

A Comparative Study of the

Relative Performance and Real-

World Suitability of Optimization

Approaches for Human Resource

Allocation

Sultan M A Al Khatib

A Thesis Submitted for the Degree of

Doctor of Philosophy

At the University of East Anglia

September 2018

II

A Comparative Study of the

Relative Performance and Real-

World Suitability of Optimization

Approaches for Human Resource

Allocation

Sultan M A Al Khatib

© This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that

its copyright rests with the author and that no quotation from the thesis. Nor any information derived therefrom,

may be published without the author’s prior, written consent.

III

Abstract

The problem of Staffing and Scheduling a Software Project (SSSP), where we consider Human

Resource Allocation (HRA) to minimize project time, offers a management challenge for

Project Managers (PM’s). Unlike the general HRA problem, SSSP involves determination of

the assignment of a fixed amount of resources to teams and the allocation of these teams to

project’s jobs. SSSP problem arises across a diverse range of resources’ and project

characteristics (discrete variables), and this variety has offered a wide range of HRA methods.

The general consensus is that the benchmark for SSSP are Meta-heuristic optimization

techniques using deterministic or stochastic simulation of time. However, different HRA

methods and project attributes are considered by SSSP approaches, and their solutions need

to be compared against each other. The majority of SSSP approaches provide their

approximation using Genetic Algorithm (GA) validated by a synthetic data or empirical

method such as Quasi-experiment. Limited studies offer the comparison between these SSSP

approaches, either by a comprehensive survey or systematic literature review for qualitative

concepts.

We aim to answer a set of research questions including: what is the best way to show the

quality and performance differences between SSSP approaches? And, are these SSSP

approaches suitable for industrial adoption? Our thesis is that the best methodology is to

identify according to the conceptual models used by the approaches a set of challenging data

levels. In support of our thesis, we propose a systematic benchmarking and evaluation

approach that encompass the data levels, and a set of quality measures. Next, we propose an

empirical study that assess how PMs from software industry perform the allocation given the

same datasets. The results of both works demonstrate significant differences between the

approaches, highlighted four methods that advances the research filed, and provide

interesting discussion on the PMs’ practices on SSSP.

IV

List of Abbreviations

Abbreviation Meaning

COCOMO Constructive Cost Model

CP Critical Path

CPM Critical Path Method

CRD Critical Resource Diagram

CT Computation Time

DAG Directed Acyclic Graph

DM Decision Maker

DP Dynamic Programming

DTBP Dynamic Team with Binary Participation method

DTPR Dynamic Team with Participation Rate method

EPT Estimated Project Time

FP Function Point

GA Genetic Algorithm

GUI Graphical User Interface

HC Hill Climbing

HRA Human Resource Allocation

KLOC Kilo Line Of Code

MAAPE Mean Arctangent Absolute Percentage Error

MoGA Multi-objective Genetic Algorithm

NSGAII Non-dominated Sorting Genetic Algorithm II

PERT Program Evaluation and Review Technique

PM Project Manager

PMBOK Project Manager Body Of Knowledge

PSO Particle Swarm Optimization

PSP Project Scheduling Problem

RCPS Resource Constrained Project Scheduling Problem

SA Simulated Annealing

SBSE Search Based Software Engineering

SBSPM Search Based Software Project Management

V

SE Software Engineering

SLOC Source Line Of Code

SPM Software Project Management

SSSP Staffing and Scheduling a Software Project

STQS Static Team with Queueing Simulator method

STTS Static Team with Time Simulator method

SWECOM IEEE Software Engineering Competency Model

TPG Task Precedence Graph

WBS Work Breakdown Structure

WP Work Package

VI

Table of Contents:

List of Abbreviations .. IV

List of Tables .. X

List of Figures .. XII

Chapter 1 Introduction ... 14

1.1. Human Resource Allocation in Software Projects .. 14

1.2. Staffing and Scheduling a Software Project ... 17

1.3. Motivation .. 20

1.4. Research Aims and Questions ... 22

1.5. Overview of our Methodology and Benchmarking Approach 23

1.6. List of Contributions ... 25

1.7. Thesis Structure ... 25

Chapter 2 Literature Review .. 27

2.1 Software Project Information .. 27

2.1.1 Software Size, and Effort Estimation Models .. 27

2.1.2 Software Project Task Dependency Modelling .. 30

2.1.3 Workforce Models ... 34

2.1.4 Discussion on software project information.. 45

2.2 Optimization Techniques (Search-Based Algorithms) 46

2.2.1 Branch and Bound... 47

2.2.2 Backtracking .. 47

2.2.3 Branch and Cut .. 48

VII

2.2.4 Greedy ... 48

2.2.5 Dynamic Programming .. 48

2.2.6 Hill Climbing .. 49

2.2.7 Genetic Algorithm ... 49

2.2.8 Multi-Objective Genetic Algorithm .. 50

2.2.9 Simulated Annealing ... 50

2.2.10 Particle Swarm ... 51

2.2.11 Discussion on optimization techniques ... 51

2.3 Comparative Studies in Optimization Approaches for SSSP Problem 52

2.3.1 Criteria .. 52

2.3.2 Observation and findings ... 53

2.4 SSSP Optimization Approaches .. 57

2.4.1 Problem Input Formalization .. 58

2.4.2 Constraints and Penalties .. 62

2.4.3 Solution Representation ... 64

2.4.4 Validation ... 69

2.4.5 Selected SSSP Approaches for Benchmarking and Comparison 70

2.4.6 Detailed Description of the Selected SSSP Approaches 74

2.5 Benchmarking, Datasets and Measurements .. 79

2.5.1 Benchmark Process ... 79

2.5.2 Problem and approach’s classification ... 80

2.5.3 Benchmark Measurements and Statistical Tests 81

2.5.4 Available Repositories for Software Engineering Studies 82

2.6 Conclusion .. 84

Chapter 3 Benchmarking Process for Staffing and Scheduling Software Projects

Optimization Approaches .. 86

3.1. Introduction ... 86

VIII

3.2. A Systematic Approach for Comparing SSSP Approaches 89

3.3. Classification of SSSP Approaches .. 92

3.4. Benchmark Dataset ... 94

3.4.1 Dataset Complexity Levels ... 95

3.4.2 Resource Allocation Scenarios of Dataset Complexity Levels 96

3.5. Quality Metrics and Comparison Measurements ... 107

3.6. Summary .. 112

Chapter 4 Evaluation of Nine SSSP Approaches ... 114

4.1 Introduction ... 114

4.2 Experiment Aims and Parameters Settings ... 115

4.3 Results... 116

4.4 Analysis ... 126

4.5 Conclusion .. 129

Chapter 5 SSSP with Team Formation and Distribution to Project Tasks 132

5.1 Introduction ... 132

5.2 SSSP Problem Formalization by Four Different Team Allocation Methods

 136

5.3 Genetic Algorithm Configurations and Operators Solution 143

5.3.1 Solution Representation and Chromosome Encoding 144

5.3.2 Initial Population .. 147

5.3.3 Crossover Operator ... 147

5.3.4 Mutation Operator .. 150

5.3.5 Selection Operator... 152

5.3.6 Fitness Function .. 152

5.4 Experiment Settings and Results .. 158

5.4.1 Results: ... 159

5.5 Conclusion .. 170

IX

Chapter 6 Empirical Evaluation in Industrial Settings .. 173

6.1 Introduction ... 173

6.2 Background .. 175

6.3 Methodology .. 176

6.4 Study Experiments .. 178

6.4.1 Phase One: Evaluation of PMs’ Performance in solving SSSP Challenges

 179

6.4.2 Phase Two: Follow-up Interview for Qualitative Study 184

6.5 Conclusion .. 191

Chapter 7 Conclusions and Future Work ... 196

7.1 Overall Findings and Lessons Learned .. 199

7.2 Limitations and Future Work .. 200

Bibliography ... 202

Appendix A ... 211

1. Research Information Sheet .. 212

2. UEA Computing Science Research Ethics Committee Approval 214

3. Participation Consent ... 215

4. Software Project Managers Interview Protocol... 216

5. Software Project Managers Interview Questions .. 218

Appendix B ... 222

X

List of Tables

TABLE 1: HRA AND TEAM ASSIGNMENT METHODS .. 21

TABLE 2: ATTRIBUTES OF INFOCOMP 2012 [54] ... 35

TABLE 3: TEAM ROLES AND PERSONALITY FACTORS RELATION [57] .. 38

TABLE 4: TEAM ROLES AND COMPETENCIES [62] .. 40

TABLE 5: EXAMPLE OF USE, COMPLEXITY, AND SIGNIFICANCE OF SKILLS ... 42

TABLE 6: SKILLS RELATION ... 42

TABLE 7: RESOURCES KNOWLEDGE LEVEL FOR EACH SKILL .. 42

TABLE 8: RESOURCES FITNESS TO PROJECTS ... 43

TABLE 9: SELECTED SSSP APPROACHES ... 72

TABLE 10: ATTRIBUTES OF SELECTED BENCHMARK SSSP APPROACHES ... 73

TABLE 11: SSSP CLASSES ... 93

TABLE 12: SCENARIO 2 PROJECT ATTRIBUTES .. 99

TABLE 13: SCENARIO 3 PROJECT ATTRIBUTES .. 100

TABLE 14: SCENARIO 3 RESOURCE ATTRIBUTES ... 101

TABLE 15: SCENARIO 4 PROJECT ATTRIBUTES .. 102

TABLE 16: SCENARIO 4 RESOURCE ATTRIBUTES ... 103

TABLE 17: SCENARIO 5 PROJECT ATTRIBUTES .. 105

TABLE 18: SCENARIO 5 RESOURCE ATTRIBUTES ... 105

TABLE 19: PARAMETER SETTINGS OF THE SELECTED NINE SSSP APPROACHES 115

TABLE 20: SSSP APPROACHES RESULTS FOR COMPLEXITY LEVEL ONE .. 117

TABLE 21: LEVEL ONE PAIRED T-TEST OF SSSP APPROACHES EVALUATION 118

TABLE 22: SSSP APPROACHES RESULTS FOR COMPLEXITY LEVEL TWO .. 120

TABLE 23: LEVEL TWO PAIRED T-TEST OF SSSP APPROACHES EVALUATION 120

TABLE 24: SSSP APPROACHES RESULTS FOR COMPLEXITY LEVEL THREE 122

TABLE 25: LEVEL THREE PAIRED T-TEST OF SSSP APPROACHES EVALUATION 123

TABLE 26: SSSP APPROACHES RESULTS FOR COMPLEXITY LEVEL FOUR .. 124

TABLE 27: LEVEL FOUR PAIRED T-TEST OF SSSP APPROACHES EVALUATION................................ 125

XI

TABLE 28: OVERALL FINDINGS FROM THE COMPLEXITY LEVELS FOR EACH SSSP APPROACH 126

TABLE 29: MINKU01 ALLOCATION EXAMPLE ... 128

TABLE 30: RESULTS OF TEAM ALLOCATION METHODS FOR LEVEL ONE COMPLEXITY 160

TABLE 31: TEAM METHODS EVALUATION PAIRED T-TEST FOR LEVEL ONE 161

TABLE 32: RESULTS OF TEAM ALLOCATION METHODS FOR LEVEL TWO COMPLEXITY 162

TABLE 33: TEAM METHODS EVALUATION PAIRED T-TEST FOR LEVEL TWO 163

TABLE 34: RESULTS OF TEAM ALLOCATION METHODS FOR LEVEL THREE COMPLEXITY 164

TABLE 35: TEAM METHODS EVALUATION PAIRED T-TEST FOR LEVEL THREE 165

TABLE 36: RESULTS OF TEAM ALLOCATION METHODS FOR LEVEL FOUR COMPLEXITY.................. 166

TABLE 37: TEAM METHODS EVALUATION PAIRED T-TEST FOR LEVEL FOUR 167

TABLE 38: RESULTS OF TEAM ALLOCATION METHODS FOR LEVEL FIVE ... 168

TABLE 39: TEAM METHODS EVALUATION PAIRED T-TEST FOR LEVEL FIVE 169

TABLE 40: OVERALL FINDINGS FROM THE COMPLEXITY LEVELS FOR EACH TEAM ALLOCATION

METHOD .. 169

TABLE 41: STUDY SUBJECTS RESPONSES .. 180

TABLE 42: EVALUATION OF STUDY SUBJECTS’ PERFORMANCE .. 184

TABLE 43: RESPONSES OF STUDY SUBJECTS FOR ORGANIZATION LEVEL AND EXPERIENCE

INTERVIEW CATEGORIES ... 186

TABLE 44: RESPONSES OF STUDY SUBJECTS FOR PROJECT AND RESOURCE ALLOCATION ATTRIBUTES

INTERVIEW CATEGORIES ... 187

TABLE 45: RESPONSES OF STUDY SUBJECTS FOR TEAM AND SCHEDULING INTERVIEW CATEGORIES

 ... 189

TABLE 46: RESPONSES OF STUDY SUBJECTS FOR MANAGEMENT OBJECTIVES INTERVIEW

CATEGORIES .. 190

TABLE 47: APPROACHES CLASSIFICATION .. 228

TABLE 48: PERFORMANCE RESULTS OF CLASS ONE .. 228

TABLE 49: PERFORMANCE RESULTS OF CLASS TWO ... 229

TABLE 50: RANKING RESULTS FOR THE APPROACHES ... 229

XII

List of Figures

FIGURE 1: SSSP ELEMENTS ... 18

FIGURE 2: RESEARCH METHODOLOGY AND PROCESS .. 24

FIGURE 3: CRITICAL PATH DIAGRAM .. 32

FIGURE 4: SAMPLE OF GANTT CHART .. 33

FIGURE 5: CRITICAL RESOURCE DIAGRAM.. 34

FIGURE 6: SWECOM ELEMENTS [55] .. 36

FIGURE 7: DATE AND NUMBER OF OPTIMIZATION APPROACHES ILLUSTRATED FROM [5] 54

FIGURE 8: HUMAN RESOURCE ALLOCATION PROBLEM ILLUSTRATED FROM [24] 55

FIGURE 9: RESEARCH FRAMEWORK .. 87

FIGURE 10: PROPOSED BENCHMARKING APPROACH .. 91

FIGURE 11: SCENARIO 1 SCHEDULE SOLUTION .. 98

FIGURE 12: LEVEL 2 DEPENDENCY GRAPH ... 99

FIGURE 13: SCENARIO 2 SCHEDULE SOLUTION .. 100

FIGURE 14: SCENARIO 3 SCHEDULE SOLUTION .. 102

FIGURE 15: SCENARIO 4 SCHEDULE SOLUTION .. 104

FIGURE 16: SCENARIO 5 SCHEDULE SOLUTION .. 106

FIGURE 17: LEVEL ONE BOXPLOT DIAGRAM OF SSSP APPROACHES EVALUATION 117

FIGURE 18: LEVEL TWO BOXPLOT DIAGRAM OF SSSP APPROACHES EVALUATION 119

FIGURE 19: LEVEL THREE BOXPLOT DIAGRAM OF SSSP APPROACHES EVALUATION 121

FIGURE 20: LEVEL FOUR BOXPLOT DIAGRAM OF SSSP APPROACHES EVALUATION 124

FIGURE 21: STQS METHOD CHROMOSOMES... 144

FIGURE 22: STTS METHOD CHROMOSOMES .. 145

FIGURE 23: DTBP METHOD CHROMOSOME... 145

FIGURE 24: DTPR METHOD CHROMOSOME .. 146

FIGURE 25: STQS, AND STTS METHODS CHROMOSOME SEPARATION .. 148

FIGURE 26: STQS, AND STTS METHODS CROSSOVER .. 148

FIGURE 27: DTBP, AND DTPR METHODS CROSSOVER .. 149

FIGURE 28: STTS METHOD CHROMOSOME MUTATION ... 151

FIGURE 29: QUEUEING SIMULATOR FITNESS FUNCTION ... 154

XIII

FIGURE 30: TIME SIMULATOR FITNESS FUNCTION .. 158

FIGURE 31: TEAM METHODS EVALUATION BOXPLOT FOR LEVEL ONE .. 160

FIGURE 32: TEAM METHODS EVALUATION BOXPLOT FOR LEVEL TWO ... 162

FIGURE 33: TEAM METHODS EVALUATION BOXPLOT FOR LEVEL THREE .. 164

FIGURE 34: TEAM METHODS EVALUATION BOXPLOT FOR LEVEL FOUR .. 166

FIGURE 35: TEAM METHODS EVALUATION BOXPLOT FOR LEVEL FIVE ... 168

FIGURE 36: METHODOLOGY OF THE INDUSTRIAL EVALUATION STUDY ... 177

FIGURE 37: PROPOSED APPROACH .. 225

FIGURE 38: ACCURACY PERFORMANCE OVER A 100 RUNS FOR CLASS ONE .. 228

FIGURE 39: ACCURACY PERFORMANCE OVER A 100 RUNS FOR CLASS TWO 229

14

Chapter 1 Introduction

In this chapter, an overview of human resource allocation in software projects, including a general

background on related topics of optimization approaches, is presented in Section 1.1. In addition,

a general formalization of human resource allocation with consideration to project time

minimization problem is presented in Section 1.2. This chapter also presents our motivation, aims,

and research questions in Sections 1.3 and 1.4, respectively. Section 1.5 provides to the reader an

overview about the research methodology and process carried out for the work for this thesis.

Section 1.6 lists the contributions of this thesis, and the thesis organization is presented in

Section 1.7.

1.1. Human Resource Allocation in Software Projects

Human Resource Allocation (HRA) can be defined as the process of determining a feasible and

optimal schedule for a set of jobs according to the resources’ availability and/or the completion

time of these jobs target(s) [1]. It is the responsibility of a Project Manager (PM) to perform HRA

given the interdependent relationship between human resources and jobs, which requires the PM

to identify which job should be done by whom with careful selection of the competent resources

[2].

HRA is a vital and crucial part of project management which plays a critical role in maintaining

project outcomes to the planned constraints of quality, cost, and time. Finding the optimal

resource allocation plan with respect to project schedule and maintaining it with high quality, low

cost, and minimum time standards is a complex problem for a PM to solve in reasonable time

given the limitation of deploying and delivering the final product. It has been proven that

inadequate human resource planning is one of the causes of failure especially in software projects

[2].

Project management as defined by Project Management Body Of Knowledge (PMBOK) is the

“application of knowledge, skills, tools and techniques to project activities to meet the project

15

requirements” (p. 6) [3], and it is not a surprise that more skilled, knowledgeable, and expert PMs

are always in demand by many organizations. Moreover, project management is the most dynamic

and vibrant among the management disciplines [4], and in software production several

management activities are critical for success, however these activities potentially have conflicting

goals with each other [5]. This is due to the nature of software construction and the characteristics

of software projects, which predominantly involve human resources and requires cognitive

processes of individuals collaborating in teamwork to create the software [4]. For example, it is

hard to balance between project time span and product quality when different skills are heavily

involved in the software construction, testing and quality assurance, while at the same time

availability of these skills amongst the resources is scarce.

There are several characteristics that make software production and it related management

activities differ from any other projects. Software is an intangible product that is expected to

provide a unique solution. However, with its intangible nature, stakeholders often provide

imprecise and/or incomplete information about the required solution. Product scope could then

have some potential changes if these imprecise or incomplete requirements are not rectified.

Moreover, software production involves complex development of interfaces and core systems, and

at the same time it often has dependability and interaction with other software(s), hardware(s),

and processes, which requires continuous updating of practices according to the constant

evolution of processes, methods, and tools. This nature of software requires different types of

testing to ensure software quality and security however with this complex nature and imprecise

requirements, quality measures can be a hard target for software engineers to achieve. In addition,

software production is a human-based development. Therefore, individuals with intensive

intellectual capital are heavily required to form teams, where the members of these teams have to

have their communication and coordination as clear as possible [4]. Thus, software projects differ

by its nature from any other projects, and it is not a surprise that in software projects the

management activities and goals are the major concern rather the technical ones [6].

One of the advantages of improving human resource allocation is to minimize project time by

which software firms can be more productive [7]. Many studies have presented the importance of

minimizing software project time among the management goals of time, cost, and quality as in [5]

[8], and as stated by [9] with industrial evidence that for standard software development the

organizations have in their highest priority to minimize project schedule depending on the

availability of skills and expertise as a way of reducing time to market.

16

In early work on project time, different models are proposed for time estimation and management

such as Work Breakdown Structure (WBS), Program Evaluation and Review Technique (PERT),

Critical Path Method (CPM), etc. -see Section 2.1.2- however none of these models support the

resources attributes and the dynamic nature of resource allocation taking into account team

aspects. To solve different Software Engineering (SE) problems including software project time

minimization, optimization techniques (Search-Based Algorithms) are employed by many

researchers, and the dawn of a new field was born and coined by the term Search-Based Software

Engineering (SBSE) by [10]. SBSE focuses on the application of special optimization techniques

that belong to class Meta-Heuristic to different software engineering problems -see Section 2.2 -.

Part of the earliest work in SBSE described by [11] are both in [12] and [13], where [12] have

employed Genetic algorithm -see Section 2.2- to determine the best resource allocation for

software project management. The one in [13] on the other hand was the first to formalize

requirement planning into a Next Release Problem (NRP) and provide three approaches using

Greedy, Hill Climbing, and Simulated Annealing optimization techniques -see Section 2.2- to

maximize satisfaction of a selected stakeholder(s) on requirement prioritization for the next

release.

A more advanced classification is introduced by [5] as a subfield of SBSE named Search-Based

Software Project Management (SBSPM), and comprehensively surveyed for the approaches that

employ optimization techniques on Software Project Management (SPM) problems including

Software project time minimization. Limited number of approaches are found by [5] that have

explored the nature of software project time minimization and provided approximation methods

for it using an optimization technique.

HRA with consideration to project time span minimization is an optimization problem for a cost

function that involves constraints on project tasks and the available resources. For instance,

precedence relationship between partial or entire project tasks, and/or skills between tasks and

resources are required to be satisfied. These constraints however can be soft or hard by which

violation of a soft constraint can be acceptable and a process is put to rectify that by applying

penalties, or for a hard constraint any solution that violate it should be omitted. HRA combines

two aspects which are: a) the workflow of jobs that the resources have to follow implemented by a

graphical representation such as Directed Acyclic Graph (DAG), and b) criteria for resource

selection (e.g. skills) [2].

17

Different representations of HRA problem have been introduced by different incarnations

depending on the resources’ type addressed in the problem such as human, machines, etc. An

early version of HRA problem has been introduced as a Resource-Constrained Project Scheduling

problem (RCPS), which tend to tackle several kinds of resources [14]. A related problem to this

has been later tackled by many approaches as in [14, 15] named Project Scheduling Problem (PSP),

which only considers human resources and their skill(s). Given the nature of HRA in software

projects which is not only concerned about project schedule, but in addition the resources staffing

and their productivity and distribution to teams as in [16], our general optimization problem

addressed for this thesis is represented by the following Section 1.2.

1.2. Staffing and Scheduling a Software Project

Staffing and Scheduling a Software Project (SSSP) is one of the software project management

problems. This problems is associated with exploring a set of possible solutions and searching for

the best minimized project time span among the feasible solutions. However, the search space of

possible candidate solutions for this problem is typically large and requires extensive processing

time to find the best one [17]. This problem is well-known to be NP-Hard class of computational

complexity that no known algorithm can find an optimal solution for it in a polynomial time [18].

Here the optimization techniques are used to help in this particular management task aiming to

produce optimal or near optimal solutions within a reasonable computational time. SSSP problem

can be represented by five main elements. These elements are depicted in the following Figure 1.

18

Staffing and Scheduling

Software Projects

Resource

Assignment

Problem

Inputs
Constraints

Resources

Staffing

Project

Scheduling

* Dynamic Teams with

Binary Participation

* Dynamic Teams with

Participation Rate

* Static Team with

Queueing Simulator

* Static Team with Time

Simulator

* Resource Skillset

* Resource Productivity

* Participation Rate

* Available Resources

* Task Dependency Met

* Skills Met

* Resource Limitation

* Assignment Limitation

* Estimated Effort

* Task relationship data

Figure 1: SSSP Elements

From Figure 1, it can be seen that the SSSP problem requires the identification of three main

elements. These elements are problem inputs, resource assignment method, and the software

project constraints. In addition, SSSP problem includes two nested problems, which are resource

staffing and project scheduling. As can be seen in Figure 1, resource staffing problem is based on

the inputs of resources’ availability, properties, and the way of assigning these resources to teams.

Once staffing of resources is completed, project scheduling can be then established based on the

outcome of resource staffing and additional two aspects. These aspects are the second part of the

problem inputs of project properties and the project constraints of task dependency, skills, etc.

which have to be adhered to within the outcome schedule. According to these elements the

optimization problem of SSSP can be mathematically formulated as follow.

19

Problem Formalization:

Staffing the resources and scheduling the tasks of a software project can be formulated as an

optimization problem of a cost function for minimizing project time span 𝑝𝑇 as follow.

𝑚𝑖𝑛 𝑓(𝑝𝑇)

𝑤ℎ𝑒𝑟𝑒,

𝑝𝑇 = 𝑚𝑎𝑥{𝐶𝑃1, 𝐶𝑃2, … , 𝐶𝑃𝛾}

𝐶𝑃𝑑 =∑𝑆(𝑡𝑑𝑘)

𝐼

k=1

𝑆(𝑡𝑙) = 𝑒𝑡𝑙/∑𝑝𝑟𝑜𝑟

𝑛

𝑟=1

∗ 𝑄(𝑡𝑙 , 𝑟)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜,

∀ 𝑟, 𝑡𝑙 ∶ 𝑄(𝑡𝑙 , 𝑟) = 1 ∃ 𝐶𝑟 ∩ 𝐶𝑡𝑙 ≠ 𝜙

∑𝑄(𝑟, 𝑡𝑙) ≤ 𝑏

𝑛

𝑟=1

, 𝑤ℎ𝑒𝑟𝑒 𝑏 ∈ ℤ+

∀ 𝑡𝑙 ∈ 𝑇 ∃ 𝑑𝑝𝑙 ∈ 𝑇𝐷: 𝑑𝑝𝑙 ⊆ 𝐹𝑇

Software project time span 𝑝𝑇 can be defined as the maximum Critical Path 𝐶𝑃 length among the

set of alternative 𝐶𝑃s defined for project schedule. With 𝛾 number of CPs, the length of a 𝐶𝑃𝑑

involving 𝐼 number of tasks can be determined by the summation of estimated time 𝑆 of each

task 𝑡𝑑𝑘. Time 𝑆 of task 𝑡𝑙 can be calculated by the division of estimated effort 𝑒 of 𝑡𝑙 over the overall

productivity of the resources assigned to it. These resources who are assigned to task 𝑡𝑙 can be

identified according to decision variable 𝑄 which will return a value of 1 for 𝑄(𝑡, 𝑟) if resource 𝑟 is

assigned to task 𝑡, or 0 otherwise. The return value of variable 𝑄 will be then used to identify which

resource productivity 𝑝𝑟𝑜 will be add to the overall value. However, the identification process of

the software project schedule time should comply with a set of constraints. Each resource 𝑟

possesses a set of competencies 𝐶 and for each 𝑟 assigned to 𝑡𝑙, 𝑟 should possesses the required

competencies 𝐶 for task 𝑡𝑙 represented as:

∀ 𝑟, 𝑡𝑙 ∶ 𝑄(𝑡𝑙 , 𝑟) = 1 ∃ 𝐶𝑟 ∩ 𝐶𝑡𝑙 ≠ 𝜙

In addition, the number of resources participating to perform one task should not exceed the limit

𝑏 value. For this constraint penalty should be applied as the overhead communication is

anticipated to reduce the team’s productivity and the development speed.

20

∑𝑄(𝑟, 𝑡𝑙) ≤ 𝑏

𝑛

𝑟=1

, 𝑤ℎ𝑒𝑟𝑒 𝑏 ∈ ℤ+

The precedence relationship should be satisfied so that for each task 𝑡𝑙 defined in the project tasks

set 𝑇 its predecessors must be finished in order 𝑡𝑙 to be started. The dependency information can

be obtained by the set 𝑇𝐷, which hold a subset task 𝑑𝑝 for each task 𝑡𝑙. Subset 𝑑𝑝𝑙 accordingly hold

the information about task 𝑡𝑙 predecessor(s).

∀ 𝑡𝑙 ∈ 𝑇 ∃ 𝑑𝑝𝑙 ∈ 𝑇𝐷 ∶ 𝑑𝑝𝑙 ⊆ 𝐹𝑇

1.3. Motivation

Since the early work presented in [12], the field of software project HRA optimization has

gradually become more advanced, and many models have been proposed in this field over the last

three decades, where each has potentially demonstrated a real-world allocation problem

according to the targeted organization environment. However, evidences from real-world

examples provide diversity of human resource allocation problems described by [9] and [19].

Different approaches have been proposed for SSSP problem. These approaches employ Meta-

Heuristics and each is targeting specific project and resource properties based on different

perspectives. One of these perspectives assumes that the resources share similarity in skills and

productivity as in [20, 21]. Based on this assumption they have formed their HRA problem into a

queueing system to distribute the tasks to different teams, where the formation of teams only

depends upon the number of resources, so the more resources you have, the more you likely to

finish the work earlier.

Another proposal has shaped SSSP by considering the distribution of resources into different

project tasks with the assumption that resources can only be allocated with a percentage of their

daily working time. This percentage type of allocation requires the identification of participation

rate for each resource to each task. These approaches have made their assumption where

resources are differing in terms of skills but they share same productivity as in [14, 18, 22, 23].

According to the description presented by the optimized SSSP approaches, we have identified four

methods of resource and team assignment based on the concepts of dynamic and static team

formation, time and queueing assignment simulation, as well as participation of resources. These

assignment methods can be represented as a categorization for the optimized SSSP approaches

represented by the following Table 1.

21

Table 1: HRA and Team Assignment Methods

 Method

1 Static Teams with Queue Simulator (STQS)

2 Static Teams with Time Simulator (STTS)

3 Dynamic Teams with Binary Participation (DTBP)

4 Dynamic Teams with Participation Rate (DTPR)

For full details about the team assignment methods the reader can refer to Chapter 5, and Chapter

2 for specification about the selected SSSP approaches that comply with these methods.

On the other hand, skills are not always the only best choice to use for optimal resource allocation

in software projects [16]. More factors and aspects are involved in determining the fitness of

resources to project tasks such as resources’ productivity. While many approaches have assumed

that productivity of software project resources is always similar to each other, others have

demonstrated how this factor could be a key role in reducing the search time while relaxing skills

constraint. These approaches that consider the differences between resources in terms of skills,

and productivity are limited as in [23]. Putting all these assumptions into practice requires

demonstration of which can lead to a better solution. It is understandable that all these

assumption can be seen in the industry practice, however, it is important for us to understand

which and why each of these approaches has the potential of industrial adoption. Throughout the

literature -see Section 2.3-, we have found that limited surveys and systematic literature reviews

have been performed on the approaches that tackle SSSP problem as in [5] and [24], and none

provides evaluation and comparison of the runtime results between these approaches except the

one in [15].

We believe that providing a comprehensive evaluation and comparison between SSSP approaches

can help on moving this field of research one step towards the industrial adoption. In addition,

one potential work that can be added to this is an empirical evaluation of how PMs from software

industry can perform HRA on the same data used for the approaches evaluation. Moreover, it is

also important to capture which software project and resource’s aspects are important for PM’s to

consider. While PMs are in urgent need for good quality and accurate software project planning

and estimation techniques, the discussion in [11] argues that this will keep the SBSE community

attention and interest in this subject for more work on management plan robustness, and

integration of software engineering and management activities.

22

1.4. Research Aims and Questions

Our main aim in this thesis is to provide a complete study that accumulates the findings from

software project time span minimization including SSSP approaches performance while showing

how to address their problem formulation, measure their outcomes quality, and express the

findings from these approaches compared against each other. It is important to see how the SSSP

problem has been addressed by different incarnations, and whether these incarnations are sharing

similarity between each other in terms of the allocation method, and the software project and

resource’s attributes used in their problem formulation. One of the targets of this aim is to

standardise the experiments under one objective of the SSSP problem defined in Section 1.2, of

project time span minimization. The main reasons to adopt the time minimization for our work is

twofold. While part of SSSP approaches involves multi-objective optimization, the comparison

between these approaches requires unity of common optimization objective(s), in which the time

is the only common one amongst them all. In addition, evidence by [24] shows how the

mainstream of SSSP approaches are considering project completion time for minimization with

44 approaches out of 52.

Our main focus is to compare between the different optimized solutions (approaches) for software

project HRA, where each consider and adopt an optimization technique, problem variables,

setting, and adjustable stochastic process to approach the SSSP problem. It is important to note

that this research is not about comparison between the optimization techniques. For studies that

consider the comparison for exact optimization techniques we refer to [25], and for different

stochastic, and heuristic techniques we refer to [21, 22, 26]. In addition, the reader can refer to

[27], which provides a comparison between different project management tools. From [27], it can

be seen that the allocation of resources is the least to be considered by the management tools as

they only provide partial and non-automatic assignment of resources regardless of the

management objectives.

The nature of this research as in other fields of study has some limitations. Lack of industrial

contribution of historical data to be extracted, or time availability of project managers to share

their opinion and expertise on particular subject(s) are the main limitations on software project

HRA research. In addition, there are some obstacles, due to the competitive market and/or

sensitivity of data, on conducting meetings with representatives from the industry while

agreements have to be made by both sides for confidentiality requirement and non-disclosure,

which are vital for a research to progress. Despite all these limitations our second aim is to

23

empirically capture and evaluate the current industry practices and the main software project

attributes that are important for PM to consider.

From both aims, a set of main questions can be formulated by which we need thoroughly from

their answers to acquire understanding, explore subject(s), research the field and trends, and

report findings related to SSSP problem, and software project time span minimization. These

questions are:

 Is there an automated SSSP approach that reliably solves the SSSP problem?

 Do these approaches outperform expert intuition in solving the SSSP problem?

 Do these approaches reflect the software projects and project managers’ real needs?

These three questions form the roadmap for the work carried out for this thesis. Throughout the

following chapters, some follow-up questions will also be identified as the exploration process of

SSSP problem, approaches, and current industry practices are gradually moving forward. For

example, a follow-up question will be formulated in a later chapter to ask how better to investigate

the automated SSSP approaches’ performance and quality. These questions will help us to

understand if there are any differences between the SSSP approaches in terms of the runtime

outcomes. These follow-up questions can be highlighted by the following:

1. What are the differences between SSSP approaches?

2. Why do these differences occur?

3. Are these approaches and their proposed data to use suitable for the software industry?

4. How would an industrial setting representative use particular project data to provide a

solution for SSSP problem?

1.5. Overview of our Methodology and Benchmarking

Approach

Broadly speaking, benchmarking in SBSE can be performed for a single approach by employing

different optimization techniques and a base for the benchmark as suggested by [10, 17] using a

random search for comparison. SSSP approaches have evaluated their proposals either by

comparing their solution with different optimization techniques as in [21, 22] or empirically with

a single industrial partner as in [23, 28], using a real-world datasets as in [20-22] or synthetic one

as in [14, 15, 18, 28]. It is noteworthy that this field of research has no available dataset that can

be used to evaluate the approaches, or even to demonstrate their outcomes’ quality. Given these

24

circumstances we have identified a research methodology and a benchmarking process that can

help us to achieve our aims. Our research process is depicted by the following Figure 2.

Figure 2: Research Methodology and Process

From Figure 2, it can be seen that the work carried out for this thesis consists of four stages. The

first stage is the initiation, which encompasses three main activities. The first activity is reviewing

the literature. The findings from the literature are presented in Chapter 2, which has helped to

conclude the definition of SSSP problem. For this definition, suitable datasets are created by

extracting information from historical software project records. These datasets are then

transformed into different project scenarios by which different level of complexity are identified

based on the level of project and resource’s attributes presented in each. This transformation was

the first activity in the second stage of the benchmarking. Benchmarking stage in addition to the

data transformation includes identification of suitable performance measures for benchmarking

the solution proposed for SSSP problem. The outcomes from both activities have helped to shape

our benchmarking process presented in Chapter 3. Based on the benchmarking process,

experimentation of a set of representative proposed solutions for SSSP problem are performed

according to the identified levels of complexity. The outcomes from the experimentation are then

used to evaluate, and compare these solutions against each other. These outcomes and findings

from the evaluation and comparison are presented in Chapter 4 and Chapter 5.

On the other hand, an industrial exploration and evaluation stage is planned for this thesis

depicted in Figure 2, and presented in Chapter 6. This stage starts by recruiting subjects from our

industrial partners using a direct recruitment method. However, the main problem is finding a

suitable time that can be agreed by all. Two phases are planned for this stage while interviewing

subjects, where the aim of these phases is to explore the subjects’ performance and the

demographic information about their background and experience. Interpretations from the

25

benchmarking stage findings, and the interviews outcomes are then extracted enabling to

conclude the research in Chapter 7.

1.6. List of Contributions

In pursuit of providing support for our work on this thesis, many experiments and systematic

procedures were carried out. The main contribution of this thesis are as follow:

 A valid dataset that holds different complexity levels, as well as the optimal solution for

each.

 A complete benchmarking and evaluation approach, combined with quality metrics, and

accuracy measures.

 An evaluation and comparison of nine of the most referenced and cited SSSP

approaches.

 Formalization and evaluation of four team allocation methods with consideration of

project time minimization using genetic algorithm optimization and resource’s

productivity.

 An empirical evaluation of HRA aspects, and PMs’ performance from different industrial

settings.

 A research paper named Benchmarking and Comparison of Software Project Human

Resources Allocation Optimization Approaches. A preliminary comparison and

benchmarking study was performed and the outcomes of Five approaches of [14, 18, 20,

21, 28] are reported in this study paper. This work is reported in Chapter 4 and published

in [29]. This paper is presented in 0Appendix B.

1.7. Thesis Structure

The reminder of this thesis is organized as follow. In Chapter 2, a thorough review of software

project estimation and management techniques is carried out, including specific emphasis on

optimization techniques (Search-based algorithms) and comparative studies of SPSPM

approaches. In Chapter 3, our general methodology adopted and benchmarking approach are

presented including a systematic process for categorizing and running experiments on SSSP

approaches, as well as the datasets and quality measures to use for demonstrating the approaches’

quality. Chapter 4 provides results of employing the benchmarking approach on nine SSSP

approaches. In Chapter 5, results of advanced experiments are provided including optimization of

four team allocation methods. Chapter 6 provides an empirical evaluation of PMs’ practices and

26

solutions to HRA scenarios quoted from the datasets with accumulation on the findings

from Chapter 4 and Chapter 5. In Chapter 7, we conclude this thesis by providing the overall

picture of the findings from Chapter 4, Chapter 5, and Chapter 6, summarizing the contributions

of this work, and discussing limitations and possible future directions.

27

Chapter 2 Literature Review

This chapter provides to the reader the current state of the art in the literature regarding the

information that a software project and human resources can provide in Section 2.1, the

optimization techniques (Search-Based Algorithms) that are applicable and suitable for SSSP

problem in Section 2.2, and studies that compare and evaluate human resource allocation

optimization approaches in software project management in Section 2.3. In addition, Section 2.4,

provides details about the selected approaches for run-time benchmarking and comparison.

Section 2.5 provides a background of the benchmarking processes proposed by different research

papers, available datasets, measurements, and statistical tests that are available for SE research.

Finally, this chapter ends with a discussion, and concludes the findings in Section 2.6.

2.1 Software Project Information

Software project provides many parameters and constraints that need to be taken into account

while allocating resources. Many models for software projects have been proposed that capture

these parameters and constraints, such as size, effort required, time, and cost.

2.1.1 Software Size, and Effort Estimation Models

Size is one of the variables that gives an indication about the amount of work that has to be done

either by the workforces or the managers themselves. Different units can be used to estimate the

size related to how the software will be developed. The most popular units used by many

estimation approaches are Source Line Of Code (SLOC) and Function Point (FP) [30, 31]. The line

of code represents the estimated number of code lines that a software product will have in actual

development. Function point on the other hand describes the software in term of functions that

should be implemented to achieve the customer requirement. In addition, both units are used by

effort estimation models to predict how many resources the project needs for the actual

implementation. Accordingly, software size is one of the basic variable for effort estimation.

However, in early development stages accurate estimation is hard to achieve. It depends upon

28

decomposing and splitting the project into small pieces to gain an understanding of the abstract

level of the business problem. Therefore, having the abstract view along with the details can help

to predict the project size, and to estimate the effort required.

Two types of approaches can be identified for software project estimation which are judgement-

based and model-based approaches. Judgement-based approaches rely on expert project

managers’ intuition to predict project size, productivity of developers, and estimate the effort.

Model-based approach on the other hand uses mathematical equations that model the attributes

of projects and developers to estimate the effort, time and budget of a software project.

As one of the model-based approaches, Function Point (FP) estimation model, introduced by [32],

has been developed using the Function Point (FP) software size unit. The benefit of using the FP

estimation model as it can simply be used in early development stages while clarifying the size of

the intended software to the users or customers. More advanced model of FP has been proposed

by [30] to support the FP-based effort estimation according to classification of project size and

complexity from 24 software applications developed by IBM DP service (IBM information system

service) presented by [32]. By using this model, software firms are able to demonstrate the

intended work in the early development stages. This has made the estimation model widely

accepted and also suggested by the International Function Point Users Group [33] for industrial

use. However, the elements of project complexity are established based on specific programming

languages and regardless of the productivity variation of resources. Moreover, this estimation

model does not provide the allocation of resources that can best achieve the estimated effort and

time as it depends on specific attributes and features that the project can provide.

The COnstructive COst MOdel (COCOMO) proposed by [34], is arguably the most well-known and

most widely used model-based approach for software project cost estimation. The first version of

COCOMO was proposed in 1981 and focussed on supporting the development of embedded

software system, and was aimed in particular at a waterfall-based development methodology.

COCOMO performs cost estimation for software development by modelling the size of the project

in term of Kilo Line Of Code (KLOC). Productivity of resources on the other hand is expressed by

means of the number of lines of code they can reliably produce during a given time interval. The

cost of using a resource therefore directly correlates to the amount of time required to perform a

project and the resources’ salary. To estimate the time required to complete a particular project,

COCOMO introduces Person-Month as an effort estimation unit. The actual value of the Person-

Month estimation for a project depends not only on the size of a project, but also on the

development team size assigned to project.

29

An advanced level of COCOMO is then proposed by [35], and named Ada COCOMO. This model,

in addition to the elements considered by the previous model, takes into account module’s

structure and phases for development, as well as the Ada programming concepts. It uses the same

equations and the cost drivers as well, but it introduces phases for the size estimation of projects

regarding incremental development. Ada COCOMO uses function points to express the software

size as it is easier to use in early development stages when limited information is available. Once

the lines of code can be estimated with reasonable accuracy, the advanced stage switches to use

this metric embedding with four exponent scaling factors that determines the project size.

To address the advancement of incremental, spiral, and object-oriented software development

methods on estimation models, a new version named COCOMOII was introduced by [36] with

changes made on the cost drivers, size estimation as well as the equations of COCOMO81 and Ada.

These changes have introduced new cost drivers (now called Effort Multipliers (EM)) grouped into

four different categories. COCOMO II replaces the mode of development in the estimation

equation with five scale factors based on the Software Engineering Institute (SEI) process

maturity factors and according to [37]. In addition, it takes into account the economies and

diseconomies of scale on project size discussed by [38]. This is as how “Software cost estimation

models often have an exponential factor to account for the relative economies or diseconomies of

scale encountered as a software project increases its size.” (p. 77) [36]. However, the model should

be calibrated by the company’s data to represent the local productivity according to [39].

The problem is that this model does not take into account the modern development methods and

it even assumes that the workforces all are at the same level of productivity and expertise.

Additionally, the software firms that use COCOMO have to calibrate these parameters and

constant values according to their productivity and project historical data. Because of this, the

usefulness of this model has recently been debated and some studies shows that the majority of

project managers prefer expert opinions over mathematical ones [40].

In addition to the COCOMO and FP models, the Work Break down Structure (WBS), as one of the

judgement-based model, can be used as a tool to support the PMs in decomposing and splitting

their projects into manageable parts. Back in the 1950’s, WBS has been developed by United States

Department of Defence (DoD) to support military purposes [41]. After that WBS became useful in

most of the 1960’s projects in USA. In 1987, WBS became widely available to researchers and was

used to support managers on their project work worldwide [42].

WBS supports the management process starting from planning, to execution, and then to

reporting and controlling. So it can be used as a progress report mechanism to monitor the work

30

against the planned [43].The main idea of WBS is to start by defining the project scope. This can

be done by defining the work elements. These elements can be represented as components of the

original product, or activities of production towards the final product.

The elements that have been described earlier should be counted as deliverables. These

deliverables have to be definable, manageable, estimateable, and measurable. This can lead the

managers to estimate the whole project according to each deliverable. This work needs the

managers and the experts in the field to use their expertise to define how long and how much each

deliverable will cost.

Moreover, Delphi technique is another tool that can be used for effort estimation. This technique

was developed in the 1940’s and then published by [44]. Delphi technique is a judgement-based

approach that has been successfully applied by many researches and for several purposes

including software projects. It depends on a group of experts rather than the judgment of one

expert. It includes four characteristics which are the anonymity of participants, information

gathering type, feedback, and facilitator.

The facilitator starts by providing the questionnaire to each participant, monitoring the process,

and recording the responses. His/her responsibility is to ensure that the anonymity rules the steps

and that no participant will know who the others are and what are their responses. According to

the defined reviewing times, there will be more than one stage for reviewing the experts’ opinions.

Feedback in each stage therefore can be made for the participants to review and update their

responses. The participants are then should be all agree on the best of the responses. This

technique provides a very useful tool for the researchers as well as the decision makers to forecast

using a group of experts’ knowledge. However, the outcomes of using it depends on the

participants’ knowledge, which might not conclude an optimal result.

2.1.2 Software Project Task Dependency Modelling

To capture a relation between several tasks, mathematical structures are used to model these into

graphs. Two main graphs have been proposed depending on how the objects are connected with

each other, which are directed graph, and undirected graph [45]. In software projects, the need is

to capture which task should start before the other(s). Accordingly, the graph that can be used to

demonstrate the dependency constraint between software project tasks is the directed graph.

One of the important application of Directed Acyclic Graph (DAG) is for project scheduling. In

software project management DAG is used as a structure to show the Task Precedence Graph

(TPG) presenting the schedule plan and the execution process of project [14]. However, it is the

31

responsibility of a project manager to ensure that the schedule is formed by a manageable

timeframe and serves as a timetable for the project. Many techniques have been proposed as an

application of DAG to depict the project schedule and to facilitate the project manager’s work.

The Program Evaluation and Review Technique (PERT) is one of the application of DAG used as

a project management technique for analysing and representing the completion time of project

tasks introduced in the 1959 by [46]. This technique has been suggested to be combined with WBS

for project and task time estimation. This technique has proposed a solution for two main aspects.

The first aspect that this technique is concerned about is the schedule graph representation of

project. The second aspect is the estimation of project task time.

For schedule representation, DAG is used to depict the project task workflow however, the

representation of arcs and nodes are changed. A node in PERT represents a milestones to be

achieved rather than specific task to be performed, and an arc represents the beginning and

completion of a task and its estimated time. This time estimation requires several experts’

opinions regarding the size and the time for each part of the project. The following Equation 9

developed by [46] for time estimation.

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑇𝑖𝑚𝑒 = (𝑂𝑝𝑡𝑖𝑚𝑖𝑠𝑡𝑖𝑐 + 4 × 𝑀𝑜𝑠𝑡 𝑙𝑖𝑘𝑒𝑙𝑦 + 𝑝𝑒𝑠𝑠𝑖𝑚𝑖𝑠𝑡𝑖𝑐) ÷ 6 (9)

The average estimated time for each project task in Equation 9 is calculated by the following

attributes: 1) the optimistic value, which is defined supposing that the project will proceed better

than expected, 2) the most likely value, which is the normal case happens, and 3) the pessimistic

value which takes into account the worst and that the project development will consume more

time than the expected. While this technique is powerful in demonstrating project schedules,

providing the alternative project task workflow, and providing time estimate tool however, it has

no precise measures in determining the values of the three attributes that can be counted as a

weakness.

Another application of DAG is the Critical Path Method (CPM). This method is introduced by [47],

and propose a mathematical method to define the longest path of time for a sequential series of

tasks that contains dependencies between some or all of these tasks. The first purpose of this

method was to facilitate the planning and scheduling of business management. This method

presents the tasks or the activities by a graphical arrow diagram. However, nowadays this method

can be used within the Gantt chart.

The benefit of using the CPM is accurately managing the efforts to the estimated delivery time by

a single master plan. Besides, this method depicts the heart and the hard project tasks or activities

32

that the manager should carefully manage. The CPM process starts with the planning, which is

defining the project tasks. Then scheduling the planned tasks by defining the required time for

each task as well as the early and late time. By identifying these variables CPM can be then used

to calculate the longest path among the alternative Path(s) that will help to determine the project

duration.

The graphical arrow diagram developed by [47] shows the events, the jobs, and the series. The

Events which refers to the products is represented by a circles in this diagram, where the jobs that

done by a resource is represented by arrows linking between the events depicted in Figure 3. Three

types of relation which are precedes, follow, and concurrent are between the events. Through these

relation a well-defined order to perform the jobs is called then the series. However, two concepts

are used in CPM to represent the relation, the origin that precedes, or terminus that follow another

event.

Figure 3: Critical Path Diagram

Three kinds of event’s time in CPM are important to be defined for each event, which are earliest

start time, latest completion time, and the job duration between two events. Based on these three

variables criticality of an event can be calculated by measuring the differences between the early

time, late time, and duration. The value of this difference is called floating time. If this value is

greater than zero, then this event is called floater, or otherwise if it equal zero then this event is a

critical one. The definition of project completion time by [47] is the late time of last critical event.

This method is one of the bases of current project management planning along with the Gantt

chart. However, this method is heavily dependent on the PM to estimate the time variables for

each event, and does not consider resource allocation while estimating the events’ durations.

33

Another task management technique similar to DAG is the Gantt chart proposed by [48]. It

graphically displays the order and dependencies of tasks in a diagram. The main aim by [48] was

to provide balancing charts and machine loading of what the resources should do, and did do [49].

Gantt chart contains the project resources, and bars that represent the number of days for each

resource in calendar that shows when the task of each resource will start and finish.

The benefits of Gantt chart is to represent the work plan as a progress report and graphical

schedule [49]. It enables the manger to keep attention on overcoming obstacles and avoiding

delays [50]. To clarify the idea of how we can draw a Gantt chart, the following example of three

workers that they supposed to work in developing simple software project can be drawn as follow:

Figure 4: Sample of Gantt chart

As can easily be seen from Figure 4 that this project will start on 22nd of Jan and to complete in 4th

of Feb, which takes two weeks. However, from this figure, it can be also seen that while John is

working from 22nd till 26th of Jan, both Richard and Thomas are available for any other work to

perform, and exactly the same for both John and Thomas after 30th of Jan. Diagramming using a

Gantt chart has been one of the important tasks that the managers have to carry out. This chart

provides very useful information for resource balancing, however it does not provide a mechanism

for project task scheduling and optimal resource allocation.

On the other hand, to illustrate the availability of human resources in efficient sequence and to

ensure the quality of project schedule, the Critical Resource Diagram (CRD) was introduced in

[51] as a tool for managing the project workflow in term of resources assigned, rather than project

activities [52]. Scheduling the resources by the CRD is similar to the arrow diagram presented by

the CPM, except that instead of presenting the event’s name in each circle, we need to include both

the activity and the resource’s name on it. This way of presentation is to show that this resource is

unavailable during the activity time. In addition, through this diagram managers can identify any

time conflicts between the resources and who are available for next activities.

The following Figure 5 depicts a CRD that shows five activities and their assigned resources within

a specific sequence. This diagram can provide to managers whether any resource is involved in

simultaneous activities, and to ensure that the resources are sufficient for the project activities.

34

Figure 5: Critical Resource Diagram

CRD is a very useful tool that provides important information for managers to take into their

consideration while distributing the resource to activities and balancing the resources loads,

however finding a good quality resource allocation while using this diagram in only depending on

the manager’s intuition and expertise.

2.1.3 Workforce Models

In software projects competencies are counted as a key for productivity measurement. This

productivity can leads to efficient time plans, and high quality products. In addition, human

resource competencies are the essential input for a successful allocation in software projects.

Modelling human resource competencies, therefore, has emerged as one of the important aspects

in human resource allocation.

The results of a study presented in [53] classifies workforce competency models into three

categories. These categories are supporting the performance of individuals, groups (collective), or

organizations (global). The individual models category takes into account the models that are

related only to the technical capability of human resources. The collective models category on the

other hand take into account the models that describe the competencies of team roles such as

analyst, designer, programmer, etc. The final Global models category takes into account the

models that created for the organization’s future so that dynamic improvements are incrementally

made on the overall performance.

However, based on how the competencies will be used by the allocation approaches the workforce

models are divided in this section into qualitative and quantitative models. Qualitative models are

the models that use the competencies with binary representation to show the existence of a quality

or not. Quantitative models on the other hand aim to quantify the workforce attributes for

mathematical use. The following sections cover the current state of the art of each model type.

35

2.1.3.1 Qualitative Workforce Models

US department of labour IT competencies INFOCOMP (2012)

The model presented in [54] aims to clarify the competencies of workers required in the

information technology and software development industry. Competencies presented in this

model are grouped into four tiers. Tier one contains the IT competencies counted as a personal

effectiveness. Tier two describes the competencies that should be established during academic life.

Tier three considers the competencies that the resource should gain from the workplace. Tier four

describes the industrial technical competencies.

From Table 2, we can see that these levels are presented as building blocks. Accordingly one of the

aims of this competency model is to evaluate the IT workers. The details of the tiers and the

competencies introduced by the INFOCOMP are listed in the following table:

Table 2: Attributes of INFOCOMP 2012 [54]

Tiers Competencies

1. Personal effectiveness Interpersonal skills and team work

Integrity

Professionalism

Ethics

Adaptability & flexibility

Dependability & reliability

Lifelong learning

2. Academic competencies Reading

Writing

Mathematics

Science

Communication: Listening & Speaking

Critical and Analytic Thinking

Basic Computer Skills

3. Workplace Competencies Collaboration

Planning & Organizing

Innovative Thinking

Problem Solving & Decision Making

Working with Tools & Technology

Business Fundamentals

4. Industry-Wide Technical

Competencies

Principles of Information Technology

Information Management

Networks & Mobility

Software Development

User & Customer Support

Digital Media

Compliance

Security & Data Integrity

36

The competencies presented in Table 2 can be used to assess the level that a software organization

has according to their workforce’s available competencies. The competencies presented in tier one

along with tier two are the basic level of competencies for the workforce to start in the IT and

software development career. The workforce then during his/her career have develop his/her

competencies to tier three, and four. In addition, this can be used as a future plan for individuals

to improve their skills and competencies. However, this model is proposed as the basis of a

benchmark for gap analysis that the industry and academic institutions have to use to comprehend

the quality of their individual workers.

IEEE Software Engineering Competency Model (SWECOM)

The IEEE Software Engineering Competency Model [55] aims to improve software industry

workers’ capabilities. In addition, it can be used to assess the current outcomes of educational

bodies as explained in [56]. Based on differentiating between knowledge and skills, SWECOM

represents knowledge as an element for establishing a good skill. The difference is that the

knowledge is what the individual knows and skills are what the individual can do.

