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Abstract 

The problem of Staffing and Scheduling a Software Project (SSSP), where we consider Human 

Resource Allocation (HRA) to minimize project time, offers a management challenge for 

Project Managers (PM’s). Unlike the general HRA problem, SSSP involves determination of 

the assignment of a fixed amount of resources to teams and the allocation of these teams to 

project’s jobs. SSSP problem arises across a diverse range of resources’ and project 

characteristics (discrete variables), and this variety has offered a wide range of HRA methods. 

The general consensus is that the benchmark for SSSP are Meta-heuristic optimization 

techniques using deterministic or stochastic simulation of time. However, different HRA 

methods and project attributes are considered by SSSP approaches, and their solutions need 

to be compared against each other. The majority of SSSP approaches provide their 

approximation using Genetic Algorithm (GA) validated by a synthetic data or empirical 

method such as Quasi-experiment. Limited studies offer the comparison between these SSSP 

approaches, either by a comprehensive survey or systematic literature review for qualitative 

concepts.  

We aim to answer a set of research questions including: what is the best way to show the 

quality and performance differences between SSSP approaches? And, are these SSSP 

approaches suitable for industrial adoption?  Our thesis is that the best methodology is to 

identify according to the conceptual models used by the approaches a set of challenging data 

levels. In support of our thesis, we propose a systematic benchmarking and evaluation 

approach that encompass the data levels, and a set of quality measures. Next, we propose an 

empirical study that assess how PMs from software industry perform the allocation given the 

same datasets. The results of both works demonstrate significant differences between the 

approaches, highlighted four methods that advances the research filed, and provide 

interesting discussion on the PMs’ practices on SSSP.   
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Chapter 1 Introduction 

In this chapter, an overview of human resource allocation in software projects, including a general 

background on related topics of optimization approaches, is presented in Section 1.1. In addition, 

a general formalization of human resource allocation with consideration to project time 

minimization problem is presented in Section 1.2. This chapter also presents our motivation, aims, 

and research questions in Sections 1.3 and 1.4, respectively. Section 1.5 provides to the reader an 

overview about the research methodology and process carried out for the work for this thesis. 

Section 1.6 lists the contributions of this thesis, and the thesis organization is presented in 

Section 1.7. 

1.1. Human Resource Allocation in Software Projects 

Human Resource Allocation (HRA) can be defined as the process of determining a feasible and 

optimal schedule for a set of jobs according to the resources’ availability and/or the completion 

time of these jobs target(s) [1]. It is the responsibility of a Project Manager (PM) to perform HRA 

given the interdependent relationship between human resources and jobs, which requires the PM 

to identify which job should be done by whom with careful selection of the competent resources 

[2].  

HRA is a vital and crucial part of project management which plays a critical role in maintaining 

project outcomes to the planned constraints of quality, cost, and time. Finding the optimal 

resource allocation plan with respect to project schedule and maintaining it with high quality, low 

cost, and minimum time standards is a complex problem for a PM to solve in reasonable time 

given the limitation of deploying and delivering the final product. It has been proven that 

inadequate human resource planning is one of the causes of failure especially in software projects 

[2].  

Project management as defined by Project Management Body Of Knowledge (PMBOK) is the 

“application of knowledge, skills, tools and techniques to project activities to meet the project 
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requirements” (p. 6) [3], and it is not a surprise that more skilled, knowledgeable, and expert PMs 

are always in demand by many organizations. Moreover, project management is the most dynamic 

and vibrant among the management disciplines [4], and in software production several 

management activities are critical for success, however these activities potentially have conflicting 

goals with each other [5]. This is due to the nature of software construction and the characteristics 

of software projects, which predominantly involve human resources and requires cognitive 

processes of individuals collaborating in teamwork to create the software [4]. For example, it is 

hard to balance between project time span and product quality when different skills are heavily 

involved in the software construction, testing and quality assurance, while at the same time 

availability of these skills amongst the resources is scarce.  

There are several characteristics that make software production and it related management 

activities differ from any other projects. Software is an intangible product that is expected to 

provide a unique solution. However, with its intangible nature, stakeholders often provide 

imprecise and/or incomplete information about the required solution. Product scope could then 

have some potential changes if these imprecise or incomplete requirements are not rectified. 

Moreover, software production involves complex development of interfaces and core systems, and 

at the same time it often has dependability and interaction with other software(s), hardware(s), 

and processes, which requires continuous updating of practices according to the constant 

evolution of processes, methods, and tools. This nature of software requires different types of 

testing to ensure software quality and security however with this complex nature and imprecise 

requirements, quality measures can be a hard target for software engineers to achieve. In addition, 

software production is a human-based development. Therefore, individuals with intensive 

intellectual capital are heavily required to form teams, where the members of these teams have to 

have their communication and coordination as clear as possible [4]. Thus, software projects differ 

by its nature from any other projects, and it is not a surprise that in software projects the 

management activities and goals are the major concern rather the technical ones [6].  

One of the advantages of improving human resource allocation is to minimize project time by 

which software firms can be more productive [7]. Many studies have presented the importance of 

minimizing software project time among the management goals of time, cost, and quality as in [5] 

[8], and as stated by [9] with industrial evidence that for standard software development the 

organizations have in their highest priority to minimize project schedule depending on the 

availability of skills and expertise as a way of reducing time to market.  
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In early work on project time, different models are proposed for time estimation and management 

such as Work Breakdown Structure (WBS), Program Evaluation and Review Technique (PERT), 

Critical Path Method (CPM), etc. -see Section 2.1.2- however none of these models support the 

resources attributes and the dynamic nature of resource allocation taking into account team 

aspects. To solve different Software Engineering (SE) problems including software project time 

minimization, optimization techniques (Search-Based Algorithms) are employed by many 

researchers, and the dawn of a new field was born and coined by the term Search-Based Software 

Engineering (SBSE) by [10]. SBSE focuses on the application of special optimization techniques 

that belong to class Meta-Heuristic to different software engineering problems -see Section 2.2 -. 

Part of the earliest work in SBSE described by [11] are both in [12] and [13], where [12] have 

employed Genetic algorithm -see Section 2.2- to determine the best resource allocation for 

software project management. The one in [13] on the other hand was the first to formalize 

requirement planning into a Next Release Problem (NRP) and provide three approaches using 

Greedy, Hill Climbing, and Simulated Annealing optimization techniques -see Section 2.2- to 

maximize satisfaction of a selected stakeholder(s) on requirement prioritization for the next 

release.  

A more advanced classification is introduced by [5] as a subfield of SBSE named Search-Based 

Software Project Management (SBSPM), and comprehensively surveyed for the approaches that 

employ optimization techniques on Software Project Management (SPM) problems including 

Software project time minimization. Limited number of approaches are found by [5] that have 

explored the nature of software project time minimization and provided approximation methods 

for it using an optimization technique.  

HRA with consideration to project time span minimization is an optimization problem for a cost 

function that involves constraints on project tasks and the available resources. For instance, 

precedence relationship between partial or entire project tasks, and/or skills between tasks and 

resources are required to be satisfied. These constraints however can be soft or hard by which 

violation of a soft constraint can be acceptable and a process is put to rectify that by applying 

penalties, or for a hard constraint any solution that violate it should be omitted. HRA combines 

two aspects which are: a) the workflow of jobs that the resources have to follow implemented by a 

graphical representation such as Directed Acyclic Graph (DAG), and b) criteria for resource 

selection (e.g. skills) [2].  
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Different representations of HRA problem have been introduced by different incarnations 

depending on the resources’ type addressed in the problem such as human, machines, etc. An 

early version of HRA problem has been introduced as a Resource-Constrained Project Scheduling 

problem (RCPS), which tend to tackle several kinds of resources [14]. A related problem to this 

has been later tackled by many approaches as in [14, 15] named Project Scheduling Problem (PSP), 

which only considers human resources and their skill(s). Given the nature of HRA in software 

projects which is not only concerned about project schedule, but in addition the resources staffing 

and their productivity and distribution to teams as in [16], our general optimization problem 

addressed for this thesis is represented by the following Section 1.2. 

1.2. Staffing and Scheduling a Software Project  

Staffing and Scheduling a Software Project (SSSP) is one of the software project management 

problems. This problems is associated with exploring a set of possible solutions and searching for 

the best minimized project time span among the feasible solutions. However, the search space of 

possible candidate solutions for this problem is typically large and requires extensive processing 

time to find the best one [17]. This problem is well-known to be NP-Hard class of computational 

complexity that no known algorithm can find an optimal solution for it in a polynomial time [18]. 

Here the optimization techniques are used to help in this particular management task aiming to 

produce optimal or near optimal solutions within a reasonable computational time. SSSP problem 

can be represented by five main elements. These elements are depicted in the following Figure 1. 
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Figure 1: SSSP Elements 

From Figure 1, it can be seen that the SSSP problem requires the identification of three main 

elements. These elements are problem inputs, resource assignment method, and the software 

project constraints. In addition, SSSP problem includes two nested problems, which are resource 

staffing and project scheduling. As can be seen in Figure 1, resource staffing problem is based on 

the inputs of resources’ availability, properties, and the way of assigning these resources to teams. 

Once staffing of resources is completed, project scheduling can be then established based on the 

outcome of resource staffing and additional two aspects. These aspects are the second part of the 

problem inputs of project properties and the project constraints of task dependency, skills, etc. 

which have to be adhered to within the outcome schedule. According to these elements the 

optimization problem of SSSP can be mathematically formulated as follow.  
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Problem Formalization: 

Staffing the resources and scheduling the tasks of a software project can be formulated as an 

optimization problem of a cost function for minimizing project time span 𝑝𝑇 as follow. 

𝑚𝑖𝑛 𝑓(𝑝𝑇) 

𝑤ℎ𝑒𝑟𝑒,  

𝑝𝑇 = 𝑚𝑎𝑥{𝐶𝑃1, 𝐶𝑃2, … , 𝐶𝑃𝛾} 

𝐶𝑃𝑑 =∑𝑆(𝑡𝑑𝑘)

𝐼

k=1

 

𝑆(𝑡𝑙) = 𝑒𝑡𝑙/∑𝑝𝑟𝑜𝑟

𝑛

𝑟=1

∗ 𝑄( 𝑡𝑙 , 𝑟)  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜, 

∀ 𝑟, 𝑡𝑙 ∶ 𝑄( 𝑡𝑙 , 𝑟) = 1 ∃ 𝐶𝑟 ∩ 𝐶𝑡𝑙 ≠ 𝜙 

∑𝑄(𝑟, 𝑡𝑙) ≤ 𝑏

𝑛

𝑟=1

, 𝑤ℎ𝑒𝑟𝑒 𝑏 ∈ ℤ+ 

∀ 𝑡𝑙 ∈ 𝑇 ∃ 𝑑𝑝𝑙 ∈ 𝑇𝐷: 𝑑𝑝𝑙  ⊆ 𝐹𝑇 

Software project time span 𝑝𝑇 can be defined as the maximum Critical Path 𝐶𝑃 length among the 

set of alternative 𝐶𝑃s defined for project schedule. With 𝛾 number of CPs, the length of a 𝐶𝑃𝑑 

involving 𝐼 number of tasks can be determined by the summation of estimated time 𝑆 of each 

task 𝑡𝑑𝑘. Time 𝑆 of task 𝑡𝑙  can be calculated by the division of estimated effort 𝑒 of 𝑡𝑙 over the overall 

productivity of the resources assigned to it. These resources who are assigned to task 𝑡𝑙  can be 

identified according to decision variable 𝑄 which will return a value of 1 for 𝑄(𝑡, 𝑟) if resource 𝑟 is 

assigned to task 𝑡, or 0 otherwise. The return value of variable 𝑄 will be then used to identify which 

resource productivity 𝑝𝑟𝑜 will be add to the overall value. However, the identification process of 

the software project schedule time should comply with a set of constraints. Each resource 𝑟 

possesses a set of competencies 𝐶 and for each 𝑟 assigned to 𝑡𝑙, 𝑟 should possesses the required 

competencies 𝐶 for task 𝑡𝑙 represented as: 

∀ 𝑟, 𝑡𝑙 ∶ 𝑄( 𝑡𝑙 , 𝑟) = 1 ∃ 𝐶𝑟 ∩ 𝐶𝑡𝑙 ≠ 𝜙 

In addition, the number of resources participating to perform one task should not exceed the limit 

𝑏 value. For this constraint penalty should be applied as the overhead communication is 

anticipated to reduce the team’s productivity and the development speed. 
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∑𝑄(𝑟, 𝑡𝑙) ≤ 𝑏

𝑛

𝑟=1

, 𝑤ℎ𝑒𝑟𝑒 𝑏 ∈ ℤ+ 

The precedence relationship should be satisfied so that for each task 𝑡𝑙  defined in the project tasks 

set 𝑇 its predecessors must be finished in order 𝑡𝑙 to be started. The dependency information can 

be obtained by the set 𝑇𝐷, which hold a subset task 𝑑𝑝 for each task 𝑡𝑙. Subset  𝑑𝑝𝑙  accordingly hold 

the information about task 𝑡𝑙  predecessor(s). 

∀ 𝑡𝑙 ∈ 𝑇 ∃ 𝑑𝑝𝑙 ∈ 𝑇𝐷 ∶  𝑑𝑝𝑙  ⊆ 𝐹𝑇 

 

1.3. Motivation 

Since the early work presented in [12], the field of software project HRA optimization has 

gradually become more advanced, and many models have been proposed in this field over the last 

three decades, where each has potentially demonstrated a real-world allocation problem 

according to the targeted organization environment. However, evidences from real-world 

examples provide diversity of human resource allocation problems described by [9] and [19].  

Different approaches have been proposed for SSSP problem. These approaches employ Meta-

Heuristics and each is targeting specific project and resource properties based on different 

perspectives. One of these perspectives assumes that the resources share similarity in skills and 

productivity as in [20, 21]. Based on this assumption they have formed their HRA problem into a 

queueing system to distribute the tasks to different teams, where the formation of teams only 

depends upon the number of resources, so the more resources you have, the more you likely to 

finish the work earlier.  

Another proposal has shaped SSSP by considering the distribution of resources into different 

project tasks with the assumption that resources can only be allocated with a percentage of their 

daily working time. This percentage type of allocation requires the identification of participation 

rate for each resource to each task. These approaches have made their assumption where 

resources are differing in terms of skills but they share same productivity as in [14, 18, 22, 23].  

According to the description presented by the optimized SSSP approaches, we have identified four 

methods of resource and team assignment based on the concepts of dynamic and static team 

formation, time and queueing assignment simulation, as well as participation of resources. These 

assignment methods can be represented as a categorization for the optimized SSSP approaches 

represented by the following Table 1. 
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Table 1: HRA and Team Assignment Methods 

 Method 

1 Static Teams with Queue Simulator (STQS) 

2 Static Teams with Time Simulator (STTS) 

3 Dynamic Teams with Binary Participation (DTBP) 

4 Dynamic Teams with Participation Rate (DTPR) 

For full details about the team assignment methods the reader can refer to Chapter 5, and Chapter 

2 for specification about the selected SSSP approaches that comply with these methods. 

On the other hand, skills are not always the only best choice to use for optimal resource allocation 

in software projects [16]. More factors and aspects are involved in determining the fitness of 

resources to project tasks such as resources’ productivity. While many approaches have assumed 

that productivity of software project resources is always similar to each other, others have 

demonstrated how this factor could be a key role in reducing the search time while relaxing skills 

constraint. These approaches that consider the differences between resources in terms of skills, 

and productivity are limited as in [23]. Putting all these assumptions into practice requires 

demonstration of which can lead to a better solution. It is understandable that all these 

assumption can be seen in the industry practice, however, it is important for us to understand 

which and why each of these approaches has the potential of industrial adoption. Throughout the 

literature -see Section 2.3-, we have found that limited surveys and systematic literature reviews 

have been performed on the approaches that tackle SSSP problem as in [5] and [24], and none 

provides evaluation and comparison of the runtime results between these approaches except the 

one in [15].  

We believe that providing a comprehensive evaluation and comparison between SSSP approaches 

can help on moving this field of research one step towards the industrial adoption. In addition, 

one potential work that can be added to this is an empirical evaluation of how PMs from software 

industry can perform HRA on the same data used for the approaches evaluation. Moreover, it is 

also important to capture which software project and resource’s aspects are important for PM’s to 

consider. While PMs are in urgent need for good quality and accurate software project planning 

and estimation techniques, the discussion in [11] argues that this will keep the SBSE community 

attention and interest in this subject for more work on management plan robustness, and 

integration of software engineering and management activities. 
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1.4. Research Aims and Questions 

Our main aim in this thesis is to provide a complete study that accumulates the findings from 

software project time span minimization including SSSP approaches performance while showing 

how to address their problem formulation, measure their outcomes quality, and express the 

findings from these approaches compared against each other. It is important to see how the SSSP 

problem has been addressed by different incarnations, and whether these incarnations are sharing 

similarity between each other in terms of the allocation method, and the software project and 

resource’s attributes used in their problem formulation. One of the targets of this aim is to 

standardise the experiments under one objective of the SSSP problem defined in Section 1.2, of 

project time span minimization. The main reasons to adopt the time minimization for our work is 

twofold. While part of SSSP approaches involves multi-objective optimization, the comparison 

between these approaches requires unity of common optimization objective(s), in which the time 

is the only common one amongst them all. In addition, evidence by [24] shows how the 

mainstream of SSSP approaches are considering project completion time for minimization with 

44 approaches out of 52.  

Our main focus is to compare between the different optimized solutions (approaches) for software 

project HRA, where each consider and adopt an optimization technique, problem variables, 

setting, and adjustable stochastic process to approach the SSSP problem. It is important to note 

that this research is not about comparison between the optimization techniques. For studies that 

consider the comparison for exact optimization techniques we refer to [25], and for different 

stochastic, and heuristic techniques we refer to [21, 22, 26]. In addition, the reader can refer to 

[27], which provides a comparison between different project management tools. From [27], it can 

be seen that the allocation of resources is the least to be considered by the management tools as 

they only provide partial and non-automatic assignment of resources regardless of the 

management objectives. 

The nature of this research as in other fields of study has some limitations. Lack of industrial 

contribution of historical data to be extracted, or time availability of project managers to share 

their opinion and expertise on particular subject(s) are the main limitations on software project 

HRA research. In addition, there are some obstacles, due to the competitive market and/or 

sensitivity of data, on conducting meetings with representatives from the industry while 

agreements have to be made by both sides for confidentiality requirement and non-disclosure, 

which are vital for a research to progress. Despite all these limitations our second aim is to 
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empirically capture and evaluate the current industry practices and the main software project 

attributes that are important for PM to consider.  

From both aims, a set of main questions can be formulated by which we need thoroughly from 

their answers to acquire understanding, explore subject(s), research the field and trends, and 

report findings related to SSSP problem, and software project time span minimization. These 

questions are: 

 Is there an automated SSSP approach that reliably solves the SSSP problem? 

 Do these approaches outperform expert intuition in solving the SSSP problem? 

 Do these approaches reflect the software projects and project managers’ real needs?  

These three questions form the roadmap for the work carried out for this thesis. Throughout the 

following chapters, some follow-up questions will also be identified as the exploration process of 

SSSP problem, approaches, and current industry practices are gradually moving forward. For 

example, a follow-up question will be formulated in a later chapter to ask how better to investigate 

the automated SSSP approaches’ performance and quality. These questions will help us to 

understand if there are any differences between the SSSP approaches in terms of the runtime 

outcomes. These follow-up questions can be highlighted by the following: 

1. What are the differences between SSSP approaches? 

2. Why do these differences occur? 

3. Are these approaches and their proposed data to use suitable for the software industry? 

4. How would an industrial setting representative use particular project data to provide a 

solution for SSSP problem? 

1.5. Overview of our Methodology and Benchmarking 

Approach 

Broadly speaking, benchmarking in SBSE can be performed for a single approach by employing 

different optimization techniques and a base for the benchmark as suggested by [10, 17] using a 

random search for comparison. SSSP approaches have evaluated their proposals either by 

comparing their solution with different optimization techniques as in [21, 22] or empirically with 

a single industrial partner as in [23, 28], using a real-world datasets as in [20-22] or synthetic one 

as in [14, 15, 18, 28]. It is noteworthy that this field of research has no available dataset that can 

be used to evaluate the approaches, or even to demonstrate their outcomes’ quality. Given these 
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circumstances we have identified a research methodology and a benchmarking process that can 

help us to achieve our aims. Our research process is depicted by the following Figure 2. 

 

Figure 2: Research Methodology and Process 

From Figure 2, it can be seen that the work carried out for this thesis consists of four stages. The 

first stage is the initiation, which encompasses three main activities. The first activity is reviewing 

the literature. The findings from the literature are presented in Chapter 2, which has helped to 

conclude the definition of SSSP problem. For this definition, suitable datasets are created by 

extracting information from historical software project records. These datasets are then 

transformed into different project scenarios by which different level of complexity are identified 

based on the level of project and resource’s attributes presented in each. This transformation was 

the first activity in the second stage of the benchmarking. Benchmarking stage in addition to the 

data transformation includes identification of suitable performance measures for benchmarking 

the solution proposed for SSSP problem. The outcomes from both activities have helped to shape 

our benchmarking process presented in Chapter 3. Based on the benchmarking process, 

experimentation of a set of representative proposed solutions for SSSP problem are performed 

according to the identified levels of complexity. The outcomes from the experimentation are then 

used to evaluate, and compare these solutions against each other. These outcomes and findings 

from the evaluation and comparison are presented in Chapter 4 and Chapter 5. 

On the other hand, an industrial exploration and evaluation stage is planned for this thesis 

depicted in Figure 2, and presented in Chapter 6. This stage starts by recruiting subjects from our 

industrial partners using a direct recruitment method. However, the main problem is finding a 

suitable time that can be agreed by all. Two phases are planned for this stage while interviewing 

subjects, where the aim of these phases is to explore the subjects’ performance and the 

demographic information about their background and experience. Interpretations from the 
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benchmarking stage findings, and the interviews outcomes are then extracted enabling to 

conclude the research in Chapter 7. 

1.6. List of Contributions 

In pursuit of providing support for our work on this thesis, many experiments and systematic 

procedures were carried out. The main contribution of this thesis are as follow: 

 A valid dataset that holds different complexity levels, as well as the optimal solution for 

each.  

 A complete benchmarking and evaluation approach, combined with quality metrics, and 

accuracy measures. 

 An evaluation and comparison of nine of the most referenced and cited SSSP 

approaches. 

 Formalization and evaluation of four team allocation methods with consideration of 

project time minimization using genetic algorithm optimization and resource’s 

productivity. 

 An empirical evaluation of HRA aspects, and PMs’ performance from different industrial 

settings. 

 A research paper named Benchmarking and Comparison of Software Project Human 

Resources Allocation Optimization Approaches. A preliminary comparison and 

benchmarking study was performed and the outcomes of Five approaches of [14, 18, 20, 

21, 28] are reported in this study paper. This work is reported in Chapter 4 and published 

in [29]. This paper is presented in 0Appendix B. 

 

1.7. Thesis Structure 

The reminder of this thesis is organized as follow. In Chapter 2, a thorough review of software 

project estimation and management techniques is carried out, including specific emphasis on 

optimization techniques (Search-based algorithms) and comparative studies of SPSPM 

approaches. In Chapter 3, our general methodology adopted and benchmarking approach are 

presented including a systematic process for categorizing and running experiments on SSSP 

approaches, as well as the datasets and quality measures to use for demonstrating the approaches’ 

quality. Chapter 4 provides results of employing the benchmarking approach on nine SSSP 

approaches. In Chapter 5, results of advanced experiments are provided including optimization of 

four team allocation methods. Chapter 6 provides an empirical evaluation of PMs’ practices and 
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solutions to HRA scenarios quoted from the datasets with accumulation on the findings 

from Chapter 4 and Chapter 5. In Chapter 7, we conclude this thesis by providing the overall 

picture of the findings from Chapter 4, Chapter 5, and Chapter 6, summarizing the contributions 

of this work, and discussing limitations and possible future directions. 
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Chapter 2 Literature Review 

This chapter provides to the reader the current state of the art in the literature regarding the 

information that a software project and human resources can provide in Section 2.1, the 

optimization techniques (Search-Based Algorithms) that are applicable and suitable for SSSP 

problem in Section 2.2, and studies that compare and evaluate human resource allocation 

optimization approaches in software project management in Section 2.3. In addition, Section 2.4, 

provides details about the selected approaches for run-time benchmarking and comparison. 

Section 2.5 provides a background of the benchmarking processes proposed by different research 

papers, available datasets, measurements, and statistical tests that are available for SE research. 

Finally, this chapter ends with a discussion, and concludes the findings in Section 2.6. 

2.1 Software Project Information  

Software project provides many parameters and constraints that need to be taken into account 

while allocating resources. Many models for software projects have been proposed that capture 

these parameters and constraints, such as size, effort required, time, and cost.  

2.1.1 Software Size, and Effort Estimation Models 

Size is one of the variables that gives an indication about the amount of work that has to be done 

either by the workforces or the managers themselves. Different units can be used to estimate the 

size related to how the software will be developed. The most popular units used by many 

estimation approaches are Source Line Of Code (SLOC) and Function Point (FP) [30, 31]. The line 

of code represents the estimated number of code lines that a software product will have in actual 

development. Function point on the other hand describes the software in term of functions that 

should be implemented to achieve the customer requirement. In addition, both units are used by 

effort estimation models to predict how many resources the project needs for the actual 

implementation. Accordingly, software size is one of the basic variable for effort estimation. 

However, in early development stages accurate estimation is hard to achieve. It depends upon 
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decomposing and splitting the project into small pieces to gain an understanding of the abstract 

level of the business problem. Therefore, having the abstract view along with the details can help 

to predict the project size, and to estimate the effort required.  

Two types of approaches can be identified for software project estimation which are judgement-

based and model-based approaches. Judgement-based approaches rely on expert project 

managers’ intuition to predict project size, productivity of developers, and estimate the effort. 

Model-based approach on the other hand uses mathematical equations that model the attributes 

of projects and developers to estimate the effort, time and budget of a software project. 

As one of the model-based approaches, Function Point (FP) estimation model, introduced by [32], 

has been developed using the Function Point (FP) software size unit. The benefit of using the FP 

estimation model as it can simply be used in early development stages while clarifying the size of 

the intended software to the users or customers. More advanced model of FP has been proposed 

by [30] to support the FP-based effort estimation according to classification of project size and 

complexity from 24 software applications developed by IBM DP service (IBM information system 

service) presented by [32]. By using this model, software firms are able to demonstrate the 

intended work in the early development stages. This has made the estimation model widely 

accepted and also suggested by the International Function Point Users Group [33] for industrial 

use. However, the elements of project complexity are established based on specific programming 

languages and regardless of the productivity variation of resources. Moreover, this estimation 

model does not provide the allocation of resources that can best achieve the estimated effort and 

time as it depends on specific attributes and features that the project can provide.  

The COnstructive COst MOdel (COCOMO) proposed by [34], is arguably the most well-known and 

most widely used model-based approach for software project cost estimation. The first version of 

COCOMO was proposed in 1981 and focussed on supporting the development of embedded 

software system, and was aimed in particular at a waterfall-based development methodology. 

COCOMO performs cost estimation for software development by modelling the size of the project 

in term of Kilo Line Of Code (KLOC). Productivity of resources on the other hand is expressed by 

means of the number of lines of code they can reliably produce during a given time interval. The 

cost of using a resource therefore directly correlates to the amount of time required to perform a 

project and the resources’ salary. To estimate the time required to complete a particular project, 

COCOMO introduces Person-Month as an effort estimation unit. The actual value of the Person-

Month estimation for a project depends not only on the size of a project, but also on the 

development team size assigned to project. 
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An advanced level of COCOMO is then proposed by [35], and named Ada COCOMO. This model, 

in addition to the elements considered by the previous model, takes into account module’s 

structure and phases for development, as well as the Ada programming concepts. It uses the same 

equations and the cost drivers as well, but it introduces phases for the size estimation of projects 

regarding incremental development. Ada COCOMO uses function points to express the software 

size as it is easier to use in early development stages when limited information is available. Once 

the lines of code can be estimated with reasonable accuracy, the advanced stage switches to use 

this metric embedding with four exponent scaling factors that determines the project size. 

To address the advancement of incremental, spiral, and object-oriented software development 

methods on estimation models, a new version named COCOMOII was introduced by [36] with 

changes made on the cost drivers, size estimation as well as the equations of COCOMO81 and Ada. 

These changes have introduced new cost drivers (now called Effort Multipliers (EM)) grouped into 

four different categories. COCOMO II replaces the mode of development in the estimation 

equation with five scale factors based on the Software Engineering Institute (SEI) process 

maturity factors and according to [37]. In addition, it takes into account the economies and 

diseconomies of scale on project size discussed by [38].  This is as how “Software cost estimation 

models often have an exponential factor to account for the relative economies or diseconomies of 

scale encountered as a software project increases its size.” (p. 77) [36]. However, the model should 

be calibrated by the company’s data to represent the local productivity according to [39].  

The problem is that this model does not take into account the modern development methods and 

it even assumes that the workforces all are at the same level of productivity and expertise. 

Additionally, the software firms that use COCOMO have to calibrate these parameters and 

constant values according to their productivity and project historical data. Because of this, the 

usefulness of this model has recently been debated and some studies shows that the majority of 

project managers prefer expert opinions over mathematical ones [40].  

In addition to the COCOMO and FP models, the Work Break down Structure (WBS), as one of the 

judgement-based model, can be used as a tool to support the PMs in decomposing and splitting 

their projects into manageable parts. Back in the 1950’s, WBS has been developed by United States 

Department of Defence (DoD) to support military purposes [41]. After that WBS became useful in 

most of the 1960’s projects in USA. In 1987, WBS became widely available to researchers and was 

used to support managers on their project work worldwide [42]. 

WBS supports the management process starting from planning, to execution, and then to 

reporting and controlling. So it can be used as a progress report mechanism to monitor the work 
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against the planned [43].The main idea of WBS is to start by defining the project scope. This can 

be done by defining the work elements. These elements can be represented as components of the 

original product, or activities of production towards the final product. 

The elements that have been described earlier should be counted as deliverables. These 

deliverables have to be definable, manageable, estimateable, and measurable. This can lead the 

managers to estimate the whole project according to each deliverable. This work needs the 

managers and the experts in the field to use their expertise to define how long and how much each 

deliverable will cost.  

Moreover, Delphi technique is another tool that can be used for effort estimation. This technique 

was developed in the 1940’s and then published by [44]. Delphi technique is a judgement-based 

approach that has been successfully applied by many researches and for several purposes 

including software projects. It depends on a group of experts rather than the judgment of one 

expert. It includes four characteristics which are the anonymity of participants, information 

gathering type, feedback, and facilitator.  

The facilitator starts by providing the questionnaire to each participant, monitoring the process, 

and recording the responses. His/her responsibility is to ensure that the anonymity rules the steps 

and that no participant will know who the others are and what are their responses. According to 

the defined reviewing times, there will be more than one stage for reviewing the experts’ opinions. 

Feedback in each stage therefore can be made for the participants to review and update their 

responses. The participants are then should be all agree on the best of the responses. This 

technique provides a very useful tool for the researchers as well as the decision makers to forecast 

using a group of experts’ knowledge.  However, the outcomes of using it depends on the 

participants’ knowledge, which might not conclude an optimal result.  

2.1.2 Software Project Task Dependency Modelling 

To capture a relation between several tasks, mathematical structures are used to model these into 

graphs. Two main graphs have been proposed depending on how the objects are connected with 

each other, which are directed graph, and undirected graph [45]. In software projects, the need is 

to capture which task should start before the other(s). Accordingly, the graph that can be used to 

demonstrate the dependency constraint between software project tasks is the directed graph.  

One of the important application of Directed Acyclic Graph (DAG) is for project scheduling. In 

software project management DAG is used as a structure to show the Task Precedence Graph 

(TPG) presenting the schedule plan and the execution process of project [14]. However, it is the 
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responsibility of a project manager to ensure that the schedule is formed by a manageable 

timeframe and serves as a timetable for the project. Many techniques have been proposed as an 

application of DAG to depict the project schedule and to facilitate the project manager’s work.  

The Program Evaluation and Review Technique (PERT) is one of the application of DAG used as 

a project management technique for analysing and representing the completion time of project 

tasks introduced in the 1959 by [46]. This technique has been suggested to be combined with WBS 

for project and task time estimation. This technique has proposed a solution for two main aspects. 

The first aspect that this technique is concerned about is the schedule graph representation of 

project. The second aspect is the estimation of project task time.  

For schedule representation, DAG is used to depict the project task workflow however, the 

representation of arcs and nodes are changed. A node in PERT represents a milestones to be 

achieved rather than specific task to be performed, and an arc represents the beginning and 

completion of a task and its estimated time. This time estimation requires several experts’ 

opinions regarding the size and the time for each part of the project. The following Equation 9 

developed by [46] for time estimation. 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑇𝑖𝑚𝑒 = (𝑂𝑝𝑡𝑖𝑚𝑖𝑠𝑡𝑖𝑐 + 4 × 𝑀𝑜𝑠𝑡 𝑙𝑖𝑘𝑒𝑙𝑦 + 𝑝𝑒𝑠𝑠𝑖𝑚𝑖𝑠𝑡𝑖𝑐)  ÷ 6                        (9) 

The average estimated time for each project task in Equation 9 is calculated by the following 

attributes: 1) the optimistic value, which is defined supposing that the project will proceed better 

than expected, 2) the most likely value, which is the normal case happens, and 3) the pessimistic 

value which takes into account the worst and that the project development will consume more 

time than the expected. While this technique is powerful in demonstrating project schedules, 

providing the alternative project task workflow, and providing time estimate tool however, it has 

no precise measures in determining the values of the three attributes that can be counted as a 

weakness.  

Another application of DAG is the Critical Path Method (CPM). This method is introduced by [47], 

and propose a mathematical method to define the longest path of time for a sequential series of 

tasks that contains dependencies between some or all of these tasks. The first purpose of this 

method was to facilitate the planning and scheduling of business management. This method 

presents the tasks or the activities by a graphical arrow diagram. However, nowadays this method 

can be used within the Gantt chart. 

The benefit of using the CPM is accurately managing the efforts to the estimated delivery time by 

a single master plan. Besides, this method depicts the heart and the hard project tasks or activities 
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that the manager should carefully manage. The CPM process starts with the planning, which is 

defining the project tasks. Then scheduling the planned tasks by defining the required time for 

each task as well as the early and late time. By identifying these variables CPM can be then used 

to calculate the longest path among the alternative Path(s) that will help to determine the project 

duration.  

The graphical arrow diagram developed by [47] shows the events, the jobs, and the series. The 

Events which refers to the products is represented by a circles in this diagram, where the jobs that 

done by a resource is represented by arrows linking between the events depicted in Figure 3. Three 

types of relation which are precedes, follow, and concurrent are between the events. Through these 

relation a well-defined order to perform the jobs is called then the series. However, two concepts 

are used in CPM to represent the relation, the origin that precedes, or terminus that follow another 

event. 

 

Figure 3: Critical Path Diagram 

Three kinds of event’s time in CPM are important to be defined for each event, which are earliest 

start time, latest completion time, and the job duration between two events. Based on these three 

variables criticality of an event can be calculated by measuring the differences between the early 

time, late time, and duration. The value of this difference is called floating time. If this value is 

greater than zero, then this event is called floater, or otherwise if it equal zero then this event is a 

critical one. The definition of project completion time by [47] is the late time of last critical event.  

This method is one of the bases of current project management planning along with the Gantt 

chart. However, this method is heavily dependent on the PM to estimate the time variables for 

each event, and does not consider resource allocation while estimating the events’ durations.  
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Another task management technique similar to DAG is the Gantt chart proposed by [48]. It 

graphically displays the order and dependencies of tasks in a diagram. The main aim by [48] was 

to provide balancing charts and machine loading of what the resources should do, and did do [49].  

Gantt chart contains the project resources, and bars that represent the number of days for each 

resource in calendar that shows when the task of each resource will start and finish. 

The benefits of Gantt chart is to represent the work plan as a progress report and graphical 

schedule [49]. It enables the manger to keep attention on overcoming obstacles and avoiding 

delays [50]. To clarify the idea of how we can draw a Gantt chart, the following example of three 

workers that they supposed to work in developing simple software project can be drawn as follow: 

 

Figure 4: Sample of Gantt chart 

As can easily be seen from Figure 4 that this project will start on 22nd of Jan and to complete in 4th 

of Feb, which takes two weeks. However, from this figure, it can be also seen that while John is 

working from 22nd till 26th of Jan, both Richard and Thomas are available for any other work to 

perform, and exactly the same for both John and Thomas after 30th of Jan. Diagramming using a 

Gantt chart has been one of the important tasks that the managers have to carry out. This chart 

provides very useful information for resource balancing, however it does not provide a mechanism 

for project task scheduling and optimal resource allocation. 

On the other hand, to illustrate the availability of human resources in efficient sequence and to 

ensure the quality of project schedule, the Critical Resource Diagram (CRD) was introduced in 

[51] as a tool for managing the project workflow in term of resources assigned, rather than project 

activities [52]. Scheduling the resources by the CRD is similar to the arrow diagram presented by 

the CPM, except that instead of presenting the event’s name in each circle, we need to include both 

the activity and the resource’s name on it. This way of presentation is to show that this resource is 

unavailable during the activity time. In addition, through this diagram managers can identify any 

time conflicts between the resources and who are available for next activities. 

The following Figure 5 depicts a CRD that shows five activities and their assigned resources within 

a specific sequence. This diagram can provide to managers whether any resource is involved in 

simultaneous activities, and to ensure that the resources are sufficient for the project activities.  
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Figure 5: Critical Resource Diagram 

CRD is a very useful tool that provides important information for managers to take into their 

consideration while distributing the resource to activities and balancing the resources loads, 

however finding a good quality resource allocation while using this diagram in only depending on 

the manager’s intuition and expertise. 

2.1.3 Workforce Models 

In software projects competencies are counted as a key for productivity measurement. This 

productivity can leads to efficient time plans, and high quality products. In addition, human 

resource competencies are the essential input for a successful allocation in software projects. 

Modelling human resource competencies, therefore, has emerged as one of the important aspects 

in human resource allocation. 

The results of a study presented in [53] classifies workforce competency models into three 

categories. These categories are supporting the performance of individuals, groups (collective), or 

organizations (global). The individual models category takes into account the models that are 

related only to the technical capability of human resources. The collective models category on the 

other hand take into account the models that describe the competencies of team roles such as 

analyst, designer, programmer, etc. The final Global models category takes into account the 

models that created for the organization’s future so that dynamic improvements are incrementally 

made on the overall performance.  

However, based on how the competencies will be used by the allocation approaches the workforce 

models are divided in this section into qualitative and quantitative models. Qualitative models are 

the models that use the competencies with binary representation to show the existence of a quality 

or not. Quantitative models on the other hand aim to quantify the workforce attributes for 

mathematical use. The following sections cover the current state of the art of each model type. 
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2.1.3.1 Qualitative Workforce Models 

US department of labour IT competencies INFOCOMP (2012) 

The model presented in [54] aims to clarify the competencies of workers required in the 

information technology and software development industry. Competencies presented in this 

model are grouped into four tiers. Tier one contains the IT competencies counted as a personal 

effectiveness. Tier two describes the competencies that should be established during academic life. 

Tier three considers the competencies that the resource should gain from the workplace. Tier four 

describes the industrial technical competencies. 

From Table 2, we can see that these levels are presented as building blocks. Accordingly one of the 

aims of this competency model is to evaluate the IT workers. The details of the tiers and the 

competencies introduced by the INFOCOMP are listed in the following table: 

Table 2: Attributes of INFOCOMP 2012 [54] 

Tiers Competencies 

1. Personal effectiveness Interpersonal skills and team work 

Integrity 

Professionalism 

Ethics 

Adaptability & flexibility 

Dependability & reliability 

Lifelong learning 

2. Academic competencies Reading 

Writing 

Mathematics 

Science 

Communication: Listening & Speaking 

Critical and Analytic Thinking 

Basic Computer Skills 

3. Workplace Competencies Collaboration 

Planning & Organizing 

Innovative Thinking 

Problem Solving & Decision Making 

Working with Tools & Technology 

Business Fundamentals 

4. Industry-Wide Technical 

Competencies 

Principles of Information Technology 

Information Management 

Networks & Mobility 

Software Development 

User & Customer Support 

Digital Media 

Compliance 

Security & Data Integrity 
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The competencies presented in Table 2 can be used to assess the level that a software organization 

has according to their workforce’s available competencies. The competencies presented in tier one 

along with tier two are the basic level of competencies for the workforce to start in the IT and 

software development career. The workforce then during his/her career have develop his/her 

competencies to tier three, and four. In addition, this can be used as a future plan for individuals 

to improve their skills and competencies. However, this model is proposed as the basis of a 

benchmark for gap analysis that the industry and academic institutions have to use to comprehend 

the quality of their individual workers.  

IEEE Software Engineering Competency Model (SWECOM) 

The IEEE Software Engineering Competency Model [55] aims to improve software industry 

workers’ capabilities. In addition, it can be used to assess the current outcomes of educational 

bodies as explained in [56]. Based on differentiating between knowledge and skills, SWECOM 

represents knowledge as an element for establishing a good skill. The difference is that the 

knowledge is what the individual knows and skills are what the individual can do.  

Moreover, this model is not only proposed for software engineers, other related disciplines are 

considered as well. The related disciplines that are mentioned include computer engineering, 

computer science, general management, mathematics, project management, quality 

management, and system engineering. These disciplines are required in software projects and 

accordingly this makes them count as another element of SWECOM. 

SWECOM contains five elements that establish a foundation for the workers in the software 

industry. These element as can be seen in Figure 6 are behavioural attributes and skills, related 

disciplines, requisite knowledge, cognitive skills, and technical skills.  

 

Figure 6: SWECOM Elements [55] 
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The considered Cognitive skills are reasoning, analytical skills, problem solving, and innovation. 

Behavioural attributes and skills on the other hand are: aptitude, initiative, enthusiasm, work 

ethic, willingness, trustworthiness, cultural sensitivity, communication skills, team participation, 

and technical leadership skills. 

The most important part specially for measuring the fitness of the individual in this model is the 

technical skills which are categorized based on the phases of development and crosscutting of the 

different disciplines related to software. This model has in addition classify the level of 

involvement of the individual software engineer in each project activity into five, which are 

follows, assists, participates, leads, creates. Moreover, this model provides classification of the 

individual competency skill level that expresses how the individuals would fit to the work, which 

are technician, entry level practitioner, practitioner, technical leader, senior software engineer. 

This model provides gap analysis worksheets that can be used to assess both individuals, and 

project team’s competencies. These worksheets demonstrate the gap by using the activity and 

competency levels to fill the current and the needed skills. This would give an example of how this 

model can be used to measure the fitness of worker to a specific requirement either for the firm, 

project, or individual level.  

This model provides a tool that can be useful for assessing the fitness of resources to projects. 

However, resource allocation does not only requires staffing, but also to consider the inter-

dependency nature between project tasks. 

Psychological Capability of Human Resource 

A different side of software human resources rather the technical capability is the psychological 

aspect. In [57] a method is proposed for assigning workforces to development roles based on their 

psychological capabilities. These capabilities and factors are addressed by psychologists and 

software project managers using standards and frameworks. The standards and frameworks used 

in [57] are the Assessment Centre Method (ACM) framework [58] and the 16PF personality factors 

psychological tests [59].  

The ACM framework offers a process for selecting the best suited for a job containing individual 

characterization, identification of roles capabilities, and matching individuals to roles. The ACM 

framework requires evaluators (psychologist) to weigh and categorize the psychological factors 

into several capabilities domains [58, 60]. The 16PF personality factor test on the other hand 

provides a questionnaire to evaluate the individuals in term of personality (psychological) factors 
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[59]. However, ACM has been used for the model presented in [57] as a base for validating the 

capabilities identified by 16PF test using psychologists. 

In addition to the 16FP, the study presented in [57] uses an additional five personality dimensions 

addressed by [61]. The model presented in [57] is a binary evaluation that describes whether the 

individuals have these capabilities or not. The result of their work of a relational table of 

personality factors and the capabilities based on their study of real software organizations shows 

that each team role should have a specific capabilities presented in Table 3: 

The major findings of this study was that 1) The defects rate decreased for 47% in projects that 

used this model to assign the resources, 2) Mean effort deviation reduced for about 30% and, 3) 

Ratio between estimated function point and actual effort improved to 44%. The reason for these 

improvements mentioned in [57] is that the resources of the sample organizations that used the 

model were more motivated since their personality factors had been considered. 

Table 3: Team Roles and Personality Factors Relation [57] 
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Team leader ✓ ✓  ✓   ✓  ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Quality 

manager 
✓ ✓ ✓ ✓   ✓ ✓    ✓   ✓  ✓ ✓ ✓ ✓ 

Requirement 

engineer 
✓    ✓  ✓     ✓ ✓  ✓ ✓ ✓    

Designer ✓ ✓ ✓   ✓ ✓ ✓   ✓ ✓   ✓  ✓    

Programmer ✓ ✓ ✓   ✓ ✓ ✓   ✓ ✓   ✓  ✓    

Maintenance 

and support 

specialist 

     ✓ ✓ ✓   ✓ ✓ ✓  ✓  ✓    

Tester    ✓  ✓  ✓ ✓   ✓ ✓   ✓  ✓    

Configration 

manager 

  ✓  ✓  ✓ ✓   ✓ ✓   ✓  ✓    

Psychological aspects of software resources have never been addressed before but it is important 

to evaluate, especially at team formation time. However, the model ignores the technical skills and 

the interdependency nature of software project tasks which leaves it with limited applicability. 

Additionally, sharing resources, as is the current practice with software firms, has not been 

addressed by this method. 
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2.1.3.2 Quantitative Workforce Models 

Up to now we have seen qualitative resource models describe capabilities using yes no mechanism. 

This section presents a different type of resource model that uses a numerical level of importance 

scale for each competency that workers have to different development domains. This section 

accordingly covers quantitative models that have been proposed to represent the workforce 

capabilities. 

Team Oriented Competency Model 

The approach described in [62] is one of the collective competency models as its name implies 

dealing with formation and building the teams (team oriented). It is developed as a numerical 

model based on [57] described in the earlier section. Competencies proposed by this model have 

been verified by a group of software project managers. The process of verifying the model was 

adapted through two stages of the Delphi technique [44]. The resulted competencies are then 

correlated to team roles. Team roles however are identified in this method based on the Rational 

Unified Process (RUP) and Team Software Process (TSP) methodologies presented in Table 4. 

The value presented in Table 4 represents the relation between the roles and the competencies 

defined by [62]. These values express the level of importance for each competency versus team 

role. For more information, please see page six of [62].The values and their expression are as 

follow: 

1. 0 means that this competency is irrelevant for this role.  

2. 1 indicates that this competency is fairly necessary.  

3. 2 means that this competency is critical.  

4. 0.5 represents that this competency has no agreement by the participants of [62] study, 

and  

5. 1.5 considered necessary but not by all the participants.  

This approach uses the Myers-Briggs Type Indicator (MBTI) and Belbin team inventory 

psychological tests to verify the workforce’s capabilities. MBTI as presented in [63] assesses the 

personality type of workers. It contains four categories where each one has a pair of factors to be 

assessed for each worker. These pairs are Extroversion and Introversion, Intuition and Sensing, 

Thinking and Feeling, and Judgement and Perception. 
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Table 4: Team Roles and Competencies [62] 

                     

Based on those tests, rules for the assignment was established to assure that the workforce(s) fit 

to the role. For instance, MBTI is used to justify if the workforce is fit to be a project leader. Their 

study shows that project leader should have Extroversion and Judgment capability of MBTI 

dimensions in order to be capable to lead the project. 

The Belbin test, on the other hand, as described in [64] contains three role types, Action, Mental, 

and Social roles. Two important capabilities of these roles, the Shaper, and Chairman are used by 

[62] to justify the project leader capabilities. Another rule is that the overall preferences of team 
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Belbin roles should be for action role over mental role, and mental role over social role. In 

addition, the study shows that at least one of the team member should have plant role in order to 

increase the team performance. 

In this model we can see the additional technical capabilities over the one presented in [57] that 

have been taken into account, as well as quantifying these capabilities by [62]. However this model 

does not take into account the interdependency nature of software projects and developers sharing 

that software firms do nowadays.  

Best-Fitted Resource Model 

The Best-Fitted Resource (BFR) methodology proposed in [7] takes into account the learning 

ability of resources of technical skills. The methodology uses the relationship ability matrix for all 

the skills available by resources and those required for a project. The relation ability matrix 

expresses how a group of skills can impact another.   

BFR methodology suggests seven criterion to be used with the skills matrices. The value for each 

one of these criteria ranges from 0 to 1. These criteria and their notations are the following: 

 The expected use of skill j on task t (𝑒𝑗,𝑡).  

 The complexity of skill j on task t (𝑐𝑗,𝑡).  

 The significance of skill j on task t (𝑠𝑗,𝑡).  

 The relation between the knowledge of skill j and skill k (𝑟𝑗,𝑘).  

 The knowledge level of resource y to skill j (𝑙𝑦,𝑗).  

 The relation between the set of skills of resource y and the required skill j (𝑏𝑦,𝑗).  

 The fitness of resource y to task t (𝑓𝑦,𝑡). 

BFR contains four steps, each one results in a table. The first one is concerned with task required 

skills (TRS). The second one is concerned with skill relationship (SR). The third is concerned with 

resource’s skillset (RSS). The last one produces the best-fitted resource to each task (BFR). 

In the first step, the value of 𝑒𝑗,𝑡 and 𝑐𝑗,𝑡 for required skills are estimated. Values of expected use of 

skill are (0.3) which means little use, (0.7) means significance use, and (1.0) means extensive use. 

Complexity of skill, on the other hand, has values of (0.2) that means simple, (0.5) means complex, 

and (1.0) very challenging. The significance of skills  𝑠𝑗,𝑡 is then calculated as the product of both. 

