscopy (XPS, ESCALAB 250) were employed to investigate chemical structure. Raman spectra were performed on Raman spectrometer (Horiba Xplora). The N$_2$ adsorption/desorption measurements were tested by an ASAP2020 instrument. The XANES (X-ray Absorption Near Edge Structure) spectroscopy of C K-edge was collected in total electron yield (TEY) mode at the beamline BL12B in the national synchrotron radiation laboratory (NSRL).

2.2 Electrochemical measurements

The working electrodes were containing Co$_2$P/RGO (or Co$_2$P), acetylene black and poly (vinyl difluoride) (PVDF) (70:20:10 wt/wt/wt) with N-methyl-2-pyrrolidone (NMP) solvent to form slurry. Then it was casted on copper (Cu) foil and dried at 100 °C for 12 h. The cells (CR2016) were assembled in argon glove box, 1M LiPF$_6$ (ethylene carbonate/dimethyl carbonate with a 1:1 volume ratio) as the electrolyte, metallic lithium and Celgard 2400 as counter electrode and separator,
respectively. The electrochemical tests were recorded on a battery test system (Land CT 2001A) between 0.01 and 3.0 V. Electrochemical impedance spectroscopy (EIS) and Cyclic voltammetry (CV) curves were tested on the VSP electrochemical workstation (Bio-logic, France).

3. Results and discussion

![Scheme 1. Schematic illustration for the synthesis of Co$_2$P/RGO sample.](image)

The schematic illustration for the synthesis of Co$_2$P/RGO hybrid composite is shown in Scheme 1. In briefly, the Co$^{2+}$ ions were adsorbed on the surface of GO through the electrostatic force, and then mixing with NaH$_2$PO$_2$. A low temperature phosphidation procedure was introduced to convert above mixture into Co$_2$P/RGO.

Fig. 1a shows the XRD patterns of as-prepared bare Co$_2$P and Co$_2$P/RGO, which is corresponding to standard orthorhomic structure of Co$_2$P (JCPDS Card. No. 32-0306). The results are consistent with the previous reports, indicating that both bare Co$_2$P and Co$_2$P/RGO composites are successfully synthesized without other impurities by a simple solid reaction.[30,36] The characteristic peak of GO diappears, indicating that GO has been adequately
reduced after high temperature calcination.[17] The morphologies and microstructure are shown in Fig. 1(b-f). Obviously, the Co$_2$P micron spheres are grown on the graphene sheets. The SEM images of Co$_2$P without graphene are shown in Figure S1, which present the similar morphology with Co$_2$P/RGO. The TEM image of Co$_2$P/RGO reveals that flower-like spheres with an average size of 0.5-1.0 um, which are assembled by nanorods, distribute on the graphene uniformly (Fig. 1c). The HRTEM image presents the Co$_2$P particles are tightly grown on RGO layer (Fig. 1d). Moreover, the lattice spacing of 0.28 nm can be indexed to the (120) plane indicating good crystallization. EDX elemental mapping images of Co, P and C for a single Co$_2$P nanorod on RGO further demonstrating that the Co$_2$P nanoparticles encapsulated by RGO and elements are homogeneously distributed (Fig. 2f).
Raman spectroscopy was used to confirm the existence of RGO (See Figure S2). There are two characteristic peaks located at 1349 cm$^{-1}$ (D-band) and 1592 cm$^{-1}$ (G-band). Compare to GO, the higher I_D/I_G ratio in the Co$_2$P/RGO suggesting that the Co$_2$P nanorods distributed on the RGO layers and induce more disorder [37,38]. The carbon content in the hybrid composite is determined by TGA curve (Figure S3). The weight loss from 400 °C to 600 °C is about 11.7 % can be attributed to RGO.
To further study the effect of RGO on Co$_2$P electrode, the XANES (X-ray Absorption Near Edge Structure) spectroscopy of C K-edge are performed. As shown in Fig. 2a, the feature A1 and A3 can be assigned to the C 1s to graphic states of π^* and σ^* transition, respectively [39]. The A2 is the C-O or C=O oxygenated groups induced sp3 hybridized states. The π^* intensity for Co$_2$P/RGO is reduced compared with GO, which suggest more charge transfer from Co$_2$P to graphene, indicating stronger chemical bonding between Co$_2$P and graphene [40,41]. The lower intensity of feature A2 demonstrates that GO is almost reduced by the heating condition. Moreover, the surface area of both Co$_2$P and Co$_2$P/RGO samples were further tested by Nitrogen adsorption/desorption isotherms (Figure S4). Co$_2$P presents smaller specific surface area of 11.79 m2 g$^{-1}$, while the specific surface area of Co$_2$P/RGO composite increases to 28.91 m2 g$^{-1}$. The larger specific surface area could provide better electrode-electrolyte contact and more Li$^+$-ions sites [42].
Fig. 2 (a) XANES spectrum for Co$_2$P/RGO. XPS spectra of C 1s (b), P 2p (c) and Co 2p (d) for Co$_2$P/RGO.