Moreover, this model is not only proposed for software engineers, other related disciplines are

considered as well. The related disciplines that are mentioned include computer engineering,

computer science, general management, mathematics, project management, quality

management, and system engineering. These disciplines are required in software projects and

accordingly this makes them count as another element of SWECOM.

SWECOM contains five elements that establish a foundation for the workers in the software

industry. These element as can be seen in Figure 6 are behavioural attributes and skills, related

disciplines, requisite knowledge, cognitive skills, and technical skills.

Figure 6: SWECOM Elements [55]

37

The considered Cognitive skills are reasoning, analytical skills, problem solving, and innovation.

Behavioural attributes and skills on the other hand are: aptitude, initiative, enthusiasm, work

ethic, willingness, trustworthiness, cultural sensitivity, communication skills, team participation,

and technical leadership skills.

The most important part specially for measuring the fitness of the individual in this model is the

technical skills which are categorized based on the phases of development and crosscutting of the

different disciplines related to software. This model has in addition classify the level of

involvement of the individual software engineer in each project activity into five, which are

follows, assists, participates, leads, creates. Moreover, this model provides classification of the

individual competency skill level that expresses how the individuals would fit to the work, which

are technician, entry level practitioner, practitioner, technical leader, senior software engineer.

This model provides gap analysis worksheets that can be used to assess both individuals, and

project team’s competencies. These worksheets demonstrate the gap by using the activity and

competency levels to fill the current and the needed skills. This would give an example of how this

model can be used to measure the fitness of worker to a specific requirement either for the firm,

project, or individual level.

This model provides a tool that can be useful for assessing the fitness of resources to projects.

However, resource allocation does not only requires staffing, but also to consider the inter-

dependency nature between project tasks.

Psychological Capability of Human Resource

A different side of software human resources rather the technical capability is the psychological

aspect. In [57] a method is proposed for assigning workforces to development roles based on their

psychological capabilities. These capabilities and factors are addressed by psychologists and

software project managers using standards and frameworks. The standards and frameworks used

in [57] are the Assessment Centre Method (ACM) framework [58] and the 16PF personality factors

psychological tests [59].

The ACM framework offers a process for selecting the best suited for a job containing individual

characterization, identification of roles capabilities, and matching individuals to roles. The ACM

framework requires evaluators (psychologist) to weigh and categorize the psychological factors

into several capabilities domains [58, 60]. The 16PF personality factor test on the other hand

provides a questionnaire to evaluate the individuals in term of personality (psychological) factors

38

[59]. However, ACM has been used for the model presented in [57] as a base for validating the

capabilities identified by 16PF test using psychologists.

In addition to the 16FP, the study presented in [57] uses an additional five personality dimensions

addressed by [61]. The model presented in [57] is a binary evaluation that describes whether the

individuals have these capabilities or not. The result of their work of a relational table of

personality factors and the capabilities based on their study of real software organizations shows

that each team role should have a specific capabilities presented in Table 3:

The major findings of this study was that 1) The defects rate decreased for 47% in projects that

used this model to assign the resources, 2) Mean effort deviation reduced for about 30% and, 3)

Ratio between estimated function point and actual effort improved to 44%. The reason for these

improvements mentioned in [57] is that the resources of the sample organizations that used the

model were more motivated since their personality factors had been considered.

Table 3: Team Roles and Personality Factors Relation [57]

 Intrapersonal organizational interpersonal Management

Software

Roles

A
n

al
y

si
s

D
ec

is
io

n
-m

ak
in

g

In
d
ep

en
d

en
ce

In
n
o

v
at

io
n

 a
n

d
 c

re
at

iv
it

y

Ju
d
g

m
en

t

T
en

ac
it

y

S
tr

es
s

to
le

ra
n

ce

S
el

f-
o

rg
an

iz
at

io
n

R
is

k
 m

an
ag

em
en

t

E
n
v

ir
o

n
m

en
ta

l
k

n
o

w
le

d
g
e

D
is

ci
p

li
n

e

E
n
v

ir
o

n
m

en
ta

l
o

ri
en

ta
ti

o
n

C
u

st
o
m

er
 s

er
v

ic
e

N
eg

o
ti

at
io

n
 s

k
il

ls

E
m

p
at

h
y

S
o

ci
ab

il
it

y

T
ea

m
w

o
rk

 a
n

d
 c

o
o
p

er
at

io
n

C
o

-w
o

rk
er

 e
v

al
u
at

io
n

G
ro

u
p

 l
ea

d
er

sh
ip

P
la

n
n
in

g
 a

n
d

 o
rg

an
iz

at
io

n

Team leader ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Quality

manager
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Requirement

engineer
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Designer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Programmer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Maintenance

and support

specialist

 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Tester ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Configration

manager

 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Psychological aspects of software resources have never been addressed before but it is important

to evaluate, especially at team formation time. However, the model ignores the technical skills and

the interdependency nature of software project tasks which leaves it with limited applicability.

Additionally, sharing resources, as is the current practice with software firms, has not been

addressed by this method.

39

2.1.3.2 Quantitative Workforce Models

Up to now we have seen qualitative resource models describe capabilities using yes no mechanism.

This section presents a different type of resource model that uses a numerical level of importance

scale for each competency that workers have to different development domains. This section

accordingly covers quantitative models that have been proposed to represent the workforce

capabilities.

Team Oriented Competency Model

The approach described in [62] is one of the collective competency models as its name implies

dealing with formation and building the teams (team oriented). It is developed as a numerical

model based on [57] described in the earlier section. Competencies proposed by this model have

been verified by a group of software project managers. The process of verifying the model was

adapted through two stages of the Delphi technique [44]. The resulted competencies are then

correlated to team roles. Team roles however are identified in this method based on the Rational

Unified Process (RUP) and Team Software Process (TSP) methodologies presented in Table 4.

The value presented in Table 4 represents the relation between the roles and the competencies

defined by [62]. These values express the level of importance for each competency versus team

role. For more information, please see page six of [62].The values and their expression are as

follow:

1. 0 means that this competency is irrelevant for this role.

2. 1 indicates that this competency is fairly necessary.

3. 2 means that this competency is critical.

4. 0.5 represents that this competency has no agreement by the participants of [62] study,

and

5. 1.5 considered necessary but not by all the participants.

This approach uses the Myers-Briggs Type Indicator (MBTI) and Belbin team inventory

psychological tests to verify the workforce’s capabilities. MBTI as presented in [63] assesses the

personality type of workers. It contains four categories where each one has a pair of factors to be

assessed for each worker. These pairs are Extroversion and Introversion, Intuition and Sensing,

Thinking and Feeling, and Judgement and Perception.

40

Table 4: Team Roles and Competencies [62]

Based on those tests, rules for the assignment was established to assure that the workforce(s) fit

to the role. For instance, MBTI is used to justify if the workforce is fit to be a project leader. Their

study shows that project leader should have Extroversion and Judgment capability of MBTI

dimensions in order to be capable to lead the project.

The Belbin test, on the other hand, as described in [64] contains three role types, Action, Mental,

and Social roles. Two important capabilities of these roles, the Shaper, and Chairman are used by

[62] to justify the project leader capabilities. Another rule is that the overall preferences of team

S
o

ft
w

a
re

 R
o

le
s

G
en

er
a

l
co

m
p

et
en

ce
s

T
ec

h
n

ic
a

l
co

m
p

et
en

ce
s

Teamwork and cooperation

Analytical skills

Planning and organization

Capacity to control

Negotiation skills

Adaptability (Flexibility)

Research skills

Strategy skills

Conceptual thinking

Risk management

Decision-making

Tenacity

Independence

Customer service

Commitment to the organization

Proactivity

Oral communication skills

Written communication skills

Continuous Learning Ability

Language proficiency

Programming Language proficiency

Modelling tool proficiency

Database management system proficiency

Software development methodology proficiency

Graphic design abilities

Product knowledge

P
r

o
je

c
t

 l
e

a
d

e
r

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

2

2

2

1
2

G
r

a
p

h
ic

d
e

s
ig

n
e

r

2

2

1
0

1

2

2

0

1
1

1
1

2

2

2

2

1
1

2

2

0
.5

0

0

0

2

2

A
r

c
h

it
e

c
t

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1
2

A
n

a
ly

s
t

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1
2

2

2

1

2

D
e

s
ig

n
e

r

2

2

2

2

1.
5

2

2

2

2

2

2

2

2

1

2

2

2

2

2

2

2

2

2

2

1
2

D
a

ta
b

a
s
e

D
e

s
ig

n
e

r

2

2

1
1

1
2

2

1

2

2

2

2

2

1
2

2

2

2

2

2

2

2

2

2

0

2

P
r

o
g

r
a

m
m

e
r

2

2

1
1

1
1

2

1
2

2

1

2

2

1
2

2

1

1
2

1

2

2

2

2

1
2

T
e

s
te

r

2

1
1

1
0

1

1
1

1
1.

5

0
.5

2

1

2

2

1
1

2

2

1
0

1

0

0

0

2

41

Belbin roles should be for action role over mental role, and mental role over social role. In

addition, the study shows that at least one of the team member should have plant role in order to

increase the team performance.

In this model we can see the additional technical capabilities over the one presented in [57] that

have been taken into account, as well as quantifying these capabilities by [62]. However this model

does not take into account the interdependency nature of software projects and developers sharing

that software firms do nowadays.

Best-Fitted Resource Model

The Best-Fitted Resource (BFR) methodology proposed in [7] takes into account the learning

ability of resources of technical skills. The methodology uses the relationship ability matrix for all

the skills available by resources and those required for a project. The relation ability matrix

expresses how a group of skills can impact another.

BFR methodology suggests seven criterion to be used with the skills matrices. The value for each

one of these criteria ranges from 0 to 1. These criteria and their notations are the following:

 The expected use of skill j on task t (𝑒𝑗,𝑡).

 The complexity of skill j on task t (𝑐𝑗,𝑡).

 The significance of skill j on task t (𝑠𝑗,𝑡).

 The relation between the knowledge of skill j and skill k (𝑟𝑗,𝑘).

 The knowledge level of resource y to skill j (𝑙𝑦,𝑗).

 The relation between the set of skills of resource y and the required skill j (𝑏𝑦,𝑗).

 The fitness of resource y to task t (𝑓𝑦,𝑡).

BFR contains four steps, each one results in a table. The first one is concerned with task required

skills (TRS). The second one is concerned with skill relationship (SR). The third is concerned with

resource’s skillset (RSS). The last one produces the best-fitted resource to each task (BFR).

In the first step, the value of 𝑒𝑗,𝑡 and 𝑐𝑗,𝑡 for required skills are estimated. Values of expected use of

skill are (0.3) which means little use, (0.7) means significance use, and (1.0) means extensive use.

Complexity of skill, on the other hand, has values of (0.2) that means simple, (0.5) means complex,

and (1.0) very challenging. The significance of skills 𝑠𝑗,𝑡 is then calculated as the product of both.

This results in table containing the skills, the use, the complexity and the significance of each as

the following example in Table 5:

42

Table 5: Example of Use, Complexity, and significance of skills

Required skills 𝒆𝒋,𝒕 𝒄𝒋,𝒕 𝒔𝒋,𝒕

Hardware 0.3 0.5 = 0.15

PHP 0.7 0.2 = 0.14

.Net 1 1 = 1

The second step is concerned with the relation between skills. The result of this step shows the

learning ability regarding the relation between these skills. This relation can be defined using the

criteria of 𝑟𝑗,𝑘. The values of skill relation (0) which means no relation, (0.2) weak, (0.5)

intermediate, and (1.0) as strong relation. Using the skills from previous example will be as the

following Table 6:

Table 6: Skills Relation

Skills relation Hardware PHP .Net Java

Hardware 1 0 0 0

PHP 0 1 0.5 0.5

.Net 0 0.5 1 0.2

Java 0 0.5 0.2 1

The third step involve the resources’ skills set (RSS). The project manager in this step ranks each

resource for each skill as the value of (𝑙𝑦,𝑗). Values considered are (0) for no knowledge of the

resource in this skill, (0.2) low knowledge, (0.5) intermediate, and (1.0) is high. Accordingly this

can be demonstrated for our example by the following Table 7:

Table 7: Resources Knowledge level for each Skill

Resources’

skills

Hardware PHP .Net Java

Resource 1 1 0.5 0 0.5

Resource 2 0 1 0.5 0.2

Resource 3 0.5 0 0.2 1

The fourth step considers training time of each resource. The relation between skills indicates

whether the resource who possesses a certain skill can develop himself within a short time for a

related one. This step can be achieved by using the results of steps one and two and combining

them into one table. The factor of (𝑏𝑦,𝑗) at this step shows how the resources are fitted to the task

43

by considering each value of, required skill (k), resource skills, as well as the relation between the

skills, then it can be calculated by:

𝐵𝑦𝑘 = maxℎ∈𝐻[𝑙𝑦ℎ ∗ 𝑟ℎ𝑘] (10)

The following table shows how this step can be obtained.

Table 8: Resources Fitness to Projects

Resources

And their skills

Skills Required Fit

Resource 1 Hardware PHP .Net Java 𝑏𝑦,𝑗

Hardware 1 0 0 0 1

PHP 0 0.5 0 0.25 0.5

.Net 0 0.25 0 0.1 0.25

Java 0 0.25 0 0.5 0.5

Resource 2 Hardware PHP .Net Java 𝒃𝒚,𝒋

Hardware 0 0 0 0 0

PHP 0 1 0.25 0.1 1

.Net 0 0.5 0.5 0.04 0.5

Java 0 0.5 0.1 0.2 0.5

Resource 3 Hardware PHP .Net Java 𝒃𝒚,𝒋

Hardware 0.5 0 0 0 0.5

PHP 0 0 0.1 0.5 0.5

.Net 0 0 0.2 0.2 0.2

Java 0 0 0.1 1 1

We can see from Table 8 that if we defined the relation between the skills, then we can see that if

the resource do not currently have a skill then (s)he could after a short training be able to acquire

the required skill(s). This can be seen by the resource 3 that his earlier knowledge of PHP was (0),

however through the relation between PHP, Java, and .Net, his/her skills can improve specially

for PHP by limited time of training so he can be able to do the task.

As this method can efficiently demonstrate in a quantitative manner the availability of skills

required for project tasks among the available resources, however it does not provide a mechanism

for resource allocation and project task dependency handling.

Other Human Resource Attributes and Capabilities Models

The formal assessments used by the software industry and researcher focus on effort and

productivity of developers. Many attributes can lead to understand the performance and

44

productivity of developers. Such attributes can be obtained by observing behavioural patterns of

developers. One of the tools that enables the researchers to observe the developers’ behavioural

pattern is the Version Control System (VCS).

The study presented in [65] based on observation and pattern verification of developers through

VCS shows that three attributes would contribute to productivity measurement and developer

assessment. Takeover, which is the first attribute, indicates when the developer writes codes in a

short period of time. Bug Fix on the other hand, indicates the amount of corrections made on the

developer’s code. The third is Teamwork that leads to an understanding of the collaboration

between team members.

Another model presented in [66] introduces two metrics that can be estimated using VCS. These

metrics are the effort (Productivity) and code-survival of a single developer. Productivity in this

model is estimated based on how many files the developer can produce in the VCS during a unit

of time. The code-survival metric on the other hand, is the amount of code of a developer that has

never been changed by anyone.

Effort and Code-Survival assessment metrics in [66] are estimated based on three development

operations. The first operation is Add, which means adding new code to the development file. The

second operation is Modification, which means in case of modifying any existing code of the

development file. The final one is Deletion of code or file of the developer.

An alternative workforce model presented in [16] approach takes into account technical skills

grouped into three categories. The skills presented in these categories are not limited to those

skills, and the model as mentioned in [16] is open to any new skill. The skills of the first category

includes relationship with people, negotiation, and team work. The second one includes

requirement elicitation, object-oriented analysis, databases, object-oriented design, Java, and test

techniques. The final one includes just one characteristic which is experience in

telecommunication.

Each one of the characteristics presented in [16] is ranked by a numeric value. The ranking value

of first group varies from 1 to 3. Value of (1) means that the developer was trained on the subject,

value of (2) means that he has ability, Value of (3) means he has great ability. The second group

varies from 1 to 3, but value of (1) means knows and can perform under supervision, value of (2)

means knows and can perform without supervision and Value of (3) means that the developer is

an expert. Group three is different in the range. It starts from 1 and the highest is 4. Value of (1)

for this group means that the developer has experience of between 2 and 6 months, Value of (2)

45

means his/her experience is between 6 months and 1 year, Value of (3) means his/her experience

is between 1 and 3 years, and Value of (4) means that his experience is more than 3 years.

2.1.4 Discussion on software project information

Throughout the earlier presented estimation models, we can see that the effort is a fundamental

factor and the basic parameter used to estimate the time and cost of a software project. Moreover,

software effort estimation is modelled based on five factors as being described by [39]. These

factors are identified by [67] as personnel (Developers), product size, development process,

required product quality, and development environment. However, these factors are introduced

in the estimation models as constants based on studies of historical data of productivities,

qualities, schedules and/or processes gathered from real software projects.

Many researches have explored the differences between model-based and judgment-based

estimation models as in [40, 68-70]. However, the organization sample studied in [40] reveals

that most software organizations use judgement-based approach as they are concerned about the

accuracy of model-based approaches. In addition, in [71] stated that no model or method of effort

and cost estimation is better than another. Likewise, we do not know yet how to accurately

estimate the effort for mega-large software projects, to measure size and complexity accurately for

software, and to predict team’s and individual’s productivity.

It is noteworthy that the approaches that optimize for software project management issues such

as [21, 22] consider the effort as a valid input to the approach, and the effort in these approaches

is mainly measured in terms of Man-Month, or Man-Days using COCOMO models.

In addition to effort estimation, project task dependency and scheduling has received the most

research attention during the last century for project scheduling. Amongst the different

techniques that have been proposed to depict the precedence relationship and dependency

between the project tasks, TPG depicted by DAG is the main technique used by the optimization

approaches for this matter.

Workforce models, on the other hand, are the part of project management information neglected

by SSSP approaches as in [14, 15, 28]. It is understandable that the optimization process needs

approaches that provide quantitative attributes over the qualitative ones. However, few of SSSP

approaches provide list of skills and competencies of software project development as in [28] and

[23] ones. These approaches have provided the roles that a software developer might have, and

those required for a project task to be performed. Workforce models can work as a supporting

mechanism for resource skill constraint handling during the optimization process including the

46

fitness function. A binary skill selection within many of SSSP approaches’ optimization process

has been used as in [14, 18]. However, this type of binary selection without consideration of

productivity can fail the search to find a good skilled resource for the resource allocation problem

within a reasonable computation time. For that reason, there are some approaches that have

included productivity in their optimization problem and relaxing the optimization constraint to a

better productive resource who are available at the time of need. In that sense, models as best-

fitted resource model can be more applicable in resource allocation optimization.

2.2 Optimization Techniques (Search-Based Algorithms)

Optimization is a branch in mathematics that focuses on techniques able to find an optimal or

near optimal solution for a given optimization problem. An optimization problem can be

represented as a problem of minimizing or maximizing an objective or goal. To solve this problem,

the optimization techniques employ a function within the search process to measure the fitness of

the alternatives for the fastest, cheapest, lowest, etc, solution. This function can be categorized

into two according to the optimization problem. If the problem is to search for the minimized

solution, then this function is called a “Cost” function. If the problem is to search for the

maximized solution, then this function is called a “Utility” function.

These functions search for the “fittest” solutions amongst the generated alternatives. However,

according to the optimization problem there might be a constraint(s) that has to be applied to

measure their feasibility. Two types of constraints can be used for an optimization problem. The

first type is a “Soft” constraint. The second type is “Hard” constraint. If the violation of a constraint

is considered as unfeasible solution, then this constraint is called hard. On the other hand, if the

violation of a constraint will still be considered as a feasible solution but a penalty might be applied

on that solution, then this constraint is called soft.

The optimization techniques are algorithms capable of searching for an optimal or near optimal

solution(s), and in that sense they are called Search-Based Algorithms too. These techniques or

algorithms are categorized into three groups; exact, heuristic, and Meta-Heuristic techniques.

Exact optimization techniques are techniques that form a branching and exhaustive search that

guarantee finding the optimal solution, such as branch and bound, and branch and cut [72, 73].

However as the problem scales up, then exact techniques would not be beneficial because of the

vast processing time needed to compute the optimal solution.

Alternatively, heuristic techniques can be used to determine, not perfectly accurate, but good

quality approximations, such as Greedy algorithms, Hill Climbing (HC), and Dynamic

47

Programming (DP) [74]. However, these techniques tend to find a fast solution at the expense of

memory for DP, or the solution quality for Greedy. The main drawbacks of algorithms belonging

to this class is that the solution obtained might be trapped into a local optima.

On the other hand, Meta-Heuristics such as Genetic Algorithm (GA), Particle swarm optimization

(PSO), etc. represent a class of generic optimization techniques using ideas from various fields as

inspiration for the process of trying to solve optimization problems. These techniques are nature-

inspired algorithms developed by mimicking the most successful selection, and behaviour

processes in nature. These techniques have the power of learning throughout the search. That

means while stochastically creating solutions, these solutions are compared heuristically so that

either the least costly or most utilized result is searched. This however, comes at the cost of using

machine memory. Therefore, metaheuristic techniques attempt to solve the problem by

intelligently visiting only some solutions, but there is no guarantee that the best solution is

returned [74].

The following subsections discuss the optimization techniques sorted first by the exact, the

heuristic, and then meta-heuristic techniques.

2.2.1 Branch and Bound

Branch and bound is one of the best general technique for solving constrained optimization

problems [72]. This technique intelligently structures the search space for all feasible solutions.

Feasible solutions in Branch and bound are partitioned into smaller and smaller sub branches as

a tree and a lower bound is calculated for the minimized solutions within each sub branch. In each

partition, the bound of the sub branches that exceeds the minimum of a known feasible solution

is excluded from all further partitions. Partitioning continues until a feasible solution is found

such that its cost value is no greater than the bound for any sub branches.

The number of pruning of branches that occurs in branch and bound is large. Consequently, the

algorithm is powerful, searching effectively within the feasible branches. However, obtaining an

optimal solution using this technique requires ignoring the computational time matter specifically

for large-scale problems. For more details, see [72, 75, 76].

2.2.2 Backtracking

Backtracking is a technique that can be used to find a partial, or all solutions, to a constraint

satisfaction problem [77]. This technique is usually combined with an optimization algorithm to

incrementally build candidate solutions by determining and abandoning the partial candidates

48

whose solution cannot be successfully completed. This technique can be applied when the problem

accepts the concept of near optimal solutions. The technique enumerates a set of partial solutions.

With extension steps, candidates are determined incrementally to complete the whole set. The

partial candidates by this technique can be seen as nodes of tree. Backtracking, as its name

implies, is the search that is done recursively in finding solutions starting at the root to the end of

a branch. With a given criteria, the best partial solution can be obtained. However, if the problem

is large in term of number of variables consequently the search will consume more computational

time. For more details about this technique see [77].

2.2.3 Branch and Cut

Branch and cut is a method for solving an optimization problem restricted to integer values. This

method involves the branch and bound technique within the search where a cutting plan is used

to constrict the relaxation of the problem. While solving the relaxed problem, and not being

successful in pruning the node on the basis of the constrained solution, the search tries to find a

violated cut. The violation cut will hold a solution that do not satisfy the constraint. If one or more

violated cuts are found, they are added to the formulation and the problem is solved again. If none

are found, then the method branches again. This technique suffers from processing time issues as

in the branch and bound, and many decisions have to be made regarding the strategies for

branching on a variable. For more details about this technique see [76, 78].

2.2.4 Greedy

The greedy algorithm is one of the simplest algorithms that can be used in optimization, however,

there is no guarantee that the solution output is an optimal one. Greedy algorithm is often used to

solve optimization problems that either maximize or minimize an objective with a set of

constraints. Greedy algorithm can be seen as a process that starts from an initial node of the

problem and goes to the last node. The algorithm starts with the initial node to search for an

optimal solution to it. As the algorithm progresses with problem nodes, choices for better solutions

become fewer for further nodes. The final solution by this method could fall into a local optima

rather than to go for a global optima within the search space. For more details about this technique

see [79, 80].

2.2.5 Dynamic Programming

Dynamic programming (DP) is a useful mathematical technique for making a sequence of

interrelated decisions and solving a complex problem by breaking it down into a collection of

49

simpler sub problems. There does not exist a standard mathematical formulation of the dynamic

programming problem. Rather, dynamic programming approaches a problem by identifying a set

of choices to be used to fit the problem’s decisions. Dynamic programming solves the optimization

problems recursively by decomposing solutions to the sub problems. When sub problems overlap,

Dynamic programming solves these sub problems just once recursively and then combines their

solutions to solve the original problem. Dynamic programming optimizes the solution by either

searching for a minimized or maximized value. Moreover, Dynamic programming stores the

answer avoiding rework on the same solutions. However, this method is considered memory

consuming, thereby saving computation time at the expense of storage space. For more details

about this technique see [80].

2.2.6 Hill Climbing

Hill climbing (HC) is a mathematical technique that can be used to solve an optimization problem

by accepting a solution within the local optima [81]. The solution that hill climbing offers is found

by a random search that proceeds from an initial point of the problem and searches for a best

solution within the neighbours of that point. Once a better neighbour is found this becomes the

current point in the search space and the process is repeated until no further improvements can

be found. Here the search terminates and a maxima (highest point) has been found. The technique

called hill climbing, because the search space for the objective to maximize can be seen as a

topography that contains peaks “Hills” where the technique searches for the peak within the hill

that contains the random point selected. This technique can be easily implemented, but it might

struggle with a local optima within the solution space. So, the solution obtained by hill climbing

could be far poorer than the global maxima –best solution within the search space. Hill climbing

shows a robust and useful application in software engineering [10]. For more details about this

technique see [81, 82].

2.2.7 Genetic Algorithm

Genetic Algorithm (GA) was originally proposed by John Henry Holland in [83]. As one of the

meta-heuristic techniques, GA is one of the most popular, used and applied to the problem of

Search-Based Software Engineering (SBSE) in more than 80% [5] of the approaches proposed so

far. GA uses concepts of genetics, such as population and mutation to solve an optimization

problem [84]. Metaheuristic in this technique is designated by two genetic operations crossover

and mutation. A crossover operation creates solutions in which the structural information of two

solutions are crossed to generate two new solutions [85]. On the other hand, mutation process do

50

random changes on the solutions generated. The mutation operation is used to avoid same

solution generation, which can lead to explore various search spaces [85]. Solutions are evaluated

to determine which will continue to the next iteration by continuous selection according to the

objective function [74]. This technique can be used with a problem where finding a precise global

optimum is less important than finding an acceptable solution in a fixed amount of time. For more

details about this technique see [74, 84-86].

2.2.8 Multi-Objective Genetic Algorithm

Multi-objective Genetic Algorithm (MoGA) is an expanded genetic algorithm that handles more

than one objective where these objectives cannot be combined into a single objective with a

weighted scoring model. The idea for using multi objective rather than combining them is that

these objectives are generally conflicting, preventing simultaneous optimization of each objective.

In this technique, a number of solutions can be found so the decision maker will have an insight

about the problem characteristics before making decision on the suited final solution. The solution

to this problem is not a single point, but a family of points known as the Pareto-optimal set. This

is due to the fact that most real engineering problems actually do have multiple-objectives, i.e.,

minimize cost, maximize performance, maximize reliability, etc. These are difficult but realistic

problems [87].

An example of a MoGA is the algorithm Non-dominated Sorting Genetic Algorithm II (NSGAII)

proposed in [88]. This algorithm uses a sorting approach that facilitates the search of GA and

reduces the computation complexity. One of the MoGA downsides is that where there are of

complicating factors the technique will consume more computational time. On the other hand,

the user might have to define several options for different solutions. For more details about MoGA

and NSGAII technique see [88, 89].

2.2.9 Simulated Annealing

Simulated Annealing (SA) is one of the metaheuristic techniques that approximates the objective

function based on a physical process that occurs in metal’s metallurgy. This technique is used to

approximate a global optima within a large search space. The inspiration comes from the

tempering process. This process aims to crystallize a material with minimal energy. The process

starts by heating the material to high temperatures and, thereafter, is cooled so that at the end of

the process the material is crystallized by a minimal energy. Here the tempering process in metal’s

metallurgy can be seen as a mathematical optimization. This optimization is to minimize an

objective function such the one used for tempering process for energy minimization. The

51

algorithm of Simulated Annealing allows for solutions that will not improve the value of the

function. Accordingly, the algorithm can overstep the search to find global optima.

The simulated Annealing algorithm accepts the solutions by two criteria. The first is a direct one

which if the new solution is better than the current solution then it is accepted. The second criteria

are based on probability. If the new solution worsens the objective, then it is accepted with a

certain probability defined according to three aspects, the difference between the solutions, the

current value of the variable temperature, and constant physical value.

This technique obviously works with a minimization problem. Accordingly, it becomes harder to

be implemented to maximize an objective. This technique can be used with a problem of finding

a precise global optimum is less important than finding acceptable solution in a fixed amount of

time. For more details about this techniques see [74].

2.2.10 Particle Swarm

Particle swarm optimization (PSO) is a Meta-heuristic technique that can be used to solve an

optimization problem by iteratively trying to improve a candidate solution based on a fitness

function [90]. It is adopted from the observation of the natural behaviour of birds and fishes. This

technique generates a population “Particles” and searches the solutions from the population

according to position and velocity defined for particles. This technique formulates the search

according to particles’ movement, which is updated by other particles for better positions and is

expected to move the swarm to the best solution.

The method has shown very good performance on many benchmark problems while its rotation

invariance and local convergence have been mathematically proven [91]. PSO can also be used on

optimization problems that are partially irregular, noisy, change over time, etc. [92]. However, the

choice of PSO parameters can have a large impact on optimization performance. Selecting PSO

parameters that yield good performance has therefore been the subject of much research[90]. For

more details about this technique see [90, 92].

2.2.11 Discussion on optimization techniques

Different optimization techniques are applicable to SSSP problem. However, these problems have

been defined on many occasions as an NP-Hard problem [93], which leads us to the use of meta-

heuristic techniques as the most useful in terms of computation time suitable for the hardness and

complexity of this problem. It is important to notice too how the formulation of this problem can

lead to different conclusions. A problem with a single person to a single task is a linear

52

programming that one can employ heuristic techniques to provide a solution. On the other hand,

assigning multiple resources to project tasks, and scheduling these tasks according to the

dependency relationship has a multiple stage solution that requires compromising the solution

quality for fast computation using Meta-Heuristics.

From the next Section 2.3, we will see that Meta-Heuristics such as SA, and GA are the most widely

used techniques in solving different SE problems. Both techniques have been employed by many

approaches as in [20, 22] to provide evidence and benchmark the performance and suitability of

these techniques to SE problems. In addition, multi-objective optimization for SSSP problem

considering time, and cost, are proposed as in [14, 22] using GA. Part of the approaches that solve

SSSP problem will be described and detailed in Chapter 4 as they will be subjects for our

benchmarking and evaluation to SSSP approaches.

2.3 Comparative Studies in Optimization Approaches for

SSSP Problem

This section reviews the current state of the art in the literature regarding studies that compare

and evaluate optimization approaches for software project management problems. So far, only

two studies have been published that compare and evaluate the optimization approaches of SSSP

problem. The first study presented in [24] evaluates the proposed optimization approaches with

the possibility of adoption within the software industry. The second study presented in [5]

researches the optimization approaches to address future trends and promising areas of human

resource allocation optimization. The observations and findings from these studies highlight

categories of optimization approaches, the important attributes that these approaches adopt, and

the approaches that are most useful in an industrial settings. Overall, each has placed an emphasis

on possible future trends.

This section addresses the criteria used by both [5, 24] in Subsection 2.3.1, the observation and

findings in these studies in Subsection 2.3.2, and summaries their findings in Subsection 2.6.

2.3.1 Criteria

By running an evaluation on fifty-two research papers, the study presented in [24] compares the

SSSP approaches presented in these papers according to three criteria. These criteria are

usefulness, work compatibility, and ease of use. Usefulness in this study is defined as the benefits

that software firms might gain by adopting the solution proposed by an approach. Work

compatibility is defined by the study as the fitness of proposed solution within the work

53

environment of software firms. Ease of use moreover, is defined by the study as how easily the

approach can be adopted. In addition, the work presented in [24] discusses the aspects of problem

concepts, development, and validation presented by the research papers included in their study.

Problem concepts represent the optimization problem addressed by the approach. Development

is the ability of the approach to integrate with a project management tool. Validation on the other

hand, is the techniques used to validate each optimization approach.

The aim of the study presented in [24] is to identify aspects related to the difficulties in adopting

the research papers’ proposed solution by software organization. They have accordingly

performed a systematic literature review to cover the concepts used within the research papers by

extracting the texts that describes the problem model of the papers and categorising them. This

has therefore enabled them to identify the relationships between their proposed criteria and the

aspects discussed within the papers themselves. They have found that work compatibility criteria

is connected with the presence of problem concepts, development, and the involvement of

stakeholders in the validation process of an approach. Also, they found that usefulness can be

identified by the involvement of stakeholders in the validation process of the approach. Ease of

use was found to be related to the development aspect. Based on that, observations were made

regarding how each optimization approach under their study is related to and apply the attributes

of usefulness, work compatibility, and ease of use. Their observations and findings can be found

in the next Subsection 2.3.2.

The study presented in [5] covers the research papers published between 1993 and 2013 that can

potentially be considered as a Search-Based Software Project Management (SBSPM) approach.

Their study aims to identify the categories and the effectiveness of the SSSP optimization

approaches as well as to provide directions for future research. In [5], several project management

aspects are identified to categorize the approaches that solve SE problems including SSSP. They

have linked each SSSP approach under their study to a management aspect based on the text

extracted from the formalized problem addressed by each. The findings of their study are

discussed in the following Subsection 2.3.2.

2.3.2 Observation and findings

2.3.2.1 Categories of SSSP Optimization Approaches

The main categories of the optimized SSSP approaches can be illustrated from the study presented

in [5]. This study has defined two categories of software project management optimization that

any optimized SSSP approach can falls within, which are effort estimation, and scheduling and

54

staffing software projects, depicted in Figure 7. From the figure, it can be seen that 55 papers have

discussed in general the optimization of software project management problems. In addition,

Figure 7 shows that approaches that optimize scheduling and staffing software projects until 2013

are only about 28, and also effort estimation is in equal interest with the same number of

published papers.

Figure 7: Date and Number of Optimization Approaches illustrated from [5]

However, the approaches used by [5] are categorized into four groups. These categories are

minimization of project completion time, risk based approaches, overtime planning approaches,

and software development effort estimation approaches. Overall, the study presented in [5] is

clearly focused on overviewing the area and provide a taxonomy for the Search-Based Software

Project Management SBSPM, and concluding the approaches proposed to solve the software

engineering problems within the Search-Based Software Engineering SBSE term.

2.3.2.2 Attributes of the human resource allocation optimization

approaches

The study presented in [24] provides a bird’s eye view of the software project aspects that the SSSP

approaches are taking into account. The main aspects according to [24] are project, artifact, task,

resource, team, and skill. These main aspects are illustrated by [24] and presented in Figure 8.

From Figure 8, it can be seen that availability, dedication, and salary are the main attributes

illustrated within the resource aspect. In addition, the main attributes of project tasks aspect are

the estimated effort, precedence relation to another task(s), and duration. From their

representation, it is clear how teams are connected to resources, and skills are represented as a

55

connection between the task and resource aspects. The representation of HRA problem by [24] in

Figure 8 shows that the objectives defined by the SSSP approaches are project duration and cost.

Limited optimization approaches address skills and competencies of human resources [5, 24].

Artifacts such as dependencies and variability of size of project tasks are also addressed by limited

approaches [24]. Also, limited approaches concentrate their allocation to teams and only 13

approaches perform their allocation to teams [24]. According to [24], there is still a room for

improvement to bring the approaches closer to the industrial environment regarding the

attributes and factors that are related to technologies, humans, the development process, and

organization aspects too.

Figure 8: Human resource allocation problem illustrated from [24]

2.3.2.3 Optimization Techniques and Validation Methods

Both studies in [5, 24] have stated that so far the most adopted optimization technique is the

Genetic Algorithm (GA) with 80% usage amongst their study subjects. Moreover, only eleven

approaches use metaheuristics techniques such as Particle swarm, Ant Colony, and simulated

annealing [24]. The objectives in most optimized solutions (approaches) were found to be

concentrated on project completion time and project cost [24]. Moreover, approaches studied that

belong to minimizing software project completion time found that most combine other objectives

such as cost and quality or even multi-objective optimization [5]. In addition, few of these

approaches used an empirical study to evaluate their approaches or real software project data [24].

Approaches that have used Quasi-experiment, using the opinions of the targeted population (PMs)

typically used small sample size of data, and had a restricted participation of the main

stakeholders that do not reflect a real software project environment [24].

56

2.3.2.4 Nominated Optimization Approaches for industrial adoption

The study presented in [24] claims that the approach presented in [28] is the only approach that

has a proper structure to cover the attributes, and overcome the issue related to industry

problems. In addition, they claim that the approach presented in [16] is the only one that can

overcome the development issue by having the ability to integrate with a management tool.

Moreover, they claim that the approach in [16] is the only approach that has been validated by a

quasi-experiment in a proper manner. Overall, there are limited number of approaches that have

been addressed by both studies, which are [14, 20-22, 28, 94].

2.3.2.5 Possible future trends and research directions

Based on the observations stated in [24], there is a need for more research on the attributes that

bring solutions closer to software industry environments as most of the optimized approaches

represent the problem concept by a limited number of attributes. In addition, most of the

approaches that were subject of [24] study have inadequate development in GUIs, and they fail to

address integration with other project management tools. In addition, empirical evidence must be

gathered and evaluation has to be done to validate the optimized approaches. Accordingly, the

study in [24] observed that a lack of evidences about usefulness of the approaches is exists, and

the SSSP problem addressed by the approaches have to address the real industry environment.

The study presented in [5] concludes that far more research is required to address the allocation

of resources in software projects. According to them, promising areas using optimization

techniques to solve the problem of staffing and scheduling software projects include:

1) Interactive optimization: This kind of optimization explores computationally the expertise of

project managers by which how they perform different management objectives.

2) Dynamic Adaptive Optimization: this kind of optimization helps the decision makers to interact

continually and dynamically in real time to explore the implications of their decision.

3) Multi-Objective Optimization: this kind of optimization focuses on decision support in complex

multi-objective problem spaces to include and combine several objectives together.

4) Co-Evolution: this kind of research is concerned with modelling the fitness between two

populations of the solutions obtained by the optimization. Here, they suggest that increasing in

one population should affect the others by reducing their fitness. This kind of optimization

accordingly could lead to better and faster solutions, which requires more attention by

researchers.

57

5) Software Project Benchmarking: the most challenging problem in the human resource

allocation optimization is the lack of real world project data. Accordingly, having a real dataset to

benchmark the optimization approaches has emerged as an important aspect to this field.

6) Confident Estimates: estimation in management processes is considered as the most difficult

aspect. Noisy and uncertain inputs are the basis of this problem. Accordingly, introducing levels

of uncertainty within the estimation process and measure their effects can be a promising area for

further investigation.

7) Decision Support Tools: so far, the optimization approaches are all under research. A promising

area and trend in human resource allocation optimization is to develop these approaches as

decision support tools and make them available to transfer the most successful methods into

practice.

2.4 SSSP Optimization Approaches

The solution process of the SSSP problem requires consideration of a range of factors, such as task

precedence relationship, skills, and effort [24]. These factors are considered inputs to SSSP

approaches, whereas the output(s) of these approaches typically consists of minimization of

project time and/or cost, or maximization of resource usage and skill availability in projects. These

factors are used by SSSP approaches to mathematically formalize the problem, where the

formalization is then used to model the solution using an optimization technique. As the problem

of SSSP is an NP-Hard problem, Meta-Heuristic techniques can be the accepted solution by

approximating the results. With diversity of Meta- Heuristic techniques that can be used to solve

the SSSP problem, comparison between their effectiveness to software engineering problems is

important to be addressed [10]. Yet, studies that evaluate the techniques for SBSPM problems are

limited as in [22]. In [22], a comparison between the adopted technique and others is performed

and concluded that SA may outperform GA in cases of absence of dependencies between the tasks,

whereas in cases of having dependencies, the study shows that both GA and SA perform the same.

The Meta-Heuristic techniques that have been used to solve SSSP problem, by many approaches

as in [22, 28], are only GA, SA, and PSO, and so far, 80% of the optimization techniques used by

the optimization approaches are Genetic Algorithm (GA’s) depicted in [95]. Some of these

approaches however, combine different techniques together to obtain good results. This can be

seen in the approaches in [16, 28, 96]. However, using a heuristic technique for GA population

initialization can narrow the search space as the search might be trapped in a local optimum[97].

58

According to the discussion presented in [17], this section will discuss and detail the SSSP

approaches’ aspects as follow. The first aspect is the formalization of each approach with

consideration of inputs, and constraints. The second aspect is the solution proposed considering

the representation of problem, initial search population, the technique and its stochastic process

adjustment, fitness function, candidate selection, optimizer’s settings, and its validation results.

2.4.1 Problem Input Formalization

Project Decomposition and Effort Estimation

Activities within software development projects can differ from company to company and depend

on whether sequential, incremental, or iterative development is used. Project tasks can be

organized according to which iteration or phase the task belongs to. In addition, project tasks can

have dependencies, for example, when a database needs to be completed before data retrieval can

be tested. Most modern software development methods deploy a phased approach and it is

therefore no surprise that most SSSP approaches seek to optimize resource allocation within such

as context. Approaches such as [16, 23, 28, 91, 96] assign the team members to a particular activity

of a development phase, such as requirement elicitation, analysis, design, implementation, or

testing. However, between these approaches differences can be observed in the phases supported.

For example, [96] only considers design, implementation, and testing activities. The approaches

in [28] and [23] consider the activities of analysis, design, implementation, and testing. The

approach in [91] is more focussed as it only support two activities, which are implementation, and

testing. Optimization approaches that explicitly consider the iterative character of software

development methods are more rare with [28] as one of the few published results. Overall, these

approaches have the unit of allocation in common. This unit is the phases that belongs to the

increments and iterations of the software project.

On the other hand, there are considerable number of approaches such as [15, 18, 20, 22], which

do not perform the resource allocation optimization for a particular methodology. This is due to

the diversity of methods in practice and to generality of use that these approaches are seeking. The

one in [18] is considered by [5] as one of the first approaches proposed in minimizing software

project completion time. This approach deals with a situation where a software project has to be

developed having interdependent tasks each of which requires a skill set that should be possessed

by the assigned resource(s). It is obvious here that the problem the approaches are representing

is also important to identify. The problem represented in [18] has also been addressed by a wider

59

range of approaches as in [14, 15, 22]. Approaches that perform the allocation as these ones do,

but without consideration of skills can be found in [20, 21, 94]. These approaches focus on

assigning the resources to tasks without the description of the content, and regardless of the

required skills and unit of allocation. Noteworthy that these approaches consider the unit of

allocation as a project task regardless the description to which phase or activity nature that this

task belongs to.

For both units of allocation, effort estimation is required. While a range of estimation techniques

and tools are available nowadays, these techniques have shown their maximum capability with

less accuracy and therefore each approach has just presented the estimation of effort by

introducing the COCOMO. Broadly speaking, COCOMO [98] has the nomination amongst the

estimation tools, and partially these approaches have proposed the use of it. Others purely

mention that the effort of each unit has to be estimated in term of Man-Month as in [28], or Man-

Day as in [14]. For more information on how this value can be estimated see Section 2.1.1.

Task Dependencies

Dependency between project tasks is the subject that is considered in different ways by the

optimization approaches. The approaches in [20, 21] for example ignore the dependency between

project tasks. The approaches in [14, 15, 18, 22, 94] on the other hand consider dependencies as

one of the problem inputs. This dependency can be illustrated as precedence relationships existing

between the project tasks, and a task cannot be performed before its predecessor. Representation

of dependency in general has been used in these approaches by the Task Precedence Graph (TPG)

for a direct acyclic representation -see Section 2.1.2- . Others as in [16, 28, 91, 96] consider the

phases, increments, and releases of development as a natural dependency identifiers that have to

be defined within the problem inputs. Approaches that combines both descriptions can be found

in [23]. This approach in addition to the phases of development, has the ability to deal with the

situation where dependencies between project tasks are represented in the form of TPG.

Single and multiple projects

Staffing and scheduling software project optimisation approaches can be divided into two

categories based on the scope of projects that they consider. The first category of approaches

addresses the optimisation only for a single project at a time. The second category considers the

allocation for an entire organizational environment consisting of multiple projects that need to be

performed at the same time.

60

In the literature, the overwhelming majority of proposed approaches target the optimisation of

human resources considering only a single project problem consisting of multiple tasks as can be

seen in [14-16, 18, 20-23, 28, 91, 94, 96]. Each one of these approaches considers the project task

as a standard unit for allocation, and performs the allocation to project tasks either for teams or

for individuals. The optimization of human resources for multiple dependent development

projects has received considerably less attention in the literature, with the work by [99] as an

example of a multi-project approach. However, even this approach simplifies the problem by

modelling the multiple projects as multiple dependent tasks. In addition, this approach ignores

the longer-term considerations such as project overlap. It can be concluded that the category of

multi-project resource allocation optimisation requires further attention beyond the current state

of the art.

Human Resource Properties

The assignment of human resources depends upon three factors. These factors are skills and

competencies, productivity, and availability of human resources at the time that the project will

be performed.

Competencies of human resources in software projects play a key role in effort planning and

resource selection. A selection that is based on competencies searching for the best resource who

can perform a task with high-quality, and shortest time, can also be considered in team formation.

For this reason, a number of competency models are proposed to support the manager in the

selection process. Competency models such as [57, 62] can be used to form teams according to

specific and important attributes of resources that lead to identify the best resource to perform a

particular team role. Another model presented in [7] named as Best-Fitted resource model uses a

relationship ability matrix. This matrix defines a relation between the skills of available resources

and the ones required for a project. This model helps to identify what skills are similar to each

other, which can lead on understanding of the capability of a resource, having these skills, to learn

new ones.

Approaches that consider human resource skills through their optimization process as in [14, 15,

18, 22, 91] did not clarify the competencies used in their selection process except the approaches

proposed in [16, 23, 28, 96]. On the other hand, some approaches ignore the importance of human

resource skills as in [20, 21, 94] assuming that all the available resources have the same

capabilities and competencies.

Productivity on the other hand is represented by the optimization approaches according to

different criteria. Productivity can be ignored, estimated based on experience, or based on the

61

software development activities [16]. Optimization approaches that ignore productivity as in [14,

15, 18, 20-22, 94] assume that the resources share the same expertise and productivity. For this

reason, they just count the number of resources as a measure of team productivity. Approaches

that consider productivity of resources based on their expertise and skills as in [16, 23, 28] model

the resources based on specific programming languages, and activity experience. Productivity of

a resource in these approaches can be twice or thrice than of a normal resource. In addition, some

approaches still use the standard productivity metric for development, and debugging

productivity as the one presented in [91], which depends upon how many line of code the resource

can develop within a unit of time.

It is clear that productivity is a problem with no agreement as to how it can be measured. Some of

the approaches in SPM consider the role that the resource could play within a team. They measure

productivity according to these roles such as analyst, designer, developer, or tester. However, the

resources in software projects can play different roles and they possess more than one

professionalism. In addition, the resources in software firms can be specialized in a particular

software technical development and/or product according to the department they work for.

Availability on the other hand is the subject that most of the optimization approaches consider as

a predefined input. This input is identified by the approaches in three different manners. The first

one is assuming that a number of resources are available as in [20-23, 91, 94, 96]. The second

manner is by using a percentage to express their availability as in [14, 15, 18, 28]. The third manner

is by using a time window to express the availability period of a resource. This manner is addressed

by a few approaches as in [16, 93] using a period that expresses unavailability of a resource during

the project time. For a single project optimization, the first two manners are realistic. However, if

the problem is at organizational level that consists of multiple projects at a time, then it is

important to identify which resources are available, and which are not, for each project.

Team Formation

Many human resource models have paid attention to team formation in software projects as in

[57, 62]. These models focus on skills and competencies of the human resources in software

project for each team role such as analyst, designer, programmer etc. A team that requires

different roles combining different skills, competencies, and disciplines of software development

all to be in the same team including stakeholder, is called a cross functional team [100]. Since the

late of the 20th century, this kind of team has been practiced in industry, and addressed by software

development methods such as Agile [100] and DevOps [101]. However, this kind of team

62

formation has not been addressed by any optimization approaches so far. Consequently, this kind

of team formation should emerge and be addressed by future approaches.

The team formation considered by the optimization approaches is the one that assumes all

potential members share similarity in their competencies and skills. This kind of team formation

is adopted by the approaches in [22, 23, 28]. Noteworthy that approaches as in [20, 21, 94] do not

consider skills and competencies and they form the teams randomly. Moreover, some approaches

as in [14-16, 18, 91, 96] do not consider team formation but rather to perform individual allocation

to project tasks.

2.4.2 Constraints and Penalties

Constraints on human resource allocation in a software project are the most important part in the

allocation. This is due to the reality that dependency between tasks, the number of the resources,

their skills, and availability can affect the development time, quality, and cost of a software project.

Optimization approaches that consider this reality are in [14-16, 18, 22, 23, 28, 91, 94, 96] have

the concern about these constraints for how they can be integrated in their approaches and how it

will affect the outcomes. While these approaches are combined with a meta-heuristic optimization

technique, the outcome solution is subject to change stochastically. That implies the constraints

in these approaches can be violated by the optimization techniques while searching for local or

global optima. On this occasion, the approaches offer penalties, which are used to revise the

outcomes by adding a penalty value to the final result. Optimization approaches that consider

penalties can be seen in [14, 15, 18, 28, 91].

Optimization approaches that consider a constraint on precedence relationship and dependencies

between project tasks are in [14, 15, 18, 22, 23, 28, 91, 94, 96]. Project task dependency is

represented by [28, 91, 96] as a precedence relationship between the features or modules of the

software. The constraint is that no feature or module can be offered by a release that contains the

one preceding it as well as tasks of a feature or module should be organized based on the phase’s

sequence. The approach in [22] represents the dependency constraint as that each task depends

on another, and this should be implemented as a queue of tasks, that no task should be offered

before its phase. The approaches presented in [14, 15, 18, 22, 23, 94] on the other hand have

combined the task precedence dependency constraint within their solution. These approaches

employ for reliable outcomes a simulation of schedule that in each step will verify whether the

precedence relation is met by the current solution or not.

63

Optimization approaches that consider a constraint on the number of resources allocated to a

single task are in [18, 22, 28, 91, 96]. The approach in [22] has the constraint on the number of

teams allocated to a single task. This constraint is that for a single task only one team should be

allocated to it. Similarly, the approaches in [91, 96] made the constraint that for a single task one

resource should be allocated to it. On the other hand, the approach in [28] made a restriction on

the number of resources allocated to a team. The number of resources should not exceed the value

that the manager defines for teams according to the project environment.

Optimization approaches that consider a constraint on the resources skills are in [14-16, 18, 22,

23, 28, 91, 96]. The approach in [28] even classified the resources according to their skills as expert

or novice. In addition, this approach impose a restriction that each team should have at least on

expert. This constraint is to maintain the quality of development, since using novice workers could

affect the work quality.

Optimization approaches that consider a constraint on sharing the resources are in [22, 28]. In

these approaches, sharing resources between multiple teams is not allowed. The approach in [28]

however, made an exception for the testing activities in software project to be done by cooperating

part or all the resources together. In addition, the approach in [22] made additional constraints;

that each team should share the same expertise and at least one team should cover the expertise

required for the project. Moreover, the approach in [28] considers an additional constraint on the

incremental level, this constraint is to ensure that the resources are continually involved in the

module they are working on within the increments, so there is no need for extra time for

understanding the module.

Penalties on the other hand are considered by the approaches in [14, 15, 28, 91]. The approach in

[28] penalizes the violation of the following constraints adding a value that should be defined by

the project manager. These penalties are made on the incremental, novice teams, dependencies of

the phases, and the number of developers within the team constraints. On the other hand,

penalties on violating the constraints in the [91] approach are combined within the project cost.

These penalties are on both development and debugging productivity, as well as the error rate.

The approaches in [14, 15], penalize only for skills as the scheduling is combined within the fitness

function. Skills penalty in [14, 15] is implemented by counting the number of missing skills, and

multiply this value by the overall effort of the whole project, to penalize the project time to end

with a very high value.

64

2.4.3 Solution Representation

Modelling the inputs of an optimization problem is the first step of the optimization process. The

second step then is to identify the goal for the optimization, which is represented as an objective

function. In addition, in some cases the optimization of an objective should be performed with

respect to constraints that are required to be satisfied. For some optimization problems

constraints can be violated while the technique performs a probabilistic process to obtain

solutions. Therefore, the optimization process applies penalties on the fitness value in cases of

violation.

The process adopted by the optimization approaches to solve SSSP can be seen as a multi stage

process. These stages are considered either to ensure the completeness of the solution proposed

or to reduce the processing time of the optimization process. Optimization approaches as in [14-

16, 18, 20-23, 28, 94] search by a single or multi stage the possible optimal or near optimal results

based on the adopted allocation process. Stages in these optimization approaches can be

considered as a case of team or individual allocation. Some of these approaches propose the

allocation of individuals directly to tasks as in [14-16, 18, 23, 91]. This means that a single stage is

required to allocate those resources to project tasks. On the other hand, others as in [20-22, 94]

form the team and sort the tasks first and subsequently assign those teams to project tasks. Only

the approach in [28] uses two stages to perform first team level allocation that assigns each team

to a group of tasks, and the second stage is to assign each team member individually to tasks from

the allocated task group. However, while their final solution is encoded into a 5-D allocation

matrix without consideration for sharing resources across teams or tasks, that means the

allocation performed in this approach at the end is an individual allocation.

The solution structure of an approach can be represented in different ways according to the

technique used. For genetic algorithms, the representation is by a “chromosome”. This

chromosome contains a finite number of “genes” that each represents an element of the solution.

In the problem of SSSP, an element can be a resource, a task, or a team. The mainstream of the

approaches employs GA in their solution for fast and accurate outcomes. Chromosomes can be

represented as a vector as in [20-22, 94]. Others as in [14, 15, 18] use 2-Dimensional array to

represent their resource allocation solution combining the resources and tasks. Similarly,

approaches as in [23] use a cell array to accelerate the computation time of the algorithm.

Chromosomes moreover can be encoded using different systems such as binary, permutations,

65

value, or tree. The reader can refer to [74, 84-86] for information on chromosomes, their

structures, and encodings in GA.

The approaches that use SA on the other hand can have the solution structure similar to those for

GA representations. For instance, the approach presented in [28] combine five allocation

attributes in their problem into a multi-dimensional array. These attributes are resources,

modules, increments, phases, and time slots of allocation elements represented by a 5-D matrix.

Others as in [21] used the same structure for hill climbing, SA, and GA optimization techniques.

Initial Population

Initial population is the starting point of the search in meta-heuristic techniques. Two types of

initial population creation can be used, which are random and heuristic initialization of

population using heuristic optimization techniques to define the starting population [86]. Broadly

speaking, approaches that use GA attempt to initialize the population randomly, as the use of

heuristic techniques might lead the solution to a local optimum. These approaches can be found

in [14, 15, 18, 20-23, 94]. However, there are approaches that combine a heuristic technique such

as Greedy to initialize the population as in [28]. This attempt was claimed to have improved the

search time, as well as the solution quality.