This results in table containing the skills, the use, the complexity and the significance of each as 

the following example in Table 5: 
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Table 5: Example of Use, Complexity, and significance of skills 

Required skills  𝒆𝒋,𝒕 𝒄𝒋,𝒕 𝒔𝒋,𝒕 

Hardware 0.3 0.5 = 0.15 

PHP 0.7 0.2 = 0.14 

.Net 1 1 = 1 

 

The second step is concerned with the relation between skills. The result of this step shows the 

learning ability regarding the relation between these skills. This relation can be defined using the 

criteria of 𝑟𝑗,𝑘. The values of skill relation (0) which means no relation, (0.2) weak, (0.5) 

intermediate, and (1.0) as strong relation. Using the skills from previous example will be as the 

following Table 6: 

Table 6: Skills Relation 

Skills relation Hardware PHP .Net Java 

Hardware 1 0 0 0 

PHP 0 1 0.5 0.5 

.Net 0 0.5 1 0.2 

Java 0 0.5 0.2 1 

 

The third step involve the resources’ skills set (RSS). The project manager in this step ranks each 

resource for each skill as the value of (𝑙𝑦,𝑗). Values considered are (0) for no knowledge of the 

resource in this skill, (0.2) low knowledge, (0.5) intermediate, and (1.0) is high. Accordingly this 

can be demonstrated for our example by the following Table 7: 

Table 7: Resources Knowledge level for each Skill 

Resources’ 

skills  

Hardware PHP .Net Java 

Resource 1 1 0.5 0 0.5 

Resource 2 0 1 0.5 0.2 

Resource 3 0.5 0 0.2 1 

The fourth step considers training time of each resource. The relation between skills indicates 

whether the resource who possesses a certain skill can develop himself within a short time for a 

related one. This step can be achieved by using the results of steps one and two and combining 

them into one table. The factor of (𝑏𝑦,𝑗) at this step shows how the resources are fitted to the task 
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by considering each value of, required skill (k), resource skills, as well as the relation between the 

skills, then it can be calculated by: 

𝐵𝑦𝑘 = maxℎ∈𝐻[𝑙𝑦ℎ ∗  𝑟ℎ𝑘]                                                     (10) 

The following table shows how this step can be obtained. 

Table 8: Resources Fitness to Projects 

Resources 

And their skills 

Skills Required Fit 

Resource 1 Hardware PHP .Net Java 𝑏𝑦,𝑗  

Hardware 1 0 0 0 1 

PHP 0 0.5 0 0.25 0.5 

.Net 0 0.25 0 0.1 0.25 

Java 0 0.25 0 0.5 0.5 

Resource 2 Hardware PHP .Net Java 𝒃𝒚,𝒋 

Hardware 0 0 0 0 0 

PHP 0 1 0.25 0.1 1 

.Net 0 0.5 0.5 0.04 0.5 

Java 0 0.5 0.1 0.2 0.5 

Resource 3 Hardware PHP .Net Java 𝒃𝒚,𝒋 

Hardware 0.5 0 0 0 0.5 

PHP 0 0 0.1 0.5 0.5 

.Net 0 0 0.2 0.2 0.2 

Java 0 0 0.1 1 1 

 

We can see from Table 8 that if we defined the relation between the skills, then we can see that if 

the resource do not currently have a skill then (s)he could after a short training be able to acquire 

the required skill(s). This can be seen by the resource 3 that his earlier knowledge of PHP was (0), 

however through the relation between PHP, Java, and .Net, his/her skills can improve specially 

for PHP by limited time of training so he can be able to do the task.  

As this method can efficiently demonstrate in a quantitative manner the availability of skills 

required for project tasks among the available resources, however it does not provide a mechanism 

for resource allocation and project task dependency handling.  

Other Human Resource Attributes and Capabilities Models 

The formal assessments used by the software industry and researcher focus on effort and 

productivity of developers. Many attributes can lead to understand the performance and 
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productivity of developers. Such attributes can be obtained by observing behavioural patterns of 

developers. One of the tools that enables the researchers to observe the developers’ behavioural 

pattern is the Version Control System (VCS).  

The study presented in [65] based on observation and pattern verification of developers through 

VCS shows that three attributes would contribute to productivity measurement and developer 

assessment. Takeover, which is the first attribute, indicates when the developer writes codes in a 

short period of time. Bug Fix on the other hand, indicates the amount of corrections made on the 

developer’s code. The third is Teamwork that leads to an understanding of the collaboration 

between team members.  

Another model presented in [66] introduces two metrics that can be estimated using VCS. These 

metrics are the effort (Productivity) and code-survival of a single developer. Productivity in this 

model is estimated based on how many files the developer can produce in the VCS during a unit 

of time. The code-survival metric on the other hand, is the amount of code of a developer that has 

never been changed by anyone.  

Effort and Code-Survival assessment metrics in [66] are estimated based on three development 

operations. The first operation is Add, which means adding new code to the development file. The 

second operation is Modification, which means in case of modifying any existing code of the 

development file. The final one is Deletion of code or file of the developer.  

An alternative workforce model presented in [16] approach takes into account technical skills 

grouped into three categories. The skills presented in these categories are not limited to those 

skills, and the model as mentioned in [16] is open to any new skill. The skills of the first category 

includes relationship with people, negotiation, and team work. The second one includes 

requirement elicitation, object-oriented analysis, databases, object-oriented design, Java, and test 

techniques. The final one includes just one characteristic which is experience in 

telecommunication. 

Each one of the characteristics presented in [16] is ranked by a numeric value. The ranking value 

of first group varies from 1 to 3. Value of (1) means that the developer was trained on the subject, 

value of (2) means that he has ability, Value of (3) means he has great ability. The second group 

varies from 1 to 3, but value of (1) means knows and can perform under supervision, value of (2) 

means knows and can perform without supervision and Value of (3) means that the developer is 

an expert. Group three is different in the range. It starts from 1 and the highest is 4. Value of (1) 

for this group means that the developer has experience of between 2 and 6 months, Value of (2) 
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means his/her experience is between 6 months and 1 year, Value of (3) means his/her experience 

is between 1 and 3 years, and Value of (4) means that his experience is more than 3 years. 

2.1.4 Discussion on software project information 

Throughout the earlier presented estimation models, we can see that the effort is a fundamental 

factor and the basic parameter used to estimate the time and cost of a software project. Moreover, 

software effort estimation is modelled based on five factors as being described by [39]. These 

factors are identified by [67] as personnel (Developers), product size, development process, 

required product quality, and development environment. However, these factors are introduced 

in the estimation models as constants based on studies of historical data of productivities, 

qualities, schedules and/or processes gathered from real software projects.  

Many researches have explored the differences between model-based and judgment-based 

estimation models as in [40, 68-70]. However, the organization sample studied in [40] reveals 

that most software organizations use judgement-based approach as they are concerned about the 

accuracy of model-based approaches. In addition, in [71] stated that no model or method of effort 

and cost estimation is better than another. Likewise, we do not know yet how to accurately 

estimate the effort for mega-large software projects, to measure size and complexity accurately for 

software, and to predict team’s and individual’s productivity. 

It is noteworthy that the approaches that optimize for software project management issues such 

as [21, 22] consider the effort as a valid input to the approach, and the effort in these approaches 

is mainly measured in terms of Man-Month, or Man-Days using COCOMO models. 

In addition to effort estimation, project task dependency and scheduling has received the most 

research attention during the last century for project scheduling. Amongst the different 

techniques that have been proposed to depict the precedence relationship and dependency 

between the project tasks, TPG depicted by DAG is the main technique used by the optimization 

approaches for this matter.  

Workforce models, on the other hand, are the part of project management information neglected 

by SSSP approaches as in [14, 15, 28]. It is understandable that the optimization process needs 

approaches that provide quantitative attributes over the qualitative ones. However, few of SSSP 

approaches provide list of skills and competencies of software project development as in [28] and 

[23] ones. These approaches have provided the roles that a software developer might have, and 

those required for a project task to be performed. Workforce models can work as a supporting 

mechanism for resource skill constraint handling during the optimization process including the 
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fitness function. A binary skill selection within many of SSSP approaches’ optimization process 

has been used as in [14, 18]. However, this type of binary selection without consideration of 

productivity can fail the search to find a good skilled resource for the resource allocation problem 

within a reasonable computation time. For that reason, there are some approaches that have 

included productivity in their optimization problem and relaxing the optimization constraint to a 

better productive resource who are available at the time of need. In that sense, models as best-

fitted resource model can be more applicable in resource allocation optimization.  

2.2 Optimization Techniques (Search-Based Algorithms) 

Optimization is a branch in mathematics that focuses on techniques able to find an optimal or 

near optimal solution for a given optimization problem. An optimization problem can be 

represented as a problem of minimizing or maximizing an objective or goal. To solve this problem, 

the optimization techniques employ a function within the search process to measure the fitness of 

the alternatives for the fastest, cheapest, lowest, etc, solution. This function can be categorized 

into two according to the optimization problem. If the problem is to search for the minimized 

solution, then this function is called a “Cost” function. If the problem is to search for the 

maximized solution, then this function is called a “Utility” function.  

These functions search for the “fittest” solutions amongst the generated alternatives. However, 

according to the optimization problem there might be a constraint(s) that has to be applied to 

measure their feasibility. Two types of constraints can be used for an optimization problem. The 

first type is a “Soft” constraint. The second type is “Hard” constraint. If the violation of a constraint 

is considered as unfeasible solution, then this constraint is called hard. On the other hand, if the 

violation of a constraint will still be considered as a feasible solution but a penalty might be applied 

on that solution, then this constraint is called soft.  

The optimization techniques are algorithms capable of searching for an optimal or near optimal 

solution(s), and in that sense they are called Search-Based Algorithms too. These techniques or 

algorithms are categorized into three groups; exact, heuristic, and Meta-Heuristic techniques.  

Exact optimization techniques are techniques that form a branching and exhaustive search that 

guarantee finding the optimal solution, such as branch and bound, and branch and cut [72, 73]. 

However as the problem scales up, then exact techniques would not be beneficial because of the 

vast processing time needed to compute the optimal solution.  

Alternatively, heuristic techniques can be used to determine, not perfectly accurate, but good 

quality approximations, such as Greedy algorithms, Hill Climbing (HC), and Dynamic 



47 

 

Programming (DP) [74]. However, these techniques tend to find a fast solution at the expense of 

memory for DP, or the solution quality for Greedy. The main drawbacks of algorithms belonging 

to this class is that the solution obtained might be trapped into a local optima. 

On the other hand, Meta-Heuristics such as Genetic Algorithm (GA), Particle swarm optimization 

(PSO), etc. represent a class of generic optimization techniques using ideas from various fields as 

inspiration for the process of trying to solve optimization problems. These techniques are nature-

inspired algorithms developed by mimicking the most successful selection, and behaviour 

processes in nature. These techniques have the power of learning throughout the search. That 

means while stochastically creating solutions, these solutions are compared heuristically so that 

either the least costly or most utilized result is searched. This however, comes at the cost of using 

machine memory. Therefore, metaheuristic techniques attempt to solve the problem by 

intelligently visiting only some solutions, but there is no guarantee that the best solution is 

returned [74].  

The following subsections discuss the optimization techniques sorted first by the exact, the 

heuristic, and then meta-heuristic techniques.  

2.2.1 Branch and Bound 

Branch and bound is one of the best general technique for solving constrained optimization 

problems [72]. This technique intelligently structures the search space for all feasible solutions. 

Feasible solutions in Branch and bound are partitioned into smaller and smaller sub branches as 

a tree and a lower bound is calculated for the minimized solutions within each sub branch. In each 

partition, the bound of the sub branches that exceeds the minimum of a known feasible solution 

is excluded from all further partitions. Partitioning continues until a feasible solution is found 

such that its cost value is no greater than the bound for any sub branches.  

The number of pruning of branches that occurs in branch and bound is large. Consequently, the 

algorithm is powerful, searching effectively within the feasible branches. However, obtaining an 

optimal solution using this technique requires ignoring the computational time matter specifically 

for large-scale problems. For more details, see [72, 75, 76]. 

2.2.2 Backtracking 

Backtracking is a technique that can be used to find a partial, or all solutions, to a constraint 

satisfaction problem [77]. This technique is usually combined with an optimization algorithm to 

incrementally build candidate solutions by determining and abandoning the partial candidates 
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whose solution cannot be successfully completed. This technique can be applied when the problem 

accepts the concept of near optimal solutions. The technique enumerates a set of partial solutions. 

With extension steps, candidates are determined incrementally to complete the whole set. The 

partial candidates by this technique can be seen as nodes of tree. Backtracking, as its name 

implies, is the search that is done recursively in finding solutions starting at the root to the end of 

a branch.  With a given criteria, the best partial solution can be obtained. However, if the problem 

is large in term of number of variables consequently the search will consume more computational 

time. For more details about this technique see [77]. 

2.2.3 Branch and Cut 

Branch and cut is a method for solving an optimization problem restricted to integer values. This 

method involves the branch and bound technique within the search where a cutting plan is used 

to constrict the relaxation of the problem. While solving the relaxed problem, and not being 

successful in pruning the node on the basis of the constrained solution, the search tries to find a 

violated cut. The violation cut will hold a solution that do not satisfy the constraint. If one or more 

violated cuts are found, they are added to the formulation and the problem is solved again. If none 

are found, then the method branches again. This technique suffers from processing time issues as 

in the branch and bound, and many decisions have to be made regarding the strategies for 

branching on a variable. For more details about this technique see [76, 78]. 

2.2.4 Greedy 

The greedy algorithm is one of the simplest algorithms that can be used in optimization, however, 

there is no guarantee that the solution output is an optimal one. Greedy algorithm is often used to 

solve optimization problems that either maximize or minimize an objective with a set of 

constraints. Greedy algorithm can be seen as a process that starts from an initial node of the 

problem and goes to the last node. The algorithm starts with the initial node to search for an 

optimal solution to it. As the algorithm progresses with problem nodes, choices for better solutions 

become fewer for further nodes. The final solution by this method could fall into a local optima 

rather than to go for a global optima within the search space. For more details about this technique 

see [79, 80]. 

2.2.5 Dynamic Programming 

Dynamic programming (DP) is a useful mathematical technique for making a sequence of 

interrelated decisions and solving a complex problem by breaking it down into a collection of 
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simpler sub problems. There does not exist a standard mathematical formulation of the dynamic 

programming problem. Rather, dynamic programming approaches a problem by identifying a set 

of choices to be used to fit the problem’s decisions. Dynamic programming solves the optimization 

problems recursively by decomposing solutions to the sub problems. When sub problems overlap, 

Dynamic programming solves these sub problems just once recursively and then combines their 

solutions to solve the original problem. Dynamic programming optimizes the solution by either 

searching for a minimized or maximized value. Moreover, Dynamic programming stores the 

answer avoiding rework on the same solutions. However, this method is considered memory 

consuming, thereby saving computation time at the expense of storage space. For more details 

about this technique see [80]. 

2.2.6 Hill Climbing 

Hill climbing (HC) is a mathematical technique that can be used to solve an optimization problem 

by accepting a solution within the local optima [81]. The solution that hill climbing offers is found 

by a random search that proceeds from an initial point of the problem and searches for a best 

solution within the neighbours of that point. Once a better neighbour is found this becomes the 

current point in the search space and the process is repeated until no further improvements can 

be found. Here the search terminates and a maxima (highest point) has been found. The technique 

called hill climbing, because the search space for the objective to maximize can be seen as a 

topography that contains peaks “Hills” where the technique searches for the peak within the hill 

that contains the random point selected. This technique can be easily implemented, but it might 

struggle with a local optima within the solution space. So, the solution obtained by hill climbing 

could be far poorer than the global maxima –best solution within the search space. Hill climbing 

shows a robust and useful application in software engineering [10]. For more details about this 

technique see [81, 82]. 

2.2.7 Genetic Algorithm  

Genetic Algorithm (GA) was originally proposed by John Henry Holland in  [83]. As one of the 

meta-heuristic techniques, GA is one of the most popular, used and applied to the problem of 

Search-Based Software Engineering (SBSE) in more than 80% [5] of the approaches proposed so 

far. GA uses concepts of genetics, such as population and mutation to solve an optimization 

problem [84]. Metaheuristic in this technique is designated by two genetic operations crossover 

and mutation. A crossover operation creates solutions in which the structural information of two 

solutions are crossed to generate two new solutions [85]. On the other hand, mutation process do 
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random changes on the solutions generated. The mutation operation is used to avoid same 

solution generation, which can lead to explore various search spaces [85]. Solutions are evaluated 

to determine which will continue to the next iteration by continuous selection according to the 

objective function [74]. This technique can be used with a problem where finding a precise global 

optimum is less important than finding an acceptable solution in a fixed amount of time. For more 

details about this technique see [74, 84-86]. 

2.2.8 Multi-Objective Genetic Algorithm  

Multi-objective Genetic Algorithm (MoGA) is an expanded genetic algorithm that handles more 

than one objective where these objectives cannot be combined into a single objective with a 

weighted scoring model. The idea for using multi objective rather than combining them is that 

these objectives are generally conflicting, preventing simultaneous optimization of each objective. 

In this technique, a number of solutions can be found so the decision maker will have an insight 

about the problem characteristics before making decision on the suited final solution. The solution 

to this problem is not a single point, but a family of points known as the Pareto-optimal set. This 

is due to the fact that most real engineering problems actually do have multiple-objectives, i.e., 

minimize cost, maximize performance, maximize reliability, etc. These are difficult but realistic 

problems [87].  

An example of a MoGA is the algorithm Non-dominated Sorting Genetic Algorithm II (NSGAII) 

proposed in [88]. This algorithm uses a sorting approach that facilitates the search of GA and 

reduces the computation complexity. One of the MoGA downsides is that where there are of 

complicating factors the technique will consume more computational time. On the other hand, 

the user might have to define several options for different solutions. For more details about MoGA 

and NSGAII technique see [88, 89]. 

2.2.9 Simulated Annealing 

Simulated Annealing (SA) is one of the metaheuristic techniques that approximates the objective 

function based on a physical process that occurs in metal’s metallurgy. This technique is used to 

approximate a global optima within a large search space. The inspiration comes from the 

tempering process. This process aims to crystallize a material with minimal energy. The process 

starts by heating the material to high temperatures and, thereafter, is cooled so that at the end of 

the process the material is crystallized by a minimal energy. Here the tempering process in metal’s 

metallurgy can be seen as a mathematical optimization. This optimization is to minimize an 

objective function such the one used for tempering process for energy minimization. The 
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algorithm of Simulated Annealing allows for solutions that will not improve the value of the 

function. Accordingly, the algorithm can overstep the search to find global optima. 

The simulated Annealing algorithm accepts the solutions by two criteria. The first is a direct one 

which if the new solution is better than the current solution then it is accepted. The second criteria 

are based on probability. If the new solution worsens the objective, then it is accepted with a 

certain probability defined according to three aspects, the difference between the solutions, the 

current value of the variable temperature, and constant physical value.  

This technique obviously works with a minimization problem. Accordingly, it becomes harder to 

be implemented to maximize an objective. This technique can be used with a problem of finding 

a precise global optimum is less important than finding acceptable solution in a fixed amount of 

time. For more details about this techniques see [74]. 

2.2.10 Particle Swarm 

Particle swarm optimization (PSO) is a Meta-heuristic technique that can be used to solve an 

optimization problem by iteratively trying to improve a candidate solution based on a fitness 

function [90]. It is adopted from the observation of the natural behaviour of birds and fishes. This 

technique generates a population “Particles” and searches the solutions from the population 

according to position and velocity defined for particles. This technique formulates the search 

according to particles’ movement, which is updated by other particles for better positions and is 

expected to move the swarm to the best solution.  

The method has shown very good performance on many benchmark problems while its rotation 

invariance and local convergence have been mathematically proven [91]. PSO can also be used on 

optimization problems that are partially irregular, noisy, change over time, etc. [92]. However, the 

choice of PSO parameters can have a large impact on optimization performance. Selecting PSO 

parameters that yield good performance has therefore been the subject of much research[90]. For 

more details about this technique see [90, 92]. 

2.2.11 Discussion on optimization techniques 

Different optimization techniques are applicable to SSSP problem. However, these problems have 

been defined on many occasions as an NP-Hard problem [93], which leads us to the use of meta-

heuristic techniques as the most useful in terms of computation time suitable for the hardness and 

complexity of this problem. It is important to notice too how the formulation of this problem can 

lead to different conclusions. A problem with a single person to a single task is a linear 
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programming that one can employ heuristic techniques to provide a solution. On the other hand, 

assigning multiple resources to project tasks, and scheduling these tasks according to the 

dependency relationship has a multiple stage solution that requires compromising the solution 

quality for fast computation using Meta-Heuristics.  

From the next Section 2.3, we will see that Meta-Heuristics such as SA, and GA are the most widely 

used techniques in solving different SE problems. Both techniques have been employed by many 

approaches as in [20, 22] to provide evidence and benchmark the performance and suitability of 

these techniques to SE problems. In addition, multi-objective optimization for SSSP problem 

considering time, and cost, are proposed as in [14, 22] using GA. Part of the approaches that solve 

SSSP problem will be described and detailed in Chapter 4 as they will be subjects for our 

benchmarking and evaluation to SSSP approaches. 

2.3 Comparative Studies in Optimization Approaches for 

SSSP Problem 

This section reviews the current state of the art in the literature regarding studies that compare 

and evaluate optimization approaches for software project management problems. So far, only 

two studies have been published that compare and evaluate the optimization approaches of SSSP 

problem. The first study presented in [24] evaluates the proposed optimization approaches with 

the possibility of adoption within the software industry. The second study presented in [5] 

researches the optimization approaches to address future trends and promising areas of human 

resource allocation optimization. The observations and findings from these studies highlight 

categories of optimization approaches, the important attributes that these approaches adopt, and 

the approaches that are most useful in an industrial settings. Overall, each has placed an emphasis 

on possible future trends. 

This section addresses the criteria used by both [5, 24] in Subsection 2.3.1, the observation and 

findings in these studies in Subsection 2.3.2, and summaries their findings in Subsection 2.6. 

2.3.1 Criteria 

By running an evaluation on fifty-two research papers, the study presented in [24] compares the 

SSSP approaches presented in these papers according to three criteria. These criteria are 

usefulness, work compatibility, and ease of use. Usefulness in this study is defined as the benefits 

that software firms might gain by adopting the solution proposed by an approach. Work 

compatibility is defined by the study as the fitness of proposed solution within the work 



53 

 

environment of software firms. Ease of use moreover, is defined by the study as how easily the 

approach can be adopted. In addition, the work presented in [24] discusses the aspects of problem 

concepts, development, and validation presented by the research papers included in their study. 

Problem concepts represent the optimization problem addressed by the approach. Development 

is the ability of the approach to integrate with a project management tool. Validation on the other 

hand, is the techniques used to validate each optimization approach.  

The aim of the study presented in [24] is to identify aspects related to the difficulties in adopting 

the research papers’ proposed solution by software organization. They have accordingly 

performed a systematic literature review to cover the concepts used within the research papers by 

extracting the texts that describes the problem model of the papers and categorising them. This 

has therefore enabled them to identify the relationships between their proposed criteria and the 

aspects discussed within the papers themselves. They have found that work compatibility criteria 

is connected with the presence of problem concepts, development, and the involvement of 

stakeholders in the validation process of an approach. Also, they found that usefulness can be 

identified by the involvement of stakeholders in the validation process of the approach. Ease of 

use was found to be related to the development aspect. Based on that, observations were made 

regarding how each optimization approach under their study is related to and apply the attributes 

of usefulness, work compatibility, and ease of use. Their observations and findings can be found 

in the next Subsection 2.3.2.  

The study presented in [5] covers the research papers published between 1993 and 2013 that can 

potentially be considered as a Search-Based Software Project Management (SBSPM) approach. 

Their study aims to identify the categories and the effectiveness of the SSSP optimization 

approaches as well as to provide directions for future research. In [5], several project management 

aspects are identified to categorize the approaches that solve SE problems including SSSP. They 

have linked each SSSP approach under their study to a management aspect based on the text 

extracted from the formalized problem addressed by each. The findings of their study are 

discussed in the following Subsection 2.3.2.  

2.3.2 Observation and findings 

2.3.2.1 Categories of SSSP Optimization Approaches  

The main categories of the optimized SSSP approaches can be illustrated from the study presented 

in [5]. This study has defined two categories of software project management optimization that 

any optimized SSSP approach can falls within, which are effort estimation, and scheduling and 
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staffing software projects, depicted in Figure 7. From the figure, it can be seen that 55 papers have 

discussed in general the optimization of software project management problems. In addition, 

Figure 7 shows that approaches that optimize scheduling and staffing software projects until 2013 

are only about 28, and also effort estimation is in equal interest with the same number of 

published papers.  

 

Figure 7:  Date and Number of Optimization Approaches illustrated from [5] 

However, the approaches used by [5] are categorized into four groups. These categories are 

minimization of project completion time, risk based approaches, overtime planning approaches, 

and software development effort estimation approaches. Overall, the study presented in [5] is 

clearly focused on overviewing the area and provide a taxonomy for the Search-Based Software 

Project Management SBSPM, and concluding the approaches proposed to solve the software 

engineering problems within the Search-Based Software Engineering SBSE term.  

2.3.2.2 Attributes of the human resource allocation optimization 

approaches  

The study presented in [24] provides a bird’s eye view of the software project aspects that the SSSP 

approaches are taking into account. The main aspects according to [24] are project, artifact, task, 

resource, team, and skill. These main aspects are illustrated by [24] and presented in Figure 8.  

From Figure 8, it can be seen that availability, dedication, and salary are the main attributes 

illustrated within the resource aspect. In addition, the main attributes of project tasks aspect are 

the estimated effort, precedence relation to another task(s), and duration. From their 

representation, it is clear how teams are connected to resources, and skills are represented as a 
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connection between the task and resource aspects. The representation of HRA problem by [24] in 

Figure 8 shows that the objectives defined by the SSSP approaches are project duration and cost.  

Limited optimization approaches address skills and competencies of human resources [5, 24]. 

Artifacts such as dependencies and variability of size of project tasks are also addressed by limited 

approaches [24]. Also, limited approaches concentrate their allocation to teams and only 13 

approaches perform their allocation to teams [24]. According to [24], there is still a room for 

improvement to bring the approaches closer to the industrial environment regarding the 

attributes and factors that are related to technologies, humans, the development process, and 

organization aspects too.  

 

Figure 8: Human resource allocation problem illustrated from [24] 

2.3.2.3 Optimization Techniques and Validation Methods 

Both studies in [5, 24] have stated that so far the most adopted optimization technique is the 

Genetic Algorithm (GA) with 80% usage amongst their study subjects. Moreover, only eleven 

approaches use metaheuristics techniques such as Particle swarm, Ant Colony, and simulated 

annealing [24]. The objectives in most optimized solutions (approaches) were found to be 

concentrated on project completion time and project cost [24]. Moreover, approaches studied that 

belong to minimizing software project completion time found that most combine other objectives 

such as cost and quality or even multi-objective optimization [5]. In addition, few of these 

approaches used an empirical study to evaluate their approaches or real software project data [24]. 

Approaches that have used Quasi-experiment, using the opinions of the targeted population (PMs) 

typically used small sample size of data, and had a restricted participation of the main 

stakeholders that do not reflect a real software project environment [24]. 
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2.3.2.4 Nominated Optimization Approaches for industrial adoption 

The study presented in [24] claims that the approach presented in [28] is the only approach that 

has a proper structure to cover the attributes, and overcome the issue related to industry 

problems. In addition, they claim that the approach presented in [16] is the only one that can 

overcome the development issue by having the ability to integrate with a management tool. 

Moreover, they claim that the approach in [16] is the only approach that has been validated by a 

quasi-experiment in a proper manner. Overall, there are limited number of approaches that have 

been addressed by both studies, which are [14, 20-22, 28, 94]. 

2.3.2.5 Possible future trends and research directions 

Based on the observations stated in [24], there is a need for more research on the attributes that 

bring solutions closer to software industry environments as most of the optimized approaches 

represent the problem concept by a limited number of attributes. In addition, most of the 

approaches that were subject of [24] study have inadequate development in GUIs, and they fail to 

address integration with other project management tools. In addition, empirical evidence must be 

gathered and evaluation has to be done to validate the optimized approaches. Accordingly, the 

study in [24] observed that a lack of evidences about usefulness of the approaches is exists, and 

the SSSP problem addressed by the approaches have to address the real industry environment. 

The study presented in [5] concludes that far more research is required to address the allocation 

of resources in software projects. According to them, promising areas using optimization 

techniques to solve the problem of staffing and scheduling software projects include: 

1) Interactive optimization: This kind of optimization explores computationally the expertise of 

project managers by which how they perform different management objectives.  

2) Dynamic Adaptive Optimization: this kind of optimization helps the decision makers to interact 

continually and dynamically in real time to explore the implications of their decision.  

3) Multi-Objective Optimization: this kind of optimization focuses on decision support in complex 

multi-objective problem spaces to include and combine several objectives together.  

4) Co-Evolution: this kind of research is concerned with modelling the fitness between two 

populations of the solutions obtained by the optimization. Here, they suggest that increasing in 

one population should affect the others by reducing their fitness. This kind of optimization 

accordingly could lead to better and faster solutions, which requires more attention by 

researchers. 
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5) Software Project Benchmarking: the most challenging problem in the human resource 

allocation optimization is the lack of real world project data. Accordingly, having a real dataset to 

benchmark the optimization approaches has emerged as an important aspect to this field. 

6) Confident Estimates: estimation in management processes is considered as the most difficult 

aspect. Noisy and uncertain inputs are the basis of this problem. Accordingly, introducing levels 

of uncertainty within the estimation process and measure their effects can be a promising area for 

further investigation. 

7) Decision Support Tools: so far, the optimization approaches are all under research. A promising 

area and trend in human resource allocation optimization is to develop these approaches as 

decision support tools and make them available to transfer the most successful methods into 

practice. 

2.4 SSSP Optimization Approaches  

The solution process of the SSSP problem requires consideration of a range of factors, such as task 

precedence relationship, skills, and effort [24]. These factors are considered inputs to SSSP 

approaches, whereas the output(s) of these approaches typically consists of minimization of 

project time and/or cost, or maximization of resource usage and skill availability in projects. These 

factors are used by SSSP approaches to mathematically formalize the problem, where the 

formalization is then used to model the solution using an optimization technique. As the problem 

of SSSP is an NP-Hard problem, Meta-Heuristic techniques can be the accepted solution by 

approximating the results. With diversity of Meta- Heuristic techniques that can be used to solve 

the SSSP problem, comparison between their effectiveness to software engineering problems is 

important to be addressed [10]. Yet, studies that evaluate the techniques for SBSPM problems are 

limited as in [22]. In [22], a comparison between the adopted technique and others is performed 

and concluded that SA may outperform GA in cases of absence of dependencies between the tasks, 

whereas in cases of having dependencies, the study shows that both GA and SA perform the same.  

The Meta-Heuristic techniques that have been used to solve SSSP problem, by many approaches 

as in [22, 28], are only GA, SA, and PSO, and so far, 80% of the optimization techniques used by 

the optimization approaches are Genetic Algorithm (GA’s) depicted in [95]. Some of these 

approaches however, combine different techniques together to obtain good results. This can be 

seen in the approaches in [16, 28, 96]. However, using a heuristic technique for GA population 

initialization can narrow the search space as the search might be trapped in a local optimum[97]. 
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According to the discussion presented in [17], this section will discuss and detail the SSSP 

approaches’ aspects as follow. The first aspect is the formalization of each approach with 

consideration of inputs, and constraints. The second aspect is the solution proposed considering 

the representation of problem, initial search population, the technique and its stochastic process 

adjustment, fitness function, candidate selection, optimizer’s settings, and its validation results.  

2.4.1 Problem Input Formalization 

Project Decomposition and Effort Estimation 

Activities within software development projects can differ from company to company and depend 

on whether sequential, incremental, or iterative development is used. Project tasks can be 

organized according to which iteration or phase the task belongs to. In addition, project tasks can 

have dependencies, for example, when a database needs to be completed before data retrieval can 

be tested. Most modern software development methods deploy a phased approach and it is 

therefore no surprise that most SSSP approaches seek to optimize resource allocation within such 

as context. Approaches such as [16, 23, 28, 91, 96] assign the team members to a particular activity 

of a development phase, such as requirement elicitation, analysis, design, implementation, or 

testing. However, between these approaches differences can be observed in the phases supported. 

For example, [96] only considers design, implementation, and testing activities. The approaches 

in [28] and [23] consider the activities of analysis, design, implementation, and testing. The 

approach in [91] is more focussed as it only support two activities, which are implementation, and 

testing. Optimization approaches that explicitly consider the iterative character of software 

development methods are more rare with [28] as one of the few published results. Overall, these 

approaches have the unit of allocation in common. This unit is the phases that belongs to the 

increments and iterations of the software project. 

On the other hand, there are considerable number of approaches such as [15, 18, 20, 22], which 

do not perform the resource allocation optimization for a particular methodology. This is due to 

the diversity of methods in practice and to generality of use that these approaches are seeking. The 

one in [18] is considered by [5] as one of the first approaches proposed in minimizing software 

project completion time. This approach deals with a situation where a software project has to be 

developed having interdependent tasks each of which requires a skill set that should be possessed 

by the assigned resource(s). It is obvious here that the problem the approaches are representing 

is also important to identify. The problem represented in [18] has also been addressed by a wider 
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range of approaches as in [14, 15, 22]. Approaches that perform the allocation as these ones do, 

but without consideration of skills can be found in [20, 21, 94]. These approaches focus on 

assigning the resources to tasks without the description of the content, and regardless of the 

required skills and unit of allocation. Noteworthy that these approaches consider the unit of 

allocation as a project task regardless the description to which phase or activity nature that this 

task belongs to. 

For both units of allocation, effort estimation is required. While a range of estimation techniques 

and tools are available nowadays, these techniques have shown their maximum capability with 

less accuracy and therefore each approach has just presented the estimation of effort by 

introducing the COCOMO. Broadly speaking, COCOMO [98] has the nomination amongst the 

estimation tools, and partially these approaches have proposed the use of it. Others purely 

mention that the effort of each unit has to be estimated in term of Man-Month as in [28], or Man-

Day as in [14]. For more information on how this value can be estimated see Section 2.1.1. 

Task Dependencies 

Dependency between project tasks is the subject that is considered in different ways by the 

optimization approaches. The approaches in [20, 21] for example ignore the dependency between 

project tasks. The approaches in [14, 15, 18, 22, 94] on the other hand consider dependencies as 

one of the problem inputs. This dependency can be illustrated as precedence relationships existing 

between the project tasks, and a task cannot be performed before its predecessor. Representation 

of dependency in general has been used in these approaches by the Task Precedence Graph (TPG) 

for a direct acyclic representation -see Section 2.1.2- . Others as in [16, 28, 91, 96] consider the 

phases, increments, and releases of development as a natural dependency identifiers that have to 

be defined within the problem inputs. Approaches that combines both descriptions can be found 

in [23]. This approach in addition to the phases of development, has the ability to deal with the 

situation where dependencies between project tasks are represented in the form of TPG.  

Single and multiple projects 

Staffing and scheduling software project optimisation approaches can be divided into two 

categories based on the scope of projects that they consider. The first category of approaches 

addresses the optimisation only for a single project at a time. The second category considers the 

allocation for an entire organizational environment consisting of multiple projects that need to be 

performed at the same time.  
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In the literature, the overwhelming majority of proposed approaches target the optimisation of 

human resources considering only a single project problem consisting of multiple tasks as can be 

seen in [14-16, 18, 20-23, 28, 91, 94, 96]. Each one of these approaches considers the project task 

as a standard unit for allocation, and performs the allocation to project tasks either for teams or 

for individuals. The optimization of human resources for multiple dependent development 

projects has received considerably less attention in the literature, with the work by [99] as an 

example of a multi-project approach. However, even this approach simplifies the problem by 

modelling the multiple projects as multiple dependent tasks. In addition, this approach ignores 

the longer-term considerations such as project overlap. It can be concluded that the category of 

multi-project resource allocation optimisation requires further attention beyond the current state 

of the art. 

Human Resource Properties 

The assignment of human resources depends upon three factors. These factors are skills and 

competencies, productivity, and availability of human resources at the time that the project will 

be performed.  

Competencies of human resources in software projects play a key role in effort planning and 

resource selection. A selection that is based on competencies searching for the best resource who 

can perform a task with high-quality, and shortest time, can also be considered in team formation. 

For this reason, a number of competency models are proposed to support the manager in the 

selection process. Competency models such as [57, 62] can be used to form teams according to 

specific and important attributes of resources that lead to identify the best resource to perform a 

particular team role. Another model presented in [7] named as Best-Fitted resource model uses a 

relationship ability matrix. This matrix defines a relation between the skills of available resources 

and the ones required for a project. This model helps to identify what skills are similar to each 

other, which can lead on understanding of the capability of a resource, having these skills, to learn 

new ones. 

Approaches that consider human resource skills through their optimization process as in [14, 15, 

18, 22, 91] did not clarify the competencies used in their selection process except the approaches 

proposed in [16, 23, 28, 96]. On the other hand, some approaches ignore the importance of human 

resource skills as in [20, 21, 94] assuming that all the available resources have the same 

capabilities and competencies. 

Productivity on the other hand is represented by the optimization approaches according to 

different criteria. Productivity can be ignored, estimated based on experience, or based on the 
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software development activities [16]. Optimization approaches that ignore productivity as in [14, 

15, 18, 20-22, 94] assume that the resources share the same expertise and productivity. For this 

reason, they just count the number of resources as a measure of team productivity. Approaches 

that consider productivity of resources based on their expertise and skills as in [16, 23, 28] model 

the resources based on specific programming languages, and activity experience. Productivity of 

a resource in these approaches can be twice or thrice than of a normal resource. In addition, some 

approaches still use the standard productivity metric for development, and debugging 

productivity as the one presented in [91], which depends upon how many line of code the resource 

can develop within a unit of time. 

It is clear that productivity is a problem with no agreement as to how it can be measured. Some of 

the approaches in SPM consider the role that the resource could play within a team. They measure 

productivity according to these roles such as analyst, designer, developer, or tester. However, the 

resources in software projects can play different roles and they possess more than one 

professionalism. In addition, the resources in software firms can be specialized in a particular 

software technical development and/or product according to the department they work for. 

Availability on the other hand is the subject that most of the optimization approaches consider as 

a predefined input. This input is identified by the approaches in three different manners. The first 

one is assuming that a number of resources are available as in [20-23, 91, 94, 96]. The second 

manner is by using a percentage to express their availability as in [14, 15, 18, 28]. The third manner 

is by using a time window to express the availability period of a resource. This manner is addressed 

by a few approaches as in [16, 93] using a period that expresses unavailability of a resource during 

the project time. For a single project optimization, the first two manners are realistic. However, if 

the problem is at organizational level that consists of multiple projects at a time, then it is 

important to identify which resources are available, and which are not, for each project. 

Team Formation 

Many human resource models have paid attention to team formation in software projects as in 

[57, 62]. These models focus on skills and competencies of the human resources in software 

project for each team role such as analyst, designer, programmer etc. A team that requires 

different roles combining different skills, competencies, and disciplines of software development 

all to be in the same team including stakeholder, is called a cross functional team [100]. Since the 

late of the 20th century, this kind of team has been practiced in industry, and addressed by software 

development methods such as Agile [100] and DevOps [101]. However, this kind of team 
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formation has not been addressed by any optimization approaches so far. Consequently, this kind 

of team formation should emerge and be addressed by future approaches. 

The team formation considered by the optimization approaches is the one that assumes all 

potential members share similarity in their competencies and skills. This kind of team formation 

is adopted by the approaches in [22, 23, 28]. Noteworthy that approaches as in [20, 21, 94] do not 

consider skills and competencies and they form the teams randomly. Moreover, some approaches 

as in [14-16, 18, 91, 96] do not consider team formation but rather to perform individual allocation 

to project tasks. 

2.4.2 Constraints and Penalties  

Constraints on human resource allocation in a software project are the most important part in the 

allocation. This is due to the reality that dependency between tasks, the number of the resources, 

their skills, and availability can affect the development time, quality, and cost of a software project. 

Optimization approaches that consider this reality are in [14-16, 18, 22, 23, 28, 91, 94, 96] have 

the concern about these constraints for how they can be integrated in their approaches and how it 

will affect the outcomes. While these approaches are combined with a meta-heuristic optimization 

technique, the outcome solution is subject to change stochastically. That implies the constraints 

in these approaches can be violated by the optimization techniques while searching for local or 

global optima. On this occasion, the approaches offer penalties, which are used to revise the 

outcomes by adding a penalty value to the final result. Optimization approaches that consider 

penalties can be seen in [14, 15, 18, 28, 91].  

Optimization approaches that consider a constraint on precedence relationship and dependencies 

between project tasks are in [14, 15, 18, 22, 23, 28, 91, 94, 96]. Project task dependency is 

represented by [28, 91, 96] as a precedence relationship between the features or modules of the 

software. The constraint is that no feature or module can be offered by a release that contains the 

one preceding it as well as tasks of a feature or module should be organized based on the phase’s 

sequence. The approach in [22] represents the dependency constraint as that each task depends 

on another, and this should be implemented as a queue of tasks, that no task should be offered 

before its phase. The approaches presented in [14, 15, 18, 22, 23, 94] on the other hand have 

combined the task precedence dependency constraint within their solution. These approaches 

employ for reliable outcomes a simulation of schedule that in each step will verify whether the 

precedence relation is met by the current solution or not. 
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Optimization approaches that consider a constraint on the number of resources allocated to a 

single task are in [18, 22, 28, 91, 96]. The approach in [22] has the constraint on the number of 

teams allocated to a single task. This constraint is that for a single task only one team should be 

allocated to it. Similarly, the approaches in [91, 96] made the constraint that for a single task one 

resource should be allocated to it. On the other hand, the approach in [28] made a restriction on 

the number of resources allocated to a team. The number of resources should not exceed the value 

that the manager defines for teams according to the project environment. 

Optimization approaches that consider a constraint on the resources skills are in [14-16, 18, 22, 

23, 28, 91, 96]. The approach in [28] even classified the resources according to their skills as expert 

or novice. In addition, this approach impose a restriction that each team should have at least on 

expert. This constraint is to maintain the quality of development, since using novice workers could 

affect the work quality. 

Optimization approaches that consider a constraint on sharing the resources are in [22, 28]. In 

these approaches, sharing resources between multiple teams is not allowed. The approach in [28] 

however, made an exception for the testing activities in software project to be done by cooperating 

part or all the resources together. In addition, the approach in [22] made additional constraints; 

that each team should share the same expertise and at least one team should cover the expertise 

required for the project.  Moreover, the approach in [28] considers an additional constraint on the 

incremental level, this constraint is to ensure that the resources are continually involved in the 

module they are working on within the increments, so there is no need for extra time for 

understanding the module.  

Penalties on the other hand are considered by the approaches in [14, 15, 28, 91]. The approach in 

[28] penalizes the violation of the following constraints adding a value that should be defined by 

the project manager. These penalties are made on the incremental, novice teams, dependencies of 

the phases, and the number of developers within the team constraints. On the other hand, 

penalties on violating the constraints in the [91] approach are combined within the project cost. 

These penalties are on both development and debugging productivity, as well as the error rate. 

The approaches in [14, 15], penalize only for skills as the scheduling is combined within the fitness 

function. Skills penalty in [14, 15] is implemented by counting the number of missing skills, and 

multiply this value by the overall effort of the whole project, to penalize the project time to end 

with a very high value. 
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2.4.3 Solution Representation 

Modelling the inputs of an optimization problem is the first step of the optimization process. The 

second step then is to identify the goal for the optimization, which is represented as an objective 

function. In addition, in some cases the optimization of an objective should be performed with 

respect to constraints that are required to be satisfied. For some optimization problems 

constraints can be violated while the technique performs a probabilistic process to obtain 

solutions. Therefore, the optimization process applies penalties on the fitness value in cases of 

violation. 

The process adopted by the optimization approaches to solve SSSP can be seen as a multi stage 

process. These stages are considered either to ensure the completeness of the solution proposed 

or to reduce the processing time of the optimization process. Optimization approaches as in [14-

16, 18, 20-23, 28, 94] search by a single or multi stage the possible optimal or near optimal results 

based on the adopted allocation process. Stages in these optimization approaches can be 

considered as a case of team or individual allocation. Some of these approaches propose the 

allocation of individuals directly to tasks as in [14-16, 18, 23, 91]. This means that a single stage is 

required to allocate those resources to project tasks. On the other hand, others as in [20-22, 94] 

form the team and sort the tasks first and subsequently assign those teams to project tasks. Only 

the approach in [28] uses two stages to perform first team level allocation that assigns each team 

to a group of tasks, and the second stage is to assign each team member individually to tasks from 

the allocated task group. However, while their final solution is encoded into a 5-D allocation 

matrix without consideration for sharing resources across teams or tasks, that means the 

allocation performed in this approach at the end is an individual allocation. 

The solution structure of an approach can be represented in different ways according to the 

technique used. For genetic algorithms, the representation is by a “chromosome”. This 

chromosome contains a finite number of “genes” that each represents an element of the solution. 

In the problem of SSSP, an element can be a resource, a task, or a team. The mainstream of the 

approaches employs GA in their solution for fast and accurate outcomes. Chromosomes can be 

represented as a vector as in [20-22, 94]. Others as in [14, 15, 18] use 2-Dimensional array to 

represent their resource allocation solution combining the resources and tasks. Similarly, 

approaches as in [23] use a cell array to accelerate the computation time of the algorithm. 

Chromosomes moreover can be encoded using different systems such as binary, permutations, 
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value, or tree. The reader can refer to [74, 84-86] for information on chromosomes, their 

structures, and encodings in GA. 

The approaches that use SA on the other hand can have the solution structure similar to those for 

GA representations. For instance, the approach presented in [28] combine five allocation 

attributes in their problem into a multi-dimensional array. These attributes are resources, 

modules, increments, phases, and time slots of allocation elements represented by a 5-D matrix. 

Others as in [21] used the same structure for hill climbing, SA, and GA optimization techniques.  

Initial Population 

Initial population is the starting point of the search in meta-heuristic techniques. Two types of 

initial population creation can be used, which are random and heuristic initialization of 

population using heuristic optimization techniques to define the starting population [86]. Broadly 

speaking, approaches that use GA attempt to initialize the population randomly, as the use of 

heuristic techniques might lead the solution to a local optimum. These approaches can be found 

in [14, 15, 18, 20-23, 94]. However, there are approaches that combine a heuristic technique such 

as Greedy to initialize the population as in [28]. This attempt was claimed to have improved the 

search time, as well as the solution quality. 

Stochastic Optimization Process  

A stochastic process in Meta-Heuristic techniques provides a mechanism to create new solutions 

by adjusting heuristic changes within the old ones. Stochastic processes in GA are combined with 

two operations, which are crossover and mutation. Crossover operation perform modification on 

the chromosomes by exchanging subparts of two chromosomes and combine them into a child 

one [86]. Different operators for crossover can be used according to which subparts of parents’ 

chromosomes should be selected for the new child. The most popular crossover operators are 

single-point, two-point, uniform, and arithmetic [86] [102]. The reader can refer to [86] [102] for 

more information.  

The mainstream SSSP approaches that employ GA within their solution modify their crossover 

operators according to their solution encoding and structure. The approach in [94] uses the basic 

single-point crossover. The approaches in [20-22] however, modified the single-point crossover 

for the subparts selection and order of the exchanged chromosome’s elements. As the approaches 

in [14, 18] use a 2-D chromosome structure, their crossover operator performs a single-point 

crossover but with consideration of rows and columns to exchange. The one in [15] on the other 

hand performs a modified crossover that works with equal probability whether to exchange the 
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rows or columns of their 2-D structure. The one in [23] moreover, performs a uniform crossover 

on both parents’ chromosomes to generate a child one.  

For the approaches that use SA, this technique provides perturbation operators to manipulate the 

subparts of the solution. Perturb operator can be by exchanging two elements of the solution, or 

by moving a single element value from one to another. Both perturbations are used in [28] with 

equal opportunity. These operators allow the SA to advance the search into the global area than 

its basic hill climbing technique.  

To avoid same solution generation and explore a global area in the solution space, mutation can 

be used in GA to randomly perform changes on the solutions [86, 103]. Mutation in GA can be 

done either by selecting and exchanging values randomly to some solution elements, bits flipping 

for binary encoded chromosome, scramble or inversion of part of the chromosome, or swapping 

values between different elements of a chromosome [102]. 

In [14, 18] approaches, a single element bit-flip is used. The approaches in [20-22] provide 

solution with two representations, one for team assignment, and the other one for task allocation. 

Mutation in these approaches works by exchanging two elements of the chromosome for the task 

allocation representation, and a single element exchange for team assignment representation. The 

one in [15] uses a different mutation strategy. Their mutation works by assigning probability to 

each element to randomly assign a new value from the range they have defined as a dedication of 

the resource represented by that element to the allocated task. The one in [94] moreover, uses two 

mutations as their approach combine two solutions for team assignment and task allocation. The 

team representation combines random generation mutations for all chromosome elements. 

Mutation for task allocation representation on the other hand works by randomly setting a value 

for a random chromosome’s element. Similarly, the one in [23] approach mutates the solution by 

exchanging a chromosome element with a random value. 

Selection of Candidate Chromosomes Solutions  

Selection of candidate solutions as one of the heuristic operations selects the fittest chromosomes 

among all the permutation produced by the algorithm. These selected solutions will be used to 

produce a new population using different methods [86]. These methods are roulette wheel, 

stochastic universal sampling, tournament, steady state, rank, elitism, and random selections 

[86]. 
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Both [18, 20] use elitism selection. Approaches in [21, 22] use roulette wheel selection mechanism, 

and tournament for NSGA-II of multi-objective for [22]. In [14, 15, 23, 94] approaches, 

tournament selection is used.  

Objective Function  

Depending on the problem that the approaches solve, the optimization can be either for a single 

or multi objective(s) function. Single objective approaches as in [20, 21, 23, 28, 94] search for an 

optimal, or near optimal project completion time solution. Approaches in [14-16, 18, 22, 91, 96], 

on the other hand optimize the allocation for multi-objective functions. These functions simulate 

the Decision Maker’s (DM) choices for producing high-quality allocation that satisfies part or all 

project stakeholder objectives. For example, the approach in [16] optimizes the allocation as 

follows: When the project only requires professionals then the most qualified team is the objective 

function. In case of shortage of resources, and the available team having minimal skills, then the 

minimum qualifying team is the objective function. In addition, for project time the DM can select 

the fastest team. For cost purpose, DM may select the cheapest or smallest team. DM on the other 

hand can consider a best partial solution when the resources do not satisfy the requirements for 

the activities. This can be seen as an example where an approach optimizes the allocation and can 

separate the objectives from one another.  The one in [18] moreover optimizes for four objectives. 

However, two of these objectives, which are overtime work of resources and job assignment 

validity are used within their scoring model to penalize the infeasibility of a solution adding high 

value to the fitness functions of project time, and cost. 

However, there are approaches that do not perform the optimization considering separation 

between the objectives as in [91]. Objectives in this approach are combined together so that the 

whole process of optimization can be seen as a single objective solution. 

Approaches that optimize the resource allocation for the objective of minimizing the completion 

time of a software project are in [14-16, 18, 20-23, 28, 91, 93, 94, 96]. However, for part of these 

approaches project time estimation is differing from one to another. This is depending on the 

input model they use. For instance, some models use the term of time windows, which means the 

time of each task has already been defined, or predefined with start and end task times. Therefore, 

these equations cannot be seen equally with other models that use effort to estimate the overall 

project time span. 
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Optimizer Settings 

Each SSSP approach considers different values of GA parameters for the chromosome, population 

size, generation, mutation probability, etc. The value of these parameters however play a key role 

on the outcome quality and time spent on searching for an optimal or near optimal solution. For 

example, if the generation is set to a high value, that means the GA will constantly keep producing 

populations and searching for the optimal one, even if the very best solution has been found, the 

search will continue till the number of generations is reached.  