The chemical state and composition of Co$_2$P/RGO are measured by XPS. The survey XPS spectrum (Figure S5) demonstrates the existence of Co, P, C and O. The C 1s peak (Fig. 2b) at 284.6 eV and 286.5 eV are corresponding to C-C and C-O species in graphene [43]. It can be seen that the intensities of C-O is much smaller than C-C. This result suggests that GO has been reduced that consistent with the XANES analysis. In the P 2p spectrum (Fig. 2c), two characteristic peak at 129.6 eV and 130.5 eV could be assigned to the P 2p$_{3/2}$ and P 2p$_{1/2}$ respectively. The Co 2p spectrum has two main peaks located at 778.2 eV (Co 2p$_{3/2}$) and 794.1 eV (Co 2p$_{1/2}$) with their respective satellite peaks (Fig. 2d). The P 2p$_{3/2}$ peak at 129.6 eV and the Co 2p$_{3/2}$ peak at 781.2 eV can be ascribed to the binding energies for P 2p and Co 2p in
The lithium storage performance of Co$_2$P/RGO and Co$_2$P composites are carried out as anode materials for LIBs. The CV curves of the Co$_2$P/RGO electrode is shown in Fig. 3a. The peak at around 1.10 V appeared in the first discharge process, which
corresponds to the reaction of $\text{Co}_2\text{P} + 3\text{Li}^+ + 3\text{e}^- \rightarrow \text{Li}_3\text{P} + 2\text{Co}$ [27]. Another reduction peak at about 0.60 V was attributed to the formation of solid electrolyte interface (SEI) film [33]. The oxidation peak at about 1.0 V can be owning to the decomposition of SEI and Li$_3$P during charging. After the first cycle, CV curves are nearly over-lapped, suggesting the excellent cyclability. Fig. 3b shows the galvanostatic charge/discharge profiles for the Co$_2$P/RGO composite at current density of 100 mA g$^{-1}$. The Co$_2$P/RGO exhibits discharge and charge capacities are 908 and 637 mAh g$^{-1}$, respectively, giving a coulombic efficiency of 70.2 %, which is higher than the previous reports [23,24]. The good overlapping voltage curves indicate the superior reversibility during cycling. The cycling capability of bare Co$_2$P, Co$_2$P-RGO and Co$_2$P/RGO were measured at 200 mA g$^{-1}$. As shown in Fig.3c, it can be clearly observed that Co$_2$P/RGO obtained a much higher capacity than the Co$_2$P-RGO mixture and bare Co$_2$P. In particularly, a specific capacity of 698 mAh g$^{-1}$ was maintained for Co$_2$P/RGO after 500 cycles, while the Co$_2$P-RGO mixture begins to drop after 200 cycles (300 mAh g$^{-1}$) and bare Co$_2$P rapidly decayed to 156 mAh g$^{-1}$ at the same condition. Fig. 3d shows the rate capability of bare Co$_2$P, Co$_2$P-RGO and Co$_2$P/RGO. Specially, Co$_2$P/RGO electrode exhibits higher reversible capacities than that of bare Co$_2$P and Co$_2$P-RGO.
The Co$_2$P/RGO electrode can still exhibit a discharge capacity of around 327 mAh g$^{-1}$ at a current density of 3000 mA g$^{-1}$. Fig. 3e presents the long cyclability at a current density of 500 mA g$^{-1}$. The Co$_2$P/RGO hybrid composite delivers excellent cyclability, a discharge capacity of about 397 mAh g$^{-1}$ can be maintained even after 1000 cycles with a capacity retention of 77.7%. In addition, the coulombic efficiency is about 100%. However, the capacity retention of bare Co$_2$P and Co$_2$P-RGO are 57.8% and 43.3% after 1000 cycles, respectively. The brilliant rate performance and cycle stability of Co$_2$P/RGO can be attributed to RGO encapsulation, which can not only facilitate Li$^+-$ions transport and rapid electrons transfer in the composite, but also enhances the structure stability of Co$_2$P.