Stochastic Optimization Process

A stochastic process in Meta-Heuristic techniques provides a mechanism to create new solutions

by adjusting heuristic changes within the old ones. Stochastic processes in GA are combined with

two operations, which are crossover and mutation. Crossover operation perform modification on

the chromosomes by exchanging subparts of two chromosomes and combine them into a child

one [86]. Different operators for crossover can be used according to which subparts of parents’

chromosomes should be selected for the new child. The most popular crossover operators are

single-point, two-point, uniform, and arithmetic [86] [102]. The reader can refer to [86] [102] for

more information.

The mainstream SSSP approaches that employ GA within their solution modify their crossover

operators according to their solution encoding and structure. The approach in [94] uses the basic

single-point crossover. The approaches in [20-22] however, modified the single-point crossover

for the subparts selection and order of the exchanged chromosome’s elements. As the approaches

in [14, 18] use a 2-D chromosome structure, their crossover operator performs a single-point

crossover but with consideration of rows and columns to exchange. The one in [15] on the other

hand performs a modified crossover that works with equal probability whether to exchange the

66

rows or columns of their 2-D structure. The one in [23] moreover, performs a uniform crossover

on both parents’ chromosomes to generate a child one.

For the approaches that use SA, this technique provides perturbation operators to manipulate the

subparts of the solution. Perturb operator can be by exchanging two elements of the solution, or

by moving a single element value from one to another. Both perturbations are used in [28] with

equal opportunity. These operators allow the SA to advance the search into the global area than

its basic hill climbing technique.

To avoid same solution generation and explore a global area in the solution space, mutation can

be used in GA to randomly perform changes on the solutions [86, 103]. Mutation in GA can be

done either by selecting and exchanging values randomly to some solution elements, bits flipping

for binary encoded chromosome, scramble or inversion of part of the chromosome, or swapping

values between different elements of a chromosome [102].

In [14, 18] approaches, a single element bit-flip is used. The approaches in [20-22] provide

solution with two representations, one for team assignment, and the other one for task allocation.

Mutation in these approaches works by exchanging two elements of the chromosome for the task

allocation representation, and a single element exchange for team assignment representation. The

one in [15] uses a different mutation strategy. Their mutation works by assigning probability to

each element to randomly assign a new value from the range they have defined as a dedication of

the resource represented by that element to the allocated task. The one in [94] moreover, uses two

mutations as their approach combine two solutions for team assignment and task allocation. The

team representation combines random generation mutations for all chromosome elements.

Mutation for task allocation representation on the other hand works by randomly setting a value

for a random chromosome’s element. Similarly, the one in [23] approach mutates the solution by

exchanging a chromosome element with a random value.

Selection of Candidate Chromosomes Solutions

Selection of candidate solutions as one of the heuristic operations selects the fittest chromosomes

among all the permutation produced by the algorithm. These selected solutions will be used to

produce a new population using different methods [86]. These methods are roulette wheel,

stochastic universal sampling, tournament, steady state, rank, elitism, and random selections

[86].

67

Both [18, 20] use elitism selection. Approaches in [21, 22] use roulette wheel selection mechanism,

and tournament for NSGA-II of multi-objective for [22]. In [14, 15, 23, 94] approaches,

tournament selection is used.

Objective Function

Depending on the problem that the approaches solve, the optimization can be either for a single

or multi objective(s) function. Single objective approaches as in [20, 21, 23, 28, 94] search for an

optimal, or near optimal project completion time solution. Approaches in [14-16, 18, 22, 91, 96],

on the other hand optimize the allocation for multi-objective functions. These functions simulate

the Decision Maker’s (DM) choices for producing high-quality allocation that satisfies part or all

project stakeholder objectives. For example, the approach in [16] optimizes the allocation as

follows: When the project only requires professionals then the most qualified team is the objective

function. In case of shortage of resources, and the available team having minimal skills, then the

minimum qualifying team is the objective function. In addition, for project time the DM can select

the fastest team. For cost purpose, DM may select the cheapest or smallest team. DM on the other

hand can consider a best partial solution when the resources do not satisfy the requirements for

the activities. This can be seen as an example where an approach optimizes the allocation and can

separate the objectives from one another. The one in [18] moreover optimizes for four objectives.

However, two of these objectives, which are overtime work of resources and job assignment

validity are used within their scoring model to penalize the infeasibility of a solution adding high

value to the fitness functions of project time, and cost.

However, there are approaches that do not perform the optimization considering separation

between the objectives as in [91]. Objectives in this approach are combined together so that the

whole process of optimization can be seen as a single objective solution.

Approaches that optimize the resource allocation for the objective of minimizing the completion

time of a software project are in [14-16, 18, 20-23, 28, 91, 93, 94, 96]. However, for part of these

approaches project time estimation is differing from one to another. This is depending on the

input model they use. For instance, some models use the term of time windows, which means the

time of each task has already been defined, or predefined with start and end task times. Therefore,

these equations cannot be seen equally with other models that use effort to estimate the overall

project time span.

68

Optimizer Settings

Each SSSP approach considers different values of GA parameters for the chromosome, population

size, generation, mutation probability, etc. The value of these parameters however play a key role

on the outcome quality and time spent on searching for an optimal or near optimal solution. For

example, if the generation is set to a high value, that means the GA will constantly keep producing

populations and searching for the optimal one, even if the very best solution has been found, the

search will continue till the number of generations is reached.

Population size by many approaches is set to be 100 as in [20, 21, 23]. Both [14, 15] however, set

their population to 64. The one in [18] sets to 60 population, and both [22, 94] set their population

to 50.

The number of generation for a GA on the other hand, which constitute the process of moving

from one population to another acting as a termination criteria [97], is adjusted differently in each

approach. Approaches that search with high number of generations might have some implication

on the runtime as in [14, 18, 20, 21, 23]. The approach in [14] sets the generation to 5000, the

approach in [20] sets to 1000, where [18] set to 500, and both [21, 23] set their GA generation

parameter to 400. Others have set their generation parameter considerably less than the previous

approaches as in [22] approach to be 250, the one in [94] with 100, and [15] to 79 generations.

Moreover, the mutation operation, which involves creating the next population, is usually works

with low probability [97]. The approaches in [23] mutate with very low probability of 0.05. The

approaches in [20-22] set their mutation probability to 0.1. The approach in [18] mutate with

probability of 0.15, and the one in [94] set the mutation probability to 0.2. However, there are

some approaches that modify their mutation rate according to the problem size as in [14, 15]. Their

mutation rate is calculated according to the number of tasks and resources within the solution.

Probability of crossover, as for creating new chromosomes based on both parents, varies in the

approaches that use GA. The approaches in [20, 21, 94] set their crossover probability to 0.6. The

approach in [18] sets the crossover probability to 0.65. The one in [22] set to 0.7. The one in [15]

set to 0.75. Finally the one in [14] sets the crossover probability to 0.9, and the one in [23] set their

crossover probability to 1.0.

The most critical operation that could affect a GA-Based optimization approach is mutation. In

some cases it could lead to a better solution, however, mutating the solutions can also leads to

explore far more solutions than the best one, which will accordingly have implication on the

computational time and the results’ stability of the approach. For best GA results, the approach in

69

[18] concludes that the population size should be in range of 50 to 80, and crossover rate between

40 to 80 percent, and mutation rate between 10-40 percent.

The SA technique is adopted by the approaches in [21, 22, 28]. However, the approach in [22]

used this technique to compare its results with GA, and HC. The configuration of this technique’s

parameters in the approach presented in [28] for the initial temperature, number of internal

loops, number of external loops, parameter control, and cooling factor were are 100, 500, 8, 2000,

and 0.95 respectively. On the other hand, both papers of [21, 22] do not state the values of these

parameters that should be an important subject to their evaluation of the techniques adopted.

2.4.4 Validation

Validation is the key for presenting the quality of an optimization approach. Different methods

are used to validate the optimization approaches. Some of the optimization approaches adopt

experimental methods to compare their approach with different optimization techniques.

Approaches that compared their results with other optimization techniques are in [21, 22, 28, 96].

The approach in [28] for instance made an empirical analysis between SA and Greedy

optimization techniques using the same data. The performance on average for the obtained results

was that the approach using SA outperform Greedy algorithm. The one in [15] in addition,

performed their evaluation on different Evolutionary Algorithms (EA) and approaches including

the one in [14]. Their findings suggest that their solution proposal outperforms the others

especially using an improved EA called Pop-EA.

On the other hand, some of the approaches as in [20, 91] performed their validation using

sensitivity analysis, which investigates the sensitivity of the outcomes by changing the input and

the attribute values. For example, the approach in [91] claim that:

1. Productivity does not necessarily lead to reduce development time as expected.

2. Higher productivity does not guarantee an ideal software development outcome.

3. Increasing the demand only on high quality or for both productivity and quality to be

moderate can lead to better results than to consider both factor to be high for ideal

outcomes of the software development projects.

Moreover, few of the approaches as in [16, 23] performed an empirical study validating their

approach by observing how participants can do the allocation, and the resulted quality of their

allocation. The approach in [16] performed this kind of study to check their understanding of the

70

field. However, their study has 16 participants who were all students, and their conclusion was

that 22% of the participants were able to provide a solution close to the one of their model.

The validation also requires a dataset to test the applicability of the optimization approaches.

Approaches that used real software project data as in [21, 22, 28] used the data to show the

effectiveness of their approaches. On the other hand, other approaches used hypothetical

“simulated” data in their validation as in [14, 18] [15, 16, 23, 91, 96].

2.4.5 Selected SSSP Approaches for Benchmarking and

Comparison

As benchmarking research should not bring as many approaches as available to one comparison,

a representative set has to be identified [104]. This set however, should include approaches that

partially or fully close to and suitable to software project time and SSSP problem defined in

Section 1.2. These approaches moreover, should have wide generality of usage. For instance,

approaches that focus on solving project time minimization for a particular development method

should not be included. A limited number of approaches that consider this aspect, however, can

be found amongst the approaches proposed for SSSP problem. The selection criteria for the SSSP

approaches adopted for the work carried out for this thesis are as follow.

1. The first criterion is the approach should at least be among the most cited and referenced

ones. This task was completed by referring to both studies in [5, 24] where their findings

and results contributed to the selection for this chapter.

2. The focus is on the approaches that perform a single objective of project time span

minimization. Noteworthy that some of the approaches use multi-objectives optimization.

If the approach combines the time into a weighting scoring model, then it is possible to

give all the scores only to project time so it can be easily calibrated to project time

objective. In this case these approaches can be included in our benchmarking and

comparison study.

3. The approach moreover, should use the effort estimation for project tasks, and not any

consideration to time window, or task time frame consisting of start and end time.

Estimated effort can be obtained using different tools and techniques, but the end result

should be in terms of man-month, or man-day. However, both terms are similar and for

accuracy purpose Man-Day will be used.

71

4. Mainly to make the approaches comparable they have to adopt soft constraints. In

addition, dependencies between project tasks should be formed in term of which one can

start before the other, which can be represented by a directed acyclic graph –see

Section 2.1.2-, or any dependency sorting mechanism with TPG. No matter which

software development method is used, projects always have dependency either directly

between the tasks, between the phases, or can be between iterations or increments that

should be plotted by the approach.

The approaches that comply with this criteria are more likely to be included within the

representative SSSP approaches set. Accordingly, the SSSP approaches selected for the evaluation

and comparison are mainly chosen for the following reasons: relativeness to SSSP problem,

publication closeness to software engineering, and possibility to adjust for single fitness outcome.

The first approach to be selected is the one presented in [18]. This approach is considered as one

of the earliest work on optimizing software project time. This approach, in addition, complies with

the earlier mentioned criteria, and has a scoring model to measure the fitness of project time and

cost. Another approach that is selected for its unique proposal and the adaptation of our selection

criteria is the one presented in [20]. This work focuses on the team distribution and is the base for

the works presented by [21, 22, 94]. So, including this approach could provide a clear evidence of

the usefulness of the adopted processes and procedures in terms of allocating the resources and

estimating project time. As this work is a base for other approaches, these approaches are also

important to be included to test their improvements and to what extent they could deliver an

optimal or near optimal solutions in terms of project time minimization. Accordingly, the

approaches in [21, 22, 94] are selected to our benchmarking and comparison study. Searching for

an up-to-date approaches has, in addition, come with several approaches. However, many

approaches have similarity in their proposals, and for many cases limited description is found that

allow for reproduction. The approach in [15], on the other hand, is found to have some

improvement over the approaches in [14, 18]. This approach, in addition, complies with our

criteria, which makes it one of our choices for the benchmarking and comparison study. Including

this approach could offer a quality for our comparison study against these that it based on and

outperform. Moreover, [28] approach has been mentioned in many proposals such as [5, 23, 24]

for its complexity on offering too many constraints that could affect it solution quality. To put

these claims into test, this approach is accordingly selected to our study. It is noteworthy that this

approach complies with our criteria. The last approach to be selected while searching for a new

72

up-to-date is the one in [23]. This approach complies with our criteria and offers a different

resource allocation pattern and GA representation. This approach is, to the best of our knowledge,

the first to use cell array for GA representation, which makes it a choice for the comparison against

the other proposals. While many others could possibly be a quality for our study to test, many of

these approach that have not been selected share similarity in almost every detail of the resource

allocation and optimization process, or fall in the gap of “out of criteria”. This can be where

different effort estimation units, or time measures are used, such as the time window frame,

having the assumption of task time as an input that has already been measured, and what left for

the optimizer is to align what every possible tasks together.

Table 9: Selected SSSP approaches

Approach Published in

Chang01 [18]

Antoniol01 [20]

Antoniol02 [21]

Alba01 [14]

Ren01 [94]

Kang01 [28]

DiPenta01 [22]

Minku01 [15]

Park01 [23]

The following Table 10, in addition, highlights the main aspect that these approaches consider.

Table 10 depicts the approaches considered for the benchmarking and evaluation with respect to

the aspects of problem inputs including project tasks, their precedence relationship, skills, and

productivity of resources. In addition, it can be seen in the table the type of constraints, the

optimizer that the approaches employ, the objective function(s), and the representation of

solution considered by each approach. Moreover, the table illustrates how the approaches have

been validated in terms of methods and data used for this purpose. Methods of validation are

illustrated in the table by three letters. These letters and what they stand for are (C) for

comparative analysis, (S) for sensitivity analysis, and (E) for Empirical evaluation. In addition,

the type of data used for the validation illustrated in the table by (S) for synthetic, and (R) for real-

world data. For instance, this table shows that the approach Ren01 considers two inputs to the

problem which are task and precedence relationship, and incorporates them in the GA optimizer

by 2 vectors in the solution representation of project time minimization objective. From Table 10,

73

it can also be seen that the validation of this approach is carried out by sensitivity analysis (S)

method using a real-world dataset (R).

Table 10: Attributes of Selected Benchmark SSSP Approaches

V
a

li
d

a
ti

o
n

D
a

ta

S

R

R

S

R

R

R

S

S

M
e

th
o

d

S

S

C

S

S

C

C

C

E

S
o

lu
ti

o
n

R
e

p
r

e
s
e

n
ta

ti
o

n

2
-D

2
 V

ec
to

rs

1
v

ec
to

r

2
-D

2
 V

ec
to

rs

5
-D

2
 V

ec
to

rs

2
-D

C
el

l
M

a
tr

ix

O
b

je
c

ti
v

e
(s

)

o
f

m
in

im
iz

in
g

P
ro

je
ct

T
im

e,
 C

o
st

T
im

e

T
im

e

T
im

e,
 C

o
st

T
im

e

T
im

e

T
im

e

T
im

e,
 C

o
st

T
im

e

O
p

ti
m

iz
e

r

G
A

G
A

G
A

G
A

G
A

S
A

G
A

G
A

G
A

C
o

n
s
tr

a
in

ts

S
o

ft

H
a

r
d

P
r

o
b

le
m

 I
n

p
u

ts
 P

r
o

d
u

c
ti

v
it

y

S
k

il
ls

P
r

e
c

e
d

e
n

c
e

r
e

la
ti

o
n

s
h

ip

P
r

o
je

c
t

T
a

s
k

s

S
S

S
P

 A
p

p
r

o
a

c
h

e
s

C
h

a
n

g
0

1

A
n

to
n

io
l0

1

A
n

to
n

io
l0

2

A
lb

a
0

1

R
e

n
0

1

K
a

n
g

0
1

D
iP

e
n

ta
0

1

M
in

k
u

0
1

P
a

r
k

0
1

74

2.4.6 Detailed Description of the Selected SSSP Approaches

The algorithm named Chang01 starts by initializing population P of size 60, where the solution is

represented by a 2-D matrix chromosome structure. The rows in this chromosome represents the

resources and the columns represents the tasks. The value of each cell of the matrix represents a

percentage that the resource will participate with between {0, 0.25, 0.5, 0.75, 1}. The GA repeats

by 500 generations three main processes, until a solution satisfy the objective function. The first

process is selecting parents from P using Elitism selection. For the selected parents, the second

process performs a single-point crossover with probability 0.65, and mutation using a single

element bit-flip with probability 0.15, then stores these new solutions. The third process is

evaluating the solutions based on the fitness function having the best to survive for the next

generation. The fitness function of this algorithm works by calculating the overall participation

percentages of resources to each task. The task that is under computation, however, should not be

waiting another task to finish. The task that has a precede one, should wait till it finish. The time

for this task is estimated by dividing the estimated task effort over the overall participation of all

the resources to this task. In order to the participation percentage of a resource to be counted,

his/her skillset should meet the ones required for that task, otherwise the resource should not be

counted for that task. The fitness function in addition checks whether each resource is working on

more than one task at a time, if so, then the solution then the overall dedication should less or

equal to one or penalized then with maximum estimated time to eliminate the solution. The tasks

are then categorised into groups where each group has those that can be performed concurrently.

The longest task among those in parallel is the one that will be added up to the total estimated

project time.

The algorithm named Antoniol01 works as a tandem approach. This algorithm starts by

initializing population P of size 100, where the solution is represented by two vectors of

chromosome structure. The first chromosome is designed for the ordering of tasks in the queue.

Each gene in this chromosome represents a task and the allele value represents the position of the

task in the queue order. The second chromosome is designed for the team formation of resources.

Each gene in this chromosome represents a resource and the allele value represents the team

number that this resource is assigned to. The GA repeats by 1000 generations three main

processes, until a solution satisfy the objective function for both representations. The first process

is selecting parents from P using roulette wheel selection. For the selected parents, the second

process performs a single-point crossover with probability 0.6, and mutation using two elements

75

exchange with probability 0.1, then stores these new solutions. The third process is evaluating the

solutions based on the fitness function having the best to survive fort the next generation. The

fitness function works for the first representation of task ordering with a uniform distribution of

resources to teams. It counts the number of resources of the team responsible to perform each

task. Each task time is estimated based on the number of resources in the team assigned to it. Each

best solution of the first representation is then fed to the other to search for the best team

distribution. What is noteworthy that each team adds up each task time they work on, so the

overall estimated project time is then the longest team time.

The algorithm named Antoniol02 starts by initializing population P of size 100, where the solution

is represented by a vector chromosome structure. The chromosome represents the ordering of

tasks in the queue. Each gene in this chromosome represents a task and the allele value represents

the position of the task in the queue order. The team formation of resources is performed at the

start of this algorithm randomly, where the number of teams is selected randomly based on the

number of resources. The GA repeats by 400 generations three main processes, until a solution

satisfy the objective function. The first process is selecting parents from P using roulette wheel

selection. For the selected parents, the second process performs a single-point crossover with

probability 0.6, and mutation using two elements exchange with probability 0.1, then stores these

new solutions. The third process is evaluating the solutions based on the fitness function having

the best to survive fort the next generation. The fitness function counts the number of resource

for the team responsible to perform the task. The task time is then estimated based on the number

of resources in the team assigned to it. What is noteworthy that each team adds up each task time

they work on, so the overall estimated project time is then the longest team time.

The algorithm named Alba01 starts by initializing population P of size 64, where the solution is

represented by a 2-D matrix chromosome structure. The rows in this chromosome represents the

resources and the columns represents the tasks. The value of each cell of the matrix represents a

percentage that the resource will participate with between {0, 1/7, …, 7/7}. The GA repeats by

5000 generations three main processes, until a solution satisfy the objective function. The first

process is selecting parents from P using Tournament selection. For the selected parents, the

second process performs a single-point crossover with probability 0.9, and mutation using a single

element bit-flip with probability 0.01, then stores these new solutions. The third process is

evaluating the solutions based on the fitness function having the best to survive fort the next

generation. The fitness function of this algorithm works by calculating the overall participation

percentages of resources to each task. The task that is under computation, however, should not be

waiting another task to finish. The task that has a precede one, should wait till it finish. The time

76

for this task is estimated by dividing the estimated task effort over the overall participation of all

the resources to this task. In order to the participation percentage of a resource to be counted,

his/her skillset should meet the ones required for each task the resource is assigned to, otherwise

the resource should not be counted for that task. The fitness function in addition checks whether

each resource is working on more than one task at a time, if so, then the solution then the overall

dedication should less or equal to one or penalized then with maximum estimated time to

eliminate the solution. The tasks are then categorised into groups where each group has those that

can be performed concurrently. The longest task among those in parallel is the one that will be

added up to the total estimated project time.

The algorithm named Ren01 works similar to the tandem algorithm of Antoniol01, however, it

combines a cooperative co-evolution algorithm solution by dividing the problem into sub-

problems. This is implemented by this approach as two vectors of chromosome structure. The first

is concerned with the ordering of tasks in the queue. This structure however, is implemented by

the fitness function according to the dependency constraint between project tasks. The value in

this vector represents the position of the task in the queue order. The second is a GA chromosome

designed for the team formation of resources. Each gene in this chromosome represents a resource

and the allele value represents the team number that this resource is assigned to. This algorithm

starts by initializing population P of size 50. The GA repeats by 100 generations three main

processes, until a solution satisfy the objective function. The first process is selecting parents from

P using Tournament selection. For the selected parents, the second process performs a single-

point crossover with probability 0.6, and mutation using random generation of new values to all

the elements with probability 0.2, then stores these new solutions. The third process is evaluating

the solutions based on the fitness function having the best to survive fort the next generation. For

each task, the fitness function counts the number of resource assigned to the team responsible to

perform the task. The task time is then estimated based on the number of resources who are in

the team assigned to it. The task that is under computation, in addition, should not be waiting

another task to finish. The task that has a precede one, should wait till it finish. What is noteworthy

that each team adds up each task time they work on to their working time, so the overall estimated

project time is then the longest team time.

The algorithm named Kang01 starts by initializing the Simulated Annealing (SA) algorithm

parameters of initial temperature, the initial solution, and the internal loops. The algorithm has

two loops, where an internal one is designed to create solutions out of an old one using a function

called PERTURB. If the new solution is better than the old one, then the solution will be accepted,

or otherwise a probability will be attached to this solution decided upon the temperature and an

77

exponential function, having a linear relationship between probability and temperature. The

temperature cools down when a solution by the fitness function is proved to be better by the

internal loop. The cooling down has a factor that has also be set for the algorithm. The external

loop on the other hand, keeps checking whether the fitness function value of the new solutions has

not changed in the internal loops. The advised values set for this algorithm are 100 for initial

temperature, 0.95 for the cooling factor, 500 for the internal loop, the internal loop control with

2000, and 8 for the external one. The initial solution by this algorithm is created using greedy

algorithm. That means the project tasks is sorted from larger size to smaller, and with a continuous

loop according to the number of resources, each task at a time will be assigned to the competent

resource, till all the resources are assigned (end condition of the loop). By this solution the SA

starts perturbing a new solution by exchanging resources with their participation percentages

between the project tasks. The time of each task in the project is estimated by dividing the

estimated effort over the participation percentages of all the resources assigned. However, in order

to the participation percentage of a resource to be counted, his/her skillset should meet the ones

required for that task, otherwise the resource should not be counted for that task. The project time

in this algorithm is accordingly considered as the overall tasks’ time i.e. the cumulative time of all

the tasks.

The algorithm named DiPenta01 works similar to the tandem algorithm of Antoniol01 too,

however, the solution is instead represented by a sophisticated vector chromosome structure. The

vector combines within both the tasks queue order, and the team formation of resources

representations. Each gene for the queueing order part represents a task and the allele value

represents the position of that task in the queue order. On the other hand, each gene in the team

distribution part represents a resource and the allele value represents the team number that this

resource is assigned to it. This algorithm starts by initializing population P of size 50. The GA

repeats by 250 generations three main processes, until a solution satisfy the objective function.

The first process is selecting parents from P using roulette wheel selection. For the selected

parents, the second process performs a single-point crossover with probability 0.7, and mutation

using two elements exchange with probability 0.1, then stores these new solutions. The third

process is evaluating the solutions based on the fitness function having the best to survive fort the

next generation. The fitness function works first on decomposing the single structure chromosome

into two representations of teams and task orders. For each task, the fitness function counts the

number of resource assigned to the team responsible to perform the task. The task time is then

estimated based on the number of resources who are in the team assigned to it. However, in order

to the resource to be counted, his/her skillset should meet the ones required for each task that

his/her team is assigned to, or otherwise the resource should not be counted for time estimate to

78

that task. The task that is under computation, in addition, should not be waiting another task to

finish. The task that has a precede one, should wait till it finish. What is noteworthy that each team

adds up each task time they work on to their working time, so the overall estimated project time

is then the longest team time.

The algorithm named Minku01 starts by initializing population P of size 64, where the solution is

represented by a 2-D matrix chromosome structure. The rows in this chromosome represents the

resources and the columns represents the tasks. The value of each cell of the matrix represents a

percentage that the resource will participate with between {0, 1/7, …, 7/7}. The GA repeats by 79

generations three main processes, until a solution satisfy the objective function. The first process

is selecting parents from P using Tournament selection. For the selected parents, the second

process performs a single-point crossover with probability 0.75, and mutation using a single

element bit-flip with probability 0.01, then stores these new solutions. The third process is

evaluating the solutions based on the fitness function having the best to survive fort the next

generation. The fitness function of this algorithm works by calculating the overall participation

percentages of resources to each task. The task that is under computation, however, should not be

waiting another task to finish. The task that has a precede one, should wait till it finish. The time

for this task is estimated by dividing the estimated task effort over the overall participation of all

the resources to this task. In order to the participation percentage of a resource to be counted,

his/her skillset should meet the ones required for each task the resource is assigned to, otherwise

the resource should not be counted for that task. The fitness function in addition checks whether

each resource is working on more than one task at a time, if so, then the overall participation is

normalized by the number of tasks that the resource is assigned to. The overall estimated project

time is then calculated as the overall time of all the tasks in this project.

The algorithm named Park01 starts by initializing population P of size 100, where the solution is

represented by a cell array chromosome structure. The gene cells in this chromosome represent

the tasks, and the allele represents the resources assigned to the task. It is noteworthy that a task

in this representation can have more than one resource assigned to it, as the type of this

representation is cell array. The GA repeats by 400 generations three main processes, until a

solution satisfy the objective function. The first process is selecting parents from P using

Tournament selection. For the selected parents, the second process performs a uniform crossover

with probability 1.0, and mutation using a single element random change with probability 0.05,

then stores these new solutions. The third process is evaluating the solutions based on the fitness

function having the best to survive fort the next generation. The fitness function of this algorithm

works by simulating the project time day by day. That means the function repeats until all the

79

tasks of the project are finished. For each task available to be done, the overall productivity of

resources who are assigned to it is calculated. However, in order to the productivity of a resource

to be counted, his/her skillset should meet the ones required for each task that the resource is

assigned to, or otherwise the resource will be counted with less productivity to that task. The time

for this task is then estimated by dividing the estimated task effort over the overall productivity

calculated of resources to this task. The task that is under computation, in addition, should not be

waiting another task to finish. The task that has a precede one, should wait till it finish. The fitness

function, in addition, checks whether each resource is working on more than one task at a time, if

so, then the overall productivity of this resource is normalized by the number of tasks that (s)he

is assigned to. Accordingly, the overall estimated project time is then calculated as the overall

loops that the fitness function has performed.

2.5 Benchmarking, Datasets and Measurements

Benchmarking is a procedure whereby a set of experiments are conducted with the purpose of

comparing the performance of alternative solutions [104]. In order to benchmark a solution and

compare it to the rest of related ones, three components are mainly used by different approaches

in different field of study as in [105, 106], which are a process for benchmark and comparison,

benchmark dataset(s), and measures that are useful to distinguish between these solutions’

performance and quality. Benchmarking has also been identified with three components by [104].

The first component identified by [104] is named “motivating comparison”, which encompass

technical comparison and research agenda. The second component identified by [104] is “task

sample”. This component is concerned with the representative solutions sample for

benchmarking. It is noteworthy that the intention while identifying representatives should not be

to include as many solutions as possible, but to select a representative set of these solutions [104].

Finally, the last component is the one that provides the benchmarking performance and quality

measures.

2.5.1 Benchmark Process

Throughout the identification of the benchmarking process careful analysis should be made to

fully understand what and which data and information can be extracted to distinguish between

the alternative solutions. The work presented by [10] for benchmarking provides guidelines on

how to approach and evaluate a SBSE solution with different algorithms. One of these guidelines

is how to validate and benchmark an approach. This guideline consists of four benchmark

baselines that a researcher can select one for the comparison. These baselines are random search

80

results, known solutions constructed by hand, desirable solution of how goodness it is compared

to empirical data, or efficiency of solutions checks by repeated trials for having consistent good

quality and more speedily solutions.

Limited number of benchmarking approaches can be found that compared and presented in

particular the differences between various solutions for software problems as in [105, 106]. In

[105], their aim was to evaluate and compare different task graph scheduling algorithms with

respect to the processor’s performance using a unified basis that allow variations in parameters.

Their benchmarking process encompasses identification of a set of algorithms for evaluation,

classification of algorithms, and suitable performance measures. The measures they have used are

based on the parameters that have correlation with the processor performance. Their

classification for the algorithms in addition was based on the number of processors required, the

processors’ network and structure, and computation cost characteristics. Their evaluation of the

algorithms was performed using different datasets with different characteristics based on the

classification, the set of algorithms they selected, and measurements they adopted. In [106] on the

other hand, the aim was on evaluating classification models of software defect prediction. Their

process for benchmarking involved identification of datasets to be used, outcome quality

measurements, and classification of prediction models.

Both processes used by [105, 106] represent the same strategy that is applicable to be adopted in

any other discipline. Therefore, our proposed benchmark approach adopted for the work carried

out for this thesis follow this structure.

2.5.2 Problem and approach’s classification

Three main studies in [5, 11, 17] have provided classification of SBSE problems. The work

presented in [17] encompassed different software engineering optimization problems formed by

two taxonomy perspectives. These perspectives are linked to software engineering and

optimization. Both perspectives by [17] are considered as criteria to provide the aspects for a

problem’s taxonomy. The software engineering perspective involves development stages -such as

requirement, design, etc.-, models -such as waterfall, and agile-, and the further description of a

problem’s subject. The optimization perspective on the other hand has the objective (fitness

function), characterization – discrete, or continuous -, constraints, and the nature of the

optimization problem in terms of polynomial and non-polynomial as P, NP, etc. As these aspects

describes a larger area of SBSE than the problem presented in this thesis, the taxonomy proposed

by [17] is not applicable for more specific problems of search-based software engineering as this

thesis focuses on.

Different terminologies have been introduced by [11] for the approaches that solve software

engineering problem using optimization techniques. One of these terminologies however, can

81

describe the work in this field as project planning in software management. Further work on this

subject is provided by [5]. In their work, they have introduced a classification of subjects that

belongs to software project planning and management. The work is similar to what this thesis

evaluates and is classified in their study as minimizing software project completion time

approaches. However, there is no classification by [5] for further extensions of minimizing the

software project completion time problem. These extensions can be seen by the various attributes

and parameters used in optimizing SSSP problem. Details on attributes and parameters used by

different SSSP approaches can be found in [24]. In [24], they have provided a comprehensive

study that demonstrate the attributes and aspects of the SSSP problem. Their findings have been

presented in a qualitative sense to show what, and which criteria can be used to compare between

SSSP approaches. They have used this criteria to demonstrate the possible approaches that are

more suitable for adoption in the industry. Using their findings of attributes, parameters, and

aspects of SSSP problem, the work on this thesis has been enhanced to create four categories of

SSSP classification presented in Section CHAPTER 1.3.3.

2.5.3 Benchmark Measurements and Statistical Tests

There is only one study that has presented the most important measures to be used in particular

for search-based software engineering approaches validation which is in [17]. This study

categorized the validation measures into two separate groups. The first one discusses measures

and metrics for fair comparison between different optimized approaches. In this group, four

measures are recommended, which are the fitness value, the search time, arithmetic mean, and

hit rate. In addition, they strongly advices to repeat the search of a single approach typically 30-

50 times to capture the effects of random variations. These measures are adopted for the work on

this thesis, and presented in Section CHAPTER 1.3.5. The second group involves the use of

descriptive statistical analysis for central tendency and variability of results, and inferential

statistics for accepting and rejecting hypothesises. They have advised the use of inferential

statistical analysis with main concern about possibility of a Type I error i.e. concluding

outperformance of an algorithm over another whereas in fact is not true. However as these

statistical measures can demonstrate the feasibility and effectiveness of a new approach, they are

not suitable to be used in our research while the arithmetic mean of different SSSP approaches

are under investigation. In case of addressing stochastic nature and variation of performance

between different sets of experiments they have referred to inferential statistics detailed in [107].

An important discussion of inferential statistical tests to assess randomized algorithms in software

engineering is presented in [107]. In their discussion, measures are pointed out for their

importance to plot the differences between randomized algorithms. These measures are T-Test

and U-Test. Both measures are counted as statistical measures for parametric and non-parametric

test respectively, to compare between two sample datasets with a hypothesis for testing whether

82

these data have distribution properties or not. The U-test for example, which has different names

as Mann-Whitney-Wilcoxon, and rank-sum test, is a powerful statistical test, however, in our case

of benchmarking SSSP approaches we are not testing the datasets rather to compare and evaluate

the approaches’ results.

Measures that have been used for benchmarking by the studies in [105, 106] are adjusted to their

comparison subjects. In [105], they have used the algorithms’ output, and computation time as a

basic metrics for comparison. In addition, they have defined the upper and lower data boundaries

and used that to represent the best solution, the arithmetic mean of each algorithm, number of

processors used, and the normalized schedule length of each to solve the scheduling problem.

Moreover, they have developed a scalability factor indicator to show how each algorithm can scale

as the scheduling problem increases. In [106] on the other hand, they have used the hit rate to

demonstrate whether each model is capable to provide a feasible solution on each runtime or not.

Moreover, they have used Area Under the receiver operating Characteristics Curve (AUC)

indicator for the classification models to identify whether each solution produced by each model

is excellent, good, or worthless. In addition, they have used Nemenyi test recommended by [108].

This test is a non-parametric inferential test similar to Friedman test that is able to find differences

for null hypothesis testing. These measures are also used by [109-111] too, as they are appropriate

when conducting hypothesis tests for a single problem involving different optimization

techniques, but not for a comparison of different SSSP approaches. It is obvious that part of their

adopted measures such as hit rate, approaches output (fitness function output), computation

time, and arithmetic mean are appropriate to demonstrate the differences between SSSP

approaches and capable to provide evidence on performance to each. Therefore, these measures

are used for the work carried out for this thesis detailed in Section CHAPTER 1.3.5.

Throughout the work carried out for this thesis, an accuracy measure has been found that can

demonstrate the differences of accuracy between SSSP approaches. This measure is called Mean

Arctangent Absolute Percentage Error (MAAPE) presented in [112]. As the Mean Absolute

Percentage Error (MAPE) is well-known to its efficiency to forecast accuracy of methods, models,

etc, [112], the work in [112] has provided an enhancement over MAPE using the Arctangent

function to limit the outcome’s boundaries. This measure has been used in the work carried out

for this thesis and detailed in Section 43.6.6.

2.5.4 Available Repositories for Software Engineering Studies

Two basic repositories are available for software engineering research, the International Software

Benchmarking Standards Group (ISBSG) and the (tera-PROMISE) of software engineering

research data. However, neither of them contains valid datasets with useful information and data

to be used for HRA problem [5]. Another repository is offered in “An Instance Generator for the

83

Project Scheduling Problem” that has been created and made available by the work presented in

[14]. This repository generates datasets with a different number of resources, and tasks. Yet, these

repositories offer datasets that have limited information for resource allocation inputs especially

for resource information such as the skills and their associated productivity, as well as the

interdependency between project tasks. In addition, the optimal solution and its fitness function

value information are not offered by these repositories. The description and details of these

repositories are reported in the following subsections.

International Software Benchmarking Standards Group (ISBSG)

The ISBSG is the first and most famous repository in software engineering. However, this

repository is not freely accessible. Different types of research data are offered in this repository

for software engineering research. This repository is mainly holding datasets that contains

information about software projects. However, these projects can be organized into two

categories. These categories are development projects, and maintenance projects. The

information contained in the development projects datasets offer data that can be mainly used for

the purpose of defects, development methodologies, software architecture, platforms and their

relationship with effort estimation. The information regarding maintenance projects on the other

hand are about the organization that the project belongs to, the application type and activities

considered by the projects, size and effort estimation of each project, defects, platforms, hardware,

and programming languages used by these software maintenance projects. However, important

the datasets in this repositories are missing the attributes and parameters of SSSP problem.

Tera-PROMISE

The Tera-PROMISE repository offers a wide range of software engineering datasets. These

datasets are mainly used by researchers on their previous research, and they have made these

datasets available by this repository. This repository is established by [113]. The main contribution

of this repository is the free access and availability of its datasets. These datasets are grouped into

different categories according to the software engineering branches they belong to. These

categories are code analysis, defect, dump, effort, green mining, bug issues, prediction models,

requirements engineering, MSR, performance prediction, refactoring, search-based software

engineering, social analysis, software aging, software maintenance, test generation, developer and

project spreadsheet analysis, and other datasets that contains information regarding specific

programming languages or platforms data. The main datasets and contributors are for defects,

bug issues and effort estimation research purposes with 61, 35, and 14 datasets, respectively.

However, important the datasets in this repositories are missing the attributes and parameters of

SSSP problem.

84

An Instance Generator for the Project Scheduling Problem

This repository does not hold any datasets, but it provides an automatic dataset instance

generator. It has been used and introduced by [14]. The generator provides data for different

problem classes of project scheduling developed in Java. These classes belong to the parameters

the project contains such as number of tasks, resources, and skills. These parameters are the

information that the generator can provide for a new single problem instance. In addition, the

information might contain data about dependencies between project tasks represented in term of

task precedence graph. Moreover, salaries for each resource are also provided by this generator.

However, in order for the generator to provide this information, a configuration file has to be used

with it. This configuration file contains syntax that has the instructions of what parameters and

attributes the results should include. The configurations of different problem instances are

categorized based on the parameters the problem includes. The repository offers different files.

These files control the number of tasks, resources, and skills of the instances. The ranges of tasks

are 10, 20, and 30. The ranges of resource are 5, 10, and 15. The number of files for these

configurations are 36.

2.6 Conclusion

Both studies in [5, 24] provide an important foundation of the search-based software project time

minimization aspects, parameters, and features for evaluation. Throughout the reviewing of

related studies, it was clear that both [5, 24] are focusing on the optimization techniques, variables

(aspects), and data used to validate the approaches. These points are significant to address the

issues regarding staffing and scheduling software projects. However, the approaches using the

optimization techniques are also addressing an additional aspects such as the implementation of

team and individual allocation as stages in the optimization process, as well as the constraints and

penalties that are adopted in the case of constraints violation.

On the other hand, even if a discussion was made regarding applicability, usefulness, etc. of the

proposed SSSP approaches, runtime and performance benchmarking of these solutions is also

important to cover. In [24] they qualitatively claim that the solutions proposed by the approaches

outperformed the experts’ assignments. Yet, no comparison between the SSSP approaches and

experts’ solutions are detailed in these studies. Nonetheless, having in mind that the aim of

optimizing HRA is to create a decision support not a decision making system stated by [5], more

investigation on how the PMs perform their allocation to different allocation problems can provide

evidence of the software organization projects’ complexity and suitability of the proposed

solutions.

85

Our project aims to evaluate the approaches not only by addressing their models, but also to test

their robustness, accuracy, and precision through the implementation of these approaches. In

addition, both [5, 24] studies do not consider a comparison between the expert method and the

optimization approaches. Doing this can lead to a deep analysis and experimentations especially

for the important aspects and variables that have to be considered by SSSP approaches from an

industrial point of view.

It is also important to address how the SSSP approaches presented in [5, 24] have formalized their

problem, provided their solution, and introduced their approach’s validity. It is clear that lack of

benchmarks for SSSP approaches of their capabilities in providing solution especially for different

software project environments exists [5, 114]. From that sense, it is important to establish a

foundation for a benchmarking approach that can provide evidence of each SSSP approach’s

performance, robustness, accuracy, and suitability. It is also important to capture how these

approaches can adhere with industry practices and their capacity to provide solutions for different

project problems and environments.

86

Chapter 3 Benchmarking Process for

Staffing and Scheduling Software

Projects Optimization Approaches

This chapter details our proposed approach for benchmarking and evaluating the SSSP

approaches.

3.1. Introduction

Many approaches have been proposed in the last three decades tackling the problem of HRA in

software projects. As one of the software engineering problems, it has been introduced to the

software engineering community as part of the Search-Based Software Engineering (SBSE) by

[10]. The SBSE term, however, includes all the areas that is benefiting the use of search-based

algorithms to solve software engineering problems. In the work presented by [5], this problem is

defined more precisely as one of the Search-Based Software Project Management (SBSPM)

problems.

SPM is concerned with different management aspects including resource allocation. This thesis

concentrates on HRA with consideration of software project time span minimization. This

problem is introduced as software project completion time minimization by [5], and was

illustrated as Staffing and Scheduling a Software Project (SSSP) addressed in Section 1.2. This

problem, in particular, has received a widespread attention in SBSE and many SSSP approaches

can be found that are tackling it. However, each approach provides a solution according to some

or part of the software project properties. Therefore, these approaches need to be compared

against each other, to capture any variances in their behaviour, and to measure their efficiency

and suitability for industrial adoption. Accordingly, the use of benchmarking and statistical

measures to challenge and compare between the SSSP approaches is required.

87

Benchmarking is one of the important areas that most of the search-based software engineering

studies as in [5, 110, 114] have emphasised its importance. However as these studies have

highlighted the absence of benchmarks due to a lack of software engineering repositories that

encompass suitable datasets, benchmarking has been addressed as one of the their future work

directions.

Our overall research framework for conducting the evaluation and benchmarking consists of four

main stages. These stages are: problem definition, benchmarking, industrial settings evaluation,

and interpretations of findings. These four research stages are described in the following Figure

9.

Figure 9: Research Framework

From Figure 9, it can be seen that our research starts with problem definition. To identify the

problem within its context, and for best interpretation and formation of research question(s), a

comprehensive literature review was performed. This review has led to identify the gaps in the

research field, and determine the commonalities between the proposed SSSP solutions.

While many approaches have been proposed to solve SSSP problem, a gap in the research was

found in demonstrating how they perform against each other. The major problem encountered in

this regard was to identify a common definition that makes these approaches comparable. This

has led to lookback into the optimization problem formalization that each aims to identify, and

the common concepts they use. While some of these approaches, as in [14, 22], are expanding

their problem to have multi-objectives or goals. The common objective shared among a large

number of these approaches is tackling project time minimization. What is noteworthy is that

these approaches have adopted a comparison between different optimization techniques to

validate their solutions, and none has made a comparison between what they propose and others.

88

It is well-known that for evaluating an optimization approach, synthetic data can be used. SBSPM

approaches mainly use simulated data to test their proposed solution, and limited number of

approaches have validated their solution using industrial data. In our case, a dataset has to be

made available for HRA optimization and software project time research. With the absence of any

useful dataset, the first part of our research was to create a suitable one. This dataset is established

based on archival project documents. The core of this data contains information on a small real-

world software project from an international software company, where their name is kept

anonymous upon their request. This work is depicted in Figure 9 by (Data extraction) of the first

research stage.

Three main issues are subject to benchmark and evaluate in SSSP approaches. These issues are

the allocation method proposed, the computation time, and the accuracy and precision of

estimated project time span that these approaches can provide. On the other hand, each approach

is subject to capture its suitability and capacity to adapt to different industrial settings problems.

To achieve this, two main stages for benchmarking and evaluation, and industrial settings study

are performed depicted by the blue and red arrows in Figure 9.

For the benchmarking and evaluation stage, we have concluded a process that can bridge the gap

of demonstrating the differences between SSSP approaches. We start with the assumption of a set

of SSSP approaches that all have to be tested for their capacity, capability, accuracy, and stability

in finding optimal or near optimal solutions. For this purpose, the first artefact of benchmark

dataset will be used. However, as each of the proposed SSSP approaches has a different interest

and use of the SSSP problem parameters and inputs, we have defined four classes to demonstrate

their use of problem’s parameters and inputs as complexity levels, and composed them into

different datasets. These datasets combine five levels of information complexity corresponding to

the classification made on the SSSP approaches based on the problem inputs proposed by each.

This work is depicted in Figure 9 by both classification of problem attributes, and data

transformation steps.

The benchmarking stage, in addition, provides a process to identify what approaches can be

selected, how to perform a comparison, and what measures and criteria can be used. Therefore,

statistical measures and quality metrics are adopted from different comparisons and evaluation

studies as in [15, 17, 107] such as hit rate, arithmetic mean, standard deviation, etc. as well as

measures that can provide accuracy forecasting such as mean arctangent absolute percentage

error [112]. By using the benchmark process, significant findings and differences between the

89

SSSP approaches were identified. Details and findings for benchmarking and evaluation of SSSP

approaches are presented in Chapter 4.

On the other hand, to cover-up how and why these approaches might hold within drawbacks to

the application within the software industry, a supplementary qualitative research has to be

involved as pointed out by [115]. Software project time span minimization research also requires

an understanding of the current practices of resource allocation in the software industry. To better

assess these points, an industrial settings study was performed. This study however, involved a

mixed-methods approach, depicted by the blue and red boxes in Figure 9.

The purpose of using mixed-methods approach is to quantitatively evaluate the project managers’

solutions for the SSSP complexity levels, as well as to capture the different aspects and practices

of resource allocation they adopt and use. Based on the results and findings from the industrial

settings stage combined with the results from the benchmarking and evaluation stage, the

interpretation is the last activity to be performed in our research framework. This part of the

research stage concludes the overall findings, trends for future, and its limitations.

The remainder of this chapter provides a systematic comparison and benchmarking process

suitable for SSSP problem in Section 3.2, proposed classifications of SSSP approaches in

Section 3.3. In addition, this chapter details the datasets, their complexity levels, and the optimal

solution of each level in Section 3.4, a set of measures for benchmarking SSSP approaches in

Section 3.5, and summarize the overall benchmarking process in Section 3.6.

3.2. A Systematic Approach for Comparing SSSP

Approaches

Comparing between the approaches proposed for SSSP problem requires a systematic process that

clarify their outcomes and resulting in reliable comparisons. Our proposed process for performing

systematic and reproducible performance comparison of SSSP approaches consists of sequence of

steps combined with evaluation datasets and a suite of quality measures on which the SSSP

approaches can be compared. The proposed workflow for evaluating a set of SSSP approaches

consists of the following steps:

1. Select a set of candidate SSSP approaches that are capable of solving a resource allocation

problem and belong to the same class – see Section 3.3 -.

90

2. Select the suitable dataset from the benchmark dataset that belong to the same class of

approaches selected containing the desired resource and project properties (e.g. skills,

task dependencies, etc.)-See Section 3.4-.

3. Run each approach for the configured dataset for a substantial number of times, (e.g 100

times).

4. Record for each run the result of estimated project time, and the computation time of that

run.

5. Compile the results and measure their performance using the benchmark metric suite -

see Section 3.5-.

6. Rank the candidate SSSP approaches based on their score in the overall quality measures

-see Section 3.5-.

These steps are depicted in the following Figure 10. As can be seen in Figure 10, after identifying

the approaches and the classes that they belong to, and selecting the suitable benchmark dataset,

the datasets located on the left down of the figure is fed into each approach. As most of the

approaches perform heuristic optimization using a probabilistic optimizer, the next step in the

benchmark process is to perform multiple runs for each of those approaches. Different number of

experiment runs are used by the SSSP approaches. Some of these approaches have used 30 runs

such as [22, 94], whereas others used 100 as in [15]. The rule of thumb is to use 30 runs defined

by [107]. Due to the stochastic process of the optimization techniques the number of experiment

runs can be 30-50 according to [17]. However, the number of runs of each approach in our

experimentations were set to 100. The reason for that is to widely investigate and accurately depict

the range of possible results, and to form a better picture of SSSP approach analysis [107]. This

reasonable number of runs is carried out to properly analyse the behaviour of the approaches.

Recorded results of the approaches for each run are then used for the evaluation and comparison

step depicted in the middle of Figure 10.

91

Figure 10: Proposed Benchmarking Approach

The main purpose of using heuristic techniques is to find the best solution in the least possible

time. This depicts two outputs of the optimization defined in the evaluation and comparison step,

which are the main concern in this study. These outputs are the Estimated Project Time (EPT)

and the Computation Time (CT). EPT represents the best solution ever found in each run, which

is the optimal output solution by the approach retrieved from the value of the fitness function. On

the other hand, the amount of effort the approach expended in finding its best solution is

represented by CT, which is the time consumed by the system to find that optimal output solution

value. While the EPT is important to demonstrate the accuracy of the approaches, CT is also

important to consider when performing a comparison between SSSP approaches [17].

After running the experiment 100 times on each approach, the results of estimated project time

and computation time are stored, seven measures are proposed to be used in the benchmark

through the evaluation and comparison step to depict the quality and differences between the

approaches. The description and demonstration of these measures can be found in Section 3.5 of

this chapter. The choice for these measures is motivated by the fact that they are seen as the most

useful way to represent effectiveness and performance amongst the approaches [105]. These

measures are anticipated to depict the accuracy, precision, performance, and stability of the

approaches’ results. Stability and Precision of the approaches’ outcomes can be depicted by

Standard Deviation. The performance of an approach in addition can be depicted by the

computation time that shows the speed of an approach to produce a result. Accuracy of the

approaches’ outcomes on the other hand can be depicted by two measures. The first one is the

mean arctangent absolute percentage error (MAAPE). This measure depicts how far the outcomes

are from the actual optimal solution, which accordingly will demonstrate how accurate the

92

approach is. The second measure is the optimality of solution. We have defined this measure to

plot the accuracy of each approach according to the class that it belongs to. Those two measures

of accuracy require the optimal estimated project time value to be defined for each level of dataset

complexity. These values have been manually estimated as an optimized (optimal) solution and

are provided within our dataset including the derived solution for each level described in

Section 4.53.4.2.

3.3. Classification of SSSP Approaches

During the literature review, part of our work was on identifying the parameters and attributes

defined within the SSSP approaches. The idea behind that combines two main reasons. The first

reason is to find whether these approaches have defined a common problem concept that makes

them comparable. The second reason is to identify common attributes and parameters used as

input to these problems with the aim to address any differences, and if any, the next step is to

classify them into different comparable groups.

In this study, the findings conclude that the mainstream of SSSP approaches are focusing on the

number of resources available to the project, their skills related to the ones required for the

project, and the estimated effort for each project task with consideration of precedence

relationships between these tasks as in [14, 15, 18]. However, there are approaches that employ

simulation techniques such as the queueing system to formalize the allocation problem into a

simulation systems with the purpose of researching and understanding the outcomes, and their

relativeness to the real-world problem as in [20, 21]. The resource allocation problem is still open

for this type of application, yet the approaches employing these techniques require less project

and resource information, and measures to research the outcomes. It is also important to notice

that skills and dependency relationship are used as constraints by many SSSP approaches in their

problem definition. That leads us to recognize whether the constraints they use are hard or soft.

Both types are used within SSSP approaches and that leads us to separate these approaches into

different classes. For example, approaches as in [22, 94] use soft precedence relationship

constraint. This is due to the nature of their fitness function. This function automatically deals

with any precedence relationship in a way that delays the task that has that relation till its

predecessor is finished. Therefore, some SSSP approaches use only data about the number of

resources available and estimated effort of each task, whereas others use more sophisticated

inputs. Classifying these approaches based on project and resource’s attributes, and according to

93

the optimization problem constraints presented by the SSSP approaches shows four classes, which

are:

Table 11: SSSP Classes

SSSP Classes

Class

One

Class

Two

Class

Three

Class

Four

SSSP Features

Estimated Effort ✓ ✓ ✓ ✓

Number of

Resources
✓ ✓ ✓ ✓

Project Task

Dependency
 ✓ ✓

Software

Development Skills

 ✓ ✓

• Class One. This class contains the approaches that require inputs only of estimated effort of

project tasks and the number and productivity of human resources.

• Class Two. This class contains the approaches that require inputs of estimated effort of

project tasks, dependencies between these tasks, and number and productivity of human

resources

• Class Three. This class contains the approaches that require inputs of estimated effort of

project tasks, skills required for each task, and number, skills, and productivity of human

resources

• Class Four. This class contains the approaches that require inputs of estimated effort of

project tasks, dependencies between these tasks, skills required for each task, and the number,

skills, and productivity of human resources.

These classes can be seen as a taxonomy of SSSP approaches, where some can possibly be part of

multiple classes as they are able to determine the optimal allocation of resources for simple as well

as complex SSSP problems. When benchmarking SSSP approaches, it is critical to note that

proposed approaches generally solve different variations of the resource allocation problem,

taking into account different parameters, such as worker skills, or tasks dependencies. To evaluate

the relative performance of SSSP approaches they need to be applied to the same problem with

the exact same inputs, which is why we propose to group SSSP approaches into classes according

to the inputs and constraints required by each. For a complete survey on SSSP approaches’

optimization parameters, and input attributes the reader can refer to [5, 17, 24]. The benchmark

data follows this classification as it defines optimization challenges within these four distinct

94

classes to facilitate the uniform comparison of SSSP approaches. The detail of each dataset is

presented in the next section.

3.4. Benchmark Dataset

The first artefact in this thesis for benchmarking is a flexible and configurable dataset. The dataset

is a small real-world data from an international software company and holds information

regarding both software project and human resources used to develop that software. This data

includes information about eight components of the software projects, and twelve human

resources were available to that project assigned to complete it. The project represented in the

dataset has an estimated time using COCOMO [98]. The time estimated with those resources

available was 75.16 days, with an estimated Man-Day equal to 964.

While there is a diversity of approaches each employs different attributes of project information

to solve the allocation problem of SSSP, any additional parameter added to the simple input

information of estimated project tasks effort and the number of resources is counted as a level of

input complexity. Based on this definition and corresponding to the classification described in

Section 3.3, the dataset is composed of five complexity levels. These levels describe resource

allocation problems of increasing complexity and parameters. Accordingly, each level represents

a dataset that holds part of the original project data provided by the contributor organization. The

optimal solution for each one of these levels (referred to as min value) as well as the worst-case

solution values (referred to as max value) are defined. Section 3.4.2 details the dataset used in this

thesis.