Population size by many approaches is set to be 100 as in [20, 21, 23].  Both [14, 15] however, set 

their population to 64. The one in [18] sets to 60 population, and both [22, 94] set their population 

to 50.  

The number of generation for a GA on the other hand, which constitute the process of moving 

from one population to another acting as a termination criteria [97], is adjusted differently in each 

approach. Approaches that search with high number of generations might have some implication 

on the runtime as in [14, 18, 20, 21, 23]. The approach in [14] sets the generation to 5000, the 

approach in [20] sets to 1000, where [18] set to 500, and both [21, 23] set their GA generation 

parameter to 400. Others have set their generation parameter considerably less than the previous 

approaches as in [22] approach to be 250, the one in [94] with 100, and [15] to 79 generations. 

Moreover, the mutation operation, which involves creating the next population, is usually works 

with low probability [97]. The approaches in [23] mutate with very low probability of 0.05. The 

approaches in [20-22] set their mutation probability to 0.1. The approach in [18] mutate with 

probability of 0.15, and the one in [94] set the mutation probability to 0.2. However, there are 

some approaches that modify their mutation rate according to the problem size as in [14, 15]. Their 

mutation rate is calculated according to the number of tasks and resources within the solution.  

Probability of crossover, as for creating new chromosomes based on both parents, varies in the 

approaches that use GA. The approaches in [20, 21, 94] set their crossover probability to 0.6. The 

approach in [18] sets the crossover probability to 0.65. The one in [22] set to 0.7. The one in [15] 

set to 0.75. Finally the one in [14] sets the crossover probability to 0.9, and the one in [23] set their 

crossover probability to 1.0. 

The most critical operation that could affect a GA-Based optimization approach is mutation. In 

some cases it could lead to a better solution, however, mutating the solutions can also leads to 

explore far more solutions than the best one, which will accordingly have implication on the 

computational time and the results’ stability of the approach. For best GA results, the approach in 
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[18] concludes that the population size should be in range of 50 to 80, and crossover rate between 

40 to 80 percent, and mutation rate between 10-40 percent.  

The SA technique is adopted by the approaches in [21, 22, 28]. However, the approach in [22] 

used this technique to compare its results with GA, and HC. The configuration of this technique’s 

parameters in the approach presented in [28] for the initial temperature, number of internal 

loops, number of external loops, parameter control, and cooling factor were are 100, 500, 8, 2000, 

and 0.95 respectively. On the other hand, both papers of [21, 22] do not state the values of these 

parameters that should be an important subject to their evaluation of the techniques adopted.  

2.4.4 Validation 

Validation is the key for presenting the quality of an optimization approach. Different methods 

are used to validate the optimization approaches. Some of the optimization approaches adopt 

experimental methods to compare their approach with different optimization techniques. 

Approaches that compared their results with other optimization techniques are in [21, 22, 28, 96]. 

The approach in [28] for instance made an empirical analysis between SA and Greedy 

optimization techniques using the same data. The performance on average for the obtained results 

was that the approach using SA outperform Greedy algorithm. The one in [15] in addition, 

performed their evaluation on different Evolutionary Algorithms (EA) and approaches including 

the one in [14]. Their findings suggest that their solution proposal outperforms the others 

especially using an improved EA called Pop-EA. 

On the other hand, some of the approaches as in [20, 91] performed their validation using 

sensitivity analysis, which investigates the sensitivity of the outcomes by changing the input and 

the attribute values. For example, the approach in [91] claim that: 

1. Productivity does not necessarily lead to reduce development time as expected. 

2. Higher productivity does not guarantee an ideal software development outcome. 

3. Increasing the demand only on high quality or for both productivity and quality to be 

moderate can lead to better results than to consider both factor to be high for ideal 

outcomes of the software development projects. 

Moreover, few of the approaches as in [16, 23] performed an empirical study validating their 

approach by observing how participants can do the allocation, and the resulted quality of their 

allocation. The approach in [16] performed this kind of study to check their understanding of the 
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field. However, their study has 16 participants who were all students, and their conclusion was 

that 22% of the participants were able to provide a solution close to the one of their model.  

The validation also requires a dataset to test the applicability of the optimization approaches. 

Approaches that used real software project data as in [21, 22, 28] used the data to show the 

effectiveness of their approaches. On the other hand, other approaches used hypothetical 

“simulated” data in their validation as in [14, 18] [15, 16, 23, 91, 96].  

2.4.5 Selected SSSP Approaches for Benchmarking and 

Comparison 

As benchmarking research should not bring as many approaches as available to one comparison, 

a representative set has to be identified [104]. This set however, should include approaches that 

partially or fully close to and suitable to software project time and SSSP problem defined in 

Section 1.2. These approaches moreover, should have wide generality of usage. For instance, 

approaches that focus on solving project time minimization for a particular development method 

should not be included. A limited number of approaches that consider this aspect, however, can 

be found amongst the approaches proposed for SSSP problem. The selection criteria for the SSSP 

approaches adopted for the work carried out for this thesis are as follow. 

1. The first criterion is the approach should at least be among the most cited and referenced 

ones. This task was completed by referring to both studies in [5, 24] where their findings 

and results contributed to the selection for this chapter.   

2. The focus is on the approaches that perform a single objective of project time span 

minimization. Noteworthy that some of the approaches use multi-objectives optimization. 

If the approach combines the time into a weighting scoring model, then it is possible to 

give all the scores only to project time so it can be easily calibrated to project time 

objective. In this case these approaches can be included in our benchmarking and 

comparison study. 

3. The approach moreover, should use the effort estimation for project tasks, and not any 

consideration to time window, or task time frame consisting of start and end time. 

Estimated effort can be obtained using different tools and techniques, but the end result 

should be in terms of man-month, or man-day. However, both terms are similar and for 

accuracy purpose Man-Day will be used. 
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4. Mainly to make the approaches comparable they have to adopt soft constraints. In 

addition, dependencies between project tasks should be formed in term of which one can 

start before the other, which can be represented by a directed acyclic graph –see 

Section 2.1.2-, or any dependency sorting mechanism with TPG. No matter which 

software development method is used, projects always have dependency either directly 

between the tasks, between the phases, or can be between iterations or increments that 

should be plotted by the approach.  

The approaches that comply with this criteria are more likely to be included within the 

representative SSSP approaches set. Accordingly, the SSSP approaches selected for the evaluation 

and comparison are mainly chosen for the following reasons: relativeness to SSSP problem, 

publication closeness to software engineering, and possibility to adjust for single fitness outcome.  

The first approach to be selected is the one presented in [18]. This approach is considered as one 

of the earliest work on optimizing software project time. This approach, in addition, complies with 

the earlier mentioned criteria, and has a scoring model to measure the fitness of project time and 

cost. Another approach that is selected for its unique proposal and the adaptation of our selection 

criteria is the one presented in [20]. This work focuses on the team distribution and is the base for 

the works presented by [21, 22, 94]. So, including this approach could provide a clear evidence of 

the usefulness of the adopted processes and procedures in terms of allocating the resources and 

estimating project time. As this work is a base for other approaches, these approaches are also 

important to be included to test their improvements and to what extent they could deliver an 

optimal or near optimal solutions in terms of project time minimization. Accordingly, the 

approaches in [21, 22, 94] are selected to our benchmarking and comparison study. Searching for 

an up-to-date approaches has, in addition, come with several approaches. However, many 

approaches have similarity in their proposals, and for many cases limited description is found that 

allow for reproduction. The approach in [15], on the other hand, is found to have some 

improvement over the approaches in [14, 18]. This approach, in addition, complies with our 

criteria, which makes it one of our choices for the benchmarking and comparison study. Including 

this approach could offer a quality for our comparison study against these that it based on and 

outperform. Moreover, [28] approach has been mentioned in many proposals such as [5, 23, 24] 

for its complexity on offering too many constraints that could affect it solution quality. To put 

these claims into test, this approach is accordingly selected to our study.  It is noteworthy that this 

approach complies with our criteria. The last approach to be selected while searching for a new 
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up-to-date is the one in [23]. This approach complies with our criteria and offers a different 

resource allocation pattern and GA representation. This approach is, to the best of our knowledge, 

the first to use cell array for GA representation, which makes it a choice for the comparison against 

the other proposals. While many others could possibly be a quality for our study to test, many of 

these approach that have not been selected share similarity in almost every detail of the resource 

allocation and optimization process, or fall in the gap of “out of criteria”. This can be where 

different effort estimation units, or time measures are used, such as the time window frame, 

having the assumption of task time as an input that has already been measured, and what left for 

the optimizer is to align what every possible tasks together. 

Table 9: Selected SSSP approaches 

Approach Published in 

Chang01 [18] 

Antoniol01 [20] 

Antoniol02 [21] 

Alba01 [14] 

Ren01 [94] 

Kang01 [28] 

DiPenta01 [22] 

Minku01 [15] 

Park01 [23] 

The following Table 10, in addition, highlights the main aspect that these approaches consider. 

Table 10 depicts the approaches considered for the benchmarking and evaluation with respect to 

the aspects of problem inputs including project tasks, their precedence relationship, skills, and 

productivity of resources. In addition, it can be seen in the table the type of constraints, the 

optimizer that the approaches employ, the objective function(s), and the representation of 

solution considered by each approach. Moreover, the table illustrates how the approaches have 

been validated in terms of methods and data used for this purpose. Methods of validation are 

illustrated in the table by three letters. These letters and what they stand for are (C) for 

comparative analysis, (S) for sensitivity analysis, and (E) for Empirical evaluation. In addition, 

the type of data used for the validation illustrated in the table by (S) for synthetic, and (R) for real-

world data. For instance, this table shows that the approach Ren01 considers two inputs to the 

problem which are task and precedence relationship, and incorporates them in the GA optimizer 

by 2 vectors in the solution representation of project time minimization objective. From Table 10, 
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it can also be seen that the validation of this approach is carried out by sensitivity analysis (S) 

method using a real-world dataset (R). 

Table 10: Attributes of Selected Benchmark SSSP Approaches  
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2.4.6 Detailed Description of the Selected SSSP Approaches 

The algorithm named Chang01 starts by initializing population P of size 60, where the solution is 

represented by a 2-D matrix chromosome structure. The rows in this chromosome represents the 

resources and the columns represents the tasks. The value of each cell of the matrix represents a 

percentage that the resource will participate with between {0, 0.25, 0.5, 0.75, 1}. The GA repeats 

by 500 generations three main processes, until a solution satisfy the objective function. The first 

process is selecting parents from P using Elitism selection. For the selected parents, the second 

process performs a single-point crossover with probability 0.65, and mutation using a single 

element bit-flip with probability 0.15, then stores these new solutions. The third process is 

evaluating the solutions based on the fitness function having the best to survive for the next 

generation. The fitness function of this algorithm works by calculating the overall participation 

percentages of resources to each task. The task that is under computation, however, should not be 

waiting another task to finish. The task that has a precede one, should wait till it finish. The time 

for this task is estimated by dividing the estimated task effort over the overall participation of all 

the resources to this task. In order to the participation percentage of a resource to be counted, 

his/her skillset should meet the ones required for that task, otherwise the resource should not be 

counted for that task. The fitness function in addition checks whether each resource is working on 

more than one task at a time, if so, then the solution then the overall dedication should less or 

equal to one or penalized then with maximum estimated time to eliminate the solution. The tasks 

are then categorised into groups where each group has those that can be performed concurrently. 

The longest task among those in parallel is the one that will be added up to the total estimated 

project time.  

The algorithm named Antoniol01 works as a tandem approach. This algorithm starts by 

initializing population P of size 100, where the solution is represented by two vectors of 

chromosome structure. The first chromosome is designed for the ordering of tasks in the queue. 

Each gene in this chromosome represents a task and the allele value represents the position of the 

task in the queue order. The second chromosome is designed for the team formation of resources. 

Each gene in this chromosome represents a resource and the allele value represents the team 

number that this resource is assigned to. The GA repeats by 1000 generations three main 

processes, until a solution satisfy the objective function for both representations. The first process 

is selecting parents from P using roulette wheel selection. For the selected parents, the second 

process performs a single-point crossover with probability 0.6, and mutation using two elements 
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exchange with probability 0.1, then stores these new solutions. The third process is evaluating the 

solutions based on the fitness function having the best to survive fort the next generation. The 

fitness function works for the first representation of task ordering with a uniform distribution of 

resources to teams. It counts the number of resources of the team responsible to perform each 

task. Each task time is estimated based on the number of resources in the team assigned to it. Each 

best solution of the first representation is then fed to the other to search for the best team 

distribution. What is noteworthy that each team adds up each task time they work on, so the 

overall estimated project time is then the longest team time. 

The algorithm named Antoniol02 starts by initializing population P of size 100, where the solution 

is represented by a vector chromosome structure. The chromosome represents the ordering of 

tasks in the queue. Each gene in this chromosome represents a task and the allele value represents 

the position of the task in the queue order. The team formation of resources is performed at the 

start of this algorithm randomly, where the number of teams is selected randomly based on the 

number of resources. The GA repeats by 400 generations three main processes, until a solution 

satisfy the objective function. The first process is selecting parents from P using roulette wheel 

selection. For the selected parents, the second process performs a single-point crossover with 

probability 0.6, and mutation using two elements exchange with probability 0.1, then stores these 

new solutions. The third process is evaluating the solutions based on the fitness function having 

the best to survive fort the next generation. The fitness function counts the number of resource 

for the team responsible to perform the task. The task time is then estimated based on the number 

of resources in the team assigned to it. What is noteworthy that each team adds up each task time 

they work on, so the overall estimated project time is then the longest team time. 

The algorithm named Alba01 starts by initializing population P of size 64, where the solution is 

represented by a 2-D matrix chromosome structure. The rows in this chromosome represents the 

resources and the columns represents the tasks. The value of each cell of the matrix represents a 

percentage that the resource will participate with between {0, 1/7, …, 7/7}. The GA repeats by 

5000 generations three main processes, until a solution satisfy the objective function. The first 

process is selecting parents from P using Tournament selection. For the selected parents, the 

second process performs a single-point crossover with probability 0.9, and mutation using a single 

element bit-flip with probability 0.01, then stores these new solutions. The third process is 

evaluating the solutions based on the fitness function having the best to survive fort the next 

generation. The fitness function of this algorithm works by calculating the overall participation 

percentages of resources to each task. The task that is under computation, however, should not be 

waiting another task to finish. The task that has a precede one, should wait till it finish. The time 
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for this task is estimated by dividing the estimated task effort over the overall participation of all 

the resources to this task. In order to the participation percentage of a resource to be counted, 

his/her skillset should meet the ones required for each task the resource is assigned to, otherwise 

the resource should not be counted for that task. The fitness function in addition checks whether 

each resource is working on more than one task at a time, if so, then the solution then the overall 

dedication should less or equal to one or penalized then with maximum estimated time to 

eliminate the solution. The tasks are then categorised into groups where each group has those that 

can be performed concurrently. The longest task among those in parallel is the one that will be 

added up to the total estimated project time. 

The algorithm named Ren01 works similar to the tandem algorithm of Antoniol01, however, it 

combines a cooperative co-evolution algorithm solution by dividing the problem into sub-

problems. This is implemented by this approach as two vectors of chromosome structure. The first 

is concerned with the ordering of tasks in the queue. This structure however, is implemented by 

the fitness function according to the dependency constraint between project tasks. The value in 

this vector represents the position of the task in the queue order. The second is a GA chromosome 

designed for the team formation of resources. Each gene in this chromosome represents a resource 

and the allele value represents the team number that this resource is assigned to. This algorithm 

starts by initializing population P of size 50. The GA repeats by 100 generations three main 

processes, until a solution satisfy the objective function. The first process is selecting parents from 

P using Tournament selection. For the selected parents, the second process performs a single-

point crossover with probability 0.6, and mutation using random generation of new values to all 

the elements with probability 0.2, then stores these new solutions. The third process is evaluating 

the solutions based on the fitness function having the best to survive fort the next generation. For 

each task, the fitness function counts the number of resource assigned to the team responsible to 

perform the task. The task time is then estimated based on the number of resources who are in 

the team assigned to it. The task that is under computation, in addition, should not be waiting 

another task to finish. The task that has a precede one, should wait till it finish. What is noteworthy 

that each team adds up each task time they work on to their working time, so the overall estimated 

project time is then the longest team time. 

The algorithm named Kang01 starts by initializing the Simulated Annealing (SA) algorithm 

parameters of initial temperature, the initial solution, and the internal loops. The algorithm has 

two loops, where an internal one is designed to create solutions out of an old one using a function 

called PERTURB. If the new solution is better than the old one, then the solution will be accepted, 

or otherwise a probability will be attached to this solution decided upon the temperature and an 
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exponential function, having a linear relationship between probability and temperature. The 

temperature cools down when a solution by the fitness function is proved to be better by the 

internal loop. The cooling down has a factor that has also be set for the algorithm. The external 

loop on the other hand, keeps checking whether the fitness function value of the new solutions has 

not changed in the internal loops. The advised values set for this algorithm are 100 for initial 

temperature, 0.95 for the cooling factor, 500 for the internal loop, the internal loop control with 

2000, and 8 for the external one. The initial solution by this algorithm is created using greedy 

algorithm. That means the project tasks is sorted from larger size to smaller, and with a continuous 

loop according to the number of resources, each task at a time will be assigned to the competent 

resource, till all the resources are assigned (end condition of the loop). By this solution the SA 

starts perturbing a new solution by exchanging resources with their participation percentages 

between the project tasks. The time of each task in the project is estimated by dividing the 

estimated effort over the participation percentages of all the resources assigned. However, in order 

to the participation percentage of a resource to be counted, his/her skillset should meet the ones 

required for that task, otherwise the resource should not be counted for that task. The project time 

in this algorithm is accordingly considered as the overall tasks’ time i.e. the cumulative time of all 

the tasks. 

The algorithm named DiPenta01 works similar to the tandem algorithm of Antoniol01 too, 

however, the solution is instead represented by a sophisticated vector chromosome structure. The 

vector combines within both the tasks queue order, and the team formation of resources 

representations. Each gene for the queueing order part represents a task and the allele value 

represents the position of that task in the queue order. On the other hand, each gene in the team 

distribution part represents a resource and the allele value represents the team number that this 

resource is assigned to it. This algorithm starts by initializing population P of size 50. The GA 

repeats by 250 generations three main processes, until a solution satisfy the objective function. 

The first process is selecting parents from P using roulette wheel selection. For the selected 

parents, the second process performs a single-point crossover with probability 0.7, and mutation 

using two elements exchange with probability 0.1, then stores these new solutions. The third 

process is evaluating the solutions based on the fitness function having the best to survive fort the 

next generation. The fitness function works first on decomposing the single structure chromosome 

into two representations of teams and task orders. For each task, the fitness function counts the 

number of resource assigned to the team responsible to perform the task. The task time is then 

estimated based on the number of resources who are in the team assigned to it. However, in order 

to the resource to be counted, his/her skillset should meet the ones required for each task that 

his/her team is assigned to, or otherwise the resource should not be counted for time estimate to 
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that task. The task that is under computation, in addition, should not be waiting another task to 

finish. The task that has a precede one, should wait till it finish. What is noteworthy that each team 

adds up each task time they work on to their working time, so the overall estimated project time 

is then the longest team time. 

The algorithm named Minku01 starts by initializing population P of size 64, where the solution is 

represented by a 2-D matrix chromosome structure. The rows in this chromosome represents the 

resources and the columns represents the tasks. The value of each cell of the matrix represents a 

percentage that the resource will participate with between {0, 1/7, …, 7/7}. The GA repeats by 79 

generations three main processes, until a solution satisfy the objective function. The first process 

is selecting parents from P using Tournament selection. For the selected parents, the second 

process performs a single-point crossover with probability 0.75, and mutation using a single 

element bit-flip with probability 0.01, then stores these new solutions. The third process is 

evaluating the solutions based on the fitness function having the best to survive fort the next 

generation. The fitness function of this algorithm works by calculating the overall participation 

percentages of resources to each task. The task that is under computation, however, should not be 

waiting another task to finish. The task that has a precede one, should wait till it finish. The time 

for this task is estimated by dividing the estimated task effort over the overall participation of all 

the resources to this task. In order to the participation percentage of a resource to be counted, 

his/her skillset should meet the ones required for each task the resource is assigned to, otherwise 

the resource should not be counted for that task. The fitness function in addition checks whether 

each resource is working on more than one task at a time, if so, then the overall participation is 

normalized by the number of tasks that the resource is assigned to. The overall estimated project 

time is then calculated as the overall time of all the tasks in this project. 

The algorithm named Park01 starts by initializing population P of size 100, where the solution is 

represented by a cell array chromosome structure. The gene cells in this chromosome represent 

the tasks, and the allele represents the resources assigned to the task. It is noteworthy that a task 

in this representation can have more than one resource assigned to it, as the type of this 

representation is cell array. The GA repeats by 400 generations three main processes, until a 

solution satisfy the objective function. The first process is selecting parents from P using 

Tournament selection. For the selected parents, the second process performs a uniform crossover 

with probability 1.0, and mutation using a single element random change with probability 0.05, 

then stores these new solutions. The third process is evaluating the solutions based on the fitness 

function having the best to survive fort the next generation. The fitness function of this algorithm 

works by simulating the project time day by day. That means the function repeats until all the 



79 

 

tasks of the project are finished.  For each task available to be done, the overall productivity of 

resources who are assigned to it is calculated. However, in order to the productivity of a resource 

to be counted, his/her skillset should meet the ones required for each task that the resource is 

assigned to, or otherwise the resource will be counted with less productivity to that task. The time 

for this task is then estimated by dividing the estimated task effort over the overall productivity 

calculated of resources to this task. The task that is under computation, in addition, should not be 

waiting another task to finish. The task that has a precede one, should wait till it finish. The fitness 

function, in addition, checks whether each resource is working on more than one task at a time, if 

so, then the overall productivity of this resource is normalized by the number of tasks that (s)he 

is assigned to. Accordingly, the overall estimated project time is then calculated as the overall 

loops that the fitness function has performed. 

2.5 Benchmarking, Datasets and Measurements  

Benchmarking is a procedure whereby a set of experiments are conducted with the purpose of 

comparing the performance of alternative solutions [104]. In order to benchmark a solution and 

compare it to the rest of related ones, three components are mainly used by different approaches 

in different field of study as in [105, 106], which are a process for benchmark and comparison, 

benchmark dataset(s), and measures that are useful to distinguish between these solutions’ 

performance and quality. Benchmarking has also been identified with three components by [104]. 

The first component identified by [104] is named “motivating comparison”, which encompass 

technical comparison and research agenda. The second component identified by [104] is “task 

sample”. This component is concerned with the representative solutions sample for 

benchmarking. It is noteworthy that the intention while identifying representatives should not be 

to include as many solutions as possible, but to select a representative set of these solutions [104]. 

Finally, the last component is the one that provides the benchmarking performance and quality 

measures.  

2.5.1 Benchmark Process 

Throughout the identification of the benchmarking process careful analysis should be made to 

fully understand what and which data and information can be extracted to distinguish between 

the alternative solutions. The work presented by [10] for benchmarking provides guidelines on 

how to approach and evaluate a SBSE solution with different algorithms. One of these guidelines 

is how to validate and benchmark an approach. This guideline consists of four benchmark 

baselines that a researcher can select one for the comparison. These baselines are random search 
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results, known solutions constructed by hand, desirable solution of how goodness it is compared 

to empirical data, or efficiency of solutions checks by repeated trials for having consistent good 

quality and more speedily solutions.  

Limited number of benchmarking approaches can be found that compared and presented in 

particular the differences between various solutions for software problems as in [105, 106]. In 

[105], their aim was to evaluate and compare different task graph scheduling algorithms with 

respect to the processor’s performance using a unified basis that allow variations in parameters. 

Their benchmarking process encompasses identification of a set of algorithms for evaluation, 

classification of algorithms, and suitable performance measures. The measures they have used are 

based on the parameters that have correlation with the processor performance. Their 

classification for the algorithms in addition was based on the number of processors required, the 

processors’ network and structure, and computation cost characteristics. Their evaluation of the 

algorithms was performed using different datasets with different characteristics based on the 

classification, the set of algorithms they selected, and measurements they adopted. In [106] on the 

other hand, the aim was on evaluating classification models of software defect prediction. Their 

process for benchmarking involved identification of datasets to be used, outcome quality 

measurements, and classification of prediction models.  

Both processes used by [105, 106] represent the same strategy that is applicable to be adopted in 

any other discipline. Therefore, our proposed benchmark approach adopted for the work carried 

out for this thesis follow this structure. 

2.5.2 Problem and approach’s classification  

Three main studies in [5, 11, 17] have provided classification of SBSE problems. The work 

presented in [17] encompassed different software engineering optimization problems formed by 

two taxonomy perspectives. These perspectives are linked to software engineering and 

optimization. Both perspectives by [17] are considered as criteria to provide the aspects for a 

problem’s taxonomy. The software engineering perspective involves development stages -such as 

requirement, design, etc.-, models -such as waterfall, and agile-, and the further description of a 

problem’s subject. The optimization perspective on the other hand has the objective (fitness 

function), characterization – discrete, or continuous -, constraints, and the nature of the 

optimization problem in terms of polynomial and non-polynomial as P, NP, etc. As these aspects 

describes a larger area of SBSE than the problem presented in this thesis, the taxonomy proposed 

by [17] is not applicable for more specific problems of search-based software engineering as this 

thesis focuses on. 

Different terminologies have been introduced by [11] for the approaches that solve software 

engineering problem using optimization techniques. One of these terminologies however, can 
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describe the work in this field as project planning in software management. Further work on this 

subject is provided by [5]. In their work, they have introduced a classification of subjects that 

belongs to software project planning and management. The work is similar to what this thesis 

evaluates and is classified in their study as minimizing software project completion time 

approaches. However, there is no classification by [5] for further extensions of minimizing the 

software project completion time problem. These extensions can be seen by the various attributes 

and parameters used in optimizing SSSP problem. Details on attributes and parameters used by 

different SSSP approaches can be found in [24]. In [24], they have provided a comprehensive 

study that demonstrate the attributes and aspects of the SSSP problem. Their findings have been 

presented in a qualitative sense to show what, and which criteria can be used to compare between 

SSSP approaches. They have used this criteria to demonstrate the possible approaches that are 

more suitable for adoption in the industry. Using their findings of attributes, parameters, and 

aspects of SSSP problem, the work on this thesis has been enhanced to create four categories of 

SSSP classification presented in Section CHAPTER 1.3.3.  

2.5.3 Benchmark Measurements and Statistical Tests 

There is only one study that has presented the most important measures to be used in particular 

for search-based software engineering approaches validation which is in [17]. This study 

categorized the validation measures into two separate groups. The first one discusses measures 

and metrics for fair comparison between different optimized approaches. In this group, four 

measures are recommended, which are the fitness value, the search time, arithmetic mean, and 

hit rate. In addition, they strongly advices to repeat the search of a single approach typically 30-

50 times to capture the effects of random variations. These measures are adopted for the work on 

this thesis, and presented in Section CHAPTER 1.3.5. The second group involves the use of 

descriptive statistical analysis for central tendency and variability of results, and inferential 

statistics for accepting and rejecting hypothesises. They have advised the use of inferential 

statistical analysis with main concern about possibility of a Type I error i.e. concluding 

outperformance of an algorithm over another whereas in fact is not true. However as these 

statistical measures can demonstrate the feasibility and effectiveness of a new approach, they are 

not suitable to be used in our research while the arithmetic mean of different SSSP approaches 

are under investigation. In case of addressing stochastic nature and variation of performance 

between different sets of experiments they have referred to inferential statistics detailed in [107]. 

An important discussion of inferential statistical tests to assess randomized algorithms in software 

engineering is presented in [107]. In their discussion, measures are pointed out for their 

importance to plot the differences between randomized algorithms. These measures are T-Test 

and U-Test. Both measures are counted as statistical measures for parametric and non-parametric 

test respectively, to compare between two sample datasets with a hypothesis for testing whether 



82 

 

these data have distribution properties or not. The U-test for example, which has different names 

as Mann-Whitney-Wilcoxon, and rank-sum test, is a powerful statistical test, however, in our case 

of benchmarking SSSP approaches we are not testing the datasets rather to compare and evaluate 

the approaches’ results.  

Measures that have been used for benchmarking by the studies in [105, 106] are adjusted to their 

comparison subjects. In [105], they have used the algorithms’ output, and computation time as a 

basic metrics for comparison. In addition, they have defined the upper and lower data boundaries 

and used that to represent the best solution, the arithmetic mean of each algorithm, number of 

processors used, and the normalized schedule length of each to solve the scheduling problem. 

Moreover, they have developed a scalability factor indicator to show how each algorithm can scale 

as the scheduling problem increases. In [106] on the other hand, they have used the hit rate to 

demonstrate whether each model is capable to provide a feasible solution on each runtime or not. 

Moreover, they have used Area Under the receiver operating Characteristics Curve (AUC) 

indicator for the classification models to identify whether each solution produced by each model 

is excellent, good, or worthless. In addition, they have used Nemenyi test recommended by [108]. 

This test is a non-parametric inferential test similar to Friedman test that is able to find differences 

for null hypothesis testing. These measures are also used by [109-111] too, as they are appropriate 

when conducting hypothesis tests for a single problem involving different optimization 

techniques, but not for a comparison of different SSSP approaches. It is obvious that part of their 

adopted measures such as hit rate, approaches output (fitness function output), computation 

time, and arithmetic mean are appropriate to demonstrate the differences between SSSP 

approaches and capable to provide evidence on performance to each. Therefore, these measures 

are used for the work carried out for this thesis detailed in Section CHAPTER 1.3.5. 

Throughout the work carried out for this thesis, an accuracy measure has been found that can 

demonstrate the differences of accuracy between SSSP approaches. This measure is called Mean 

Arctangent Absolute Percentage Error (MAAPE) presented in [112]. As the Mean Absolute 

Percentage Error (MAPE) is well-known to its efficiency to forecast accuracy of methods, models, 

etc, [112], the work in [112] has provided an enhancement over MAPE using the Arctangent 

function to limit the outcome’s boundaries. This measure has been used in the work carried out 

for this thesis and detailed in Section 43.6.6. 

2.5.4 Available Repositories for Software Engineering Studies 

Two basic repositories are available for software engineering research, the International Software 

Benchmarking Standards Group (ISBSG) and the (tera-PROMISE) of software engineering 

research data. However, neither of them contains valid datasets with useful information and data 

to be used for HRA problem [5]. Another repository is offered in “An Instance Generator for the 
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Project Scheduling Problem” that has been created and made available by the work presented in 

[14]. This repository generates datasets with a different number of resources, and tasks. Yet, these 

repositories offer datasets that have limited information for resource allocation inputs especially 

for resource information such as the skills and their associated productivity, as well as the 

interdependency between project tasks. In addition, the optimal solution and its fitness function 

value information are not offered by these repositories. The description and details of these 

repositories are reported in the following subsections. 

International Software Benchmarking Standards Group (ISBSG) 

The ISBSG is the first and most famous repository in software engineering. However, this 

repository is not freely accessible. Different types of research data are offered in this repository 

for software engineering research. This repository is mainly holding datasets that contains 

information about software projects. However, these projects can be organized into two 

categories. These categories are development projects, and maintenance projects. The 

information contained in the development projects datasets offer data that can be mainly used for 

the purpose of defects, development methodologies, software architecture, platforms and their 

relationship with effort estimation. The information regarding maintenance projects on the other 

hand are about the organization that the project belongs to, the application type and activities 

considered by the projects, size and effort estimation of each project, defects, platforms, hardware, 

and programming languages used by these software maintenance projects. However, important 

the datasets in this repositories are missing the attributes and parameters of SSSP problem. 

Tera-PROMISE 

The Tera-PROMISE repository offers a wide range of software engineering datasets. These 

datasets are mainly used by researchers on their previous research, and they have made these 

datasets available by this repository. This repository is established by [113]. The main contribution 

of this repository is the free access and availability of its datasets. These datasets are grouped into 

different categories according to the software engineering branches they belong to. These 

categories are code analysis, defect, dump, effort, green mining, bug issues, prediction models, 

requirements engineering, MSR, performance prediction, refactoring, search-based software 

engineering, social analysis, software aging, software maintenance, test generation, developer and 

project spreadsheet analysis, and other datasets that contains information regarding specific 

programming languages or platforms data. The main datasets and contributors are for defects, 

bug issues and effort estimation research purposes with 61, 35, and 14 datasets, respectively. 

However, important the datasets in this repositories are missing the attributes and parameters of 

SSSP problem. 
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An Instance Generator for the Project Scheduling Problem 

This repository does not hold any datasets, but it provides an automatic dataset instance 

generator. It has been used and introduced by [14]. The generator provides data for different 

problem classes of project scheduling developed in Java. These classes belong to the parameters 

the project contains such as number of tasks, resources, and skills. These parameters are the 

information that the generator can provide for a new single problem instance.  In addition, the 

information might contain data about dependencies between project tasks represented in term of 

task precedence graph. Moreover, salaries for each resource are also provided by this generator. 

However, in order for the generator to provide this information, a configuration file has to be used 

with it. This configuration file contains syntax that has the instructions of what parameters and 

attributes the results should include. The configurations of different problem instances are 

categorized based on the parameters the problem includes. The repository offers different files. 

These files control the number of tasks, resources, and skills of the instances. The ranges of tasks 

are 10, 20, and 30. The ranges of resource are 5, 10, and 15. The number of files for these 

configurations are 36.  

2.6 Conclusion 

Both studies in [5, 24] provide an important foundation of the search-based software project time 

minimization aspects, parameters, and features for evaluation. Throughout the reviewing of 

related studies, it was clear that both [5, 24] are focusing on the optimization techniques, variables 

(aspects), and data used to validate the approaches. These points are significant to address the 

issues regarding staffing and scheduling software projects. However, the approaches using the 

optimization techniques are also addressing an additional aspects such as the implementation of 

team and individual allocation as stages in the optimization process, as well as the constraints and 

penalties that are adopted in the case of constraints violation. 

On the other hand, even if a discussion was made regarding applicability, usefulness, etc. of the 

proposed SSSP approaches, runtime and performance benchmarking of these solutions is also 

important to cover. In [24] they qualitatively claim that the solutions proposed by the approaches 

outperformed the experts’ assignments. Yet, no comparison between the SSSP approaches and 

experts’ solutions are detailed in these studies. Nonetheless, having in mind that the aim of 

optimizing HRA is to create a decision support not a decision making system stated by [5], more 

investigation on how the PMs perform their allocation to different allocation problems can provide 

evidence of the software organization projects’ complexity and suitability of the proposed 

solutions.  
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Our project aims to evaluate the approaches not only by addressing their models, but also to test 

their robustness, accuracy, and precision through the implementation of these approaches. In 

addition, both [5, 24] studies do not consider a comparison between the expert method and the 

optimization approaches. Doing this can lead to a deep analysis and experimentations especially 

for the important aspects and variables that have to be considered by SSSP approaches from an 

industrial point of view. 

It is also important to address how the SSSP approaches presented in [5, 24] have formalized their 

problem, provided their solution, and introduced their approach’s validity. It is clear that lack of 

benchmarks for SSSP approaches of their capabilities in providing solution especially for different 

software project environments exists [5, 114]. From that sense, it is important to establish a 

foundation for a benchmarking approach that can provide evidence of each SSSP approach’s 

performance, robustness, accuracy, and suitability. It is also important to capture how these 

approaches can adhere with industry practices and their capacity to provide solutions for different 

project problems and environments.  
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Chapter 3 Benchmarking Process for 

Staffing and Scheduling Software 

Projects Optimization Approaches 

This chapter details our proposed approach for benchmarking and evaluating the SSSP 

approaches. 

3.1. Introduction 

Many approaches have been proposed in the last three decades tackling the problem of HRA in 

software projects. As one of the software engineering problems, it has been introduced to the 

software engineering community as part of the Search-Based Software Engineering (SBSE) by 

[10]. The SBSE term, however, includes all the areas that is benefiting the use of search-based 

algorithms to solve software engineering problems. In the work presented by [5], this problem is 

defined more precisely as one of the Search-Based Software Project Management (SBSPM) 

problems.  

SPM is concerned with different management aspects including resource allocation. This thesis 

concentrates on HRA with consideration of software project time span minimization. This 

problem is introduced as software project completion time minimization by [5], and was 

illustrated as Staffing and Scheduling a Software Project (SSSP) addressed in Section 1.2. This 

problem, in particular, has received a widespread attention in SBSE and many SSSP approaches 

can be found that are tackling it. However, each approach provides a solution according to some 

or part of the software project properties. Therefore, these approaches need to be compared 

against each other, to capture any variances in their behaviour, and to measure their efficiency 

and suitability for industrial adoption. Accordingly, the use of benchmarking and statistical 

measures to challenge and compare between the SSSP approaches is required.  
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Benchmarking is one of the important areas that most of the search-based software engineering 

studies as in [5, 110, 114] have emphasised its importance. However as these studies have 

highlighted the absence of benchmarks due to a lack of software engineering repositories that 

encompass suitable datasets, benchmarking has been addressed as one of the their future work 

directions.  

Our overall research framework for conducting the evaluation and benchmarking consists of four 

main stages. These stages are: problem definition, benchmarking, industrial settings evaluation, 

and interpretations of findings. These four research stages are described in the following Figure 

9. 

 

Figure 9: Research Framework 

From Figure 9, it can be seen that our research starts with problem definition. To identify the 

problem within its context, and for best interpretation and formation of research question(s), a 

comprehensive literature review was performed. This review has led to identify the gaps in the 

research field, and determine the commonalities between the proposed SSSP solutions.  

While many approaches have been proposed to solve SSSP problem, a gap in the research was 

found in demonstrating how they perform against each other. The major problem encountered in 

this regard was to identify a common definition that makes these approaches comparable. This 

has led to lookback into the optimization problem formalization that each aims to identify, and 

the common concepts they use. While some of these approaches, as in [14, 22], are expanding 

their problem to have multi-objectives or goals. The common objective shared among a large 

number of these approaches is tackling project time minimization. What is noteworthy is that 

these approaches have adopted a comparison between different optimization techniques to 

validate their solutions, and none has made a comparison between what they propose and others.  
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It is well-known that for evaluating an optimization approach, synthetic data can be used. SBSPM 

approaches mainly use simulated data to test their proposed solution, and limited number of 

approaches have validated their solution using industrial data. In our case, a dataset has to be 

made available for HRA optimization and software project time research. With the absence of any 

useful dataset, the first part of our research was to create a suitable one. This dataset is established 

based on archival project documents. The core of this data contains information on a small real-

world software project from an international software company, where their name is kept 

anonymous upon their request. This work is depicted in Figure 9 by (Data extraction) of the first 

research stage.  

Three main issues are subject to benchmark and evaluate in SSSP approaches. These issues are 

the allocation method proposed, the computation time, and the accuracy and precision of 

estimated project time span that these approaches can provide. On the other hand, each approach 

is subject to capture its suitability and capacity to adapt to different industrial settings problems. 

To achieve this, two main stages for benchmarking and evaluation, and industrial settings study 

are performed depicted by the blue and red arrows in Figure 9. 

For the benchmarking and evaluation stage, we have concluded a process that can bridge the gap 

of demonstrating the differences between SSSP approaches. We start with the assumption of a set 

of SSSP approaches that all have to be tested for their capacity, capability, accuracy, and stability 

in finding optimal or near optimal solutions. For this purpose, the first artefact of benchmark 

dataset will be used. However, as each of the proposed SSSP approaches has a different interest 

and use of the SSSP problem parameters and inputs, we have defined four classes to demonstrate 

their use of problem’s parameters and inputs as complexity levels, and composed them into 

different datasets. These datasets combine five levels of information complexity corresponding to 

the classification made on the SSSP approaches based on the problem inputs proposed by each. 

This work is depicted in Figure 9 by both classification of problem attributes, and data 

transformation steps.  

The benchmarking stage, in addition, provides a process to identify what approaches can be 

selected, how to perform a comparison, and what measures and criteria can be used. Therefore, 

statistical measures and quality metrics are adopted from different comparisons and evaluation 

studies as in [15, 17, 107] such as hit rate, arithmetic mean, standard deviation, etc. as well as 

measures that can provide accuracy forecasting such as mean arctangent absolute percentage 

error [112]. By using the benchmark process, significant findings and differences between the 
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SSSP approaches were identified. Details and findings for benchmarking and evaluation of SSSP 

approaches are presented in Chapter 4. 

On the other hand, to cover-up how and why these approaches might hold within drawbacks to 

the application within the software industry, a supplementary qualitative research has to be 

involved as pointed out by [115]. Software project time span minimization research also requires 

an understanding of the current practices of resource allocation in the software industry. To better 

assess these points, an industrial settings study was performed. This study however, involved a 

mixed-methods approach, depicted by the blue and red boxes in Figure 9.  

The purpose of using mixed-methods approach is to quantitatively evaluate the project managers’ 

solutions for the SSSP complexity levels, as well as to capture the different aspects and practices 

of resource allocation they adopt and use. Based on the results and findings from the industrial 

settings stage combined with the results from the benchmarking and evaluation stage, the 

interpretation is the last activity to be performed in our research framework. This part of the 

research stage concludes the overall findings, trends for future, and its limitations.  

The remainder of this chapter provides a systematic comparison and benchmarking process 

suitable for SSSP problem in Section 3.2, proposed classifications of SSSP approaches in 

Section 3.3. In addition, this chapter details the datasets, their complexity levels, and the optimal 

solution of each level in Section 3.4, a set of measures for benchmarking SSSP approaches in 

Section 3.5, and summarize the overall benchmarking process in Section 3.6. 

3.2. A Systematic Approach for Comparing SSSP 

Approaches 

Comparing between the approaches proposed for SSSP problem requires a systematic process that 

clarify their outcomes and resulting in reliable comparisons. Our proposed process for performing 

systematic and reproducible performance comparison of SSSP approaches consists of sequence of 

steps combined with evaluation datasets and a suite of quality measures on which the SSSP 

approaches can be compared. The proposed workflow for evaluating a set of SSSP approaches 

consists of the following steps:  

1. Select a set of candidate SSSP approaches that are capable of solving a resource allocation 

problem and belong to the same class – see Section 3.3 -.  
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2. Select the suitable dataset from the benchmark dataset that belong to the same class of 

approaches selected containing the desired resource and project properties (e.g. skills, 

task dependencies, etc.)-See Section 3.4-.  

3. Run each approach for the configured dataset for a substantial number of times, (e.g 100 

times).  

4. Record for each run the result of estimated project time, and the computation time of that 

run.  

5. Compile the results and measure their performance using the benchmark metric suite -

see Section 3.5-.  

6. Rank the candidate SSSP approaches based on their score in the overall quality measures 

-see Section 3.5-.  

These steps are depicted in the following Figure 10. As can be seen in Figure 10, after identifying 

the approaches and the classes that they belong to, and selecting the suitable benchmark dataset, 

the datasets located on the left down of the figure is fed into each approach. As most of the 

approaches perform heuristic optimization using a probabilistic optimizer, the next step in the 

benchmark process is to perform multiple runs for each of those approaches. Different number of 

experiment runs are used by the SSSP approaches. Some of these approaches have used 30 runs 

such as [22, 94], whereas others used 100 as in [15]. The rule of thumb is to use 30 runs defined 

by [107]. Due to the stochastic process of the optimization techniques the number of experiment 

runs can be 30-50 according to [17]. However, the number of runs of each approach in our 

experimentations were set to 100. The reason for that is to widely investigate and accurately depict 

the range of possible results, and to form a better picture of SSSP approach analysis [107]. This 

reasonable number of runs is carried out to properly analyse the behaviour of the approaches. 

Recorded results of the approaches for each run are then used for the evaluation and comparison 

step depicted in the middle of Figure 10.   



91 

 

 

Figure 10: Proposed Benchmarking Approach 

The main purpose of using heuristic techniques is to find the best solution in the least possible 

time. This depicts two outputs of the optimization defined in the evaluation and comparison step, 

which are the main concern in this study. These outputs are the Estimated Project Time (EPT) 

and the Computation Time (CT). EPT represents the best solution ever found in each run, which 

is the optimal output solution by the approach retrieved from the value of the fitness function. On 

the other hand, the amount of effort the approach expended in finding its best solution is 

represented by CT, which is the time consumed by the system to find that optimal output solution 

value. While the EPT is important to demonstrate the accuracy of the approaches, CT is also 

important to consider when performing a comparison between SSSP approaches [17].  

After running the experiment 100 times on each approach, the results of estimated project time 

and computation time are stored, seven measures are proposed to be used in the benchmark 

through the evaluation and comparison step to depict the quality and differences between the 

approaches. The description and demonstration of these measures can be found in Section 3.5 of 

this chapter. The choice for these measures is motivated by the fact that they are seen as the most 

useful way to represent effectiveness and performance amongst the approaches [105]. These 

measures are anticipated to depict the accuracy, precision, performance, and stability of the 

approaches’ results. Stability and Precision of the approaches’ outcomes can be depicted by 

Standard Deviation. The performance of an approach in addition can be depicted by the 

computation time that shows the speed of an approach to produce a result. Accuracy of the 

approaches’ outcomes on the other hand can be depicted by two measures. The first one is the 

mean arctangent absolute percentage error (MAAPE). This measure depicts how far the outcomes 

are from the actual optimal solution, which accordingly will demonstrate how accurate the 
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approach is. The second measure is the optimality of solution. We have defined this measure to 

plot the accuracy of each approach according to the class that it belongs to. Those two measures 

of accuracy require the optimal estimated project time value to be defined for each level of dataset 

complexity. These values have been manually estimated as an optimized (optimal) solution and 

are provided within our dataset including the derived solution for each level described in 

Section 4.53.4.2. 

3.3. Classification of SSSP Approaches 

During the literature review, part of our work was on identifying the parameters and attributes 

defined within the SSSP approaches. The idea behind that combines two main reasons. The first 

reason is to find whether these approaches have defined a common problem concept that makes 

them comparable. The second reason is to identify common attributes and parameters used as 

input to these problems with the aim to address any differences, and if any, the next step is to 

classify them into different comparable groups.  

In this study, the findings conclude that the mainstream of SSSP approaches are focusing on the 

number of resources available to the project, their skills related to the ones required for the 

project, and the estimated effort for each project task with consideration of precedence 

relationships between these tasks as in [14, 15, 18]. However, there are approaches that employ 

simulation techniques such as the queueing system to formalize the allocation problem into a 

simulation systems with the purpose of researching and understanding the outcomes, and their 

relativeness to the real-world problem as in [20, 21]. The resource allocation problem is still open 

for this type of application, yet the approaches employing these techniques require less project 

and resource information, and measures to research the outcomes. It is also important to notice 

that skills and dependency relationship are used as constraints by many SSSP approaches in their 

problem definition. That leads us to recognize whether the constraints they use are hard or soft. 

Both types are used within SSSP approaches and that leads us to separate these approaches into 

different classes. For example, approaches as in [22, 94] use soft precedence relationship 

constraint. This is due to the nature of their fitness function. This function automatically deals 

with any precedence relationship in a way that delays the task that has that relation till its 

predecessor is finished. Therefore, some SSSP approaches use only data about the number of 

resources available and estimated effort of each task, whereas others use more sophisticated 

inputs. Classifying these approaches based on project and resource’s attributes, and according to 
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the optimization problem constraints presented by the SSSP approaches shows four classes, which 

are: 

Table 11: SSSP Classes 

SSSP Classes 

 

Class 

One 

Class 

Two 

Class 

Three 

Class 

Four 

SSSP Features 

Estimated Effort ✓ ✓ ✓ ✓ 

Number of 

Resources 
✓ ✓ ✓ ✓ 

Project Task 

Dependency 
 ✓  ✓ 

Software 

Development Skills 

  ✓ ✓ 

 

• Class One. This class contains the approaches that require inputs only of estimated effort of 

project tasks and the number and productivity of human resources.  

• Class Two. This class contains the approaches that require inputs of estimated effort of 

project tasks, dependencies between these tasks, and number and productivity of human 

resources  

• Class Three. This class contains the approaches that require inputs of estimated effort of 

project tasks, skills required for each task, and number, skills, and productivity of human 

resources  

• Class Four. This class contains the approaches that require inputs of estimated effort of 

project tasks, dependencies between these tasks, skills required for each task, and the number, 

skills, and productivity of human resources.  

These classes can be seen as a taxonomy of SSSP approaches, where some can possibly be part of 

multiple classes as they are able to determine the optimal allocation of resources for simple as well 

as complex SSSP problems. When benchmarking SSSP approaches, it is critical to note that 

proposed approaches generally solve different variations of the resource allocation problem, 

taking into account different parameters, such as worker skills, or tasks dependencies. To evaluate 

the relative performance of SSSP approaches they need to be applied to the same problem with 

the exact same inputs, which is why we propose to group SSSP approaches into classes according 

to the inputs and constraints required by each. For a complete survey on SSSP approaches’ 

optimization parameters, and input attributes the reader can refer to [5, 17, 24]. The benchmark 

data follows this classification as it defines optimization challenges within these four distinct 
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classes to facilitate the uniform comparison of SSSP approaches. The detail of each dataset is 

presented in the next section. 

3.4. Benchmark Dataset 

The first artefact in this thesis for benchmarking is a flexible and configurable dataset. The dataset 

is a small real-world data from an international software company and holds information 

regarding both software project and human resources used to develop that software. This data 

includes information about eight components of the software projects, and twelve human 

resources were available to that project assigned to complete it. The project represented in the 

dataset has an estimated time using COCOMO [98]. The time estimated with those resources 

available was 75.16 days, with an estimated Man-Day equal to 964.  

While there is a diversity of approaches each employs different attributes of project information 

to solve the allocation problem of SSSP, any additional parameter added to the simple input 

information of estimated project tasks effort and the number of resources is counted as a level of 

input complexity. Based on this definition and corresponding to the classification described in 

Section 3.3, the dataset is composed of five complexity levels. These levels describe resource 

allocation problems of increasing complexity and parameters. Accordingly, each level represents 

a dataset that holds part of the original project data provided by the contributor organization. The 

optimal solution for each one of these levels (referred to as min value) as well as the worst-case 

solution values (referred to as max value) are defined. Section 3.4.2 details the dataset used in this 

thesis. 

The inputs required for resource allocation can be the estimated effort of project tasks, task 

dependencies, skills, and/or resource productivity. Each one of these inputs is represented in the 

dataset by numbers except the skills. Skills required for developing each task or offered by a 

resource are representing languages and technologies, and represented in the dataset using the 

name of this language or technology such as java, or UML. Estimated effort of each task is 

represented by person-day. Each task in the dataset has the value of dependency attribute 

represented as the task number that the task is depends on. The project tasks in the dataset are 

named Work Packages (WP) for the unity of definition as it is used for industrial settings study. 