Fig. 4 Nyquist plots of Co$_2$P and Co$_2$P/RGO (a) pristine, (b) after 50 cycles.

The Nyquist plots of the Co$_2$P/RGO and Co$_2$P samples before and after 50 cycles are shown in Fig. 4, there are semicircles in high frequency and straight lines in the low frequency region. The diameter of
semi-circle and the straight line correspond to the charge transfer resistance (R_{ct}) and the Li$^+$-ions diffusion, respectively [46-50]. The fitting results are summarized in Table S1. Before cycling, the Co$_2$P/RGO exhibited an R_{ct} of 82.1 Ω, which is lower than that of Co$_2$P (136.7 Ω), indicating that the Co$_2$P/RGO has lower charge transfer resistance. Moreover, Co$_2$P/RGO delivers a higher slope, indicating the faster Li$^+$-ions diffusion. After cycling, the change of R_{ct} of Co$_2$P/RGO is almost negligible. While, R_{ct} of Co$_2$P becomes larger (163.2 Ω) and the change of impedance plot for Co$_2$P/RGO electrode is much smaller than Co$_2$P. Hence, the enhancement of the electrochemical properties could be ascribed to the realization of micro/nano structure of Co$_2$P particles by incorporation of into the graphene network that could eventually lead to fast electrons and Li$^+$-ions transport.

![Fig. 5](image)

Fig. 5 Co$_2$P/RGO sample after charging/discharging 50 cycles (a) Ex-situ SEM image, (b) Ex-situ XRD pattern.

To further understand the superior lithium storage performance of the Co$_2$P/RGO composite, the P 2p XPS spectroscopy after 50 charge/discharge cycles were collected in the Figure. S6. It can be seen
that the P-C bond still exists, indicating that the hybrid structure are well maintained during the cycling. Ex-situ SEM and XRD tests were employed after charge/discharge 50 cycles at current density of 200 mA g\(^{-1}\). As shown in Fig. 5, the SEM image shows that morphology and microstructure of hybrid composite was well maintained. Moreover, the XRD pattern is still match with the phase Co\(_2\)P. These results further indicate the excellent cyclic capability of the Co\(_2\)P/RGO composite.

4. Conclusions

In summary, we developed a facile method to synthesize hierarchically structured Co\(_2\)P/RGO hybrid composite and use as anode material for lithium-ion batteries. The Co\(_2\)P/RGO hybrid composite exhibited an impressive cyclability of 399 mAh g\(^{-1}\) at 500 mA g\(^{-1}\) after 1000 cycles and retained a discharge capacity of 327 mAh g\(^{-1}\) even at a high current density of 3000 mAh g\(^{-1}\). The unique architecture and graphene modification are responsible for the outstanding electrochemical performance. Such inexpensive synthetic approach and intriguing electrochemical properties of Co\(_2\)P/RGO make it as a potential anode material for advanced LIBs.

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China (No. 11705015, 11605002 and 61604021), Scienc
e and Technology Plan Project of Suzhou (No. SYG201738), and Natural Science Foundation of Jiangsu Educational Department (No. 15KJA430001), Six-talent Peak of Jiangsu Province (No. 2012-XCL-036). We sincerely acknowledge the staff of the beamline BL12B in the national synchrotron radiation laboratory (NSRL).

References

high-performance flexible anode for lithium-ion battery, ACS nano 5 (2017) 5140-5147.