The inputs required for resource allocation can be the estimated effort of project tasks, task

dependencies, skills, and/or resource productivity. Each one of these inputs is represented in the

dataset by numbers except the skills. Skills required for developing each task or offered by a

resource are representing languages and technologies, and represented in the dataset using the

name of this language or technology such as java, or UML. Estimated effort of each task is

represented by person-day. Each task in the dataset has the value of dependency attribute

represented as the task number that the task is depends on. The project tasks in the dataset are

named Work Packages (WP) for the unity of definition as it is used for industrial settings study.

Productivity of a resource is represented by the same metric used by [28]. A resource can be

productive as a normal person, which is equal to 1, less than a normal person represented by a

value less than 1, or twice the normal person represented by 2. The description of the dataset

95

levels, their resource allocation problem attributes, and the input values of each are introduced in

the following sections.

3.4.1 Dataset Complexity Levels

For benchmarking and challenging the performance and applicability of SSSP approaches, five

levels of problem input complexity are proposed. These levels are made as case studies

representing the level(s) that a SSSP approach is capable of solving. The first two levels have the

same concept of sharing the same productivity among the resources. That implies all the resources

are equally productive and can perform any task regardless of the skills and competencies that the

task requires and that the resource possesses. The next three levels however are different from the

first two, since they consider the resources’ productivity according to the skill(s) required to

develop the project tasks. Moreover, level three and four have productivity of a resource either

one (1) or zero point one (0.1). These values are defined according to the nature of time equation

used by SSSP approaches. If we kept the concept of one or zero when a case where a resource does

not possess the required skill(s), then his/her productivity will provide undefined value to the

estimated effort for the task that (s)he is assigned to and causing the experiments to fail. In

addition, level five has the values of productivity for each resource ranges between zero point one

(0.1) to four (4) representing each skills (s)he possesses. The detailed description of each level is

as follow:

 The first level represents the simple resource allocation problem that has two type of input

data. The first one is about the tasks and the estimated effort of each. The second input

data represent the number of resources available to perform these tasks. Productivity in

this level however, is set to be one.

 The second level of this dataset has three types of resource allocation input data. The first

represent the number of available resources, the second is the estimated effort of each

task, and the third one represents the task dependencies in which the value of this input

to each task represents the task(s) that it depends on.

 The third level in this dataset has the number of available resources, and the estimated

effort of each task similar to the previous ones. However, it has also the information about

skill(s) that each task in the project requires, and each of the available resources

possesses. The values of this type of input can be either 1 or 0.1.

 The fourth level of this dataset has four types of allocation input data. Similar to the

previous ones the first two inputs hold the information regarding the number of available

resources, and the estimated effort of each task. Moreover, another input holds the

96

information regarding the task(s) that this task is depends on. The last input information

is the information about the skill(s) that each task requires, and each of the available

resources possesses. The values of productivity for this level of input are also either 1 or

0.1.

 Similar to the fourth level, the fifth one in this dataset has four allocation input data.

However, the only difference between the fourth and the fifth is the information about the

skill(s) that each task in the project requires, and the ones possessed by the available

resources. This information represents their productivity regarding each skill and is

represented in the dataset by a range from zero point one (0.1) to four (4).

3.4.2 Resource Allocation Scenarios of Dataset Complexity Levels

According to the complexity levels defined in the earlier section, five resource allocation problem

scenarios are created. These scenarios are constructed based on the SSSP classification. The first

four scenarios follow the description of the four classes of SSSP classification. However, the

maximum productivity of a resource in these levels is no more than one. That means productivity

of a resource can only be as a normal person (producing the same amount of work expected by 8

hours working time). Unlike these levels, level five description of resource’s productivity can vary

from 0.1 to 4. This level adds to the problem complexity the variability of productivity between the

resources who shares the same skills. The response of the approach handling this accumulation of

productivity, dependencies, and skills can demonstrate its effectiveness. The overall reason for

these different scenarios is to capture the behaviour of the approaches in terms of EPT and CT

while challenging them with the increasing level of information.

In addition, these scenarios are used in our industrial settings evaluation study. This study was to

capture the similarity between what the datasets provide and the current business problem. The

subjects in this study were asked to perform an allocation to each one of these scenarios, and their

responses were recorded. The first part of the questions provided to the subjects were exactly the

same following scenarios. The main intended establishment from this study is to validate these

datasets. A hint is given at the end of each scenario description that sharing developers across

WPs is not allowed. It is that the resource sharing counted in these scenarios as an unacceptable

solution. The intention of this hint is to look like a tricky point which should guide the subjects to

a good solution. It is important to take into account that you cannot use all the resources together

doing all the activities at the same time. For instance, if we have two resources and five activities,

we cannot use both resources to do the five activities at the same time without considering the

negative impacts on their productivity. The description of the five scenarios, their constraints,

optimal solution that we have manually estimated, and the optimal project schedule according to

97

this estimation are depicted in the following subsections. The context of these scenarios was

designed to be a question for the industrial settings assessments.

Scenario 1:

The software development company Xee specialises in project-based software development and

employs 12 developers. Project managers are responsible for staffing a project based on a variety

of project and developer parameters. We would like you to consider the following staffing

scenarios and provide the best project time span estimation. Xee has secured a new project which

needs to be staffed. To this purpose the project manager has identified eight WPs to which

developers need to be assigned. For this first scenario we assume that all developers are

completely uniform, i.e. they have the same skill set and have comparable productivity. In

addition, for each of the eight WPs the required effort has been estimated in terms of Person-day

as follow:

 WP1: 82 Person-day

 WP2: 223 Person-day

 WP3: 180 Person-day

 WP4: 132 Person-day

 WP5: 190 Person-day

 WP6: 50 Person-day

 WP7: 62 Person-day

 WP8: 45 Person-day

As a project manager using this information, you are asked to perform an allocation that assigns

the developers to WPs on this project while satisfying the following constraints:

 The project has to be completed as soon as possible

 Sharing developers across WPs is not allowed

Answer:

The answer for this scenario can be as follow. All those resources available can be used to form

teams. While different alternatives can be made by different team formation, having them all in a

single team to perform the project’s WPs for this particular problem works as the optimal one.

Therefore, we have a single team that consists of twelve resources, where each possesses the same

productivity. In this case we can either make the team work on the WPs simultaneously, or they

can work on these WPs sequentially. The former will not give the same result as the latter. If we

made them simultaneously perform the project WPs then this will mean their productivity will be

98

divided by the number of these simultaneous WPs. That is the estimated effort for each WP is then

should be divided by 1.5. The overall estimated project time then is approximately equal to 642.67

Days. The latter however will hit the target, which propose the development to work sequentially.

The result from this way is as follow. 82/12 + 223/12 + 180/12 + 132/12 + 190/12 + 50/12 + 62/12

+ 45/12 ≈ 80.33 Days. The solution according to this way is depicted in the following Figure 11

by the project Gantt chart.

Figure 11: Scenario 1 schedule Solution

In Figure 11, it is clear that the development is done sequentially providing a waterfall

development. The name WP however, is used to illustrate the different type of works required

behind these WPs. In software development four major activities - analysis, design, coding, and

testing - have to be performed during the development of the software. Therefore, these WPs

requires that different activities be performed in order to complete each WP.

Scenario 2:

The second scenario we would like you to consider is similar to the first one but the WPs of the

project now have dependencies, meaning some WPs have to be completed before others can be

started. These dependencies are displayed in Table 12, and depicted by Figure 12 for more

clarification. From this table, it can be seen that for example WP4 requires 132 Person-day to

complete and cannot be started unless WPs 2, and 3 are finished. For this project the same

developers are available as scenario 1. As before, perform an allocation and assign developers to

WPs under the following conditions:

 The project has to be completed as soon as possible

 Sharing developers across WPs is not allowed

99

Table 12: Scenario 2 Project Attributes

Project

 Dependency Workload

WP1 - 82

WP2 1+3 223

WP3 - 180

WP4 2+3 132

WP5 4+6+7 190

WP6 4 50

WP7 3 62

WP8 7 45

Figure 12: Level 2 Dependency Graph

Answer:

Again this problem can be solved having all the resources available formed in a single team.

However, this team will work on project WPs according to their precedence constraints.

Accordingly, their work will start by doing the jobs sequentially as follow WP1, WP3, WP2, WP4,

WP6, WP7, WP8, and then WP5. By doing so, the project time will be exactly the same as for the

previous scenario, which is equal to 80.33 Days. This solution is depicted in the following project

Gantt chart Figure 13.

100

Figure 13: Scenario 2 Schedule Solution

From Figure 13, it can be seen that project WPs have the same estimated time as before according

to the allocation of a single team. For instance, WP3 in this scenario has an estimated time of 15

days matching the same value for this WP in the previous scenario. Although this scenario

provides dependency constraints between the WPs, forming the work sequentially has led to the

same results.

Scenario 3:

In this scenario we would like you to consider developer skills against the required ones for project

WPs. The following Table 13 lists the skill requirements for each WP in the project:

Table 13: Scenario 3 Project Attributes

Project

 Skills Workload

WP1 SQL, JDBC 82

WP2 SQL, JDBC 223

WP3 J2EE, Web 180

WP4 J2EE, Web 132

WP5 J2EE, Client Server 190

WP6 J2EE, Client Server 50

WP7 Java Networking 62

WP8 Java Networking 45

In Table 13, it can be seen that, for example, WP5 requires 190 Person-day and J2EE and client

server skills. Moreover, dependencies in this scenario have not been considered. In addition, Xee

has collected information on the skills possessed by its developers as well as their productivity.

This information is listed in the following Table 14.

101

Table 14: Scenario 3 Resource Attributes

Resource
NO

Skills Productivity

1 Java Networking 1

2 Java Networking 1

3 J2EE, Web 1

4 SQL, JDBC 1

5 J2EE, Client Server 1

6 J2EE, Web 1

7 SQL, JDBC 1

8 J2EE, Client Server 1

9 SQL, JDBC 1

10 J2EE, Web 1

11 J2EE, Client Server 1

12 Java Networking 1

In this table the developer productivity is treated for all as of a normal person. Productivity

indicators are provided for the corresponding skills. So, for example resource7 possesses SQL,

with JDBC skills which makes him/her productive as normal person, and in addition, if the

resource is assigned to a WP that requires different skill(s), then its productivity will be reduced

to 0.10. According to this information you are asked to perform an allocation that assigns the

developers to WPs on this project under the following conditions:

 The project has to be completed as soon as possible

 Sharing developers across WPs is not allowed

Answer:

The answer for this problem is quite simple too as for the previous ones. While the concern is

about the skills, this means forming the teams can be according to these skills, so each team has

the resources who are productive for the particular skill required for the WPs. Therefore, four

teams have to be formed, where the resources in each possess specific skills. According to this

allocation concept project time can be illustrated as the maximum working days among the teams.

The formation of each team can be depicted as follow. Team one should have resources 4, 7 and

9. Team two should have resources 3, 6 and 10. Team three should have resource 5, 8 and 11.

Finally, team four should have resource 1, 2 and 12. Team one will work on WP1, and WP2. Team

two will work on WP3, and WP4. Team three will work on WP5, and WP6. Team four will work

on WP7, and WP8. The maximum working days amongst those teams is team two i.e. team two is

the one that works more than any other team and project time can be counted according to their

102

working days, which equals to 104 Days. The solution for this scenario is depicted in the following

project Gantt chart in Figure 14.

Figure 14: Scenario 3 Schedule Solution

From Figure 14, it can be seen that the project time can be defined as the maximum among the

teams’ work time. The maximum time across the teams is the second one. This second team who

works on WPs three and four will requires 60 plus 44 days, which equal to 104 Days to finish their

work. Accordingly the estimated project time is then equal to 104 Days.

Scenario 4:

In this scenario, we would like you to consider in addition to dependencies between WPs, the

developer skills and productivity into account. The following Table 15 lists the skill and

dependency requirements for the WPs of the project:

Table 15: Scenario 4 Project Attributes

Project

 Skills Dependency Workload

WP1 SQL, JDBC - 82

WP2 SQL, JDBC 1+3 223

WP3 J2EE, Web - 180

WP4 J2EE, Web 2+3 132

WP5 J2EE, Client Server 4+6+7 190

WP6 J2EE, Client Server 4 50

WP7 Java Networking 3 62

WP8 Java Networking 7 45

103

In this table, it can be seen that for example WP2 requires 223 Person-day, SQL and JDBC skills.

Moreover, this WP cannot be started unless WPs 1, and 3 are finished. In addition, Xee has

collected information on the skills possessed by its developers as well as their productivity. This

information is listed in the following Table 16.

Table 16: Scenario 4 Resource Attributes

Resource NO Java Networking J2EE, Web SQL, JDBC J2EE, Client Server

1 1 0.1 0.1 0.1

2 1 0.1 0.1 0.1

3 0.1 1 0.1 0.1

4 0.1 0.1 1 0.1

5 0.1 0.1 0.1 1

6 0.1 1 0.1 0.1

7 0.1 0.1 1 0.1

8 0.1 0.1 0.1 1

9 0.1 0.1 1 0.1

10 0.1 1 0.1 0.1

11 0.1 0.1 0.1 1

12 1 0.1 0.1 0.1

In this table for each developer their productivity is expressed in terms of a normal productive

person, where a normal person productive for 8 hours a day. This productivity provides indicators

for four different types of skills in the skills column. So, for example resource 7 possesses SQL,

with JDBC skills which makes him/her productive on average as normal person, and in addition,

if this resource is assigned to a WP that requires different skill(s), then its productivity will be

reduced to 0.10. According to this information you are asked to perform an allocation that assigns

the developers to WPs on this project under the following conditions:

 The project has to be completed as soon as possible

 Sharing developers across WPs is not allowed

Answer:

For this particular problem sharing resources might be practical, however, their productivity

needs to be normalized according to the number of WPs they work on at the same time. Bear in

mind that doing more than one WP at the same time implies reduction of the resource

productivity. Then managing the resource to do a single WP at a time can lead to better solution.

Having this in mind, the optimal allocation solution for this problem will be as follow. Resources

4, and 7 will perform WP1. Resources 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 will perform WP2. Resources

1, 2, 3, 5, 6, 8, 9, 10, 11, and 12 will perform WP3. Resources 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12

104

will perform WP4. Resources 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 will perform WP5. Resources 1,

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 will perform WP6. Finally, resources 1, and 2 will perform WP7

and afterwards WP8.

This assignment of resources can be seen as a dynamic team formation. Different teams in this

particular allocation have been formed during the project development. We have seen that a team

formed by two resources - as the one allocated to WP one – for another WP has been transformed

into a larger team - as the assignment for WP two - that includes those two resources as well as

resources 3, 5, 6, 8, 9, 10, 11, 12. It is well known that productivity of a resource working in different

teams can be affected for example by communication overhead [6]. However, this form of

allocation is not far from reality and can be seen in the current industry practice [9].

This allocation with consideration to the constraints of skills and dependency between the WPs

for this scenario shows that the estimated project time is equal to 204.31 Days. The project

schedule including estimated project time and the time for each WP are depicted in the next Figure

15.

Figure 15: Scenario 4 Schedule Solution

From Figure 15, it can be seen that different WPs are simultaneously performed however, none of

the resources assigned to these WPs are working on more than one at the same time. This makes

the resources work to their full productivity, so project time can be the least possible. It can be

seen from Figure 15 too that the project time frame defined by the critical path starts with WPs 3,

2, 4, 6, and then 5. This path conforms to the dependency constraint however, shortening the time

of these WPs requires attention to their simultaneous ones as WP 1 with WP3, and WP2 with WPs

7, and 8. That means increasing or reducing the number of resource on these WPs might result in

low quality outcomes.

105

Scenario 5:

In this scenario, we would like you to consider in addition to dependencies between WPs the

developer skills and productivity into account. The following Table 17 lists the skill and

dependency requirements for each WP in the project:

Table 17: Scenario 5 Project Attributes

Project

 Skills Dependency Workload

WP1 SQL, JDBC - 82

WP2 SQL, JDBC 1+3 223

WP3 J2EE, Web - 180

WP4 J2EE, Web 2+3 132

WP5 J2EE, Client Server 4+6+7 190

WP6 J2EE, Client Server 4 50

WP7 Java Networking 3 62

WP8 Java Networking 7 45

In Table 17, it can be seen that for example WP6 requires 50 Person-day, and J2EE and client

server skills. Moreover, this WP cannot be started unless WP 4 is finished. In addition, Xee has

collected information on the skills possessed by its developers as well as their productivity. This

information is listed in the following Table 18.

Table 18: Scenario 5 Resource Attributes

Resource NO Java Networking J2EE, Web SQL, JDBC J2EE, Client Server

1 2.5 0.1 0.1 0.1

2 2.75 0.1 0.1 0.1

3 0.1 2.25 0.1 0.1

4 0.1 0.1 2 0.1

5 0.1 0.1 0.1 1.75

6 0.1 2.5 0.1 0.1

7 0.1 0.1 2.25 0.1

8 0.1 0.1 0.1 3

9 0.1 0.1 1.5 0.1

10 0.1 1.5 0.1 0.1

11 0.1 0.1 0.1 1.5

12 1.5 0.1 0.1 0.1

In Table 18, each developer productivity can range between 0.1 to 4. This productivity provides

indicators for four different types of skills in the skills column. So, for example resource 7

possesses SQL, with JDBC skills which makes him/her productive of 2.25 times of a normal

106

person, and in addition, if this resource is assigned to a WP that requires different skill(s), then

his/her productivity will be reduced to 0.10. According to this information, you are asked to

perform an allocation that assigns the developers to WPs on this project under the following

conditions:

 The project has to be completed as soon as possible

 Sharing developers across WPs is not allowed

Answer:

Similar to scenario 4, the optimal solution for this problem is also by considering the dynamic

team formation. However, productivity of the resources this time differ from one to another even

when they share the same skills. Having this in mind, the same assignment of resources for

scenario 4 is still the optimal one for this problem. The estimated project time for this assignment

solution is equal to 112.49 Days. The schedule represented by the Gantt chart for this problem

including the estimated time for each WP as well as the overall project time are depicted in the

following Figure 16.

Figure 16: Scenario 5 Schedule Solution

From Figure 16, it can be seen that the same schedule pattern is performed according to the

dependency constraints between the WPs. However, considering productivity of resources

assigned to these WPs has shown that the time can be reduced for each WP as well as for the

overall project. For instance, having the productivity information of resources 4 and 7 who are

working on WP1 in this scenario managed to reduce the estimated time span of this WP from 41

Days in previous scenario, to 19.29 Days. Moreover, productivity in this scenario for resources 1

107

and 2 who are working on WP 7 has managed to reduce the WP time span from 31 Days in the

previous scenario to 11.81 Days.

The five scenarios described earlier are the sets of data used for this thesis to challenge the

accuracy and performance of SSSP approaches and the industrial settings study subjects with five

levels of complexity. The description of these scenarios depicted earlier is to provide the reader

with a context and an optimized (optimal) solution for each level. The reason behind picking this

particular small project information for the work carried out for this thesis is due to the industrial

settings assessment. As a set of Project Managers (PM) are the subjects for this study where their

availability and time constraints should be considered, this has led us to make the datasets as

simple and as easy to understand as possible for the PMs to find a solution especially for the

extended levels.

3.5. Quality Metrics and Comparison Measurements

Measures form the modern quantitative judgement for evaluating and reporting the

appropriateness of different models, approaches, and algorithms. As SSSP approaches in this

thesis are subject for evaluation, different measures should be employed to evaluate their

performance and quality against each other. Many studies have proposed measures that are

suitable to capture the differences of approaches that solve particular software engineering

problem as in [15, 17, 22, 107, 115]. As each of these studies provides a set of measures for a

particular SE problem approaches, some of their measures cannot be employed in our evaluation

study. Therefore, we should limit these measures based on their appropriateness and suitability

to the evaluation criteria, and how effectively they provide information about post-sample

accuracy [116]. Evaluating the SSSP approaches using different measures does not implies

searching for the best, because no single one can be designated as the best. However, emphasis

can be made to exclude any approach that performs badly.

The performance of a SSSP approach is usually measured in terms of optimality, i.e. how close the

approach gets to the true optimal solution [105]. However, this performance metric only provides

a partial view. For example, many probabilistic optimizers, such as genetic algorithms, vary in the

quality of solution they provide due to a randomised starting point and the computation time

expended by them. Accordingly, both of resulting values from the approach for the objective

function and the computational time are the main performance measures in our benchmarking

approach.

Providing the probabilistic nature of the optimization techniques employed by the SSSP

approaches, and the modification on the algorithm they propose, precision is an important quality

108

indicator to be used [117] in addition to the performance measures. Precision of an approach is a

subject for investigation however, it cannot be investigated using a single experiment’s result.

Preciseness requires a set of experimental data to measure whether they are close to each other or

not [117]. Nonetheless, it is important to determine how much data is enough for the measures to

provide significant results [109]. For that reason, the amount of results that each approach should

provide for the comparison has been previously addressed in Section 3.2, which was illustrated to

be from 30 to 100. Accordingly, results over multiple runs are required in order to measure the

SSSP approaches’ preciseness and stability. Standard deviation is proposed for that purpose

having data of multiple runs for both estimated project time and computational time.

Accuracy of a SSSP approach on the other hand, providing the results of multiple runs, should be

determined. Many studies have been concerned about the SSSP problem and SBSE in general such

as [17] and have discussed whether the accuracy should be an aspect for the approaches’

comparison or not. Most of these studies have shown less attention to this aspect, for example in

[17] the accuracy was rejected as one of the comparison aspects for the search-based approaches.

This view is based on the fact that the SBSE approaches in general are made to approximate the

solution for a given problem with less computation time. However as different allocation methods

have been proposed by the SSSP approaches, and each approximates the solution with different

modifications and settings, the comparison between these approaches can demonstrate which one

of these approaches can come closer to the optimal solution. Therefore, we have provided a basic

measure for the accuracy, and have incorporated the mean of error measures for this reason. To

get a more complete insight into the quality and performance of SSSP approaches we propose to

use the following measures:

3.6.1 Estimated Project Time (EPT). Any approach deals with optimizing the resource

allocation should come up with an allocation plan that provides the optimal or near

optimal value for the objective function(s). The objective in the SSSP problem is a cost

function searching for the minimum estimated project time span value. This value can

be recorded from the outcome of the objective (fitness) function, i.e. the identified

optimal result by an approach. While multiple runs should be made on these

approaches, the results of the objective function for each run of an approach should be

recorded. The EPT value therefore should be automatically stored for each run of each

approach.

3.6.2 Minimal EPT (Min EPT). The minimal EPT is identified as the least possible value

for estimated project time EPT among the collected values over multiple runs of a single

109

approach. This measure should provide an insight into the approach’s capability to find

a solution close to the optimal one.

3.6.3 Computational Time (CT). Computation time is the time consumed by the system

to perform a SSSP approach from the point of feeding the data to the time of identifying

(heuristically) the optimal result. This measure is a very important indicator for how fast

the approach can be in providing an optimal or near optimal solution. The value of CT

for each approach can be measured by involving a loop timer to start at the same time

when the targeted approach starts, and ending when the execution of the optimizer ends,

and subsequently the value of this timer defined as a CT is stored in a separate file.

3.6.4 Arithmetic Mean. The arithmetic mean is the most useful measurement to capture

the average of multiple observations. The arithmetic mean can be defined as the average

of a set of values having their sum divided by their number. In [17], they have shown

how the arithmetic mean is a fair measure for comparison to demonstrate the relative

efficiency for the cost function of an approach. This measurement is used in this thesis

to capture the average of EPT values for each SSSP approach over the multiple runs. The

resulted Mean value for each approach supported by the results of the standard

deviation described in the next Subsection 3.6.5 can demonstrate its behaviour

compared to the others. The mean denoted by �̅� can be measured having the number of

runs denoted by 𝑋, and the result for each run 𝑖 denoted by 𝑉𝑖 using the following

Equation 11.

 μ̅ =
1

x
∑Vi

X

i=1

 (11)

3.6.5 Standard Deviation (STDEV). Standard deviation is a measurement that

calculates the amount of variation between a set of observation values. The aim of using

this measurement in this thesis is to demonstrate the behaviour of SSSP approaches by

capturing the amount of deviation from the average and the variation among the

collected EPT values that each approach produces. STDEV can serve as a predictive

indicator by providing whether the potential results of an approach might be closely

grouped to each other, or not. This measurement therefore is a useful metric indicator

of the approaches precision and stability. Both stability and precision metrics can be

measured using the same STDEV equation, yet each has its own interpretation for the

outcome quality. STDEV measurement denoted by 𝜎 requires several inputs for its

equation. These inputs are the number of runs denoted by 𝑋, the result for each run

𝑖 denoted by 𝑉𝑖, and the outcome of the mean denoted by �̅� from the previous equation

110

1. Having all the values for these inputs the STDEV can accordingly be measured using

the following Equation 12.

 σ = √
1

x
∑(Vi − μ̅)

2

X

i=1

 (12)

3.6.6 Mean Arctangent Absolute Percentage Error (MAAPE). This measure,

proposed by [112], is an improvement over the MAPE accuracy measure using the

arctangent (inverse tangent) function. Both measures can be used to forecast the

accuracy of a model, process, approach, etc. The percentage of error using MAPE

measure can be calculated as follow. For x experimental runs, the obtained fitness value

denoted by 𝑓 should be recorded for each. In addition, the optimal value denoted by 𝑝

for the experiment complexity level should be defined. Using these variables, the MAPE

accordingly can be measured for a complexity level using the following Equation 13.

 MAPE =
1

x
∑|

pr − fr
pr

 |

x

r=1

 (13)

MAPE however has limitations that can be illustrated by the following two situations.

The first one is when the actual values are close to zero, then the outcome can go to

infinity. The second situation is when the fitness values are higher (Overestimated) than

the actual one, then it will result in a negative outcome value. MAAPE has overcome

these weaknesses and accordingly, we have used MAAPE measurement to demonstrate

the accuracy and effectivity of each SSSP approach having the arctangent function

bounded the range to overcome the limitation of MAPE. Note that the arctangent or

inverse tangent function is denoted in this measurement by “arctan”. The percentage of

error using this measurement can be calculated as follow. For 𝑥 experimental runs, the

obtained fitness value denoted by 𝑓 should be recorded for each. In addition, the optimal

value denoted by 𝑝 for the corresponding experiment complexity level should be defined

from Section 3.4.2. Using these variables, the MAAPE accordingly can be measured for

a complexity level using the following Equation 14.

 MAAPE =
1

x
∑arctan (|

pr − fr
pr

 |)

x

r=1

(14)

3.6.7 Optimality of Solution (Accuracy): This measurement is developed to capture

the quality of SSSP approaches. The quality metric subject for exploration is the accuracy

of the approaches. Accuracy should be measured based on the EPT results for 100 runs of

111

an approach and the optimal value for the corresponding complexity level defined in

Section 3.4.2. Based on these variables the optimality of an approach can be calculated

using the MAAPE to forecast the error. The forecasted error by MAAPE can lead then to

forecast the accuracy level of a SSSP approach by converting the error percentage into the

area of accuracy. The accuracy can be measured by the following Equation 15.

 𝐶 = (1 − 𝑀𝐴𝐴𝑃𝐸) ∗ 100
(15)

From Equation 15, accuracy 𝐶 is equal the subtraction of MAAPE value from one, and

multiplied by 100. For instance, if the error forecasted for an approach to particular

complexity level is 0.15, the accuracy of this approach is 𝐶 = (1 − 0.15) ∗ 100 = 0.85 ∗

100 = 85%.

3.6.8 Computation Time (CT) Score: This measurement is developed to evaluate the

performance of SSSP approaches in terms of computation time. This measurement is a

score model that demonstrate the relevance of the computation time for each approach

corresponding to a particular SSSP class by capturing the proportion of the computation

time for an approach 𝑉𝑐𝑡 to the slowest among all known SSSP approaches capable of

solving this class depicted by 𝑀𝑎𝑥𝐶𝑙𝑎𝑠𝑠. The computational time performance of an

approach can be calculated then using the following Equation 16.

 CT Score = |
Vct

MaxClass
− 1| ∗ 100 (16)

In Equation 16, the absolute value of subtracting the proportion of the computation

expended by an approach 𝑉 to solve a SSSP problem complexity represented by 𝑉𝑐𝑡 under

consideration of 𝑀𝑎𝑥𝐶𝑙𝑎𝑠𝑠 from one are used to measure CT score represented by a

percentage value by multiplying it by 100. This measure of CT score provides better

indicators of the approach’s performance for the comparison analysis by a clear value that

demonstrate the percentage of the performance for each approach.

3.6.9 Hit Rate: Hit rate is the capability percentage of a model, or approach to return a

feasible solutions. The use of this measure is motivated by the work of [15]. The work in

[15] have used it to show evidence of their approach’s solution effectiveness against the

work presented in [14]. This measure is adopted in this thesis to demonstrate the

performance of SSSP approaches in finding feasible solutions among multiple runs. For

𝑅 number of experiment runs, the hit rate for an approach having the value for each runs

112

𝑟 the value 1 if the outcome in that run is feasible solution or 0 if not denoted by fr, can be

then calculated using the following Equation 17.

 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 =
∑ fr
𝑅
𝑟=1

𝑅
∗ 100

(17)

Using the above Equation 17, if we have 30 runs and 6 out of these runs had feasible

solutions, then the hit rate for this experiment is equal
6

30
∗ 100 = 20%.

3.6. Summary

This chapter has introduced the aspects that should be considered while performing

benchmarking and comparison of SSSP approaches. The main aim for benchmarking is to provide

a baseline for valid experiments in software engineering research, facilitate comparative

evaluation of research approaches, and to be generalized for wider research areas [114]. Therefore,

the benchmarking approach presented in this chapter involve procedures and process to be

followed, classification of the approaches, datasets with complexity levels of attributes and

optimized (optimal) solution for each, and quality and comparison measurements for benchmark.

In addition, this chapter has shown the application of mixed-methods approach, which has

emerged in the last decade to the best of exploring and investigating software engineering studies.

The use of this approach has improved the development of the research process carried out for

this thesis.

To mitigate bias and make convincing argument a high degree of validation should exist [114].

Therefore, software engineering research should be supported by external validation capable of

highlighting the application issues of the benchmark to other scenarios, so enough evidence to

support claims of outcomes and generality of use can be established [114]. The main issue in this

benchmark approach is the lack of coverage of software project and resource attributes. This issue

can be summarized by the development activity involved within the tasks such as designing,

testing, etc. and their corresponding capability by resources of personality and team factors for

team formation such as Belbin factors as in [62]. In addition, as the main stream of SSSP

approaches include cost of software project to the optimization problem in addition to time span,

salaries of project resources therefore, is another issue that should be combined within the

benchmark.

Moreover, classification of the approaches is developed on the selected attributes of software

project so the more attribute the dataset has, will lead to more complexity of inputs and problem

formalization levels to classify. Furthermore, qualitative analysis and statistical methods might be

113

applicable especially in the case of comparing solutions’ quality of the actual resource allocation

such the schedule organization, and utilization of resources.

It is noteworthy that software engineering benchmarking approaches as argued by [104] should

comply with seven factors, which are accessibility, affordability, clarity, relevance, solvability,

portability, and scalability. The benchmark proposed in this chapter complies with these factors

as follow. Accessibility of the benchmark approach and all its parts including the datasets are made

available throughout the thesis chapters, so the reader can easily adopt it. As this research field

has not yet reached the maturity level where the approaches can be developed in tooling and

technology that users can benefit their use, affordability might not be applicable as the cost of

performing the benchmark associated with time consumption and performance of the approaches

for multiple runs is high. The core of the benchmark process is to capture the approaches’

performance where the estimated time of software projects is the main concern. Accordingly, the

datasets’ relevance is depicted by the different circumstances that software projects are limited to

and can combine correlated information that are provided by the classification of SSSP. Datasets

solvability factor on the other hand, has been demonstrated by the project information simplicity

that make the comparison achievable and able to demonstrate the capabilities of various SSSP

approaches too. Moreover, portability can be achieved by the capacity of the benchmark process

to hold additional optimization objectives as well as software project and resource’s attributes that

can be combined within the datasets with evolving classification for new attributes to scale up for

different maturity levels of software project circumstances.

Our benchmarking approach has been applied on a set of SSSP approaches, where the details of

these approaches, and the outcomes of using the proposed quality measures and the datasets

levels are detailed in the next Chapter 4.

114

Chapter 4 Evaluation of Nine SSSP

Approaches

This chapter evaluates a set of SSSP approaches by applying the benchmarking approach

from Chapter 3, and presents the experiment’s result, and findings.

4.1 Introduction

Since late 90’s, different approaches have been proposed to solve SSSP problem such as [14, 18,

22]. These approaches however are more formally designed to explore the optimization

techniques, their potential capability, strength, capacity, and how they can be used in

approximating and solving software project management problems considering different

optimization objectives. Benchmarking and evaluating these approaches has become more

important to present their capability for next generation research and to provide future direction

on potential points of interest for consideration in minimizing software project completion time.

Therefore, this chapter adopts the benchmarking process presented in Chapter 3 to benchmark

and evaluate a set of SSSP approaches. These approaches are selected based on a four points

criteria discussed later in the following Section 2.4.5.

The reminder of this chapter is divided into three sections. The following Section 2.4 provides

description and background of different SSSP approaches. The study aims and research questions

are listed in Section 4.2. In Section 4.3, results for each experiment on each selected SSSP

approach and its outcomes analysis regarding efficiency, effectivity, performance, and accuracy

are presented. Throughout this section it will be much clearer to the reader why the benchmark

dataset is divided into different levels and how they are connected with the constraints to provide

a taxonomy for the SSSP problem. The conclusion with the main findings and limitations of the

experiments performed for this chapter are provided in Section 4.5.

115

4.2 Experiment Aims and Parameters Settings

Throughout the development of the benchmarking approach and preparation for this chapter,

question were raised about the validity of the benchmarking approach and the performance of

SSSP approaches. The experiments performed for this chapter constitutes the answer for these

questions, which are the following:

1. Do the SSSP approaches perform similarly?

2. If no. What are the differences between the approaches? and

3. Do the measures adopted for the benchmarking able to demonstrate the approaches’

performance and quality?

4. Does the classification made for the approaches able to demonstrate the performance,

capacity and capability of the approaches as the complexity increases?

The experiments provided in this chapter are performed according to the benchmarking

approaches described in Chapter 3 using Intel Core2 Quadm5 (2.66 Ghz) CPU, supported by 4GB

memory. The implementation of the approaches selected for this study is carried out using Matlab

2013a, supported by global optimization toolbox to facilitate the development of the optimization

techniques proposed by these approaches. Each approach was executed 100 times according to

the benchmarking approach to allow determination of mean and deviation values. The experiment

settings for each approach and complexity level are defined according to the description of each

from the last section. The parameter settings of each selected approach for the experiments are

presented in the following Table 19.

 Table 19: Parameter Settings of the Selected Nine SSSP Approaches

Approach

Settings

Population size Generation Crossover fraction Mutation probability

Chang01 60 500 0.65 0.15

Antoniol01 100 1000 0.6 0.1

Antoniol02 100 400 0.6 0.1

Alba01 64 5000 0.9 0.01

Ren01 50 100 0.6 0.2

DiPenta01 50 250 0.7 0.1

Minku01 64 79 0.75 0.01

Park01 100 400 1 0.05

Initial Temp Control Cooling

loops

Internal External

Kang01 100 2000 0.95 500 8

116

The parameter settings presented in Table 19 above are motivated by the best experiment

settings used for the approach’s performance and outcomes validation provided by the authors of

these approaches.

4.3 Results

This section provides detailed results of each approach selected for this study according to the

corresponding complexity level that the approach can perform. Noteworthy that due to the

approaches capability for solving different complex scenarios the approaches presented will be

gradually reduced as the complexity increases. This section will be grouped according to the

complexity and classes of SSSP. It is important to notice that two things are to capture in this

section which are:

 How each approach performs compared to the rest in the same complexity level?

and

 How each approach performs as the level of complexity increases?

An observation was made during the experimentation of the selected approaches that some of

them have performed badly in terms of returning feasible solutions. When there is no feasible

result recorded for an approach, then this value is recorded as “NA”. This result can be acceptable

as the constraints in some approaches have been set to a certain value to make sure that the

approach can be able to return a feasible solution. Therefore, we use the hit rate (number of

feasible solutions) for those approaches that might return unfeasible solutions, so their accuracy

can be demonstrated.

4.3.1 Complexity Level One Experiments

Nine SSSP approaches are subjects in this complexity level to test their performance and accuracy

outcomes. As this level corresponds to the first class of SSSP problem, the only information that

it provides for the SSSP approaches to search for an optimal or near optimal time estimate is the

estimated effort and the number of resources available to the software project. The dataset of this

complexity level is provided by Section 3.4.2. The following Figure 17 depicts the results of EPT

values for each approach in this level using the Boxplot diagram.

117

Figure 17: Level One Boxplot Diagram of SSSP Approaches Evaluation

It can be seen in Figure 17 that three approaches of (Chang01, Kang01, and Minku01) are the worst

among the others. However, it should also be seen that the approach of Alba01 is missing in this

figure as it failed to provide any results over the 100 runs. On the other hand, five approaches of

(Antoniol01, Antoniol02, Ren01, DiPenta01, and Park01) by this figure can be seen as better than

the earlier mentioned approaches, providing estimates between 80-90 days. In addition, it can be

seen in this figure too, that DiPenta01 is able to provide precise, and less variation EPT results

than any other approach.

Table 20 provides more detailed information about the approaches’ outcomes, which can enable

us to see which of these approaches can outperform the others. The approaches’ in this table are

sorted by the EPT values, from the worst to the best.

Table 20: SSSP approaches Results for Complexity Level One

Approach EPT CT Hit Rate CT Score MAAPE Accuracy

Alba01 NA 220.14 0 96.35 NA NA

Kang01 111.5 127.91 100 97.88 0.370 62.99

Minku01 109.19 10.74 100 99.82 0.345 65.54

Chang01 108.95 18.40 2 99.7 0.342 65.77

Antoniol02 85.13 109.66 100 98.18 0.060 94.04

Park01 81.31 6033.43 100 0 0.012 98.78

Antoniol01 80.83 285.92 100 95.26 0.006 99.37

Ren01 80.48 17.57 100 99.71 0.002 99.81

DiPenta01 80.33 24.69 100 99.59 0.005 99.99

118

Table 20 presents the mean of Estimated Project Time (EPT) and Computation Time (CT)

outcomes over 100 runs of each approach. In addition, it provides information regarding hit rate,

MAAPE, and accuracy for each approach. The unit of EPT value is in days, and for CT is in seconds.

For example, Minku01 approach has provided 109.19 days average EPT value for 100 runs. This

approach can provide feasible solutions with Hit Rate of 100 times out of 100 runs. In addition,

this approach consumed 10.47 seconds on average, and scored 99.82% of the average CT

compared with the worst approach performance among them all. The error forecasting of this

approach using MAAPE measure shows that around 34.5% of the approach’s outcome is prone to

overestimate EPT, which leaves the approach with 65.5% accuracy. The worst performance among

them all is the Alba01 approach. This approach has failed to provide a single estimate over the 100

runs and consumed on average 220 seconds on searching for a solution, which makes it the worst

approach of this complexity level.

Moreover, the approach in Chang01 has a very high score of CT, however, that comes at the cost

of accuracy of EPT. On the other hand, the one in Park01 with the worst CT was able to provide a

more accurate EPT. This shows how reducing computation time can come at the cost of good

quality solutions in Meta-Heuristics. However, this fact can no longer be valid as with DiPenta01

approach, which has shown its capability to outperform the others according to both CT score and

EPT Accuracy. This approach has shown its stability of producing precise results over the 100

runs, and so far, that make it the one that outperform the others in this particular complexity level.

To capture whether these approaches perform similarly, we have performed a paired T-Test

against the one of DiPenat01. Our null hypothesis is that the approaches can provide similar

estimates and perform similarly. The results of this test are depicted in the following Table 21.

Table 21: Level One Paired T-Test of SSSP Approaches Evaluation

Lower Upper

Pair 1 Dipenta01 - Chang01 -28.61905 0.53875 0.38095 -33.45950 -23.77859 -75.125 1 0.008

Pair 2 Dipenta01 - Antoniol01 -0.49983 1.13947 0.11395 -0.72592 -0.27373 -4.386 99 0.000

Pair 3 Dipenta01 - Antoniol02 -4.79867 2.60522 0.26052 -5.31560 -4.28173 -18.419 99 0.000

Pair 5 Dipenta01 - Ren01 -0.14594 0.24051 0.02405 -0.19366 -0.09822 -6.068 99 0.000

Pair 7 Dipenta01 - Minku01 -28.85713 2.51428 0.25143 -29.35602 -28.35824 -114.773 99 0.000

Pair 8 Dipenta01 - Park01 -0.97667 0.46482 0.04648 -1.06890 -0.88444 -21.012 99 0.000

Paired Samples Test

Paired Differences

t df Sig. (2-tailed)Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the

Difference

From Table 21, it can be seen that the difference in mean for each pair of DiPenta01 approach

against the others has a 2-tailed value less than 0.001, and for the first pair the significance was

119

with 0.008. From these results we have found enough evidence to suggest that the difference

between the two scores for each pair is statistically significant and reject the null hypothesis.

4.3.2 Complexity Level Two

This level provides information about the estimated effort and precedence relationship between

the project tasks, as well as the number of resources available to the software project. The project

time minimization problem is depicted by the dataset in Section 3.4.2. In this level, only six

approaches are subjects to test their performance and accuracy outcomes. The reason of taking

out the approaches of (Antoniol01, Antoniol02, and Kang01) is that they do not support the

information provided by this level of task dependencies, and any other attributes for higher

complexity levels. The following Figure 18 depicts the results of EPT values for each approach in

this level using the Boxplot diagram.

Figure 18: Level Two Boxplot Diagram of SSSP Approaches Evaluation

It can be seen in Figure 18 that two approaches of (Minku01, and Park01) are the worst among the

others, with average close to 110 Days. On the other hand, the approaches of (Chang01, and

Alba01) have provided better estimates than the earlier mentioned approaches, between 80-100

Days. Moreover, the approaches of (Ren01, and DiPenta01) can be seen as the best among all the

other approaches according to the average of EPT with just over 80 Days, and their stable and

precise EPT values. However, DiPenta01 approach had some very extreme overestimates of EPT,

which make Ren01 approach, with the least variation of EPT results, outperforms any other

approach on this particular level. To make this claim, we need more information regarding the CT

120

and other accuracy measures. Therefore, the following Table 22 presents the performance and

accuracy outcomes of the approaches.

Table 22: SSSP approaches Results for Complexity Level Two

Approach EPT CT Hit Rate CT Score MAAPE Accuracy

Minku01 109.17 10.34 100 99.1 0.344 65.56

Park01 107.58 1133.77 100 0 0.326 67.37

Alba01 92.04 270.28 100 76.16 0.144 85.55

Chang01 87.63 21.62 100 98.1 0.090 90.95

DiPenta01 81.26 29.24 100 97.42 0.011 98.95

Ren01 80.51 25.14 100 97.78 0.002 99.77

From Table 22, it can be seen that Alba01 approach, which have struggled to provide feasible

solution for the previous complexity level, is now capable to provide feasible results with 100% hit

rate performance. However, this level provides a challenge for the approaches especially in terms

of stability of results over the runs. The resulted value of Minku01 approach in terms of EPT is the

worst amongst the approaches. This is due to the CT spent on searching the solution space, which

for this approach is the least one among the rest recorded by the CT Score with 99.1%. By this

speedy search, the accuracy of this approach is the worst recorded with approximately 65.5%.

Again both (DiPenta01, and Ren01) approaches in this level could be seen having the same results

as seen by the previous Boxplot diagram. Yet, the mean EPT provides clearer picture of which can

provide better results over the runs. In this case, Ren01 obviously performs better as it provides

the average of EPT equal to 80.5 days. Consequently, the accuracy for this approach in this level

is the best among the rest with score of 99.7%.

To capture whether the approaches in this level perform similarly, a paired T-Test is performed.

However, this time the pairs are made against Ren01 approach, as this approach has managed to

provide better estimates than the other ones. The outcomes of this test are recorded in the

following Table 23.

Table 23: Level Two Paired T-Test of SSSP Approaches Evaluation

Lower Upper

Pair 1 Ren01 - Chang01 -7.11916 3.18412 0.31841 -7.75096 -6.48737 -22.358 99 0.000

Pair 2 Ren01 - Alba01 -11.53361 3.87057 0.38706 -12.30162 -10.76561 -29.798 99 0.000

Pair 3 Ren01 - DiPenta01 -0.74820 6.54196 0.65420 -2.04626 0.54987 -1.144 99 0.256

Pair 4 Ren01 - Minku01 -28.65805 2.56428 0.25643 -29.16685 -28.14924 -111.759 99 0.000

Pair 5 Ren01 - Park01 -27.06939 4.08808 0.40881 -27.88055 -26.25822 -66.215 99 0.000

Paired Samples Test

Paired Differences

t df Sig. (2-tailed)Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the

Difference

121

What can be seen by Table 23 is that with enough evidence to suggest that the difference between

the two scores of each pairs are statistically significant and reject the null hypothesis with 2-tailed

values less than 0.001, except the difference between Ren01 and DiPenta01 approaches, which do

not provide enough evidence to reject the null hypothesis for them particularly. Accordingly, both

approach can be seen of a similar performance.

4.3.3 Complexity Level Three

As this level provides additional project attributes that some of the approaches do not include

within their problem formalization, the one in Ren01 is accordingly excluded in addition to

(Antoniol01, Antoniol02, and Kang01) from this level. Therefore, only five approaches are subjects

in this level to test their performance and accuracy outcomes. The dataset used for this level and

its optimal solution can be found in Section 3.4.2. This dataset includes the information about the

estimated effort and precedence relationship between the project tasks. In addition, this dataset

includes the number and skills of resources as part of the software project data for SSSP

approaches to solve its time estimation problem. The following Figure 19 depicts the results of

EPT values for each approach in this level using the Boxplot diagram.

Figure 19: Level Three Boxplot Diagram of SSSP Approaches Evaluation

It is important to notice that again the Alba01 approach is not included in Figure 19, as it has again

failed to provide a single estimate. From Figure 19, it can be seen that two approaches are

outperforming the rest, and Chang01 approach is the worst on providing EPT values with just over

350 Days. However, in order to make clear evidence of which is good, and which is worst. A full

122

information regarding the performance and accuracy outcomes are required. Therefore, the

following Table 24 presents the results of the approaches for this complexity level.

Table 24: SSSP approaches Results for Complexity Level Three

 Approach EPT CT Hit Rate CT Score MAAPE Accuracy

Alba01 NA 206.62 0 98.5 NA NA

Chang01 378.00 15.39 3 99.89 1.199 -19.89

Minku01 327.64 16.89 100 99.88 1.135 -13.51

Park01 175.25 13747.62 100 0 0.598 40.19

DiPenta01 172.75 15.60 100 99.89 0.571 42.95

It can be seen from Table 24 that both Alba01 and Chang01 are struggling in this level to provide

feasible solutions. For instance, Alba01 approach is the worst amongst the approaches as it did

not find any feasible solution over the 100 runs, where the one of Minku01 that is similar to those

approaches have succeeded to find a feasible solution in each run exposed by 100 for the hit rate.

However, the mean of EPT value for Minku01 approach is far from the optimal solution of EPT.

Consequently, the accuracy of this approach and Chang01 too are considerably inaccurate to solve

a problem where skills and effort of tasks are the only inputs. Yet, DiPenta01 approach still among

the best ones to provide better solutions than the others for this level too. This is depicted by the

accuracy and CT score values, which are 42.9% and 99.89% respectively.

Furthermore, the CT score of Minku01, Chang01, and DiPenta01 approaches have almost no

difference from one to another. The one that comes slightly less with 98.5% CT score is Alba01.

The CT score computed for these approaches is compared with the worst CT ever recorded among

them all, which is Park01. However, this approach provided good quality EPT for 175.25 days,

reflected on the accuracy result with 40.19%. Despite the fact that all the approaches in this level

did not provide good quality outcomes, Park01 approach in this level can be considered as the

second place for good quality results amongst the others. It can be concluded that this level has

challenged the approaches on their capacity to handle skills without dependent tasks, so the

allocation can be harder for those approaches that consider individuals for task assignment,

leaving the best to be by DiPenta01.

But now the question is: are these approaches perform similarly? To answer this question, we have

to look at the paired T-Test results that compare the approaches against DiPenat01 one for this

level. These results are depicted in the following Table 25.

123

Table 25: Level Three Paired T-Test of SSSP Approaches Evaluation

Lower Upper

Pair 1 DiPenta01 - Chang01 -209.98535 54.93783 31.71837 -346.45848 -73.51222 -6.620 2 0.022

Pair 3 DiPenta01 - Minku01 -154.89362 23.65115 2.36511 -159.58652 -150.20072 -65.491 99 0.000

Pair 4 DiPenta01 - Park01 -2.50438 22.89521 2.28952 -7.04729 2.03853 -1.094 99 0.277

Paired Samples Test

Paired Differences

t df Sig. (2-tailed)Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the

Difference

What can be seen by Table 25 is that for both Chang01 and Minku01 approaches againstDiPenta01

there are enough evidence to suggest that the difference between the two scores of each pairs are

statistically significant and reject the null hypothesis with 2-tailed values less than 0.001 for Pair3

of (DiPenta01 and Chang01), and 0.05 for Pair1 of (DiPenta01 and Minku01). It is noteworthy that

Alba01 approach is not included in this test, as it could not provide solution for this level. On the

other hand, the difference between DiPenta01 and Park01 approaches for this level do not provide

enough evidence to reject the null hypothesis. Accordingly, both approach can be seen of a similar

performance.

4.3.4 Complexity Level Four

Like the previous complexity level, five SSSP approaches are subjects to test their performance

and accuracy outcomes for this level too. The data for this level provides information about the

estimated effort and precedence relationship between the project tasks. In addition, it provides

information about the number and skills of resources available to the software project in order for

the SSSP approaches to search for an optimal or near optimal solution of time minimization. The

dataset used for this level can be found in Section 3.4.2. The following Figure 20 depicts the results

of EPT values for each approach in this level using the Boxplot diagram.

124

Figure 20: Level Four Boxplot Diagram of SSSP Approaches Evaluation

It can be seen in Figure 20 that Alba01 approach has successfully provided EPT solutions for this

level. However, the mean EPT for these solutions is much higher than any other approach.

Accordingly, we can say based on this figure that Alba01 approach is the worst among the

approaches in this level too. On the other hand, DiPenta01 approach has almost no variances in

its estimates, and these estimates are the least amongst all the other approaches. Therefore,

DiPenta01 approach can be counted as the best approach for this level too. However, to make this

claim, we need more information regarding the CT and other accuracy measures. Therefore, the

following Table 26 presents the performance and accuracy outcomes of the approaches.

Table 26: SSSP approaches Results for Complexity Level Four

 Approach EPT CT Hit Rate CT Score MAAPE Accuracy

Alba01 365.25 253.26 100 92.76 0.665 33.53

Chang01 338.04 20.05 100 99.43 0.577 42.29

Minku01 326.34 10.51 100 99.7 0.538 46.21

Park01 272.81 3499.41 100 0 0.322 67.82

DiPenta01 247.09 23.87 100 99.32 0.206 79.36

In this level, it can be seen from the values presented in Table 26, how the approaches perform

when dealing with multiple problem factors that adds up dependency constraint and skills of

resources together, so the feasible area within the search is limited. This level is clearly creating

more complexity for the approaches than in the previous level to provide accurate solution, in

which their accuracy do not provide better or even similar degree as to level one and two.

125

As dependency is one of the problem factors in this level, the approaches that have performed

badly in the previous level are now providing 100% for hit rate, such as Alba01. However, their

solution quality is varied and can be captured from their accuracy and CT score. The one in Alba01

for instance has 33.5% accuracy and 92.7% CT score, where the one in Chang01 has made better

progress in accuracy with around 42.3% and for CT score with 99.4% too. Accordingly, Alba01 can

be counted as the worst amongst all the other approaches.

Furthermore, the one in Park01 has again provided a reasonable degree of accuracy and stabilized

solutions over the runs compared with the others, however, it has performed badly in terms of CT.

This performance of Park01 has made the other approaches to have much higher CT score.

It is important to record that the outcomes of Minku01 approach demonstrate how it has made

good improvements over the work of Alba01 and Chang01 too in two aspects. The first one is the

accuracy, which recorded for Minku01 with 46.2%. This is clearly not a convincing accuracy but

compared with both Alba01 and Chang01 results, it shows an evidence of Minku01 outperforming

them. The second aspect is the time, which for Minku01 has a time cost for each run around 10.5

seconds. This value is half the time spent by Chang01, and far less from Alba01 that spent around

253.3 seconds.

With slightly less CT score than Minku01, DiPenta01 has managed to provide with 79.35%

accuracy a better solution of around 247.1 days for EPT than all the other approaches, and it can

be concluded that DiPenta01 outperform all the other approaches of this level of complexity.

But now the question is: are these approaches perform similarly? To answer this question, we have

to look at the paired T-Test results that compare the approaches against DiPenat01 one for this

level. These results are depicted in the following Table 27.

Table 27: Level Four Paired T-Test of SSSP Approaches Evaluation

Lower Upper

Pair 1 DiPenta01 - Chang01 -90.94956 18.33695 1.83369 -94.58801 -87.31111 -49.599 99 0.000

Pair 2 DiPenta01 - Alba01 -118.15420 18.58804 1.85880 -121.84247 -114.46593 -63.565 99 0.000

Pair 3 DiPenta01 - Minku01 -79.24830 7.77128 0.77713 -80.79029 -77.70631 -101.976 99 0.000

Pair 4 DiPenta01 - Park01 -25.71695 16.45139 1.64514 -28.98126 -22.45264 -15.632 99 0.000

Paired Samples Test

Paired Differences

t df Sig. (2-tailed)Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the

Difference

From Table 27, it can be seen that the difference in mean for each pair of DiPenta01 approach

against the other has a 2-tailed value less than 0.001. Therefore, we can conclude that there is

enough evidence to suggest that the difference between the two scores for each pair is statistically

126

significant and reject the null hypothesis of having similarity of performance between the

approaches.

The overall findings from the performance and accuracy outcomes of each approach for all the

complexity levels have shown that some of the approaches performed badly, others were

moderate, and limited approaches were capable of providing good quality solutions of project time

estimation. The overall weaknesses and strength of each approach that encountered by the

outcomes of all the levels, and highlighting the best are presented in the following Table 28.

Table 28: Overall Findings from the Complexity Levels for each SSSP Approach

Approach Encountered Weaknesses or Strengths

Chang01
This approach can only perform better when dependency is existing between
project tasks.

Antoniol01 It can provide estimates for only level one.

Antoniol02 It can provide estimates for only level one.

Alba01
This approach can only perform better when dependency is existing between
project tasks.

Ren01
This approach can provide a very good estimate however, it can only work for
complexity level one and two, and provide the best for level two.

Kang01
With its overcomplicated settings, this approach provides a moderate estimate, and
only for level one.

DiPenta01 This approach has dominated the four complexity levels with the best results.

Minku01
This approach can only perform better when dependency is existing between
project tasks.

Park01
This approach consumes computation time of over 18 minutes to provide a single
estimate.

What it can be concluded is that some approaches were capable on providing solution only for

limited complexity level(s), such as both Antoniol01, 02, and Kang01. Others, such as Alba01 and

Chang01, have failed to provide solutions for simpler levels, and for higher complexity levels their

performance was much better. What is noteworthy is that DiPenta01 was the only approach that

is capable of providing good quality solutions over the complexity levels, which make it the one

that dominate the others.