Productivity of a resource is represented by the same metric used by [28]. A resource can be 

productive as a normal person, which is equal to 1, less than a normal person represented by a 

value less than 1, or twice the normal person represented by 2. The description of the dataset 
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levels, their resource allocation problem attributes, and the input values of each are introduced in 

the following sections.  

3.4.1 Dataset Complexity Levels 

For benchmarking and challenging the performance and applicability of SSSP approaches, five 

levels of problem input complexity are proposed. These levels are made as case studies 

representing the level(s) that a SSSP approach is capable of solving. The first two levels have the 

same concept of sharing the same productivity among the resources. That implies all the resources 

are equally productive and can perform any task regardless of the skills and competencies that the 

task requires and that the resource possesses. The next three levels however are different from the 

first two, since they consider the resources’ productivity according to the skill(s) required to 

develop the project tasks. Moreover, level three and four have productivity of a resource either 

one (1) or zero point one (0.1). These values are defined according to the nature of time equation 

used by SSSP approaches. If we kept the concept of one or zero when a case where a resource does 

not possess the required skill(s), then his/her productivity will provide undefined value to the 

estimated effort for the task that (s)he is assigned to and causing the experiments to fail. In 

addition, level five has the values of productivity for each resource ranges between zero point one 

(0.1) to four (4) representing each skills (s)he possesses. The detailed description of each level is 

as follow: 

 The first level represents the simple resource allocation problem that has two type of input 

data. The first one is about the tasks and the estimated effort of each. The second input 

data represent the number of resources available to perform these tasks. Productivity in 

this level however, is set to be one. 

 The second level of this dataset has three types of resource allocation input data. The first 

represent the number of available resources, the second is the estimated effort of each 

task, and the third one represents the task dependencies in which the value of this input 

to each task represents the task(s) that it depends on.  

 The third level in this dataset has the number of available resources, and the estimated 

effort of each task similar to the previous ones. However, it has also the information about 

skill(s) that each task in the project requires, and each of the available resources 

possesses. The values of this type of input can be either 1 or 0.1. 

 The fourth level of this dataset has four types of allocation input data. Similar to the 

previous ones the first two inputs hold the information regarding the number of available 

resources, and the estimated effort of each task. Moreover, another input holds the 
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information regarding the task(s) that this task is depends on. The last input information 

is the information about the skill(s) that each task requires, and each of the available 

resources possesses. The values of productivity for this level of input are also either 1 or 

0.1. 

 Similar to the fourth level, the fifth one in this dataset has four allocation input data. 

However, the only difference between the fourth and the fifth is the information about the 

skill(s) that each task in the project requires, and the ones possessed by the available 

resources. This information represents their productivity regarding each skill and is 

represented in the dataset by a range from zero point one (0.1) to four (4). 

 

3.4.2 Resource Allocation Scenarios of Dataset Complexity Levels 

According to the complexity levels defined in the earlier section, five resource allocation problem 

scenarios are created. These scenarios are constructed based on the SSSP classification. The first 

four scenarios follow the description of the four classes of SSSP classification. However, the 

maximum productivity of a resource in these levels is no more than one. That means productivity 

of a resource can only be as a normal person (producing the same amount of work expected by 8 

hours working time). Unlike these levels, level five description of resource’s productivity can vary 

from 0.1 to 4. This level adds to the problem complexity the variability of productivity between the 

resources who shares the same skills. The response of the approach handling this accumulation of 

productivity, dependencies, and skills can demonstrate its effectiveness. The overall reason for 

these different scenarios is to capture the behaviour of the approaches in terms of EPT and CT 

while challenging them with the increasing level of information.   

In addition, these scenarios are used in our industrial settings evaluation study. This study was to 

capture the similarity between what the datasets provide and the current business problem. The 

subjects in this study were asked to perform an allocation to each one of these scenarios, and their 

responses were recorded. The first part of the questions provided to the subjects were exactly the 

same following scenarios. The main intended establishment from this study is to validate these 

datasets. A hint is given at the end of each scenario description that sharing developers across 

WPs is not allowed. It is that the resource sharing counted in these scenarios as an unacceptable 

solution. The intention of this hint is to look like a tricky point which should guide the subjects to 

a good solution. It is important to take into account that you cannot use all the resources together 

doing all the activities at the same time. For instance, if we have two resources and five activities, 

we cannot use both resources to do the five activities at the same time without considering the 

negative impacts on their productivity. The description of the five scenarios, their constraints, 

optimal solution that we have manually estimated, and the optimal project schedule according to 
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this estimation are depicted in the following subsections. The context of these scenarios was 

designed to be a question for the industrial settings assessments. 

Scenario 1: 

The software development company Xee specialises in project-based software development and 

employs 12 developers. Project managers are responsible for staffing a project based on a variety 

of project and developer parameters. We would like you to consider the following staffing 

scenarios and provide the best project time span estimation. Xee has secured a new project which 

needs to be staffed. To this purpose the project manager has identified eight WPs to which 

developers need to be assigned. For this first scenario we assume that all developers are 

completely uniform, i.e. they have the same skill set and have comparable productivity. In 

addition, for each of the eight WPs the required effort has been estimated in terms of Person-day 

as follow: 

 WP1:  82  Person-day 

 WP2: 223 Person-day  

 WP3:  180 Person-day  

 WP4: 132 Person-day  

 WP5: 190 Person-day  

 WP6: 50 Person-day  

 WP7: 62 Person-day  

 WP8: 45 Person-day  

As a project manager using this information, you are asked to perform an allocation that assigns 

the developers to WPs on this project while satisfying the following constraints: 

 The project has to be completed as soon as possible 

 Sharing developers across WPs is not allowed 

Answer: 

The answer for this scenario can be as follow. All those resources available can be used to form 

teams. While different alternatives can be made by different team formation, having them all in a 

single team to perform the project’s WPs for this particular problem works as the optimal one. 

Therefore, we have a single team that consists of twelve resources, where each possesses the same 

productivity. In this case we can either make the team work on the WPs simultaneously, or they 

can work on these WPs sequentially. The former will not give the same result as the latter. If we 

made them simultaneously perform the project WPs then this will mean their productivity will be 
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divided by the number of these simultaneous WPs. That is the estimated effort for each WP is then 

should be divided by 1.5. The overall estimated project time then is approximately equal to 642.67 

Days. The latter however will hit the target, which propose the development to work sequentially. 

The result from this way is as follow. 82/12 + 223/12 + 180/12 + 132/12 + 190/12 + 50/12 + 62/12 

+ 45/12 ≈ 80.33 Days. The solution according to this way is depicted in the following Figure 11 

by the project Gantt chart. 

 

Figure 11: Scenario 1 schedule Solution 

In Figure 11, it is clear that the development is done sequentially providing a waterfall 

development. The name WP however, is used to illustrate the different type of works required 

behind these WPs. In software development four major activities - analysis, design, coding, and 

testing - have to be performed during the development of the software. Therefore, these WPs 

requires that different activities be performed in order to complete each WP.  

Scenario 2: 

The second scenario we would like you to consider is similar to the first one but the WPs of the 

project now have dependencies, meaning some WPs have to be completed before others can be 

started. These dependencies are displayed in Table 12, and depicted by Figure 12 for more 

clarification. From this table, it can be seen that for example WP4 requires 132 Person-day to 

complete and cannot be started unless WPs 2, and 3 are finished. For this project the same 

developers are available as scenario 1. As before, perform an allocation and assign developers to 

WPs under the following conditions: 

 The project has to be completed as soon as possible 

 Sharing developers across WPs is not allowed 
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Table 12: Scenario 2 Project Attributes 

Project 

  Dependency Workload 

WP1 - 82 

WP2 1+3 223 

WP3 - 180 

WP4 2+3 132 

WP5 4+6+7 190 

WP6 4 50 

WP7 3 62 

WP8 7 45 

 

Figure 12: Level 2 Dependency Graph 

Answer: 

Again this problem can be solved having all the resources available formed in a single team. 

However, this team will work on project WPs according to their precedence constraints. 

Accordingly, their work will start by doing the jobs sequentially as follow WP1, WP3, WP2, WP4, 

WP6, WP7, WP8, and then WP5. By doing so, the project time will be exactly the same as for the 

previous scenario, which is equal to 80.33 Days. This solution is depicted in the following project 

Gantt chart Figure 13. 
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Figure 13: Scenario 2 Schedule Solution 

From Figure 13, it can be seen that project WPs have the same estimated time as before according 

to the allocation of a single team. For instance, WP3 in this scenario has an estimated time of 15 

days matching the same value for this WP in the previous scenario. Although this scenario 

provides dependency constraints between the WPs, forming the work sequentially has led to the 

same results.  

Scenario 3: 

In this scenario we would like you to consider developer skills against the required ones for project 

WPs. The following Table 13 lists the skill requirements for each WP in the project: 

Table 13: Scenario 3 Project Attributes 

Project 

  Skills Workload 

WP1 SQL, JDBC  82 

WP2 SQL, JDBC  223 

WP3 J2EE, Web 180 

WP4 J2EE, Web 132 

WP5 J2EE, Client Server 190 

WP6 J2EE, Client Server 50 

WP7 Java Networking 62 

WP8 Java Networking 45 

In Table 13, it can be seen that, for example, WP5 requires 190 Person-day and J2EE and client 

server skills. Moreover, dependencies in this scenario have not been considered. In addition, Xee 

has collected information on the skills possessed by its developers as well as their productivity. 

This information is listed in the following Table 14. 
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Table 14: Scenario 3 Resource Attributes 

Resource 
NO 

Skills Productivity 

1 Java Networking 1 

2 Java Networking 1 

3 J2EE, Web 1 

4 SQL, JDBC  1 

5 J2EE, Client Server 1 

6 J2EE, Web 1 

7 SQL, JDBC  1 

8 J2EE, Client Server 1 

9 SQL, JDBC 1 

10 J2EE, Web 1 

11 J2EE, Client Server 1 

12 Java Networking 1 

In this table the developer productivity is treated for all as of a normal person. Productivity 

indicators are provided for the corresponding skills. So, for example resource7 possesses SQL, 

with JDBC skills which makes him/her productive as normal person, and in addition, if the 

resource is assigned to a WP that requires different skill(s), then its productivity will be reduced 

to 0.10. According to this information you are asked to perform an allocation that assigns the 

developers to WPs on this project under the following conditions: 

 The project has to be completed as soon as possible 

 Sharing developers across WPs is not allowed 

Answer: 

The answer for this problem is quite simple too as for the previous ones. While the concern is 

about the skills, this means forming the teams can be according to these skills, so each team has 

the resources who are productive for the particular skill required for the WPs. Therefore, four 

teams have to be formed, where the resources in each possess specific skills. According to this 

allocation concept project time can be illustrated as the maximum working days among the teams. 

The formation of each team can be depicted as follow. Team one should have resources 4, 7 and 

9. Team two should have resources 3, 6 and 10. Team three should have resource 5, 8 and 11. 

Finally, team four should have resource 1, 2 and 12.  Team one will work on WP1, and WP2. Team 

two will work on WP3, and WP4. Team three will work on WP5, and WP6. Team four will work 

on WP7, and WP8. The maximum working days amongst those teams is team two i.e. team two is 

the one that works more than any other team and project time can be counted according to their 
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working days, which equals to 104 Days. The solution for this scenario is depicted in the following 

project Gantt chart in Figure 14. 

 

Figure 14: Scenario 3 Schedule Solution 

From Figure 14, it can be seen that the project time can be defined as the maximum among the 

teams’ work time. The maximum time across the teams is the second one. This second team who 

works on WPs three and four will requires 60 plus 44 days, which equal to 104 Days to finish their 

work. Accordingly the estimated project time is then equal to 104 Days. 

Scenario 4: 

In this scenario, we would like you to consider in addition to dependencies between WPs, the 

developer skills and productivity into account. The following Table 15 lists the skill and 

dependency requirements for the WPs of the project: 

 

Table 15: Scenario 4 Project Attributes 

Project 

  Skills Dependency Workload 

WP1 SQL, JDBC  - 82 

WP2 SQL, JDBC  1+3 223 

WP3 J2EE, Web - 180 

WP4 J2EE, Web 2+3 132 

WP5 J2EE, Client Server 4+6+7 190 

WP6 J2EE, Client Server 4 50 

WP7 Java Networking 3 62 

WP8 Java Networking 7 45 
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In this table, it can be seen that for example WP2 requires 223 Person-day, SQL and JDBC skills. 

Moreover, this WP cannot be started unless WPs 1, and 3 are finished. In addition, Xee has 

collected information on the skills possessed by its developers as well as their productivity. This 

information is listed in the following Table 16. 

Table 16: Scenario 4 Resource Attributes 

Resource NO Java Networking J2EE, Web  SQL, JDBC  J2EE, Client Server 

1 1 0.1 0.1 0.1 

2 1 0.1 0.1 0.1 

3 0.1 1 0.1 0.1 

4 0.1 0.1 1 0.1 

5 0.1 0.1 0.1 1 

6 0.1 1 0.1 0.1 

7 0.1 0.1 1 0.1 

8 0.1 0.1 0.1 1 

9 0.1 0.1 1 0.1 

10 0.1 1 0.1 0.1 

11 0.1 0.1 0.1 1 

12 1 0.1 0.1 0.1 

In this table for each developer their productivity is expressed in terms of a normal productive 

person, where a normal person productive for 8 hours a day. This productivity provides indicators 

for four different types of skills in the skills column. So, for example resource 7 possesses SQL, 

with JDBC skills which makes him/her productive on average as normal person, and in addition, 

if this resource is assigned to a WP that requires different skill(s), then its productivity will be 

reduced to 0.10. According to this information you are asked to perform an allocation that assigns 

the developers to WPs on this project under the following conditions: 

 The project has to be completed as soon as possible 

 Sharing developers across WPs is not allowed 

Answer: 

For this particular problem sharing resources might be practical, however, their productivity 

needs to be normalized according to the number of WPs they work on at the same time. Bear in 

mind that doing more than one WP at the same time implies reduction of the resource 

productivity. Then managing the resource to do a single WP at a time can lead to better solution. 

Having this in mind, the optimal allocation solution for this problem will be as follow. Resources 

4, and 7 will perform WP1. Resources 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 will perform WP2. Resources 

1, 2, 3, 5, 6, 8, 9, 10, 11, and 12 will perform WP3. Resources 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 
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will perform WP4. Resources 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 will perform WP5. Resources 1, 

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 will perform WP6. Finally, resources 1, and 2 will perform WP7 

and afterwards WP8. 

This assignment of resources can be seen as a dynamic team formation. Different teams in this 

particular allocation have been formed during the project development. We have seen that a team 

formed by two resources - as the one allocated to WP one – for another WP has been transformed 

into a larger team - as the assignment for WP two - that includes those two resources as well as 

resources 3, 5, 6, 8, 9, 10, 11, 12. It is well known that productivity of a resource working in different 

teams can be affected for example by communication overhead [6]. However, this form of 

allocation is not far from reality and can be seen in the current industry practice [9].  

This allocation with consideration to the constraints of skills and dependency between the WPs 

for this scenario shows that the estimated project time is equal to 204.31 Days. The project 

schedule including estimated project time and the time for each WP are depicted in the next Figure 

15.   

 

Figure 15: Scenario 4 Schedule Solution 

From Figure 15, it can be seen that different WPs are simultaneously performed however, none of 

the resources assigned to these WPs are working on more than one at the same time.  This makes 

the resources work to their full productivity, so project time can be the least possible. It can be 

seen from Figure 15 too that the project time frame defined by the critical path starts with WPs 3, 

2, 4, 6, and then 5. This path conforms to the dependency constraint however, shortening the time 

of these WPs requires attention to their simultaneous ones as WP 1 with WP3, and WP2 with WPs 

7, and 8. That means increasing or reducing the number of resource on these WPs might result in 

low quality outcomes. 
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Scenario 5: 

In this scenario, we would like you to consider in addition to dependencies between WPs the 

developer skills and productivity into account. The following Table 17 lists the skill and 

dependency requirements for each WP in the project: 

Table 17: Scenario 5 Project Attributes 

Project 

  Skills Dependency Workload 

WP1 SQL, JDBC  - 82 

WP2 SQL, JDBC  1+3 223 

WP3 J2EE, Web - 180 

WP4 J2EE, Web 2+3 132 

WP5 J2EE, Client Server 4+6+7 190 

WP6 J2EE, Client Server 4 50 

WP7 Java Networking 3 62 

WP8 Java Networking 7 45 

In Table 17, it can be seen that for example WP6 requires 50 Person-day, and J2EE and client 

server skills. Moreover, this WP cannot be started unless WP 4 is finished. In addition, Xee has 

collected information on the skills possessed by its developers as well as their productivity. This 

information is listed in the following Table 18. 

Table 18: Scenario 5 Resource Attributes 

Resource NO Java Networking J2EE, Web  SQL, JDBC  J2EE, Client Server 

1 2.5 0.1 0.1 0.1 

2 2.75 0.1 0.1 0.1 

3 0.1 2.25 0.1 0.1 

4 0.1 0.1 2 0.1 

5 0.1 0.1 0.1 1.75 

6 0.1 2.5 0.1 0.1 

7 0.1 0.1 2.25 0.1 

8 0.1 0.1 0.1 3 

9 0.1 0.1 1.5 0.1 

10 0.1 1.5 0.1 0.1 

11 0.1 0.1 0.1 1.5 

12 1.5 0.1 0.1 0.1 

 

In Table 18, each developer productivity can range between 0.1 to 4. This productivity provides 

indicators for four different types of skills in the skills column. So, for example resource 7 

possesses SQL, with JDBC skills which makes him/her productive of 2.25 times of a normal 
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person, and in addition, if this resource is assigned to a WP that requires different skill(s), then 

his/her productivity will be reduced to 0.10. According to this information, you are asked to 

perform an allocation that assigns the developers to WPs on this project under the following 

conditions: 

 The project has to be completed as soon as possible 

 Sharing developers across WPs is not allowed 

Answer:  

Similar to scenario 4, the optimal solution for this problem is also by considering the dynamic 

team formation. However, productivity of the resources this time differ from one to another even 

when they share the same skills. Having this in mind, the same assignment of resources for 

scenario 4 is still the optimal one for this problem. The estimated project time for this assignment 

solution is equal to 112.49 Days. The schedule represented by the Gantt chart for this problem 

including the estimated time for each WP as well as the overall project time are depicted in the 

following Figure 16. 

 

Figure 16: Scenario 5 Schedule Solution 

From Figure 16, it can be seen that the same schedule pattern is performed according to the 

dependency constraints between the WPs. However, considering productivity of resources 

assigned to these WPs has shown that the time can be reduced for each WP as well as for the 

overall project. For instance, having the productivity information of resources 4 and 7 who are 

working on WP1 in this scenario managed to reduce the estimated time span of this WP from 41 

Days in previous scenario, to 19.29 Days. Moreover, productivity in this scenario for resources 1 
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and 2 who are working on WP 7 has managed to reduce the WP time span from 31 Days in the 

previous scenario to 11.81 Days.  

The five scenarios described earlier are the sets of data used for this thesis to challenge the 

accuracy and performance of SSSP approaches and the industrial settings study subjects with five 

levels of complexity. The description of these scenarios depicted earlier is to provide the reader 

with a context and an optimized (optimal) solution for each level. The reason behind picking this 

particular small project information for the work carried out for this thesis is due to the industrial 

settings assessment. As a set of Project Managers (PM) are the subjects for this study where their 

availability and time constraints should be considered, this has led us to make the datasets as 

simple and as easy to understand as possible for the PMs to find a solution especially for the 

extended levels.  

3.5. Quality Metrics and Comparison Measurements 

Measures form the modern quantitative judgement for evaluating and reporting the 

appropriateness of different models, approaches, and algorithms. As SSSP approaches in this 

thesis are subject for evaluation, different measures should be employed to evaluate their 

performance and quality against each other. Many studies have proposed measures that are 

suitable to capture the differences of approaches that solve particular software engineering 

problem as in [15, 17, 22, 107, 115]. As each of these studies provides a set of measures for a 

particular SE problem approaches, some of their measures cannot be employed in our evaluation 

study. Therefore, we should limit these measures based on their appropriateness and suitability 

to the evaluation criteria, and how effectively they provide information about post-sample 

accuracy [116]. Evaluating the SSSP approaches using different measures does not implies 

searching for the best, because no single one can be designated as the best. However, emphasis 

can be made to exclude any approach that performs badly.  

The performance of a SSSP approach is usually measured in terms of optimality, i.e. how close the 

approach gets to the true optimal solution [105]. However, this performance metric only provides 

a partial view. For example, many probabilistic optimizers, such as genetic algorithms, vary in the 

quality of solution they provide due to a randomised starting point and the computation time 

expended by them. Accordingly, both of resulting values from the approach for the objective 

function and the computational time are the main performance measures in our benchmarking 

approach.  

Providing the probabilistic nature of the optimization techniques employed by the SSSP 

approaches, and the modification on the algorithm they propose, precision is an important quality 
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indicator to be used [117] in addition to the performance measures. Precision of an approach is a 

subject for investigation however, it cannot be investigated using a single experiment’s result. 

Preciseness requires a set of experimental data to measure whether they are close to each other or 

not [117]. Nonetheless, it is important to determine how much data is enough for the measures to 

provide significant results [109]. For that reason, the amount of results that each approach should 

provide for the comparison has been previously addressed in Section 3.2, which was illustrated to 

be from 30 to 100. Accordingly, results over multiple runs are required in order to measure the 

SSSP approaches’ preciseness and stability. Standard deviation is proposed for that purpose 

having data of multiple runs for both estimated project time and computational time.  

Accuracy of a SSSP approach on the other hand, providing the results of multiple runs, should be 

determined. Many studies have been concerned about the SSSP problem and SBSE in general such 

as [17] and have discussed whether the accuracy should be an aspect for the approaches’ 

comparison or not. Most of these studies have shown less attention to this aspect, for example in 

[17] the accuracy was rejected as one of the comparison aspects for the search-based approaches. 

This view is based on the fact that the SBSE approaches in general are made to approximate the 

solution for a given problem with less computation time. However as different allocation methods 

have been proposed by the SSSP approaches, and each approximates the solution with different 

modifications and settings, the comparison between these approaches can demonstrate which one 

of these approaches can come closer to the optimal solution. Therefore, we have provided a basic 

measure for the accuracy, and have incorporated the mean of error measures for this reason. To 

get a more complete insight into the quality and performance of SSSP approaches we propose to 

use the following measures:  

3.6.1 Estimated Project Time (EPT). Any approach deals with optimizing the resource 

allocation should come up with an allocation plan that provides the optimal or near 

optimal value for the objective function(s). The objective in the SSSP problem is a cost 

function searching for the minimum estimated project time span value. This value can 

be recorded from the outcome of the objective (fitness) function, i.e. the identified 

optimal result by an approach. While multiple runs should be made on these 

approaches, the results of the objective function for each run of an approach should be 

recorded. The EPT value therefore should be automatically stored for each run of each 

approach. 

3.6.2 Minimal EPT (Min EPT). The minimal EPT is identified as the least possible value 

for estimated project time EPT among the collected values over multiple runs of a single 
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approach. This measure should provide an insight into the approach’s capability to find 

a solution close to the optimal one.  

3.6.3 Computational Time (CT). Computation time is the time consumed by the system 

to perform a SSSP approach from the point of feeding the data to the time of identifying 

(heuristically) the optimal result. This measure is a very important indicator for how fast 

the approach can be in providing an optimal or near optimal solution. The value of CT 

for each approach can be measured by involving a loop timer to start at the same time 

when the targeted approach starts, and ending when the execution of the optimizer ends, 

and subsequently the value of this timer defined as a CT is stored in a separate file.  

3.6.4 Arithmetic Mean. The arithmetic mean is the most useful measurement to capture 

the average of multiple observations. The arithmetic mean can be defined as the average 

of a set of values having their sum divided by their number. In [17], they have shown 

how the arithmetic mean is a fair measure for comparison to demonstrate the relative 

efficiency for the cost function of an approach. This measurement is used in this thesis 

to capture the average of EPT values for each SSSP approach over the multiple runs. The 

resulted Mean value for each approach supported by the results of the standard 

deviation described in the next Subsection 3.6.5 can demonstrate its behaviour 

compared to the others. The mean denoted by �̅� can be measured having the number of 

runs denoted by 𝑋, and the result for each run 𝑖 denoted by 𝑉𝑖  using the following 

Equation 11. 

 μ̅ =
1

x
∑Vi

X

i=1

 (11) 

3.6.5 Standard Deviation (STDEV). Standard deviation is a measurement that 

calculates the amount of variation between a set of observation values. The aim of using 

this measurement in this thesis is to demonstrate the behaviour of SSSP approaches by 

capturing the amount of deviation from the average and the variation among the 

collected EPT values that each approach produces. STDEV can serve as a predictive 

indicator by providing whether the potential results of an approach might be closely 

grouped to each other, or not. This measurement therefore is a useful metric indicator 

of the approaches precision and stability. Both stability and precision metrics can be 

measured using the same STDEV equation, yet each has its own interpretation for the 

outcome quality. STDEV measurement denoted by 𝜎 requires several inputs for its 

equation. These inputs are the number of runs denoted by 𝑋, the result for each run 

𝑖 denoted by 𝑉𝑖, and the outcome of the mean denoted by �̅� from the previous equation 
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1. Having all the values for these inputs the STDEV can accordingly be measured using 

the following Equation 12. 

 σ = √
1

x
∑(Vi − μ̅)

2

X

i=1

 (12) 

3.6.6 Mean Arctangent Absolute Percentage Error (MAAPE). This measure, 

proposed by [112], is an improvement over the MAPE accuracy measure using the 

arctangent (inverse tangent) function. Both measures can be used to forecast the 

accuracy of a model, process, approach, etc. The percentage of error using MAPE 

measure can be calculated as follow. For x experimental runs, the obtained fitness value 

denoted by 𝑓 should be recorded for each. In addition, the optimal value denoted by 𝑝 

for the experiment complexity level should be defined. Using these variables, the MAPE 

accordingly can be measured for a complexity level using the following Equation 13. 

 MAPE =
1

x
∑|

pr − fr
pr

 |

x

r=1

 (13) 

MAPE however has limitations that can be illustrated by the following two situations. 

The first one is when the actual values are close to zero, then the outcome can go to 

infinity. The second situation is when the fitness values are higher (Overestimated) than 

the actual one, then it will result in a negative outcome value. MAAPE has overcome 

these weaknesses and accordingly, we have used MAAPE measurement to demonstrate 

the accuracy and effectivity of each SSSP approach having the arctangent function 

bounded the range to overcome the limitation of MAPE. Note that the arctangent or 

inverse tangent function is denoted in this measurement by “arctan”. The percentage of 

error using this measurement can be calculated as follow. For 𝑥 experimental runs, the 

obtained fitness value denoted by 𝑓 should be recorded for each. In addition, the optimal 

value denoted by 𝑝 for the corresponding experiment complexity level should be defined 

from Section 3.4.2. Using these variables, the MAAPE accordingly can be measured for 

a complexity level using the following Equation 14. 

 MAAPE =
1

x
∑arctan (|

pr − fr
pr

 |)

x

r=1

 
(14) 

3.6.7 Optimality of Solution (Accuracy): This measurement is developed to capture 

the quality of SSSP approaches. The quality metric subject for exploration is the accuracy 

of the approaches. Accuracy should be measured based on the EPT results for 100 runs of 
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an approach and the optimal value for the corresponding complexity level defined in 

Section 3.4.2. Based on these variables the optimality of an approach can be calculated 

using the MAAPE to forecast the error. The forecasted error by MAAPE can lead then to 

forecast the accuracy level of a SSSP approach by converting the error percentage into the 

area of accuracy. The accuracy can be measured by the following Equation 15. 

 𝐶 = (1 − 𝑀𝐴𝐴𝑃𝐸) ∗ 100 
(15) 

From Equation 15, accuracy 𝐶 is equal the subtraction of MAAPE value from one, and 

multiplied by 100. For instance, if the error forecasted for an approach to particular 

complexity level is 0.15, the accuracy of this approach is 𝐶 = (1 − 0.15) ∗ 100 = 0.85 ∗

100 = 85%. 

 

3.6.8 Computation Time (CT) Score: This measurement is developed to evaluate the 

performance of SSSP approaches in terms of computation time. This measurement is a 

score model that demonstrate the relevance of the computation time for each approach 

corresponding to a particular SSSP class by capturing the proportion of the computation 

time for an approach 𝑉𝑐𝑡  to the slowest among all known SSSP approaches capable of 

solving this class depicted by 𝑀𝑎𝑥𝐶𝑙𝑎𝑠𝑠. The computational time performance of an 

approach can be calculated then using the following Equation 16. 

 CT Score = |
Vct

MaxClass
− 1| ∗ 100 (16) 

In Equation 16, the absolute value of subtracting the proportion of the computation 

expended by an approach 𝑉 to solve a SSSP problem complexity represented by 𝑉𝑐𝑡   under 

consideration of 𝑀𝑎𝑥𝐶𝑙𝑎𝑠𝑠 from one are used to measure CT score represented by a 

percentage value by multiplying it by 100. This measure of CT score provides better 

indicators of the approach’s performance for the comparison analysis by a clear value that 

demonstrate the percentage of the performance for each approach.  

3.6.9 Hit Rate: Hit rate is the capability percentage of a model, or approach to return a 

feasible solutions. The use of this measure is motivated by the work of [15]. The work in 

[15] have used it to show evidence of their approach’s solution effectiveness against the 

work presented in [14]. This measure is adopted in this thesis to demonstrate the 

performance of SSSP approaches in finding feasible solutions among multiple runs. For 

𝑅 number of experiment runs, the hit rate for an approach having the value for each runs 
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𝑟 the value 1 if the outcome in that run is feasible solution or 0 if not denoted by fr, can be 

then calculated using the following Equation 17.  

 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 =
∑ fr
𝑅
𝑟=1

𝑅
∗ 100 

(17) 

Using the above Equation 17, if we have 30 runs and 6 out of these runs had feasible 

solutions, then the hit rate for this experiment is equal 
6

30
∗ 100 = 20%. 

3.6. Summary  

This chapter has introduced the aspects that should be considered while performing 

benchmarking and comparison of SSSP approaches. The main aim for benchmarking is to provide 

a baseline for valid experiments in software engineering research, facilitate comparative 

evaluation of research approaches, and to be generalized for wider research areas [114]. Therefore, 

the benchmarking approach presented in this chapter involve procedures and process to be 

followed, classification of the approaches, datasets with complexity levels of attributes and 

optimized (optimal) solution for each, and quality and comparison measurements for benchmark. 

In addition, this chapter has shown the application of mixed-methods approach, which has 

emerged in the last decade to the best of exploring and investigating software engineering studies. 

The use of this approach has improved the development of the research process carried out for 

this thesis. 

To mitigate bias and make convincing argument a high degree of validation should exist [114]. 

Therefore, software engineering research should be supported by external validation capable of 

highlighting the application issues of the benchmark to other scenarios, so enough evidence to 

support claims of outcomes and generality of use can be established [114]. The main issue in this 

benchmark approach is the lack of coverage of software project and resource attributes. This issue 

can be summarized by the development activity involved within the tasks such as designing, 

testing, etc. and their corresponding capability by resources of personality and team factors for 

team formation such as Belbin factors as in [62]. In addition, as the main stream of SSSP 

approaches include cost of software project to the optimization problem in addition to time span, 

salaries of project resources therefore, is another issue that should be combined within the 

benchmark.  

Moreover, classification of the approaches is developed on the selected attributes of software 

project so the more attribute the dataset has, will lead to more complexity of inputs and problem 

formalization levels to classify. Furthermore, qualitative analysis and statistical methods might be 
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applicable especially in the case of comparing solutions’ quality of the actual resource allocation 

such the schedule organization, and utilization of resources.  

It is noteworthy that software engineering benchmarking approaches as argued by [104] should 

comply with seven factors, which are accessibility, affordability, clarity, relevance, solvability, 

portability, and scalability. The benchmark proposed in this chapter complies with these factors 

as follow. Accessibility of the benchmark approach and all its parts including the datasets are made 

available throughout the thesis chapters, so the reader can easily adopt it. As this research field 

has not yet reached the maturity level where the approaches can be developed in tooling and 

technology that users can benefit their use, affordability might not be applicable as the cost of 

performing the benchmark associated with time consumption and performance of the approaches 

for multiple runs is high. The core of the benchmark process is to capture the approaches’ 

performance where the estimated time of software projects is the main concern. Accordingly, the 

datasets’ relevance is depicted by the different circumstances that software projects are limited to 

and can combine correlated information that are provided by the classification of SSSP. Datasets 

solvability factor on the other hand, has been demonstrated by the project information simplicity 

that make the comparison achievable and able to demonstrate the capabilities of various SSSP 

approaches too. Moreover, portability can be achieved by the capacity of the benchmark process 

to hold additional optimization objectives as well as software project and resource’s attributes that 

can be combined within the datasets with evolving classification for new attributes to scale up for 

different maturity levels of software project circumstances. 

Our benchmarking approach has been applied on a set of SSSP approaches, where the details of 

these approaches, and the outcomes of using the proposed quality measures and the datasets 

levels are detailed in the next Chapter 4. 
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Chapter 4 Evaluation of Nine SSSP 

Approaches 

This chapter evaluates a set of SSSP approaches by applying the benchmarking approach 

from Chapter 3, and presents the experiment’s result, and findings. 

4.1 Introduction  

Since late 90’s, different approaches have been proposed to solve SSSP problem such as [14, 18, 

22]. These approaches however are more formally designed to explore the optimization 

techniques, their potential capability, strength, capacity, and how they can be used in 

approximating and solving software project management problems considering different 

optimization objectives. Benchmarking and evaluating these approaches has become more 

important to present their capability for next generation research and to provide future direction 

on potential points of interest for consideration in minimizing software project completion time. 

Therefore, this chapter adopts the benchmarking process presented in Chapter 3 to benchmark 

and evaluate a set of SSSP approaches. These approaches are selected based on a four points 

criteria discussed later in the following Section 2.4.5. 

The reminder of this chapter is divided into three sections. The following Section 2.4 provides 

description and background of different SSSP approaches. The study aims and research questions 

are listed in Section 4.2. In Section 4.3, results for each experiment on each selected SSSP 

approach and its outcomes analysis regarding efficiency, effectivity, performance, and accuracy 

are presented. Throughout this section it will be much clearer to the reader why the benchmark 

dataset is divided into different levels and how they are connected with the constraints to provide 

a taxonomy for the SSSP problem. The conclusion with the main findings and limitations of the 

experiments performed for this chapter are provided in Section 4.5.  
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4.2 Experiment Aims and Parameters Settings 

Throughout the development of the benchmarking approach and preparation for this chapter, 

question were raised about the validity of the benchmarking approach and the performance of 

SSSP approaches. The experiments performed for this chapter constitutes the answer for these 

questions, which are the following: 

1. Do the SSSP approaches perform similarly?  

2. If no. What are the differences between the approaches? and 

3. Do the measures adopted for the benchmarking able to demonstrate the approaches’ 

performance and quality? 

4. Does the classification made for the approaches able to demonstrate the performance, 

capacity and capability of the approaches as the complexity increases? 

The experiments provided in this chapter are performed according to the benchmarking 

approaches described in Chapter 3 using Intel Core2 Quadm5 (2.66 Ghz) CPU, supported by 4GB 

memory. The implementation of the approaches selected for this study is carried out using Matlab 

2013a, supported by global optimization toolbox to facilitate the development of the optimization 

techniques proposed by these approaches. Each approach was executed 100 times according to 

the benchmarking approach to allow determination of mean and deviation values. The experiment 

settings for each approach and complexity level are defined according to the description of each 

from the last section. The parameter settings of each selected approach for the experiments are 

presented in the following  Table 19.  

 Table 19: Parameter Settings of the Selected Nine SSSP Approaches  

Approach 

Settings 

Population size Generation Crossover fraction Mutation probability 

Chang01 60 500 0.65 0.15 

Antoniol01 100 1000 0.6 0.1 

Antoniol02 100 400 0.6 0.1 

Alba01 64 5000 0.9 0.01 

Ren01 50 100 0.6 0.2 

DiPenta01 50 250 0.7 0.1 

Minku01 64 79 0.75 0.01 

Park01 100 400 1 0.05 

 
Initial Temp Control Cooling 

loops 

Internal External 

Kang01 100 2000 0.95 500 8 



116 

 

The parameter settings presented in  Table 19 above are motivated by the best experiment 

settings used for the approach’s performance and outcomes validation provided by the authors of 

these approaches. 

4.3 Results 

This section provides detailed results of each approach selected for this study according to the 

corresponding complexity level that the approach can perform. Noteworthy that due to the 

approaches capability for solving different complex scenarios the approaches presented will be 

gradually reduced as the complexity increases. This section will be grouped according to the 

complexity and classes of SSSP. It is important to notice that two things are to capture in this 

section which are: 

 How each approach performs compared to the rest in the same complexity level? 

and 

 How each approach performs as the level of complexity increases? 

An observation was made during the experimentation of the selected approaches that some of 

them have performed badly in terms of returning feasible solutions. When there is no feasible 

result recorded for an approach, then this value is recorded as “NA”. This result can be acceptable 

as the constraints in some approaches have been set to a certain value to make sure that the 

approach can be able to return a feasible solution. Therefore, we use the hit rate (number of 

feasible solutions) for those approaches that might return unfeasible solutions, so their accuracy 

can be demonstrated. 

4.3.1 Complexity Level One Experiments 

Nine SSSP approaches are subjects in this complexity level to test their performance and accuracy 

outcomes. As this level corresponds to the first class of SSSP problem, the only information that 

it provides for the SSSP approaches to search for an optimal or near optimal time estimate is the 

estimated effort and the number of resources available to the software project. The dataset of this 

complexity level is provided by Section 3.4.2. The following Figure 17 depicts the results of EPT 

values for each approach in this level using the Boxplot diagram. 
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Figure 17: Level One Boxplot Diagram of SSSP Approaches Evaluation 

It can be seen in Figure 17 that three approaches of (Chang01, Kang01, and Minku01) are the worst 

among the others. However, it should also be seen that the approach of Alba01 is missing in this 

figure as it failed to provide any results over the 100 runs. On the other hand, five approaches of 

(Antoniol01, Antoniol02, Ren01, DiPenta01, and Park01) by this figure can be seen as better than 

the earlier mentioned approaches, providing estimates between 80-90 days. In addition, it can be 

seen in this figure too, that DiPenta01 is able to provide precise, and less variation EPT results 

than any other approach. 

Table 20 provides more detailed information about the approaches’ outcomes, which can enable 

us to see which of these approaches can outperform the others. The approaches’ in this table are 

sorted by the EPT values, from the worst to the best.  

Table 20: SSSP approaches Results for Complexity Level One 

Approach  EPT CT Hit Rate CT Score MAAPE Accuracy 

Alba01 NA 220.14 0 96.35 NA NA 

Kang01 111.5 127.91 100 97.88 0.370 62.99 

Minku01 109.19 10.74 100 99.82 0.345 65.54 

Chang01 108.95 18.40 2 99.7 0.342 65.77 

Antoniol02 85.13 109.66 100 98.18 0.060 94.04 

Park01 81.31 6033.43 100 0 0.012 98.78 

Antoniol01 80.83 285.92 100 95.26 0.006 99.37 

Ren01 80.48 17.57 100 99.71 0.002 99.81 

DiPenta01 80.33 24.69 100 99.59 0.005 99.99 
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Table 20 presents the mean of Estimated Project Time (EPT) and Computation Time (CT) 

outcomes over 100 runs of each approach. In addition, it provides information regarding hit rate, 

MAAPE, and accuracy for each approach. The unit of EPT value is in days, and for CT is in seconds. 

For example, Minku01 approach has provided 109.19 days average EPT value for 100 runs. This 

approach can provide feasible solutions with Hit Rate of 100 times out of 100 runs. In addition, 

this approach consumed 10.47 seconds on average, and scored 99.82% of the average CT 

compared with the worst approach performance among them all. The error forecasting of this 

approach using MAAPE measure shows that around 34.5% of the approach’s outcome is prone to 

overestimate EPT, which leaves the approach with 65.5% accuracy. The worst performance among 

them all is the Alba01 approach. This approach has failed to provide a single estimate over the 100 

runs and consumed on average 220 seconds on searching for a solution, which makes it the worst 

approach of this complexity level. 

Moreover, the approach in Chang01 has a very high score of CT, however, that comes at the cost 

of accuracy of EPT. On the other hand, the one in Park01 with the worst CT was able to provide a 

more accurate EPT. This shows how reducing computation time can come at the cost of good 

quality solutions in Meta-Heuristics. However, this fact can no longer be valid as with DiPenta01 

approach, which has shown its capability to outperform the others according to both CT score and 

EPT Accuracy. This approach has shown its stability of producing precise results over the 100 

runs, and so far, that make it the one that outperform the others in this particular complexity level. 

To capture whether these approaches perform similarly, we have performed a paired T-Test 

against the one of DiPenat01. Our null hypothesis is that the approaches can provide similar 

estimates and perform similarly. The results of this test are depicted in the following Table 21. 

Table 21: Level One Paired T-Test of SSSP Approaches Evaluation 

Lower Upper

Pair 1 Dipenta01 - Chang01 -28.61905 0.53875 0.38095 -33.45950 -23.77859 -75.125 1 0.008

Pair 2 Dipenta01 - Antoniol01 -0.49983 1.13947 0.11395 -0.72592 -0.27373 -4.386 99 0.000

Pair 3 Dipenta01 - Antoniol02 -4.79867 2.60522 0.26052 -5.31560 -4.28173 -18.419 99 0.000

Pair 5 Dipenta01 - Ren01 -0.14594 0.24051 0.02405 -0.19366 -0.09822 -6.068 99 0.000

Pair 7 Dipenta01 - Minku01 -28.85713 2.51428 0.25143 -29.35602 -28.35824 -114.773 99 0.000

Pair 8 Dipenta01 - Park01 -0.97667 0.46482 0.04648 -1.06890 -0.88444 -21.012 99 0.000

Paired Samples Test

Paired Differences

t df Sig. (2-tailed)Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the 

Difference

 

From Table 21, it can be seen that the difference in mean for each pair of DiPenta01 approach 

against the others has a 2-tailed value less than 0.001, and for the first pair the significance was 



119 

 

with 0.008. From these results we have found enough evidence to suggest that the difference 

between the two scores for each pair is statistically significant and reject the null hypothesis. 

4.3.2 Complexity Level Two 

This level provides information about the estimated effort and precedence relationship between 

the project tasks, as well as the number of resources available to the software project. The project 

time minimization problem is depicted by the dataset in Section 3.4.2. In this level, only six 

approaches are subjects to test their performance and accuracy outcomes. The reason of taking 

out the approaches of (Antoniol01, Antoniol02, and Kang01) is that they do not support the 

information provided by this level of task dependencies, and any other attributes for higher 

complexity levels. The following Figure 18 depicts the results of EPT values for each approach in 

this level using the Boxplot diagram. 

 

Figure 18: Level Two Boxplot Diagram of SSSP Approaches Evaluation 

It can be seen in Figure 18 that two approaches of (Minku01, and Park01) are the worst among the 

others, with average close to 110 Days. On the other hand, the approaches of (Chang01, and 

Alba01) have provided better estimates than the earlier mentioned approaches, between 80-100 

Days. Moreover, the approaches of (Ren01, and DiPenta01) can be seen as the best among all the 

other approaches according to the average of EPT with just over 80 Days, and their stable and 

precise EPT values. However, DiPenta01 approach had some very extreme overestimates of EPT, 

which make Ren01 approach, with the least variation of EPT results, outperforms any other 

approach on this particular level. To make this claim, we need more information regarding the CT 
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and other accuracy measures. Therefore, the following Table 22 presents the performance and 

accuracy outcomes of the approaches.  

Table 22: SSSP approaches Results for Complexity Level Two 

Approach   EPT CT Hit Rate CT Score MAAPE Accuracy 

Minku01 109.17 10.34 100 99.1 0.344 65.56 

Park01 107.58 1133.77 100 0 0.326 67.37 

Alba01 92.04 270.28 100 76.16 0.144 85.55 

Chang01 87.63 21.62 100 98.1 0.090 90.95 

DiPenta01 81.26 29.24 100 97.42 0.011 98.95 

Ren01 80.51 25.14 100 97.78 0.002 99.77 

From Table 22, it can be seen that Alba01 approach, which have struggled to provide feasible 

solution for the previous complexity level, is now capable to provide feasible results with 100% hit 

rate performance. However, this level provides a challenge for the approaches especially in terms 

of stability of results over the runs. The resulted value of Minku01 approach in terms of EPT is the 

worst amongst the approaches. This is due to the CT spent on searching the solution space, which 

for this approach is the least one among the rest recorded by the CT Score with 99.1%. By this 

speedy search, the accuracy of this approach is the worst recorded with approximately 65.5%. 

Again both (DiPenta01, and Ren01) approaches in this level could be seen having the same results 

as seen by the previous Boxplot diagram. Yet, the mean EPT provides clearer picture of which can 

provide better results over the runs. In this case, Ren01 obviously performs better as it provides 

the average of EPT equal to 80.5 days. Consequently, the accuracy for this approach in this level 

is the best among the rest with score of 99.7%.  

To capture whether the approaches in this level perform similarly, a paired T-Test is performed. 

However, this time the pairs are made against Ren01 approach, as this approach has managed to 

provide better estimates than the other ones. The outcomes of this test are recorded in the 

following Table 23. 

Table 23: Level Two Paired T-Test of SSSP Approaches Evaluation 

Lower Upper

Pair 1 Ren01 - Chang01 -7.11916 3.18412 0.31841 -7.75096 -6.48737 -22.358 99 0.000

Pair 2 Ren01 - Alba01 -11.53361 3.87057 0.38706 -12.30162 -10.76561 -29.798 99 0.000

Pair 3 Ren01 - DiPenta01 -0.74820 6.54196 0.65420 -2.04626 0.54987 -1.144 99 0.256

Pair 4 Ren01 - Minku01 -28.65805 2.56428 0.25643 -29.16685 -28.14924 -111.759 99 0.000

Pair 5 Ren01 - Park01 -27.06939 4.08808 0.40881 -27.88055 -26.25822 -66.215 99 0.000

Paired Samples Test

Paired Differences

t df Sig. (2-tailed)Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the 

Difference
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What can be seen by Table 23 is that with enough evidence to suggest that the difference between 

the two scores of each pairs are statistically significant and reject the null hypothesis with 2-tailed 

values less than 0.001, except the difference between Ren01 and DiPenta01 approaches, which do 

not provide enough evidence to reject the null hypothesis for them particularly. Accordingly, both 

approach can be seen of a similar performance.  

4.3.3 Complexity Level Three 

As this level provides additional project attributes that some of the approaches do not include 

within their problem formalization, the one in Ren01 is accordingly excluded in addition to 

(Antoniol01, Antoniol02, and Kang01) from this level. Therefore, only five approaches are subjects 

in this level to test their performance and accuracy outcomes. The dataset used for this level and 

its optimal solution can be found in Section 3.4.2. This dataset includes the information about the 

estimated effort and precedence relationship between the project tasks. In addition, this dataset 

includes the number and skills of resources as part of the software project data for SSSP 

approaches to solve its time estimation problem. The following Figure 19 depicts the results of 

EPT values for each approach in this level using the Boxplot diagram. 

 

Figure 19: Level Three Boxplot Diagram of SSSP Approaches Evaluation 

It is important to notice that again the Alba01 approach is not included in Figure 19, as it has again 

failed to provide a single estimate. From Figure 19, it can be seen that two approaches are 

outperforming the rest, and Chang01 approach is the worst on providing EPT values with just over 

350 Days. However, in order to make clear evidence of which is good, and which is worst. A full 
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information regarding the performance and accuracy outcomes are required. Therefore, the 

following Table 24 presents the results of the approaches for this complexity level. 

Table 24: SSSP approaches Results for Complexity Level Three 

 Approach   EPT CT Hit Rate CT Score MAAPE Accuracy 

Alba01 NA 206.62 0 98.5 NA NA 

Chang01 378.00 15.39 3 99.89 1.199 -19.89 

Minku01 327.64 16.89 100 99.88 1.135 -13.51 

Park01 175.25 13747.62 100 0 0.598 40.19 

DiPenta01 172.75 15.60 100 99.89 0.571 42.95 

It can be seen from Table 24 that both Alba01 and Chang01 are struggling in this level to provide 

feasible solutions. For instance, Alba01 approach is the worst amongst the approaches as it did 

not find any feasible solution over the 100 runs, where the one of Minku01 that is similar to those 

approaches have succeeded to find a feasible solution in each run exposed by 100 for the hit rate. 

However, the mean of EPT value for Minku01 approach is far from the optimal solution of EPT. 

Consequently, the accuracy of this approach and Chang01 too are considerably inaccurate to solve 

a problem where skills and effort of tasks are the only inputs. Yet, DiPenta01 approach still among 

the best ones to provide better solutions than the others for this level too. This is depicted by the 

accuracy and CT score values, which are 42.9% and 99.89% respectively.  

Furthermore, the CT score of Minku01, Chang01, and DiPenta01 approaches have almost no 

difference from one to another. The one that comes slightly less with 98.5% CT score is Alba01. 

The CT score computed for these approaches is compared with the worst CT ever recorded among 

them all, which is Park01. However, this approach provided good quality EPT for 175.25 days, 

reflected on the accuracy result with 40.19%. Despite the fact that all the approaches in this level 

did not provide good quality outcomes, Park01 approach in this level can be considered as the 

second place for good quality results amongst the others. It can be concluded that this level has 

challenged the approaches on their capacity to handle skills without dependent tasks, so the 

allocation can be harder for those approaches that consider individuals for task assignment, 

leaving the best to be by DiPenta01. 

But now the question is: are these approaches perform similarly? To answer this question, we have 

to look at the paired T-Test results that compare the approaches against DiPenat01 one for this 

level. These results are depicted in the following Table 25. 
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Table 25: Level Three Paired T-Test of SSSP Approaches Evaluation 

Lower Upper

Pair 1 DiPenta01 - Chang01 -209.98535 54.93783 31.71837 -346.45848 -73.51222 -6.620 2 0.022

Pair 3 DiPenta01 - Minku01 -154.89362 23.65115 2.36511 -159.58652 -150.20072 -65.491 99 0.000

Pair 4 DiPenta01 - Park01 -2.50438 22.89521 2.28952 -7.04729 2.03853 -1.094 99 0.277

Paired Samples Test

Paired Differences

t df Sig. (2-tailed)Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the 

Difference

 

What can be seen by Table 25 is that for both Chang01 and Minku01 approaches againstDiPenta01 

there are enough evidence to suggest that the difference between the two scores of each pairs are 

statistically significant and reject the null hypothesis with 2-tailed values less than 0.001 for Pair3 

of (DiPenta01 and Chang01), and 0.05 for Pair1 of (DiPenta01 and Minku01). It is noteworthy that 

Alba01 approach is not included in this test, as it could not provide solution for this level. On the 

other hand, the difference between DiPenta01 and Park01 approaches for this level do not provide 

enough evidence to reject the null hypothesis. Accordingly, both approach can be seen of a similar 

performance. 