4.4 Analysis

Three approaches of (Chang01, Alba01, and Minku01) are of a major concern with their solution

quality. The one of Alba01, for example, has failed on every run to provide a single solution for

complexity level one and three, and had the worst performance among the approaches of level

four. This approach has several issues that have contributed to this bad performance. The first one

is the allocation method that it uses to allocate the resources. This method assigns resources to

tasks with a participation percentage. That means the resource will work on the task for a

percentage of his/her day time. This will be reflected on the time estimate of that task, where the

127

effort won’t be divided by the number of resources, but on the overall percentage of the assigned

resources to that task.

Moreover, in the approach’s settings identification presented in [14], the resource can be allowed

for overtime work limit with an overall participation of 120%. However, in our experiments we

did not allow this value and assumed that the resource can only work with a full of 100%. In

addition, the creation of solutions in Alba01 is structured by a 2-D matrix, where the rows are

representing the resources and the columns are representing the tasks. The values associated to

the cells are randomly generated between {0, 1} representing the amount of the participation

percentage of the resource to that task. Based on this representation, each resource by this matrix

will have a percentage to participate with for each task. Having no dependencies between the

project tasks by the datasets representing complexity levels one and three, means that the tasks

will be performed at the same time. Therefore, the solution, in general, will include some values

that exceeds the maximum participation of 100% and violate the overtime constraint. Thus,

making the solution unfeasible, as it is hard to find participation percentages that can works for

all the resources to be assigned to project tasks without causing them to work overtime.

On the other hand, Kang01 has provided the worst estimates on level one, and failed to compete

for the other levels. The reason for this approach to fail on continuing the higher levels is that it

does not support dependency and technical software development skills aspects such

programming languages. Moreover, this approach allocates the resources with an initial plan

generated by a greedy algorithm. This algorithm starts by sorting the tasks from larger to smaller

size, and continuously assigning a resource to each task, and move to the other, till all the

resources are assigned to tasks and all the tasks have been allocated with at least to one resource.

What left then for the simulated annealing algorithm to do in this approach is to re-assign the

resources with percentages, and to the most fitted task. By this type of assignment, the best plan

for the first level is to keep the same amount of resources assigned without reducing their

participation percentage. Therefore, this approach has assigned two resources to task 2, 3, 4, and

5, and a single resource to each of the rest. While project time for this complexity level can be

counted as the maximum task length among the others, task two with estimated effort of 223 has

the maximum time of 111.5 Days among the others, which is the estimate value provided by this

approach. This approach has shown how using a heuristic technique for initiating a population

can fail the algorithm by having similar solutions and little diversity.

Minku01 approach, moreover, had the worst outcomes for level two. Broadly speaking, one of the

reasons for (Chang01, Alba01, and Minku01) approaches to perform badly is the absence of

dependencies between the project tasks as they perform the allocation with assigning participation

128

percentage to resources. However, this time the dataset of level two holds dependency information

about the project tasks. What makes this approach unable to compete with the other approaches

are by two main reason. As with the Alba01 approach, Minku01 assigns the resources with a

participation percentage. Moreover, the total project time in this approach is computed by

cumulating the overall tasks’ time. Accordingly, Minku01 provides a project time estimate where

all the tasks are counted, and not the longest path among the paths of the TPG. For example, one

of Minku01 solutions is depicted by the following Table 29.

Table 29: Minku01 Allocation Example

T1 T2 T3 T4 T5 T6 T7 T8

R1 0.000 0.857 0.857 1.000 0.714 0.286 0.857 0.429

R2 0.571 0.857 0.857 0.857 0.857 1.000 0.429 0.857

R3 0.714 0.857 1.000 0.571 0.714 1.000 0.714 0.571

R4 1.000 0.857 1.000 0.429 0.714 0.857 0.714 0.571

R5 1.000 0.857 0.857 0.714 0.571 0.857 0.286 0.857

R6 0.857 1.000 0.429 1.000 0.571 0.429 0.000 0.286

R7 0.571 0.571 0.857 0.571 0.714 0.857 0.571 0.143

R8 1.000 0.857 1.000 0.857 0.857 1.000 0.571 0.571

R9 0.429 0.857 1.000 0.714 1.000 0.857 0.714 0.286

R10 1.000 0.857 0.286 0.714 0.857 0.714 0.571 0.571

R11 0.571 1.000 0.571 0.429 0.429 0.857 0.143 0.714

R12 0.571 1.000 0.857 0.714 0.714 0.286 0.714 0.714

According to the participation percentages that each resource will do for each task in Table 29, the

estimated time for task 1, 2, 3, 4, 5, 6, 7, and 8 will be 9.89, 21.38, 18.8, 15.4, 21.8, 5.5, 9.86, and

6.84 Days. By adding all these estimates together the project time will be 109.5 Days. It is

noteworthy that what makes Minku01 approach to sustain with 100% Hit Rate is that in case of a

resource working on more than one task and those tasks are in parallel, the overall participation

of this resource for these tasks are divided by the number of these tasks.

The results, presented in last Section 4.3, show that Park01 approach had a very long run of CT.

The performance of Park01 approach, for example, has an average of 13747 Seconds for level three.

The reason for this approach to perform like this is the fitness function and GA settings adopted

by this approach. The fitness function simulates project time day by day. This means that a part

of the fitness function is iteratively computing each task’s time by the same for loop, where the

computation of every edge of the TPG, parallel tasks, and waiting tasks to be performed are all in

as nested loops. Therefore, this loop complexity can be described as 𝑂(𝑛2), and this is the reason

why the CT of this approach is the worst among all the other approaches.

129

4.5 Conclusion

The results provided in this chapter demonstrate the differences between various SSSP

approaches selected for the comparison. These differences are presented in the form of

performance, accuracy, and capability of the approaches for different complexity levels.

The first conclusion from the results has answered the first research question as whether the

approaches perform similarly. From the results, it is clear that there are differences between the

approaches selected for the comparison. It can be seen too that the differences between the

approaches are demonstrated by the metrics of CT and EPT, where the measures of error,

accuracy, and CT scores have exposed more about the differences in the approaches’ quality and

performance. Accordingly, this provides the answer for both second and third research questions.

Furthermore, the results of the approaches are differ from one complexity level to another by

which some approaches failed to provide a single result over multiple runs in one level, and in

another level performs with 100% hit rate. According to these results, the classification made and

the derived complexity levels combined with the accuracy measures are able to demonstrate the

performance, capability, and capacity of SSSP approaches, which answering the fourth question.

For complexity level one, the approaches in [20, 22, 94] provide very close accuracy to each other,

but they differ in terms of CT. However, the one in [22] outperform the others in terms of MAAPE

and accuracy. It is also important to see how some of the approaches are unable to solve further

complexity levels, and consequently they are omitted from further experiments as the complexity

level increases. For complexity level two, a clearer winner can be identified with the one in [94].

However, the one in [22] has less error over multiple runs. For level three, a clearer winner can be

identified with the one in [22] offering similar accuracy to the one in [23], but requiring far less

time. For level four, again the one in [22] wins in terms of accuracy, and performance over 100

runs experiments according to the measures of mean of EPT, STDEV, and MAAPE for results’

accuracy and stability. It can be concluded that some of the approaches specially the one in [22]

outperform the others almost in every level for both CT and EPT, as well as the related measures

of accuracy and CT score.

It is also worth mentioning that the approaches that do not consider skills nor productivity

supposing that human resources possess the same skillset and productivity, have the matter of

searching for best resource allocation, but with no difference of which resource to use while

forming teams and allocating them to project tasks. The only scenario that these approaches could

work for is giving an insight about the importance of scheduling when there are very limited

130

resources, having the same solution of COCOMO, but requiring to know how to allocate those

resources to gain this time length as in [20, 21].

The main aim of SBSE as discussed by [17] is not to provide an automatic decision-making system,

but to provide a tool that can support the DM’s work. With one step of work towards that, this

chapter has demonstrated the differences between the selected SSSP approaches for each

complexity level showing which scenario and situation an approach can provides a better solution

than the others. This can provide the DM with an overview of which approach can be most

beneficial to which situation (s)he might face.

In addition, the results show that some of the complexity levels needs more attention on resource’s

skills implemented in both level three, and level four. Those two levels require a simulation of

PM’s choices with respect to their industrial settings as an attempt to improve the capability of the

optimization techniques to explore more beneficial and feasible solutions.

As it is the cases in software engineering and many other fields, the researchers might find some

concerns about the work carried out and the implementation of the work that could limit its

outcomes or affect its validity. This chapter follows the benchmarking process proposed

in Chapter 3, consequently the results provided are prone to the limitation discussed about this

process. Despite the fact that the problem defined in this thesis is about time span minimization,

software projects encompass many attributes and parameters that is required to support more

real-world objectives such as resource’s salary, and profession. The benchmarking approach used

in this chapter is capable of supporting these attributes and objectives, however the datasets

provided for the benchmark do not provide information about these attributes. Consequently this

can affect the generalizability of the results and applicability to different software project

problems. However, as this would reflect on the classification as mentioned in the benchmarking

approach limitations, the benchmark approach is capable to adopt more classification as the

problem expands.

Furthermore, effort estimation as provided in the datasets and used by the approaches is prone to

errors of providing a linearity concept of time that is effort over team size as in [18, 22]. To

generalize the benchmark and provide as many SSSP approaches as possible to a comparison this

concern was discussed by [22] to offer generalization of SSSP approaches purpose, as many

approaches have used COCOMO model [34] to provide their effort estimate as in [15, 22, 93, 118].

Additionally, one of the limitations counted in the work carried out for this chapter concerns the

experimentation work of SSSP approaches as the implementation of these approaches might have

implicated some changes on what they have meant to produce. For instance, dependency handling

131

in some approaches was unclear whether it is for one to one relationship and the precedence

should be formed between one task and another, or these approaches support one to many

dependencies forming a relationship between a single task with multiple ones. The later was

mainly what has been implemented for all the approaches, which might not be the case at all.

One important issue is that all these approaches considered in this chapter do not support

productivity as an input to SSSP problem except the one in [23]. For this reason, it is important

to capture how the proposed allocation methods within these approaches will perform having

resource’s productivity aspect as one of the problem inputs to be solved using GA. In that sense,

the next chapter provides details on the implementation and optimization problems defined for

that work, as well as the outcomes and results of the allocation methods defined.

132

Chapter 5 SSSP with Team Formation

and Distribution to Project Tasks

Following the outcomes and conclusions from Chapter 4, a comparison between the team

allocation methods adopted by the set of the approaches selected to that chapter is required

specially since none of these approaches have considered variability of resource’s productivity as

one of their problem inputs except the one in [23]. This has motivated us to demonstrate how

allocation methods involving resource productivity aspect within the SSSP optimization problem

parameters can be solved using GA. The aim of this work is to observe which of the allocation

methods can fit with the fifth SSSP problem complexity well that presented by level five in the

datasets, and the most suitable GA’s settings for this problem to provide very accurate, precise,

and speedy solutions.

This chapter accordingly provides to the reader a comparison between four major team allocation

methods that are adopted by the SSSP approaches. These methods are combined with an

optimization technique, and a fitness function to simulate project time considering dependencies

between project tasks, and resources’ competencies and productivity. The results of the

comparison between these methods using different accuracy measures provided in the

benchmarking approach -presented in Chapter 3- have shown that one of these methods

outperforms the rest in two circumstances however another shows its effectiveness to handle more

complicated problems.

5.1 Introduction

Project time span, cost, quality, and time to market are important measures to demonstrate

whether a software development project is successful or not [8]. As one of the critical aspects in

software project management, project time span can be minimized by having the suitable teams

distributed to the most fitted tasks. However, finding the suitable productive and skilled

resources, forming them into teams, distributing them to project tasks, and then scheduling these

project tasks according to the team staffing and dependencies constraint between these tasks is a

133

complex problem. This problem is defined in Section 1.2 as Staffing and Scheduling a Software

Project (SSSP), which has been researched by many approaches in the last three decades using

different optimization techniques. This problem is well-known as an NP-Hard problem

complexity, by which using an exhaustive search method to solve it requires forbiddingly long

execution time as the problem size increases [18]. Accordingly, approximation of results using a

meta-heuristic techniques can be acceptable as a trade-off of accuracy to near optimal solutions

for less computation time.

Staffing the resources according to the project constraints requires consideration of alternative

allocations of resources to tasks. Assigning resources individually in software project environment

can be an option. However, teams are the essential element in software development and

production [28, 119].

Based on our taxonomy for the level of complexity of the software project’s information, and the

results of the experiments performed against the nine SSSP approaches, there have been an urgent

need to classify the main aspect that contributes to the success of a SSSP approach. What we have

found that two major methods for allocating human resources to teams and tasks in software

projects are dominating the approaches that optimize the SSSP problem. These methods are the

most distinguished feature between the SSSP approaches. Based on this finding, we have created

four team allocation methods, where three of them are comply with those used by the approaches,

and a new allocation pattern based on our understanding to those methods used. These allocation

methods are the first contribution of this chapter.

On the other hand, formalization of an optimization problem is one of the key aspects in SBSE.

Therefore, these allocation methods have to be mathematically represented with the optimization

problem that each is aiming to solve. Accordingly, the formalization of these methods is the second

contribution of this chapter, as many of SSSP approach are missing this point.

Moreover, productivity of resources is the missing feature in all the approaches used in our

experiments. Variability of resource’s productivity is something that cannot be ignored, and the

combination of this feature can provide a clear evidence whether adding this feature would create

a complexity level that challenge the team allocation methods, as well as to validate which SSSP

approach according to its adopted method can be useful for this particular complexity level. In

addition, performing experiments using the five complexity levels on all these methods can

provide a validation to the new allocation pattern.

The two main methods that dominate the SSSP approaches are static formation of teams,

represented by symmetric assignment, and a dynamic one with arbitrary (asymmetric)

134

assignment. Symmetric assignment involves two-stages. The first stage is to form the teams by

symmetric distribution of resources i.e. overlapping of resources between teams is not permitted,

and the resources of each team will continue working together till the end of the project. The

second stage is then to allocate those teams to tasks. This type of human resource allocation can

be seen in the approaches in [20, 22, 94]. The arbitrary, one on the other hand, assigns multiple

resources directly to project tasks regardless of the formation of teams as in [14, 15, 18, 23]. That

is each resource can serve in different teams and each task might have a different team from all

the others working on it.

Several studies as in [28, 120] show the importance of resources who are participating in a team,

to remain in the same team during project time, and completing similar tasks from the beginning

till the end of project to maintain their productivity level. That is, sharing developers between

different teams and simultaneous tasks has a negative impact on resource’s productivity [120,

121]. This is due to the fact that the resources need preparation, knowledge and understanding for

any new task in order to complete it. Therefore, moving the resources from one team or task to

another requires additional time for the resources to gain the knowledge required for that task. In

addition, moving resources from one team to another or sharing a resource across the teams

during the course of development as adopted by [14, 15, 18, 28] can cause communication

overhead [120]. Cohesion between team members is very important, which mean having them all

working in a single team from the beginning till the end of project, makes them less prone to

communication overhead that enables them to continue working in harmony and productively

[28, 62, 121]. For this reason, controlling the number of team members can be an attempt to

reduce the overhead communication and any other negative impacts especially on teams’

productivity [28, 121].

On the other hand, many studies such as [15, 118] provide evidence of the dynamic assignment

use and practicality in current software organizations. One of the reasons for that is the use of

expertise. Expertise of resources is a vital aspect to be addressed especially for the allocation of

resources to tasks. Expertise becomes increasingly important to demonstrate the suitability of

resources in team allocation, however, sharing the most expert resources across the teams can be

to monitor and to ensure the throughput and quality of each team. In addition, changing the team

members from one task to another while having multiple tasks with different sizes can lead to

better results. For instance, if we have two tasks where one has a very small size and the other is

very large one, and both should be performed simultaneously, then having a larger team with

suitable expertise doing the large task while the small task has limited number of team members

even if they are learning through practice will reduce the overall development and project time.

135

Therefore, it is important to address the differences between these methods by demonstrating

their performance, accuracy, and effectiveness to highlight the benefit(s) and drawbacks of each

and in which circumstances they can provide reliable and best solutions. For this reason, it is

important to understand how each of these methods is employed by the SSSP approaches. We

have found that each one of these two allocation methods can be divided into two. That is, the

symmetric assignment can be formed as a static team allocation either for task distribution by

queueing system simulator that also simulates the time as in [20-22, 94, 122], or by the allocation

of project tasks to the teams with time simulator as in [23]. The asymmetric assignment on the

other hand, can be formed as a dynamic team allocation with time simulator, but the participation

of each resource in each task can be either with binary participation, which represent either the

resource will work on that task or not, or a percentage for participation, which implies that the

resource will participate in the task for a percentage of his/her working time.

For simplicity, each allocation method is denoted by the nature of the team allocation including

the way of forming and distributing teams, and the project time span simulation used. Therefore,

the first method that uses the symmetric assignment providing static teams with queueing

simulator to distribute the teams to tasks and simulate project time is given the name Static Teams

with Queue Simulator (STQS). The second one is the one that uses symmetric concept and

provides static teams but with time simulator of days. This method is given the name Static Teams

with Time Simulator (STTS). The third method that uses the asymmetric assignment, as well as

binary participation is given the name Dynamic Teams with Binary Participation (DTBP). The

fourth one that uses asymmetric assignment but with participation percentage of the resource

time is given the name Dynamic Teams with Participation Rate (DTPR). This chapter

consequently provides the overall work done on optimizing these methods using GA with

standardized settings.

The reminder of this chapter is organized into six sections. Section 5.2 provides the formalization

of each team allocation method within the SSSP problem. Section 5.3 details the solution adopted

to compare the team allocation methods combined with the GA optimization technique. In

Section 5.4, the elements for the experiments are detailed, which include the datasets used, the

comparison metrics and measurements adopted, and the experiment results of each method.

Section 5.5 discusses the findings, the limitation of this study, and conclude the chapter.

136

5.2 SSSP Problem Formalization by Four Different

Team Allocation Methods

This section provides formalization of the SSSP problem taking into account different team

allocation methods. The first subsection of this formalization addresses the main attributes and

variables concern the allocation problem in software projects under “General Definition”. After

this subsection, four team allocation methods are addressed, and each is discussed under a

separate title. Each team allocation method subsection provides formalization of the project time

span optimization problem with consideration of the constraints, and the software project

attributes defined in “General Definitions”.

General Definitions:

The problem of staffing the available human resources and scheduling the tasks in a software

project (SSSP) can be represented as a software project 𝑃 that contains a set of tasks denoted by 𝑇

of size 𝑚, 𝑤ℎ𝑒𝑟𝑒 𝑚 ∈ ℤ+and the set can be represented as 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑚}. Each 𝑡𝑖 ∈ 𝑇,𝑤ℎ𝑒𝑟𝑒 𝑖 =

{1, … ,𝑚} is characterized by an estimated workload denoted by 𝑒𝑡𝑖 in terms of Man-Day effort

unit.∀ 𝑡𝑖 ∈ 𝑇: 𝑒𝑡𝑖 ⟼ 𝑒 ∶ 𝑒 ∈ ℝ+. Since the development of software requires combined skills, and

not only technical ones the term competency is used in this problem. Competencies for example

means good analytical, logical, and interpretive ability as well as the skill to write a program in a

specific language. So, the set of competencies required for developing project tasks or the available

resources are possessing is denoted by 𝐶 of size 𝑢, 𝑤ℎ𝑒𝑟𝑒 𝑢 ∈ ℤ+and represented as 𝐶 =

{ 𝑐1, 𝑐2, … , 𝑐𝑢}.

Moreover, a function 𝑇𝐶 for each 𝑡𝑖 ∈ 𝑇 returns the competencies required for 𝑡𝑖 as 𝑇𝐶𝑡𝑖 ⟼ 𝑐𝑎 ∶

𝑐𝑎 ∈ 𝐶,𝑤ℎ𝑒𝑟𝑒 𝑎 = {1,2, … , 𝑢}. Within the project, there exists dependencies between the tasks so

that a task cannot be performed before its predecessors. The set of task dependencies denoted by

𝑇𝐷 contains 𝑚 elements representing the number of tasks in 𝑇, can be represented as 𝑇𝐷 =

{𝑑𝑝1, 𝑑𝑝2, … , 𝑑𝑝𝑚}. Each dependency 𝑑𝑝𝑖 ∈ 𝑇𝐷 represents a dependency between a task and its

predecessors, which means that 𝑡𝑖 cannot be started until all its predecessors are finished. The

value of 𝑑𝑝𝑖 however might holds a zero, a single task, or multiple tasks. The dependency 𝑑𝑝𝑖 for

each 𝑡𝑖 maps to a set of tasks denoted by 𝑍,𝑤ℎ𝑒𝑟𝑒 𝑍 = {𝑡𝑖1, … , 𝑡𝑖𝑍} represented as 𝑑𝑝𝑖 ⟼ 𝑍: 𝑍 ⊆ 𝑇.

With set of available resources within the firm to perform the project tasks denoted by 𝑅 of

size 𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑛 ∈ ℤ+, this set can be represented as 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑛}. For each 𝑟𝑗 ∈ 𝑅 , 𝑤ℎ𝑒𝑟𝑒 𝑗 =

{1, ,2, … , 𝑛}, the following function denoted by 𝑅𝐶 returns the competences that 𝑟𝑗 possesses

by 𝑅𝐶𝑟𝑗 ⟼ 𝑐𝑏: 𝑐𝑏 ∈ 𝐶,𝑤ℎ𝑒𝑟𝑒 𝑏 = {1,2, … , 𝑢}. For each 𝑐𝑠 ∈ 𝐶, each 𝑟𝑗 possesses a productivity

137

denoted by 𝑃𝑟𝑜𝑟𝑗(𝑐𝑠) measured in term of proficiency level denoted by 𝑝𝑙 ∈ ℝ+: 𝑃𝑟𝑜𝑟𝑗(𝑐𝑠) ⟼

𝑝𝑙, 𝑤ℎ𝑒𝑟𝑒 0 < 𝑝𝑙 ≤ 4.

Static Teams with Queue Simulator Method (STQS)

The allocation of resources is to teams. The set of teams formed for project 𝑃 is denoted by 𝑇𝑀 of

size 𝑣, 𝑤ℎ𝑒𝑟𝑒 𝑣 ∈ ℤ+ ∧ 1 ≤ 𝑣 ≤ 𝑛 represented as 𝑇𝑀 = {𝑡𝑚1, 𝑡𝑚2, … , 𝑡𝑚𝑣}. The allocation should be

performed in two stages. The first stage is to assign the resources to teams and the second one is

to assign the formed teams to tasks. For team allocation, the decision variable 𝑄∗ returns a Binary

value. For each 𝑟𝑗 and 𝑡𝑚𝑜 ∈ 𝑇𝑀,𝑤ℎ𝑒𝑟𝑒 𝑜 = {1,2, … , 𝑣} a value of one means that 𝑟𝑗 is assigned

to 𝑡𝑚𝑜, and zero otherwise. The decision variable 𝑄∗ represented as follow:

𝑄∗(𝑟𝑗 , 𝑡𝑚𝑜) = {
1, 𝑖𝑓 𝑟𝑗 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡𝑚𝑜

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The assignment of teams to tasks is considered for this problem by a queuing system. This system

is a single queue with multi nodes, where each node represents a team, and each package

represents a task in the queue waiting to be processed. The set that holds the tasks in the queue

denoted by 𝑄 contains 𝑚 elements representing the number of tasks in 𝑇, where 𝑄 ⊆ 𝑇 and can

be represented as 𝑄 = {𝑞t1, 𝑞𝑡2, … , 𝑞𝑡𝑚}. Each 𝑞𝑡𝑘 ∈ 𝑄,𝑤ℎ𝑒𝑟𝑒 𝑘 = {1,2, … ,𝑚} is positioned in the

correct order while the system processing the tasks. This position is sorted in the queue according

to the dependency constraint 𝑑𝑝𝑞𝑡𝑘 ∈ 𝑇𝐷. Moreover, the set of processed tasks for all the teams

denoted by 𝑃𝑇 of size 𝑣 representing the number of teams in 𝑇𝑀 is depicted by 𝑃𝑇 =

{𝑝𝑡𝑡𝑚1
, 𝑝𝑡𝑡𝑚2

, … , 𝑝𝑡𝑡𝑚𝑣
}. For each 𝑡𝑚𝑜 ∈ 𝑇𝑀 ∃ 𝑝𝑡𝑡𝑚𝑜

∈ 𝑃𝑇 ∧ 𝑝𝑡𝑡𝑚𝑜
⊆ 𝑄 in which stores the tasks that

the team has processed containing 𝑝 elements 𝑤ℎ𝑒𝑟𝑒 𝑝 ∈ ℤ+ ∧ 1 ≤ 𝑝 ≤ 𝑚 depicted as 𝑝𝑡𝑡𝑚𝑜
=

{𝑝𝑡1
∗, 𝑝𝑡2

∗, … , 𝑝𝑡𝑝
∗}. In this queueing system, the simulation time represents the project time, which

counted as the duration of when the first task in the queue is sent to a team for processing untill

the last task is finished. However, this representation is equal to the maximum processing time

among the teams. Accordingly, each team 𝑡𝑚𝑜 has a processing time denoted by 𝑡𝑚𝑇𝑖𝑚𝑒𝑡𝑚𝑜
during

the simulation represented as ∀𝑡𝑚𝑜 ∈ 𝑇𝑀 ∃ 𝑡𝑚𝑇𝑖𝑚𝑒𝑡𝑚𝑜
, 𝑤ℎ𝑒𝑟𝑒

𝑡𝑚𝑇𝑖𝑚𝑒𝑡𝑚𝑜
= ∑

𝑒𝑝𝑡𝑤∗

∑ 𝑃𝑟𝑜𝑟𝑗(𝑇𝐶𝑝𝑡𝑤∗) ∗ 𝑄
∗(𝑟𝑗 , 𝑡𝑚𝑜)

𝑛
𝑗=1

𝑝

𝑤=1

The set that holds the cumulative processing time for each team is denoted by 𝑡𝑖𝑚𝑒𝑋 of size 𝑣

represented as 𝑡𝑖𝑚𝑒𝑋 = {𝑡𝑚𝑇𝑖𝑚𝑒1, 𝑡𝑚𝑇𝑖𝑚𝑒2, … , 𝑡𝑚𝑇𝑖𝑚𝑒𝑣}. The function that returns project

completion time (Time Span) denoted by 𝑓(𝑇𝑖𝑚𝑒) can be represented as 𝑓(𝑇𝑖𝑚𝑒) = max (𝑡𝑖𝑚𝑒𝑋).

∀ 𝑞𝑡𝑘 ∈ 𝑄, 𝑟𝑗 ∈ 𝑅, 𝑡𝑚𝑜 ∈ 𝑇𝑀 the problem is to minimize the time span 𝑇𝑖𝑚𝑒 of software project 𝑃:

min 𝑓(𝑇𝑖𝑚𝑒)

138

Subject to:

 At least one 𝑟𝑗 assigned to 𝑡𝑚𝑜 should possesses the required competencies for 𝑡𝑖

represented as:

∀ 𝑡𝑚𝑜 ∈ 𝑇𝑀, 𝑝𝑡𝑡𝑚𝑜
∈ 𝑃𝑇, 𝑝𝑡𝑝

∗ ∈ 𝑝𝑡𝑡𝑚𝑜
 ∃ 𝑟𝑗 . 𝑇𝐶𝑝𝑡𝑝 ∩ (∑∑𝑅𝐶𝑟𝑗 ∗ 𝑄

∗(𝑟𝑗 , 𝑡𝑚𝑜)

𝑛

𝑗=1

𝑣

𝑜=1

) ≠ 𝜙

 Number of resource participating in one team should not exceeds 12. Otherwise, penalty

will be applied on the solution as a consequence of overhead communication that is

anticipated to reduce the team’s productivity and the development speed.

∀ 𝑡𝑚𝑜 ∈ 𝑇𝑀, ∑𝑄∗(𝑟𝑗 , 𝑡𝑚𝑜) ≤ 12

𝑛

𝑗=1

 At least one resource is assigned to each team.

∀ 𝑡𝑚𝑜 ∈ 𝑇𝑀, 𝑅 ∩ 𝑡𝑚𝑜 ≠ 𝜙

 The precedence relationship should be met so that for each task in 𝑇 its predecessors

must be finished in order the task to be started.

∀ 𝑡𝑖 ∈ 𝑇 ∃ 𝑑𝑝𝑖 ∈ 𝑇𝐷: 𝑑𝑝𝑖 ⊆ 𝑃𝑇

For this problem representation there is no need for creating a constraint on each team to be

assigned to at least one task as the queueing system distributes the tasks in the queue to the first

available team.

Static Teams with Time Simulator Method (STTS)

The allocation of resources is to teams. The set of teams formed for project 𝑃 is denoted by 𝑇𝑀 of

size 𝑣, 𝑤ℎ𝑒𝑟𝑒 𝑣 ∈ ℤ+ ∧ 1 ≤ 𝑣 ≤ 𝑛 represented as 𝑇𝑀 = {𝑡𝑚1, 𝑡𝑚2, … , 𝑡𝑚𝑣}. The allocation should be

performed in two stages. The first stage is to assign the resources to teams and the second one is

to assign each team to task(s). For team allocation, the decision variable 𝑄∗ returns a Binary value.

For each 𝑟𝑗 and 𝑡𝑚𝑜 ∈ 𝑇𝑀,𝑤ℎ𝑒𝑟𝑒 𝑜 = {1,2, … , 𝑣} a value of one means that 𝑟𝑗 is assigned to 𝑡𝑚𝑜,

and zero otherwise. The decision variable 𝑄∗ represented as follow:

𝑄∗(𝑟𝑗 , 𝑡𝑚𝑜) = {
1, 𝑖𝑓 𝑟𝑗 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡𝑚𝑜

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The decision variable 𝑄 on the other hand returns a Binary value too, but representing if 𝑡𝑖 ∈ 𝑇 is

allocated to 𝑡𝑚𝑜 ∈ 𝑇𝑀 with value of one, or zero otherwise as follow:

𝑄(𝑡𝑚𝑜, 𝑡𝑖) = {
1, 𝑖𝑓 𝑡𝑖 𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡𝑚𝑜

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The project time span can be estimated by simulating the teams’ work over time, so every tick of

time representing a day of work is recorded by a variable denoted by 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒 represented as

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒 = 1,2, … , 𝑥𝑇𝑖𝑚𝑒: 𝑥𝑇𝑖𝑚𝑒 ∈ ℤ+. While the time is ticking, and according to

139

dependencies between the tasks, some of these tasks are in progress, some are waiting, and others

might be finished. The first set that stores the operating tasks denoted by 𝑅𝑇 of size 𝑚, represented

as 𝑅𝑇 = {𝑟𝑡1, 𝑟𝑡2, … , 𝑟𝑡𝑚}. The value for each 𝑟𝑡𝑝 ∈ 𝑅𝑇,𝑤ℎ𝑒𝑟𝑒 𝑝 = {1,2, … ,𝑚} is a binary,

representing whether 𝑟𝑡𝑝 is currently in progress by value of one, or not with value of zero.

Similarly, the set of tasks that are finished denoted by 𝐹𝑇 represented as 𝐹𝑇 = {𝑓𝑡1, 𝑓𝑡2, … , 𝑓𝑡𝑚}.

The value of each 𝑓𝑡𝑝 ∈ 𝐹𝑇 is also represented by a binary value, which indicate whether 𝑓𝑡𝑝 is

finished having value of one, or zero otherwise.

For each 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒 and a given 𝑡𝑖 assigned to 𝑡𝑚𝑜 that has a value of one in 𝑅𝑇, the estimated

effort 𝑒𝑡𝑖 on each 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒 is reduced by the sum of each resource productivity 𝑃𝑟𝑜𝑟𝑗(𝑇𝐶𝑡𝑖)

associated with the competency required for the task 𝑡𝑖, and assigned to 𝑡𝑚𝑜, represented as:

∀ 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒, 𝑡𝑖 ∈ 𝑇:

𝑒𝑡𝑖
∗ = (𝑒𝑡𝑖 − (∑ ∑𝑃𝑟𝑜𝑟𝑗(𝑇𝐶𝑡𝑖)

𝑟∈𝑅𝑡𝑚∈𝑇𝑚

∗ 𝑄∗(𝑟𝑗 , 𝑡𝑚𝑜) ∗ 𝑄(𝑡𝑚𝑜, 𝑡𝑖) ∗ 𝑟𝑡𝑖)) ,𝑤ℎ𝑒𝑟𝑒 𝑒𝑡𝑖
∗ = {𝑒𝑡1

∗ , … , 𝑒𝑡𝑚
∗ }

This loop continues until 𝑒𝑡𝑖
∗ converge to zero, and every element in 𝐹𝑇 has the value of one. Then

at this stage, the function that returns project completion time (Time Span) denoted by

𝑓(𝑇𝑖𝑚𝑒) can be represented as:

𝑓(𝑇𝑖𝑚𝑒) = 𝑥𝑇𝑖𝑚𝑒 ⇔ ∀𝑡𝑖 ∈ 𝑇: 𝑒𝑡𝑖 ≈ 0 ∧∑𝑓𝑡𝑖

𝑚

𝑖=1

= 𝑚

∀ 𝑡𝑖 ∈ 𝑇, 𝑟𝑗 ∈ 𝑅, 𝑡𝑚𝑜 ∈ 𝑇𝑀, The problem is to minimize the time span 𝑇𝑖𝑚𝑒 of software project 𝑃 as

follow:

min 𝑓(𝑇𝑖𝑚𝑒)

Subject to:

 At least one 𝑟𝑗 assigned to 𝑡𝑚𝑜 should possesses the required competencies for 𝑡𝑖

represented as:

∀ 𝑡𝑖 ∈ 𝑇, ∃ 𝑟𝑗 . 𝑇𝐶𝑡𝑖 ∩ (∑∑𝑅𝐶𝑟𝑗 ∗ 𝑄(𝑡𝑚𝑜, 𝑡𝑖) ∗ 𝑄
∗(𝑟𝑗 , 𝑡𝑚𝑜)

𝑛

𝑗=1

𝑣

𝑜=1

) ≠ 𝜙

 Number of resource participating in one team should not exceeds 12. Otherwise, penalty

will be applied on the solution as a consequence of overhead communication that is

anticipated to reduce the team’s productivity and the development speed.

∀ 𝑡𝑚𝑜 ∈ 𝑇𝑀, ∑𝑄∗(𝑟𝑗 , 𝑡𝑚𝑜) ≤ 12

𝑛

𝑗=1

 At least one resource is assigned to each team.

∀ 𝑡𝑚𝑜 ∈ 𝑇𝑀, 𝑅 ∩ 𝑡𝑚𝑜 ≠ 𝜙

140

 Each team has to be assigned at least to one task.

∀ 𝑡𝑚𝑜 ∈ 𝑇𝑀, 𝑡𝑖 ∈ 𝑇: ∃∑𝑄(𝑡𝑚𝑜, 𝑡𝑖) ≥ 1

𝑚

𝑖=1

 The precedence relationship should be met so that for each task in 𝑇 its predecessors

must be finished in order the task to be started.

∀ 𝑡𝑖 ∈ 𝑇 ∃ 𝑑𝑝𝑖 ∈ 𝑇𝐷: 𝑑𝑝𝑖 ⊆ 𝐹𝑇

Dynamic Teams with Binary Participation Method (DTBP)

The allocation of resources is to tasks performed by assigning each resource to a set of tasks. For

this resource allocation, the decision variable 𝑄 returns a Binary value for each 𝑟𝑗 ∈ 𝑅, and 𝑡𝑖 ∈ 𝑇,

where a value of one means that 𝑟𝑗 is assigned to 𝑡𝑖, and zero otherwise. The decision variable 𝑄

represented as follow:

𝑄(𝑟𝑗 , 𝑡𝑖) = {
1, 𝑖𝑓 𝑟𝑗 𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡𝑖
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The project time span 𝑇𝑖𝑚𝑒 can be calculated by simulating the work of resources on tasks as a

dynamic teams over time, so every tick of time is representing a day of work recorded by the

variable denoted by 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒, and represented as: 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒 = 1,2, … , 𝑥𝑇𝑖𝑚𝑒: 𝑥𝑇𝑖𝑚𝑒 ∈ ℤ+.

While the time is ticking, and according to dependencies between the tasks, some of these tasks

are in progress, some are waiting, and others might be finished. The first set that stores the

operating tasks denoted by 𝑅𝑇 of size 𝑚 is represented by: 𝑅𝑇 = {𝑟𝑡1, 𝑟𝑡2, … , 𝑟𝑡𝑚}. The value for

each 𝑟𝑡𝑝 ∈ 𝑅𝑇,𝑤ℎ𝑒𝑟𝑒 𝑝 = {1,2, … ,𝑚} is a binary, representing whether 𝑟𝑡𝑝 is currently in progress

by value of one, or zero otherwise. Similarly, the set of tasks that are finished denoted by 𝐹𝑇 can

represented as: 𝐹𝑇 = {𝑓𝑡1, 𝑓𝑡2, … , 𝑓𝑡𝑚}. The value of each 𝑓𝑡𝑝 ∈ 𝐹𝑇 is also represented by a binary

value, which indicate whether 𝑓𝑡𝑝 is finished having value of one, or zero otherwise.

For each 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒, 𝑡𝑖 that has a value of one in 𝑅𝑇, and 𝑟𝑗 assigned to 𝑡𝑖 such that 𝑄(𝑟𝑗 , 𝑡𝑖) = 1,

the estimated effort 𝑒𝑡𝑖 on each 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒 is reduced by the sum of the assigned resources’

productivity 𝑃𝑟𝑜𝑟𝑗(𝑇𝐶𝑡𝑖) associated with the competency required for task 𝑡𝑖, represented as:

∀ 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒 ∧ 𝑡𝑖 ∈ 𝑇: 𝑟𝑡𝑡𝑖 = 1

𝑒𝑡𝑖
∗ = (𝑒𝑡𝑖 − (∑𝑃𝑟𝑜𝑟𝑗(𝑇𝐶𝑡𝑖)

𝑛

𝑗=1

∗ 𝑄(𝑟𝑗 , 𝑡𝑖) ∗ 𝑟𝑡𝑖)) ,𝑤ℎ𝑒𝑟𝑒 𝑒𝑡𝑖
∗ = {𝑒𝑡1

∗ , … , 𝑒𝑡𝑚
∗ }

This loop goes until 𝑒𝑡𝑖
∗ converge to zero, and every element in 𝐹𝑇 has the value of one. Then at this

stage, the function that returns project completion time (Time Span) denoted by 𝑓(𝑇𝑖𝑚𝑒) can be

represented as:

141

𝑓(𝑇𝑖𝑚𝑒) = 𝑥𝑇𝑖𝑚𝑒 ⇔ ∀𝑡𝑖 ∈ 𝑇: 𝑒𝑡𝑖 ≈ 0 ∧∑𝑓𝑡𝑖

𝑚

𝑖=1

= 𝑚

∀ 𝑡𝑖 ∈ 𝑇, 𝑟𝑗 ∈ 𝑅, The problem is to minimize the time span of project 𝑃:

min 𝑓(𝑇𝑖𝑚𝑒)

Subject to:

 At least one 𝑟𝑗 assigned to 𝑡𝑖 should possesses the required competencies for 𝑡𝑖 represented

as:

∀ 𝑡𝑖 ∈ 𝑇, ∃ 𝑟𝑗: 𝑇𝐶𝑡𝑖 ∩ (∑𝑅𝐶𝑟𝑗 ∗ 𝑄(𝑟𝑗 , 𝑡𝑖)

𝑛

𝑗=1

) ≠ 𝜙

 Number of resources participating to perform one task should not exceeds 12. Otherwise,

penalty will be applied on the solution as a consequence of overhead communication that

is anticipated to reduce the team’s productivity and the development speed.

∀ 𝑡𝑖 ∈ 𝑇:∑𝑄(𝑟𝑗 , 𝑡𝑖) ≤ 12

𝑛

𝑗=1

 At least one resource is assigned to each task.

∀ 𝑡𝑖 ∈ 𝑇: ∑𝑄(𝑟𝑗 , 𝑡𝑖) ≥ 1

𝑛

𝑗=1

 Each resource has to be assigned to at least one task.

∀ 𝑟𝑗 ∈ 𝑅:∑𝑄(𝑟𝑗 , 𝑡𝑖) ≥ 1

𝑚

𝑖=1

 The precedence relationship should be met so that for each task in 𝑇 its predecessors

must be finished in order the task to be started.

∀ 𝑡𝑖 ∈ 𝑇 ∃ 𝑑𝑝𝑖 ∈ 𝑇𝐷: 𝑑𝑝𝑖 ⊆ 𝐹𝑇

Dynamic Teams with Participation Rate Method (DTPR)

The allocation of resources to tasks is performed by assigning each resource to a set of tasks.

However, this allocation associates a percentage to represent the amount of participation of each

resource in each task denoted by 𝑝𝑟, where 𝑝𝑟 = {0, 0.25, 0.5, 0.75, 1}. For each 𝑟𝑗 ∈ 𝑅, and 𝑡𝑖 ∈ 𝑇,

the variable 𝑄 returns the participation percentage value associated with the assignment of

resource 𝑟𝑗 to task 𝑡𝑖 representing whether this resource will participate in this task with an

amount of its working time, or not. The variable 𝑄 represented as follow:

𝑄(𝑟𝑗 , 𝑡𝑖) =

{

1, 𝑖𝑓 𝑟𝑗 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 100% 𝑡𝑜 𝑡𝑖
0.75, 𝑖𝑓 𝑟𝑗 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 75% 𝑡𝑜 𝑡𝑖
0.5, 𝑖𝑓 𝑟𝑗 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 50% 𝑡𝑜 𝑡𝑖
0.25, 𝑖𝑓 𝑟𝑗 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 25% 𝑡𝑜 𝑡𝑖
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

142

The project time span can be calculated by simulating the work of resources on tasks as dynamic

teams over time, so every tick of time is representing a day of work recorded by the variable

denoted by 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒, represented as: 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒 = 1,2, … , 𝑥𝑇𝑖𝑚𝑒: 𝑥𝑇𝑖𝑚𝑒 ∈ ℤ+. While the

time is ticking, and according to dependencies between the tasks, some of these tasks are in

progress, some are waiting, and others might be finished. The first set that stores the operating

tasks denoted by 𝑅𝑇 of size 𝑚, is represented by: 𝑅𝑇 = {𝑟𝑡1, 𝑟𝑡2, … , 𝑟𝑡𝑚}. The value for each 𝑟𝑡𝑝 ∈

𝑅𝑇,𝑤ℎ𝑒𝑟𝑒 𝑝 = {1,2, … ,𝑚} is a binary, representing whether 𝑟𝑡𝑝 is currently in progress by value of

one, or zero otherwise. Similarly, the set of tasks that are finished denoted by 𝐹𝑇 can represented

as: 𝐹𝑇 = {𝑓𝑡1, 𝑓𝑡2, … , 𝑓𝑡𝑚}. The value of each 𝑓𝑡𝑝 ∈ 𝐹𝑇 is also represented by a binary value, which

indicate whether 𝑓𝑡𝑝 is finished having value of one, or zero otherwise.

For each 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒, 𝑡𝑖 that has a value of one in 𝑅𝑇, and 𝑟𝑗 assigned to 𝑡𝑖 such that 𝑄(𝑟𝑗 , 𝑡𝑖) > 0,

the estimated effort 𝑒𝑡𝑖 on each 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒 is reduced by the sum of the assigned resources’

productivity 𝑃𝑟𝑜𝑟𝑗(𝑇𝐶𝑡𝑖) associated with the competency required for task 𝑡𝑖 multiplied by the

participation percentage of each, represented as:

∀ 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑖𝑚𝑒 ∧ 𝑡𝑖 ∈ 𝑇: 𝑟𝑡𝑡𝑖 = 1

𝑒𝑡𝑖
∗ = (𝑒𝑡𝑖 − (∑𝑃𝑟𝑜𝑟𝑗(𝑇𝐶𝑡𝑖)

𝑛

𝑗=1

∗ 𝑄(𝑟𝑗 , 𝑡𝑖) ∗ 𝑟𝑡𝑖)) ,𝑤ℎ𝑒𝑟𝑒 𝑒𝑡𝑖
∗ = {𝑒𝑡1

∗ , … , 𝑒𝑡𝑚
∗ }

This loop continues until 𝑒𝑡𝑖
∗ converge to zero, and every element in 𝐹𝑇 has the value of one. Then

at this stage, the function that returns project completion time (Time Span) denoted by

𝑓(𝑇𝑖𝑚𝑒) can be represented as:

𝑓(𝑇𝑖𝑚𝑒) = 𝑥𝑇𝑖𝑚𝑒 ⇔ ∀𝑡𝑖 ∈ 𝑇: 𝑒𝑡𝑖 ≈ 0 ∧∑𝑓𝑡𝑖

𝑚

𝑖=1

= 𝑚

∀ 𝑡𝑖 ∈ 𝑇, 𝑟𝑗 ∈ 𝑅, The problem is to minimize the time span of project 𝑃:

min 𝑓(𝑇𝑖𝑚𝑒)

Subject to:

 At least one 𝑟𝑗 assigned to 𝑡𝑖 should possesses the required competencies for 𝑡𝑖 represented

as:

∀ 𝑡𝑖 ∈ 𝑇, ∃ 𝑟𝑗: 𝑇𝐶𝑡𝑖 ∩ (∑𝑅𝐶𝑟𝑗 ∗ 𝑄(𝑟𝑗 , 𝑡𝑖)

𝑛

𝑗=1

) ≠ 𝜙

 Number of resources participating to perform one task should not exceeds 12. Otherwise,

penalty will be applied on the solution as a consequence of overhead communication that

is anticipated to reduce the team’s productivity and the development speed.

∀ 𝑡𝑖 ∈ 𝑇, :∑𝑄(𝑟𝑗 , 𝑡𝑖) ≤ 12

𝑛

𝑗=1

 At least one resource is assigned to each task.

143

∀ 𝑡𝑖 ∈ 𝑇: ∑𝑄(𝑟𝑗 , 𝑡𝑖) ≥ 1

𝑛

𝑗=1

 Each resource has to be assigned to at least one task.

∀ 𝑟𝑗 ∈ 𝑅, 𝑡𝑖 ∈ 𝑇: ∃∑𝑄(𝑟𝑗 , 𝑡𝑖) ≥ 1

𝑚

𝑖=1

 The precedence relationship should be met so that for each task in 𝑇 its predecessors

must be finished in order the task to be started.

∀ 𝑡𝑖 ∈ 𝑇 ∃ 𝑑𝑝𝑖 ∈ 𝑇𝐷: 𝑑𝑝𝑖 ⊆ 𝐹𝑇

It can be seen from the description above that the definition of the four methods is partially similar

to each other. However, the differences exists in these problems are vital for the solution

representation, which will be used by the optimization techniques. The following section provides

the solutions to each method and their optimization process details.

5.3 Genetic Algorithm Configurations and Operators

Solution

As an NP-Hard problem complexity, Meta-Heuristic techniques can be used to approximate a

solution for the SSSP problem. One of the most used and powerful among the Meta-Heuristic

techniques is the Genetic Algorithm (GA) [5] proposed by John Henry Holland in [83]. This

algorithm has been employed for optimizing various software engineering problems [5]. The

algorithm develops a solution based on the principle of life evolution, and natural selection of

genes. The heuristics in this algorithm are designated in two operations, which are crossover, and

mutation. The main parts that should be considered while using this algorithm to solve the SSSP

problem can be illustrated from the work of [18, 21, 22]. These parts are the solution

representation and encoding mechanism, initial population for the solution, stochastic

operations, objective function containing the team allocation method, commitment of resources,

and scheduling technique for fitness selection, and the optimizer settings proposed. Most of the

approaches that propose a solution for the SSSP using a Meta-Heuristic technique follow these

parts in their discussion.

We have employed this algorithm to implement each allocation method -described previously in

Section 5.2- combined with a fitness function that simulates project time with consideration of

dependencies between project tasks, and resources’ competencies and productivity. The

description of the GAs, and their main parts of the optimization process are depicted in the

following sections.

144

5.3.1 Solution Representation and Chromosome

Encoding

The solution representation for an optimization problem encompasses a solution structure and its

possible encoding system for the problem elements [123]. The solution structure can be

represented by a one (1D, or vector), two (2D), or a multi-dimensional (ND) matrix. The basic

solution structure in GA is a vector chromosome. Each element in the chromosome structure is

called gene, and the content of this gene is called an allele [86]. The values of a chromosome can

be encoded using different encoding systems. The encoding of a chromosome can be in a binary,

permutations, value, or tree structure of genotype [86].

The solution representation of the first team allocation method named “Static Teams with Queue

Simulator” (STQS) is illustrated from the approaches in [20-22, 94]. This method uses two vector

chromosomes. The first chromosome represents the resources and their distribution into teams,

and the second one represents the tasks and their order in a single queue system. The

representations of both chromosomes having n number of resources, and m number of tasks are

depicted in the following Figure 21.

Figure 21: STQS method Chromosomes

The first chromosome - in Figure 21(a) – represents the resources distribution solution, where

each gene represents a resource, and each allele represents a team. That is, the value for each

resource (gene) holds the team number that this resource is assigned to. The encoding system

used for this chromosome is represented by an integer value encoding. The distribution of

resources into teams should be performed in this chromosome according to the pigeonhole

principle, which as a key aspect allows more than one resource to have the same team number in

the solution (multiple genes have the same allele value) [124]. For instance, resource 1 and n in

the figure both work in team 2.

The second chromosome depicted in Figure 21(b) provides the ordering solution representation

that show the execution order for each project task i.e. to where each task should be sorted in the

queue. Each gene in this chromosome represents a task, and each allele represents the task order

in the queue. Unlike the previous chromosome, the ordering representation do not allow similarity

between allele values. Therefore, the encoding system used in this solution representation to

145

comply with this restriction is a permutation encoding. For example, if we have three elements

representing the project tasks, the encoding of these tasks for their order within the queue using

the permutation encoding can be 1, 2, 3, or 2, 1, 3, or 3, 1, 2, etc.

The second resource allocation method defined in this chapter is “Static Teams with Time

Simulator” (STTS). The solution representation for this method is depicted in Figure 22 by two

chromosomes. The structure of those chromosomes is a vector. The first chromosome similar to

the one in STQS method represents the distribution of resources into teams. Unlike STQS method

representation, the second chromosome in this method solution represents the task allocation by

providing the team number that is responsible to work on each task. This representation of STTS

method solution having n number of resources, and m number of tasks is depicted as follow.

Figure 22: STTS Method Chromosomes

From the previous Figure 22, it can be seen that the pigeonhole principle again is the one that

forms the solution for both chromosomes. For the first chromosome representation (a), the

resources are distributed into teams, where each gene represents a resource, and each allele

represents a team. This representation provides to which team each resource is assigned to.

Representation (b) on the other hand, depicts the distribution of teams to tasks. From this

representation, it can be seen that which task should be done by which team. For example, from

the Figure 22(b), we can see that task 2 is assigned to team 1, and task 3 is assigned to team 3.

The third method of “Dynamic Teams with Binary Participation” (DTBP) depicted in the following

Figure 23 represents the solution by a 2-D matrix structure. The vertical dimension (columns)

represents the resources, and the horizontal one (rows) represents project tasks. This

representation having n number of resources, and m number of tasks is depicted as follow.

Figure 23: DTBP Method Chromosome

 1 2 3 … n

1 1 0 1 … 1

2 0 0 1 … 0

3 0 1 0 … 1

: 0 1 1 … 1

m 1 1 0 … 1

146

From Figure 23, it can be seen that this representation assigns each resource with a high

probability to serve in different teams during project time. For instance, it can be seen in Figure

23 that resource 1 assigned with resources 3, and n to work on tasks 1, where on task m this

resource works with resources 2, and n. We have defined this representation as an arbitrary

assignment of resources to tasks. Each gene in this chromosome has two positioning points (v and

h) that define the resource (v) and the task (h) that (s)he assigned to. In addition, the allele of each

gene should be encoded using the binary system, which implies whether resource (v) is assigned

to task (h) by value of one, or zero otherwise. This representation moreover, requires important

assignment constraint in order to gain realistic and reasonable solution. For instance, this

representation can provide a solution where all resources are assigned to all tasks. For this reason,

a constraint is implemented with this representation to make sure that any resource works on

more than one task at a time, its productivity will be normalized to the number of these

simultaneous tasks. By doing so, the solution then of having all the resources works on all the

tasks will provide low quality solution of project time span.

The fourth method of “Dynamic Teams with Participation Rate” (DTPR) represents the solution

by 2-D structure similar to DTBP. This representation having n number of resources, and m

number of tasks is depicted in the following Figure 24.

Figure 24: DTPR Method Chromosome

From Figure 24, it can be seen that this assignment representation is similar to the one in DTBP

method. However, this method enforces the resources to partially dedicate a percentage of their

working time to each task to which they are assigned. With five different values described in the

problem formalization Section 5.2 of this method, each allele in the chromosome representing the

gene (v, h) of resource (v) and task (h) can hold a real number value encoding from the range {0,

0.25, 0.5, 0.75, 1}. It is noteworthy that the same constraint described for the pervious method

DTBP is adopted in this method implementation too. This is to make sure that a full dedication of

all the resources to all tasks, implying overtime work assignment is not considered.

 1 2 3 … n

1 0.25 0.5 0.75 … 0

2 0 0 1 … 0.5

3 0 0.5 0.25 … 1

: 0.75 1 1 … 0.25

m 1 0.25 0 … 0.5

147

5.3.2 Initial Population

Two methods can be used to create an initial population for a solution using GA. The first one is

random initialization, which populates the solution randomly. The second one is heuristic

initialization that uses one of the heuristic techniques such as Greedy, Hill Climbing, etc. -see

Section 2.2- to create an initial population [97]. For a diversity of solutions within the initial

population, the random initialization can provide better results of optimality than the heuristic

one for two reasons. Heuristic methods can lead for initializing redundant individuals over the

population, which will lead to less diversity of solutions. In addition, GA has a selection operation

to heuristically create new population(s).

The initial population used for all the methods is the random initialization with value encoding

either for team formation, queue order, team allocation, or both 2-D matrix chromosome creation.

For more information about this particular GA aspect, see [97] [86, 123].

5.3.3 Crossover Operator

One of the stochastic operations in GA is crossover. This operation creates new solutions by

exchanging subparts of two single chromosomes to create two new ones mimicking the biological

combination of parents’ chromosomes into new child chromosomes [86]. Crossover can be

implemented using different operators that identify which subparts are to be selected for the new

child and how they will be combined into one. These crossover operations can be a single-point,

two-point, uniform, and arithmetic process [86, 97, 102].

Many of the SSSP approaches have modified their own crossover operation according to their

representation of the problem, and the solution. While two different chromosome structures are

used by the team allocation methods, we have formed two types of crossover each to fit with the

corresponding method for the solution structure.

The chromosomes used for STQS and STTS methods are modified for the experiments to be in a

single chromosome representation combining both resources, and tasks. This combination of two

chromosomes into one is inspired by the work of [22], which can speed up the selection of fitted

solutions by the objective function. The crossover operation starts by dividing the single

chromosome into two parts, based on the number of project tasks (m) and the resources assigned

to it (n) depicted by the example of five resources, and five tasks in the following Figure 25.