4.3.4 Complexity Level Four 

Like the previous complexity level, five SSSP approaches are subjects to test their performance 

and accuracy outcomes for this level too. The data for this level provides information about the 

estimated effort and precedence relationship between the project tasks. In addition, it provides 

information about the number and skills of resources available to the software project in order for 

the SSSP approaches to search for an optimal or near optimal solution of time minimization. The 

dataset used for this level can be found in Section 3.4.2. The following Figure 20 depicts the results 

of EPT values for each approach in this level using the Boxplot diagram. 
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Figure 20: Level Four Boxplot Diagram of SSSP Approaches Evaluation 

It can be seen in Figure 20 that Alba01 approach has successfully provided EPT solutions for this 

level. However, the mean EPT for these solutions is much higher than any other approach. 

Accordingly, we can say based on this figure that Alba01 approach is the worst among the 

approaches in this level too. On the other hand, DiPenta01 approach has almost no variances in 

its estimates, and these estimates are the least amongst all the other approaches. Therefore, 

DiPenta01 approach can be counted as the best approach for this level too. However, to make this 

claim, we need more information regarding the CT and other accuracy measures. Therefore, the 

following Table 26 presents the performance and accuracy outcomes of the approaches. 

Table 26: SSSP approaches Results for Complexity Level Four 

 Approach   EPT CT Hit Rate  CT Score MAAPE Accuracy 

Alba01 365.25 253.26 100 92.76 0.665 33.53 

Chang01 338.04 20.05 100 99.43 0.577 42.29 

Minku01 326.34 10.51 100 99.7 0.538 46.21 

Park01 272.81 3499.41 100 0 0.322 67.82 

DiPenta01 247.09 23.87 100 99.32 0.206 79.36 

In this level, it can be seen from the values presented in Table 26, how the approaches perform 

when dealing with multiple problem factors that adds up dependency constraint and skills of 

resources together, so the feasible area within the search is limited. This level is clearly creating 

more complexity for the approaches than in the previous level to provide accurate solution, in 

which their accuracy do not provide better or even similar degree as to level one and two.   
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As dependency is one of the problem factors in this level, the approaches that have performed 

badly in the previous level are now providing 100% for hit rate, such as Alba01. However, their 

solution quality is varied and can be captured from their accuracy and CT score. The one in Alba01 

for instance has 33.5% accuracy and 92.7% CT score, where the one in Chang01 has made better 

progress in accuracy with around 42.3% and for CT score with 99.4% too. Accordingly, Alba01 can 

be counted as the worst amongst all the other approaches. 

Furthermore, the one in Park01 has again provided a reasonable degree of accuracy and stabilized 

solutions over the runs compared with the others, however, it has performed badly in terms of CT. 

This performance of Park01 has made the other approaches to have much higher CT score.  

It is important to record that the outcomes of Minku01 approach demonstrate how it has made 

good improvements over the work of Alba01 and Chang01 too in two aspects. The first one is the 

accuracy, which recorded for Minku01 with 46.2%. This is clearly not a convincing accuracy but 

compared with both Alba01 and Chang01 results, it shows an evidence of Minku01 outperforming 

them. The second aspect is the time, which for Minku01 has a time cost for each run around 10.5 

seconds. This value is half the time spent by Chang01, and far less from Alba01 that spent around 

253.3 seconds.  

With slightly less CT score than Minku01, DiPenta01 has managed to provide with 79.35% 

accuracy a better solution of around 247.1 days for EPT than all the other approaches, and it can 

be concluded that DiPenta01 outperform all the other approaches of this level of complexity. 

But now the question is: are these approaches perform similarly? To answer this question, we have 

to look at the paired T-Test results that compare the approaches against DiPenat01 one for this 

level. These results are depicted in the following Table 27. 

Table 27: Level Four Paired T-Test of SSSP Approaches Evaluation 

Lower Upper

Pair 1 DiPenta01 - Chang01 -90.94956 18.33695 1.83369 -94.58801 -87.31111 -49.599 99 0.000

Pair 2 DiPenta01 - Alba01 -118.15420 18.58804 1.85880 -121.84247 -114.46593 -63.565 99 0.000

Pair 3 DiPenta01 - Minku01 -79.24830 7.77128 0.77713 -80.79029 -77.70631 -101.976 99 0.000

Pair 4 DiPenta01 - Park01 -25.71695 16.45139 1.64514 -28.98126 -22.45264 -15.632 99 0.000

Paired Samples Test

Paired Differences

t df Sig. (2-tailed)Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the 

Difference

 

From Table 27, it can be seen that the difference in mean for each pair of DiPenta01 approach 

against the other has a 2-tailed value less than 0.001. Therefore, we can conclude that there is 

enough evidence to suggest that the difference between the two scores for each pair is statistically 
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significant and reject the null hypothesis of having similarity of performance between the 

approaches. 

The overall findings from the performance and accuracy outcomes of each approach for all the 

complexity levels have shown that some of the approaches performed badly, others were 

moderate, and limited approaches were capable of providing good quality solutions of project time 

estimation. The overall weaknesses and strength of each approach that encountered by the 

outcomes of all the levels, and highlighting the best are presented in the following Table 28. 

Table 28: Overall Findings from the Complexity Levels for each SSSP Approach 

Approach Encountered Weaknesses or Strengths 

Chang01 
This approach can only perform better when dependency is existing between 
project tasks. 

Antoniol01 It can provide estimates for only level one. 

Antoniol02 It can provide estimates for only level one. 

Alba01 
This approach can only perform better when dependency is existing between 
project tasks. 

Ren01 
This approach can provide a very good estimate however, it can only work for 
complexity level one and two, and provide the best for level two. 

Kang01 
With its overcomplicated settings, this approach provides a moderate estimate, and 
only for level one. 

DiPenta01 This approach has dominated the four complexity levels with the best results. 

Minku01 
This approach can only perform better when dependency is existing between 
project tasks. 

Park01 
This approach consumes computation time of over 18 minutes to provide a single 
estimate. 

What it can be concluded is that some approaches were capable on providing solution only for 

limited complexity level(s), such as both Antoniol01, 02, and Kang01. Others, such as Alba01 and 

Chang01, have failed to provide solutions for simpler levels, and for higher complexity levels their 

performance was much better. What is noteworthy is that DiPenta01 was the only approach that 

is capable of providing good quality solutions over the complexity levels, which make it the one 

that dominate the others. 

4.4 Analysis 

Three approaches of (Chang01, Alba01, and Minku01) are of a major concern with their solution 

quality. The one of Alba01, for example, has failed on every run to provide a single solution for 

complexity level one and three, and had the worst performance among the approaches of level 

four. This approach has several issues that have contributed to this bad performance. The first one 

is the allocation method that it uses to allocate the resources. This method assigns resources to 

tasks with a participation percentage. That means the resource will work on the task for a 

percentage of his/her day time. This will be reflected on the time estimate of that task, where the 
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effort won’t be divided by the number of resources, but on the overall percentage of the assigned 

resources to that task. 

Moreover, in the approach’s settings identification presented in [14], the resource can be allowed 

for overtime work limit with an overall participation of 120%. However, in our experiments we 

did not allow this value and assumed that the resource can only work with a full of 100%. In 

addition, the creation of solutions in Alba01 is structured by a 2-D matrix, where the rows are 

representing the resources and the columns are representing the tasks. The values associated to 

the cells are randomly generated between {0, 1} representing the amount of the participation 

percentage of the resource to that task. Based on this representation, each resource by this matrix 

will have a percentage to participate with for each task. Having no dependencies between the 

project tasks by the datasets representing complexity levels one and three, means that the tasks 

will be performed at the same time. Therefore, the solution, in general, will include some values 

that exceeds the maximum participation of 100% and violate the overtime constraint. Thus, 

making the solution unfeasible, as it is hard to find participation percentages that can works for 

all the resources to be assigned to project tasks without causing them to work overtime.  

On the other hand, Kang01 has provided the worst estimates on level one, and failed to compete 

for the other levels. The reason for this approach to fail on continuing the higher levels is that it 

does not support dependency and technical software development skills aspects such 

programming languages. Moreover, this approach allocates the resources with an initial plan 

generated by a greedy algorithm. This algorithm starts by sorting the tasks from larger to smaller 

size, and continuously assigning a resource to each task, and move to the other, till all the 

resources are assigned to tasks and all the tasks have been allocated with at least to one resource. 

What left then for the simulated annealing algorithm to do in this approach is to re-assign the 

resources with percentages, and to the most fitted task. By this type of assignment, the best plan 

for the first level is to keep the same amount of resources assigned without reducing their 

participation percentage. Therefore, this approach has assigned two resources to task 2, 3, 4, and 

5, and a single resource to each of the rest. While project time for this complexity level can be 

counted as the maximum task length among the others, task two with estimated effort of 223 has 

the maximum time of 111.5 Days among the others, which is the estimate value provided by this 

approach. This approach has shown how using a heuristic technique for initiating a population 

can fail the algorithm by having similar solutions and little diversity. 

Minku01 approach, moreover, had the worst outcomes for level two. Broadly speaking, one of the 

reasons for (Chang01, Alba01, and Minku01) approaches to perform badly is the absence of 

dependencies between the project tasks as they perform the allocation with assigning participation 
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percentage to resources. However, this time the dataset of level two holds dependency information 

about the project tasks. What makes this approach unable to compete with the other approaches 

are by two main reason. As with the Alba01 approach, Minku01 assigns the resources with a 

participation percentage. Moreover, the total project time in this approach is computed by 

cumulating the overall tasks’ time. Accordingly, Minku01 provides a project time estimate where 

all the tasks are counted, and not the longest path among the paths of the TPG. For example, one 

of Minku01 solutions is depicted by the following Table 29. 

Table 29: Minku01 Allocation Example 

 
T1 T2 T3 T4 T5 T6 T7 T8 

R1 0.000 0.857 0.857 1.000 0.714 0.286 0.857 0.429 

R2 0.571 0.857 0.857 0.857 0.857 1.000 0.429 0.857 

R3 0.714 0.857 1.000 0.571 0.714 1.000 0.714 0.571 

R4 1.000 0.857 1.000 0.429 0.714 0.857 0.714 0.571 

R5 1.000 0.857 0.857 0.714 0.571 0.857 0.286 0.857 

R6 0.857 1.000 0.429 1.000 0.571 0.429 0.000 0.286 

R7 0.571 0.571 0.857 0.571 0.714 0.857 0.571 0.143 

R8 1.000 0.857 1.000 0.857 0.857 1.000 0.571 0.571 

R9 0.429 0.857 1.000 0.714 1.000 0.857 0.714 0.286 

R10 1.000 0.857 0.286 0.714 0.857 0.714 0.571 0.571 

R11 0.571 1.000 0.571 0.429 0.429 0.857 0.143 0.714 

R12 0.571 1.000 0.857 0.714 0.714 0.286 0.714 0.714 

According to the participation percentages that each resource will do for each task in Table 29, the 

estimated time for task 1, 2, 3, 4, 5, 6, 7, and 8 will be 9.89, 21.38, 18.8, 15.4, 21.8, 5.5, 9.86, and 

6.84 Days. By adding all these estimates together the project time will be 109.5 Days. It is 

noteworthy that what makes Minku01 approach to sustain with 100% Hit Rate is that in case of a 

resource working on more than one task and those tasks are in parallel, the overall participation 

of this resource for these tasks are divided by the number of these tasks.  

The results, presented in last Section 4.3, show that Park01 approach had a very long run of CT. 

The performance of Park01 approach, for example, has an average of 13747 Seconds for level three. 

The reason for this approach to perform like this is the fitness function and GA settings adopted 

by this approach. The fitness function simulates project time day by day. This means that a part 

of the fitness function is iteratively computing each task’s time by the same for loop, where the 

computation of every edge of the TPG, parallel tasks, and waiting tasks to be performed are all in 

as nested loops. Therefore, this loop complexity can be described as 𝑂(𝑛2), and this is the reason 

why the CT of this approach is the worst among all the other approaches. 
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4.5 Conclusion 

The results provided in this chapter demonstrate the differences between various SSSP 

approaches selected for the comparison. These differences are presented in the form of 

performance, accuracy, and capability of the approaches for different complexity levels.  

The first conclusion from the results has answered the first research question as whether the 

approaches perform similarly. From the results, it is clear that there are differences between the 

approaches selected for the comparison. It can be seen too that the differences between the 

approaches are demonstrated by the metrics of CT and EPT, where the measures of error, 

accuracy, and CT scores have exposed more about the differences in the approaches’ quality and 

performance. Accordingly, this provides the answer for both second and third research questions. 

Furthermore, the results of the approaches are differ from one complexity level to another by 

which some approaches failed to provide a single result over multiple runs in one level, and in 

another level performs with 100% hit rate. According to these results, the classification made and 

the derived complexity levels combined with the accuracy measures are able to demonstrate the 

performance, capability, and capacity of SSSP approaches, which answering the fourth question. 

For complexity level one, the approaches in [20, 22, 94] provide very close accuracy to each other, 

but they differ in terms of CT. However, the one in [22] outperform the others in terms of MAAPE 

and accuracy. It is also important to see how some of the approaches are unable to solve further 

complexity levels, and consequently they are omitted from further experiments as the complexity 

level increases. For complexity level two, a clearer winner can be identified with the one in [94]. 

However, the one in [22] has less error over multiple runs. For level three, a clearer winner can be 

identified with the one in [22] offering similar accuracy to the one in [23], but requiring far less 

time. For level four, again the one in [22] wins in terms of accuracy, and performance over 100 

runs experiments according to the measures of mean of EPT, STDEV, and MAAPE for results’ 

accuracy and stability. It can be concluded that some of the approaches specially the one in [22] 

outperform the others almost in every level for both CT and EPT, as well as the related measures 

of accuracy and CT score. 

It is also worth mentioning that the approaches that do not consider skills nor productivity 

supposing that human resources possess the same skillset and productivity, have the matter of 

searching for best resource allocation, but with no difference of which resource to use while 

forming teams and allocating them to project tasks. The only scenario that these approaches could 

work for is giving an insight about the importance of scheduling when there are very limited 
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resources, having the same solution of COCOMO, but requiring to know how to allocate those 

resources to gain this time length as in [20, 21]. 

The main aim of SBSE as discussed by [17] is not to provide an automatic decision-making system, 

but to provide a tool that can support the DM’s work. With one step of work towards that, this 

chapter has demonstrated the differences between the selected SSSP approaches for each 

complexity level showing which scenario and situation an approach can provides a better solution 

than the others. This can provide the DM with an overview of which approach can be most 

beneficial to which situation (s)he might face.  

In addition, the results show that some of the complexity levels needs more attention on resource’s 

skills implemented in both level three, and level four. Those two levels require a simulation of 

PM’s choices with respect to their industrial settings as an attempt to improve the capability of the 

optimization techniques to explore more beneficial and feasible solutions.  

As it is the cases in software engineering and many other fields, the researchers might find some 

concerns about the work carried out and the implementation of the work that could limit its 

outcomes or affect its validity. This chapter follows the benchmarking process proposed 

in Chapter 3, consequently the results provided are prone to the limitation discussed about this 

process. Despite the fact that the problem defined in this thesis is about time span minimization, 

software projects encompass many attributes and parameters that is required to support more 

real-world objectives such as resource’s salary, and profession. The benchmarking approach used 

in this chapter is capable of supporting these attributes and objectives, however the datasets 

provided for the benchmark do not provide information about these attributes. Consequently this 

can affect the generalizability of the results and applicability to different software project 

problems. However, as this would reflect on the classification as mentioned in the benchmarking 

approach limitations, the benchmark approach is capable to adopt more classification as the 

problem expands. 

Furthermore, effort estimation as provided in the datasets and used by the approaches is prone to 

errors of providing a linearity concept of time that is effort over team size as in [18, 22]. To 

generalize the benchmark and provide as many SSSP approaches as possible to a comparison this 

concern was discussed by [22] to offer generalization of SSSP approaches purpose, as many 

approaches have used COCOMO model [34] to provide their effort estimate as in [15, 22, 93, 118].  

Additionally, one of the limitations counted in the work carried out for this chapter concerns the 

experimentation work of SSSP approaches as the implementation of these approaches might have 

implicated some changes on what they have meant to produce. For instance, dependency handling 



131 

 

in some approaches was unclear whether it is for one to one relationship and the precedence 

should be formed between one task and another, or these approaches support one to many 

dependencies forming a relationship between a single task with multiple ones. The later was 

mainly what has been implemented for all the approaches, which might not be the case at all.  

One important issue is that all these approaches considered in this chapter do not support 

productivity as an input to SSSP problem except the one in [23]. For this reason, it is important 

to capture how the proposed allocation methods within these approaches will perform having 

resource’s productivity aspect as one of the problem inputs to be solved using GA. In that sense, 

the next chapter provides details on the implementation and optimization problems defined for 

that work, as well as the outcomes and results of the allocation methods defined.  
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Chapter 5 SSSP with Team Formation 

and Distribution to Project Tasks 

Following the outcomes and conclusions from Chapter 4, a comparison between the team 

allocation methods adopted by the set of the approaches selected to that chapter is required 

specially since none of these approaches have considered variability of resource’s productivity as 

one of their problem inputs except the one in [23]. This has motivated us to demonstrate how 

allocation methods involving resource productivity aspect within the SSSP optimization problem 

parameters can be solved using GA. The aim of this work is to observe which of the allocation 

methods can fit with the fifth SSSP problem complexity well that presented by level five in the 

datasets, and the most suitable GA’s settings for this problem to provide very accurate, precise, 

and speedy solutions.  

This chapter accordingly provides to the reader a comparison between four major team allocation 

methods that are adopted by the SSSP approaches. These methods are combined with an 

optimization technique, and a fitness function to simulate project time considering dependencies 

between project tasks, and resources’ competencies and productivity. The results of the 

comparison between these methods using different accuracy measures provided in the 

benchmarking approach -presented in Chapter 3- have shown that one of these methods 

outperforms the rest in two circumstances however another shows its effectiveness to handle more 

complicated problems. 

5.1 Introduction 

Project time span, cost, quality, and time to market are important measures to demonstrate 

whether a software development project is successful or not [8]. As one of the critical aspects in 

software project management, project time span can be minimized by having the suitable teams 

distributed to the most fitted tasks. However, finding the suitable productive and skilled 

resources, forming them into teams, distributing them to project tasks, and then scheduling these 

project tasks according to the team staffing and dependencies constraint between these tasks is a 
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complex problem. This problem is defined in Section 1.2 as Staffing and Scheduling a Software 

Project (SSSP), which has been researched by many approaches in the last three decades using 

different optimization techniques. This problem is well-known as an NP-Hard problem 

complexity, by which using an exhaustive search method to solve it requires forbiddingly long 

execution time as the problem size increases [18]. Accordingly, approximation of results using a 

meta-heuristic techniques can be acceptable as a trade-off of accuracy to near optimal solutions 

for less computation time. 

Staffing the resources according to the project constraints requires consideration of alternative 

allocations of resources to tasks. Assigning resources individually in software project environment 

can be an option. However, teams are the essential element in software development and 

production [28, 119].  

Based on our taxonomy for the level of complexity of the software project’s information, and the 

results of the experiments performed against the nine SSSP approaches, there have been an urgent 

need to classify the main aspect that contributes to the success of a SSSP approach. What we have 

found that two major methods for allocating human resources to teams and tasks in software 

projects are dominating the approaches that optimize the SSSP problem. These methods are the 

most distinguished feature between the SSSP approaches. Based on this finding, we have created 

four team allocation methods, where three of them are comply with those used by the approaches, 

and a new allocation pattern based on our understanding to those methods used. These allocation 

methods are the first contribution of this chapter.  

On the other hand, formalization of an optimization problem is one of the key aspects in SBSE. 

Therefore, these allocation methods have to be mathematically represented with the optimization 

problem that each is aiming to solve. Accordingly, the formalization of these methods is the second 

contribution of this chapter, as many of SSSP approach are missing this point.  

Moreover, productivity of resources is the missing feature in all the approaches used in our 

experiments. Variability of resource’s productivity is something that cannot be ignored, and the 

combination of this feature can provide a clear evidence whether adding this feature would create 

a complexity level that challenge the team allocation methods, as well as to validate which SSSP 

approach according to its adopted method can be useful for this particular complexity level. In 

addition, performing experiments using the five complexity levels on all these methods can 

provide a validation to the new allocation pattern. 

The two main methods that dominate the SSSP approaches are static formation of teams, 

represented by symmetric assignment, and a dynamic one with arbitrary (asymmetric) 
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assignment. Symmetric assignment involves two-stages. The first stage is to form the teams by 

symmetric distribution of resources i.e. overlapping of resources between teams is not permitted, 

and the resources of each team will continue working together till the end of the project. The 

second stage is then to allocate those teams to tasks. This type of human resource allocation can 

be seen in the approaches in [20, 22, 94]. The arbitrary, one on the other hand, assigns multiple 

resources directly to project tasks regardless of the formation of teams as in [14, 15, 18, 23]. That 

is each resource can serve in different teams and each task might have a different team from all 

the others working on it. 

Several studies as in [28, 120] show the importance of resources who are participating in a team, 

to remain in the same team during project time, and completing similar tasks from the beginning 

till the end of project to maintain their productivity level. That is, sharing developers between 

different teams and simultaneous tasks has a negative impact on resource’s productivity [120, 

121]. This is due to the fact that the resources need preparation, knowledge and understanding for 

any new task in order to complete it. Therefore, moving the resources from one team or task to 

another requires additional time for the resources to gain the knowledge required for that task. In 

addition, moving resources from one team to another or sharing a resource across the teams 

during the course of development as adopted by [14, 15, 18, 28] can cause communication 

overhead [120]. Cohesion between team members is very important, which mean having them all 

working in a single team from the beginning till the end of project, makes them less prone to 

communication overhead that enables them to continue working in harmony and productively 

[28, 62, 121]. For this reason, controlling the number of team members can be an attempt to 

reduce the overhead communication and any other negative impacts especially on teams’ 

productivity [28, 121]. 

On the other hand, many studies such as [15, 118] provide evidence of the dynamic assignment 

use and practicality in current software organizations. One of the reasons for that is the use of 

expertise. Expertise of resources is a vital aspect to be addressed especially for the allocation of 

resources to tasks. Expertise becomes increasingly important to demonstrate the suitability of 

resources in team allocation, however, sharing the most expert resources across the teams can be 

to monitor and to ensure the throughput and quality of each team. In addition, changing the team 

members from one task to another while having multiple tasks with different sizes can lead to 

better results. For instance, if we have two tasks where one has a very small size and the other is 

very large one, and both should be performed simultaneously, then having a larger team with 

suitable expertise doing the large task while the small task has limited number of team members 

even if they are learning through practice will reduce the overall development and project time.  
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Therefore, it is important to address the differences between these methods by demonstrating 

their performance, accuracy, and effectiveness to highlight the benefit(s) and drawbacks of each 

and in which circumstances they can provide reliable and best solutions. For this reason, it is 

important to understand how each of these methods is employed by the SSSP approaches. We 

have found that each one of these two allocation methods can be divided into two. That is, the 

symmetric assignment can be formed as a static team allocation either for task distribution by 

queueing system simulator that also simulates the time as in [20-22, 94, 122], or by the allocation 

of project tasks to the teams with time simulator as in [23]. The asymmetric assignment on the 

other hand, can be formed as a dynamic team allocation with time simulator, but the participation 

of each resource in each task can be either with binary participation, which represent either the 

resource will work on that task or not, or a percentage for participation, which implies that the 

resource will participate in the task for a percentage of his/her working time. 

For simplicity, each allocation method is denoted by the nature of the team allocation including 

the way of forming and distributing teams, and the project time span simulation used. Therefore, 

the first method that uses the symmetric assignment providing static teams with queueing 

simulator to distribute the teams to tasks and simulate project time is given the name Static Teams 

with Queue Simulator (STQS). The second one is the one that uses symmetric concept and 

provides static teams but with time simulator of days. This method is given the name Static Teams 

with Time Simulator (STTS). The third method that uses the asymmetric assignment, as well as 

binary participation is given the name Dynamic Teams with Binary Participation (DTBP). The 

fourth one that uses asymmetric assignment but with participation percentage of the resource 

time is given the name Dynamic Teams with Participation Rate (DTPR). This chapter 

consequently provides the overall work done on optimizing these methods using GA with 

standardized settings. 

The reminder of this chapter is organized into six sections. Section 5.2 provides the formalization 

of each team allocation method within the SSSP problem. Section 5.3 details the solution adopted 

to compare the team allocation methods combined with the GA optimization technique. In 

Section 5.4, the elements for the experiments are detailed, which include the datasets used, the 

comparison metrics and measurements adopted, and the experiment results of each method. 

Section 5.5 discusses the findings, the limitation of this study, and conclude the chapter. 
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5.2 SSSP Problem Formalization by Four Different 

Team Allocation Methods 

This section provides formalization of the SSSP problem taking into account different team 

allocation methods. The first subsection of this formalization addresses the main attributes and 

variables concern the allocation problem in software projects under “General Definition”. After 

this subsection, four team allocation methods are addressed, and each is discussed under a 

separate title. Each team allocation method subsection provides formalization of the project time 

span optimization problem with consideration of the constraints, and the software project 

attributes defined in “General Definitions”. 

General Definitions: 

The problem of staffing the available human resources and scheduling the tasks in a software 

project (SSSP) can be represented as a software project 𝑃 that contains a set of tasks denoted by 𝑇 

of size 𝑚, 𝑤ℎ𝑒𝑟𝑒 𝑚 ∈ ℤ+and the set can be represented as 𝑇 =  {𝑡1, 𝑡2, … , 𝑡𝑚}. Each 𝑡𝑖 ∈ 𝑇,𝑤ℎ𝑒𝑟𝑒 𝑖 =

{1, … ,𝑚} is characterized by an estimated workload denoted by 𝑒𝑡𝑖 in terms of Man-Day effort 

unit.∀ 𝑡𝑖 ∈ 𝑇: 𝑒𝑡𝑖  ⟼ 𝑒 ∶  𝑒 ∈  ℝ+. Since the development of software requires combined skills, and 

not only technical ones the term competency is used in this problem. Competencies for example 

means good analytical, logical, and interpretive ability as well as the skill to write a program in a 

specific language. So, the set of competencies required for developing project tasks or the available 

resources are possessing is denoted by 𝐶 of size 𝑢, 𝑤ℎ𝑒𝑟𝑒 𝑢 ∈ ℤ+and represented as 𝐶 =

{ 𝑐1, 𝑐2, … , 𝑐𝑢}.  

Moreover, a function 𝑇𝐶 for each 𝑡𝑖 ∈ 𝑇 returns the competencies required for 𝑡𝑖 as 𝑇𝐶𝑡𝑖 ⟼ 𝑐𝑎 ∶

𝑐𝑎 ∈ 𝐶,𝑤ℎ𝑒𝑟𝑒 𝑎 = {1,2, … , 𝑢}. Within the project, there exists dependencies between the tasks so 

that a task cannot be performed before its predecessors. The set of task dependencies denoted by 

𝑇𝐷 contains 𝑚 elements representing the number of tasks in 𝑇, can be represented as 𝑇𝐷 =

{𝑑𝑝1, 𝑑𝑝2, … , 𝑑𝑝𝑚}. Each dependency 𝑑𝑝𝑖 ∈ 𝑇𝐷 represents a dependency between a task and its 

predecessors, which means that 𝑡𝑖 cannot be started until all its predecessors are finished. The 

value of 𝑑𝑝𝑖  however might holds a zero, a single task, or multiple tasks. The dependency 𝑑𝑝𝑖 for 

each 𝑡𝑖 maps to a set of tasks denoted by 𝑍,𝑤ℎ𝑒𝑟𝑒 𝑍 = {𝑡𝑖1, … , 𝑡𝑖𝑍} represented as 𝑑𝑝𝑖 ⟼ 𝑍: 𝑍 ⊆ 𝑇.  

With set of available resources within the firm to perform the project tasks denoted by 𝑅 of 

size 𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑛 ∈ ℤ+, this set can be represented as 𝑅 =  {𝑟1, 𝑟2, … , 𝑟𝑛}. For each 𝑟𝑗 ∈ 𝑅 , 𝑤ℎ𝑒𝑟𝑒 𝑗 =

{1, ,2, … , 𝑛}, the following function denoted by 𝑅𝐶 returns the competences that 𝑟𝑗  possesses 

by 𝑅𝐶𝑟𝑗 ⟼ 𝑐𝑏: 𝑐𝑏 ∈ 𝐶,𝑤ℎ𝑒𝑟𝑒 𝑏 = {1,2, … , 𝑢}. For each 𝑐𝑠 ∈ 𝐶, each 𝑟𝑗 possesses a productivity 
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denoted by 𝑃𝑟𝑜𝑟𝑗(𝑐𝑠) measured in term of proficiency level denoted by 𝑝𝑙 ∈ ℝ+: 𝑃𝑟𝑜𝑟𝑗(𝑐𝑠) ⟼

𝑝𝑙, 𝑤ℎ𝑒𝑟𝑒 0 < 𝑝𝑙 ≤ 4. 

Static Teams with Queue Simulator Method (STQS) 

The allocation of resources is to teams. The set of teams formed for project 𝑃 is denoted by 𝑇𝑀 of 

size 𝑣, 𝑤ℎ𝑒𝑟𝑒 𝑣 ∈ ℤ+ ∧ 1 ≤ 𝑣 ≤ 𝑛 represented as 𝑇𝑀 = {𝑡𝑚1, 𝑡𝑚2, … , 𝑡𝑚𝑣}. The allocation should be 

performed in two stages. The first stage is to assign the resources to teams and the second one is 

to assign the formed teams to tasks. For team allocation, the decision variable 𝑄∗ returns a Binary 

value. For each 𝑟𝑗  and 𝑡𝑚𝑜 ∈ 𝑇𝑀,𝑤ℎ𝑒𝑟𝑒 𝑜 = {1,2, … , 𝑣} a value of one means that 𝑟𝑗 is assigned 

to 𝑡𝑚𝑜, and zero otherwise. The decision variable 𝑄∗ represented as follow: 

𝑄∗(𝑟𝑗 , 𝑡𝑚𝑜) = {
1, 𝑖𝑓  𝑟𝑗  𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡𝑚𝑜

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      
 

The assignment of teams to tasks is considered for this problem by a queuing system. This system 

is a single queue with multi nodes, where each node represents a team, and each package 

represents a task in the queue waiting to be processed. The set that holds the tasks in the queue 

denoted by 𝑄 contains  𝑚 elements representing the number of tasks in 𝑇, where 𝑄 ⊆ 𝑇 and can 

be represented as 𝑄 = {𝑞t1, 𝑞𝑡2, … , 𝑞𝑡𝑚}. Each 𝑞𝑡𝑘 ∈ 𝑄,𝑤ℎ𝑒𝑟𝑒 𝑘 = {1,2, … ,𝑚} is positioned in the 

correct order while the system processing the tasks. This position is sorted in the queue according 

to the dependency constraint 𝑑𝑝𝑞𝑡𝑘 ∈ 𝑇𝐷. Moreover, the set of processed tasks for all the teams 

denoted by 𝑃𝑇 of size 𝑣 representing the number of teams in 𝑇𝑀 is depicted by 𝑃𝑇 =

{𝑝𝑡𝑡𝑚1
, 𝑝𝑡𝑡𝑚2

, … , 𝑝𝑡𝑡𝑚𝑣
}. For each 𝑡𝑚𝑜 ∈ 𝑇𝑀 ∃ 𝑝𝑡𝑡𝑚𝑜

∈ 𝑃𝑇 ∧ 𝑝𝑡𝑡𝑚𝑜
⊆ 𝑄 in which stores the tasks that 

the team has processed containing 𝑝 elements 𝑤ℎ𝑒𝑟𝑒 𝑝 ∈ ℤ+ ∧ 1 ≤ 𝑝 ≤ 𝑚 depicted as 𝑝𝑡𝑡𝑚𝑜
=

{𝑝𝑡1
∗, 𝑝𝑡2

∗, … , 𝑝𝑡𝑝
∗}. In this queueing system, the simulation time represents the project time, which 

counted as the duration of when the first task in the queue is sent to a team for processing untill 

the last task is finished. However, this representation is equal to the maximum processing time 

among the teams. Accordingly, each team 𝑡𝑚𝑜 has a processing time denoted by 𝑡𝑚𝑇𝑖𝑚𝑒𝑡𝑚𝑜
during 

the simulation represented as ∀𝑡𝑚𝑜 ∈ 𝑇𝑀 ∃ 𝑡𝑚𝑇𝑖𝑚𝑒𝑡𝑚𝑜
, 𝑤ℎ𝑒𝑟𝑒 

𝑡𝑚𝑇𝑖𝑚𝑒𝑡𝑚𝑜
= ∑

𝑒𝑝𝑡𝑤∗

∑ 𝑃𝑟𝑜𝑟𝑗(𝑇𝐶𝑝𝑡𝑤∗ ) ∗  𝑄
∗(𝑟𝑗 , 𝑡𝑚𝑜)

𝑛
𝑗=1

𝑝

𝑤=1

 

The set that holds the cumulative processing time for each team is denoted by 𝑡𝑖𝑚𝑒𝑋 of size 𝑣 

represented as 𝑡𝑖𝑚𝑒𝑋 = {𝑡𝑚𝑇𝑖𝑚𝑒1, 𝑡𝑚𝑇𝑖𝑚𝑒2, … , 𝑡𝑚𝑇𝑖𝑚𝑒𝑣}. The function that returns project 

completion time (Time Span) denoted by 𝑓(𝑇𝑖𝑚𝑒) can be represented as 𝑓(𝑇𝑖𝑚𝑒) = max  ( 𝑡𝑖𝑚𝑒𝑋). 

∀ 𝑞𝑡𝑘 ∈ 𝑄, 𝑟𝑗 ∈ 𝑅, 𝑡𝑚𝑜 ∈ 𝑇𝑀 the problem is to minimize the time span 𝑇𝑖𝑚𝑒 of software project 𝑃: 

min 𝑓(𝑇𝑖𝑚𝑒) 
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Subject to: 

 At least one 𝑟𝑗 assigned to 𝑡𝑚𝑜 should possesses the required competencies for 𝑡𝑖 

represented as: 

∀ 𝑡𝑚𝑜 ∈ 𝑇𝑀, 𝑝𝑡𝑡𝑚𝑜
∈ 𝑃𝑇, 𝑝𝑡𝑝

∗ ∈ 𝑝𝑡𝑡𝑚𝑜
 ∃ 𝑟𝑗 . 𝑇𝐶𝑝𝑡𝑝 ∩ (∑∑𝑅𝐶𝑟𝑗 ∗ 𝑄

∗(𝑟𝑗 , 𝑡𝑚𝑜)

𝑛

𝑗=1

𝑣

𝑜=1

) ≠ 𝜙 

 Number of resource participating in one team should not exceeds 12. Otherwise, penalty 

will be applied on the solution as a consequence of overhead communication that is 

anticipated to reduce the team’s productivity and the development speed. 

∀ 𝑡𝑚𝑜 ∈ 𝑇𝑀, ∑𝑄∗(𝑟𝑗 , 𝑡𝑚𝑜) ≤ 12

𝑛

𝑗=1

 

 At least one resource is assigned to each team. 

∀ 𝑡𝑚𝑜 ∈ 𝑇𝑀, 𝑅 ∩ 𝑡𝑚𝑜 ≠ 𝜙 

 The precedence relationship should be met so that for each task in 𝑇 its predecessors 

must be finished in order the task to be started.   

∀ 𝑡𝑖 ∈ 𝑇 ∃ 𝑑𝑝𝑖 ∈ 𝑇𝐷: 𝑑𝑝𝑖  ⊆ 𝑃𝑇 

For this problem representation there is no need for creating a constraint on each team to be 

assigned to at least one task as the queueing system distributes the tasks in the queue to the first 

available team. 

Static Teams with Time Simulator Method (STTS) 

The allocation of resources is to teams. The set of teams formed for project 𝑃 is denoted by 𝑇𝑀 of 

size 𝑣, 𝑤ℎ𝑒𝑟𝑒 𝑣 ∈ ℤ+ ∧ 1 ≤ 𝑣 ≤ 𝑛 represented as 𝑇𝑀 = {𝑡𝑚1, 𝑡𝑚2, … , 𝑡𝑚𝑣}. The allocation should be 

performed in two stages. The first stage is to assign the resources to teams and the second one is 

to assign each team to task(s). For team allocation, the decision variable 𝑄∗ returns a Binary value. 

For each 𝑟𝑗  and 𝑡𝑚𝑜 ∈ 𝑇𝑀,𝑤ℎ𝑒𝑟𝑒 𝑜 = {1,2, … , 𝑣} a value of one means that 𝑟𝑗 is assigned to 𝑡𝑚𝑜, 

and zero otherwise. The decision variable 𝑄∗ represented as follow: 

𝑄∗(𝑟𝑗 , 𝑡𝑚𝑜) = {
1, 𝑖𝑓  𝑟𝑗  𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡𝑚𝑜

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      
 

The decision variable 𝑄 on the other hand returns a Binary value too, but representing if  𝑡𝑖 ∈ 𝑇 is 

allocated to 𝑡𝑚𝑜 ∈ 𝑇𝑀 with value of one, or zero otherwise as follow:  

𝑄(𝑡𝑚𝑜, 𝑡𝑖) = {
1, 𝑖𝑓 𝑡𝑖 𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡𝑚𝑜

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          
 

The project time span can be estimated by simulating the teams’ work over time, so every tick of 

time representing a day of work is recorded by a variable denoted by 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒 represented as 

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒 = 1,2, … , 𝑥𝑇𝑖𝑚𝑒: 𝑥𝑇𝑖𝑚𝑒 ∈ ℤ+. While the time is ticking, and according to 
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dependencies between the tasks, some of these tasks are in progress, some are waiting, and others 

might be finished. The first set that stores the operating tasks denoted by 𝑅𝑇 of size 𝑚, represented 

as 𝑅𝑇 = {𝑟𝑡1, 𝑟𝑡2, … , 𝑟𝑡𝑚}. The value for each 𝑟𝑡𝑝 ∈ 𝑅𝑇,𝑤ℎ𝑒𝑟𝑒 𝑝 = {1,2, … ,𝑚} is a binary, 

representing whether 𝑟𝑡𝑝 is currently in progress by value of one, or not with value of zero. 

Similarly, the set of tasks that are finished denoted by 𝐹𝑇 represented as 𝐹𝑇 = {𝑓𝑡1, 𝑓𝑡2, … , 𝑓𝑡𝑚}. 

The value of each 𝑓𝑡𝑝 ∈ 𝐹𝑇 is also represented by a binary value, which indicate whether 𝑓𝑡𝑝 is 

finished having value of one, or zero otherwise. 

For each 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒 and a given 𝑡𝑖 assigned to 𝑡𝑚𝑜 that has a value of one in 𝑅𝑇, the estimated 

effort 𝑒𝑡𝑖 on each 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒 is reduced by the sum of each resource productivity 𝑃𝑟𝑜𝑟𝑗(𝑇𝐶𝑡𝑖) 

associated with the competency required for the task 𝑡𝑖, and assigned to 𝑡𝑚𝑜, represented as: 

∀ 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒, 𝑡𝑖 ∈ 𝑇:  

𝑒𝑡𝑖
∗ = (𝑒𝑡𝑖 − ( ∑ ∑𝑃𝑟𝑜𝑟𝑗(𝑇𝐶𝑡𝑖)

𝑟∈𝑅𝑡𝑚∈𝑇𝑚

∗ 𝑄∗(𝑟𝑗 , 𝑡𝑚𝑜) ∗ 𝑄(𝑡𝑚𝑜, 𝑡𝑖) ∗ 𝑟𝑡𝑖)) ,𝑤ℎ𝑒𝑟𝑒 𝑒𝑡𝑖
∗ = {𝑒𝑡1

∗ , … , 𝑒𝑡𝑚
∗ } 

This loop continues until 𝑒𝑡𝑖
∗  converge to zero, and every element in 𝐹𝑇 has the value of one. Then 

at this stage, the function that returns project completion time (Time Span) denoted by 

𝑓(𝑇𝑖𝑚𝑒) can be represented as: 

𝑓(𝑇𝑖𝑚𝑒) = 𝑥𝑇𝑖𝑚𝑒 ⇔ ∀𝑡𝑖 ∈ 𝑇: 𝑒𝑡𝑖 ≈ 0 ∧∑𝑓𝑡𝑖

𝑚

𝑖=1

= 𝑚 

∀ 𝑡𝑖 ∈ 𝑇, 𝑟𝑗 ∈ 𝑅, 𝑡𝑚𝑜 ∈ 𝑇𝑀, The problem is to minimize the time span 𝑇𝑖𝑚𝑒 of software project 𝑃 as 

follow: 

min 𝑓(𝑇𝑖𝑚𝑒) 

Subject to: 

 At least one 𝑟𝑗 assigned to 𝑡𝑚𝑜 should possesses the required competencies for 𝑡𝑖 

represented as: 

∀ 𝑡𝑖 ∈ 𝑇, ∃ 𝑟𝑗 . 𝑇𝐶𝑡𝑖 ∩ (∑∑𝑅𝐶𝑟𝑗 ∗ 𝑄(𝑡𝑚𝑜, 𝑡𝑖) ∗ 𝑄
∗(𝑟𝑗 , 𝑡𝑚𝑜)

𝑛

𝑗=1

𝑣

𝑜=1

) ≠ 𝜙 

 Number of resource participating in one team should not exceeds 12. Otherwise, penalty 

will be applied on the solution as a consequence of overhead communication that is 

anticipated to reduce the team’s productivity and the development speed. 

∀ 𝑡𝑚𝑜 ∈ 𝑇𝑀, ∑𝑄∗(𝑟𝑗 , 𝑡𝑚𝑜) ≤ 12

𝑛

𝑗=1

 

 At least one resource is assigned to each team. 

∀ 𝑡𝑚𝑜 ∈ 𝑇𝑀, 𝑅 ∩ 𝑡𝑚𝑜 ≠ 𝜙 
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 Each team has to be assigned at least to one task. 

∀ 𝑡𝑚𝑜 ∈ 𝑇𝑀, 𝑡𝑖 ∈ 𝑇: ∃∑𝑄(𝑡𝑚𝑜, 𝑡𝑖) ≥ 1

𝑚

𝑖=1

 

 The precedence relationship should be met so that for each task in 𝑇 its predecessors 

must be finished in order the task to be started. 

∀ 𝑡𝑖 ∈ 𝑇 ∃ 𝑑𝑝𝑖 ∈ 𝑇𝐷: 𝑑𝑝𝑖  ⊆ 𝐹𝑇 

 

Dynamic Teams with Binary Participation Method (DTBP) 

The allocation of resources is to tasks performed by assigning each resource to a set of tasks. For 

this resource allocation, the decision variable 𝑄 returns a Binary value for each 𝑟𝑗  ∈ 𝑅, and 𝑡𝑖 ∈ 𝑇, 

where a value of one means that 𝑟𝑗 is assigned to 𝑡𝑖, and zero otherwise. The decision variable 𝑄 

represented as follow: 

𝑄(𝑟𝑗 , 𝑡𝑖) = {
1, 𝑖𝑓 𝑟𝑗  𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡𝑖
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The project time span 𝑇𝑖𝑚𝑒 can be calculated by simulating the work of resources on tasks as a 

dynamic teams over time, so every tick of time is representing a day of work recorded by the 

variable denoted by 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒, and represented as: 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒 = 1,2, … , 𝑥𝑇𝑖𝑚𝑒: 𝑥𝑇𝑖𝑚𝑒 ∈ ℤ+. 

While the time is ticking, and according to dependencies between the tasks, some of these tasks 

are in progress, some are waiting, and others might be finished. The first set that stores the 

operating tasks denoted by 𝑅𝑇 of size 𝑚 is represented by: 𝑅𝑇 = {𝑟𝑡1, 𝑟𝑡2, … , 𝑟𝑡𝑚}. The value for 

each 𝑟𝑡𝑝 ∈ 𝑅𝑇,𝑤ℎ𝑒𝑟𝑒 𝑝 = {1,2, … ,𝑚} is a binary, representing whether 𝑟𝑡𝑝 is currently in progress 

by value of one, or zero otherwise. Similarly, the set of tasks that are finished denoted by 𝐹𝑇 can 

represented as: 𝐹𝑇 = {𝑓𝑡1, 𝑓𝑡2, … , 𝑓𝑡𝑚}. The value of each 𝑓𝑡𝑝 ∈ 𝐹𝑇 is also represented by a binary 

value, which indicate whether 𝑓𝑡𝑝 is finished having value of one, or zero otherwise. 

For each 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒, 𝑡𝑖 that has a value of one in 𝑅𝑇, and 𝑟𝑗  assigned to 𝑡𝑖 such that 𝑄(𝑟𝑗 , 𝑡𝑖) = 1, 

the estimated effort 𝑒𝑡𝑖 on each 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒 is reduced by the sum of the assigned resources’ 

productivity 𝑃𝑟𝑜𝑟𝑗(𝑇𝐶𝑡𝑖) associated with the competency required for task 𝑡𝑖, represented as: 

∀ 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒 ∧  𝑡𝑖 ∈ 𝑇: 𝑟𝑡𝑡𝑖 = 1 

𝑒𝑡𝑖
∗ = (𝑒𝑡𝑖 − (∑𝑃𝑟𝑜𝑟𝑗(𝑇𝐶𝑡𝑖)

𝑛

𝑗=1

∗ 𝑄(𝑟𝑗 , 𝑡𝑖) ∗ 𝑟𝑡𝑖)) ,𝑤ℎ𝑒𝑟𝑒 𝑒𝑡𝑖
∗ = {𝑒𝑡1

∗ , … , 𝑒𝑡𝑚
∗ } 

This loop goes until 𝑒𝑡𝑖
∗  converge to zero, and every element in 𝐹𝑇 has the value of one. Then at this 

stage, the function that returns project completion time (Time Span) denoted by 𝑓(𝑇𝑖𝑚𝑒) can be 

represented as: 
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𝑓(𝑇𝑖𝑚𝑒) = 𝑥𝑇𝑖𝑚𝑒 ⇔ ∀𝑡𝑖 ∈ 𝑇: 𝑒𝑡𝑖 ≈ 0 ∧∑𝑓𝑡𝑖

𝑚

𝑖=1

= 𝑚 

∀ 𝑡𝑖 ∈ 𝑇, 𝑟𝑗 ∈ 𝑅, The problem is to minimize the time span of project 𝑃: 

min 𝑓(𝑇𝑖𝑚𝑒) 

Subject to: 

 At least one 𝑟𝑗 assigned to 𝑡𝑖 should possesses the required competencies for 𝑡𝑖 represented 

as: 

∀ 𝑡𝑖 ∈ 𝑇, ∃ 𝑟𝑗: 𝑇𝐶𝑡𝑖 ∩ (∑𝑅𝐶𝑟𝑗 ∗ 𝑄(𝑟𝑗 , 𝑡𝑖)

𝑛

𝑗=1

) ≠ 𝜙 

 Number of resources participating to perform one task should not exceeds 12. Otherwise, 

penalty will be applied on the solution as a consequence of overhead communication that 

is anticipated to reduce the team’s productivity and the development speed. 

∀ 𝑡𝑖 ∈ 𝑇:∑𝑄(𝑟𝑗 , 𝑡𝑖) ≤ 12

𝑛

𝑗=1

 

 At least one resource is assigned to each task. 

∀ 𝑡𝑖 ∈ 𝑇: ∑𝑄(𝑟𝑗 , 𝑡𝑖) ≥ 1

𝑛

𝑗=1

 

 Each resource has to be assigned to at least one task. 

∀ 𝑟𝑗 ∈ 𝑅:∑𝑄(𝑟𝑗 , 𝑡𝑖) ≥ 1

𝑚

𝑖=1

 

 The precedence relationship should be met so that for each task in 𝑇 its predecessors 

must be finished in order the task to be started.   

∀ 𝑡𝑖 ∈ 𝑇 ∃ 𝑑𝑝𝑖 ∈ 𝑇𝐷: 𝑑𝑝𝑖  ⊆ 𝐹𝑇 

 

Dynamic Teams with Participation Rate Method (DTPR) 

The allocation of resources to tasks is performed by assigning each resource to a set of tasks. 

However, this allocation associates a percentage to represent the amount of participation of each 

resource in each task denoted by 𝑝𝑟, where 𝑝𝑟 = {0, 0.25, 0.5, 0.75, 1}. For each 𝑟𝑗  ∈ 𝑅, and 𝑡𝑖 ∈ 𝑇, 

the variable 𝑄 returns the participation percentage value associated with the assignment of 

resource 𝑟𝑗  to task 𝑡𝑖  representing whether this resource will participate in this task with an 

amount of its working time, or not. The variable 𝑄 represented as follow: 

𝑄(𝑟𝑗 , 𝑡𝑖) =

{
 
 

 
 
1, 𝑖𝑓 𝑟𝑗  𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 100% 𝑡𝑜 𝑡𝑖
0.75, 𝑖𝑓 𝑟𝑗  𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 75% 𝑡𝑜 𝑡𝑖
0.5, 𝑖𝑓 𝑟𝑗  𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 50% 𝑡𝑜 𝑡𝑖
0.25, 𝑖𝑓 𝑟𝑗  𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 25% 𝑡𝑜 𝑡𝑖
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          
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The project time span can be calculated by simulating the work of resources on tasks as dynamic 

teams over time, so every tick of time is representing a day of work recorded by the variable 

denoted by 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒, represented as: 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒 = 1,2, … , 𝑥𝑇𝑖𝑚𝑒: 𝑥𝑇𝑖𝑚𝑒 ∈ ℤ+. While the 

time is ticking, and according to dependencies between the tasks, some of these tasks are in 

progress, some are waiting, and others might be finished. The first set that stores the operating 

tasks denoted by 𝑅𝑇 of size 𝑚, is represented by: 𝑅𝑇 = {𝑟𝑡1, 𝑟𝑡2, … , 𝑟𝑡𝑚}. The value for each 𝑟𝑡𝑝 ∈

𝑅𝑇,𝑤ℎ𝑒𝑟𝑒 𝑝 = {1,2, … ,𝑚} is a binary, representing whether 𝑟𝑡𝑝 is currently in progress by value of 

one, or zero otherwise. Similarly, the set of tasks that are finished denoted by 𝐹𝑇 can represented 

as: 𝐹𝑇 = {𝑓𝑡1, 𝑓𝑡2, … , 𝑓𝑡𝑚}. The value of each 𝑓𝑡𝑝 ∈ 𝐹𝑇 is also represented by a binary value, which 

indicate whether 𝑓𝑡𝑝 is finished having value of one, or zero otherwise. 