148

Figure 25: STQS, and STTS methods Chromosome separation

As can be seen from Figure 25 above, according to the number of resources (n=5) and tasks (m=5),

the single chromosome is separated into two having five resources, and five tasks. Unlike the

operator used in [22], those two new chromosomes are stochastically modified by two-point

crossover. However, we have modified this crossover to apply inversion operation on the values

of the area defined between the two random points.

Employing two parents in crossover operation for those particular allocation methods, unless a

constraint checker is exists, can lead to an invalid solution(s). It is important to notice that the

random creation of solutions in the population for those allocation methods can create a solution

that holds a number of teams different from any other ones. For instance, the first solution in the

population might have 4 teams that the resources have been distributed to and assigned to

different tasks, whereas another solution could have only two teams. If we apply crossover on

those two solutions having them as parents, then there might be one of the tasks in the first

solution that has been assigned to a team that no longer exists after the crossover. Consequently,

applying two point crossover with two parents to create a child for those two allocation methods

might produce an invalid solution(s). Therefore, a modified operator has been created to ensure

that none of the resources nor the teams are left with an invalid assignment. The process to

crossover both chromosomes depicted by the example in the following Figure 26.

Figure 26: STQS, and STTS methods Crossover

1 2 3 4 5 6 7 8 9 10

2 1 3 1 3 2 3 1 2 1

1 2 3 4 5

2 1 3 1 3

1 2 3 4 5

2 3 1 2 1

n m

(b) Tasks’ Chromosome (a) Resources’ Chromosome

1 2 3 4 5

2 1 3 1 3

1 2 3 4 5

2 3 1 2 1

1 2 3 4 5

2 1 1 3 3

1 2 3 4 5

1 3 2 2 1

Crossover Point 2

(b) Tasks’ Chromosome (a) Resources’ Chromosome

Crossover Point 2 Crossover Point 1 Crossover Point 1

149

From Figure 26, it can be seen that both chromosomes have a subpart of their solutions changed.

As the operator adopted for both allocation methods is a 2-points crossover, the area between

those two random points is the one that the crossover will be applied to. In chromosome (a) for

instance, the crossover area selected is between genes 3 to 4 to swap their values. The crossover

operation has swapped the resources 3 and 4 to teams 1 and 3 respectively.

On the other hand, the crossover operation applied on “tasks’ chromosome” depicted in Figure

26(b) has selected a random area between tasks 1 to 3. The resulting operation assigned task 1 to

team 1, and task 3 to team 2. Noteworthy, this operation has left task 2 with the same assignment

to team 3, as our proposed crossover is to invert the values for the area defined between two

random points. It is important to notice that the previous two figures representing crossover of

both STQS and STTS, provides examples on how the operation can be performed but not to

provide the exact operation of both. STQS differ from STTS by the task chromosome

representation, which distributes the task orders for STQS and the one in STTS distribute the tasks

on teams.

The second crossover proposed is a 2-points crossover operator for 2-D matrix, which can be

applied on DTBP and DTPR methods as both have the same chromosome structure. This

operation selects two random point for each dimension of the 2-D matrix depicted by the example

in the following Figure 27.

Figure 27: DTBP, and DTPR methods Crossover

In Figure 27, the vertical dimension represents the resources, and the horizontal one represents

the tasks. It can be seen from the figure that two points for each dimension are selected by the

crossover operator. The crossover selected area for the resource dimension is between resources

 1 2 3 4 5

1 1 0 1 1 1

2 0 0 1 1 0

3 0 1 0 0 1

4 0 1 1 0 1

5 1 1 0 0 1

 1 2 3 4 5

1 1 0 1 1 1

2 0 0 1 0 1

3 0 1 1 1 0

4 0 1 0 1 0

5 1 1 0 1 0

150

4, and 5. On the other hand, the crossover selected area for the task dimension is between tasks 3,

and 4. The crossover operator has inversely changed the values of each area similar to the methods

used for STQS and STTS. For instance, the assignment values have been swapped between

resources 5 and 4 by applying the crossover on the resource dimension. On the other hand, the

assignment values of the task dimension have been swapped between tasks 3 and 4 by the same

crossover operation.

5.3.4 Mutation Operator

Mutation in GA, as one of the stochastic operations, involves random changes on the solution

chromosome generated. Mutation operator is also used to avoid the generation of same solutions,

by which it can lead for more exploration in the solution space for an optimal or near optimal

result [86]. That is, the resulting chromosome by mutation operation can move the search to a

global area in the solution space [103]. This operation is usually applied with a low probability for

creating diversity of chromosomes in the population of GA [97]. Moreover, many approaches such

as the work of [15] have employed the 1+1 EA, which merely use the mutation, and eliminate the

crossover from the approach.

There are different ways of mutating a chromosome. One way can be by randomly generating a

new value for a random number of bits, another one is by flipping the bits of the chromosome

[97]. Additional to those mutations, there are five operators, which are bit flip or random resetting

of single gene, swapping of two points, scrambling a part of the chromosome for permutation

encoding, and inversion for a part of the chromosome to flip it [102]. While mutation is related to

the process part in GA for exploration of search space [103], we have increased the rate of mutation

for the experiments on the team allocation methods to explore a wider area of the solution space

for global optima exploration.

For STQS and STTS methods, we have developed a mutation process that starts with dividing the

chromosome into two parts as both methods combine two representations into a single

chromosome. Each part from this division then forms a chromosome that contains the

representation of either the resources, or tasks. Unlike the crossover of both methods at this point

the employed mutation operator for the STQS method differs from the STTS one. Mutation used

for the STQS method for both chromosomes is the swap mutation. This mutation randomly selects

two genes and exchange their values. Mutation for the STTS method chromosomes on the other

hand, performs a modified mutation on two random genes. Our modified mutation after the

separation of the single chromosome into two, works as follow:

151

 For each chromosome, two genes should be selected.

 Starting by the resources’ chromosome, a new value for each selected gene should

randomly be generated according to the maximum team number (gene value) exists

within the chromosome.

 After mutating the resources chromosome, the operator moves to the tasks chromosome,

and stores the new maximum team number value of the resource chromosome.

 The operator then checks whether any gene has a team number that does not exists in the

mutated resources chromosome, if so:

- The chromosome reseeded those genes with a new random team number according

to the new maximum team value. or

- The operator continues generating a new team for each selected gene.

This modified mutation operator is depicted in the following Figure 28.

Figure 28: STTS method Chromosome Mutation

As can be seen in the Figure 28, two random genes in each solution representation chromosome

are selected. In Figure 28 (a), gene 2, and 5 are selected, where in Figure 28 (b), gene 2, and 3 are

selected. Applying mutation on these selected genes has made each having a new random value.

For instance, after applying mutation on gene 5 in chromosome (a) its value changed from 3 to 1,

and for gene 3 in chromosome (b) its value changed from 1 to 3. These generated values are

representing the team number in both representations. It is noteworthy that the mutation process

has continued on chromosome (b) to mutate both selected genes with same consideration of the

maximum number of teams left from the resources chromosome mutation. This can be seen by

mutation of gene 3 in chromosome (b), in which the value of this gene has changed to 3 as this

team value still exists after chromosome (a) mutation.

We also propose a modified mutation for both DTBP and DTPR methods as their solution is

represented by a 2-D matrix chromosome. This modified mutation selects two rows, and two

columns to mutate the 2-D chromosome. The operator starts by selecting two random columns

1 2 3 4 5

2 1 3 1 3

1 2 3 4 5

2 3 1 2 1

1 2 3 4 5

2 2 3 1 1

1 2 3 4 5

2 2 3 2 1

Mutation Point 2

(b) Tasks’ Chromosome (a) Resources’ Chromosome

Mutation Point 2 Mutation Point 1 Mutation Point 1

152

according to the number of resources, and two random rows according to the number of tasks.

Each gene exists within the selected columns and rows will be individually mutated according to

the assignment value associated for the targeted method. For example, if this chromosome

represents the DTBP method, then each gene will be either mutated from 0 to 1, or vice versa. For

DTPR method however, mutation will randomly select a value for the gene from the range {0,

0.25, 0.5, 0.75, 1}. It is important to notice that using mutation on this representation can lead to

have the values for the whole selected rows or columns within the chromosome similar to the

values prior mutation. Therefore, our modified mutation for both methods’ chromosomes

eliminates the previous value of the genes from the random generation of new ones.

5.3.5 Selection Operator

The selection as one of the heuristic operations in GA selects the fittest chromosomes according

to their solution fitness value to the objective function to be used on producing a new

population(s). Selection can be performed using different methods [86]. These methods are

roulette wheel, stochastic universal sampling, tournament, steady state, rank, elitism, and random

selections [86]. It is crucial to define the best selection process for a successful GA [97]. That is

the selection process can either lead for an optimal or near optimal results by good chromosomes’

“solution” diversity, or undesirable solution of the known “premature convergence” by dominating

of one extremely fit solution over the entire population. The implementation of the team allocation

methods was performed using Matlab 2016, with Global optimization toolbox. The available

selection types in Matlab are five. These types are stochastic uniform, remainder, uniform,

roulette, and tournament selections. However, two selection operators are mainly used by many

SSSP approaches as in [20, 22], which are the roulette wheel, and tournament selections. The one

that has been used in all our experiments for this chapter is the roulette wheel selection. For more

details and description about these operators, the reader can refer to [86, 97].

5.3.6 Fitness Function

The objective function defined for the SSSP problem in Section 1.2 is a cost function searching for

the most minimized solution of software project time span. As the team allocation methods

optimization problem is part of SSSP, the fitness function developed to test these methods

involves simulation of project time. Simulating project time within the fitness function of an

optimization technique can be performed using different simulation models. Two main time

simulators however are developed each of which can be used for specific team allocation

method(s). The first simulates project time for a queueing system that has a queue of project tasks

153

that need to be served by different teams, so the time consumed to serve all the tasks is the

estimated project time span similar to what proposed by [20, 125]. The other one simulates project

time as the project progress while the assigned resources performing project tasks i.e. the time is

counted according to a counter and the end value of this counter is the estimated project time

span.

The fitness function used for the STQS method is adopted from [20, 22, 125]. This function

simulates the development as a queueing system to estimate project time span. This system has a

queue that holds the tasks to be done, and the teams that are servers to do the service for each

queue element (task). It is worth mentioning that the work in [22] provides the time estimate of a

software project according to the queue time. The queue time starts when the first package in the

queue is despatched, and ends when the last package is completed. Therefore, their time estimate

depends on the definition of start and end time for each package in the queue. So, the end time of

the last package is the project time span. Unlike the time estimate provided in these approaches,

project time span considered by the fitness function developed for the team allocation method

STQS is the longest team time among the teams (servers). The description of the fitness function

of project time simulation is represented by the algorithm depicted in the following Figure 29.

154

Figure 29: Queueing Simulator Fitness Function

It can be seen from Figure 29 that the fitness function requires three inputs. These inputs should

provide information about project human resources (𝑅), project tasks (𝑇), and the heuristic

solution (𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛) generated by the GA to measure its fitness. According to these inputs, the

simulator can then sort the resources into teams and store them in a 𝑇𝐹 set throughout the lines

7 to 9. Noteworthy that 𝑇𝐹 is a cell array, and the part of the 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 involved in defining the

teams is the first part of the solution (chromosome) that represents the resource assignment to

1 Function fitnessValue = QueueSimulator (Solution, R, T)

2
𝐿𝑒𝑡 𝑪𝒂𝒑𝒂 = 𝟎,𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑡𝑜 ℎ𝑜𝑙𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑎𝑚
𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑎𝑠𝑘

3 𝐿𝑒𝑡 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝑏𝑒 𝑡ℎ𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

4 𝐿𝑒𝑡 𝑹 𝑏𝑒 𝑡ℎ𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠′𝑠𝑒𝑡

5 𝐿𝑒𝑡 𝑻 𝑏𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑡𝑎𝑠𝑘𝑠′ 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑚

6 𝐿𝑒𝑡 𝑻𝑭 𝑏𝑒 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 𝑡𝑜 ℎ𝑜𝑙𝑑 𝑡ℎ𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑡𝑒𝑎𝑚

7 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟 𝑖𝑛 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

8 𝑇𝐹 (𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑟)).𝑎𝑑𝑑 (𝑟)

9 𝒆𝒏𝒅 𝑓𝑜𝑟

10 𝐿𝑒𝑡 𝒕𝒆𝒂𝒎𝑻𝒊𝒎𝒆 𝑏𝑒 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 𝑡𝑜 ℎ𝑜𝑙𝑑 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑏𝑦 𝑒𝑎𝑐ℎ 𝑡𝑒𝑎𝑚

11 𝐿𝑒𝑡 𝑭𝒊𝒏𝑻𝒂𝒔𝒌𝒔 𝑏𝑒 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 𝑡𝑜 ℎ𝑜𝑙𝑑 𝑡ℎ𝑒 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑡𝑎𝑠𝑘𝑠

12 𝐿𝑒𝑡 𝑪𝒖𝒓𝒓𝒆𝒏𝒕𝑻 = 𝑡1

13 𝐿𝑒𝑡 𝒊𝒅𝒙 = 1

14 𝒘𝒉𝒊𝒍𝒆 ∑𝐹𝑖𝑛𝑇𝑎𝑠𝑘𝑠 < 𝑚

15 𝑖𝑑𝑥 = 𝑖𝑑𝑥(min(𝑡𝑒𝑎𝑚𝑇𝑖𝑚𝑒))

16 𝒊𝒇 𝑑𝑝𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 = 0 ||𝑎𝑙𝑙 𝑖𝑛 𝑑𝑝𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 ⊆ 𝐹𝑖𝑛𝑇𝑎𝑠𝑘𝑠

17 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑟𝑗 𝑖𝑛 𝑇𝐹𝑖𝑑𝑥

18 𝐶𝑎𝑝𝑎 = +∑𝑝𝑟𝑜𝑟𝑗 (𝑇𝐶𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇)

19 𝒆𝒏𝒅 𝑓𝑜𝑟

20 𝑡𝑒𝑎𝑚𝑇𝑖𝑚𝑒𝑖𝑑𝑥 = + (
𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇
𝐶𝑎𝑝𝑎

)

21 𝑟𝑒𝑚𝑜𝑣𝑒 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 𝑓𝑟𝑜𝑚 𝑇

22 𝐹𝑖𝑛𝑇𝑎𝑠𝑘𝑠𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇
= 1

23 𝒆𝒍𝒔𝒆

24 𝑠𝑒𝑛𝑑 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 𝑏𝑎𝑐𝑘 𝑜𝑓 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒

25 𝒆𝒏𝒅 𝑖𝑓

26 𝒆𝒏𝒅 𝑤ℎ𝑖𝑙𝑒

27 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑉𝑎𝑙𝑢𝑒 = max(𝑡𝑒𝑎𝑚𝑇𝑖𝑚𝑒)

28 𝒆𝒏𝒅 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

155

teams. Based on the formation of teams, the fitness function will be able to estimate the time span

of each task.

The first part of the task time span estimation is depicted in the lines 17 to 19 in Figure 29. This

part involves determining the cumulative productivity (𝐶𝑎𝑝𝑎) of the available team 𝑇𝐹𝑖𝑑𝑥 who will

perform the current task 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 depicted by line 18. This productivity is calculated by the

summation of each resource’s productivity 𝑝𝑟𝑜𝑟𝑗 assigned to that team. Resource’s productivity

however is represented by different competencies, and it can be retrieved according to the

competency required for the current task 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 represented by 𝑇𝐶𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 .

Based on team’s productivity, the estimation of task time span can be calculated by the division of

the estimated effort of the current task 𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 over the productivity (𝐶𝑎𝑝𝑎) of the assigned team.

This value will be added to the team’s time matrix 𝑡𝑒𝑎𝑚𝑇𝑖𝑚𝑒𝑖𝑑𝑥for the corresponding available

team index 𝑖𝑑𝑥 depicted by line 20. Once the calculation is finished, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 will then be

removed from the task queue 𝑇 depicted by line 21, and in line 22 this task will be recorded as

finished in the (𝐹𝑖𝑛𝑇𝑎𝑠𝑘𝑠𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇) matrix. The simulator in this fitness function keeps tracking

dependency between tasks throughout the simulation of the queue system depicted in line 16.

Once the precede task(s) in 𝑑𝑝𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 for 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 are recorded in 𝐹𝑖𝑛𝑇𝑎𝑠𝑘𝑠𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇 matrix,

(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇) can be then proceed to the next available team 𝑇𝐹𝑖𝑑𝑥. The identification of a team’s

availability is depicted in line 15 as checking the least team’s time among the set 𝑡𝑒𝑎𝑚𝑇𝑖𝑚𝑒 and

recorded the first least working time among the teams in 𝑖𝑑𝑥. This simulation last as the

summation of the binary array 𝐹𝑖𝑛𝑇𝑎𝑠𝑘𝑠 is less than the number of project tasks. Once all the tasks

are finished, which implies that the sum of 𝐹𝑖𝑛𝑇𝑎𝑠𝑘𝑠 equals 𝑚, the return value of the fitness

function is the maximum team time among the set 𝑡𝑒𝑎𝑚𝑇𝑖𝑚𝑒.

The second fitness function proposed for simulating the project time span of the team allocation

methods STTS, DTBP, and DTPR is depicted in the following Figure 30. However, the solution

generated for “resources to teams” assignment, and “teams to tasks” allocation by the GA for each

method differs from one method to another. The solution of STTS method combines two

representations into a single array. This array holds the information regarding the resources and

their distribution to teams represented by the first part of the array, and the team allocation to

each task represented by the second part. At the beginning of the fitness function this array will

be divided into the original parts corresponding to each representation of resources and tasks. On

the other hand, the solution structure of both DTBP and DTPR is 2-D matrix. This solution holds

the representation of resource in the vertical dimension, and their assignment to tasks either for

binary or percentage to the tasks in the horizontal dimension. The solution generated by the GA

are named 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 and after its divisions for the STTS method, the part that represents the

156

resources’ distribution is named 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑅, and the part that represents team distribution to tasks

is named 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑇.

The information held by the GA solution are then used by the fitness function simulation model

to calculate project time. This model simulates project schedule in terms of days, and considers

four vectors. These vectors are depicted in Figure 30 by four sets. The first set (primaryTasks)

should initially hold all project tasks, and continue to hold those task(s) that are still waiting to be

performed. The second one (unlockedTasks) holds the tasks that have no dependency constraints

or those task(s) where their predecessor(s) as the time progress are completed. The third one

(operatingTasks) holds the tasks that are under development. And finally the fourth one

(finishedTasks) holds the tasks that are completed.

At the beginning of the simulation, the set (primaryTasks) will hold all project tasks, and

(finishedTasks) must be an empty set. Any task in (primaryTasks) that has no dependency

constraint will be moved then to (unlockedTasks) depicted in the figure by lines from 9 to 14. The

simulation accordingly starts by moving the task(s) in (unlockedTasks) to the set (operatingTasks)

so that all the tasks in (operatingTasks) can be performed at the same time depicted by line 17.

For each task in this set, the associated productivity to its required skill(s) possessed by each

resource assigned to it 𝑝𝑟𝑜𝑟(𝑇𝐶𝑡𝑎) will be stored in 𝐶𝑎𝑝𝑎 variable that represents the resources

capability depicted by line 21. However, the way of determining the value of this variable differs

from one allocation method to another.

A. For STTS method, 𝐶𝑎𝑝𝑎 value will be determined by first identifying from 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑇 the

allocated team to 𝑡𝑎, and then for each resource 𝑟 assigned to this team exposed

in 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑅 his/her 𝑝𝑟𝑜𝑟(𝑇𝐶𝑡𝑎) will be stored in 𝐶𝑎𝑝𝑎.

B. For DTBP method, 𝐶𝑎𝑝𝑎 value will be determined as depicted in line 21 in the figure.

However, all the resources assigned to the task 𝑡𝑎 will be identified by the vertical lines

that have the value of 1 corresponding to the horizontal line of 𝑡𝑎.

C. For DTPR method, 𝐶𝑎𝑝𝑎 value will be determined by multiplying 𝑝𝑟𝑜𝑟(𝑇𝐶𝑡𝑎) by the

participation rate defined for resource 𝑟 in the GA solution to the corresponding task 𝑡𝑎

in the horizontal line represented by (𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑟, 𝑡𝑎)). The resources assigned to 𝑡𝑎 can be

identified if 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑟, 𝑡𝑎) > 0.

157

1
𝐿𝑒𝑡 𝑪𝒂𝒑𝒂 = 0,𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑡ℎ𝑎𝑡 ℎ𝑜𝑙𝑑𝑠 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓𝑎𝑙𝑙 𝑡ℎ𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒
 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑎 𝑡𝑎𝑠𝑘

2 𝐿𝑒𝑡 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝑏𝑒 𝑎 ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝐺𝐴 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

3 𝐿𝑒𝑡 𝒑𝒓𝒊𝒎𝒂𝒓𝒚𝑻𝒂𝒔𝒌𝒔 = 𝑇,𝑎 𝑠𝑒𝑡 𝑡ℎ𝑎𝑡 ℎ𝑜𝑙𝑑𝑠 𝑎𝑙𝑙 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑡𝑎𝑠𝑘𝑠

4
𝐿𝑒𝑡 𝒖𝒏𝒍𝒐𝒄𝒌𝒆𝒅𝑻𝒂𝒔𝒌𝒔 𝑏𝑒
 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 𝑡𝑜 ℎ𝑜𝑙𝑑 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘𝑠 that are 𝑟𝑒𝑎𝑑𝑦 𝑡𝑜 𝑝𝑒𝑟𝑓𝑜𝑟𝑚

5 𝐿𝑒𝑡 𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒏𝒈𝑻𝒂𝒔𝒌𝒔 𝑏𝑒 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 𝑡𝑜 ℎ𝑜𝑙𝑑 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘𝑠 𝑖𝑛 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠

6 𝐿𝑒𝑡 𝒇𝒊𝒏𝒊𝒔𝒉𝒆𝒅𝑻𝒂𝒔𝒌𝒔 𝑏𝑒 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 𝑡𝑜 ℎ𝑜𝑙𝑑 𝑡ℎ𝑒 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑡𝑎𝑠𝑘𝑠

7 𝐿𝑒𝑡 𝒙𝑻𝒊𝒎𝒆 = 0, 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑡ℎ𝑎𝑡 𝑤𝑖𝑙𝑙 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑡𝑖𝑚𝑒

8
𝐿𝑒𝑡 𝑺𝒄𝒏𝒕 𝑏𝑒 𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑡𝑜 ℎ𝑜𝑙𝑑 𝑡ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓
 𝑠𝑖𝑚𝑢𝑙𝑎𝑛𝑒𝑜𝑢𝑠 𝑡𝑎𝑠𝑘𝑠 𝑎 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑡 𝑎 𝑡𝑖𝑚𝑒 𝑖𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑖𝑛𝑔

9 𝒇𝒐𝒓 𝑎𝑙𝑙 𝑡𝑎𝑠𝑘𝑠 𝑡𝑖 𝑖𝑛 𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑇𝑎𝑠𝑘𝑠

10 𝒊𝒇 𝑑𝑝𝑡𝑖 = 0

11 𝑟𝑒𝑚𝑜𝑣𝑒 𝑡𝑖 𝑓𝑟𝑜𝑚 𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑇𝑎𝑠𝑘𝑠

12 𝑎𝑑𝑑 𝑡𝑖 𝑡𝑜 𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑇𝑎𝑠𝑘𝑠

13 𝒆𝒏𝒅 𝑖𝑓

14 𝒆𝒏𝒅 𝑓𝑜𝑟

15 𝒘𝒉𝒊𝒍𝒆 ∑𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑇𝑎𝑠𝑘𝑠 < 𝑚

16 𝑥𝑇𝑖𝑚𝑒 = +1

17 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝑇𝑎𝑠𝑘𝑠 = 𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑒𝑑𝑇𝑎𝑠𝑘𝑠

18 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑡𝑎 𝑖𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝑇𝑎𝑠𝑘𝑠

19 𝑆𝑐𝑛𝑡 = 0

20 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑟 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡𝑎

21 𝐶𝑎𝑝𝑎 = +∑𝑝𝑟𝑜𝑟(𝑇𝐶𝑡𝑎)

22 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑡𝑢 𝑖𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝑇𝑎𝑠𝑘𝑠

23 𝒊𝒇 𝑟 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡𝑢

24 𝑆𝑐𝑛𝑡 = +1

25 𝒆𝒏𝒅 𝑖𝑓

26 𝒆𝒏𝒅 𝑓𝑜𝑟

27 𝒆𝒏𝒅 𝑓𝑜𝑟

28 𝐶𝑎𝑝𝑎 =
𝐶𝑎𝑝𝑎

𝑆𝑐𝑛𝑡

29 𝑒𝑡𝑎 = 𝑒𝑡𝑎 − 𝐶𝑎𝑝𝑎

30 𝒊𝒇 𝑒𝑡𝑎 ≈ 0

31 𝑟𝑒𝑚𝑜𝑣𝑒 𝑡𝑎 𝑓𝑟𝑜𝑚 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝑇𝑎𝑠𝑘𝑠

32 𝑟𝑒𝑚𝑜𝑣𝑒 𝑡𝑎 𝑓𝑟𝑜𝑚 𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑇𝑎𝑠𝑘𝑠

33 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑇𝑎𝑠𝑘𝑠𝑡𝑎 = 1

34 𝒆𝒏𝒅 𝑖𝑓

35 𝒇𝒐𝒓 𝑎𝑙𝑙 𝑡𝑎𝑠𝑘𝑠 𝑡𝑤 𝑖𝑛 𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑇𝑎𝑠𝑘𝑠 𝑑𝑜

36 𝒇𝒐𝒓 𝑎𝑙𝑙 𝑡𝑎𝑠𝑘𝑠 𝑡𝑧 𝑖𝑛 𝑑𝑝𝑎 𝑑𝑜

37 𝒊𝒇 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑇𝑎𝑠𝑘𝑠𝑑𝑝𝑎 = 1

38 𝑎𝑑𝑑 𝑡𝑤 𝑡𝑜 𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑𝑇𝑎𝑠𝑘𝑠

39 𝒆𝒏𝒅 𝑖𝑓

40 𝒆𝒏𝒅 𝑓𝑜𝑟

41 𝒆𝒏𝒅 𝑓𝑜𝑟

42 𝒆𝒏𝒅 𝑓𝑜𝑟

43 𝒆𝒏𝒅 𝑤ℎ𝑖𝑙𝑒

158

Figure 30: Time Simulator Fitness Function

The value in 𝐶𝑎𝑝𝑎 moreover will be normalized according to the variable𝑆𝑐𝑛𝑡, which holds the

number of simultaneous tasks that each resource is working on in (operatingTasks) depicted by

the lines from 22 to 28. The estimated effort 𝑒 of task 𝑡𝑎will be according reduced by the

normalized 𝐶𝑎𝑝𝑎 value depicted by line 29. Once 𝑒𝑡𝑎 converges to zero, task 𝑡𝑎 will be removed

from both (operatingTasks) and (unlockedTasks) sets, and moved to the set (finishedTasks)

depicted by lines from 30 to 34. Any task waiting in (primaryTasks) that requires 𝑡𝑎to be finished

will accordingly be moved to (unlockedTasks) depicted by the lines from 35 to 41. Each loop in

this simulator represents a day, and it will last till the summation of (finishedTasks) reaches the

number of project tasks 𝑚 depicted in line 15. The last value of the simulator loops stored in 𝑥𝑇𝑖𝑚𝑒

will represents the estimated project time span depicted by line 16.

It is noteworthy that the fitness function can combine both the objective and the constraints while

searching for an optimized solution. Each fitness function for each team allocation method

combines in addition to the fitness functions listed above three constraints. These constraints are

developed to ensure that each solution is close as possible to a feasible one. The first constraint

examines whether the solution met the expectation of skills or not. The second one examines

whether the solution meets the expectation of distributing all the teams or resources to the project

tasks i.e. at least one resource or team is assigned to each task, and each resource or team should

be at least assigned to one task. Moreover, each task or team should have no more than 12

resources assigned to it. These constraints are discussed in Section 5.2 for each method. The

precedence relationship constraint on the other hand has been relaxed and the dependency

constraint violation is repaired as by the fitness function described for STQS method in Figure 29

by line 16 and 24 to reorganize the task orders, and for the remaining methods depicted in Figure

30 by allowing only the tasks that have no dependency or those their predecessor(s) are finished

using the four sets.

5.4 Experiment Settings and Results

The experiments performed on the four team allocation methods follow the systematic

comparison process described by Chapter 3 to compare between these methods. This process

starts with organizing the approaches subject to comparison according to the complexity classes

they are suitable to deal with described in Section 3.3 of the dataset chapter. As the

implementation of the team allocation methods is capable to handle the inputs of dependency,

skills, and productivity, all these methods are suitable to all four classes, which implies that they

are capable to handle all the five dataset complexity levels presented in Section 3.4. The second

step of the benchmarking and comparison process is to run each approach multiple times using

159

the conforming dataset level to each class that the approach is capable to perform. For each run,

the process suggests recording the optimal project time, and computation time metrics values.

Then according to the results of each approach for each level the comparison measures should be

compiled to demonstrate the efficiency, accuracy, and performance of each approach.

The results by following this process and using all the datasets are obtained using the Matlab

R2016 supported by Matlab Global Optimization Toolbox. The system used for the experiments

combine Intel Core m5 (1.51 Ghz) CPU with 8GB memory. Each optimized team allocation method

was executed 30 times to allow determination of mean and deviation values. The GA settings for

these experiments are as follow:

1. Population size: 10

2. Generation:40

3. Crossover fraction 0.7

4. Mutation probability 0.8

The motivation for these parameter settings to be very small, such as the population size, is that

we need to challenge the allocation methods to the limit by which the fastest accurate results can

be obtained. These challenging settings, as the intention of this chapter, can provide a clearer view

and detailed information for future research of which allocation method can be used for a

particular complexity level corresponds to the project time optimization problem they aim to

solve.

5.4.1 Results:

The results in this section are organized according to the dataset levels discussed in Section 3.4.2.

For each level, a table is presented. This table provides the results obtained for each allocation

method according to the metrics and measures presented in Section 3.5. For a quick reminder, the

team allocation methods are Static Teams with Queue Simulator (STQS), Static Teams with Time

Simulator (STTS), Dynamic Teams with Binary Participation (DTBP), and Dynamic Teams with

Participation Rate (DTPR). It is noteworthy that the hit rate measure was not used in the

experiments carried out for this chapter as all the methods were able to provide a feasible solution

on each run.

Level One

The attributes representing the allocation problem by the first complexity level dataset are the

estimated effort of each task, and the number of resources available to perform them. Productivity

160

of resources in this level is set to be one. The optimal solution of project time for this dataset is

80.33 Days. The results of the experiments performed on the four team allocation methods for

this level are presented in the following Figure 31 using Boxplot diagram.

Figure 31: Team Methods Evaluation Boxplot for Level One

From Figure 31, we can see that DTBP, STQS, and STTS have produced a near optimal solutions

for this complexity level. However, it can also be seen that STQS has the least variation and EPT

value among the others. Accordingly STQS is the best performance amongst the other methods.

On the other hand, DTPR has provided overestimates that are very high than the others, and can

be counted as the worst performance for this particular level. To support this observation, detailed

information of the experiment’s results about the EPT and CT values are required. The detailed

experiment’s results using level one dataset on each method are depicted in the following Table

30.

Table 30: Results of Team Allocation Methods for Level One Complexity

 EPT CT CT Score MAAPE Accuracy

DTPR 101.06 176.47 47.78 0.252 74.75

STTS 82.70 337.9 0 0.029 97.05

DTBP 81.43 96.42 71.47 0.014 98.63

STQS 80.33 0.72 99.79 0.001 99.99

In Table 30, results of five measures are exposed to provide different perspectives about the

solution quality for each method. The first measure of ETP can provide us of which method the

optimal solution can be obtained. For instance, the queueing system allocation method (STQS)

161

can be seen by this particular measure outperforms the others with 80.33 Days of fitness function

value. Given the nature of the fitness function for the remaining methods as they provide solution

by simulating the daily work of resources, DTBP and STTS method can also be seen performs

similarly to STQS one.

Moreover, both MAAPE and Accuracy measures clearly show STQS effectiveness in providing

accurate solution with 99.99% accuracy, where DTBP method slightly behind STQS with 98.62%.

From another perspective with 74.75% accuracy, we can conclude that DTPR method for this

particular level is not suitable to compete with the others.

On the other hand, CT of STQS shows how fast this method in providing results with

approximately 0.72 second of computation time. This has also been demonstrated by CT Score

measure that show very high score of STQS method with 99.79 score point among the other

methods. According to the MAAPE, CT, and CT scores, STQS method outperforms the others for

this complexity level. To support this claim and capture whether there is any method that

performs similar to (STQS), a paired T-Test was performed. The results of this test are presented

in the following Table 31.

Table 31: Team Methods Evaluation Paired T-Test for Level One

Lower Upper

Pair 1 STQS - STTS -2.36528 0.46831 0.08550 -2.54015 -2.19041 -27.664 29 0.000

Pair 2 STQS - DTBP -1.09861 0.50530 0.09225 -1.28729 -0.90993 -11.909 29 0.000

Pair 3 STQS - DTPR -20.73194 2.02958 0.37055 -21.48980 -19.97409 -55.949 29 0.000

Paired Samples Test

Paired Differences

t df Sig. (2-tailed)Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the

Difference

From Table 31, we can see that the difference in mean for each pair of STQS against the others has

a 2-tailed significance less than 0.001. From these results, we have found enough evidence to

suggest that the difference between the two scores for each pair is statistically significant, and

reject the null hypothesis of having all the methods preform similarly.

Level Two

Level two holds three allocation problem attributes, which are the number of available resources,

the estimated effort of each task, and task dependencies. Productivity of resources is also assumed

to be the same of (1) for all. The optimal solution of project time for this dataset level is 80.33 Days

too. The results of the experiments performed on the four team allocation methods for this level

are presented in the following Figure 32 using Boxplot diagram.

162

Figure 32: Team Methods Evaluation Boxplot for Level Two

From Figure 32, we can see that DTPR method is still having the worst performance and outcome’s

accuracy among the other methods. DTBP method, on the other hand, has slight regressed with

mean EPT around 90 Days, and be the worst among the other methods. At the same time, STQS

and STTS methods have both provided good quality solutions, however, STQS again has provided

the least EPT values. Accordingly, this method can be seen as the best among the other methods.

To support this observation, the following Table 32 provides with detailed information the

experiment’s results of EPT, CT, and accuracy measures by using level two dataset on each

method.

Table 32: Results of Team Allocation Methods for Level Two Complexity

 EPT CT CT Score MAAPE Accuracy

DTPR 108.63 35.35 6.7 0.338 66.17

DTBP 90.63 25.62 32.42 0.127 87.25

STTS 83.20 37.91 0 0.035 96.43

STQS 80.33 1.08 97.14 0.001 99.99

From Table 32, again it is obvious that STQS outperforms all the other methods. ETP measure

shows that this method has the least estimated project time over the experiment runs. In addition,

the accuracy of this method depicted by both MAAPE and Accuracy measures is very high with

99.99%.

On the other hand, DTPR again can be recognized as the worst among the methods in providing

good quality solutions within reasonable amount of time. However, this method is widely used by

163

many search-based approaches, and it might be not the best method to be adopt unless it is

mimicking a real-world problem.

From these results, it can be seen that the second-best method unlike the previous level can be the

STTS. This conclusion is made upon the facts shown by the measures related to project time of

EPT, and Accuracy with 83 Days, and 96.42% respectively. However, CT results in this particular

level shows that STQS is again outperforming the rest. The second-best method in terms of CT for

this allocation problem can be seen for the DTBP one. To support the claim of STQS outperforms

the others for this level and to capture whether there is any method that performs similar to

(STQS), a paired T-Test was performed. The results of this test are presented in the following Table

33.

Table 33: Team Methods Evaluation Paired T-Test for Level Two

Lower Upper

Pair 1 STQS - STTS -2.86667 0.76112 0.13896 -3.15088 -2.58246 -20.629 29 0.000

Pair 2 STQS - DTBP -10.30000 2.31164 0.42205 -11.16318 -9.43682 -24.405 29 0.000

Pair 3 STQS - DTPR -28.30000 3.20004 0.58424 -29.49491 -27.10509 -48.439 29 0.000

Paired Samples Test

Paired Differences

t df Sig. (2-tailed)Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the

Difference

From Table 33, we can see again that the difference in mean for each pair of STQS against the

others has a 2-tailed significance less than 0.001. From these results, we have found enough

evidence to suggest that the difference between the two scores for each pair is statistically

significant, and reject the null hypothesis of having all the methods preform similarly.

Level Three

The allocation problem information held by the level three dataset are the number of available

resources, the estimated effort of each task, as well as the skill(s) that each task requires, and each

resource possesses. Productivity of resources in this level is set to be either 1 or 0.1 for each skill

the resource possesses. The optimal solution of project time for this dataset level is 104 Days. The

results of the experiments performed on the four team allocation methods for this level are

presented in the following Figure 33 using Boxplot diagram.

164

Figure 33: Team Methods Evaluation Boxplot for Level Three

From Figure 33 , we can see that DTPR method is still having the worst performance and

outcome’s accuracy among the other methods, and can be counted as the worst method among

the others for this level too. Concurrently, STQS and STTS have slight regressed from being the

best methods for level two, and it can be seen that STTS method has provided solution quality

almost similar to DTPR, leaving STQS with the second least EPT values. DTBP method, on the

other hand, has this time outperformed the other methods and provided the least EPT.

Accordingly, this method can be seen as the best among the other methods. To support this

observation, the following Table 34 provides with detailed information the experiment’s results of

EPT, CT, and accuracy measures by using level three dataset on each method.

Table 34: Results of Team Allocation Methods for Level Three Complexity

 EPT CT CT Score MAAPE Accuracy

DTPR 228.13 415.95 50.14 0.872 12.78

STTS 209.83 834.29 0 0.758 24.15

STQS 178.56 0.71 99.91 0.608 39.18

DTBP 154.47 117.23 85.95 0.449 55.01

From Table 34, it is clear that all the methods are overestimating the fitness function value of EPT.

However, the mean of EPT over the runs shows that DTBP has the least average EPT with less

variation over the runs among the methods. It is worth mentioning that the results of MAAPE and

Accuracy measures for this particular level are significantly differing from one method to another.

The accuracy using MAAPE and Accuracy shows that all the methods have very low accuracy,

165

however DTBP has the higher accuracy amongst them all. The results of computation time for

each method, moreover, show that STQS method is the fastest in approximating EPT value among

the others, however, that comes over the accuracy of its outcomes. The one that can be counted as

reasonable in term of accuracy as well as computation time for this level is found to be DTBP

method, and can be counted as the best method among them all. To support this claim and capture

whether there is any method that performs similar to (DTBP), a paired T-Test was performed. The

results of this test are presented in the following Table 35.

Table 35: Team Methods Evaluation Paired T-Test for Level Three

Lower Upper

Pair 1 DTBP - STTS -55.36667 38.70533 7.06659 -69.81947 -40.91386 -7.835 29 0.000

Pair 2 DTBP - STQS -24.10030 23.78308 4.34218 -32.98105 -15.21955 -5.550 29 0.000

Pair 3 DTBP - DTPR -73.66667 11.43899 2.08846 -77.93806 -69.39528 -35.273 29 0.000

Paired Samples Test

Paired Differences

t df Sig. (2-tailed)Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the

Difference

From Table 35, we can see that the difference in mean for each pair of DTBP against the others

has a 2-tailed significance less than 0.001. From these results, we have found enough evidence to

suggest that the difference between the two scores for each pair is statistically significant, and

reject the null hypothesis of having all the methods preform similarly.

Level Four

The allocation problem information held by level four dataset are the number of available

resources, the estimated effort of each task, dependency between the tasks, as well as the skill(s)

that each task requires, and each resource possesses. Productivity of resources in this level is set

to be either 1 or 0.1 for each skill the resource possesses. The optimal solution of project time for

this dataset level is 204.31 Days. The results of the experiments performed on the four team

allocation methods for this level are presented in the following Figure 34 using Boxplot diagram.

166

Figure 34: Team Methods Evaluation Boxplot for Level Four

From Figure 34, we can see that the same pattern of previous level results is happened, where

DTPR method is still having the worst performance and can be counted as the worst method

among the others, as well as STQS and STTS have provided poor solutions. What noteworthy is

that both STQS and STTS have in this level provided solutions with almost no variations. DTBP

method, on the other hand, has this time too outperformed the other methods and provided the

least EPT. Accordingly, this method can be seen as the best among the other methods. To support

this observation, the following Table 36 provides with detailed information the experiment’s

results of EPT, CT, and accuracy measures by using level four dataset on each method.

Table 36: Results of Team Allocation Methods for Level Four Complexity

 EPT CT CT Score MAAPE Accuracy

DTPR 266.00 82.51 15.99 0.293 70.72

STTS 248.53 98.22 0 0.213 78.70

STQS 246.89 1.17 98.81 0.205 79.45

DTBP 238.17 39.15 60.14 0.164 83.60

From Table 36, it can be seen that STQS method outperforms all the others in terms of CT, and

CT score. However, when it comes to EPT and the accuracy measures, DTBP shows its

effectiveness in approximating project time. DTPR on the other hand is again found to be not

suitable in providing good quality solutions.

According to the accuracy measures of MAAPE and Accuracy, DTBP is the one that outperform

the others with 83.59%. In addition, it can be seen the improvement in terms of CT and CT Scores

167

of DTBP method in providing solutions by a significant time better than STTS, and DTPR.

Therefore, DTBP can be seen, for this particular complexity level, outperforming the remaining

team allocation methods. To support this claim and capture whether there is any method that

performs similar to (DTBP), a paired T-Test was performed. The results of this test are presented

in the following Table 37.

Table 37: Team Methods Evaluation Paired T-Test for Level Four

Lower Upper

Pair 1 DTBP - STTS -10.36667 8.71180 1.59055 -13.61971 -7.11363 -6.518 29 0.000

Pair 2 DTBP - STQS -8.72470 7.42406 1.35544 -11.49689 -5.95251 -6.437 29 0.000

Pair 3 DTBP - DTPR -27.83333 8.11165 1.48098 -30.86227 -24.80439 -18.794 29 0.000

Paired Samples Test

Paired Differences

t df Sig. (2-tailed)Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the

Difference

From Table 37, we can see again that the difference in mean for each pair of DTBP against the

others has a 2-tailed significance less than 0.001. From these results, we have found enough

evidence to suggest that the difference between the two scores for each pair is statistically

significant, and reject the null hypothesis of having all the methods preform similarly.

Level Five

The allocation problem information held by this dataset level are the number of available

resources, the estimated effort of each task, dependency between the tasks, as well as the skill(s)

that each task requires, and each resource possesses. Productivity for each resource skill in this

level can be within the range from 0.1 to 4. The optimal solution of project time for this dataset

level is 112.49 Days. The results of the experiments performed on the four team allocation methods

for this level are presented in the following Figure 35 using Boxplot diagram.

168

Figure 35: Team Methods Evaluation Boxplot for Level Five

Again, the same pattern of previous level results can be seen in Figure 35, where DTPR method is

the worst method among the others, as well as STQS and STTS have provided poor solutions. In

addition, the same results of both STQS and STTS where almost no variations between the

methods outcomes over the runs. DTBP method for this level too can be seen as the best among

the other methods. To support this observation, the following Table 38 provides with detailed

information the experiment’s results of EPT, CT, and accuracy measures by using level four

dataset on each method.

Table 38: Results of Team Allocation Methods for Level Five

 EPT CT CT Score MAAPE Accuracy

DTPR 147.13 49.56 6.69 0.298 70.20

STTS 138.50 53.12 0 0.227 77.31

STQS 137.05 0.94 98.23 0.215 78.50

DTBP 128.03 51.92 2.26 0.137 86.28

From the Table 38, it can be seen by CT and CT score measures that DTBP method is again slightly

better than STTS, and DTPR. However, STQS is still dominating the others in this matter. On the

other hand, the measures of EPT, MAAPE, and Accuracy provide more evidence by which team

allocation method the optimal or near optimal solutions of project time minimization to this

particular complexity level can be obtained. The average of EPT over the runs shows that the least

among these methods is DTBP. In addition, the accuracy measures show how DTBP can

significantly provide more accurate solutions for this level of complexity among the others.

169

Therefore, DTBP can be seen again for this level of complexity as the best choice of minimizing

software project time span. To support this claim and capture whether there is any method that

performs similar to (DTBP), a paired T-Test was performed. The results of this test are presented

in the following Table 39.

Table 39: Team Methods Evaluation Paired T-Test for Level Five

Lower Upper

Pair 1 DTBP - STTS -10.46667 5.89993 1.07718 -12.66974 -8.26360 -9.717 29 0.000

Pair 2 DTBP - STQS -9.02105 3.65290 0.66693 -10.38507 -7.65704 -13.526 29 0.000

Pair 3 DTBP - DTPR -19.10000 7.36885 1.34536 -21.85158 -16.34842 -14.197 29 0.000

Paired Samples Test

Paired Differences

t df Sig. (2-tailed)Mean Std. Deviation Std. Error Mean

95% Confidence Interval of the

Difference

From Table 39, we can see again that the difference in mean for each pair of DTBP against the

others has a 2-tailed significance less than 0.001. From these results, we have found enough

evidence to suggest that the difference between the two scores for each pair is statistically

significant, and reject the null hypothesis of having all the methods preform similarly.

The overall findings from the performance and accuracy outcomes of each method for all the

complexity levels have shown that some of the methods performed badly, others were moderate,

and two methods were capable of providing good quality solutions of project time estimation. The

overall weaknesses and strength of each approach that encountered by the outcomes of all the

levels are presented in the following Table 40.

Table 40: Overall Findings from the Complexity Levels for each Team Allocation Method

Approach Encountered Weaknesses or Strengths

STQS
This method can provide good quality solutions, however, only for level one and
two.

STTS
This method can be rank as the second best choice for level two, however, the
provided solutions for level one, three, four, and five has made it regress into the
third position.

DTBP
This method has performed poorly for level one and two, however, it has
dominated the level three, four, and five results with approximating project time to
the best over the all methods.

DTPR

This method has provided the worst solutions over the all methods. However as it
has been used by the approaches that consider project cost in addition to time
objective, then it can only be adopted when intention is for a multi-objective
approach.

What it can be concluded is that variability of performance and outcome’s accuracy are the main

characteristic that dominate the methods’ performance. While STQS has outperformed the other

methods for level one and two, DTBP has won on the higher levels of three, four, and five. This

provide how a resource allocation method can be beneficial for one or two problems, but that does

170

not mean it could be beneficial for all the possible problems that a PM might encountered while

allocating his/her resources. According to the overall results, for any problem that holds

information corresponding to level one and two, STQS can be the best choice for approximating

the project time for it. On the other hand, if the information available to the PM corresponds to

the higher levels, then DTBP can be the best choice for approximating the project time for it.

5.5 Conclusion

“The only benchmark capable of combining all evaluation criteria into a decision is the decision

maker himself.” (p. 97) [126]. However, imitating the decision maker selection criteria can be the

basic achievement towards a decision support system that can facilitate his/her work. One of the

duties that a project manager, as a decision maker, has to perform is to identify and select the best

team allocation alternative that minimizes his/her project time. Therefore, it is important to

establish some work towards understanding and identifying the decision maker selection criteria

for team allocation alternatives.

In this chapter, we have identified four main team allocation methods used by SSSP approaches.

A comparison between these methods combined with GA for project time minimization is

performed. The benchmarking process described in Chapter 3 was adopted in this comparison

encompassing five level of complexity of dataset. The comparison shows to which complexity level

the optimal or near optimal solution can be achieved by which of the team allocation methods.

The dynamic team allocation method with participation rate for resource assignment named

DTPR can be seen as the worst among the allocation methods. This method has been identified

and used by [14, 18] approaches, and as these methods do not employ normalization according to

simultaneous tasks as in [15], these approaches have constrained the amount of overtime work for

each resource to overcome the case where solution(s) combine assignment of all resources to all

tasks with 100% participation. Despite the use of overtime work constraint in both [14, 18]

approaches, the one that has been implemented for this chapter work is the one provided by [15].

For this case the reader can refer to [15], which in their study have used this normalization, and

compare it to the one in [14]. Their comparison provides significant evidence that the one in [14]

is overestimates project time, and using the normalization they suggest can provide better

solutions.

On the other hand, the team allocation method that encompass queuing system named STQS has

shown its effectiveness in providing optimal or near optimal solutions for the first two complexity

levels. However, the accuracy measures show that the dynamic team with binary selection

171

representation named DTBP is outperforming the other methods by providing better solutions

especially when it comes to handle complexity of skills, and productivity. The results by using the

five level datasets show with clear evidence that the software project time requires consideration

of the representation of team formation by the mean of the distribution of resources. This has also

been demonstrated by the results of dynamic formation of teams in DTBP method, which has

provided very close results to the optimized (optimal) solutions provided in the benchmarking

datasets especially for levels 4 and 5 in Chapter 3 that no other alternative allocation method used

was capable to provide. So, it is important to explore whether the DTBP method has some

background in software industry practices for team formation and allocation. In this sense, a new

study presented in [127] shows how and why software engineers move from one team to another.

In their study, the main reason identified is the motivation to gain new knowledge in different

specializations. However, this has motivated us to investigate the current practice not from the

resources’ perspective, but from the project managers’ one. This investigation is carried out by the

work presented in the next Chapter 6.

The main contributions in this chapter can be accordingly organized as follow. This study

demonstrates how the allocation of resources in software projects with consideration to project

time minimization can be formalized and performed by different team allocation methods, which

have been addressed in different SSSP approaches. This study also provides information on the

performance and accuracy of the identified allocation methods, which shows their performance

against five scenarios.

Our intention for future work is to use the overall findings and results towards development of a

management tool that can systematically define the best team allocation, which can minimize

project time according to the level of information the manager can provide about his/her project

and its available resources. A further intention will be focused on extending the work to include

learning effects on productivity of resources. These effects can be gained by doing tasks that are

related to the resource’s skillset. A resource in addition, can also gain a new skill in which its

associated productivity starts with 0.1, and improves over the time. We propose a learning formula

similar to what has been established by [93], to represent the amount of increase in the resource

skill productivity as follow:

𝑃𝑛𝑒𝑤 = 𝑃𝑜 ∗ log (𝑡𝑖𝑚𝑒𝑠𝑘𝑖𝑙𝑙)

In this formula, the amount of increase on skill productivity represented as 𝑃𝑛𝑒𝑤 is equal the old

productivity of the skill 𝑃𝑜 multiplied by the logarithmic of the time spent by the resource doing

the skill over the project time span, measured in Days. We chose the logarithmic to limit the

amount of improvement and to keep the improved productivity as reasonable as possible. In

172

addition, we aim to include the team synergy to our allocation of teams. Team synergy is important

while forming the teams, and can be applied on the overall team’s productivity to estimate the task

time. This work can be developed based on the work of [128].

It is noteworthy to mention that the datasets used for the comparison between the allocation

methods, which were provided in the benchmarking process involves a single project problem and

that can be a limitation to the generality of these findings. Accordingly, expanding the datasets to

include different software project problems can be an extra stage to ensure that the results are

applicable to different real-world problems within the software industry. In addition, one of the

weaknesses of this study is the effort estimation unit used in the dataset, which is the man-day. In

case of a full estimation of effort by well-known methods as COCOMO [34], the estimation unit

will certainly become as man-month, and effort then will be required by the project manager to

convert the estimation from man-month to man-day.

173

Chapter 6 Empirical Evaluation in

Industrial Settings

This chapter presents a study performed in industrial settings in which the main aim is to

understand the performance of Project Managers (PM’s) in finding solution to their project time

problem compared to the automated SSSP approaches. In addition, this study aims to capture the

difference between what the approaches propose and the current SSSP industry practice. An

introduction and overview of this study, the analysis methods to use, and the research questions

are presented in Section 6.1. The background for related studies on how they have performed and

gained their findings is presented in Section 6.2. The methodology carried out to explore and

answer our study questions is presented in Section 6.3. Section 6.4 presents the demographic

information of our study subjects and the findings from their performance on solving the dataset

scenarios. The conclusion of this study is presented in Section 6.5.

6.1 Introduction

The software industry is faced with a limited number of techniques and tools that can be used by

PMs to support their project management activities such as Gantt chart[50], and PERT[46]. These

techniques can provide graphical representation and time estimation support to PM, however they

lack right decision support elements for the hardest task carried out by the PM that of resource

allocation, and project staffing and scheduling. The first step towards this decision support

element is the understanding of the software project properties and their relation between each

other as well as the current industrial practice on resource allocation and project scheduling.

Many studies and experiments have been performed to understand and infer the relationships

between software project properties as in [9, 129, 130]. However, the approaches and

methodologies that software development organizations use differ from one organization to

another [130], which makes it hard to bring a single SSSP optimization approach into practice.

This problem can explain the reason behind the amount of work that has been done by many

174

researchers to approach the software project management problems. Therefore, the suitability is

the aspect that a SSSP approach should focus on and implement so that it can be used by as many

users as possible.

To explore the suitability of the SSSP approaches proposed for optimizing software project

resource allocation, experienced PMs from software industry are the key for validating these

approaches and providing to some extent their best practices and opinion on how software project

management should be tackled for different management objectives. This can be achieved by first

validating the SSSP approaches’ inputs, the benchmarking dataset, and the associated complexity

levels by the representative subjects from the industrial settings.

To this end, analysing the data need to be pragmatically studied and introduced with careful

assumptions. Accordingly, it is important to know which of the data analysis methods can be

beneficial for studies that relate to computer science. In literature, studies related to computing

sciences have advocated hermeneutic as a valid approach to infer the phenomenon results [131].

Therefore, the way of solving different scenarios of software project complexity, and the main

aspects that a PM needs to consider while performing the resource allocation, will be under

investigation throughout a hermeneutic method. This method can allow to thoroughly create the

overall structure for optimizing software project time and any other considerable software project

aspects, parameters, and objectives.

Accordingly, the research questions that this study is aiming to answer are as follow:

1. Can a project manager solve the problem presented in the dataset levels accurately and

fast?

2. Does an experienced PM perform better than an automated SSSP approach?

3. Which of the dataset levels suits the complexity of the industrial software project

planning and scheduling problem?

4. Does experience play a key role in knowing the best solution for a project manager?

5. What criteria and properties does a PM look at to solve each complexity level?

6. What are the management objective(s) that the PM need to be included within his/her

problem definition?

To answer these questions, it is important first to explore whether the answers can be found within

the literature, but, if there is no answer for any question, then which method is best to use, and

how it can be used to answer them. The following section provides background on the

methodologies that have been used by different empirical evaluation and validation studies on

software project management and SSSP approaches.

175

6.2 Background

The optimization of the SSSP problem can be classified under explanatory research, by which

more understanding of the current industrial practices for SSSP is required. This can be done by

building the knowledge first throughout a systematic literature review of the published papers that

provide empirical evidences especially on two aspects. The first one is about the features and

information that software development projects offer. The second one is about how experienced

project managers practice, approach, and suggest better solution for real-world project time

estimation problems. This part has already been established by [24] with a systematic literature

review of all the approaches that optimize for different software project objectives. Part of these

approaches presented in [24] have adopted empirical evaluation of their proposals and provided

evidence on how the industry perform solutions to SSSP problem compared to what they have

proposed.

Only four studies are found by [24] that have performed empirical experiments and evaluation.

These studies have employed a representative sample of PMs from the industry or Information

Technology (IT) students to test how they perform and provide solution to a predefined SSSP

problem scenario compared to their optimized solutions. Qualitative analysis was found by [24]

that mainly used by these studies to conclude of which solution between manager’s intuition and

the optimized approach outperforms the other. The criteria used by [24] to investigate these

studies are the number of subjects, their experience, number of sessions used for the experiments,

duration of each session, and the project attributes and objective.