For each 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒, 𝑡𝑖 that has a value of one in 𝑅𝑇, and 𝑟𝑗  assigned to 𝑡𝑖 such that 𝑄(𝑟𝑗 , 𝑡𝑖) > 0, 

the estimated effort 𝑒𝑡𝑖 on each 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒 is reduced by the sum of the assigned resources’ 

productivity 𝑃𝑟𝑜𝑟𝑗(𝑇𝐶𝑡𝑖) associated with the competency required for task 𝑡𝑖 multiplied by the 

participation percentage of each, represented as: 

∀ 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒 ∧  𝑡𝑖 ∈ 𝑇: 𝑟𝑡𝑡𝑖 = 1 

𝑒𝑡𝑖
∗ = (𝑒𝑡𝑖 − (∑𝑃𝑟𝑜𝑟𝑗(𝑇𝐶𝑡𝑖)

𝑛

𝑗=1

∗ 𝑄(𝑟𝑗 , 𝑡𝑖) ∗ 𝑟𝑡𝑖)) ,𝑤ℎ𝑒𝑟𝑒 𝑒𝑡𝑖
∗ = {𝑒𝑡1

∗ , … , 𝑒𝑡𝑚
∗ } 

This loop continues until 𝑒𝑡𝑖
∗  converge to zero, and every element in 𝐹𝑇 has the value of one. Then 

at this stage, the function that returns project completion time (Time Span) denoted by 

𝑓(𝑇𝑖𝑚𝑒) can be represented as: 

𝑓(𝑇𝑖𝑚𝑒) = 𝑥𝑇𝑖𝑚𝑒 ⇔ ∀𝑡𝑖 ∈ 𝑇: 𝑒𝑡𝑖 ≈ 0 ∧∑𝑓𝑡𝑖

𝑚

𝑖=1

= 𝑚 

∀ 𝑡𝑖 ∈ 𝑇, 𝑟𝑗 ∈ 𝑅,  The problem is to minimize the time span of project 𝑃: 

min 𝑓(𝑇𝑖𝑚𝑒) 

Subject to: 

 At least one 𝑟𝑗 assigned to 𝑡𝑖 should possesses the required competencies for 𝑡𝑖 represented 

as: 

∀ 𝑡𝑖 ∈ 𝑇, ∃ 𝑟𝑗: 𝑇𝐶𝑡𝑖 ∩ (∑𝑅𝐶𝑟𝑗 ∗ 𝑄(𝑟𝑗 , 𝑡𝑖)

𝑛

𝑗=1

) ≠ 𝜙 

 Number of resources participating to perform one task should not exceeds 12. Otherwise, 

penalty will be applied on the solution as a consequence of overhead communication that 

is anticipated to reduce the team’s productivity and the development speed. 

∀ 𝑡𝑖 ∈ 𝑇, :∑𝑄(𝑟𝑗 , 𝑡𝑖) ≤ 12

𝑛

𝑗=1

 

 At least one resource is assigned to each task. 



143 

 

∀ 𝑡𝑖 ∈ 𝑇: ∑𝑄(𝑟𝑗 , 𝑡𝑖) ≥ 1

𝑛

𝑗=1

 

 Each resource has to be assigned to at least one task. 

∀ 𝑟𝑗 ∈ 𝑅, 𝑡𝑖 ∈ 𝑇: ∃∑𝑄(𝑟𝑗 , 𝑡𝑖) ≥ 1

𝑚

𝑖=1

 

 The precedence relationship should be met so that for each task in 𝑇 its predecessors 

must be finished in order the task to be started.   

∀ 𝑡𝑖 ∈ 𝑇 ∃ 𝑑𝑝𝑖 ∈ 𝑇𝐷: 𝑑𝑝𝑖  ⊆ 𝐹𝑇 

 

It can be seen from the description above that the definition of the four methods is partially similar 

to each other. However, the differences exists in these problems are vital for the solution 

representation, which will be used by the optimization techniques. The following section provides 

the solutions to each method and their optimization process details. 

5.3 Genetic Algorithm Configurations and Operators 

Solution 

As an NP-Hard problem complexity, Meta-Heuristic techniques can be used to approximate a 

solution for the SSSP problem. One of the most used and powerful among the Meta-Heuristic 

techniques is the Genetic Algorithm (GA) [5] proposed by John Henry Holland in [83]. This 

algorithm has been employed for optimizing various software engineering problems [5]. The 

algorithm develops a solution based on the principle of life evolution, and natural selection of 

genes. The heuristics in this algorithm are designated in two operations, which are crossover, and 

mutation. The main parts that should be considered while using this algorithm to solve the SSSP 

problem can be illustrated from the work of [18, 21, 22]. These parts are the solution 

representation and encoding mechanism, initial population for the solution, stochastic 

operations, objective function containing the team allocation method, commitment of resources, 

and scheduling technique for fitness selection, and the optimizer settings proposed. Most of the 

approaches that propose a solution for the SSSP using a Meta-Heuristic technique follow these 

parts in their discussion. 

We have employed this algorithm to implement each allocation method -described previously in 

Section 5.2- combined with a fitness function that simulates project time with consideration of 

dependencies between project tasks, and resources’ competencies and productivity. The 

description of the GAs, and their main parts of the optimization process are depicted in the 

following sections.  
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5.3.1 Solution Representation and Chromosome 

Encoding 

The solution representation for an optimization problem encompasses a solution structure and its 

possible encoding system for the problem elements [123]. The solution structure can be 

represented by a one (1D, or vector), two (2D), or a multi-dimensional (ND) matrix. The basic 

solution structure in GA is a vector chromosome. Each element in the chromosome structure is 

called gene, and the content of this gene is called an allele [86]. The values of a chromosome can 

be encoded using different encoding systems. The encoding of a chromosome can be in a binary, 

permutations, value, or tree structure of genotype [86].  

The solution representation of the first team allocation method named “Static Teams with Queue 

Simulator” (STQS) is illustrated from the approaches in [20-22, 94]. This method uses two vector 

chromosomes. The first chromosome represents the resources and their distribution into teams, 

and the second one represents the tasks and their order in a single queue system. The 

representations of both chromosomes having n number of resources, and m number of tasks are 

depicted in the following Figure 21. 

 

Figure 21: STQS method Chromosomes 

The first chromosome - in Figure 21(a) – represents the resources distribution solution, where 

each gene represents a resource, and each allele represents a team. That is, the value for each 

resource (gene) holds the team number that this resource is assigned to. The encoding system 

used for this chromosome is represented by an integer value encoding. The distribution of 

resources into teams should be performed in this chromosome according to the pigeonhole 

principle, which as a key aspect allows more than one resource to have the same team number in 

the solution (multiple genes have the same allele value) [124]. For instance, resource 1 and n in 

the figure both work in team 2. 

The second chromosome depicted in Figure 21(b) provides the ordering solution representation 

that show the execution order for each project task i.e. to where each task should be sorted in the 

queue. Each gene in this chromosome represents a task, and each allele represents the task order 

in the queue. Unlike the previous chromosome, the ordering representation do not allow similarity 

between allele values. Therefore, the encoding system used in this solution representation to 
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comply with this restriction is a permutation encoding. For example, if we have three elements 

representing the project tasks, the encoding of these tasks for their order within the queue using 

the permutation encoding can be 1, 2, 3, or 2, 1, 3, or 3, 1, 2, etc.  

The second resource allocation method defined in this chapter is “Static Teams with Time 

Simulator” (STTS).  The solution representation for this method is depicted in Figure 22 by two 

chromosomes. The structure of those chromosomes is a vector. The first chromosome similar to 

the one in STQS method represents the distribution of resources into teams. Unlike STQS method 

representation, the second chromosome in this method solution represents the task allocation by 

providing the team number that is responsible to work on each task. This representation of STTS 

method solution having n number of resources, and m number of tasks is depicted as follow. 

 

 

Figure 22: STTS Method Chromosomes 

From the previous Figure 22, it can be seen that the pigeonhole principle again is the one that 

forms the solution for both chromosomes. For the first chromosome representation (a), the 

resources are distributed into teams, where each gene represents a resource, and each allele 

represents a team. This representation provides to which team each resource is assigned to. 

Representation (b) on the other hand, depicts the distribution of teams to tasks. From this 

representation, it can be seen that which task should be done by which team. For example, from 

the Figure 22(b), we can see that task 2 is assigned to team 1, and task 3 is assigned to team 3. 

The third method of “Dynamic Teams with Binary Participation” (DTBP) depicted in the following 

Figure 23 represents the solution by a 2-D matrix structure. The vertical dimension (columns) 

represents the resources, and the horizontal one (rows) represents project tasks. This 

representation having n number of resources, and m number of tasks is depicted as follow. 

 

Figure 23: DTBP Method Chromosome 

 

 1 2 3 … n 

1 1 0 1 … 1 

2 0 0 1 … 0 

3 0 1 0 … 1 

: 0 1 1 … 1 

m 1 1 0 … 1 
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From Figure 23, it can be seen that this representation assigns each resource with a high 

probability to serve in different teams during project time. For instance, it can be seen in Figure 

23 that resource 1 assigned with resources 3, and n to work on tasks 1, where on task m this 

resource works with resources 2, and n. We have defined this representation as an arbitrary 

assignment of resources to tasks. Each gene in this chromosome has two positioning points (v and 

h) that define the resource (v) and the task (h) that (s)he assigned to. In addition, the allele of each 

gene should be encoded using the binary system, which implies whether resource (v) is assigned 

to task (h) by value of one, or zero otherwise. This representation moreover, requires important 

assignment constraint in order to gain realistic and reasonable solution. For instance, this 

representation can provide a solution where all resources are assigned to all tasks. For this reason, 

a constraint is implemented with this representation to make sure that any resource works on 

more than one task at a time, its productivity will be normalized to the number of these 

simultaneous tasks. By doing so, the solution then of having all the resources works on all the 

tasks will provide low quality solution of project time span.  

The fourth method of “Dynamic Teams with Participation Rate” (DTPR) represents the solution 

by 2-D structure similar to DTBP. This representation having n number of resources, and m 

number of tasks is depicted in the following Figure 24. 

 

Figure 24: DTPR Method Chromosome 

From Figure 24, it can be seen that this assignment representation is similar to the one in DTBP 

method. However, this method enforces the resources to partially dedicate a percentage of their 

working time to each task to which they are assigned. With five different values described in the 

problem formalization Section 5.2 of this method, each allele in the chromosome representing the 

gene (v, h) of resource (v) and task (h) can hold a real number value encoding from the range {0, 

0.25, 0.5, 0.75, 1}. It is noteworthy that the same constraint described for the pervious method 

DTBP is adopted in this method implementation too. This is to make sure that a full dedication of 

all the resources to all tasks, implying overtime work assignment is not considered. 

 

 

 1 2 3 … n 

1 0.25 0.5 0.75 … 0 

2 0 0 1 … 0.5 

3 0 0.5 0.25 … 1 

: 0.75 1 1 … 0.25 

m 1 0.25 0 … 0.5 
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5.3.2 Initial Population 

Two methods can be used to create an initial population for a solution using GA. The first one is 

random initialization, which populates the solution randomly. The second one is heuristic 

initialization that uses one of the heuristic techniques such as Greedy, Hill Climbing, etc. -see 

Section 2.2- to create an initial population [97]. For a diversity of solutions within the initial 

population, the random initialization can provide better results of optimality than the heuristic 

one for two reasons. Heuristic methods can lead for initializing redundant individuals over the 

population, which will lead to less diversity of solutions. In addition, GA has a selection operation 

to heuristically create new population(s).  

The initial population used for all the methods is the random initialization with value encoding 

either for team formation, queue order, team allocation, or both 2-D matrix chromosome creation. 

For more information about this particular GA aspect, see [97] [86, 123]. 

5.3.3 Crossover Operator 

One of the stochastic operations in GA is crossover. This operation creates new solutions by 

exchanging subparts of two single chromosomes to create two new ones mimicking the biological 

combination of parents’ chromosomes into new child chromosomes [86]. Crossover can be 

implemented using different operators that identify which subparts are to be selected for the new 

child and how they will be combined into one. These crossover operations can be a single-point, 

two-point, uniform, and arithmetic process [86, 97, 102].  

Many of the SSSP approaches have modified their own crossover operation according to their 

representation of the problem, and the solution. While two different chromosome structures are 

used by the team allocation methods, we have formed two types of crossover each to fit with the 

corresponding method for the solution structure.  

The chromosomes used for STQS and STTS methods are modified for the experiments to be in a 

single chromosome representation combining both resources, and tasks. This combination of two 

chromosomes into one is inspired by the work of [22], which can speed up the selection of fitted 

solutions by the objective function. The crossover operation starts by dividing the single 

chromosome into two parts, based on the number of project tasks (m) and the resources assigned 

to it (n) depicted by the example of five resources, and five tasks in the following Figure 25.  
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Figure 25: STQS, and STTS methods Chromosome separation 

As can be seen from Figure 25 above, according to the number of resources (n=5) and tasks (m=5), 

the single chromosome is separated into two having five resources, and five tasks. Unlike the 

operator used in [22], those two new chromosomes are stochastically modified by two-point 

crossover. However, we have modified this crossover to apply inversion operation on the values 

of the area defined between the two random points.  

Employing two parents in crossover operation for those particular allocation methods, unless a 

constraint checker is exists, can lead to an invalid solution(s). It is important to notice that the 

random creation of solutions in the population for those allocation methods can create a solution 

that holds a number of teams different from any other ones. For instance, the first solution in the 

population might have 4 teams that the resources have been distributed to and assigned to 

different tasks, whereas another solution could have only two teams. If we apply crossover on 

those two solutions having them as parents, then there might be one of the tasks in the first 

solution that has been assigned to a team that no longer exists after the crossover.  Consequently, 

applying two point crossover with two parents to create a child for those two allocation methods 

might produce an invalid solution(s). Therefore, a modified operator has been created to ensure 

that none of the resources nor the teams are left with an invalid assignment. The process to 

crossover both chromosomes depicted by the example in the following Figure 26. 

 

Figure 26: STQS, and STTS methods Crossover 
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From Figure 26, it can be seen that both chromosomes have a subpart of their solutions changed. 

As the operator adopted for both allocation methods is a 2-points crossover, the area between 

those two random points is the one that the crossover will be applied to. In chromosome (a) for 

instance, the crossover area selected is between genes 3 to 4 to swap their values. The crossover 

operation has swapped the resources 3 and 4 to teams 1 and 3 respectively.  

On the other hand, the crossover operation applied on “tasks’ chromosome” depicted in Figure 

26(b) has selected a random area between tasks 1 to 3. The resulting operation assigned task 1 to 

team 1, and task 3 to team 2. Noteworthy, this operation has left task 2 with the same assignment 

to team 3, as our proposed crossover is to invert the values for the area defined between two 

random points. It is important to notice that the previous two figures representing crossover of 

both STQS and STTS, provides examples on how the operation can be performed but not to 

provide the exact operation of both. STQS differ from STTS by the task chromosome 

representation, which distributes the task orders for STQS and the one in STTS distribute the tasks 

on teams. 

The second crossover proposed is a 2-points crossover operator for 2-D matrix, which can be 

applied on DTBP and DTPR methods as both have the same chromosome structure. This 

operation selects two random point for each dimension of the 2-D matrix depicted by the example 

in the following Figure 27.  

 

Figure 27: DTBP, and DTPR methods Crossover 

In Figure 27, the vertical dimension represents the resources, and the horizontal one represents 

the tasks. It can be seen from the figure that two points for each dimension are selected by the 

crossover operator. The crossover selected area for the resource dimension is between resources 
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4, and 5. On the other hand, the crossover selected area for the task dimension is between tasks 3, 

and 4. The crossover operator has inversely changed the values of each area similar to the methods 

used for STQS and STTS. For instance, the assignment values have been swapped between 

resources 5 and 4 by applying the crossover on the resource dimension. On the other hand, the 

assignment values of the task dimension have been swapped between tasks 3 and 4 by the same 

crossover operation. 

5.3.4 Mutation Operator 

Mutation in GA, as one of the stochastic operations, involves random changes on the solution 

chromosome generated. Mutation operator is also used to avoid the generation of same solutions, 

by which it can lead for more exploration in the solution space for an optimal or near optimal 

result [86]. That is, the resulting chromosome by mutation operation can move the search to a 

global area in the solution space [103]. This operation is usually applied with a low probability for 

creating diversity of chromosomes in the population of GA [97]. Moreover, many approaches such 

as the work of [15] have employed the 1+1 EA, which merely use the mutation, and eliminate the 

crossover from the approach.  

There are different ways of mutating a chromosome. One way can be by randomly generating a 

new value for a random number of bits, another one is by flipping the bits of the chromosome 

[97]. Additional to those mutations, there are five operators, which are bit flip or random resetting 

of single gene, swapping of two points, scrambling a part of the chromosome for permutation 

encoding, and inversion for a part of the chromosome to flip it [102]. While mutation is related to 

the process part in GA for exploration of search space [103], we have increased the rate of mutation 

for the experiments on the team allocation methods to explore a wider area of the solution space 

for global optima exploration.  

For STQS and STTS methods, we have developed a mutation process that starts with dividing the 

chromosome into two parts as both methods combine two representations into a single 

chromosome. Each part from this division then forms a chromosome that contains the 

representation of either the resources, or tasks. Unlike the crossover of both methods at this point 

the employed mutation operator for the STQS method differs from the STTS one. Mutation used 

for the STQS method for both chromosomes is the swap mutation. This mutation randomly selects 

two genes and exchange their values. Mutation for the STTS method chromosomes on the other 

hand, performs a modified mutation on two random genes. Our modified mutation after the 

separation of the single chromosome into two, works as follow:  
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 For each chromosome, two genes should be selected. 

 Starting by the resources’ chromosome, a new value for each selected gene should 

randomly be generated according to the maximum team number (gene value) exists 

within the chromosome. 

 After mutating the resources chromosome, the operator moves to the tasks chromosome, 

and stores the new maximum team number value of the resource chromosome. 

 The operator then checks whether any gene has a team number that does not exists in the 

mutated resources chromosome, if so: 

- The chromosome reseeded those genes with a new random team number according 

to the new maximum team value. or 

- The operator continues generating a new team for each selected gene. 

This modified mutation operator is depicted in the following Figure 28.  

 

Figure 28: STTS method Chromosome Mutation 

As can be seen in the Figure 28, two random genes in each solution representation chromosome 

are selected. In Figure 28 (a), gene 2, and 5 are selected, where in Figure 28 (b), gene 2, and 3 are 

selected. Applying mutation on these selected genes has made each having a new random value. 

For instance, after applying mutation on gene 5 in chromosome (a) its value changed from 3 to 1, 

and for gene 3 in chromosome (b) its value changed from 1 to 3. These generated values are 

representing the team number in both representations. It is noteworthy that the mutation process 

has continued on chromosome (b) to mutate both selected genes with same consideration of the 

maximum number of teams left from the resources chromosome mutation. This can be seen by 

mutation of gene 3 in chromosome (b), in which the value of this gene has changed to 3 as this 

team value still exists after chromosome (a) mutation.  

We also propose a modified mutation for both DTBP and DTPR methods as their solution is 

represented by a 2-D matrix chromosome. This modified mutation selects two rows, and two 

columns to mutate the 2-D chromosome. The operator starts by selecting two random columns 
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according to the number of resources, and two random rows according to the number of tasks. 

Each gene exists within the selected columns and rows will be individually mutated according to 

the assignment value associated for the targeted method. For example, if this chromosome 

represents the DTBP method, then each gene will be either mutated from 0 to 1, or vice versa. For 

DTPR method however, mutation will randomly select a value for the gene from the range {0, 

0.25, 0.5, 0.75, 1}. It is important to notice that using mutation on this representation can lead to 

have the values for the whole selected rows or columns within the chromosome similar to the 

values prior mutation. Therefore, our modified mutation for both methods’ chromosomes 

eliminates the previous value of the genes from the random generation of new ones. 

5.3.5 Selection Operator 

The selection as one of the heuristic operations in GA selects the fittest chromosomes according 

to their solution fitness value to the objective function to be used on producing a new 

population(s). Selection can be performed using different methods [86]. These methods are 

roulette wheel, stochastic universal sampling, tournament, steady state, rank, elitism, and random 

selections [86]. It is crucial to define the best selection process for a successful GA [97]. That is 

the selection process can either lead for an optimal or near optimal results by good chromosomes’ 

“solution” diversity, or undesirable solution of the known “premature convergence” by dominating 

of one extremely fit solution over the entire population. The implementation of the team allocation 

methods was performed using Matlab 2016, with Global optimization toolbox. The available 

selection types in Matlab are five. These types are stochastic uniform, remainder, uniform, 

roulette, and tournament selections. However, two selection operators are mainly used by many 

SSSP approaches as in [20, 22], which are the roulette wheel, and tournament selections. The one 

that has been used in all our experiments for this chapter is the roulette wheel selection. For more 

details and description about these operators, the reader can refer to [86, 97].  

5.3.6 Fitness Function 

The objective function defined for the SSSP problem in Section 1.2 is a cost function searching for 

the most minimized solution of software project time span. As the team allocation methods 

optimization problem is part of SSSP, the fitness function developed to test these methods 

involves simulation of project time. Simulating project time within the fitness function of an 

optimization technique can be performed using different simulation models. Two main time 

simulators however are developed each of which can be used for specific team allocation 

method(s). The first simulates project time for a queueing system that has a queue of project tasks 
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that need to be served by different teams, so the time consumed to serve all the tasks is the 

estimated project time span similar to what proposed by [20, 125]. The other one simulates project 

time as the project progress while the assigned resources performing project tasks i.e. the time is 

counted according to a counter and the end value of this counter is the estimated project time 

span.  

The fitness function used for the STQS method is adopted from [20, 22, 125]. This function 

simulates the development as a queueing system to estimate project time span. This system has a 

queue that holds the tasks to be done, and the teams that are servers to do the service for each 

queue element (task). It is worth mentioning that the work in [22] provides the time estimate of a 

software project according to the queue time. The queue time starts when the first package in the 

queue is despatched, and ends when the last package is completed. Therefore, their time estimate 

depends on the definition of start and end time for each package in the queue. So, the end time of 

the last package is the project time span. Unlike the time estimate provided in these approaches, 

project time span considered by the fitness function developed for the team allocation method 

STQS is the longest team time among the teams (servers). The description of the fitness function 

of project time simulation is represented by the algorithm depicted in the following Figure 29. 
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Figure 29: Queueing Simulator Fitness Function 

It can be seen from Figure 29 that the fitness function requires three inputs. These inputs should 

provide information about project human resources (𝑅), project tasks (𝑇), and the heuristic 

solution (𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛) generated by the GA to measure its fitness. According to these inputs, the 

simulator can then sort the resources into teams and store them in a 𝑇𝐹 set throughout the lines 

7 to 9. Noteworthy that 𝑇𝐹 is a cell array, and the part of the 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 involved in defining the 

teams is the first part of the solution (chromosome) that represents the resource assignment to 

 

1 Function fitnessValue = QueueSimulator (Solution, R, T) 

2 
𝐿𝑒𝑡 𝑪𝒂𝒑𝒂 = 𝟎,𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑡𝑜 ℎ𝑜𝑙𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑎𝑚  
𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑎𝑠𝑘  

3 𝐿𝑒𝑡 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝑏𝑒 𝑡ℎ𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

4 𝐿𝑒𝑡 𝑹 𝑏𝑒 𝑡ℎ𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠′𝑠𝑒𝑡 

5 𝐿𝑒𝑡 𝑻 𝑏𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑡𝑎𝑠𝑘𝑠′  𝑠𝑒𝑡 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑚 

6 𝐿𝑒𝑡 𝑻𝑭 𝑏𝑒 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 𝑡𝑜 ℎ𝑜𝑙𝑑 𝑡ℎ𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑡𝑒𝑎𝑚 

7 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟 𝑖𝑛 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 

8         𝑇𝐹 (𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑟)).𝑎𝑑𝑑 (𝑟) 

9 𝒆𝒏𝒅 𝑓𝑜𝑟 

10 𝐿𝑒𝑡 𝒕𝒆𝒂𝒎𝑻𝒊𝒎𝒆 𝑏𝑒 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 𝑡𝑜 ℎ𝑜𝑙𝑑 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑏𝑦 𝑒𝑎𝑐ℎ 𝑡𝑒𝑎𝑚 

11 𝐿𝑒𝑡 𝑭𝒊𝒏𝑻𝒂𝒔𝒌𝒔 𝑏𝑒 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 𝑡𝑜 ℎ𝑜𝑙𝑑 𝑡ℎ𝑒 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑡𝑎𝑠𝑘𝑠 

12 𝐿𝑒𝑡 𝑪𝒖𝒓𝒓𝒆𝒏𝒕𝑻 = 𝑡1 

13 𝐿𝑒𝑡 𝒊𝒅𝒙 = 1 

14 𝒘𝒉𝒊𝒍𝒆 ∑𝐹𝑖𝑛𝑇𝑎𝑠𝑘𝑠 < 𝑚 

15             𝑖𝑑𝑥 = 𝑖𝑑𝑥(min(𝑡𝑒𝑎𝑚𝑇𝑖𝑚𝑒)) 

16             𝒊𝒇 𝑑𝑝𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 = 0 ||𝑎𝑙𝑙 𝑖𝑛 𝑑𝑝𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇  ⊆ 𝐹𝑖𝑛𝑇𝑎𝑠𝑘𝑠 

17                     𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑟𝑗  𝑖𝑛 𝑇𝐹𝑖𝑑𝑥  

18                            𝐶𝑎𝑝𝑎 = +∑𝑝𝑟𝑜𝑟𝑗 (𝑇𝐶𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 ) 

19                     𝒆𝒏𝒅 𝑓𝑜𝑟 

20                     𝑡𝑒𝑎𝑚𝑇𝑖𝑚𝑒𝑖𝑑𝑥 = + (
𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇
𝐶𝑎𝑝𝑎

) 

21                     𝑟𝑒𝑚𝑜𝑣𝑒 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 𝑓𝑟𝑜𝑚 𝑇 

22                     𝐹𝑖𝑛𝑇𝑎𝑠𝑘𝑠𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇  
= 1 

23            𝒆𝒍𝒔𝒆 

24                    𝑠𝑒𝑛𝑑 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 𝑏𝑎𝑐𝑘 𝑜𝑓 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒 

25            𝒆𝒏𝒅 𝑖𝑓 

26 𝒆𝒏𝒅 𝑤ℎ𝑖𝑙𝑒 

27 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑉𝑎𝑙𝑢𝑒 = max(𝑡𝑒𝑎𝑚𝑇𝑖𝑚𝑒) 

28 𝒆𝒏𝒅 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
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teams. Based on the formation of teams, the fitness function will be able to estimate the time span 

of each task.  

The first part of the task time span estimation is depicted in the lines 17 to 19 in Figure 29. This 

part involves determining the cumulative productivity (𝐶𝑎𝑝𝑎) of the available team 𝑇𝐹𝑖𝑑𝑥  who will 

perform the current task 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 depicted by line 18. This productivity is calculated by the 

summation of each resource’s productivity 𝑝𝑟𝑜𝑟𝑗 assigned to that team. Resource’s productivity 

however is represented by different competencies, and it can be retrieved according to the 

competency required for the current task 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 represented by 𝑇𝐶𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 .  

Based on team’s productivity, the estimation of task time span can be calculated by the division of 

the estimated effort of the current task 𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇  over the productivity (𝐶𝑎𝑝𝑎) of the assigned team. 

This value will be added to the team’s time matrix 𝑡𝑒𝑎𝑚𝑇𝑖𝑚𝑒𝑖𝑑𝑥for the corresponding available 

team index 𝑖𝑑𝑥 depicted by line 20. Once the calculation is finished, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 will then be 

removed from the task queue 𝑇 depicted by line 21, and in line 22 this task will be recorded as 

finished in the (𝐹𝑖𝑛𝑇𝑎𝑠𝑘𝑠𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇) matrix. The simulator in this fitness function keeps tracking 

dependency between tasks throughout the simulation of the queue system depicted in line 16. 

Once the precede task(s) in 𝑑𝑝𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 for 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 are recorded in 𝐹𝑖𝑛𝑇𝑎𝑠𝑘𝑠𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 matrix, 

(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇) can be then proceed to the next available team 𝑇𝐹𝑖𝑑𝑥. The identification of a team’s 

availability is depicted in line 15 as checking the least team’s time among the set 𝑡𝑒𝑎𝑚𝑇𝑖𝑚𝑒 and 

recorded the first least working time among the teams in 𝑖𝑑𝑥. This simulation last as the 

summation of the binary array 𝐹𝑖𝑛𝑇𝑎𝑠𝑘𝑠 is less than the number of project tasks. Once all the tasks 

are finished, which implies that the sum of 𝐹𝑖𝑛𝑇𝑎𝑠𝑘𝑠 equals 𝑚, the return value of the fitness 

function is the maximum team time among the set 𝑡𝑒𝑎𝑚𝑇𝑖𝑚𝑒. 

The second fitness function proposed for simulating the project time span of the team allocation 

methods STTS, DTBP, and DTPR is depicted in the following Figure 30. However, the solution 

generated for “resources to teams” assignment, and “teams to tasks” allocation by the GA for each 

method differs from one method to another. The solution of STTS method combines two 

representations into a single array. This array holds the information regarding the resources and 

their distribution to teams represented by the first part of the array, and the team allocation to 

each task represented by the second part. At the beginning of the fitness function this array will 

be divided into the original parts corresponding to each representation of resources and tasks. On 

the other hand, the solution structure of both DTBP and DTPR is 2-D matrix. This solution holds 

the representation of resource in the vertical dimension, and their assignment to tasks either for 

binary or percentage to the tasks in the horizontal dimension. The solution generated by the GA 

are named 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 and after its divisions for the STTS method, the part that represents the 
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resources’ distribution is named 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑅, and the part that represents team distribution to tasks 

is named 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑇. 

The information held by the GA solution are then used by the fitness function simulation model 

to calculate project time. This model simulates project schedule in terms of days, and considers 

four vectors. These vectors are depicted in Figure 30 by four sets. The first set (primaryTasks) 

should initially hold all project tasks, and continue to hold those task(s) that are still waiting to be 

performed. The second one (unlockedTasks) holds the tasks that have no dependency constraints 

or those task(s) where their predecessor(s) as the time progress are completed. The third one 

(operatingTasks) holds the tasks that are under development. And finally the fourth one 

(finishedTasks) holds the tasks that are completed. 

At the beginning of the simulation, the set (primaryTasks) will hold all project tasks, and 

(finishedTasks) must be an empty set. Any task in (primaryTasks) that has no dependency 

constraint will be moved then to (unlockedTasks) depicted in the figure by lines from 9 to 14. The 

simulation accordingly starts by moving the task(s) in (unlockedTasks) to the set (operatingTasks) 

so that all the tasks in (operatingTasks) can be performed at the same time depicted by line 17. 

For each task in this set, the associated productivity to its required skill(s) possessed by each 

resource assigned to it 𝑝𝑟𝑜𝑟(𝑇𝐶𝑡𝑎) will be stored in 𝐶𝑎𝑝𝑎 variable that represents the resources 

capability depicted by line 21. However, the way of determining the value of this variable differs 

from one allocation method to another.  

A. For STTS method, 𝐶𝑎𝑝𝑎 value will be determined by first identifying from 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑇 the 

allocated team to 𝑡𝑎, and then for each resource 𝑟 assigned to this team exposed 

in 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑅 his/her 𝑝𝑟𝑜𝑟(𝑇𝐶𝑡𝑎) will be stored in 𝐶𝑎𝑝𝑎.  

B. For DTBP method, 𝐶𝑎𝑝𝑎 value will be determined as depicted in line 21 in the figure. 

However, all the resources assigned to the task 𝑡𝑎 will be identified by the vertical lines 

that have the value of 1 corresponding to the horizontal line of 𝑡𝑎. 

C. For DTPR method, 𝐶𝑎𝑝𝑎 value will be determined by multiplying 𝑝𝑟𝑜𝑟(𝑇𝐶𝑡𝑎) by the 

participation rate defined for resource 𝑟 in the GA solution to the corresponding task 𝑡𝑎 

in the horizontal line represented by (𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑟, 𝑡𝑎)). The resources assigned to 𝑡𝑎 can be 

identified if 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑟, 𝑡𝑎) > 0. 
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1 
𝐿𝑒𝑡 𝑪𝒂𝒑𝒂 = 0,𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑡ℎ𝑎𝑡 ℎ𝑜𝑙𝑑𝑠 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓𝑎𝑙𝑙 𝑡ℎ𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒  
        𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑎 𝑡𝑎𝑠𝑘 

2 𝐿𝑒𝑡 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝑏𝑒 𝑎 ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝐺𝐴 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

3 𝐿𝑒𝑡 𝒑𝒓𝒊𝒎𝒂𝒓𝒚𝑻𝒂𝒔𝒌𝒔 = 𝑇,𝑎 𝑠𝑒𝑡 𝑡ℎ𝑎𝑡 ℎ𝑜𝑙𝑑𝑠 𝑎𝑙𝑙 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑡𝑎𝑠𝑘𝑠 

4 
𝐿𝑒𝑡 𝒖𝒏𝒍𝒐𝒄𝒌𝒆𝒅𝑻𝒂𝒔𝒌𝒔 𝑏𝑒  
       𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 𝑡𝑜 ℎ𝑜𝑙𝑑 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘𝑠 that are 𝑟𝑒𝑎𝑑𝑦 𝑡𝑜 𝑝𝑒𝑟𝑓𝑜𝑟𝑚  

5 𝐿𝑒𝑡 𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒏𝒈𝑻𝒂𝒔𝒌𝒔 𝑏𝑒 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 𝑡𝑜 ℎ𝑜𝑙𝑑 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘𝑠 𝑖𝑛 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 

6 𝐿𝑒𝑡 𝒇𝒊𝒏𝒊𝒔𝒉𝒆𝒅𝑻𝒂𝒔𝒌𝒔 𝑏𝑒 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 𝑡𝑜 ℎ𝑜𝑙𝑑 𝑡ℎ𝑒 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑡𝑎𝑠𝑘𝑠 

7 𝐿𝑒𝑡 𝒙𝑻𝒊𝒎𝒆 = 0, 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑡𝑖𝑚𝑒 

8 
𝐿𝑒𝑡 𝑺𝒄𝒏𝒕 𝑏𝑒 𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑡𝑜 ℎ𝑜𝑙𝑑 𝑡ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓  
       𝑠𝑖𝑚𝑢𝑙𝑎𝑛𝑒𝑜𝑢𝑠 𝑡𝑎𝑠𝑘𝑠 𝑎 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑡 𝑎 𝑡𝑖𝑚𝑒 𝑖𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑖𝑛𝑔 

9 𝒇𝒐𝒓 𝑎𝑙𝑙 𝑡𝑎𝑠𝑘𝑠 𝑡𝑖  𝑖𝑛 𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑇𝑎𝑠𝑘𝑠 

10           𝒊𝒇 𝑑𝑝𝑡𝑖 = 0 

11                𝑟𝑒𝑚𝑜𝑣𝑒 𝑡𝑖  𝑓𝑟𝑜𝑚 𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑇𝑎𝑠𝑘𝑠 

12                𝑎𝑑𝑑 𝑡𝑖  𝑡𝑜 𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑇𝑎𝑠𝑘𝑠 

13           𝒆𝒏𝒅 𝑖𝑓 

14 𝒆𝒏𝒅 𝑓𝑜𝑟 

15 𝒘𝒉𝒊𝒍𝒆 ∑𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑇𝑎𝑠𝑘𝑠 < 𝑚 

16            𝑥𝑇𝑖𝑚𝑒 = +1 

17            𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝑇𝑎𝑠𝑘𝑠 = 𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑒𝑑𝑇𝑎𝑠𝑘𝑠 

18            𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑡𝑎  𝑖𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝑇𝑎𝑠𝑘𝑠 

19                𝑆𝑐𝑛𝑡 = 0 

20                     𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑟 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡𝑎  

21                             𝐶𝑎𝑝𝑎 = +∑𝑝𝑟𝑜𝑟(𝑇𝐶𝑡𝑎 ) 

22                             𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑡𝑢  𝑖𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝑇𝑎𝑠𝑘𝑠 

23                                  𝒊𝒇 𝑟 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡𝑢  

24                                          𝑆𝑐𝑛𝑡 = +1 

25                                  𝒆𝒏𝒅 𝑖𝑓 

26                             𝒆𝒏𝒅 𝑓𝑜𝑟 

27                     𝒆𝒏𝒅 𝑓𝑜𝑟 

28                     𝐶𝑎𝑝𝑎 =
𝐶𝑎𝑝𝑎

𝑆𝑐𝑛𝑡
 

29                     𝑒𝑡𝑎 = 𝑒𝑡𝑎  − 𝐶𝑎𝑝𝑎 

30                     𝒊𝒇 𝑒𝑡𝑎  ≈ 0 

31                          𝑟𝑒𝑚𝑜𝑣𝑒 𝑡𝑎   𝑓𝑟𝑜𝑚 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝑇𝑎𝑠𝑘𝑠 

32                          𝑟𝑒𝑚𝑜𝑣𝑒 𝑡𝑎   𝑓𝑟𝑜𝑚 𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑇𝑎𝑠𝑘𝑠 

33                          𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑇𝑎𝑠𝑘𝑠𝑡𝑎  = 1 

34                    𝒆𝒏𝒅 𝑖𝑓 

35                    𝒇𝒐𝒓 𝑎𝑙𝑙 𝑡𝑎𝑠𝑘𝑠 𝑡𝑤  𝑖𝑛 𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑇𝑎𝑠𝑘𝑠 𝑑𝑜 

36                            𝒇𝒐𝒓 𝑎𝑙𝑙 𝑡𝑎𝑠𝑘𝑠 𝑡𝑧   𝑖𝑛 𝑑𝑝𝑎  𝑑𝑜 

37                                    𝒊𝒇 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑇𝑎𝑠𝑘𝑠𝑑𝑝𝑎 = 1 

38                                         𝑎𝑑𝑑 𝑡𝑤  𝑡𝑜 𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑇𝑎𝑠𝑘𝑠 

39                                    𝒆𝒏𝒅 𝑖𝑓 

40                           𝒆𝒏𝒅 𝑓𝑜𝑟 

41                    𝒆𝒏𝒅 𝑓𝑜𝑟 

42            𝒆𝒏𝒅 𝑓𝑜𝑟 

43 𝒆𝒏𝒅 𝑤ℎ𝑖𝑙𝑒 
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Figure 30: Time Simulator Fitness Function 

The value in 𝐶𝑎𝑝𝑎 moreover will be normalized according to the variable𝑆𝑐𝑛𝑡, which holds the 

number of simultaneous tasks that each resource is working on in (operatingTasks) depicted by 

the lines from 22 to 28. The estimated effort 𝑒 of task 𝑡𝑎will be according reduced by the 

normalized 𝐶𝑎𝑝𝑎 value depicted by line 29. Once 𝑒𝑡𝑎 converges to zero, task 𝑡𝑎 will be removed 

from both (operatingTasks) and (unlockedTasks) sets, and moved to the set (finishedTasks) 

depicted by lines from 30 to 34. Any task waiting in (primaryTasks) that requires 𝑡𝑎to be finished 

will accordingly be moved to (unlockedTasks) depicted by the lines from 35 to 41. Each loop in 

this simulator represents a day, and it will last till the summation of (finishedTasks) reaches the 

number of project tasks 𝑚 depicted in line 15. The last value of the simulator loops stored in 𝑥𝑇𝑖𝑚𝑒 

will represents the estimated project time span depicted by line 16. 

It is noteworthy that the fitness function can combine both the objective and the constraints while 

searching for an optimized solution. Each fitness function for each team allocation method 

combines in addition to the fitness functions listed above three constraints. These constraints are 

developed to ensure that each solution is close as possible to a feasible one. The first constraint 

examines whether the solution met the expectation of skills or not. The second one examines 

whether the solution meets the expectation of distributing all the teams or resources to the project 

tasks i.e. at least one resource or team is assigned to each task, and each resource or team should 

be at least assigned to one task. Moreover, each task or team should have no more than 12 

resources assigned to it. These constraints are discussed in Section 5.2 for each method. The 

precedence relationship constraint on the other hand has been relaxed and the dependency 

constraint violation is repaired as by the fitness function described for STQS method in Figure 29 

by line 16 and 24 to reorganize the task orders, and for the remaining methods depicted in Figure 

30 by allowing only the tasks that have no dependency or those their predecessor(s) are finished 

using the four sets.  

5.4 Experiment Settings and Results 

The experiments performed on the four team allocation methods follow the systematic 

comparison process described by Chapter 3 to compare between these methods. This process 

starts with organizing the approaches subject to comparison according to the complexity classes 

they are suitable to deal with described in Section 3.3 of the dataset chapter. As the 

implementation of the team allocation methods is capable to handle the inputs of dependency, 

skills, and productivity, all these methods are suitable to all four classes, which implies that they 

are capable to handle all the five dataset complexity levels presented in Section 3.4. The second 

step of the benchmarking and comparison process is to run each approach multiple times using 
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the conforming dataset level to each class that the approach is capable to perform. For each run, 

the process suggests recording the optimal project time, and computation time metrics values. 

Then according to the results of each approach for each level the comparison measures should be 

compiled to demonstrate the efficiency, accuracy, and performance of each approach.  

The results by following this process and using all the datasets are obtained using the Matlab 

R2016 supported by Matlab Global Optimization Toolbox. The system used for the experiments 

combine Intel Core m5 (1.51 Ghz) CPU with 8GB memory. Each optimized team allocation method 

was executed 30 times to allow determination of mean and deviation values. The GA settings for 

these experiments are as follow: 

1. Population size: 10 

2. Generation:40 

3. Crossover fraction 0.7 

4. Mutation probability 0.8 

The motivation for these parameter settings to be very small, such as the population size, is that 

we need to challenge the allocation methods to the limit by which the fastest accurate results can 

be obtained. These challenging settings, as the intention of this chapter, can provide a clearer view 

and detailed information for future research of which allocation method can be used for a 

particular complexity level corresponds to the project time optimization problem they aim to 

solve. 

5.4.1 Results: 

The results in this section are organized according to the dataset levels discussed in Section 3.4.2. 

For each level, a table is presented. This table provides the results obtained for each allocation 

method according to the metrics and measures presented in Section 3.5. For a quick reminder, the 

team allocation methods are Static Teams with Queue Simulator (STQS), Static Teams with Time 

Simulator (STTS), Dynamic Teams with Binary Participation (DTBP), and Dynamic Teams with 

Participation Rate (DTPR). It is noteworthy that the hit rate measure was not used in the 

experiments carried out for this chapter as all the methods were able to provide a feasible solution 

on each run. 

Level One 

The attributes representing the allocation problem by the first complexity level dataset are the 

estimated effort of each task, and the number of resources available to perform them. Productivity 
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of resources in this level is set to be one. The optimal solution of project time for this dataset is 

80.33 Days.  The results of the experiments performed on the four team allocation methods for 

this level are presented in the following Figure 31 using Boxplot diagram. 

 

Figure 31: Team Methods Evaluation Boxplot for Level One 

From Figure 31, we can see that DTBP, STQS, and STTS have produced a near optimal solutions 

for this complexity level. However, it can also be seen that STQS has the least variation and EPT 

value among the others. Accordingly STQS is the best performance amongst the other methods. 

On the other hand, DTPR has provided overestimates that are very high than the others, and can 

be counted as the worst performance for this particular level. To support this observation, detailed 

information of the experiment’s results about the EPT and CT values are required. The detailed 

experiment’s results using level one dataset on each method are depicted in the following Table 

30. 

Table 30: Results of Team Allocation Methods for Level One Complexity 

 EPT CT CT Score MAAPE Accuracy 

DTPR 101.06 176.47 47.78 0.252 74.75 

STTS 82.70 337.9 0 0.029 97.05 

DTBP 81.43 96.42 71.47 0.014 98.63 

STQS 80.33 0.72 99.79 0.001 99.99 

 

In Table 30, results of five measures are exposed to provide different perspectives about the 

solution quality for each method. The first measure of ETP can provide us of which method the 

optimal solution can be obtained. For instance, the queueing system allocation method (STQS) 
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can be seen by this particular measure outperforms the others with 80.33 Days of fitness function 

value. Given the nature of the fitness function for the remaining methods as they provide solution 

by simulating the daily work of resources, DTBP and STTS method can also be seen performs 

similarly to STQS one.  

Moreover, both MAAPE and Accuracy measures clearly show STQS effectiveness in providing 

accurate solution with 99.99% accuracy, where DTBP method slightly behind STQS with 98.62%. 

From another perspective with 74.75% accuracy, we can conclude that DTPR method for this 

particular level is not suitable to compete with the others.  

On the other hand, CT of STQS shows how fast this method in providing results with 

approximately 0.72 second of computation time. This has also been demonstrated by CT Score 

measure that show very high score of STQS method with 99.79 score point among the other 

methods. According to the MAAPE, CT, and CT scores, STQS method outperforms the others for 

this complexity level. To support this claim and capture whether there is any method that 

performs similar to (STQS), a paired T-Test was performed. The results of this test are presented 

in the following Table 31. 

Table 31: Team Methods Evaluation Paired T-Test for Level One 

Lower Upper

Pair 1 STQS - STTS -2.36528 0.46831 0.08550 -2.54015 -2.19041 -27.664 29 0.000

Pair 2 STQS - DTBP -1.09861 0.50530 0.09225 -1.28729 -0.90993 -11.909 29 0.000

Pair 3 STQS - DTPR -20.73194 2.02958 0.37055 -21.48980 -19.97409 -55.949 29 0.000

Paired Samples Test

Paired Differences

t df Sig. (2-tailed)Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the 

Difference

 

From Table 31, we can see that the difference in mean for each pair of STQS against the others has 

a 2-tailed significance less than 0.001. From these results, we have found enough evidence to 

suggest that the difference between the two scores for each pair is statistically significant, and 

reject the null hypothesis of having all the methods preform similarly.  

Level Two 

Level two holds three allocation problem attributes, which are the number of available resources, 

the estimated effort of each task, and task dependencies. Productivity of resources is also assumed 

to be the same of (1) for all. The optimal solution of project time for this dataset level is 80.33 Days 

too. The results of the experiments performed on the four team allocation methods for this level 

are presented in the following Figure 32 using Boxplot diagram. 
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Figure 32: Team Methods Evaluation Boxplot for Level Two 

From Figure 32, we can see that DTPR method is still having the worst performance and outcome’s 

accuracy among the other methods. DTBP method, on the other hand, has slight regressed with 

mean EPT around 90 Days, and be the worst among the other methods. At the same time, STQS 

and STTS methods have both provided good quality solutions, however, STQS again has provided 

the least EPT values. Accordingly, this method can be seen as the best among the other methods. 

To support this observation, the following Table 32 provides with detailed information the 

experiment’s results of EPT, CT, and accuracy measures by using level two dataset on each 

method. 

Table 32: Results of Team Allocation Methods for Level Two Complexity 

 EPT CT CT Score MAAPE Accuracy 

DTPR 108.63 35.35 6.7 0.338 66.17 

DTBP 90.63 25.62 32.42 0.127 87.25 

STTS 83.20 37.91 0 0.035 96.43 

STQS 80.33 1.08 97.14 0.001 99.99 

From Table 32, again it is obvious that STQS outperforms all the other methods. ETP measure 

shows that this method has the least estimated project time over the experiment runs. In addition, 

the accuracy of this method depicted by both MAAPE and Accuracy measures is very high with 

99.99%.  

On the other hand, DTPR again can be recognized as the worst among the methods in providing 

good quality solutions within reasonable amount of time. However, this method is widely used by 
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many search-based approaches, and it might be not the best method to be adopt unless it is 

mimicking a real-world problem. 

From these results, it can be seen that the second-best method unlike the previous level can be the 

STTS. This conclusion is made upon the facts shown by the measures related to project time of 

EPT, and Accuracy with 83 Days, and 96.42% respectively. However, CT results in this particular 

level shows that STQS is again outperforming the rest. The second-best method in terms of CT for 

this allocation problem can be seen for the DTBP one. To support the claim of STQS outperforms 

the others for this level and to capture whether there is any method that performs similar to 

(STQS), a paired T-Test was performed. The results of this test are presented in the following Table 

33. 

Table 33: Team Methods Evaluation Paired T-Test for Level Two 

Lower Upper

Pair 1 STQS - STTS -2.86667 0.76112 0.13896 -3.15088 -2.58246 -20.629 29 0.000

Pair 2 STQS - DTBP -10.30000 2.31164 0.42205 -11.16318 -9.43682 -24.405 29 0.000

Pair 3 STQS - DTPR -28.30000 3.20004 0.58424 -29.49491 -27.10509 -48.439 29 0.000

Paired Samples Test

Paired Differences

t df Sig. (2-tailed)Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the 

Difference

 

From Table 33, we can see again that the difference in mean for each pair of STQS against the 

others has a 2-tailed significance less than 0.001. From these results, we have found enough 

evidence to suggest that the difference between the two scores for each pair is statistically 

significant, and reject the null hypothesis of having all the methods preform similarly.  

Level Three 

The allocation problem information held by the level three dataset are the number of available 

resources, the estimated effort of each task, as well as the skill(s) that each task requires, and each 

resource possesses. Productivity of resources in this level is set to be either 1 or 0.1 for each skill 

the resource possesses. The optimal solution of project time for this dataset level is 104 Days. The 

results of the experiments performed on the four team allocation methods for this level are 

presented in the following Figure 33 using Boxplot diagram. 
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Figure 33: Team Methods Evaluation Boxplot for Level Three 

From Figure 33 , we can see that DTPR method is still having the worst performance and 

outcome’s accuracy among the other methods, and can be counted as the worst method among 

the others for this level too. Concurrently, STQS and STTS have slight regressed from being the 

best methods for level two, and it can be seen that STTS method has provided solution quality 

almost similar to DTPR, leaving STQS with the second least EPT values. DTBP method, on the 

other hand, has this time outperformed the other methods and provided the least EPT. 

Accordingly, this method can be seen as the best among the other methods. To support this 

observation, the following Table 34 provides with detailed information the experiment’s results of 

EPT, CT, and accuracy measures by using level three dataset on each method. 

Table 34: Results of Team Allocation Methods for Level Three Complexity 

 EPT CT CT Score MAAPE Accuracy 

DTPR 228.13 415.95 50.14 0.872 12.78 

STTS 209.83 834.29 0 0.758 24.15 

STQS 178.56 0.71 99.91 0.608 39.18 

DTBP 154.47 117.23 85.95 0.449 55.01 

 

From Table 34, it is clear that all the methods are overestimating the fitness function value of EPT. 

However, the mean of EPT over the runs shows that DTBP has the least average EPT with less 

variation over the runs among the methods. It is worth mentioning that the results of MAAPE and 

Accuracy measures for this particular level are significantly differing from one method to another. 

The accuracy using MAAPE and Accuracy shows that all the methods have very low accuracy, 



165 

 

however DTBP has the higher accuracy amongst them all. The results of computation time for 

each method, moreover, show that STQS method is the fastest in approximating EPT value among 

the others, however, that comes over the accuracy of its outcomes. The one that can be counted as 

reasonable in term of accuracy as well as computation time for this level is found to be DTBP 

method, and can be counted as the best method among them all. To support this claim and capture 

whether there is any method that performs similar to (DTBP), a paired T-Test was performed. The 

results of this test are presented in the following Table 35. 

Table 35: Team Methods Evaluation Paired T-Test for Level Three 

Lower Upper

Pair 1 DTBP - STTS -55.36667 38.70533 7.06659 -69.81947 -40.91386 -7.835 29 0.000

Pair 2 DTBP - STQS -24.10030 23.78308 4.34218 -32.98105 -15.21955 -5.550 29 0.000

Pair 3 DTBP - DTPR -73.66667 11.43899 2.08846 -77.93806 -69.39528 -35.273 29 0.000

Paired Samples Test

Paired Differences

t df Sig. (2-tailed)Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the 

Difference

 

From Table 35, we can see that the difference in mean for each pair of DTBP against the others 

has a 2-tailed significance less than 0.001. From these results, we have found enough evidence to 

suggest that the difference between the two scores for each pair is statistically significant, and 

reject the null hypothesis of having all the methods preform similarly.  

Level Four 

The allocation problem information held by level four dataset are the number of available 

resources, the estimated effort of each task, dependency between the tasks, as well as the skill(s) 

that each task requires, and each resource possesses. Productivity of resources in this level is set 

to be either 1 or 0.1 for each skill the resource possesses. The optimal solution of project time for 

this dataset level is 204.31 Days. The results of the experiments performed on the four team 

allocation methods for this level are presented in the following Figure 34 using Boxplot diagram. 
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Figure 34: Team Methods Evaluation Boxplot for Level Four 

From Figure 34, we can see that the same pattern of previous level results is happened, where 

DTPR method is still having the worst performance and can be counted as the worst method 

among the others, as well as STQS and STTS have provided poor solutions. What noteworthy is 

that both STQS and STTS have in this level provided solutions with almost no variations. DTBP 

method, on the other hand, has this time too outperformed the other methods and provided the 

least EPT. Accordingly, this method can be seen as the best among the other methods. To support 

this observation, the following Table 36 provides with detailed information the experiment’s 

results of EPT, CT, and accuracy measures by using level four dataset on each method. 

Table 36: Results of Team Allocation Methods for Level Four Complexity 

 EPT CT CT Score MAAPE Accuracy 

DTPR 266.00 82.51 15.99 0.293 70.72 

STTS 248.53 98.22 0 0.213 78.70 

STQS 246.89 1.17 98.81 0.205 79.45 

DTBP 238.17 39.15 60.14 0.164 83.60 

From Table 36, it can be seen that STQS method outperforms all the others in terms of CT, and 

CT score. However, when it comes to EPT and the accuracy measures, DTBP shows its 

effectiveness in approximating project time. DTPR on the other hand is again found to be not 

suitable in providing good quality solutions.  

According to the accuracy measures of MAAPE and Accuracy, DTBP is the one that outperform 

the others with 83.59%. In addition, it can be seen the improvement in terms of CT and CT Scores 
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of DTBP method in providing solutions by a significant time better than STTS, and DTPR. 

Therefore, DTBP can be seen, for this particular complexity level, outperforming the remaining 

team allocation methods. To support this claim and capture whether there is any method that 

performs similar to (DTBP), a paired T-Test was performed. The results of this test are presented 

in the following Table 37. 

Table 37: Team Methods Evaluation Paired T-Test for Level Four 

Lower Upper

Pair 1 DTBP - STTS -10.36667 8.71180 1.59055 -13.61971 -7.11363 -6.518 29 0.000

Pair 2 DTBP - STQS -8.72470 7.42406 1.35544 -11.49689 -5.95251 -6.437 29 0.000

Pair 3 DTBP - DTPR -27.83333 8.11165 1.48098 -30.86227 -24.80439 -18.794 29 0.000

Paired Samples Test

Paired Differences

t df Sig. (2-tailed)Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the 

Difference

 

From Table 37, we can see again that the difference in mean for each pair of DTBP against the 

others has a 2-tailed significance less than 0.001. From these results, we have found enough 

evidence to suggest that the difference between the two scores for each pair is statistically 

significant, and reject the null hypothesis of having all the methods preform similarly.  

Level Five 

The allocation problem information held by this dataset level are the number of available 

resources, the estimated effort of each task, dependency between the tasks, as well as the skill(s) 

that each task requires, and each resource possesses. Productivity for each resource skill in this 

level can be within the range from 0.1 to 4. The optimal solution of project time for this dataset 

level is 112.49 Days. The results of the experiments performed on the four team allocation methods 

for this level are presented in the following Figure 35 using Boxplot diagram. 
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Figure 35: Team Methods Evaluation Boxplot for Level Five 

Again, the same pattern of previous level results can be seen in Figure 35, where DTPR method is 

the worst method among the others, as well as STQS and STTS have provided poor solutions. In 

addition, the same results of both STQS and STTS where almost no variations between the 

methods outcomes over the runs. DTBP method for this level too can be seen as the best among 

the other methods. To support this observation, the following Table 38 provides with detailed 

information the experiment’s results of EPT, CT, and accuracy measures by using level four 

dataset on each method. 

Table 38: Results of Team Allocation Methods for Level Five  

 EPT CT CT Score MAAPE Accuracy 

DTPR 147.13 49.56 6.69 0.298 70.20 

STTS 138.50 53.12 0 0.227 77.31 

STQS 137.05 0.94 98.23 0.215 78.50 

DTBP 128.03 51.92 2.26 0.137 86.28 

 

From the Table 38, it can be seen by CT and CT score measures that DTBP method is again slightly 

better than STTS, and DTPR. However, STQS is still dominating the others in this matter. On the 

other hand, the measures of EPT, MAAPE, and Accuracy provide more evidence by which team 

allocation method the optimal or near optimal solutions of project time minimization to this 

particular complexity level can be obtained. The average of EPT over the runs shows that the least 

among these methods is DTBP. In addition, the accuracy measures show how DTBP can 

significantly provide more accurate solutions for this level of complexity among the others. 
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Therefore, DTBP can be seen again for this level of complexity as the best choice of minimizing 

software project time span. To support this claim and capture whether there is any method that 

performs similar to (DTBP), a paired T-Test was performed. The results of this test are presented 

in the following Table 39. 

Table 39: Team Methods Evaluation Paired T-Test for Level Five 

Lower Upper

Pair 1 DTBP - STTS -10.46667 5.89993 1.07718 -12.66974 -8.26360 -9.717 29 0.000

Pair 2 DTBP - STQS -9.02105 3.65290 0.66693 -10.38507 -7.65704 -13.526 29 0.000

Pair 3 DTBP - DTPR -19.10000 7.36885 1.34536 -21.85158 -16.34842 -14.197 29 0.000

Paired Samples Test

Paired Differences

t df Sig. (2-tailed)Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the 

Difference

 

From Table 39, we can see again that the difference in mean for each pair of DTBP against the 

others has a 2-tailed significance less than 0.001. From these results, we have found enough 

evidence to suggest that the difference between the two scores for each pair is statistically 

significant, and reject the null hypothesis of having all the methods preform similarly.  

The overall findings from the performance and accuracy outcomes of each method for all the 

complexity levels have shown that some of the methods performed badly, others were moderate, 

and two methods were capable of providing good quality solutions of project time estimation. The 

overall weaknesses and strength of each approach that encountered by the outcomes of all the 

levels are presented in the following Table 40. 

Table 40: Overall Findings from the Complexity Levels for each Team Allocation Method 

Approach Encountered Weaknesses or Strengths 

STQS 
This method can provide good quality solutions, however, only for level one and 
two. 

STTS 
This method can be rank as the second best choice for level two, however, the 
provided solutions for level one, three, four, and five has made it regress into the 
third position. 

DTBP 
This method has performed poorly for level one and two, however, it has 
dominated the level three, four, and five results with approximating project time to 
the best over the all methods. 

DTPR 

This method has provided the worst solutions over the all methods. However as it 
has been used by the approaches that consider project cost in addition to time 
objective, then it can only be adopted when intention is for a multi-objective 
approach. 

What it can be concluded is that variability of performance and outcome’s accuracy are the main 

characteristic that dominate the methods’ performance. While STQS has outperformed the other 

methods for level one and two, DTBP has won on the higher levels of three, four, and five. This 

provide how a resource allocation method can be beneficial for one or two problems, but that does 
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not mean it could be beneficial for all the possible problems that a PM might encountered while 

allocating his/her resources. According to the overall results, for any problem that holds 

information corresponding to level one and two, STQS can be the best choice for approximating 

the project time for it. On the other hand, if the information available to the PM corresponds to 

the higher levels, then DTBP can be the best choice for approximating the project time for it. 

5.5 Conclusion 

“The only benchmark capable of combining all evaluation criteria into a decision is the decision 

maker himself.” (p. 97) [126]. However, imitating the decision maker selection criteria can be the 

basic achievement towards a decision support system that can facilitate his/her work. One of the 

duties that a project manager, as a decision maker, has to perform is to identify and select the best 

team allocation alternative that minimizes his/her project time. Therefore, it is important to 

establish some work towards understanding and identifying the decision maker selection criteria 

for team allocation alternatives. 

In this chapter, we have identified four main team allocation methods used by SSSP approaches. 

A comparison between these methods combined with GA for project time minimization is 

performed. The benchmarking process described in Chapter 3 was adopted in this comparison 

encompassing five level of complexity of dataset. The comparison shows to which complexity level 

the optimal or near optimal solution can be achieved by which of the team allocation methods. 

The dynamic team allocation method with participation rate for resource assignment named 

DTPR can be seen as the worst among the allocation methods. This method has been identified 

and used by [14, 18] approaches, and as these methods do not employ normalization according to 

simultaneous tasks as in [15], these approaches have constrained the amount of overtime work for 

each resource to overcome the case where solution(s) combine assignment of all resources to all 

tasks with 100% participation. Despite the use of overtime work constraint in both [14, 18] 

approaches, the one that has been implemented for this chapter work is the one provided by [15]. 

For this case the reader can refer to [15], which in their study have used this normalization, and 

compare it to the one in [14]. Their comparison provides significant evidence that the one in [14] 

is overestimates project time, and using the normalization they suggest can provide better 

solutions. 

On the other hand, the team allocation method that encompass queuing system named STQS has 

shown its effectiveness in providing optimal or near optimal solutions for the first two complexity 

levels. However, the accuracy measures show that the dynamic team with binary selection 
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representation named DTBP is outperforming the other methods by providing better solutions 

especially when it comes to handle complexity of skills, and productivity. The results by using the 

five level datasets show with clear evidence that the software project time requires consideration 

of the representation of team formation by the mean of the distribution of resources. This has also 

been demonstrated by the results of dynamic formation of teams in DTBP method, which has 

provided very close results to the optimized (optimal) solutions provided in the benchmarking 

datasets especially for levels 4 and 5 in Chapter 3 that no other alternative allocation method used 

was capable to provide. So, it is important to explore whether the DTBP method has some 

background in software industry practices for team formation and allocation. In this sense, a new 

study presented in [127] shows how and why software engineers move from one team to another. 

In their study, the main reason identified is the motivation to gain new knowledge in different 

specializations. However, this has motivated us to investigate the current practice not from the 

resources’ perspective, but from the project managers’ one. This investigation is carried out by the 

work presented in the next Chapter 6. 

The main contributions in this chapter can be accordingly organized as follow. This study 

demonstrates how the allocation of resources in software projects with consideration to project 

time minimization can be formalized and performed by different team allocation methods, which 

have been addressed in different SSSP approaches. This study also provides information on the 

performance and accuracy of the identified allocation methods, which shows their performance 

against five scenarios.  

Our intention for future work is to use the overall findings and results towards development of a 

management tool that can systematically define the best team allocation, which can minimize 

project time according to the level of information the manager can provide about his/her project 

and its available resources. A further intention will be focused on extending the work to include 

learning effects on productivity of resources. These effects can be gained by doing tasks that are 

related to the resource’s skillset. A resource in addition, can also gain a new skill in which its 

associated productivity starts with 0.1, and improves over the time. We propose a learning formula 

similar to what has been established by [93], to represent the amount of increase in the resource 

skill productivity as follow: 

𝑃𝑛𝑒𝑤 = 𝑃𝑜 ∗ log (𝑡𝑖𝑚𝑒𝑠𝑘𝑖𝑙𝑙) 

In this formula, the amount of increase on skill productivity represented as 𝑃𝑛𝑒𝑤 is equal the old 

productivity of the skill 𝑃𝑜 multiplied by the logarithmic of the time spent by the resource doing 

the skill over the project time span, measured in Days. We chose the logarithmic to limit the 

amount of improvement and to keep the improved productivity as reasonable as possible. In 
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addition, we aim to include the team synergy to our allocation of teams. Team synergy is important 

while forming the teams, and can be applied on the overall team’s productivity to estimate the task 

time. This work can be developed based on the work of [128]. 

It is noteworthy to mention that the datasets used for the comparison between the allocation 

methods, which were provided in the benchmarking process involves a single project problem and 

that can be a limitation to the generality of these findings. Accordingly, expanding the datasets to 

include different software project problems can be an extra stage to ensure that the results are 

applicable to different real-world problems within the software industry. In addition, one of the 

weaknesses of this study is the effort estimation unit used in the dataset, which is the man-day. In 

case of a full estimation of effort by well-known methods as COCOMO [34], the estimation unit 

will certainly become as man-month, and effort then will be required by the project manager to 

convert the estimation from man-month to man-day.  
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Chapter 6 Empirical Evaluation in 

Industrial Settings 

This chapter presents a study performed in industrial settings in which the main aim is to 

understand the performance of Project Managers (PM’s) in finding solution to their project time 

problem compared to the automated SSSP approaches. In addition, this study aims to capture the 

difference between what the approaches propose and the current SSSP industry practice. An 

introduction and overview of this study, the analysis methods to use, and the research questions 

are presented in Section 6.1. The background for related studies on how they have performed and 

gained their findings is presented in Section 6.2. The methodology carried out to explore and 

answer our study questions is presented in Section 6.3. Section 6.4 presents the demographic 

information of our study subjects and the findings from their performance on solving the dataset 

scenarios. The conclusion of this study is presented in Section 6.5. 

6.1 Introduction 

The software industry is faced with a limited number of techniques and tools that can be used by 

PMs to support their project management activities such as Gantt chart[50], and PERT[46]. These 

techniques can provide graphical representation and time estimation support to PM, however they 

lack right decision support elements for the hardest task carried out by the PM that of resource 

allocation, and project staffing and scheduling. The first step towards this decision support 

element is the understanding of the software project properties and their relation between each 

other as well as the current industrial practice on resource allocation and project scheduling.  

Many studies and experiments have been performed to understand and infer the relationships 

between software project properties as in [9, 129, 130]. However, the approaches and 

methodologies that software development organizations use differ from one organization to 

another [130], which makes it hard to bring a single SSSP optimization approach into practice. 

This problem can explain the reason behind the amount of work that has been done by many 
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researchers to approach the software project management problems. Therefore, the suitability is 

the aspect that a SSSP approach should focus on and implement so that it can be used by as many 

users as possible.  

To explore the suitability of the SSSP approaches proposed for optimizing software project 

resource allocation, experienced PMs from software industry are the key for validating these 

approaches and providing to some extent their best practices and opinion on how software project 

management should be tackled for different management objectives. This can be achieved by first 

validating the SSSP approaches’ inputs, the benchmarking dataset, and the associated complexity 

levels by the representative subjects from the industrial settings.  

To this end, analysing the data need to be pragmatically studied and introduced with careful 

assumptions. Accordingly, it is important to know which of the data analysis methods can be 

beneficial for studies that relate to computer science. In literature, studies related to computing 

sciences have advocated hermeneutic as a valid approach to infer the phenomenon results [131]. 

Therefore, the way of solving different scenarios of software project complexity, and the main 

aspects that a PM needs to consider while performing the resource allocation, will be under 

investigation throughout a hermeneutic method. This method can allow to thoroughly create the 

overall structure for optimizing software project time and any other considerable software project 

aspects, parameters, and objectives.  

Accordingly, the research questions that this study is aiming to answer are as follow:  

1. Can a project manager solve the problem presented in the dataset levels accurately and 

fast? 

2. Does an experienced PM perform better than an automated SSSP approach? 

3. Which of the dataset levels suits the complexity of the industrial software project 

planning and scheduling problem? 

4. Does experience play a key role in knowing the best solution for a project manager? 

5. What criteria and properties does a PM look at to solve each complexity level? 

6. What are the management objective(s) that the PM need to be included within his/her 

problem definition? 

To answer these questions, it is important first to explore whether the answers can be found within 

the literature, but, if there is no answer for any question, then which method is best to use, and 

how it can be used to answer them. The following section provides background on the 

methodologies that have been used by different empirical evaluation and validation studies on 

software project management and SSSP approaches. 
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6.2 Background  

The optimization of the SSSP problem can be classified under explanatory research, by which 

more understanding of the current industrial practices for SSSP is required. This can be done by 

building the knowledge first throughout a systematic literature review of the published papers that 

provide empirical evidences especially on two aspects. The first one is about the features and 

information that software development projects offer. The second one is about how experienced 

project managers practice, approach, and suggest better solution for real-world project time 

estimation problems. This part has already been established by [24] with a systematic literature 

review of all the approaches that optimize for different software project objectives. Part of these 

approaches presented in [24] have adopted empirical evaluation of their proposals and provided 

evidence on how the industry perform solutions to SSSP problem compared to what they have 

proposed.  

Only four studies are found by [24] that have performed empirical experiments and evaluation. 

These studies have employed a representative sample of PMs from the industry or Information 

Technology (IT) students to test how they perform and provide solution to a predefined SSSP 

problem scenario compared to their optimized solutions. Qualitative analysis was found by [24] 

that mainly used by these studies to conclude of which solution between manager’s intuition and 

the optimized approach outperforms the other. The criteria used by [24] to investigate these 

studies are the number of subjects, their experience, number of sessions used for the experiments, 

duration of each session, and the project attributes and objective. 

The first study presented by [24] is the one in [93]. This study used only two senior project 

managers to validate their approach in a single session. The experiment session in [93] described 

by [24] as to capture the way of assigning the resource to software project tasks with consideration 

of skills within three hours limit. Another study presented by [24] is the one in [16]. This study 

used 16 graduate students, each of which is asked to perform an allocation that can provide a 

cheapest team and least schedule time for the software project scenario provided to them. The 

study presented in [16] used four sessions to cover all the participants depending on their 

availability. The third study presented by [24] is the one in [132]. It has three project managers as 

study subjects, however, nothing is mentioned about their experience. Their study is performed 

by a single session that lasted for four hours. They asked their subjects to perform three different 

allocations with different team sizes that maintain high team productivity and low cost. The fourth 

study presented by [24] is the one in [133]. This study used three managers too to validate their 
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proposed approach. They made individual meetings with each PM, and each meeting had four 

hours’ time slot.  

Four main findings related to these studies were listed in [24]. The first finding is that the 

organizations are prone to immaturity of measurement to use, with no clear development process 

to follow. The data used to validate the approaches are a poor institute for real-world data. In 

addition, studies that under their investigation have too few representative subjects. Moreover, 

the empirical evaluation done by the studies mentioned above have shown that the automated 

SSSP approaches outperform the solution performed by experts.  

Another study later than [24] presented in [23] performed an empirical evaluation to show the 

difference between the solutions of their proposed approach and their study subjects. They have 

recruited 16 project managers with around four years of experience each. They have provided 

those subjects with the data they used to test their automated approach and the mean of their 

results are then compared with the mean of the approach’s outcomes. The main findings from 

their experiment again is that their approach outperform the solution provided by the experts.  

In addition, they have performed a pilot study to qualitatively survey the real needs of a software 

organization. The aim of their survey is to capture the aspects that managers from industry 

consider while performing resource allocation and scheduling, and whether the different 

constraints and objectives used within their approach are suitable for project managers’ needs 

from an automated approach. The findings from their survey are that managers consider reducing 

the amount of parallel work of each developer as much as possible, with an intention to minimize 

project time span. In addition, they found that with a high importance for project managers, is to 

make sure that each resource with his/her skillset fits to the task(s) that (s)he will perform. 

In general, surveys and questionnaires are used in studies that have performed empirical 

validation of their proposals as in [93]. The responses of their subjects are qualitatively analysed 

to provide evidence of their solution quality. These studies however lack detail of the research and 

analysis methods used. These methods, how they have been used, and the results of applying them 

to experiment with and evaluate SSSP within industrial settings are provided in the next 

Section 6.3. 

6.3 Methodology 

To perform this study, identification of main steps, methods, and procedures was made, 

which all are established as a framework and protocol for the participants and the 

researchers in this study to follow depicted in Figure 36.  
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Figure 36: Methodology of the Industrial Evaluation Study 

As can be seen in Figure 36, the industrial settings evaluation study starts by recruiting subjects 

from software organizations. At this stage, the subjects will be recruited from our industrial 

partners using a direct recruitment method. The main recruitment criteria is to have a PM with at 

least five years of experience in managing software projects, to gain by his/her cumulative 

experience more in-depth knowledge about the important aspects that should be covered while 

managing HRA in software projects and their preferable way of doing it. More demographic 

information about the subjects are provided in Section 6.4.2. 
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This study is planned into two phases depicted in Figure 36. The outcomes from both phases are 

quantitative and qualitative research data. The analysis of the data will be performed by employing 

quantitative and qualitative methods. The first phase involves quantitative data analysis methods 

for examining the solutions of the recruited PMs in solving different resource allocation problems 

depicted in Figure 36. These resource allocation problems are the first four scenarios of our 

datasets in Section 3.4.2. These scenarios will be sent to the subjects so they can complete them 

in their own time and send them back. The responses of the subjects will be then stored in our 

research database. This phase is detailed in Section 6.4.1. 

When the subjects will be asked to provide their answers in the first phase, they will also be asked 

to provide a suitable date and time for the second phase. This second phase encompasses 

interviews that should allow to extract more information about the subjects’ responses from the 

first phase, and to explore their demographic information. Accordingly, once the subject 

completes his/her answers to phase one, and his/her responses are analysed, an interview then 

should take a place to meet him/her, and to discuss his/her views, opinions, and knowledge about 

the scenarios and the whole aspects surrounding software projects –see Section 5 of the Appendix. 

The interview with each subject should be individually, and planned for one hour time slot if the 

subject’s time permit. The responses of study subjects from phase two should be then extracted 

and stored in the research database. Based on the subjects’ responses and extracted data from 

both phases, a comparison can be performed between their solutions and the solutions obtained 

by the SSSP approaches -presented in Chapter 4-, and interpretations according to the 

demographic information can be then made. 

The overall objective of this study is to provide basic research that expand our understanding and 

knowledge in SSSP problem including the DM activities in this matter more than to provide a 

definite solution for it. For this purpose an interpretivist approach [134] is adopted combined with 

the interview method to collect and qualitatively analyse the data. However as the study phases 

combine quantitative and qualitative data, a mixed method is used to analyse the outcomes from 

the study subjects [115]. The data collection methods used are self-completion questions, 

interview, interview-structured questions, and a face-to-face or internet-conferencing meeting. 

For data analysis two methods are used, which are pragmatic hermeneutic, and statistical analysis.  

6.4 Study Experiments   

This study was performed upon the approval of the ethical clearance provided in Section 2 of the 

Appendix, where in addition the application, description, questions, and protocols of this study 

can be found too. Seven subjects were recruited for this study, and before any meetings, 
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interviews, and questions took place, we have sent a consent –see Section 3 of the Appendix- to 

each subject. The subjects have requested to remain anonymous in any output from the two 

phases. The only thing that we can mention about them is that five subjects are from a large 

financial organization that consists of in-house software development departments, one is from 

an international software development company, and one is from a start-up company with more 

experience from another large software development organization. It is worth mentioning that we 

had two cases were a contact person was assigned to organized the communication, meetings, and 

interviews with the subjects from the large financial organization.  

6.4.1 Phase One: Evaluation of PMs’ Performance in solving 

SSSP Challenges  

In this phase, the study subjects are asked to answer a set of four self-completion questions. Due 

to time limitations and availability, the subject can chose when to complete these questions and 

send them back by email for analysis. This set encompasses four SSSP scenarios corresponding to 

the classes and complexity levels discussed and solved in Chapter 3. The subjects in this part are 

asked to provide their best allocation and estimated project time span according to the resulting 

allocation schedule, and the time that they consumed to solve each question. As the scenarios’ 

data provided to subjects are the same as those used for the SSSP approaches evaluation, this will 

allow us to demonstrate whether the subjects perform the allocation in a similar way to the 

approaches, and to infer the factors that might play a key role in contributing to good quality 

results from the subjects.  

Findings and Results 

One of the subjects (D) did not provide answers to this phase’s questions, and asked to proceed to 

the next one. The reason given by the subject for this matter is the absence of real factors that 

these scenarios did not include such as the description and details about the intended software to 

be developed as well as the roles that are required for a single team to perform the project 

activities. However, the subject claims that it can be seen within the large size companies’ projects, 

similar to the one presented in scenario four, where tasks, dependencies, skills, and productivity 

are all that a PM would consider while performing the allocation. For details on the scenarios 

provided to the subjects the reader can refer to Section 3.4.2.  

In addition, another subject (M) has only provided answers for the scenarios but could not proceed 

to the next phase. The problem was the time availability and implication of the different time zone, 

as the subject is constantly traveling. The solution provided by each subject in this study of 
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estimated project time span and the time consumed to solve each scenario are presented in the 

following Table 41.  

Table 41: Study Subjects Responses 

                          

Table 41 presents the subjects’ responses who participated in this phase for PM performance 

study. As their identity remains anonymous, letters are used to differentiate between the subjects’ 

identity in all the associated tables and statements. This table moreover includes each subject’s 

answers of estimated project time, the time consumption, and allocation method (s)he adopted to 

solve each scenario. The allocation methods that each subject adopts to solve the scenarios differ 
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from one to another, and some have even used different methods to each scenario. When the 

allocation method is “dynamic”, this means that the subject has allowed a team to change its 

members from one task to another. “Rigid team” on the other hand, is when the team has its 

members from the start of the project working together till the end without any changes to its 

members. “Percentage” moreover, is when a resource is working simultaneously on multiple tasks, 

so each task has a percentage of his/her working time dedicated for completing this task. Another 

type that has been used by one of the subjects is individual allocation that considers allocating 

only one resource to each task. Moreover, another allocation was also made by allocating two 

resources to each task.  

The overall inferences from the results shown in Table 41 can help to understanding the subjects’ 

behaviour corresponding to each scenario. From Table 41, it can be seen that as the scenarios’ 

level increases from one to four, the subjects in general spend more time to solve that scenario 

than the one before, leaving scenario four taking the highest time to solve. It is also noticeable that 

both T and N subjects were able to provide good quality answers as their project time estimate is 

too close to the optimized (optimal) one. It is interesting to consider why those two subjects were 

able to provide such good answers. This situation shows why the work for this thesis has 

supplemented phase one by the second phase of interviewing subjects to gain more explanation.  

In addition, it can be seen that the subjects for scenario three have close results to the optimal one 

as by subject C, S, and E with 132 days, and to some can be even more identical to the optimal one 

such as subject T and N with 104 days. This reflects the simplicity of the scenario’s attributes and 

how the subjects are familiar with this situation so they have responded well to this scenario. It 

can be seen too that the dominant allocation method adopted across the subjects’ answers is the 

dynamic team method.  

It is noteworthy that some subjects, were not only trying to minimize project time, but they were 

also trying to balance the allocation of twelve resources over the whole project, even with the 

dependencies between these WPs. This can be seen over the solutions of subject C, S, and E. For 

instance, subject S have created a list, titled “age allocation”, that provides the percentage of the 

work load, having the WP’s effort divided by the overall project effort, over the number of 

resources. Subject S used this list to know how many resource (s)he should assign to each WP. By 

using this way of allocation while balancing the more skilled resource to the most fitted WP, it 

could end with the result of subject C having the least skilled and productive for a WP that has a 

very high estimated effort amongst the others. 
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Analysis of PMs and SSSP approaches’ solutions  

Comparing these results with the ones obtained by the nine SSSP approaches, one can see how in 

some cases some of the PMs have performed the resource allocation and project scheduling 

similar to the approaches, and in others the PMs have performed badly. For instance, if we look 

at the best SSSP approach like DiPenta01 for level one and the best PM’s result by subject N for 

the same level of (scenario 1), it is obvious that the subject was able to provide a good quality 

answer similar to the one of DiPenta01. However, the subject has consumed of one-hour time to 

find this answer. For the same level, in addition, five subjects have provided bad solutions, such 

as the answer of subject M with 115.5 days of estimated project time. The answer of this subject 

was based on having all the tasks starting at the same time where a single resource assigned to 

each, and for cases of a large task size such as task 2, 3, 4, and 5, two resources are assigned. 

Therefore, the estimated project time defined by the subject is the maximum time length among 

all the tasks with 115.5 days of task 2. It is noticeable that the approach in Kang01 has provided 

exactly the same estimate as those PMs. 

For level two, we can see that subject E has performed badly too providing 442 days of estimated 

project time. The subject has created the resources plan with a static view of resource allocation 

regardless the precedence relation between the project tasks that can allow for a dynamic 

allocation to be used. For instance, the subject’s plan has misused the resources who are assigned 

to proceed task(s) by being idle till the precede ones are finished. The subject has assigned three 

resources for task 2, two resources for task 3, two resources for task 5, and a single resource for 

each of the other tasks. This can show clearly how subject E had a static view of the resource 

planning, where resources are distributed to tasks without any care of schedule. It is noteworthy 

that none of the SSSP approaches described in Chapter 4 has provided similar to this bad estimate. 

The worst estimate provided for this level of complexity is by Minku01 of 109.17 days, which is 

clearly show how a SSSP approach can help with resource planning and project time estimation, 

as PMs with years of experience are struggling to provide similar estimate.  

For level three, the PMs were able to provide much better estimate than the SSSP approaches, as 

this level requires only a direct matching of resources’ skillset to tasks. The SSSP approaches, on 

the other hand, have provided a very fast estimate to project time. However, these estimates are 

very poor if we compare them to the PMs and optimal ones. So, for this level we can say that the 

PMs can outperform the approaches. Nonetheless, the worst project time estimate can be seen by 

three subjects’ (C, S, and E) solutions of 132 days. This poor estimate can be explained by the 

solution that subject S has provided. This subject has created his/her schedule by the assumption 
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of making the tasks work in parallel and assigning the competent resources who are possessing 

the required skill(s) to each task. As the project has four skillset categories, the tasks are divided 

by these categories, where each particular skillset is required by two tasks. On the other hand, only 

three resources possess the required skill(s) for each type. The subject’s decision was then on 

assigning two competent resources to the task that is larger in size among the set, and the third 

resource to the smaller one. Noteworthy that this has made the subject leaves task 4, which is 

smaller in size compared to the one that requires the same skillset but larger than many of the 

other tasks, assigned to a single competent resource. This has accordingly led to the longest time 

estimate among the parallelised tasks of 132 days. 

For level four, both SSSP approaches and PMs have provided similar estimates, where the 

performance can be the key subject that shows the difference between the approaches and PMs. 

In this case, it is obvious that the SSSP approaches are able to provide much faster estimate than 

the PMs. However, if we look at the best estimate among the PMs and approaches, we will find 

that one of the PMs (Subject N) has provided much better estimates than all the other approaches 

and PMs with 210 days of project time. On the other hand, a very bad estimate among the PMs’ 

can be seen by subject C, with 1188 days of project time. This estimate is based on distributing the 

resources with a percentage for participation to project tasks. The estimate by this subject had in 

general two resources assigned to each task, except task 5 with one resource. In addition, the 

resource who is possessing the required skill(s) was assigned to task 3 with 50% participation and 

the other who don’t possess these skill(s) was assigned to this task with 100% participation. 

Moreover, the resources assigned to task 2 are possessing the required skills, however, they have 

been assigned with 50% participation to each. For task 4, one of the resources assigned is 

possessing the required skill(s) and the other is not, and both were assigned with 50% 

participation. For task 6, the same theme of resource allocation to task 3 and 4 is used with two 

resources that one is possessing the required skill(s) and the other is not, but both are participating 

in this task with 100%. For task 5, a single resource is assigned to this task however, with 50% 

participation. The time estimate for tasks 3,2,4,6, and 5 are 300, 223, 240, 45, and 380 days 

respectively. While these tasks forms the critical path of the project schedule, these estimates have 

all together formed the project time estimate of 1188 days.  

This survey has shown how hard the SSSP problem is for a PM to consider its all parameter while 

focusing on the optimal project time target. The main theme that these PMs have used is balancing 

the amount of resources assigned to tasks without consideration of the idle time that could this 

assignment cause on the overall project time.  
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To express how an average PM would probably perform in solving the scenarios is to average the 

subjects’ solutions. The following Table 42 summarizes the average of the subjects’ responses 

compared to the optimized (optimal) solution provided for each scenario in Section 3.4.2. Note 

that the average of the responses is calculated based on six subjects as the seventh one has no 

response recorded for this phase. 

Table 42: Evaluation of Study Subjects’ Performance 

PM 
challenges 

Attributes 
AVG of Subjects 
solutions 

Optimal 
Solution 

Scenario1 
Time Performance/Minutes 24.17 

80.33 
Min Solution -Days 102.5 

Scenario2 
Time Performance/Minutes 44 

80.33 
Min Solution -Days 257.83 

Scenario3 
Time Performance/Minutes 36.3 

104 
Min Solution -Days 120.3 

Scenario4 
Time Performance/Minutes 60 

204.31 
Min Solution -Days 507.58 

For each scenario, two main attributes are depicted in Table 42. The first attribute of “time 

performance” presents the average of time consumed by the subjects to solve the scenario 

represented in minutes. The second attribute of “min solution” is the average of estimated time 

span of the corresponding project scenario, represented in terms of days. It can be seen from Table 

42 that scenario one and three on average are simpler for a PM to solve than when dependencies 

and/or skills and productivity, represented by scenario two and four, have to be taken into 

consideration. From Table 42, it can be seen that the subjects were able to provide answers for 

scenario four, which is a simple project in size, within 60 minutes on average, however, their 

average of estimated time span is the double of the optimal one with estimated 507.58 days to 

complete the project. That shows how hard the SSSP problem is. A question has arisen as to why 

for those two scenarios the subjects were able to provide good answers. To explore more about the 

subjects’ knowledge and background, and their demographic information the following 

Section 6.4.2 discusses these aspects. 

6.4.2 Phase Two: Follow-up Interview for Qualitative Study  

This phase is performed by interviewing the subjects with at least one hour time slot for each. The 

interview is carried out according to the subject’s meeting preferences either through face-to-face 

or internet-conferencing meeting. Three subjects were unable to have face-to-face meeting due to 

their location that is far from University of East Anglia (UEA).  
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The interviews combined follow-up questions within the interview-structure, and opened new 

room for discussion. The interview questions can be found in Section 5 of the Appendix. The 

results of these questions are discussed according to the questions’ categories, which are divided 

into seven. These categories are:  

 The organizational size level that the subject represents.  

 The subject’s project management experience.  

 The project attributes that the subject thinks are important.  

 The allocation method that represents what the subject practices.  

 The considerations that the subject thinks a PM has to think about while forming a team.  

 How the subject do his/her project scheduling. and  

 The objectives that the subject thinks it represent the management goal(s).  

For more details on these categories and their detailed questions the reader can refer to Section 5 

of the Appendix. Note that subject (M) did not complete with us in this phase, and we were unable 

to explore any of his/her demographic information in this phase. In addition, subject T, N, C, S, 

and E are all from the same organization, but from different geographic branches’ locations. The 

outcomes from interviewing the six subjects for the organizational level and project management 

experience categories are presented in the following Table 43. 
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Table 43: Responses of Study Subjects for Organization Level and Experience Interview Categories 

                                            

From Table 43, it can be seen that the main participants were from large size organizations. 

However, their years of experience vary from one to another. The least experienced in 

management can be seen in the table as subject D, whereas subjects T and N are the most 

experienced amongst them all with four years difference between them. It can be seen too that the 

subjects who represents large organization with large project and teams’ size are combining agile 

and waterfall models in their projects. This confirms the observation reported in [130] that the 
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large organizations are in favouring of using hybrid methods, which combines different 

development methodologies as waterfall with other(s), over the agile approach. 

The responses of subjects for the aspects of project attributes and resource allocation are depicted 

in the following Table 44.  

Table 44: Responses of Study Subjects for Project and Resource Allocation Attributes Interview Categories 

 
Subjects 

Study Aspects D T N C S E 

P
ro

je
ct

 A
tt

ri
b

u
te

s Productivity 
Commitment 
ratio 

Analogy 

Analogy, 
learning and 
synergy with 
others 

Story point, 
and 
personality 
between the 
team 

Story point, 
and 
personality 
between the 
team 

Story point, 
and 
personality 
between the 
team 

Scenario 
relevant to the 
organization 

Four  Four Four Two Two Two 

Important 
Attributes 

As presented 
in scenario 
four 

As presented 
in scenario 
four 

As presented 
in scenario 
four 

As 
presented in 
scenario two 

As 
presented in 
scenario two 

As 
presented in 
scenario two 

P
ro

je
ct

 R
es

o
u

rc
e 

A
llo

ca
ti

o
n

 Resource 
Allocation 
Method 

Leave each to 
pick from a 
list of tasks 

Create 
different 
permutations 
of agile team 
according to 
their velocity 

Dynamically 
change 
resources from 
one task to 
another as the 
need for skills 
and proficiency  

Form a 
single team 
that works 
coherently 
for a single 
target 

Form a 
single team 
that works 
coherently 
for a single 
target 

Form a 
single team 
that works 
coherently 
for a single 
target 

Nature of 
team 
assignment 

Individuals to 
project 

Dynamic 
teams 

Dynamic 
teams 

Rigid teams Rigid teams Rigid teams 

What do you 
think of 
dynamic 
assignment 

This is how it 
works in 
reality 

This is how it 
works in reality 

This is how it 
works in reality 

This is how it 
works in 
reality 

This is how it 
works in 
reality 

This is how it 
works in 
reality 

From Table 44, the presence of resource productivity can be seen among the subjects’ 

interpretation. However, each has represented productivity according to his/her practice. For 

example, subject N has described productivity as the analogy of a resource compared to his/her 

colleagues with respect to learning speed and synergy with the team members. Others have almost 

the same concept as they represent productivity by the speed of developing story points, and in 

relation to other team members, as with subjects C, S, and E. 

In addition, it can be seen from the Table 44 that half of the subjects claim the existence only of 

scenario two, which only consider dependency between project tasks. It is worth mentioning that 

they all understand that the resources they have in their organization or company are sharing 

similarity in terms of skills and productivities, as the HR department applies standards and quality 

check. However, the other half of the subjects support the existence of scenario four as a reality of 
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complexity level they face within their projects, and they do believe that the resources differ in 

their skills and productivity. What is also important to mention, that all the subjects do not use 

productivity as a factor while they staffing and scheduling their projects.  

The method adopted by each subject differs from one to another for their project resource 

allocation. Subject D leaves the resource to decide their tasks. For subject T, (s)he allocates the 

resources to teams after creating different permutations so (s)he can decide which one is better 

based on the team velocity. Subject N allocates his/her resources to teams according to their skills, 

but when the expertise is required for another team working on another task, they can change 

teams’ members. A consensus can be seen with subjects C, S, and E to allocate resources to a single 

team where the personality factors plays the core role to create a coherent team, and to avoid any 

conflicts between the members. The nature of their teams can be seen in three different types. A 

single team that each member works on his/her own task(s) for the same project as for subject D. 

Another type is when the resources assigned to a single team that will perform having the same 

members without any changes from the start of the project till the end. The last type is when the 

teams can change their members from one task to another based on the expertise needed for new 

tasks.  This type of team formation however, has a very high chance to occur in software projects 

as all the subjects reported that in the last question of the resource allocation category.  

In addition to the previous categories, team consideration, and project scheduling aspects were 

also subjects for discussion with the study subjects. The responses from each subject towards these 

aspects are presented in the following Table 45.  
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Table 45: Responses of Study Subjects for Team and Scheduling Interview Categories 

 
Subjects 

Study Aspects D T N C S E 
Te

a
m

 C
o

n
si

d
er

a
ti

o
n

 

Assignment 
Criteria 

Cross-
functional 
team. Not 
sharing same 
expertise 

Behaviour, 
performance, 
and technical 
skills 

Cross-
functional 
and technical 
skills 

Cross-
functional 
team. No 
sharing 
between 
multiple 
tasks. Scrum 
master 
provide us 
with the very 
skilled to 
project to 
make the 
development. 

Cross-
functional 
team. No 
sharing 
between 
multiple 
tasks. Scrum 
master 
provide us 
with the very 
skilled to 
project to 
make the 
development. 

Cross-
functional 
team. No 
sharing 
between 
multiple 
tasks. Scrum 
master 
provide us 
with the very 
skilled to 
project to 
make the 
development. 

Teams’ Skills 
Nature 

roles 
Roles, and 
technical skills 

Roles, and 
technical 
skills 

Roles, and 
technical 
skills 

Roles, and 
technical 
skills 

Roles, and 
technical 
skills 

P
ro

je
ct

 S
ch

ed
u

lin
g

 A
llo

ca
ti

o
n

 

How do you 
Recognize 
Dependency 

According to 
money cost 
of each task 

Spikes of story 
points 

Similar to the 
scenarios 
where also 
requirements, 
legislation, 
and other 
outside 
aspect we 
consider 

dependencies 
with different 
respects to 
the internal 
and external 
aspects 

dependencies 
with different 
respects to 
the internal 
and external 
aspects 

dependencies 
with different 
respects to 
the internal 
and external 
aspects 

Single or Multi 
Project(s) 

The problem 
still the same 

Single as 
dependency 
will make it 
similar 

Multi-project, 
with 
consideration 
of availability  

Multi-
projects 

The same as 
how it works 
for a single 
project 

single 

What do you 
think of 
Dependency 

Not always 
the case 

We try to 
avoid as much 
as possible 

Resource 
availability 

Internal and 
external 
aspect such 
as resource 
availability 
with respect 
to other 
projects 

Internal and 
external 
aspect such 
as 
The 
percentage of 
your resource 
availability 
with respect 
to other 
projects 

Internal and 
external 
aspect of 
outsourced 
components, 
legislation, 
and risk 
mitigation 

Table 45 above shows the aspects discussed with the subjects regarding how they team up their 

resources and what criteria they use to do so. For this matter the subjects have demonstrated their 

team formation criteria by showing what skills they consider. Broadly speaking, all the subjects 

consider cross-functional teams that combine different roles supported by technical skills as the 

development needs specific languages and technologies to be used. In addition, Table 45 shows 

the outcomes from the discussion with the subjects regarding project scheduling. The first 

question in this category is about how the subjects recognize dependency between project tasks. 

The subjects have different criteria in this regard. For instance, subject D do the schedule for the 
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low cost/high revenue task to be done first, and then iteratively complete the whole product. 

Others see the real dependency that connects one development task according to stories or 

requirements to another as precedence relationship between the tasks. This question of schedules 

is planned to be followed by whether the subjects think dependency should also include multi-

project environment while scheduling and staffing a software project. Two subjects were explicitly 

requiring the consideration of multi-project environment explained by the availability of 

resources as they can be allocated to another project(s). Other subjects do not see the difference 

as the schedule should include dependencies between the projects and their interdependent tasks. 

What is noteworthy to mention is that subject T avoids inter-dependent projects as much as 

possible due to the rework that can potentially occur during the development.  

The objective(s) that the subjects consider while they are staffing and scheduling their projects are 

presented in the following Table 46. 

Table 46: Responses of Study Subjects for Management Objectives Interview Categories 

 
Subjects 

Study Aspects D T N C S E 

P
ro

je
ct

 M
a

n
a

g
em

en
t 

O
b

je
ct

iv
es

 

 

Is project 
time the 
ultimate 
objective 

yes yes No yes yes No 

What other 
objectives 
for your 
projects 

None 
Customer 
satisfaction 
and Quality 

Cost, and 
time 

Quality None 
Cost, time, 
and quality 

Should cost 
be 
considered 

No Yes Yes yes No Yes 

How do you 
do costing 

Based 
on time 

Based on time 
Based on 
time 

Based on 
time 

Based on 
time 

Based on time 

Table 46 presents the answers of the subjects regarding the objectives they consider for their 

software project management. This category has four questions where the first addresses whether 

the subjects agree with time being the ultimate objective. The second question addresses 

additional objectives that the subjects think are also important to consider. The third question 

captures whether project cost in particular should be considered if the subject did not address it 

in his/her answer to the second question. The fourth question addresses the method that the 

subject use to estimate project cost. 

Four out of six subjects consider minimizing project time as the ultimate objective, two of which 

do not include any other management objective to their projects. The reason behind their opinion 
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is that project contracts, either for internal within the organization, or external for a customer, 

place great emphasis on the deployment and delivery date of software projects, which limit the 

project time more than any other management goals. This can be summarized as stated by subject 

S “To finish the project on time and as planned is the most important thing” and as subject D 

stated too that “The cost is time”. 

It can be seen from Table 46 that some of the subjects have included more objectives than project 

time minimization in their answers. Four out of six subjects see that project cost minimization 

should be considered within the software project management decision. However, only subject N 

and E have explicitly mentioned project cost in their answer. When the subjects are asked by the 

researcher on how they do cost estimation, a consensus can be seen among them as they all have 

stated that cost should be calculated based on the amount of time spent by the resources to develop 

the software. This however can be captured by the utilization of resources that takes into account 

resources’ availability, in which the amount of usage of those who are experts and have their 

salaries higher than the others will reflect on cost with a positive relationship. For this matter 

subject D added that “software project’s cost cannot be affected by resource allocation, it depends 

on how many months and experts the development of product will take and that should include 

the running cost of that department“. 

In addition, three out of six subjects have added maximizing product quality in addition to project 

time. Moreover, subject T has added customer satisfaction to the management objectives. Despite 

the fact that customer satisfaction is a bold one that might encompass all the other discussed 

objectives, these management goals are crucial to PM to maintain, however it is hard to balance 

between them as they are conflicting each other. To clarify how it works within an organization to 

provide identification to all these objectives, subject S stated that “quality and cost are something 

that happen behind the scenes, and are agreed before the project starts, so as a project manager I 

am left to maintain the project time and schedule more than any other things”. 

6.5 Conclusion 

The industrial settings evaluation presented in this chapter has demonstrated the complexity of 

managing software projects and the variability of the attributes, development methods, and 

resource allocation approaches adopted by the PMs. Questions that gradually emerged throughout 

the study helped to identify and shape the study aims. Our first aim is to define, and search the 

attributes, aspects, and parameters that the PM uses in staffing and scheduling software projects. 

The second aim is test the suitability of the dataset used in this thesis, and its levels. The third aim 

is to compare between the study subjects’ solutions against the same optimal (optimized) ones 
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used to evaluate the outcomes of SSSP approaches. The fourth aim was to search the possible 

trends and future directions for this research field. Meeting the above aims will help us learn about 

the suitability of SSSP approaches for industrial adoption.  

The aspects of staffing and scheduling software projects 

In meeting our first aim, we have identified by our study subjects that the task dependency, 

resource’s skillset and productivity are important to be considered by the PM while staffing and 

scheduling a software project. Moreover, the resource’s availability for project tasks is another 

aspect that has been identified by the subjects, which should be included within the SSSP problem. 

The management objectives that our study subjects believed are important to be considered varies 

from between only the time span, or the three of time, cost, and quality. Broadly speaking, the 

management objectives are to minimize project time and cost, and to maximize the outcomes 

quality. However, some of the subjects have made it clear that after the contract agreements 

project time is what they left with to manage corresponds with the findings in (p.33) [135]. 

The precedence relationship between project’s tasks (task dependency) was judged by all the study 

subjects as one of the important parameter for staffing and scheduling software projects. Each 

subject however believes that (s)he has his/her own expression for this terminology. For instance, 

dependency has been illustrated by five subjects as waiting for other work to be delivered so the 

task can be started, whereas the other subject understands the dependency as a priority where the 

task with higher priority should be performed first. Despite these expressions it can be seen that 

they are all leading to the same definition of which task should be performed before the other, and 

that shows how a consensus across the subjects is for dependency definition. 

In addition, the human resource skillset has been recognized by three subjects as an important 

attribute to consider while allocating the resources to a software project. It is important to mention 

that those subjects are programme managers by which their job combines different services, 

departments, and projects into a consolidated programme with many project managers to guide. 

Moreover, variability of a resource’s productivity is also found by those subjects as a factor that 

they do not consider for staffing, but it is a reality that should not be ignored. Subject E stated on 

this matter that, “skills and productivity is never represented as in the scenarios. However, we 

have a performance check measure on each period of time for each employee so that we make sure 

that everyone is up to the standards of software development projects”. Additionally, subject S 

stated that “we ask for a resource and the scrum master provides us with the most suited to and 

productive for the task(s) we need him/her for”. Furthermore, subject S also added, “We prefer 
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good plus resource than an expert, so we can ensure cohesion between the team and no one can 

have his/her influence on the rest”. 

In addition to the previous factors, resources’ availability has been identified by the study subjects 

for its importance. This attribute was addressed by two PMs on how it plays a critical role and has 

affected the resource allocation, staffing, and project scheduling in a multi-projects environment. 

This attribute moreover, has an influence on project time and resource’s participation percentage 

to different tasks and projects, which can lead to negative implications on the overall project 

progress. Despite the importance of this factor, the aim in this thesis is to evaluate the SSSP 

approaches that have considered single project to optimize its time, which accordingly leads us to 

ignore this factor at this time.  

Which of the scenarios are most likely to represents the PMs’ project complexity? 

In order to investigate the suitability of SSSP approaches for our second aim, we should test the 

suitability of their inputs. This step can be done by validating our datasets by PMs from software 

industry. We have met this aim by the responses from our study subjects as they judged two of the 

datasets to be similar to what the industry faces. This has been established by knowing which 

scenarios are representing their problems. 

Three of the subjects have seen their project management problem demonstrated only by scenario 

two as they already assume that their resources are skilled, and productive ones. However, from 

their statements when productivity was under discussion, they all agreed that human resources in 

software projects do differ in their productivity and skillset they possess from one to another, and 

that those two attributes have to be considered while managing software projects. Therefore, the 

project complexity level that draws the PM’s main attention is that represented by the scenario 

that includes multiple interdependent tasks, and resources’ skill set and productivity attributes. 

However, a problem seems to arise as some have refused to use any approach that depends on 

effort estimation, nor size of software project task, and they claim that this might prevent them 

from using any approaches with outdated effort measures stated by subject D.  

While the time equation that SSSP approaches adopted are mainly depending on the division of 

the amount of work over the amount of progress that can be achieved in a unit of time, this 

representation can easily be adjustable to different working units as the PM needs. For instance, 

if the main development method that the organization uses is agile, then the unit of measure can 

be easily adjustable to user-story, story point or even micro-services. Therefore, the measures that 

a PM can use with a SSSP approach can be adjustable to these kinds of units. Accordingly, there 
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is no need to change the foundation of these approaches since the time measurement stays the 

same. 