The first study presented by [24] is the one in [93]. This study used only two senior project

managers to validate their approach in a single session. The experiment session in [93] described

by [24] as to capture the way of assigning the resource to software project tasks with consideration

of skills within three hours limit. Another study presented by [24] is the one in [16]. This study

used 16 graduate students, each of which is asked to perform an allocation that can provide a

cheapest team and least schedule time for the software project scenario provided to them. The

study presented in [16] used four sessions to cover all the participants depending on their

availability. The third study presented by [24] is the one in [132]. It has three project managers as

study subjects, however, nothing is mentioned about their experience. Their study is performed

by a single session that lasted for four hours. They asked their subjects to perform three different

allocations with different team sizes that maintain high team productivity and low cost. The fourth

study presented by [24] is the one in [133]. This study used three managers too to validate their

176

proposed approach. They made individual meetings with each PM, and each meeting had four

hours’ time slot.

Four main findings related to these studies were listed in [24]. The first finding is that the

organizations are prone to immaturity of measurement to use, with no clear development process

to follow. The data used to validate the approaches are a poor institute for real-world data. In

addition, studies that under their investigation have too few representative subjects. Moreover,

the empirical evaluation done by the studies mentioned above have shown that the automated

SSSP approaches outperform the solution performed by experts.

Another study later than [24] presented in [23] performed an empirical evaluation to show the

difference between the solutions of their proposed approach and their study subjects. They have

recruited 16 project managers with around four years of experience each. They have provided

those subjects with the data they used to test their automated approach and the mean of their

results are then compared with the mean of the approach’s outcomes. The main findings from

their experiment again is that their approach outperform the solution provided by the experts.

In addition, they have performed a pilot study to qualitatively survey the real needs of a software

organization. The aim of their survey is to capture the aspects that managers from industry

consider while performing resource allocation and scheduling, and whether the different

constraints and objectives used within their approach are suitable for project managers’ needs

from an automated approach. The findings from their survey are that managers consider reducing

the amount of parallel work of each developer as much as possible, with an intention to minimize

project time span. In addition, they found that with a high importance for project managers, is to

make sure that each resource with his/her skillset fits to the task(s) that (s)he will perform.

In general, surveys and questionnaires are used in studies that have performed empirical

validation of their proposals as in [93]. The responses of their subjects are qualitatively analysed

to provide evidence of their solution quality. These studies however lack detail of the research and

analysis methods used. These methods, how they have been used, and the results of applying them

to experiment with and evaluate SSSP within industrial settings are provided in the next

Section 6.3.

6.3 Methodology

To perform this study, identification of main steps, methods, and procedures was made,

which all are established as a framework and protocol for the participants and the

researchers in this study to follow depicted in Figure 36.

177

Figure 36: Methodology of the Industrial Evaluation Study

As can be seen in Figure 36, the industrial settings evaluation study starts by recruiting subjects

from software organizations. At this stage, the subjects will be recruited from our industrial

partners using a direct recruitment method. The main recruitment criteria is to have a PM with at

least five years of experience in managing software projects, to gain by his/her cumulative

experience more in-depth knowledge about the important aspects that should be covered while

managing HRA in software projects and their preferable way of doing it. More demographic

information about the subjects are provided in Section 6.4.2.

178

This study is planned into two phases depicted in Figure 36. The outcomes from both phases are

quantitative and qualitative research data. The analysis of the data will be performed by employing

quantitative and qualitative methods. The first phase involves quantitative data analysis methods

for examining the solutions of the recruited PMs in solving different resource allocation problems

depicted in Figure 36. These resource allocation problems are the first four scenarios of our

datasets in Section 3.4.2. These scenarios will be sent to the subjects so they can complete them

in their own time and send them back. The responses of the subjects will be then stored in our

research database. This phase is detailed in Section 6.4.1.

When the subjects will be asked to provide their answers in the first phase, they will also be asked

to provide a suitable date and time for the second phase. This second phase encompasses

interviews that should allow to extract more information about the subjects’ responses from the

first phase, and to explore their demographic information. Accordingly, once the subject

completes his/her answers to phase one, and his/her responses are analysed, an interview then

should take a place to meet him/her, and to discuss his/her views, opinions, and knowledge about

the scenarios and the whole aspects surrounding software projects –see Section 5 of the Appendix.

The interview with each subject should be individually, and planned for one hour time slot if the

subject’s time permit. The responses of study subjects from phase two should be then extracted

and stored in the research database. Based on the subjects’ responses and extracted data from

both phases, a comparison can be performed between their solutions and the solutions obtained

by the SSSP approaches -presented in Chapter 4-, and interpretations according to the

demographic information can be then made.

The overall objective of this study is to provide basic research that expand our understanding and

knowledge in SSSP problem including the DM activities in this matter more than to provide a

definite solution for it. For this purpose an interpretivist approach [134] is adopted combined with

the interview method to collect and qualitatively analyse the data. However as the study phases

combine quantitative and qualitative data, a mixed method is used to analyse the outcomes from

the study subjects [115]. The data collection methods used are self-completion questions,

interview, interview-structured questions, and a face-to-face or internet-conferencing meeting.

For data analysis two methods are used, which are pragmatic hermeneutic, and statistical analysis.

6.4 Study Experiments

This study was performed upon the approval of the ethical clearance provided in Section 2 of the

Appendix, where in addition the application, description, questions, and protocols of this study

can be found too. Seven subjects were recruited for this study, and before any meetings,

179

interviews, and questions took place, we have sent a consent –see Section 3 of the Appendix- to

each subject. The subjects have requested to remain anonymous in any output from the two

phases. The only thing that we can mention about them is that five subjects are from a large

financial organization that consists of in-house software development departments, one is from

an international software development company, and one is from a start-up company with more

experience from another large software development organization. It is worth mentioning that we

had two cases were a contact person was assigned to organized the communication, meetings, and

interviews with the subjects from the large financial organization.

6.4.1 Phase One: Evaluation of PMs’ Performance in solving

SSSP Challenges

In this phase, the study subjects are asked to answer a set of four self-completion questions. Due

to time limitations and availability, the subject can chose when to complete these questions and

send them back by email for analysis. This set encompasses four SSSP scenarios corresponding to

the classes and complexity levels discussed and solved in Chapter 3. The subjects in this part are

asked to provide their best allocation and estimated project time span according to the resulting

allocation schedule, and the time that they consumed to solve each question. As the scenarios’

data provided to subjects are the same as those used for the SSSP approaches evaluation, this will

allow us to demonstrate whether the subjects perform the allocation in a similar way to the

approaches, and to infer the factors that might play a key role in contributing to good quality

results from the subjects.

Findings and Results

One of the subjects (D) did not provide answers to this phase’s questions, and asked to proceed to

the next one. The reason given by the subject for this matter is the absence of real factors that

these scenarios did not include such as the description and details about the intended software to

be developed as well as the roles that are required for a single team to perform the project

activities. However, the subject claims that it can be seen within the large size companies’ projects,

similar to the one presented in scenario four, where tasks, dependencies, skills, and productivity

are all that a PM would consider while performing the allocation. For details on the scenarios

provided to the subjects the reader can refer to Section 3.4.2.

In addition, another subject (M) has only provided answers for the scenarios but could not proceed

to the next phase. The problem was the time availability and implication of the different time zone,

as the subject is constantly traveling. The solution provided by each subject in this study of

180

estimated project time span and the time consumed to solve each scenario are presented in the

following Table 41.

Table 41: Study Subjects Responses

Table 41 presents the subjects’ responses who participated in this phase for PM performance

study. As their identity remains anonymous, letters are used to differentiate between the subjects’

identity in all the associated tables and statements. This table moreover includes each subject’s

answers of estimated project time, the time consumption, and allocation method (s)he adopted to

solve each scenario. The allocation methods that each subject adopts to solve the scenarios differ

P
ar

ti
ci

pa
nt

 N
am

e
D

T

N

C

S
E

M

Scenario1
Ti

m
e

P
er

fo
rm

an
ce

/M
in

ut
es

N

A

7

6
0

1

5

2
0

2

0

2
2

M
in

 S
ol

ut
io

n
-D

ay
s

N
A

8

8

8
1

1

1
1

.5

1
1

1
.5

1

1
1

.5

1
1

1
.5

A
llo

ca
ti

on
 M

et
ho

d
N

A

D
yn

am
ic

te

am
s

D
yn

am
ic

te

am
s

R
ig

id
 t

ea
m

s
w

it
h

 P
er

ce
n

ta
ge

in
d

iv
id

u
al

s,
 n

o

si
m

u
lt

an
eo

u
s

w
o

rk
s

Tw
o

 r
es

o
u

rc
es

to

 e
ac

h
 t

as
k

D
yn

am
ic

te

am
s

Scenario2

Ti
m

e
P

er
fo

rm
an

ce
/M

in
ut

es

N
A

1

0

6
0

4

0

5
0

6

0

4
4

M
in

 S
ol

ut
io

n
-D

ay
s

N
A

8

7

8
2

4

1
2

.5

4
1

2
4

4
2

1
1

1
.5

A
llo

ca
ti

on
 M

et
ho

d
N

A

D
yn

am
ic

te

am
s

D
yn

am
ic

te

am
s

R
ig

id
 t

ea
m

s
w

it
h

 P
er

ce
n

ta
ge

in
d

iv
id

u
al

s,
 n

o

si
m

u
lt

an
eo

u
s

w
o

rk

R
ig

id
 t

ea
m

s
D

yn
am

ic

te
am

s

Scenario3

Ti
m

e
P

er
fo

rm
an

ce
/M

in
ut

es

N
A

1

5

7
5

4

0

3
0

3

0

2
8

M
in

 S
ol

ut
io

n
-D

ay
s

N
A

1

0
4

1
0

4
1

3
2

1
3

2
1

3
2

1
1

7
.8

A
llo

ca
ti

on
 M

et
ho

d
N

A

D
yn

am
ic

te

am
s

D
yn

am
ic

te

am
s

R
ig

id
 t

ea
m

s
w

it
h

 P
er

ce
n

ta
ge

R

ig
id

 t
ea

m
s

R
ig

id
 t

ea
m

s
D

yn
am

ic

te
am

s

Scenario4

Ti
m

e
P

er
fo

rm
an

ce
/M

in
ut

es

N
A

1

7

8
0

6

0

7
5

7

0

5
8

M
in

 S
ol

ut
io

n
-D

ay
s

N
A

2

4
8

2
1

0
1

1
8

8
4

7
8

.5

4
4

2
4

7
9

A
llo

ca
ti

on
 M

et
ho

d
N

A

D
yn

am
ic

te

am
s

D
yn

am
ic

te

am
s

R
ig

id
 t

ea
m

s
w

it
h

 P
er

ce
n

ta
ge

R

ig
id

 t
ea

m
s

R
ig

id
 t

ea
m

s
D

yn
am

ic

te
am

s

181

from one to another, and some have even used different methods to each scenario. When the

allocation method is “dynamic”, this means that the subject has allowed a team to change its

members from one task to another. “Rigid team” on the other hand, is when the team has its

members from the start of the project working together till the end without any changes to its

members. “Percentage” moreover, is when a resource is working simultaneously on multiple tasks,

so each task has a percentage of his/her working time dedicated for completing this task. Another

type that has been used by one of the subjects is individual allocation that considers allocating

only one resource to each task. Moreover, another allocation was also made by allocating two

resources to each task.

The overall inferences from the results shown in Table 41 can help to understanding the subjects’

behaviour corresponding to each scenario. From Table 41, it can be seen that as the scenarios’

level increases from one to four, the subjects in general spend more time to solve that scenario

than the one before, leaving scenario four taking the highest time to solve. It is also noticeable that

both T and N subjects were able to provide good quality answers as their project time estimate is

too close to the optimized (optimal) one. It is interesting to consider why those two subjects were

able to provide such good answers. This situation shows why the work for this thesis has

supplemented phase one by the second phase of interviewing subjects to gain more explanation.

In addition, it can be seen that the subjects for scenario three have close results to the optimal one

as by subject C, S, and E with 132 days, and to some can be even more identical to the optimal one

such as subject T and N with 104 days. This reflects the simplicity of the scenario’s attributes and

how the subjects are familiar with this situation so they have responded well to this scenario. It

can be seen too that the dominant allocation method adopted across the subjects’ answers is the

dynamic team method.

It is noteworthy that some subjects, were not only trying to minimize project time, but they were

also trying to balance the allocation of twelve resources over the whole project, even with the

dependencies between these WPs. This can be seen over the solutions of subject C, S, and E. For

instance, subject S have created a list, titled “age allocation”, that provides the percentage of the

work load, having the WP’s effort divided by the overall project effort, over the number of

resources. Subject S used this list to know how many resource (s)he should assign to each WP. By

using this way of allocation while balancing the more skilled resource to the most fitted WP, it

could end with the result of subject C having the least skilled and productive for a WP that has a

very high estimated effort amongst the others.

182

Analysis of PMs and SSSP approaches’ solutions

Comparing these results with the ones obtained by the nine SSSP approaches, one can see how in

some cases some of the PMs have performed the resource allocation and project scheduling

similar to the approaches, and in others the PMs have performed badly. For instance, if we look

at the best SSSP approach like DiPenta01 for level one and the best PM’s result by subject N for

the same level of (scenario 1), it is obvious that the subject was able to provide a good quality

answer similar to the one of DiPenta01. However, the subject has consumed of one-hour time to

find this answer. For the same level, in addition, five subjects have provided bad solutions, such

as the answer of subject M with 115.5 days of estimated project time. The answer of this subject

was based on having all the tasks starting at the same time where a single resource assigned to

each, and for cases of a large task size such as task 2, 3, 4, and 5, two resources are assigned.

Therefore, the estimated project time defined by the subject is the maximum time length among

all the tasks with 115.5 days of task 2. It is noticeable that the approach in Kang01 has provided

exactly the same estimate as those PMs.

For level two, we can see that subject E has performed badly too providing 442 days of estimated

project time. The subject has created the resources plan with a static view of resource allocation

regardless the precedence relation between the project tasks that can allow for a dynamic

allocation to be used. For instance, the subject’s plan has misused the resources who are assigned

to proceed task(s) by being idle till the precede ones are finished. The subject has assigned three

resources for task 2, two resources for task 3, two resources for task 5, and a single resource for

each of the other tasks. This can show clearly how subject E had a static view of the resource

planning, where resources are distributed to tasks without any care of schedule. It is noteworthy

that none of the SSSP approaches described in Chapter 4 has provided similar to this bad estimate.

The worst estimate provided for this level of complexity is by Minku01 of 109.17 days, which is

clearly show how a SSSP approach can help with resource planning and project time estimation,

as PMs with years of experience are struggling to provide similar estimate.

For level three, the PMs were able to provide much better estimate than the SSSP approaches, as

this level requires only a direct matching of resources’ skillset to tasks. The SSSP approaches, on

the other hand, have provided a very fast estimate to project time. However, these estimates are

very poor if we compare them to the PMs and optimal ones. So, for this level we can say that the

PMs can outperform the approaches. Nonetheless, the worst project time estimate can be seen by

three subjects’ (C, S, and E) solutions of 132 days. This poor estimate can be explained by the

solution that subject S has provided. This subject has created his/her schedule by the assumption

183

of making the tasks work in parallel and assigning the competent resources who are possessing

the required skill(s) to each task. As the project has four skillset categories, the tasks are divided

by these categories, where each particular skillset is required by two tasks. On the other hand, only

three resources possess the required skill(s) for each type. The subject’s decision was then on

assigning two competent resources to the task that is larger in size among the set, and the third

resource to the smaller one. Noteworthy that this has made the subject leaves task 4, which is

smaller in size compared to the one that requires the same skillset but larger than many of the

other tasks, assigned to a single competent resource. This has accordingly led to the longest time

estimate among the parallelised tasks of 132 days.

For level four, both SSSP approaches and PMs have provided similar estimates, where the

performance can be the key subject that shows the difference between the approaches and PMs.

In this case, it is obvious that the SSSP approaches are able to provide much faster estimate than

the PMs. However, if we look at the best estimate among the PMs and approaches, we will find

that one of the PMs (Subject N) has provided much better estimates than all the other approaches

and PMs with 210 days of project time. On the other hand, a very bad estimate among the PMs’

can be seen by subject C, with 1188 days of project time. This estimate is based on distributing the

resources with a percentage for participation to project tasks. The estimate by this subject had in

general two resources assigned to each task, except task 5 with one resource. In addition, the

resource who is possessing the required skill(s) was assigned to task 3 with 50% participation and

the other who don’t possess these skill(s) was assigned to this task with 100% participation.

Moreover, the resources assigned to task 2 are possessing the required skills, however, they have

been assigned with 50% participation to each. For task 4, one of the resources assigned is

possessing the required skill(s) and the other is not, and both were assigned with 50%

participation. For task 6, the same theme of resource allocation to task 3 and 4 is used with two

resources that one is possessing the required skill(s) and the other is not, but both are participating

in this task with 100%. For task 5, a single resource is assigned to this task however, with 50%

participation. The time estimate for tasks 3,2,4,6, and 5 are 300, 223, 240, 45, and 380 days

respectively. While these tasks forms the critical path of the project schedule, these estimates have

all together formed the project time estimate of 1188 days.

This survey has shown how hard the SSSP problem is for a PM to consider its all parameter while

focusing on the optimal project time target. The main theme that these PMs have used is balancing

the amount of resources assigned to tasks without consideration of the idle time that could this

assignment cause on the overall project time.

184

To express how an average PM would probably perform in solving the scenarios is to average the

subjects’ solutions. The following Table 42 summarizes the average of the subjects’ responses

compared to the optimized (optimal) solution provided for each scenario in Section 3.4.2. Note

that the average of the responses is calculated based on six subjects as the seventh one has no

response recorded for this phase.

Table 42: Evaluation of Study Subjects’ Performance

PM
challenges

Attributes
AVG of Subjects
solutions

Optimal
Solution

Scenario1
Time Performance/Minutes 24.17

80.33
Min Solution -Days 102.5

Scenario2
Time Performance/Minutes 44

80.33
Min Solution -Days 257.83

Scenario3
Time Performance/Minutes 36.3

104
Min Solution -Days 120.3

Scenario4
Time Performance/Minutes 60

204.31
Min Solution -Days 507.58

For each scenario, two main attributes are depicted in Table 42. The first attribute of “time

performance” presents the average of time consumed by the subjects to solve the scenario

represented in minutes. The second attribute of “min solution” is the average of estimated time

span of the corresponding project scenario, represented in terms of days. It can be seen from Table

42 that scenario one and three on average are simpler for a PM to solve than when dependencies

and/or skills and productivity, represented by scenario two and four, have to be taken into

consideration. From Table 42, it can be seen that the subjects were able to provide answers for

scenario four, which is a simple project in size, within 60 minutes on average, however, their

average of estimated time span is the double of the optimal one with estimated 507.58 days to

complete the project. That shows how hard the SSSP problem is. A question has arisen as to why

for those two scenarios the subjects were able to provide good answers. To explore more about the

subjects’ knowledge and background, and their demographic information the following

Section 6.4.2 discusses these aspects.

6.4.2 Phase Two: Follow-up Interview for Qualitative Study

This phase is performed by interviewing the subjects with at least one hour time slot for each. The

interview is carried out according to the subject’s meeting preferences either through face-to-face

or internet-conferencing meeting. Three subjects were unable to have face-to-face meeting due to

their location that is far from University of East Anglia (UEA).

185

The interviews combined follow-up questions within the interview-structure, and opened new

room for discussion. The interview questions can be found in Section 5 of the Appendix. The

results of these questions are discussed according to the questions’ categories, which are divided

into seven. These categories are:

 The organizational size level that the subject represents.

 The subject’s project management experience.

 The project attributes that the subject thinks are important.

 The allocation method that represents what the subject practices.

 The considerations that the subject thinks a PM has to think about while forming a team.

 How the subject do his/her project scheduling. and

 The objectives that the subject thinks it represent the management goal(s).

For more details on these categories and their detailed questions the reader can refer to Section 5

of the Appendix. Note that subject (M) did not complete with us in this phase, and we were unable

to explore any of his/her demographic information in this phase. In addition, subject T, N, C, S,

and E are all from the same organization, but from different geographic branches’ locations. The

outcomes from interviewing the six subjects for the organizational level and project management

experience categories are presented in the following Table 43.

186

Table 43: Responses of Study Subjects for Organization Level and Experience Interview Categories

From Table 43, it can be seen that the main participants were from large size organizations.

However, their years of experience vary from one to another. The least experienced in

management can be seen in the table as subject D, whereas subjects T and N are the most

experienced amongst them all with four years difference between them. It can be seen too that the

subjects who represents large organization with large project and teams’ size are combining agile

and waterfall models in their projects. This confirms the observation reported in [130] that the

Su

b
je

ct
s

St
u

d
y

A
sp

ec
ts

D

T

N

C

S
E

O
rg

an
iz

a
ti

on
 s

iz
e

le
ve

l
M

ed
iu

m
 s

iz
e

La
rg

e
fi

n
a

n
ci

a
l

o
rg

a
ni

za
ti

o
n

La
rg

e
fi

n
a

n
ci

a
l

o
rg

a
ni

za
ti

o
n

La
rg

e
fi

n
an

ci
a

l
o

rg
a

ni
za

ti
o

n
La

rg
e

fi
n

an
ci

a
l

o
rg

a
ni

za
ti

o
n

La
rg

e
fi

n
an

ci
a

l
o

rg
a

ni
za

ti
o

n

Experience
 Ye

a
rs

 o
f

PM

ex
pe

ri
en

ce

6

2
6

3

0

1
7

1

0

1
7

D
ev

el
op

m
en

t
m

et
h

od
ol

og
y

A
g

ile

A
g

ile
 a

n
d

w

a
te

rf
a

ll
W

a
te

rf
a

ll
A

g
ile

 a
n

d

w
a

te
rf

a
ll

A
g

ile
 a

n
d

w

a
te

rf
a

ll
A

g
ile

 a
n

d

w
a

te
rf

a
ll

P
ro

je
ct

 S
iz

es

M
ed

iu
m

 s
iz

e
te

a
m

La
rg

e
a

n
d

m

u
lt

ip
le

te

a
m

s

La
rg

e
a

n
d

m

u
lt

ip
le

te

a
m

s

La
rg

e
a

n
d

m

u
lt

ip
le

 t
ea

m
s

La
rg

e
a

n
d

 m
u

lt
ip

le

te
a

m
s

La
rg

e
a

n
d

 m
u

lt
ip

le

te
a

m
s

187

large organizations are in favouring of using hybrid methods, which combines different

development methodologies as waterfall with other(s), over the agile approach.

The responses of subjects for the aspects of project attributes and resource allocation are depicted

in the following Table 44.

Table 44: Responses of Study Subjects for Project and Resource Allocation Attributes Interview Categories

Subjects

Study Aspects D T N C S E

P
ro

je
ct

 A
tt

ri
b

u
te

s Productivity
Commitment
ratio

Analogy

Analogy,
learning and
synergy with
others

Story point,
and
personality
between the
team

Story point,
and
personality
between the
team

Story point,
and
personality
between the
team

Scenario
relevant to the
organization

Four Four Four Two Two Two

Important
Attributes

As presented
in scenario
four

As presented
in scenario
four

As presented
in scenario
four

As
presented in
scenario two

As
presented in
scenario two

As
presented in
scenario two

P
ro

je
ct

 R
es

o
u

rc
e

A
llo

ca
ti

o
n

 Resource
Allocation
Method

Leave each to
pick from a
list of tasks

Create
different
permutations
of agile team
according to
their velocity

Dynamically
change
resources from
one task to
another as the
need for skills
and proficiency

Form a
single team
that works
coherently
for a single
target

Form a
single team
that works
coherently
for a single
target

Form a
single team
that works
coherently
for a single
target

Nature of
team
assignment

Individuals to
project

Dynamic
teams

Dynamic
teams

Rigid teams Rigid teams Rigid teams

What do you
think of
dynamic
assignment

This is how it
works in
reality

This is how it
works in reality

This is how it
works in reality

This is how it
works in
reality

This is how it
works in
reality

This is how it
works in
reality

From Table 44, the presence of resource productivity can be seen among the subjects’

interpretation. However, each has represented productivity according to his/her practice. For

example, subject N has described productivity as the analogy of a resource compared to his/her

colleagues with respect to learning speed and synergy with the team members. Others have almost

the same concept as they represent productivity by the speed of developing story points, and in

relation to other team members, as with subjects C, S, and E.

In addition, it can be seen from the Table 44 that half of the subjects claim the existence only of

scenario two, which only consider dependency between project tasks. It is worth mentioning that

they all understand that the resources they have in their organization or company are sharing

similarity in terms of skills and productivities, as the HR department applies standards and quality

check. However, the other half of the subjects support the existence of scenario four as a reality of

188

complexity level they face within their projects, and they do believe that the resources differ in

their skills and productivity. What is also important to mention, that all the subjects do not use

productivity as a factor while they staffing and scheduling their projects.

The method adopted by each subject differs from one to another for their project resource

allocation. Subject D leaves the resource to decide their tasks. For subject T, (s)he allocates the

resources to teams after creating different permutations so (s)he can decide which one is better

based on the team velocity. Subject N allocates his/her resources to teams according to their skills,

but when the expertise is required for another team working on another task, they can change

teams’ members. A consensus can be seen with subjects C, S, and E to allocate resources to a single

team where the personality factors plays the core role to create a coherent team, and to avoid any

conflicts between the members. The nature of their teams can be seen in three different types. A

single team that each member works on his/her own task(s) for the same project as for subject D.

Another type is when the resources assigned to a single team that will perform having the same

members without any changes from the start of the project till the end. The last type is when the

teams can change their members from one task to another based on the expertise needed for new

tasks. This type of team formation however, has a very high chance to occur in software projects

as all the subjects reported that in the last question of the resource allocation category.

In addition to the previous categories, team consideration, and project scheduling aspects were

also subjects for discussion with the study subjects. The responses from each subject towards these

aspects are presented in the following Table 45.

189

Table 45: Responses of Study Subjects for Team and Scheduling Interview Categories

Subjects

Study Aspects D T N C S E
Te

a
m

 C
o

n
si

d
er

a
ti

o
n

Assignment
Criteria

Cross-
functional
team. Not
sharing same
expertise

Behaviour,
performance,
and technical
skills

Cross-
functional
and technical
skills

Cross-
functional
team. No
sharing
between
multiple
tasks. Scrum
master
provide us
with the very
skilled to
project to
make the
development.

Cross-
functional
team. No
sharing
between
multiple
tasks. Scrum
master
provide us
with the very
skilled to
project to
make the
development.

Cross-
functional
team. No
sharing
between
multiple
tasks. Scrum
master
provide us
with the very
skilled to
project to
make the
development.

Teams’ Skills
Nature

roles
Roles, and
technical skills

Roles, and
technical
skills

Roles, and
technical
skills

Roles, and
technical
skills

Roles, and
technical
skills

P
ro

je
ct

 S
ch

ed
u

lin
g

 A
llo

ca
ti

o
n

How do you
Recognize
Dependency

According to
money cost
of each task

Spikes of story
points

Similar to the
scenarios
where also
requirements,
legislation,
and other
outside
aspect we
consider

dependencies
with different
respects to
the internal
and external
aspects

dependencies
with different
respects to
the internal
and external
aspects

dependencies
with different
respects to
the internal
and external
aspects

Single or Multi
Project(s)

The problem
still the same

Single as
dependency
will make it
similar

Multi-project,
with
consideration
of availability

Multi-
projects

The same as
how it works
for a single
project

single

What do you
think of
Dependency

Not always
the case

We try to
avoid as much
as possible

Resource
availability

Internal and
external
aspect such
as resource
availability
with respect
to other
projects

Internal and
external
aspect such
as
The
percentage of
your resource
availability
with respect
to other
projects

Internal and
external
aspect of
outsourced
components,
legislation,
and risk
mitigation

Table 45 above shows the aspects discussed with the subjects regarding how they team up their

resources and what criteria they use to do so. For this matter the subjects have demonstrated their

team formation criteria by showing what skills they consider. Broadly speaking, all the subjects

consider cross-functional teams that combine different roles supported by technical skills as the

development needs specific languages and technologies to be used. In addition, Table 45 shows

the outcomes from the discussion with the subjects regarding project scheduling. The first

question in this category is about how the subjects recognize dependency between project tasks.

The subjects have different criteria in this regard. For instance, subject D do the schedule for the

190

low cost/high revenue task to be done first, and then iteratively complete the whole product.

Others see the real dependency that connects one development task according to stories or

requirements to another as precedence relationship between the tasks. This question of schedules

is planned to be followed by whether the subjects think dependency should also include multi-

project environment while scheduling and staffing a software project. Two subjects were explicitly

requiring the consideration of multi-project environment explained by the availability of

resources as they can be allocated to another project(s). Other subjects do not see the difference

as the schedule should include dependencies between the projects and their interdependent tasks.

What is noteworthy to mention is that subject T avoids inter-dependent projects as much as

possible due to the rework that can potentially occur during the development.

The objective(s) that the subjects consider while they are staffing and scheduling their projects are

presented in the following Table 46.

Table 46: Responses of Study Subjects for Management Objectives Interview Categories

Subjects

Study Aspects D T N C S E

P
ro

je
ct

 M
a

n
a

g
em

en
t

O
b

je
ct

iv
es

Is project
time the
ultimate
objective

yes yes No yes yes No

What other
objectives
for your
projects

None
Customer
satisfaction
and Quality

Cost, and
time

Quality None
Cost, time,
and quality

Should cost
be
considered

No Yes Yes yes No Yes

How do you
do costing

Based
on time

Based on time
Based on
time

Based on
time

Based on
time

Based on time

Table 46 presents the answers of the subjects regarding the objectives they consider for their

software project management. This category has four questions where the first addresses whether

the subjects agree with time being the ultimate objective. The second question addresses

additional objectives that the subjects think are also important to consider. The third question

captures whether project cost in particular should be considered if the subject did not address it

in his/her answer to the second question. The fourth question addresses the method that the

subject use to estimate project cost.

Four out of six subjects consider minimizing project time as the ultimate objective, two of which

do not include any other management objective to their projects. The reason behind their opinion

191

is that project contracts, either for internal within the organization, or external for a customer,

place great emphasis on the deployment and delivery date of software projects, which limit the

project time more than any other management goals. This can be summarized as stated by subject

S “To finish the project on time and as planned is the most important thing” and as subject D

stated too that “The cost is time”.

It can be seen from Table 46 that some of the subjects have included more objectives than project

time minimization in their answers. Four out of six subjects see that project cost minimization

should be considered within the software project management decision. However, only subject N

and E have explicitly mentioned project cost in their answer. When the subjects are asked by the

researcher on how they do cost estimation, a consensus can be seen among them as they all have

stated that cost should be calculated based on the amount of time spent by the resources to develop

the software. This however can be captured by the utilization of resources that takes into account

resources’ availability, in which the amount of usage of those who are experts and have their

salaries higher than the others will reflect on cost with a positive relationship. For this matter

subject D added that “software project’s cost cannot be affected by resource allocation, it depends

on how many months and experts the development of product will take and that should include

the running cost of that department“.

In addition, three out of six subjects have added maximizing product quality in addition to project

time. Moreover, subject T has added customer satisfaction to the management objectives. Despite

the fact that customer satisfaction is a bold one that might encompass all the other discussed

objectives, these management goals are crucial to PM to maintain, however it is hard to balance

between them as they are conflicting each other. To clarify how it works within an organization to

provide identification to all these objectives, subject S stated that “quality and cost are something

that happen behind the scenes, and are agreed before the project starts, so as a project manager I

am left to maintain the project time and schedule more than any other things”.

6.5 Conclusion

The industrial settings evaluation presented in this chapter has demonstrated the complexity of

managing software projects and the variability of the attributes, development methods, and

resource allocation approaches adopted by the PMs. Questions that gradually emerged throughout

the study helped to identify and shape the study aims. Our first aim is to define, and search the

attributes, aspects, and parameters that the PM uses in staffing and scheduling software projects.

The second aim is test the suitability of the dataset used in this thesis, and its levels. The third aim

is to compare between the study subjects’ solutions against the same optimal (optimized) ones

192

used to evaluate the outcomes of SSSP approaches. The fourth aim was to search the possible

trends and future directions for this research field. Meeting the above aims will help us learn about

the suitability of SSSP approaches for industrial adoption.

The aspects of staffing and scheduling software projects

In meeting our first aim, we have identified by our study subjects that the task dependency,

resource’s skillset and productivity are important to be considered by the PM while staffing and

scheduling a software project. Moreover, the resource’s availability for project tasks is another

aspect that has been identified by the subjects, which should be included within the SSSP problem.

The management objectives that our study subjects believed are important to be considered varies

from between only the time span, or the three of time, cost, and quality. Broadly speaking, the

management objectives are to minimize project time and cost, and to maximize the outcomes

quality. However, some of the subjects have made it clear that after the contract agreements

project time is what they left with to manage corresponds with the findings in (p.33) [135].

The precedence relationship between project’s tasks (task dependency) was judged by all the study

subjects as one of the important parameter for staffing and scheduling software projects. Each

subject however believes that (s)he has his/her own expression for this terminology. For instance,

dependency has been illustrated by five subjects as waiting for other work to be delivered so the

task can be started, whereas the other subject understands the dependency as a priority where the

task with higher priority should be performed first. Despite these expressions it can be seen that

they are all leading to the same definition of which task should be performed before the other, and

that shows how a consensus across the subjects is for dependency definition.

In addition, the human resource skillset has been recognized by three subjects as an important

attribute to consider while allocating the resources to a software project. It is important to mention

that those subjects are programme managers by which their job combines different services,

departments, and projects into a consolidated programme with many project managers to guide.

Moreover, variability of a resource’s productivity is also found by those subjects as a factor that

they do not consider for staffing, but it is a reality that should not be ignored. Subject E stated on

this matter that, “skills and productivity is never represented as in the scenarios. However, we

have a performance check measure on each period of time for each employee so that we make sure

that everyone is up to the standards of software development projects”. Additionally, subject S

stated that “we ask for a resource and the scrum master provides us with the most suited to and

productive for the task(s) we need him/her for”. Furthermore, subject S also added, “We prefer

193

good plus resource than an expert, so we can ensure cohesion between the team and no one can

have his/her influence on the rest”.

In addition to the previous factors, resources’ availability has been identified by the study subjects

for its importance. This attribute was addressed by two PMs on how it plays a critical role and has

affected the resource allocation, staffing, and project scheduling in a multi-projects environment.

This attribute moreover, has an influence on project time and resource’s participation percentage

to different tasks and projects, which can lead to negative implications on the overall project

progress. Despite the importance of this factor, the aim in this thesis is to evaluate the SSSP

approaches that have considered single project to optimize its time, which accordingly leads us to

ignore this factor at this time.

Which of the scenarios are most likely to represents the PMs’ project complexity?

In order to investigate the suitability of SSSP approaches for our second aim, we should test the

suitability of their inputs. This step can be done by validating our datasets by PMs from software

industry. We have met this aim by the responses from our study subjects as they judged two of the

datasets to be similar to what the industry faces. This has been established by knowing which

scenarios are representing their problems.

Three of the subjects have seen their project management problem demonstrated only by scenario

two as they already assume that their resources are skilled, and productive ones. However, from

their statements when productivity was under discussion, they all agreed that human resources in

software projects do differ in their productivity and skillset they possess from one to another, and

that those two attributes have to be considered while managing software projects. Therefore, the

project complexity level that draws the PM’s main attention is that represented by the scenario

that includes multiple interdependent tasks, and resources’ skill set and productivity attributes.

However, a problem seems to arise as some have refused to use any approach that depends on

effort estimation, nor size of software project task, and they claim that this might prevent them

from using any approaches with outdated effort measures stated by subject D.

While the time equation that SSSP approaches adopted are mainly depending on the division of

the amount of work over the amount of progress that can be achieved in a unit of time, this

representation can easily be adjustable to different working units as the PM needs. For instance,

if the main development method that the organization uses is agile, then the unit of measure can

be easily adjustable to user-story, story point or even micro-services. Therefore, the measures that

a PM can use with a SSSP approach can be adjustable to these kinds of units. Accordingly, there

194

is no need to change the foundation of these approaches since the time measurement stays the

same.

How did the PMs perform in solving the scenarios?

In meeting the third aim and answering question 1, 2, 4, and 5 in Section 6.1 we can conclude the

following. Study subjects who participated were PMs with 6 to 30 years of experience. It appear

to be that the more experienced PM can perform better than an average one, and similar to an

automated SSSP approach on the problems presented in our particular datasets. Less experienced

subjects spent more and more time on solving the scenarios for less quality solutions as the

complexity level increases. This shows how experience plays a critical role in finding optimal or

near optimal solutions to SSSP problem.

Scenario one and three appeared to be straightforward for PMs to find their near optimal

solutions. However, some of the study subjects struggled to provide a good quality solution to

these scenarios. Moreover, as the complexity increases some PMs were unable to find near optimal

solutions. The time performance of PMs in solving the scenarios, ranges on average for the

simplest with 24 minutes, to the hardest with 60 minutes. Having in mind that the scenarios

combine simple project with eight development tasks and twelve resources, this study has

demonstrated how hard SSSP problem is, especially when scaled up with more tasks and

resources.

In addition, it is important to capture the difference between the PMs’ practices by which it is

noticeably that different allocation and team formation methods were used by the study subjects

and the method(s) adopted differ from one PM to another. For instance, some PMs have assigned

rigid teams to project tasks where others just dynamically changed (shift) members from one team

to another over the progress of project tasks and time. This practice however, can contribute to

boosting the resources’ productivity if the resources are able to select what they think is suitable

for them as reported by [127].

Moreover, it is interestingly to observe how some of the subjects have assigned some resources

with percentage to work on simultaneous tasks and teams attempting to increase the number of

workers and to reduce the amount of development time on these tasks. This practice however has

been addressed by many researches as in [120, 121] on how it can reduce resource’s productivity

and project progress, and is unlikely to produce good quality solutions. In this matter, it can be

concluded as subject D stated that “it is hard for a resource to work simultaneously on different

tasks together”. Therefore, adopting the dynamic allocation with consideration for singularity of

195

assignment at a time for each resource could help especially in an environment where dependency

of tasks, skillset, and productivity of resources should be considered.

The possible trends and future directions for this research

For our fourth aim, we have found that the subjects’ responses varies in terms of the resource

allocation method, criteria of resource selection, and project properties they consider while

allocating the resources to project tasks, which worth more exploration by a future work. This can

be linked to investigate why the more experienced PM, as subjects T and N, tends to provide such

high quality solutions, and to imitate their choices by an optimization approach. Moreover,

resource availability is an aspect that worth to investigate for the possible ways to integrate it

within the SSSP problem.

196

Chapter 7 Conclusions and Future

Work

The work in this thesis initially investigated the optimization of Staffing and Scheduling a Software

Project (SSSP) problem. From the literature, we found that benchmarking and evaluating the

approaches proposed to solve this problem has only been done in the context of a comprehensive

survey and a systematic literature review. Therefore, a complexity classification with datasets

corresponds to this classification were created to contribute to the SSSP literature. In addition, a

process combined with a set of quality and performance measures were proposed. As these

approaches are proposed to solve an industrial problems, nine well-known approaches were under

investigation of their quality and suitability to software industry using the benchmarking process

and the datasets. The insight gained from the findings of investigating these approaches has

contributed in formalizing four team allocation methods into optimization problems. In addition,

an empirical evaluation of Project Managers (PMs) performance from software industry was

performed. Part of this evaluation was to assess the suitability of the SSSP approaches by

validating the datasets used to benchmark and evaluate them.

The answers for the first and second questions outlined in Section 1.4 of the first aim of this

research can be concluded as follow. With no prior knowledge about the SSSP approaches, is there

an automated approach that reliably solves the SSSP problem. Many optimized approaches have

been presented throughout the previous three decades as in [15, 22], and it is important to capture

their potential capability and capacity for different management complexity problems. Work has

been carried out for this thesis in exploring the capacity and capability for nine SSSP approaches.

The findings according to the measurements used for the approaches’ outcomes using MAAPE for

accuracy, and CT score for performance show that for project time problem, some of the SSSP

approaches vary in their outcomes of Estimated Project Time (EPT) and Computation Time (CT),

and the SSSP approaches in [22] and [94] can outperform the others as they are capable of

providing solutions close to the optimal one with reasonable amount of computation time. While

the SSSP approaches are differing from each other, it was important to observe which of the

197

allocation methods adopted by the approaches is capable of providing better solutions. In this

matter, formalization of four team allocation methods into optimization problems was proposed,

and advanced experiments were performed, using uniform stochastic operations and optimization

settings of GA, to capture which of the methods are best at handling complexity level of effort,

dependency, skills, and productivity. The finding from these experiments is that Static Teams with

Queueing Simulator for allocation (STQS) for scenario one and two, and Dynamic Team with

Binary Participation (DTBP) methods, for scenario three, four, and five were good at enabling the

approaches to heuristically search for near optimal solutions.

The second aim of this research was to answer whether these approaches outperform the expert

intuition in solving SSSP problem. Accordingly, an industrial setting study was performed. PMs

were the subjects in this study for experiments and interviews. Four of the PMs work for a large

financial organization, one with a large international software development organization, and the

last one with Start-up Company. Our study subjects have between 6 to 30 years of experience. This

study encompassed mixed-methods to capture different quantitative and qualitative data

important in providing comprehensive knowledge about the study subjects and industry practice.

The experimental part was performed to capture how PMs from the industry would perform for

each scenario defined in the benchmark. As these scenarios are based on the dataset created for

this thesis, the optimal project time was defined for each. There was two subjects that their

solutions were similar to the best SSSP approaches. The key differences identified between those

subjects and the others might have contributed to their high quality solutions. These keys are the

allocation method they have used while solving the scenarios, as by dynamic teams, and

distinguished years of experience they have, for 26 and 30 years. On the other hand, the accuracy

of the solution provided by the SSSP approaches has a negative relationship with the level of

scenario’s complexity. For instance, as the level of scenario’s increases from one to four, the results

were less and less accurate as from 99.9% to 79.3%. In addition, with variability of resources’

productivity implemented in scenario five, none of the approaches were able to handle this level.

The third aim of this research, identified in Section 1.4, was to find whether the SSSP approaches

reflect the real PMs’ needs. For this aim, interviews with PMs were conducted in the second phase

carried out for the industrial settings evaluation study. This study was also designed to explore

based on the subjects’ experience, what aspects and attributes in software projects are important

to be considered by a PM for SSSP problem. Seven categories were the focal points to discuss with

the PMs in the interview. These categories are the organization level they represent, their

experience, project attributes, allocation methods, teams, scheduling, and management objectives

they believed are important to resource allocation optimization. Based on the results from the

198

interviews and the experiments carried out for this thesis, almost all the project attributes are

found important.

Three main attributes discussed by the PMs in the interviews and found important for a PM to

consider for software project optimization are the precedence relationship between project tasks,

resource’s skillset, and resource’s productivity. These attributes are represented in the study

partially by the challenging scenario four and fully represented by scenario five. It is noteworthy

that scenario five was not included within the industrial settings study for two reasons. The main

reason is that although the experiments were intended to challenge the PMs’ capabilities, these

experiments should also respect their time constraints too. The second reason is that the intended

experiments and interviews are carefully planned to capture some targeted issues that can provide

glimpse on PMs’ practices, so it is hard to bring all the scenarios, especially the fifth one, to be

solved by the subjects while a similar can be found in the fourth.

The experiments carried out on the four team allocation methods complies with the findings from

the second phase of the industrial settings evaluation, which implies that the PM should look at

the different resource assignment and team allocation methods that (s)he can use. In this regard,

there was a consensus between the subjects on the dynamic shifting of resources between teams

and tasks especially when a skill is required. Dynamic assignment method has been evaluated with

different simulation of methods, and it was found from the demonstration of the simulations

presented in Chapter 5 that this method can outperform the others and solve the time problem

more efficiently to more advance scenarios.

Project cost, on the other hand, is clearly an important part that should be included within the

optimization problem of resource allocation. However, as searching for the most minimized cost

of resource allocation alternative requires the identification of resources’ salary, the resources who

are possessing the same skillset and doing the same job should have the same salary. Therefore,

for an optimization problem that consider skills as one of the inputs, all the alternatives could

have the same influence on project cost. The datasets used in this thesis moreover, have no

information that can support this part due to the sensitivity of this information to the data

contributors, which can show their key success in resourcing and payment structure. In addition,

many SSSP approaches optimize either for time span or combine multi-objectives problem that

includes project time within. Consequently, uniformalising the comparison problem for a shared

objective –as this was the first intention of this thesis- of time span optimization problem is the

only solution. Therefore, the main focus of the experiments carried out for this thesis was on

project time span minimization using the described project in the datasets. Conforming to this

conclusion the study subjects have stated in reaction to when the solutions of the scenarios was

199

revealed to them in the second phase that the important objective is time to how it can be managed

after the agreement on quality and cost outcomes is established. To this end, it important to

mention that four out of six subjects in the exit interviews stated that time is the ultimate objective

in software projects.

7.1 Overall Findings and Lessons Learned

The overall findings throughout the thesis work are listed in the following bullet points.

 Different methods can be used to allocate human resource in software projects adopted

by the PMs, and yet no specific method can overcome project time optimization problem.

 Teams are the solid base for software development, however, the assignment of team

members can be represented by a rigid or dynamic formation and mainly less experience

PMs tend to use the rigid one to avoid any conflicts.

 The more experienced the PM is, the more (s)he tends to provide better and faster solution

to the problem.

 Complexity levels corresponding to PMs’ projects problem are found by challenging

scenario 2, and 4.

 Corresponding to the discussion made in [130], the work carried out for this thesis found

that large organizations prefer a hybrid approach supported with a traditional

development methodology, such as waterfall.

 Project time span is important to be managed as software cost and quality are issues that

are defined in early project stages and the PM is left to manage the time according to the

stakeholder’s agreement.

 None of the of SSSP approaches has presented their experiments computation time for a

matter of fact and many have failed to report the crucial system capability they used such

as CPU, and memory.

In addition, there are some lesson learned as a result from the experiments and industry settings

evaluation study are:

 It is hard to establish a communication with software industry for data to share.

 There is no available dataset that can be used for this filed of research and many are using

hypothetical data.

 It is hard to bring more than one PM to an interview or experiment due to their work and

time availability constraints, and that’s can make it hard for a researcher to standardise

the experiment interpretations and meanings exactly the same to all subjects. That was

200

the reason for having exit interviews after the experiments, so to make sure that they have

understood and solve the scenarios to the best they can do and as we expect.

 Solutions to labour cost are mainly developed by the optimization approaches as in [93,

136] over time window and activity timing concepts. And this what has stopped us from

including more approaches for SSSP.

7.2 Limitations and Future Work

The overall work carried out for this thesis has shed the light on some areas where improvements

can be made. One of the improvements that needs to be done on the benchmarking side of SSSP

approaches concerns the limitation of the datasets used in this thesis. These datasets present

single problem of a small project with limited variables and information to a single organization,

which can make it harder to conclude their applicability for different organizations and project

scenarios. Moreover, there is a lack of representative datasets that includes the important parts

and project attributes for SSSP optimization and none is freely available. Accordingly, gathering

and collecting data from larger software projects is an important part in this research field to be

made.

Different open source optimization toolboxes have been used by SSSP optimization papers, and

yet no quality and performance information can be found on their outcomes compared against

each other. Therefore, work has to be done on investigating and benchmarking these toolboxes

especially for accuracy and computation time performance compared to the one used in the work

for this thesis.

Moreover, the work carried out for this thesis has included nine approaches for specific problem

comparison, however, work should be made to include up-to-date SSSP approaches in the

benchmarking study. This work should investigate the novelty of the proposed approach and

whether better outcomes are anticipated by the optimized allocation method proposed in that

approach. In particular, benchmarking and comparing between the approaches adopting event-

based, time-line, and time window scheduler are also important to be established to demonstrate

their effectiveness and performance against each other. That includes developing a benchmark

dataset for this particular approaches’ type too. These approaches can help to tackle resource

availability problem by providing, on the project time-line base, when the possible shortage of

resources can happen, and their availability that can be supported by limiting their participation

rate percentage.

201

On the other hand, another improvement that need to be done in the empirical side of software

project time optimization is to expand the study to include different software organizations for

more experimentation and interviews with different PM levels. Unlike the study presented

in Chapter 6, PMs should be asked to perform their allocation to the challenging scenarios with a

proper control so all the subjects have the same level of clarification and explanations, and any

misunderstanding or misleading terminology can be avoided. This can be tackled by allocating

different session dates and times supported by team of researchers to provide uniform description

across these sessions. This should help to whether confirm the findings from the industrial

settings study performed for this thesis or, to explore more different team formation and

allocation practices of PMs, and the different problem representations they consider. More

reliable outcomes with uniform problem formalization to common software projects are

anticipated by this study to help create an optimization tool that can support the PM on his/her

management task. This optimization tool can combine the additional aspects identified by the

industrial settings study subjects presented in Chapter 6. This study concludes four pivotal aspects

important for SSSP optimization approach to consider are cost and time objectives, availability of

resources to each task, multi-project environment, and the formation of cross-functional teams.

Our intention accordingly is to combine these aspects and parameters, and encompasses them

within an optimization approach.

Learning effects moreover, can be another parameter for an optimization approach to combine

within its process for estimating project time span. The relationship between different technical

skills and software development competencies can provide identification of when and to which

task the resource’s productivity can be improved. This consideration of skills and competencies

has been addressed in different incarnation as in [57, 62], however, it has never been addressed

within an optimized approach. Therefore, work has to be accomplished towards understanding

the relation between software development skills and competencies, and the combination of these

skills and competencies with the learning effects into an optimized approach.

202

Bibliography

1. Suarez, L.F. Resource allocation: a comparative study. 1987. Project Management

Institute.

2. Tsai, H.-T., H. Moskowitz, and L.-H. Lee, Human resource selection for software

development projects using Taguchi’s parameter design. European Journal of

Operational Research, 2003. 151(1): p. 167-180.

3. PMI, A guide to the project management body of knowledge, in 5th edn. 2013, Project

Management Institute, Newtown Square, PA.

4. Ruhe, G. and C. Wohlin, Software Project Management: Setting the Context, in Software

Project Management in a Changing World. 2014, Springer. p. 1-24.

5. Ferrucci, F., M. Harman, and F. Sarro, Search-Based Software Project Management, in

Software Project Management in a Changing World, G. Ruhe and C. Wohlin, Editors.

2014, Springer Berlin Heidelberg. p. 373-399.

6. Brooks Jr, F.P., The Mythical Man-Month: Essays on Software Engineering, Anniversary

Edition, 2/E. 1995: Pearson Education India.

7. Otero, L.D., et al., A systematic approach for resource allocation in software projects.

Computers & Industrial Engineering, 2009. 56(4): p. 1333-1339.

8. Chow, T. and D.-B. Cao, A survey study of critical success factors in agile software

projects. Journal of Systems and Software, 2008. 81(6): p. 961-971.

9. Lamersdorf, A., J. Münch, and D. Rombach. A survey on the state of the practice in

distributed software development: Criteria for task allocation. in Global Software

Engineering, 2009. ICGSE 2009. Fourth IEEE International Conference on. 2009.

IEEE.

10. Harman, M. and B.F. Jones, Search-based software engineering. Information and

Software Technology, 2001. 43(14): p. 833-839.

11. Harman, M., S.A. Mansouri, and Y. Zhang, Search-based software engineering: Trends,

techniques and applications. ACM Computing Surveys (CSUR), 2012. 45(1): p. 11.

12. Chang, C., et al. Spmnet: a formal methodology for software management. in Computer

Software and Applications Conference, 1994. COMPSAC 94. Proceedings., Eighteenth

Annual International. 1994. IEEE.

13. Bagnall, A.J., V.J. Rayward-Smith, and I.M. Whittley, The next release problem.

Information and software technology, 2001. 43(14): p. 883-890.

14. Alba, E. and J.F. Chicano, Software project management with GAs. Information

Sciences, 2007. 177(11): p. 2380-2401.

203

15. Minku, L.L., D. Sudholt, and X. Yao, Improved evolutionary algorithm design for the

project scheduling problem based on runtime analysis. IEEE Transactions on Software

Engineering, 2014. 40(1): p. 83-102.

16. Barreto, A., M.d.O. Barros, and C.M. Werner, Staffing a software project: A constraint

satisfaction and optimization-based approach. Computers & Operations Research,

2008. 35(10): p. 3073-3089.

17. Harman, M., et al., Search based software engineering: Techniques, taxonomy, tutorial,

in Empirical software engineering and verification. 2012, Springer. p. 1-59.

18. Chang, C.K., M.J. Christensen, and T. Zhang, Genetic algorithms for project

management. Annals of Software Engineering, 2001. 11(1): p. 107-139.

19. Ibaraki, T., T. Kameda, and N. Katoh, Cautious transaction schedulers for database

concurrency control. IEEE transactions on software engineering, 1988. 14(7): p. 997-

1009.

20. Antoniol, G., M. Di Penta, and M. Harman. A robust search-based approach to project

management in the presence of abandonment, rework, error and uncertainty. in

Software Metrics, 2004. Proceedings. 10th International Symposium on. 2004. IEEE.

21. Antoniol, G., M. Di Penta, and M. Harman. Search-based techniques applied to

optimization of project planning for a massive maintenance project. in Software

Maintenance, 2005. ICSM'05. Proceedings of the 21st IEEE International Conference

on. 2005. IEEE.

22. Di Penta, M., M. Harman, and G. Antoniol, The use of search‐based optimization

techniques to schedule and staff software projects: an approach and an empirical study.

Software: Practice and Experience, 2011. 41(5): p. 495-519.

23. Park, J., et al., Human Resource Allocation in Software Project with Practical

Considerations. International Journal of Software Engineering and Knowledge

Engineering, 2015. 25(01): p. 5-26.

24. Peixoto, D.C., G.R. Mateus, and R.F. Resende. The Issues of Solving Staffing and

Scheduling Problems in Software Development Projects. in Computer Software and

Applications Conference (COMPSAC), 2014 IEEE 38th Annual. 2014. IEEE.

25. Patterson, J.H., A comparison of exact approaches for solving the multiple constrained

resource, project scheduling problem. Management science, 1984. 30(7): p. 854-867.

26. Bibi, N., Z. Anwar, and A. Ahsan, Comparison of Search-Based Software Engineering

Algorithms for Resource Allocation Optimization. Journal of Intelligent Systems, 2016.

25(4): p. 629-642.

27. Sajad, M., et al., Software Project Management: Tools assessment, Comparison and

suggestions for future development. International Journal of Computer Science and

Network Security (IJCSNS), 2016. 16(1): p. 31.

204

28. Kang, D., J. Jung, and D.H. Bae, Constraint‐based human resource allocation in

software projects. Software: Practice and Experience, 2011. 41(5): p. 551-577.

29. Khatib, S.M.A. and J. Noppen, Benchmarking and Comparison of Software Project

Human Resource Allocation Optimization Approaches. SIGSOFT Softw. Eng. Notes,

2017. 41(6): p. 1-6.

30. Albrecht, A.J. and J.E. Gaffney, Software function, source lines of code, and

development effort prediction: a software science validation. Software Engineering,

IEEE Transactions on, 1983(6): p. 639-648.