How did the PMs perform in solving the scenarios? 

In meeting the third aim and answering question 1, 2, 4, and 5 in Section 6.1 we can conclude the 

following. Study subjects who participated were PMs with 6 to 30 years of experience. It appear 

to be that the more experienced PM can perform better than an average one, and similar to an 

automated SSSP approach on the problems presented in our particular datasets. Less experienced 

subjects spent more and more time on solving the scenarios for less quality solutions as the 

complexity level increases. This shows how experience plays a critical role in finding optimal or 

near optimal solutions to SSSP problem. 

Scenario one and three appeared to be straightforward for PMs to find their near optimal 

solutions. However, some of the study subjects struggled to provide a good quality solution to 

these scenarios. Moreover, as the complexity increases some PMs were unable to find near optimal 

solutions. The time performance of PMs in solving the scenarios, ranges on average for the 

simplest with 24 minutes, to the hardest with 60 minutes. Having in mind that the scenarios 

combine simple project with eight development tasks and twelve resources, this study has 

demonstrated how hard SSSP problem is, especially when scaled up with more tasks and 

resources.  

In addition, it is important to capture the difference between the PMs’ practices by which it is 

noticeably that different allocation and team formation methods were used by the study subjects 

and the method(s) adopted differ from one PM to another. For instance, some PMs have assigned 

rigid teams to project tasks where others just dynamically changed (shift) members from one team 

to another over the progress of project tasks and time. This practice however, can contribute to 

boosting the resources’ productivity if the resources are able to select what they think is suitable 

for them as reported by [127].  

Moreover, it is interestingly to observe how some of the subjects have assigned some resources 

with percentage to work on simultaneous tasks and teams attempting to increase the number of 

workers and to reduce the amount of development time on these tasks. This practice however has 

been addressed by many researches as in [120, 121] on how it can reduce resource’s productivity 

and project progress, and is unlikely to produce good quality solutions. In this matter, it can be 

concluded as subject D stated that “it is hard for a resource to work simultaneously on different 

tasks together”. Therefore, adopting the dynamic allocation with consideration for singularity of 
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assignment at a time for each resource could help especially in an environment where dependency 

of tasks, skillset, and productivity of resources should be considered.  

The possible trends and future directions for this research 

For our fourth aim, we have found that the subjects’ responses varies in terms of the resource 

allocation method, criteria of resource selection, and project properties they consider while 

allocating the resources to project tasks, which worth more exploration by a future work. This can 

be linked to investigate why the more experienced PM, as subjects T and N, tends to provide such 

high quality solutions, and to imitate their choices by an optimization approach. Moreover, 

resource availability is an aspect that worth to investigate for the possible ways to integrate it 

within the SSSP problem.   
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Chapter 7  Conclusions and Future 

Work 

The work in this thesis initially investigated the optimization of Staffing and Scheduling a Software 

Project (SSSP) problem. From the literature, we found that benchmarking and evaluating the 

approaches proposed to solve this problem has only been done in the context of a comprehensive 

survey and a systematic literature review. Therefore, a complexity classification with datasets 

corresponds to this classification were created to contribute to the SSSP literature. In addition, a 

process combined with a set of quality and performance measures were proposed. As these 

approaches are proposed to solve an industrial problems, nine well-known approaches were under 

investigation of their quality and suitability to software industry using the benchmarking process 

and the datasets. The insight gained from the findings of investigating these approaches has 

contributed in formalizing four team allocation methods into optimization problems. In addition, 

an empirical evaluation of Project Managers (PMs) performance from software industry was 

performed. Part of this evaluation was to assess the suitability of the SSSP approaches by 

validating the datasets used to benchmark and evaluate them.  

The answers for the first and second questions outlined in Section 1.4 of the first aim of this 

research can be concluded as follow. With no prior knowledge about the SSSP approaches, is there 

an automated approach that reliably solves the SSSP problem. Many optimized approaches have 

been presented throughout the previous three decades as in [15, 22], and it is important to capture 

their potential capability and capacity for different management complexity problems. Work has 

been carried out for this thesis in exploring the capacity and capability for nine SSSP approaches. 

The findings according to the measurements used for the approaches’ outcomes using MAAPE for 

accuracy, and CT score for performance show that for project time problem, some of the SSSP 

approaches vary in their outcomes of Estimated Project Time (EPT) and Computation Time (CT), 

and the SSSP approaches in [22] and [94] can outperform the others as they are capable of 

providing solutions close to the optimal one with reasonable amount of computation time. While 

the SSSP approaches are differing from each other, it was important to observe which of the 
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allocation methods adopted by the approaches is capable of providing better solutions. In this 

matter, formalization of four team allocation methods into optimization problems was proposed, 

and advanced experiments were performed, using uniform stochastic operations and optimization 

settings of GA, to capture which of the methods are best at handling complexity level of effort, 

dependency, skills, and productivity. The finding from these experiments is that Static Teams with 

Queueing Simulator for allocation (STQS) for scenario one and two, and Dynamic Team with 

Binary Participation (DTBP) methods, for scenario three, four, and five were good at enabling the 

approaches to heuristically search for near optimal solutions.  

The second aim of this research was to answer whether these approaches outperform the expert 

intuition in solving SSSP problem. Accordingly, an industrial setting study was performed. PMs 

were the subjects in this study for experiments and interviews. Four of the PMs work for a large 

financial organization, one with a large international software development organization, and the 

last one with Start-up Company. Our study subjects have between 6 to 30 years of experience. This 

study encompassed mixed-methods to capture different quantitative and qualitative data 

important in providing comprehensive knowledge about the study subjects and industry practice. 

The experimental part was performed to capture how PMs from the industry would perform for 

each scenario defined in the benchmark. As these scenarios are based on the dataset created for 

this thesis, the optimal project time was defined for each. There was two subjects that their 

solutions were similar to the best SSSP approaches. The key differences identified between those 

subjects and the others might have contributed to their high quality solutions. These keys are the 

allocation method they have used while solving the scenarios, as by dynamic teams, and 

distinguished years of experience they have, for 26 and 30 years. On the other hand, the accuracy 

of the solution provided by the SSSP approaches has a negative relationship with the level of 

scenario’s complexity. For instance, as the level of scenario’s increases from one to four, the results 

were less and less accurate as from 99.9% to 79.3%. In addition, with variability of resources’ 

productivity implemented in scenario five, none of the approaches were able to handle this level.  

The third aim of this research, identified in Section 1.4, was to find whether the SSSP approaches 

reflect the real PMs’ needs. For this aim, interviews with PMs were conducted in the second phase 

carried out for the industrial settings evaluation study. This study was also designed to explore 

based on the subjects’ experience, what aspects and attributes in software projects are important 

to be considered by a PM for SSSP problem. Seven categories were the focal points to discuss with 

the PMs in the interview. These categories are the organization level they represent, their 

experience, project attributes, allocation methods, teams, scheduling, and management objectives 

they believed are important to resource allocation optimization. Based on the results from the 
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interviews and the experiments carried out for this thesis, almost all the project attributes are 

found important. 

Three main attributes discussed by the PMs in the interviews and found important for a PM to 

consider for software project optimization are the precedence relationship between project tasks, 

resource’s skillset, and resource’s productivity. These attributes are represented in the study 

partially by the challenging scenario four and fully represented by scenario five. It is noteworthy 

that scenario five was not included within the industrial settings study for two reasons. The main 

reason is that although the experiments were intended to challenge the PMs’ capabilities, these 

experiments should also respect their time constraints too. The second reason is that the intended 

experiments and interviews are carefully planned to capture some targeted issues that can provide 

glimpse on PMs’ practices, so it is hard to bring all the scenarios, especially the fifth one, to be 

solved by the subjects while a similar can be found in the fourth.  

The experiments carried out on the four team allocation methods complies with the findings from 

the second phase of the industrial settings evaluation, which implies that the PM should look at 

the different resource assignment and team allocation methods that (s)he can use. In this regard, 

there was a consensus between the subjects on the dynamic shifting of resources between teams 

and tasks especially when a skill is required. Dynamic assignment method has been evaluated with 

different simulation of methods, and it was found from the demonstration of the simulations 

presented in Chapter 5 that this method can outperform the others and solve the time problem 

more efficiently to more advance scenarios. 

Project cost, on the other hand, is clearly an important part that should be included within the 

optimization problem of resource allocation. However, as searching for the most minimized cost 

of resource allocation alternative requires the identification of resources’ salary, the resources who 

are possessing the same skillset and doing the same job should have the same salary. Therefore, 

for an optimization problem that consider skills as one of the inputs, all the alternatives could 

have the same influence on project cost. The datasets used in this thesis moreover, have no 

information that can support this part due to the sensitivity of this information to the data 

contributors, which can show their key success in resourcing and payment structure. In addition, 

many SSSP approaches optimize either for time span or combine multi-objectives problem that 

includes project time within. Consequently, uniformalising the comparison problem for a shared 

objective –as this was the first intention of this thesis- of time span optimization problem is the 

only solution. Therefore, the main focus of the experiments carried out for this thesis was on 

project time span minimization using the described project in the datasets. Conforming to this 

conclusion the study subjects have stated in reaction to when the solutions of the scenarios was 
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revealed to them in the second phase that the important objective is time to how it can be managed 

after the agreement on quality and cost outcomes is established. To this end, it important to 

mention that four out of six subjects in the exit interviews stated that time is the ultimate objective 

in software projects.  

7.1 Overall Findings and Lessons Learned  

The overall findings throughout the thesis work are listed in the following bullet points. 

 Different methods can be used to allocate human resource in software projects adopted 

by the PMs, and yet no specific method can overcome project time optimization problem.  

 Teams are the solid base for software development, however, the assignment of team 

members can be represented by a rigid or dynamic formation and mainly less experience 

PMs tend to use the rigid one to avoid any conflicts.  

 The more experienced the PM is, the more (s)he tends to provide better and faster solution 

to the problem.  

 Complexity levels corresponding to PMs’ projects problem are found by challenging 

scenario 2, and 4.  

 Corresponding to the discussion made in [130], the work carried out for this thesis found 

that large organizations prefer a hybrid approach supported with a traditional 

development methodology, such as waterfall. 

 Project time span is important to be managed as software cost and quality are issues that 

are defined in early project stages and the PM is left to manage the time according to the 

stakeholder’s agreement.  

 None of the of SSSP approaches has presented their experiments computation time for a 

matter of fact and many have failed to report the crucial system capability they used such 

as CPU, and memory. 

 

In addition, there are some lesson learned as a result from the experiments and industry settings 

evaluation study are: 

 It is hard to establish a communication with software industry for data to share. 

 There is no available dataset that can be used for this filed of research and many are using 

hypothetical data. 

 It is hard to bring more than one PM to an interview or experiment due to their work and 

time availability constraints, and that’s can make it hard for a researcher to standardise 

the experiment interpretations and meanings exactly the same to all subjects. That was 
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the reason for having exit interviews after the experiments, so to make sure that they have 

understood and solve the scenarios to the best they can do and as we expect. 

 Solutions to labour cost are mainly developed by the optimization approaches as in [93, 

136] over time window and activity timing concepts. And this what has stopped us from 

including more approaches for SSSP. 

 

7.2 Limitations and Future Work 

The overall work carried out for this thesis has shed the light on some areas where improvements 

can be made. One of the improvements that needs to be done on the benchmarking side of SSSP 

approaches concerns the limitation of the datasets used in this thesis. These datasets present 

single problem of a small project with limited variables and information to a single organization, 

which can make it harder to conclude their applicability for different organizations and project 

scenarios. Moreover, there is a lack of representative datasets that includes the important parts 

and project attributes for SSSP optimization and none is freely available. Accordingly, gathering 

and collecting data from larger software projects is an important part in this research field to be 

made.  

Different open source optimization toolboxes have been used by SSSP optimization papers, and 

yet no quality and performance information can be found on their outcomes compared against 

each other. Therefore, work has to be done on investigating and benchmarking these toolboxes 

especially for accuracy and computation time performance compared to the one used in the work 

for this thesis. 

Moreover, the work carried out for this thesis has included nine approaches for specific problem 

comparison, however, work should be made to include up-to-date SSSP approaches in the 

benchmarking study. This work should investigate the novelty of the proposed approach and 

whether better outcomes are anticipated by the optimized allocation method proposed in that 

approach. In particular, benchmarking and comparing between the approaches adopting event-

based, time-line, and time window scheduler are also important to be established to demonstrate 

their effectiveness and performance against each other. That includes developing a benchmark 

dataset for this particular approaches’ type too. These approaches can help to tackle resource 

availability problem by providing, on the project time-line base, when the possible shortage of 

resources can happen, and their availability that can be supported by limiting their participation 

rate percentage.  
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On the other hand, another improvement that need to be done in the empirical side of software 

project time optimization is to expand the study to include different software organizations for 

more experimentation and interviews with different PM levels. Unlike the study presented 

in Chapter 6, PMs should be asked to perform their allocation to the challenging scenarios with a 

proper control so all the subjects have the same level of clarification and explanations, and any 

misunderstanding or misleading terminology can be avoided. This can be tackled by allocating 

different session dates and times supported by team of researchers to provide uniform description 

across these sessions. This should help to whether confirm the findings from the industrial 

settings study performed for this thesis or, to explore more different team formation and 

allocation practices of PMs, and the different problem representations they consider. More 

reliable outcomes with uniform problem formalization to common software projects are 

anticipated by this study to help create an optimization tool that can support the PM on his/her 

management task. This optimization tool can combine the additional aspects identified by the 

industrial settings study subjects presented in Chapter 6. This study concludes four pivotal aspects 

important for SSSP optimization approach to consider are cost and time objectives, availability of 

resources to each task, multi-project environment, and the formation of cross-functional teams. 

Our intention accordingly is to combine these aspects and parameters, and encompasses them 

within an optimization approach. 

Learning effects moreover, can be another parameter for an optimization approach to combine 

within its process for estimating project time span. The relationship between different technical 

skills and software development competencies can provide identification of when and to which 

task the resource’s productivity can be improved. This consideration of skills and competencies 

has been addressed in different incarnation as in [57, 62], however, it has never been addressed 

within an optimized approach. Therefore, work has to be accomplished towards understanding 

the relation between software development skills and competencies, and the combination of these 

skills and competencies with the learning effects into an optimized approach.  
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Appendix A 

Related Document of Empirical 

Evaluation in Industrial Settings Study 

The documents related to our empirical evaluation study are provided in this appendix. That 

includes the research information provided to participants in Section 1, research ethics approval 

in Section 2, participation consent in Section 3, exit-interview protocol 4, and interview questions 

in Section 5. 
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1. Research Information Sheet 

Dear Sir, madam, 

Who I am? 

My name is Sultan Al Khatib a doctoral researcher from University of East Anglia under 

supervision of Dr Joost Noppen. My research is about the optimization of human resource 

allocation in software projects.  

Why I need you? 

The research is intended to evaluate a set of mathematical staffing and scheduling software project 

approaches to assess their relevance in an industrial settings. I would therefore like to compare 

these mathematical approaches against the resource allocation practice by experienced software 

project managers from the industry such as yourself. The goal is to assess whether practitioners 

can benefit from these mathematical approaches.  

What benefit this research will gain from your participation and what benefit you 

will gain from this research? 

 Your participation is valuable with your resource allocation practice and experience. Based on 

your participation of your responses and feedbacks, practitioners get to see the benefit and 

downsides of the mathematical approaches. Practitioners can also benefit of improving their 

practice. The assessment of the accuracy and performance between your allocation and the 

mathematical approaches can lead you with benefiting a new managerial and mathematical 

approach to use, and this study will show which, how, and why a mathematical approach will be 

advised for use to software project managers. 

There is no risk involved in participating as we will use synthetic data, and all we need is your 

time. 

What you will be doing during this research? 

This research is divided into two phases. The first phase consists of four resource allocation 

challenges. Each challenge poses an increasingly complex resource allocation. For each challenge 

provided, you are required to perform an allocation to the resources provided for the tasks 

described for the project, based on the information presented in each scenario. This part of the 

research is designed to take no longer than one hour to perform. We expect to provide us with 

your way of doing the allocation, and estimated project time according to your allocation. In 

addition, this part of the research will be sent to you so that during your availability of time you 
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can finish it up, and once all the scenarios are completed you can send it back to us. This is made 

to makes it easy for you in term of time, and relaxation.  

Phase two consist of an exit interview which you can elaborate on your experience in the given 

challenges. Each participant will be interviewed to answer seven sections. Each section in this 

interview is focused on part of the managerial aspect surrounding the decision for doing the 

allocation. Aspect such as the organizational level, management experience, and team 

consideration can show how the provided scenarios on phase one are related to the need of 

software project managers. The output of this phase is to provide an insight about the applicability 

of the findings from the scenarios of phase one as well as to validate the mathematical approaches. 

Approval to proceed with the evaluation, and consent to use your feedback? 

Your participation is very valuable. The consent of this experiment can be found at the back of this 

document. However, if you feel uncomfortable to proceed you can ask at any time to stop. This 

will not affect your right to withdraw, cancel and/or delete any recording, written, and stored 

answers and feedbacks. 

Contact detail: 

Main researcher: Sultan Al Khatib  
 

School of Computing Sciences 

University of East Anglia 

Norwich Research Park 

Norwich NR4 7TJ 

United Kingdom 
 

Phone:   +44 (0) 1603 593738 

Mail:   S.Al-Khatib@uea.ac.uk 

Web:   http://seg.cmp.uea.ac.uk/ 

Supervisor:  Joost Noppen 
 

School of Computing Sciences 

University of East Anglia 

Norwich Research Park 

Norwich NR4 7TJ 

United Kingdom 
 

Phone:   +44 (0) 1603 593738 

Mail:   j.noppen@uea.ac.uk 

Web:   http://seg.cmp.uea.ac.uk/ 
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2. UEA Computing Science Research Ethics Committee Approval 
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3. Participation Consent 

Consent Form 

Software Project Resource Allocation Optimization – Interview Consent Form 

Researcher:   Sultan Al Khatib 

Participant:  ____________________________________________ 

Job Title:  ____________________________________________ 

Organisation:  ____________________________________________ 

Consent: 

I hereby consent to participating in entrance, and exit interviews for the purposes made clear by 

the interviewer/researcher for the study of Software Project Resource Allocation Optimization. I 

am aware a recording and transcript will be made of interviews and that I may request a copy of 

these if desired. I also confirm I have received detailed information pertaining to this study and 

am aware that I can cease my participation at any time. 

Signed: ____________________  

Name: (Printed)_________________________________ 

Date: ____/_____/____________ 

anonymous in any output from the interviews. 

* 

and publication*. 

* and transcripts* of my interviews. 

* - delete as appropriate 
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4.  Software Project Managers Interview Protocol  

Introductory Protocol 

To facilitate our note-taking, we would like to audio tape our conversations today. For your 

information, only researchers on the project will be privy to the tapes which will be eventually 

destroyed after they are transcribed. In addition, you must sign the consent form devised to meet 

our human subject requirements. Essentially, this document states that: (1) all information will 

be held confidential, (2) your participation is voluntary and you may stop at any time if you feel 

uncomfortable, and (3) we do not intend to inflict any harm. Thank you for your agreeing to 

participate. 

We have planned this interview to last no longer than one hour. During this time, we have several 

questions that we would like to cover. If time begins to run short, it may be necessary to interrupt 

you in order to push ahead and complete this line of questioning.  

Introduction  

You have been selected to speak with us today because you have been identified as someone who 

has a great experience to share about software development, and software projects. Our research 

project as a whole focuses on comparing the automated mathematical models that optimize the 

software project resource allocation to most minimized project time, with particular interest in 

understanding how these academic approaches are engaged and close to the software industry 

needs. Our study does not aim to evaluate your techniques or experiences. Rather, we are trying 

to learn more about the adopted methods of resource allocation, and hopefully learn about best 

practices that help improve project managers in software industry. 

Keys 

(Open) Question has this key means that the answer will be an open ended, with no 

restriction about number of words or statement the participant can give. The 

reason for this is that these question can be counted as a follow-up to the test 

provided for participants. 

(Closed) Question has this key means that the answer will be a close ended, with no 

restriction of Yes, or No answer. The reason for this is that these question can 

provided if the participants agree or disagree with what mentioned in the 

question. 

(Probe) Question has this key means according to the answer the interviewer will follow-

up to gather further information. 
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(Intro) Question has this key means the answer will only to ice breaking, and getting to 

know the participant which will aid in building a relationship between the 

interviewer and participant. This type of question will give an introductory 

information that only beneficial to understand the back ground of the 

participant. This type of question is likely to be at the starting and ending of the 

interview. 
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5. Software Project Managers Interview Questions 

Institutions: _____________________________________________________ 

Interviewee (Title and Name): ______________________________________ 

Interviewer: _____________________________________________________ 

Date: _____________ 

Interview Section Used: 

_____ A: Organization Level 

_____ B: Project Management Experience 

_____ C: Project Attributes 

_____ D: Software Project Resource Allocation 

_____ E: Team Consideration 

_____ F: Project Scheduling 

_____ G: Resource Allocation Objective(s) 

Other Topics Discussed: ______________________________________________ 

_______________________________________________________________ 

Documents Obtained: ________________________________________________ 

_______________________________________________________________ 

_______________________________________________________________ 

Post Interview Comments or Leads: 

_______________________________________________________________ 
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 Exit Interview Questions 

Organization Level: 

1. (Open, Intro) How do you classify your firm/organization?  

Question Note:  

Capture the participant background and perspective of the software projects. 

Project Management Experience: 

1. (Open, Intro) How long have you been a project manager? 

Question Note:  

Capture the participant background of manging software projects. 

2. (Open, Intro) What is the development methodology you use with your development teams?  

Question Note:  

Capture the participant background and perspective of managing software projects. 

3. (Open, Intro) What project size do you classify yourself you have been working on since your start 

as PM?  

Question Note:  

Capture the participant background and perspective of managing software projects. 

Project Attributes 

1. (Open, Probe) Do you use any productivity measures of your resources, and if so what is it?  

Question Note:  

Capture whether the inputs adopted by the mathematical approaches are different from the subject 

practice and requirement.  

2. (Open, Probe) Which one of the scenarios you think its attributes belong to the class of problem 

your organization have? 

Question Note:  

Capture the fitness of which scenario close to the participant practice and requirement.  

3. (Open, Probe) Why these attributes you believe are important to use while performing the 

resource allocation?  

Question Note:  

Probing to gain clarification of the fitness of which scenario close to the participant practice and 

requirement.  
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Software Project Resource Allocation 

1. (Closed) Do you use a clear method for allocating and assigning resources to your project tasks? 

Question Note:  

Capture the participant background and perspective of managing software projects. 

2. (Open, Probe) What is the adopted method for allocating and assigning resources to project tasks, 

and is it for team or individual assignment to tasks?  

Question Note:  

Probing to gain clarification of participant practice, and reason for it. 

3. (Open, Probe) What do you think of the dynamic assignment and allocation of resources either 

of distribution of resources into teams, or resource productivity change over time? 

Question Note:  

Probing to gain advanced clarification of the participant practice and requirement.  

Project Team Consideration (answer this part if your answer is team to question 2 of project resources 

allocation) 

1. (open) What criteria do you use to form a team, sharing similar competencies and skill, or creating 

a cross-functional one? 

Question Note:  

Probing to gain more understanding of the participant practice and requirement regarding team concept.  

2. (Closed) Does the adopted team method considers technical or role attributes?  

Question Note:  

Probing to gain more understanding of the participant practice and requirement regarding team concept.   

Project Scheduling 

1. (Open, Probe) How do you consider dependencies between tasks while you allocating resources? 

Question Note:  

Capture the participant practice and requirement regarding scheduling problem.   

2. (Closed) Do you think this problem should be seen from different angle, which should consider 

allocation of resource in a multi-project environment? 

Question Note:  

Capture the participant perspective, and practice regarding the scheduling problem.   

3. (Open, Probe) In your perspective, what does that mean to consider dependencies between 

projects as well as the tasks of each project too? 

Question Note:  
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Probing to gain more understanding of the participant practice and requirement regarding the 

scheduling problem. 

Resource Allocation Objectives 

1. (open, Probe) Do you consider minimizing the project time to be the ultimate objective of 

resource allocation, or in your projects you have to consider multiple objectives such as minimizing 

cost, team or resource utilization, maximizing team skills, etc.? 

Question Note:  

Capture views and adoption of resource allocation objectives. 

2. (open, Probe) What are the important objective(s) of your resource allocation you think, if you 

have multiple objectives? 

Question Note:  

Probing to gain more understanding of the participant view, practice and/or requirement regarding the 

objectives of resource allocation. 

3. (Closed) Do you think cost dimension has to be included within the objectives of solving resource 

allocation in software project while employees still have to be paid regardless their participation in 

projects? 

Question Note:  

Capture views and adoption of resource allocation objectives. 

4. (open, Probe) If so, how do you think the cost should be calculated and do you think the cost of 

the software product is calculated based on the participation and salary of resources within the 

project – as adopted by the approaches so far? 

Question Note:  

Probing to gain more understanding of the participant practice and requirement regarding the method 

of costing software projects. 
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Appendix B 

Benchmarking and Comparison of 

Software Project Human Resource 

Allocation Optimization Approaches 

Paper 

 

This section presents our research paper, which presented in the doctoral symposium of Empirical 

Software Engineering and Measurement Conference (ESEIW). This paper is published in [29] by 

ACM SIGSOFT Software Engineering Notes. 
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ABSTRACT 

For the Staffing and Scheduling a Software Project 

(SSSP), one has to find an allocation of resources to 

tasks while considering parameters such skills and 

availability to identify the optimal delivery of the 

project. Many approaches have been proposed that solve 

SSSP tasks by representing them as optimization 

problems and applying optimization techniques and 

heuristics. However, these approaches tend to vary in the 

parameters they consider, such as skill and availability, 

as well as the optimization techniques, which means 

their accuracy, performance, and applicability can vastly 

differ, making it difficult to select the most suitable 

approach for the problem at hand. The fundamental 

reason for this lack of comparative material lies in the 

absence of a systematic evaluation method that uses a 

validation dataset to benchmark SSSP approaches. We 

introduce an evaluation process for SSSP approaches 

together with benchmark data to address this problem. 

In addition, we present the initial evaluation of five 

SSSP approaches. The results shows that SSSP 

approaches solving identical challenges can differ in 

their computational time, preciseness of results and that 

our approach is capable of quantifying these differences. 

In addition, the results highlight that focused approaches 

generally outperform more sophisticated approaches for 

identical SSSP problems. 

 

Keywords 

Human Resource Allocation; Software Project 

Management; Optimization Techniques in Software 

Engineering; Comparative Study; Performance 

Evaluation 

INTRODUCTION 

Software development is a mixture of complex activities 

and the creation of any non-trivial software system 

generally requires multiple resources with a mix of 

skills, expertise, and knowledge. The assignment of 

those resources in a software development department to 

projects and tasks within those projects is one of the 

most critical tasks for a project manager, with limited 

resources, dependent tasks, and available skillsets 

needing to be considered to achieve an optimal project 

delivery time. This problem of staffing and scheduling a 

software project (SSSP) in order to minimize the project 

completion time has been attracting researchers since the 

end of last century [2, 5, 22, 24] and different 

optimization techniques have been used to address it in 

various incarnations [5, 14, 18]. These approaches 

typically consider specific attributes when optimizing 

the resource allocation such as task length, resource 

availability or skills, and the traversal of the 

optimization space is typically performed  by using 

exact, heuristic, and meta-heuristic techniques in order 

to deal the NP-Complete nature of the allocation 

problem [5]. Project managers typically can select an 

automated SSSP approach to support their allocation 

process based on the project and resource properties they 

wish to consider. However, approaches can have 

different performance characteristics such as the 

accuracy of the allocation results or computational time 

required, characteristics that are critical for successful 

SSSP but very hard to determine without a systematic 

manner. Limited number of studies in this context [5, 24] 

were published that compare SSSP approaches but 

neither of these studies performs an empirical evaluation 

of SSSP approaches using a unified basis and data set.  

 

Copyright is held by the author. 
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This article proposes to address that gap by introducing 

a benchmark and using it to evaluate the performance of 

a set of SSSP approaches against well-defined 

performance measures. Specifically, we aim to provide 

a validation dataset that has both resources and detailed 

project information for a range of SSSP challenges. In 

addition, we aim to compare the SSSP approaches using 

a uniform and expandable set of performance measures 

that can compare SSSP approaches in various categories 

and supporting a range of optimization criteria.  

In addition to the benchmark and initial results of the 

comparison analysis in this article, we also outline our 

research agenda. To further the accuracy and relevance 

of the performance evaluation we aim to perform a 

comparison of computational approaches and current 

industry standards. This will be complemented with the 

implementation and evaluation of additional SSSP 

approaches to form a complete and comprehensive 

overview of SSSP approaches as well as the means to 

perform systematic comparisons between them. Note 

that this should not be confused with the comparison of 

the heuristic algorithms. The comparison adopted in this 

paper considers the approaches that propose a model for 

allocating the developers in software projects with 

modification on the algorithms they use. 

The remainder of this paper is organized into five 

sections. Section 2 describes the studies carried out in 

comparing SSSP approaches that are related to the work 

presented in this paper. Section 3 detailed the workflow 

of procedures, dataset, criteria proposed to evaluate and 

compare the SSSP approaches, future plan of carrying 

out the rest of study work, and the threats and 

weaknesses that could affect the validity of this study. In 

section 4, the approaches adopted in this study are 

described and the results of the experiments and 

comparison between the SSSP approaches are shown. 

Section 5 discusses the main findings and concludes the 

paper. 

RELATED WORK 

When considering previous work performed in the area 

of evaluating SSSP approaches, only two studies have 

been published that compare and evaluate the 

optimization approaches of SSSP. Both comparison 

studies were based on evaluating the approaches 

according to the description provided within the texts. 

These studies have compared the approaches by a 

comprehensive survey [3] or systematic literature 

review [4] by extracting the text that describing the 

problem and solution of the approaches. Thus, these 

studies are more formally systematic literature review 

with comprehensive survey of wide software project 

management approaches.  

The first study by Pixoto et al [24] evaluates the solution 

provided by SSSP approaches regarding their 

applicability in real-world software development 

projects. Criteria used by Pixoto et al to evaluate the 

description of solutions are usefulness, work 

compatibility, and ease of use attributes. 52 approaches 

were considered by this study. The comparison shows 

that few approaches among them all are satisfying the 

criteria adopted and capable for the illustrated aspects by 

this study as the one in [28]. Skills and productivity of 

resources found are the least aspects considered by the 

approaches used by Pixoto et al [24]. In addition, time 

and cost of software projects are the goals adopted by 

overwhelming majority of SSSP approaches. It is also 

noticeable in this study that only 8% of the approaches 

compared found they have used experiments to validate 

their solution. The overall conclusion by this study is 

that more research is needed to bridge the gap between 

the current practices of software firms and the proposed 

solutions.  As this study provides essential aspects and 

differences between the SSSP approaches, the adoption 

model of criteria and aspects used are based on 

theoretical models. Criteria and aspects however have to 

be validated by the industry before they can make their 

claims about the usefulness of the approaches used in 

their study.  

The second study presented in Ferucci et al [5] provides 

a comprehensive survey of the approaches use 

optimization techniques to solve software project 

management problems. Their observations and findings 

highlight the categories of the optimization approaches, 

the important attributes that these approaches adopted, 

and the approaches that match their criteria and seen 

useful to be adopted. The approaches used by this study 

are categorized into minimizing project time, risk-based, 

overtime planning, and effort estimation. This study has 

also identified the future trends and promising areas of 

resource allocation optimization. The areas found 

require more attention by researchers as future trends are 

interactive optimization, dynamic adaptive 

optimization, multi-objective optimization, co-

evolution, software project benchmarking, confident 

estimates, and decision support tools. While this study is 

a comprehensive survey, it can be seen as a general study 

that reports the different types of problems adopted by 

approaches deal with software project management with 

no consideration of further classification or either cross 

functionality between the approaches and how each has 

opened a new knowledge. 

The results presented in these studies are a valuable 

insight into the relation between various SSSP 

approaches, however neither study performs a 

systematic comparison between the SSSP approaches 

considered based on their implementation and a 

reference dataset. This is due to the fact that a 
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benchmark dataset currently is not available in this 

research area. While two repositories exist for the use of 

software engineering research, which are ISBSG and 

Tera-PROMISE, none of these includes a valid dataset 

containing human resource models and detailed project 

information usable for SSSP based research [5]. 

Accordingly, there is an urgency in this particular area 

for a data that represent a real software project to 

benchmark the SSSP approaches [3]. As a result, 

comparing and benchmarking SSSP approaches based 

on their behaviour and performance has not been carried 

out even when it has been identified as highly important 

by the community [5]. 

A SYSTEMATIC APPROACH FOR 

COMPARING SSSP APPROACHES 

Overview of the Proposed Approach 

Our proposed approach for performing a systematic and 

reproducible performance comparison of SSSP 

approaches consists of a systematic sequence of steps to 

be followed combined with an evaluation dataset and a 

suite of evaluation criteria on which the SSSP 

approaches can be compared. The proposed workflow 

for evaluating a set of SSSP approaches consists of the 

following steps: 
 

1. Select a set of candidate SSSP approaches that 

are capable of solving a resource allocation 

problem and belong to the same class – see 

section 3.2 -. 

2. Select the suitable dataset from the benchmark 

dataset that belong to the same class of the 

approaches selected containing the desired 

resource and project properties (e.g. skills, 

task dependencies, etc.) 

3. Run each approach for the configured dataset 

for a substantial number of times, (e.g 100 

times). 

4. Record for each run the result of estimated 

project time, and the computation time of that 

run (see below). 

5. Compile the results and measure their 

performance using the benchmark metric suite 

(see below). 

6. Rank the candidate SSSP approaches based on 

their score in the overall scoring model (see 

below). 
 

These steps are depicted in Figure 1. As can be seen in 

the Figure, after identifying the approaches, the classes 

that they belong to, and selecting the suitable benchmark 

dataset, the datasets located on the left down of the 

figure is fed into each approach. As most approaches 

perform heuristic optimization using a probabilistic 

optimizer, step 3 suggests to perform multiple runs for 

each of those approaches so that their computation time 

and accuracy can be averaged, as well as their mean and 

standard deviation can be determined. The choice for 

these metrics is motivated by the fact that they are seen 

as the most useful way to represent effectiveness and 

performance among the approaches [105].  

 

Figure 37: Proposed Approach 

Benchmark Dataset 

The first artefact we introduce to perform a systematic 

evaluation of SSSP approaches is a flexible and 

configurable benchmark dataset. The dataset is a small 

real world data from a Jordanian software company and 

holds information regarding both software project and 

human resources used to develop that software. This 

data includes information about eight components of the 

software projects, and twelve human resources were 

available to that project assigned to complete it. The 

project represented in the dataset has an estimated time 

using COCOMO. The time estimated with those 

resources available was 75.16 days, with an estimated 

Man-Day equals to 964. The dataset is composed of five 

sets the first four correspond to the classification made 

to the SSSP approaches. The first four sets describe 

resource allocation problems of increasing complexity 

and parameters. The final set describes a resource 

allocation problem of a larger size that is intended to 

analyse the scalability of the approaches in class 1. In 

addition, for each one of these classes the optimal 

solution (referred to as min value) as well as the worst-

case solution values (referred to as max value). The 

dataset used in this article can be found on 

http://seg.cmp.uea.ac.uk/projects/resource-

optimisation/files/dataset.zip. 

When benchmarking SSSP approaches, it is critical to 

note that proposed approaches generally solve different 

variations of the resource allocation problem, taking into 

account different parameters, such as worker skills, or 

tasks dependencies. To evaluate the relative 

performance of SSSP approaches they need to be 

http://seg.cmp.uea.ac.uk/projects/resource-optimisation/files/dataset.zip
http://seg.cmp.uea.ac.uk/projects/resource-optimisation/files/dataset.zip
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applied to the same problem with the exact same inputs, 

which is why we propose to group SSSP approaches into 

classes according to the inputs and constraints required 

by each. The inputs required for resource allocation can 

be the estimated effort of project tasks, task 

dependencies, skills, and/or resource productivity. Each 

one of these inputs represented in the dataset by numbers 

except the skills. Skills required for developing each task 

or offered by a resource are representing languages and 

technologies, and represented in the dataset using the 

name of this language or technology such as java, or 

UML. Estimated effort of each task is represented by 

person-day. Each task in the dataset moreover has the 

value of dependency attribute represented as the task 

number that the task is depends on. Productivity of a 

resource is represented by the same metric used by [7]. 

A resource can be productive as a normal person, which 

is equal to 1, or twice the normal person represented by 

2.  According to these inputs the proposed classes are: 

 Class One. This class contains the approaches 

that require inputs only of estimated effort of 

project tasks and the number and productivity 

of human resources. 

 Class Two. This class contains the approaches 

that require inputs of estimated effort of 

project tasks, dependencies between these 

tasks, and number and productivity of human 

resources 

 Class Three. This class contains the 

approaches that require inputs of estimated 

effort of project tasks, skills required for each 

tasks, and number, skills, and productivity of 

human resources 

 Class Four. This class contains the 

approaches that require inputs of estimated 

effort of project tasks, dependencies between 

these tasks, skills required for each tasks, and 

the number, skills, and productivity of human 

resources. 
 

Note that some SSSP approaches can possibly be part of 

multiple classes as they are able to determine the optimal 

allocation of resources for simple as well as complex 

SSSP problems. The performance for such approaches 

can be compared to other approaches in both classes 

with respect to solving identical problems. The 

benchmark data follows this classification as it defines 

optimization challenges within these five distinct classes 

to facilitate the uniform comparison of SSSP approaches 

Comparison Metrics and Overall 

Scoring Model 

The performance of a SSSP approach is usually 

measured in terms of optimality, i.e. how close the 

approach gets to the true optimal solution [137]. 

However, this metric only provides a partial view. For 

example, many probabilistic optimizers, such as genetic 

algorithms, vary in the quality of solution they provide 

due to a randomised starting point and the computation 

time expended to them. Accordingly, both of resulted 

values from the approach for the objective function -

which in this study is the estimated project time- and the 

computational time expended to produce the results are 

the main metrics of this comparison. In addition to the 

performance measures of optimal solution and 

computation time, behaviour of the approaches have to 

be recorded too. While each approach uses a modified 

version of optimization technique, it is important to 

capture stability and preciseness of the approach over 

multiple runs. The importance of having a multiple runs 

is due to the probabilistic nature of meta-heuristic 

algorithm search. This can be depicted by the standard 

deviation of multiple runs of both estimated project time 

and computational time. To get a more complete insight 

into the performance of SSSP approaches we propose to 

use the following metrics: 

1. Estimated Project Time (EPT). The first 

proposed metric is the estimated project time, 

i.e. the identified optimal result by an 

approach for each run. 

2. Computational Time (CT). Computation 

time is the time consumed by the system to 

perform the approach from the point of 

feeding the data to the time of identifying the 

(heuristically) optimal result.  

3. Standard Deviation (STDEV). This metric is 

the standard deviation among the collected 

EPT values. This metric is a useful indicator 

of whether an approach is robust and precise. 

As the standard deviation will quantify 

outcomes produced are closely grouped or not. 

4. Arithmetic average (Mean). The mean of 

values resulting for an SSSP approach over 

multiple runs. 

5. Minimal EPT. The least possible value for 

estimated project time among the collected 

values over multiple runs. 

Note that metrics such as STDEVB and mean require the 

performance of the approach to be determined over 

multiple runs so that the average behaviour can be 

established and compared. 

In addition to this suite of metrics, we propose the use of 

an overall scoring model for easy comparison of SSSP 

approaches, consisting of two formulas. The first 

formula captures the accuracy of a SSSP approach using 

the following equation: 

Optimality of solution = [1-[(V-min)/(max-min)]] x 100 
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This formula depicts how close the value calculated by 

a SSSP approach (V) is to the known optimal solution 

(min).This value is normalised using the known worst-

case solution (max). Both the min and max values are 

included in the dataset for a given SSSP problem. In 

addition, a model for scoring the computational time 

performance of an approach is depicted by the following 

equation. 

CTime Score = [ Vct / Max (Class)] 

In this formula Vct is the computation expended by 

approach V to solve the SSSP problem under 

consideration of Max(Class) which is the maximum 

computation required for all known SSSP approaches 

capable of solving this problem.  

Research Agenda for Comparison 

Benchmark of SSSP approaches 

The work described in this paper is a first step towards a 

systematic mechanism for evaluating SSSP approaches 

with respect to their performance and accuracy. The 

research plan from this point focuses on extending the 

SSSP benchmark method and evaluating its usability 

and applicability in an industrial setting. To this purpose, 

the research plan is divided into four parts: 

 The first part is the refinement of the 

benchmark dataset to include more projects 

and resource data as well as a refined 

configuration mechanism that allows for easy 

configuration. 

 Second we aim to extend the set of 

implemented and evaluation SSSP approaches 

to provide a comprehensive set of data points 

that researchers can use to compare their own 

approaches to. 

 Thirdly, we aim to examine a mechanism that 

allows us to easily bridge the gap between 

SSSP approaches so users of the benchmark 

can more easily evaluate a range of SSSP 

approaches against a set problem with specific 

parameters.  

 Finally, upon establishing a reasonable and 

balanced SSSP benchmarking process we will 

evaluate its suitability and relevance by means 

of empirical evaluation with industrial 

partners. The results of the experienced 

project managers in allocating resources to 

projects will be compared to SSSP approaches 

and their benchmarking results for this 

purpose. 

Threats to Validity and Challenges in 

comparing SSSP approaches 

One of the main threats to validity in this study is that 

the data collected represents a single use of allocation 

attributes of one software firm, which can have an 

implication regarding the validity of the comparison 

with the different styles adopted in the industry 

regarding the allocation, constraints, and the 

development method within these firms. However as the 

dataset used to compare the approaches is a real-world 

data, it represent a small project which might not be the 

common scenario in software firms and the capabilities 

offered by various types of SSSP approaches are not 

covered such as dealing with a massive software project. 

Moreover, extending it to cover the capabilities of SSSP 

approaches while at the same time remaining 

representative can be very challenging. Thus, we aim to 

ensure the relevance of the data, and the approaches by 

expanding the experiments with our industrial partners. 

A further threat to the relevance of our evaluation results 

is the limited detail provided by publications describing 

SSSP approaches. In many cases, vital elements of the 

approach are not described sufficiently and no reference 

implementation of the approach is provided for 

evaluation. We have addressed this threat in our 

approach by excluding approaches with incomplete 

descriptions that prevented us to implement it. Where 

possible we have liaised with the authors of the approach 

to clarify ambiguities and complement the publication.   

BENCHMARK APPLICATION TO 

EXISTING SET OF SSSP 

APPROACHES 

Overview 

To assess the accuracy and suitability for our proposed 

approach and benchmark we have performed a 

preliminary study of five SSSP approaches in two 

different classes. The approaches focus on optimizing 

the software project time using meta-heuristic 

techniques such as Genetic Algorithm (GA) and 

Simulated Annealing (SA) while taking into account 

various parameters such as task dependency to find the 

optimal or near optimal project time. The reason for 

selecting these approaches in this comparison is based 

on the studies presented in [3, 4]. These approaches are 

presented in Table1 according to the class they belong 

to. The approaches have been classified according to the 

SSSP classes introduced in Section 3.2. The 

optimization techniques used by the approaches 

are  Genetic Algorithms (GA) by [14, 18, 20, 21], and a 

modified version of Simulated Annealing (SA) called 

Accelerated SA by [28]. Both techniques are belong to 

the same search algorithm class called meta-heuristic. 
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Table 47: Approaches Classification 

Class One Two Three Four Five 

Approach 
 

[20] X 
    

[21] X 
    

[28] X 
 

X 
 

X  

[18] 
 

X 
   

[14]  X  X  
 

Work has been accomplished to classify the approaches 

described earlier according to the classes they can use. 

This table shows the applicability of dataset classes too 

for each approach described earlier. 

Results 

The results were obtained using the Matlab R2013a 

supported by Matlab Global Optimization Toolbox 

using Intel Core 2 quad 2.66 Ghz CPU. Each approach 

was executed 100 times to allow determination of mean 

and deviation values. The comparisons performed were 

between Di Penta et al [20], Di Penta et al [21] and Kang 

et al for the Class 1 benchmark data, and between Chan 

et al and Alba et al for the Class 2 dataset.  

Results of the Class One Dataset Evaluation 

The first results we present are for the Class 1 

approaches [20],[21], and Kang et al [28]. The dataset 

used is the Class One dataset, which only considers 

tasks, resources and availability, and has an optimal 

solution of 80.33 for its project schedule. Figure 2 shows 

how each iteration for each approach resulted an EPT in 

term of days where the lowest value amongst the 

approaches is the one obtained by DiPenta et al [20]. 

Moreover, we can see that the approach in both DiPenta 

[20] and [21] were quite close to the estimate of 

COCOMO presented in Section 3.3.  

The results obtained for Kang et al approach on the other 

hand is overestimating project time when compared to 

any one of the DePinta el al approaches. This is due to 

the allocation method adopted by Kang et al approach as 

it assigns single resources to tasks with least estimated 

effort, where those that have the biggest effort required 

are each assigned to two resources which results in a less 

accurate approximation. The numeric results for 

accuracy are given in Table 2. It is interesting to observe 

that DiPenta et al [20] is the most accurate and it has 

managed to identify the actual optimal solution (80.33) 

for the dataset task. DiPenta et al [21] has come close to 

finding the optimal solution but Kang et al struggled to 

come close. A graphical representation of this data as 

well as the behaviour over multiple runs can be found in 

Figure 2. 

 

Figure 38: Accuracy performance over a 100 runs for 

Class One 

When we examine the computation time results in Table 

2. It can be seen that DiPenta et al [21] is the least time 

consuming among the approaches whereas Kang et al 

requires slightly more time. DiPenta et al [20] clearly 

requires the most time to identify an optimal solution.  

Table 48: Performance results of Class One 
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[28] 127.90 2.82 111.5 0 111.5 

[20] 285.91 2.57 80.83 1.139 80.33 

[21] 109.65 0.19 85.13 2.61 80.6 

 

An interesting observation as well is that while DiPenta 

et al [21] is not only faster, its standard deviation also is 

significantly lower than the two other approaches, which 

means the optimization behaves more uniformly in 

repeated experiments. This is a quality attribute that can 

become important when the problem size is scaled up, 

as a small variation in computation time can make 

solving a particular problem infeasible. 

Results of the Class Two Dataset Evaluation 

For the Class 2 approaches [14, 18] their performance 

was evaluated using the Class 2 dataset, where 

constraints are imposed on project schedule 

corresponding to dependencies between tasks. This 
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dataset has an optimal solution of 81.95 days for the 

project schedule. When examining the results in Table 

3. It can be seen that the approach of Chang et al is 

capable of identifying the optimal solution where the 

approach by Alba et al is not, however the approach of 

Alba et al gives a more reliable and reproducible results 

for a single run, as illustrated by the standard deviation 

value. This becomes even more clear when examining 

Figure 3 where Chang et al clearly fluctuates per run 

where the results of Alba et al is more tightly grouped 

together. 

 

Figure 39: Accuracy performance over a 100 runs for 

Class Two 

An interesting picture surfaces when we examine the 

computation time required by both approaches, as 

depicted in Table 3. It can be seen that while Chang et al 

fluctuates in the accuracy of the answer returned per run, 

on average it completes significantly faster than Alba et 

al. In this case, it is clear that while both approaches 

apply similar techniques Chang et al have sacrificed part 

of their accuracy for improved computation time 

performance. 

Table 49: Performance results of Class Two 
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[18] 41.88 0.17 86.29 1.52 81.95 

[14] 134.99 1.91 85.1 0.49 82.64 

 

Ranking SSSP Approaches 

Comparison Using the Scoring Model  

As the final step of our preliminary evaluation, we rank 

the evaluated SSSP approaches using our proposed 

scoring model. By combining the results of the 

approaches using the computation time and estimated 

project time and the formulas presented in Section3.3 we 

can compile the results in Table 4. 

Table 50: Ranking results for the approaches 

Class Approach Optimality of 

Result 
CT 

Score 

Class 

One 
[28] 96.5% 0.45 

[20] 99.9% 1 

[21] 99.46% 0.3835 

Class 

Two 
[18] 99.37% 0.312 

[14] 99.54 1 

 

This table gives an aggregated overview of the 

evaluation results using our dataset and metric suite. It 

can be seen for the Class 1 approaches that both 

approaches proposed by DiPenta et al are very close in 

accuracy but differ in computation time, with Kang et al 

representing a middle ground. For Class 2 a clearer 

winner can be identified with Chang et al offering 

similar accuracy to Alba et al but requiring far less time. 

We imagine that this aggregated scoring model will aid 

practitioners in comparing SSSP approaches and as 

such, it is one of the important deliverables of our 

research. Note however that in this scoring model at the 

moment the added value of standard deviation for both 

accuracy and computation is lost. In future work, we aim 

to include these explicitly in the scoring model to give a 

more complete picture. 

CONCLUSIONS 

In this article, we have identified that many different 

optimization approaches exist for staffing and 

scheduling a software projects (SSSP), but due to 

differences in the problem parameters they can consider 

as well as the optimization techniques they use their 

performance and applicability can be hard to assess and 

compare. To address this issue we have introduced a 

systematic comparison method for SSSP approaches 

together with a set of comparison metrics and an overall 

scoring model that can be used to rank their 
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performance. This comparison method is combined with 

a benchmark dataset and reference values that identifies 

and supports four different classes of SSSP approaches 

based on their capabilities and limitations. We have 

applied our method and benchmark data to a set of five 

SSSP approaches and from these early results the 

applicability and accuracy of our method became clear. 

Our method highlighted that focussed approaches that 

aim to solve a well-defined SSSP problem are more 

likely to identify an accurate solution within a 

reasonable amount of time rather than approaches that 

can potentially consider a wider range of parameters and 

inputs. 

Our future work and the expected contribution of my 

dissertation lies first in the creation of a more 

comprehensive method and reference dataset for 

comparing SSSP approaches but also in evaluating this 

with industry experts who are expected to apply the 

method in practice. To achieve this we are planning 

further experiments and evaluation with the intention to 

expand the dataset and add support for the remaining 

SSSP classes. In addition, we aim to expand the range of 

SSSP problems per class in both complexity and size to 

aid in the evaluation of scalability. Finally, we aim to 

perform an empirical experiment where we ask industry 

experts to apply and evaluate various SSSP approaches 

and compare the results to the evaluation results of our 

method to establish the relevance and accuracy of the 

method in real-world application scenarios. Our 

eventual goal for this work is to serve as an accurate and 

flexible reference mechanism for both academics and 

practitioners for determining the performance and 

accuracy of SSSP approaches. 
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