31. Shepperd, M. and C. Schofield, Estimating software project effort using analogies.

Software Engineering, IEEE Transactions on, 1997. 23(11): p. 736-743.

32. Albrecht, A.J. Measuring application development productivity. in Proceedings of the

Joint SHARE/GUIDE/IBM Application Development Symposium. 1979.

33. IFPUG, F., International Function Point Users Group (IFPUG) Function Point Counting

Practices Manual. 2000, Release.

34. Boehm, B.W., Software engineering economics. 1981.

35. Boehm, B. and W. Royce, Ada COCOMO and the Ada process model. 1989, DTIC

Document.

36. Boehm, B., et al., Cost models for future software life cycle processes: COCOMO 2.0.

Annals of software engineering, 1995. 1(1): p. 57-94.

37. Paulk, M., Capability maturity model for software. 1993: Wiley Online Library.

38. Banker, R.D., H. Chang, and C.F. Kemerer, Evidence on economies of scale in software

development. Information and Software Technology, 1994. 36(5): p. 275-282.

39. Dillibabu, R. and K. Krishnaiah, Cost estimation of a software product using COCOMO

II. 2000 model–a case study. International Journal of Project Management, 2005.

23(4): p. 297-307.

40. JØRGENSEN, M. and K. MOLØKKEN-ØSTVOLD. A review of surveys on software

effort estimation. in International Symposium on Empirical Software Engineering

(ISESE’03), Rome. Proceedings… IEEE Computer Society. 2003.

41. Larrabee, R., Effective Work Breakdown Structures [Book Review]. Software, IEEE,

2003. 20(2): p. 84-85.

42. Haugan, G.T., Effective work breakdown structures. 2002: Management Concepts Inc.

43. Tausworthe, R.C., The work breakdown structure in software project management.

Journal of Systems and Software, 1980. 1: p. 181-186.

44. Parkinson, C.N. and R.C. Osborn, Parkinson's law, and other studies in administration.

Vol. 24. 1957: Houghton Mifflin Boston.

45. West, D.B., Introduction to graph theory. Vol. 2. 2001: Prentice hall Upper Saddle River.

46. Malcolm, D.G., et al., Application of a technique for research and development program

evaluation. Operations research, 1959. 7(5): p. 646-669.

205

47. Kelley Jr, J.E. and M.R. Walker. Critical-path planning and scheduling. in Papers

presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer

conference. 1959. ACM.

48. Gantt, H.L., Work, wages, and profits: their influence on the cost of living. 1910:

Engineering magazine.

49. Wilson, J.M., Gantt charts: A centenary appreciation. European Journal of Operational

Research, 2003. 149(2): p. 430-437.

50. Clark, W., The Gantt Chart. The Ronald Press Co, New York 1925.

51. Badiru, A.B., Activity-resource assignments using critical resource diagramming. Project

Management Journal, 1993. 24: p. 15-15.

52. Milatovic, M. and A.B. Badiru, Applied mathematics modeling of intelligent mapping

and scheduling of interdependent and multi-functional project resources. Applied

mathematics and computation, 2004. 149(3): p. 703-721.

53. Boucher, X., E. Bonjour, and B. Grabot, Formalisation and use of competencies for

industrial performance optimisation: A survey. Computers in industry, 2007. 58(2): p.

98-117.

54. INFOCOMP, Information Technology Competency Model. Employment and Training

Administration, United States Department of Labour,

http://www.careeronestop.org/competencymodel/pyramid_download.aspx?IT=Y.,

2012.

55. SWECOM, Software Engineering Competency Model IEEE,

http://www.computer.org/portal/web/pab/SWECOM, 2014.

56. Ardis, M.A. and P.B. Henderson, Software engineering education (SEEd). ACM

SIGSOFT Software Engineering Notes, 2014. 39(4): p. 11-12.

57. Acuna, S.T., N. Juristo, and A.M. Moreno, Emphasizing human capabilities in software

development. Software, IEEE, 2006. 23(2): p. 94-101.

58. Moses, J.L., Applying the assessment center method. Vol. 71. 1977: Pergamon.

59. Russell, M.T., et al., 16PF Fifth Edition administrator's manual. 1994: Institute for

Personality and Ability Testing, Incorporated.

60. Moses, J.L. and W.C. Byham, Applying the Assessment Center Method: Pergamon

General Psychology Series. 2013: Elsevier.

61. Costa, P.T. and R.R. MacCrae, Revised NEO Personality Inventory (NEO PI-R) and NEO

Five-Factor Inventory (NEO FFI): Professional Manual. 1992: Psychological Assessment

Resources.

62. André, M., M.G. Baldoquín, and S.T. Acuña, Formal model for assigning human

resources to teams in software projects. Information and Software Technology, 2011.

53(3): p. 259-275.

http://www.careeronestop.org/competencymodel/pyramid_download.aspx?IT=Y
http://www.computer.org/portal/web/pab/SWECOM

206

63. Myers, I.B., et al., MBTI manual: A guide to the development and use of the Myers-

Briggs Type Indicator. Vol. 3. 1998: Consulting Psychologists Press Palo Alto, CA.

64. Henry, S.M. and K.T. Stevens, Using Belbin's leadership role to improve team

effectiveness: An empirical investigation. Journal of Systems and Software, 1999. 44(3):

p. 241-250.

65. Girba, T., et al. How developers drive software evolution. in Principles of Software

Evolution, Eighth International Workshop on. 2005. IEEE.

66. Moura, M.H.D.d., H.A.D.d. Nascimento, and T.C. Rosa. Extracting new metrics from

Version Control System for the comparison of software developers. in Software

Engineering (SBES), 2014 Brazilian Symposium on. 2014. IEEE.

67. Royce, W., Software project management. 1998: Pearson Education India.

68. Jensen, R.W., L. Putnam, and W. Roetzheim, Software estimating models: three

viewpoints. CrossTalk, 2006. 19(2): p. 23-29.

69. Kitchenham, B.A., E. Mendes, and G.H. Travassos, Cross versus within-company cost

estimation studies: A systematic review. Software Engineering, IEEE Transactions on,

2007. 33(5): p. 316-329.

70. Jørgensen, M. and B. Boehm, Software Development Effort Estimation. 2009.

71. Jorgensen, M., What We Do and Don't Know about Software Development Effort

Estimation. Software, IEEE, 2014. 31(2): p. 37-40.

72. Lawler, E.L. and D.E. Wood, Branch-and-bound methods: A survey. Operations

research, 1966. 14(4): p. 699-719.

73. Rothlauf, F., Design of modern heuristics: principles and application. 2011: Springer

Science & Business Media.

74. Gendreau, M. and J.-Y. Potvin, Metaheuristics in combinatorial optimization. Annals of

Operations Research, 2005. 140(1): p. 189-213.

75. Clausen, J., Branch and bound algorithms-principles and examples. Department of

Computer Science, University of Copenhagen, 1999: p. 1-30.

76. Pardalos, P.M. and M.G. Resende, Handbook of applied optimization. 2001: Oxford

University Press.

77. EPK, I.T., Foundations of constraint satisfaction. 1993, Academic Press Ltd., London.

78. Grötschel, M. and O. Holland, Solution of large-scale symmetric travelling salesman

problems. Mathematical Programming, 1991. 51(1-3): p. 141-202.

79. Gutin, G., A. Yeo, and A. Zverovich, Traveling salesman should not be greedy:

domination analysis of greedy-type heuristics for the TSP. Discrete Applied

Mathematics, 2002. 117(1): p. 81-86.

80. Cormen, T.H., Introduction to algorithms. 2009: MIT press.

81. Davis, L. Bit-climbing, representational bias, and test suit design. in Proc. Intl. Conf.

Genetic Algorithm, 1991. 1991.

207

82. Russell, S. and P. Norvig, Artificial intelligence: a modern approach. 1995.

83. Holland, J.H., Adaptation in natural and artificial systems: an introductory analysis with

applications to biology, control, and artificial intelligence. 1992: MIT press.

84. Falkenauer, E., Genetic algorithms and grouping problems. 1998: John Wiley & Sons,

Inc.

85. Goldberg, D.E. and K. Deb, A comparative analysis of selection schemes used in genetic

algorithms. Foundations of genetic algorithms, 1991. 1: p. 69-93.

86. Mitchell, M., An introduction to genetic algorithms. 1998: MIT press.

87. Konak, A., D.W. Coit, and A.E. Smith, Multi-objective optimization using genetic

algorithms: A tutorial. Reliability Engineering & System Safety, 2006. 91(9): p. 992-

1007.

88. Deb, K., et al., A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary

Computation, IEEE Transactions on, 2002. 6(2): p. 182-197.

89. Amouzgar, K., Multi-objective optimization using Genetic Algorithms. 2012.

90. Eberhart, R.C. and J. Kennedy. A new optimizer using particle swarm theory. in

Proceedings of the sixth international symposium on micro machine and human

science. 1995. New York, NY.

91. Shao, B.B., P.-Y. Yin, and A.N. Chen, Organizing knowledge workforce for specified

iterative software development tasks. Decision Support Systems, 2014. 59: p. 15-27.

92. Kuo, R.J., C.M. Chao, and Y. Chiu, Application of particle swarm optimization to

association rule mining. Applied Soft Computing, 2011. 11(1): p. 326-336.

93. Chang, C.K., et al., Time-line based model for software project scheduling with genetic

algorithms. Information and Software Technology, 2008. 50(11): p. 1142-1154.

94. Ren, J., M. Harman, and M. Di Penta. Cooperative co-evolutionary optimization of

software project staff assignments and job scheduling. in International Symposium on

Search Based Software Engineering. 2011. Springer.

95. Harman, M., S.A. Mansouri, and Y. Zhang, Search based software engineering: A

comprehensive analysis and review of trends techniques and applications. Department

of Computer Science, King’s College London, Tech. Rep. TR-09-03, 2009.

96. Ngo-The, A. and G. Ruhe, Optimized resource allocation for software release planning.

Software Engineering, IEEE Transactions on, 2009. 35(1): p. 109-123.

97. Whitley, D., A genetic algorithm tutorial. Statistics and computing, 1994. 4(2): p. 65-85.

98. Boehm, B.W., R. Madachy, and B. Steece, Software Cost Estimation with Cocomo II with

Cdrom. 2000: Prentice Hall PTR.

99. Costa, A.P.C.S., Decision model for allocating human resources in information system

projects. International Journal of Project Management, 2013. 31(1): p. 100-108.

100. Martin, R.C., Agile software development: principles, patterns, and practices. 2003:

Prentice Hall PTR.

208

101. Erich, F., C. Amrit, and M. Daneva, A mapping study on cooperation between

information system development and operations, in Product-Focused Software Process

Improvement. 2014, Springer. p. 277-280.

102. Michalewicz, Z., Evolutionary Programming and Genetic Programming, in Genetic

Algorithms+ Data Structures= Evolution Programs. 1996, Springer. p. 283-287.

103. Haupt, R.L., S.E. Haupt, and S.E. Haupt, Practical genetic algorithms. Vol. 2. 1998:

Wiley New York.

104. Sim, S.E., S. Easterbrook, and R.C. Holt. Using benchmarking to advance research: A

challenge to software engineering. in Software Engineering, 2003. Proceedings. 25th

International Conference on. 2003. IEEE.

105. Kwok, Y.-K. and I. Ahmad, Benchmarking and comparison of the task graph scheduling

algorithms. Journal of Parallel and Distributed Computing, 1999. 59(3): p. 381-422.

106. Lessmann, S., et al., Benchmarking classification models for software defect prediction:

A proposed framework and novel findings. IEEE Transactions on Software Engineering,

2008. 34(4): p. 485-496.

107. Arcuri, A. and L. Briand. A practical guide for using statistical tests to assess randomized

algorithms in software engineering. in Software Engineering (ICSE), 2011 33rd

International Conference on. 2011. IEEE.

108. Demšar, J., Statistical comparisons of classifiers over multiple data sets. Journal of

Machine learning research, 2006. 7(Jan): p. 1-30.

109. Wallis, S., Binomial confidence intervals and contingency tests: mathematical

fundamentals and the evaluation of alternative methods. Journal of Quantitative

Linguistics, 2013. 20(3): p. 178-208.

110. Kitchenham, B.A., et al., Preliminary guidelines for empirical research in software

engineering. IEEE Transactions on software engineering, 2002. 28(8): p. 721-734.

111. Kitchenham, B., et al., Robust statistical methods for empirical software engineering.

Empirical Software Engineering, 2017. 22(2): p. 579-630.

112. Kim, S. and H. Kim, A new metric of absolute percentage error for intermittent demand

forecasts. International Journal of Forecasting, 2016. 32(3): p. 669-679.

113. T. Menzies, B.C., E. Kocaguneli, J. Krall, F. Peters, and B. Turhan,, The PROMISE

Repository of empirical software engineering data 2012

114. Wright, H.K., M. Kim, and D.E. Perry. Validity concerns in software engineering

research. in Proceedings of the FSE/SDP workshop on Future of software engineering

research. 2010. ACM.

115. Di Penta, M. and D.A. Tamburri. Combining quantitative and qualitative studies in

empirical software engineering research. in Proceedings of the 39th International

Conference on Software Engineering Companion. 2017. IEEE Press.

209

116. Makridakis, S., Accuracy measures: theoretical and practical concerns. International

Journal of Forecasting, 1993. 9(4): p. 527-529.

117. Myers, G.J., C. Sandler, and T. Badgett, The art of software testing. 2011: John Wiley &

Sons.

118. Shen, X., et al., Dynamic software project scheduling through a proactive-rescheduling

method. IEEE Transactions on Software Engineering, 2016. 42(7): p. 658-686.

119. Miranda, E. and P. Bourque, Agile monitoring using the line of balance. Journal of

Systems and Software, 2010. 83(7): p. 1205-1215.

120. Bendoly, E., J.E. Perry-Smith, and D.G. Bachrach, The perception of difficulty in

project-work planning and its impact on resource sharing. Journal of Operations

Management, 2010. 28(5): p. 385-397.

121. Kang, K. and J. Hahn, Learning and forgetting curves in software development: Does

type of knowledge matter? ICIS 2009 Proceedings, 2009: p. 194.

122. Ferrucci, F., et al. Not going to take this anymore: multi-objective overtime planning for

software engineering projects. in Proceedings of the 2013 International Conference on

Software Engineering. 2013. IEEE Press.

123. Michalewicz, Z. and D.B. Fogel, How to solve it: modern heuristics. 2013: Springer

Science & Business Media.

124. Soberón, P., Problem-Solving methods in combinatorics. 2013: Springer.

125. Antoniol, G., et al., Assessing staffing needs for a software maintenance project through

queuing simulation. IEEE Transactions on Software Engineering, 2004. 30(1): p. 43-58.

126. Moore, J.R. and N.R. Baker, An analytical approach to scoring model design—

Application to research and development project selection. IEEE Transactions on

Engineering Management, 1969(3): p. 90-98.

127. Hilton, M. and A. Begel, A Study of the Organizational Dynamics of Software Teams.

2018.

128. Stylianou, C. and A.S. Andreou, Investigating the impact of developer productivity, task

interdependence type and communication overhead in a multi-objective optimization

approach for software project planning. Advances in Engineering Software, 2016. 98: p.

79-96.

129. Ebert, C. and S. Brinkkemper, Software product management–An industry evaluation.

Journal of Systems and Software, 2014. 95: p. 10-18.

130. Vijayasarathy, L.R. and C.W. Butler, Choice of software development methodologies: Do

organizational, project, and team characteristics matter? IEEE Software, 2016. 33(5): p.

86-94.

131. Butler, T., Towards a hermeneutic method for interpretive research in information

systems. Journal of Information Technology, 1998. 13(4): p. 285-300.

210

132. Maia, C.L.B., et al., An evolutionary optimization approach to software test case

allocation, in Computational Intelligence and Information Technology. 2011, Springer.

p. 637-641.

133. Britto, R., et al. A hybrid approach to solve the agile team allocation problem. in

Evolutionary Computation (CEC), 2012 IEEE Congress on. 2012. IEEE.

134. Myers, M.D., Qualitative research in information systems. Management Information

Systems Quarterly, 1997. 21(2): p. 241-242.

135. Dalcher, D., Rethinking success in software projects: looking beyond the failure factors,

in Software project management in a changing world. 2014, Springer. p. 27-49.

136. Chen, W.-N. and J. Zhang, Ant colony optimization for software project scheduling and

staffing with an event-based scheduler. Software Engineering, IEEE Transactions on,

2013. 39(1): p. 1-17.

137. Kwok, Y.-K. and I. Ahmad, Static scheduling algorithms for allocating directed task

graphs to multiprocessors. ACM Computing Surveys (CSUR), 1999. 31(4): p. 406-471.

211

Appendix A

Related Document of Empirical

Evaluation in Industrial Settings Study

The documents related to our empirical evaluation study are provided in this appendix. That

includes the research information provided to participants in Section 1, research ethics approval

in Section 2, participation consent in Section 3, exit-interview protocol 4, and interview questions

in Section 5.

212

1. Research Information Sheet

Dear Sir, madam,

Who I am?

My name is Sultan Al Khatib a doctoral researcher from University of East Anglia under

supervision of Dr Joost Noppen. My research is about the optimization of human resource

allocation in software projects.

Why I need you?

The research is intended to evaluate a set of mathematical staffing and scheduling software project

approaches to assess their relevance in an industrial settings. I would therefore like to compare

these mathematical approaches against the resource allocation practice by experienced software

project managers from the industry such as yourself. The goal is to assess whether practitioners

can benefit from these mathematical approaches.

What benefit this research will gain from your participation and what benefit you

will gain from this research?

 Your participation is valuable with your resource allocation practice and experience. Based on

your participation of your responses and feedbacks, practitioners get to see the benefit and

downsides of the mathematical approaches. Practitioners can also benefit of improving their

practice. The assessment of the accuracy and performance between your allocation and the

mathematical approaches can lead you with benefiting a new managerial and mathematical

approach to use, and this study will show which, how, and why a mathematical approach will be

advised for use to software project managers.

There is no risk involved in participating as we will use synthetic data, and all we need is your

time.

What you will be doing during this research?

This research is divided into two phases. The first phase consists of four resource allocation

challenges. Each challenge poses an increasingly complex resource allocation. For each challenge

provided, you are required to perform an allocation to the resources provided for the tasks

described for the project, based on the information presented in each scenario. This part of the

research is designed to take no longer than one hour to perform. We expect to provide us with

your way of doing the allocation, and estimated project time according to your allocation. In

addition, this part of the research will be sent to you so that during your availability of time you

213

can finish it up, and once all the scenarios are completed you can send it back to us. This is made

to makes it easy for you in term of time, and relaxation.

Phase two consist of an exit interview which you can elaborate on your experience in the given

challenges. Each participant will be interviewed to answer seven sections. Each section in this

interview is focused on part of the managerial aspect surrounding the decision for doing the

allocation. Aspect such as the organizational level, management experience, and team

consideration can show how the provided scenarios on phase one are related to the need of

software project managers. The output of this phase is to provide an insight about the applicability

of the findings from the scenarios of phase one as well as to validate the mathematical approaches.

Approval to proceed with the evaluation, and consent to use your feedback?

Your participation is very valuable. The consent of this experiment can be found at the back of this

document. However, if you feel uncomfortable to proceed you can ask at any time to stop. This

will not affect your right to withdraw, cancel and/or delete any recording, written, and stored

answers and feedbacks.

Contact detail:

Main researcher: Sultan Al Khatib

School of Computing Sciences

University of East Anglia

Norwich Research Park

Norwich NR4 7TJ

United Kingdom

Phone: +44 (0) 1603 593738

Mail: S.Al-Khatib@uea.ac.uk

Web: http://seg.cmp.uea.ac.uk/

Supervisor: Joost Noppen

School of Computing Sciences

University of East Anglia

Norwich Research Park

Norwich NR4 7TJ

United Kingdom

Phone: +44 (0) 1603 593738

Mail: j.noppen@uea.ac.uk

Web: http://seg.cmp.uea.ac.uk/

214

2. UEA Computing Science Research Ethics Committee Approval

215

3. Participation Consent

Consent Form

Software Project Resource Allocation Optimization – Interview Consent Form

Researcher: Sultan Al Khatib

Participant: __

Job Title: __

Organisation: __

Consent:

I hereby consent to participating in entrance, and exit interviews for the purposes made clear by

the interviewer/researcher for the study of Software Project Resource Allocation Optimization. I

am aware a recording and transcript will be made of interviews and that I may request a copy of

these if desired. I also confirm I have received detailed information pertaining to this study and

am aware that I can cease my participation at any time.

Signed: ____________________

Name: (Printed)_________________________________

Date: ____/_____/____________

anonymous in any output from the interviews.

*

and publication*.

* and transcripts* of my interviews.

* - delete as appropriate

216

4. Software Project Managers Interview Protocol

Introductory Protocol

To facilitate our note-taking, we would like to audio tape our conversations today. For your

information, only researchers on the project will be privy to the tapes which will be eventually

destroyed after they are transcribed. In addition, you must sign the consent form devised to meet

our human subject requirements. Essentially, this document states that: (1) all information will

be held confidential, (2) your participation is voluntary and you may stop at any time if you feel

uncomfortable, and (3) we do not intend to inflict any harm. Thank you for your agreeing to

participate.

We have planned this interview to last no longer than one hour. During this time, we have several

questions that we would like to cover. If time begins to run short, it may be necessary to interrupt

you in order to push ahead and complete this line of questioning.

Introduction

You have been selected to speak with us today because you have been identified as someone who

has a great experience to share about software development, and software projects. Our research

project as a whole focuses on comparing the automated mathematical models that optimize the

software project resource allocation to most minimized project time, with particular interest in

understanding how these academic approaches are engaged and close to the software industry

needs. Our study does not aim to evaluate your techniques or experiences. Rather, we are trying

to learn more about the adopted methods of resource allocation, and hopefully learn about best

practices that help improve project managers in software industry.

Keys

(Open) Question has this key means that the answer will be an open ended, with no

restriction about number of words or statement the participant can give. The

reason for this is that these question can be counted as a follow-up to the test

provided for participants.

(Closed) Question has this key means that the answer will be a close ended, with no

restriction of Yes, or No answer. The reason for this is that these question can

provided if the participants agree or disagree with what mentioned in the

question.

(Probe) Question has this key means according to the answer the interviewer will follow-

up to gather further information.

217

(Intro) Question has this key means the answer will only to ice breaking, and getting to

know the participant which will aid in building a relationship between the

interviewer and participant. This type of question will give an introductory

information that only beneficial to understand the back ground of the

participant. This type of question is likely to be at the starting and ending of the

interview.

218

5. Software Project Managers Interview Questions

Institutions: ___

Interviewee (Title and Name): ______________________________________

Interviewer: ___

Date: _____________

Interview Section Used:

_____ A: Organization Level

_____ B: Project Management Experience

_____ C: Project Attributes

_____ D: Software Project Resource Allocation

_____ E: Team Consideration

_____ F: Project Scheduling

_____ G: Resource Allocation Objective(s)

Other Topics Discussed: __

Documents Obtained: __

Post Interview Comments or Leads:

219

 Exit Interview Questions

Organization Level:

1. (Open, Intro) How do you classify your firm/organization?

Question Note:

Capture the participant background and perspective of the software projects.

Project Management Experience:

1. (Open, Intro) How long have you been a project manager?

Question Note:

Capture the participant background of manging software projects.

2. (Open, Intro) What is the development methodology you use with your development teams?

Question Note:

Capture the participant background and perspective of managing software projects.

3. (Open, Intro) What project size do you classify yourself you have been working on since your start

as PM?

Question Note:

Capture the participant background and perspective of managing software projects.

Project Attributes

1. (Open, Probe) Do you use any productivity measures of your resources, and if so what is it?

Question Note:

Capture whether the inputs adopted by the mathematical approaches are different from the subject

practice and requirement.

2. (Open, Probe) Which one of the scenarios you think its attributes belong to the class of problem

your organization have?

Question Note:

Capture the fitness of which scenario close to the participant practice and requirement.

3. (Open, Probe) Why these attributes you believe are important to use while performing the

resource allocation?

Question Note:

Probing to gain clarification of the fitness of which scenario close to the participant practice and

requirement.

220

Software Project Resource Allocation

1. (Closed) Do you use a clear method for allocating and assigning resources to your project tasks?

Question Note:

Capture the participant background and perspective of managing software projects.

2. (Open, Probe) What is the adopted method for allocating and assigning resources to project tasks,

and is it for team or individual assignment to tasks?

Question Note:

Probing to gain clarification of participant practice, and reason for it.

3. (Open, Probe) What do you think of the dynamic assignment and allocation of resources either

of distribution of resources into teams, or resource productivity change over time?

Question Note:

Probing to gain advanced clarification of the participant practice and requirement.

Project Team Consideration (answer this part if your answer is team to question 2 of project resources

allocation)

1. (open) What criteria do you use to form a team, sharing similar competencies and skill, or creating

a cross-functional one?

Question Note:

Probing to gain more understanding of the participant practice and requirement regarding team concept.

2. (Closed) Does the adopted team method considers technical or role attributes?

Question Note:

Probing to gain more understanding of the participant practice and requirement regarding team concept.

Project Scheduling

1. (Open, Probe) How do you consider dependencies between tasks while you allocating resources?

Question Note:

Capture the participant practice and requirement regarding scheduling problem.

2. (Closed) Do you think this problem should be seen from different angle, which should consider

allocation of resource in a multi-project environment?

Question Note:

Capture the participant perspective, and practice regarding the scheduling problem.

3. (Open, Probe) In your perspective, what does that mean to consider dependencies between

projects as well as the tasks of each project too?

Question Note:

221

Probing to gain more understanding of the participant practice and requirement regarding the

scheduling problem.

Resource Allocation Objectives

1. (open, Probe) Do you consider minimizing the project time to be the ultimate objective of

resource allocation, or in your projects you have to consider multiple objectives such as minimizing

cost, team or resource utilization, maximizing team skills, etc.?

Question Note:

Capture views and adoption of resource allocation objectives.

2. (open, Probe) What are the important objective(s) of your resource allocation you think, if you

have multiple objectives?

Question Note:

Probing to gain more understanding of the participant view, practice and/or requirement regarding the

objectives of resource allocation.

3. (Closed) Do you think cost dimension has to be included within the objectives of solving resource

allocation in software project while employees still have to be paid regardless their participation in

projects?

Question Note:

Capture views and adoption of resource allocation objectives.

4. (open, Probe) If so, how do you think the cost should be calculated and do you think the cost of

the software product is calculated based on the participation and salary of resources within the

project – as adopted by the approaches so far?

Question Note:

Probing to gain more understanding of the participant practice and requirement regarding the method

of costing software projects.

222

Appendix B

Benchmarking and Comparison of

Software Project Human Resource

Allocation Optimization Approaches

Paper

This section presents our research paper, which presented in the doctoral symposium of Empirical

Software Engineering and Measurement Conference (ESEIW). This paper is published in [29] by

ACM SIGSOFT Software Engineering Notes.

223

Benchmarking and Comparison of Software
Project Human Resource Allocation Optimization

Approaches
Sultan M Al Khatib

School of Computing Sciences
University of East Anglia
Norwich Research Park

Norwich NR4 7TJ
United Kingdom

s.al-khatib@uea.ac.uk

Joost Noppen
School of Computing Sciences

University of East Anglia
Norwich Research Park

Norwich NR4 7TJ
United Kingdom

j.noppen@uea.ac.uk

ABSTRACT

For the Staffing and Scheduling a Software Project

(SSSP), one has to find an allocation of resources to

tasks while considering parameters such skills and

availability to identify the optimal delivery of the

project. Many approaches have been proposed that solve

SSSP tasks by representing them as optimization

problems and applying optimization techniques and

heuristics. However, these approaches tend to vary in the

parameters they consider, such as skill and availability,

as well as the optimization techniques, which means

their accuracy, performance, and applicability can vastly

differ, making it difficult to select the most suitable

approach for the problem at hand. The fundamental

reason for this lack of comparative material lies in the

absence of a systematic evaluation method that uses a

validation dataset to benchmark SSSP approaches. We

introduce an evaluation process for SSSP approaches

together with benchmark data to address this problem.

In addition, we present the initial evaluation of five

SSSP approaches. The results shows that SSSP

approaches solving identical challenges can differ in

their computational time, preciseness of results and that

our approach is capable of quantifying these differences.

In addition, the results highlight that focused approaches

generally outperform more sophisticated approaches for

identical SSSP problems.

Keywords

Human Resource Allocation; Software Project

Management; Optimization Techniques in Software

Engineering; Comparative Study; Performance

Evaluation

INTRODUCTION

Software development is a mixture of complex activities

and the creation of any non-trivial software system

generally requires multiple resources with a mix of

skills, expertise, and knowledge. The assignment of

those resources in a software development department to

projects and tasks within those projects is one of the

most critical tasks for a project manager, with limited

resources, dependent tasks, and available skillsets

needing to be considered to achieve an optimal project

delivery time. This problem of staffing and scheduling a

software project (SSSP) in order to minimize the project

completion time has been attracting researchers since the

end of last century [2, 5, 22, 24] and different

optimization techniques have been used to address it in

various incarnations [5, 14, 18]. These approaches

typically consider specific attributes when optimizing

the resource allocation such as task length, resource

availability or skills, and the traversal of the

optimization space is typically performed by using

exact, heuristic, and meta-heuristic techniques in order

to deal the NP-Complete nature of the allocation

problem [5]. Project managers typically can select an

automated SSSP approach to support their allocation

process based on the project and resource properties they

wish to consider. However, approaches can have

different performance characteristics such as the

accuracy of the allocation results or computational time

required, characteristics that are critical for successful

SSSP but very hard to determine without a systematic

manner. Limited number of studies in this context [5, 24]

were published that compare SSSP approaches but

neither of these studies performs an empirical evaluation

of SSSP approaches using a unified basis and data set.

Copyright is held by the author.

224

This article proposes to address that gap by introducing

a benchmark and using it to evaluate the performance of

a set of SSSP approaches against well-defined

performance measures. Specifically, we aim to provide

a validation dataset that has both resources and detailed

project information for a range of SSSP challenges. In

addition, we aim to compare the SSSP approaches using

a uniform and expandable set of performance measures

that can compare SSSP approaches in various categories

and supporting a range of optimization criteria.

In addition to the benchmark and initial results of the

comparison analysis in this article, we also outline our

research agenda. To further the accuracy and relevance

of the performance evaluation we aim to perform a

comparison of computational approaches and current

industry standards. This will be complemented with the

implementation and evaluation of additional SSSP

approaches to form a complete and comprehensive

overview of SSSP approaches as well as the means to

perform systematic comparisons between them. Note

that this should not be confused with the comparison of

the heuristic algorithms. The comparison adopted in this

paper considers the approaches that propose a model for

allocating the developers in software projects with

modification on the algorithms they use.

The remainder of this paper is organized into five

sections. Section 2 describes the studies carried out in

comparing SSSP approaches that are related to the work

presented in this paper. Section 3 detailed the workflow

of procedures, dataset, criteria proposed to evaluate and

compare the SSSP approaches, future plan of carrying

out the rest of study work, and the threats and

weaknesses that could affect the validity of this study. In

section 4, the approaches adopted in this study are

described and the results of the experiments and

comparison between the SSSP approaches are shown.

Section 5 discusses the main findings and concludes the

paper.

RELATED WORK

When considering previous work performed in the area

of evaluating SSSP approaches, only two studies have

been published that compare and evaluate the

optimization approaches of SSSP. Both comparison

studies were based on evaluating the approaches

according to the description provided within the texts.

These studies have compared the approaches by a

comprehensive survey [3] or systematic literature

review [4] by extracting the text that describing the

problem and solution of the approaches. Thus, these

studies are more formally systematic literature review

with comprehensive survey of wide software project

management approaches.

The first study by Pixoto et al [24] evaluates the solution

provided by SSSP approaches regarding their

applicability in real-world software development

projects. Criteria used by Pixoto et al to evaluate the

description of solutions are usefulness, work

compatibility, and ease of use attributes. 52 approaches

were considered by this study. The comparison shows

that few approaches among them all are satisfying the

criteria adopted and capable for the illustrated aspects by

this study as the one in [28]. Skills and productivity of

resources found are the least aspects considered by the

approaches used by Pixoto et al [24]. In addition, time

and cost of software projects are the goals adopted by

overwhelming majority of SSSP approaches. It is also

noticeable in this study that only 8% of the approaches

compared found they have used experiments to validate

their solution. The overall conclusion by this study is

that more research is needed to bridge the gap between

the current practices of software firms and the proposed

solutions. As this study provides essential aspects and

differences between the SSSP approaches, the adoption

model of criteria and aspects used are based on

theoretical models. Criteria and aspects however have to

be validated by the industry before they can make their

claims about the usefulness of the approaches used in

their study.

The second study presented in Ferucci et al [5] provides

a comprehensive survey of the approaches use

optimization techniques to solve software project

management problems. Their observations and findings

highlight the categories of the optimization approaches,

the important attributes that these approaches adopted,

and the approaches that match their criteria and seen

useful to be adopted. The approaches used by this study

are categorized into minimizing project time, risk-based,

overtime planning, and effort estimation. This study has

also identified the future trends and promising areas of

resource allocation optimization. The areas found

require more attention by researchers as future trends are

interactive optimization, dynamic adaptive

optimization, multi-objective optimization, co-

evolution, software project benchmarking, confident

estimates, and decision support tools. While this study is

a comprehensive survey, it can be seen as a general study

that reports the different types of problems adopted by

approaches deal with software project management with

no consideration of further classification or either cross

functionality between the approaches and how each has

opened a new knowledge.

The results presented in these studies are a valuable

insight into the relation between various SSSP

approaches, however neither study performs a

systematic comparison between the SSSP approaches

considered based on their implementation and a

reference dataset. This is due to the fact that a

225

benchmark dataset currently is not available in this

research area. While two repositories exist for the use of

software engineering research, which are ISBSG and

Tera-PROMISE, none of these includes a valid dataset

containing human resource models and detailed project

information usable for SSSP based research [5].

Accordingly, there is an urgency in this particular area

for a data that represent a real software project to

benchmark the SSSP approaches [3]. As a result,

comparing and benchmarking SSSP approaches based

on their behaviour and performance has not been carried

out even when it has been identified as highly important

by the community [5].

A SYSTEMATIC APPROACH FOR

COMPARING SSSP APPROACHES

Overview of the Proposed Approach

Our proposed approach for performing a systematic and

reproducible performance comparison of SSSP

approaches consists of a systematic sequence of steps to

be followed combined with an evaluation dataset and a

suite of evaluation criteria on which the SSSP

approaches can be compared. The proposed workflow

for evaluating a set of SSSP approaches consists of the

following steps:

1. Select a set of candidate SSSP approaches that

are capable of solving a resource allocation

problem and belong to the same class – see

section 3.2 -.

2. Select the suitable dataset from the benchmark

dataset that belong to the same class of the

approaches selected containing the desired

resource and project properties (e.g. skills,

task dependencies, etc.)

3. Run each approach for the configured dataset

for a substantial number of times, (e.g 100

times).

4. Record for each run the result of estimated

project time, and the computation time of that

run (see below).

5. Compile the results and measure their

performance using the benchmark metric suite

(see below).

6. Rank the candidate SSSP approaches based on

their score in the overall scoring model (see

below).

These steps are depicted in Figure 1. As can be seen in

the Figure, after identifying the approaches, the classes

that they belong to, and selecting the suitable benchmark

dataset, the datasets located on the left down of the

figure is fed into each approach. As most approaches

perform heuristic optimization using a probabilistic

optimizer, step 3 suggests to perform multiple runs for

each of those approaches so that their computation time

and accuracy can be averaged, as well as their mean and

standard deviation can be determined. The choice for

these metrics is motivated by the fact that they are seen

as the most useful way to represent effectiveness and

performance among the approaches [105].

Figure 37: Proposed Approach

Benchmark Dataset

The first artefact we introduce to perform a systematic

evaluation of SSSP approaches is a flexible and

configurable benchmark dataset. The dataset is a small

real world data from a Jordanian software company and

holds information regarding both software project and

human resources used to develop that software. This

data includes information about eight components of the

software projects, and twelve human resources were

available to that project assigned to complete it. The

project represented in the dataset has an estimated time

using COCOMO. The time estimated with those

resources available was 75.16 days, with an estimated

Man-Day equals to 964. The dataset is composed of five

sets the first four correspond to the classification made

to the SSSP approaches. The first four sets describe

resource allocation problems of increasing complexity

and parameters. The final set describes a resource

allocation problem of a larger size that is intended to

analyse the scalability of the approaches in class 1. In

addition, for each one of these classes the optimal

solution (referred to as min value) as well as the worst-

case solution values (referred to as max value). The

dataset used in this article can be found on

http://seg.cmp.uea.ac.uk/projects/resource-

optimisation/files/dataset.zip.

When benchmarking SSSP approaches, it is critical to

note that proposed approaches generally solve different

variations of the resource allocation problem, taking into

account different parameters, such as worker skills, or

tasks dependencies. To evaluate the relative

performance of SSSP approaches they need to be

http://seg.cmp.uea.ac.uk/projects/resource-optimisation/files/dataset.zip
http://seg.cmp.uea.ac.uk/projects/resource-optimisation/files/dataset.zip

226

applied to the same problem with the exact same inputs,

which is why we propose to group SSSP approaches into

classes according to the inputs and constraints required

by each. The inputs required for resource allocation can

be the estimated effort of project tasks, task

dependencies, skills, and/or resource productivity. Each

one of these inputs represented in the dataset by numbers

except the skills. Skills required for developing each task

or offered by a resource are representing languages and

technologies, and represented in the dataset using the

name of this language or technology such as java, or

UML. Estimated effort of each task is represented by

person-day. Each task in the dataset moreover has the

value of dependency attribute represented as the task

number that the task is depends on. Productivity of a

resource is represented by the same metric used by [7].

A resource can be productive as a normal person, which

is equal to 1, or twice the normal person represented by

2. According to these inputs the proposed classes are:

 Class One. This class contains the approaches

that require inputs only of estimated effort of

project tasks and the number and productivity

of human resources.

 Class Two. This class contains the approaches

that require inputs of estimated effort of

project tasks, dependencies between these

tasks, and number and productivity of human

resources

 Class Three. This class contains the

approaches that require inputs of estimated

effort of project tasks, skills required for each

tasks, and number, skills, and productivity of

human resources

 Class Four. This class contains the

approaches that require inputs of estimated

effort of project tasks, dependencies between

these tasks, skills required for each tasks, and

the number, skills, and productivity of human

resources.

Note that some SSSP approaches can possibly be part of

multiple classes as they are able to determine the optimal

allocation of resources for simple as well as complex

SSSP problems. The performance for such approaches

can be compared to other approaches in both classes

with respect to solving identical problems. The

benchmark data follows this classification as it defines

optimization challenges within these five distinct classes

to facilitate the uniform comparison of SSSP approaches

Comparison Metrics and Overall

Scoring Model

The performance of a SSSP approach is usually

measured in terms of optimality, i.e. how close the

approach gets to the true optimal solution [137].

However, this metric only provides a partial view. For

example, many probabilistic optimizers, such as genetic

algorithms, vary in the quality of solution they provide

due to a randomised starting point and the computation

time expended to them. Accordingly, both of resulted

values from the approach for the objective function -

which in this study is the estimated project time- and the

computational time expended to produce the results are

the main metrics of this comparison. In addition to the

performance measures of optimal solution and

computation time, behaviour of the approaches have to

be recorded too. While each approach uses a modified

version of optimization technique, it is important to

capture stability and preciseness of the approach over

multiple runs. The importance of having a multiple runs

is due to the probabilistic nature of meta-heuristic

algorithm search. This can be depicted by the standard

deviation of multiple runs of both estimated project time

and computational time. To get a more complete insight

into the performance of SSSP approaches we propose to

use the following metrics:

1. Estimated Project Time (EPT). The first

proposed metric is the estimated project time,

i.e. the identified optimal result by an

approach for each run.

2. Computational Time (CT). Computation

time is the time consumed by the system to

perform the approach from the point of

feeding the data to the time of identifying the

(heuristically) optimal result.

3. Standard Deviation (STDEV). This metric is

the standard deviation among the collected

EPT values. This metric is a useful indicator

of whether an approach is robust and precise.

As the standard deviation will quantify

outcomes produced are closely grouped or not.

4. Arithmetic average (Mean). The mean of

values resulting for an SSSP approach over

multiple runs.

5. Minimal EPT. The least possible value for

estimated project time among the collected

values over multiple runs.

Note that metrics such as STDEVB and mean require the

performance of the approach to be determined over

multiple runs so that the average behaviour can be

established and compared.

In addition to this suite of metrics, we propose the use of

an overall scoring model for easy comparison of SSSP

approaches, consisting of two formulas. The first

formula captures the accuracy of a SSSP approach using

the following equation:

Optimality of solution = [1-[(V-min)/(max-min)]] x 100

227

This formula depicts how close the value calculated by

a SSSP approach (V) is to the known optimal solution

(min).This value is normalised using the known worst-

case solution (max). Both the min and max values are

included in the dataset for a given SSSP problem. In

addition, a model for scoring the computational time

performance of an approach is depicted by the following

equation.

CTime Score = [Vct / Max (Class)]

In this formula Vct is the computation expended by

approach V to solve the SSSP problem under

consideration of Max(Class) which is the maximum

computation required for all known SSSP approaches

capable of solving this problem.

Research Agenda for Comparison

Benchmark of SSSP approaches

The work described in this paper is a first step towards a

systematic mechanism for evaluating SSSP approaches

with respect to their performance and accuracy. The

research plan from this point focuses on extending the

SSSP benchmark method and evaluating its usability

and applicability in an industrial setting. To this purpose,

the research plan is divided into four parts:

 The first part is the refinement of the

benchmark dataset to include more projects

and resource data as well as a refined

configuration mechanism that allows for easy

configuration.

 Second we aim to extend the set of

implemented and evaluation SSSP approaches

to provide a comprehensive set of data points

that researchers can use to compare their own

approaches to.

 Thirdly, we aim to examine a mechanism that

allows us to easily bridge the gap between

SSSP approaches so users of the benchmark

can more easily evaluate a range of SSSP

approaches against a set problem with specific

parameters.

 Finally, upon establishing a reasonable and

balanced SSSP benchmarking process we will

evaluate its suitability and relevance by means

of empirical evaluation with industrial

partners. The results of the experienced

project managers in allocating resources to

projects will be compared to SSSP approaches

and their benchmarking results for this

purpose.

Threats to Validity and Challenges in

comparing SSSP approaches

One of the main threats to validity in this study is that

the data collected represents a single use of allocation

attributes of one software firm, which can have an

implication regarding the validity of the comparison

with the different styles adopted in the industry

regarding the allocation, constraints, and the

development method within these firms. However as the

dataset used to compare the approaches is a real-world

data, it represent a small project which might not be the

common scenario in software firms and the capabilities

offered by various types of SSSP approaches are not

covered such as dealing with a massive software project.

Moreover, extending it to cover the capabilities of SSSP

approaches while at the same time remaining

representative can be very challenging. Thus, we aim to

ensure the relevance of the data, and the approaches by

expanding the experiments with our industrial partners.

A further threat to the relevance of our evaluation results

is the limited detail provided by publications describing

SSSP approaches. In many cases, vital elements of the

approach are not described sufficiently and no reference

implementation of the approach is provided for

evaluation. We have addressed this threat in our

approach by excluding approaches with incomplete

descriptions that prevented us to implement it. Where

possible we have liaised with the authors of the approach

to clarify ambiguities and complement the publication.

BENCHMARK APPLICATION TO

EXISTING SET OF SSSP

APPROACHES

Overview

To assess the accuracy and suitability for our proposed

approach and benchmark we have performed a

preliminary study of five SSSP approaches in two

different classes. The approaches focus on optimizing

the software project time using meta-heuristic

techniques such as Genetic Algorithm (GA) and

Simulated Annealing (SA) while taking into account

various parameters such as task dependency to find the

optimal or near optimal project time. The reason for

selecting these approaches in this comparison is based

on the studies presented in [3, 4]. These approaches are

presented in Table1 according to the class they belong

to. The approaches have been classified according to the

SSSP classes introduced in Section 3.2. The

optimization techniques used by the approaches

are Genetic Algorithms (GA) by [14, 18, 20, 21], and a

modified version of Simulated Annealing (SA) called

Accelerated SA by [28]. Both techniques are belong to

the same search algorithm class called meta-heuristic.

228

Table 47: Approaches Classification

Class One Two Three Four Five

Approach

[20] X

[21] X

[28] X

X

X

[18]

X

[14] X X

Work has been accomplished to classify the approaches

described earlier according to the classes they can use.

This table shows the applicability of dataset classes too

for each approach described earlier.

Results

The results were obtained using the Matlab R2013a

supported by Matlab Global Optimization Toolbox

using Intel Core 2 quad 2.66 Ghz CPU. Each approach

was executed 100 times to allow determination of mean

and deviation values. The comparisons performed were

between Di Penta et al [20], Di Penta et al [21] and Kang

et al for the Class 1 benchmark data, and between Chan

et al and Alba et al for the Class 2 dataset.

Results of the Class One Dataset Evaluation

The first results we present are for the Class 1

approaches [20],[21], and Kang et al [28]. The dataset

used is the Class One dataset, which only considers

tasks, resources and availability, and has an optimal

solution of 80.33 for its project schedule. Figure 2 shows

how each iteration for each approach resulted an EPT in

term of days where the lowest value amongst the

approaches is the one obtained by DiPenta et al [20].

Moreover, we can see that the approach in both DiPenta

[20] and [21] were quite close to the estimate of

COCOMO presented in Section 3.3.

The results obtained for Kang et al approach on the other

hand is overestimating project time when compared to

any one of the DePinta el al approaches. This is due to

the allocation method adopted by Kang et al approach as

it assigns single resources to tasks with least estimated

effort, where those that have the biggest effort required

are each assigned to two resources which results in a less

accurate approximation. The numeric results for

accuracy are given in Table 2. It is interesting to observe

that DiPenta et al [20] is the most accurate and it has

managed to identify the actual optimal solution (80.33)

for the dataset task. DiPenta et al [21] has come close to

finding the optimal solution but Kang et al struggled to

come close. A graphical representation of this data as

well as the behaviour over multiple runs can be found in

Figure 2.

Figure 38: Accuracy performance over a 100 runs for

Class One

When we examine the computation time results in Table

2. It can be seen that DiPenta et al [21] is the least time

consuming among the approaches whereas Kang et al

requires slightly more time. DiPenta et al [20] clearly

requires the most time to identify an optimal solution.

Table 48: Performance results of Class One

A
p

p
ro

a
ch

Computation Time Accuracy of Solution
M

ea
n

S
T

D
E

V

M
ea

n

S
T

D
E

V

M
in

im
a

l

E
P

T

[28] 127.90 2.82 111.5 0 111.5

[20] 285.91 2.57 80.83 1.139 80.33

[21] 109.65 0.19 85.13 2.61 80.6

An interesting observation as well is that while DiPenta

et al [21] is not only faster, its standard deviation also is

significantly lower than the two other approaches, which

means the optimization behaves more uniformly in

repeated experiments. This is a quality attribute that can

become important when the problem size is scaled up,

as a small variation in computation time can make

solving a particular problem infeasible.

Results of the Class Two Dataset Evaluation

For the Class 2 approaches [14, 18] their performance

was evaluated using the Class 2 dataset, where

constraints are imposed on project schedule

corresponding to dependencies between tasks. This

60.00

80.00

100.00

120.00

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

D
ay

s

Run

Kang et al 2011 DiPenta et al 2004

DiPenta et al 2005

229

dataset has an optimal solution of 81.95 days for the

project schedule. When examining the results in Table

3. It can be seen that the approach of Chang et al is

capable of identifying the optimal solution where the

approach by Alba et al is not, however the approach of

Alba et al gives a more reliable and reproducible results

for a single run, as illustrated by the standard deviation

value. This becomes even more clear when examining

Figure 3 where Chang et al clearly fluctuates per run

where the results of Alba et al is more tightly grouped

together.

Figure 39: Accuracy performance over a 100 runs for

Class Two

An interesting picture surfaces when we examine the

computation time required by both approaches, as

depicted in Table 3. It can be seen that while Chang et al

fluctuates in the accuracy of the answer returned per run,

on average it completes significantly faster than Alba et

al. In this case, it is clear that while both approaches

apply similar techniques Chang et al have sacrificed part

of their accuracy for improved computation time

performance.

Table 49: Performance results of Class Two

A
p

p
ro

a
ch

Computation Time Accuracy of Solution

M
ea

n

S
T

D
E

V

M
ea

n

S
T

D
E

V

M
in

im
a

l

E
P

T

[18] 41.88 0.17 86.29 1.52 81.95

[14] 134.99 1.91 85.1 0.49 82.64

Ranking SSSP Approaches

Comparison Using the Scoring Model

As the final step of our preliminary evaluation, we rank

the evaluated SSSP approaches using our proposed

scoring model. By combining the results of the

approaches using the computation time and estimated

project time and the formulas presented in Section3.3 we

can compile the results in Table 4.

Table 50: Ranking results for the approaches

Class Approach Optimality of

Result
CT

Score

Class

One
[28] 96.5% 0.45

[20] 99.9% 1

[21] 99.46% 0.3835

Class

Two
[18] 99.37% 0.312

[14] 99.54 1

This table gives an aggregated overview of the

evaluation results using our dataset and metric suite. It

can be seen for the Class 1 approaches that both

approaches proposed by DiPenta et al are very close in

accuracy but differ in computation time, with Kang et al

representing a middle ground. For Class 2 a clearer

winner can be identified with Chang et al offering

similar accuracy to Alba et al but requiring far less time.

We imagine that this aggregated scoring model will aid

practitioners in comparing SSSP approaches and as

such, it is one of the important deliverables of our

research. Note however that in this scoring model at the

moment the added value of standard deviation for both

accuracy and computation is lost. In future work, we aim

to include these explicitly in the scoring model to give a

more complete picture.

CONCLUSIONS

In this article, we have identified that many different

optimization approaches exist for staffing and

scheduling a software projects (SSSP), but due to

differences in the problem parameters they can consider

as well as the optimization techniques they use their

performance and applicability can be hard to assess and

compare. To address this issue we have introduced a

systematic comparison method for SSSP approaches

together with a set of comparison metrics and an overall

scoring model that can be used to rank their

78

80

82

84

86

88

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

D
ay

s

Run

Alba et al 2007 Chang et al 2001

230

performance. This comparison method is combined with

a benchmark dataset and reference values that identifies

and supports four different classes of SSSP approaches

based on their capabilities and limitations. We have

applied our method and benchmark data to a set of five

SSSP approaches and from these early results the

applicability and accuracy of our method became clear.

Our method highlighted that focussed approaches that

aim to solve a well-defined SSSP problem are more

likely to identify an accurate solution within a

reasonable amount of time rather than approaches that

can potentially consider a wider range of parameters and

inputs.

Our future work and the expected contribution of my

dissertation lies first in the creation of a more

comprehensive method and reference dataset for

comparing SSSP approaches but also in evaluating this

with industry experts who are expected to apply the

method in practice. To achieve this we are planning

further experiments and evaluation with the intention to

expand the dataset and add support for the remaining

SSSP classes. In addition, we aim to expand the range of

SSSP problems per class in both complexity and size to

aid in the evaluation of scalability. Finally, we aim to

perform an empirical experiment where we ask industry

experts to apply and evaluate various SSSP approaches

and compare the results to the evaluation results of our

method to establish the relevance and accuracy of the

method in real-world application scenarios. Our

eventual goal for this work is to serve as an accurate and

flexible reference mechanism for both academics and

practitioners for determining the performance and

accuracy of SSSP approaches.

REFERENCES

1. Tsai, H.-T., H. Moskowitz, and L.-H. Lee,

Human resource selection for software

development projects using Taguchi’s

parameter design. European Journal of

Operational Research, 2003. 151(1): p. 167-

180.

2. Di Penta, M., M. Harman, and G. Antoniol,

The use of search‐based optimization

techniques to schedule and staff software

projects: an approach and an empirical study.

Software: Practice and Experience, 2011.

41(5): p. 495-519.

3. Ferrucci, F., M. Harman, and F. Sarro, Search-

Based Software Project Management, in

Software Project Management in a Changing

World, G. Ruhe and C. Wohlin, Editors. 2014,

Springer Berlin Heidelberg. p. 373-399.

4. Peixoto, D.C., G.R. Mateus, and R.F.

Resende. The Issues of Solving Staffing and

Scheduling Problems in Software

Development Projects. in Computer Software

and Applications Conference (COMPSAC),

2014 IEEE 38th Annual. 2014. IEEE.

5. Chang, C.K., M.J. Christensen, and T. Zhang,

Genetic algorithms for project management.

Annals of Software Engineering, 2001. 11(1):

p. 107-139.

6. Alba, E. and J.F. Chicano, Software project

management with GAs. Information Sciences,

2007. 177(11): p. 2380-2401.

7. Kang, D., J. Jung, and D.H. Bae, Constraint‐
based human resource allocation in software

projects. Software: Practice and Experience,

2011. 41(5): p. 551-577.

8. Kwok, Y.-K. and I. Ahmad, Benchmarking

and comparison of the task graph scheduling

algorithms. Journal of Parallel and Distributed

Computing, 1999. 59(3): p. 381-422.

9. Kwok, Y.-K. and I. Ahmad, Static scheduling

algorithms for allocating directed task graphs

to multiprocessors. ACM Computing Surveys

(CSUR), 1999. 31(4): p. 406-471.

10. Antoniol, G., M. Di Penta, and M. Harman. A

robust search-based approach to project

management in the presence of abandonment,

rework, error and uncertainty. in Software

Metrics, 2004. Proceedings. 10th

International Symposium on. 2004. IEEE.

11. Antoniol, G., M. Di Penta, and M. Harman.

Search-based techniques applied to

optimization of project planning for a massive

maintenance project. in Software

Maintenance, 2005. ICSM'05. Proceedings of

the 21st IEEE International Conference on.

2005. IE

	List of Abbreviations
	Table of Contents:
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1. Human Resource Allocation in Software Projects
	1.2. Staffing and Scheduling a Software Project
	1.3. Motivation
	1.4. Research Aims and Questions
	1.5. Overview of our Methodology and Benchmarking Approach
	1.6. List of Contributions
	1.7. Thesis Structure

	Chapter 2 Literature Review
	2.1 Software Project Information
	2.1.1 Software Size, and Effort Estimation Models
	2.1.2 Software Project Task Dependency Modelling
	2.1.3 Workforce Models
	2.1.4 Discussion on software project information

	2.2 Optimization Techniques (Search-Based Algorithms)
	2.2.1 Branch and Bound
	2.2.2 Backtracking
	2.2.3 Branch and Cut
	2.2.4 Greedy
	2.2.5 Dynamic Programming
	2.2.6 Hill Climbing
	2.2.7 Genetic Algorithm
	2.2.8 Multi-Objective Genetic Algorithm
	2.2.9 Simulated Annealing
	2.2.10 Particle Swarm
	2.2.11 Discussion on optimization techniques

	2.3 Comparative Studies in Optimization Approaches for SSSP Problem
	2.3.1 Criteria
	2.3.2 Observation and findings

	2.4 SSSP Optimization Approaches
	2.4.1 Problem Input Formalization
	2.4.2 Constraints and Penalties
	2.4.3 Solution Representation
	2.4.4 Validation
	2.4.5 Selected SSSP Approaches for Benchmarking and Comparison
	2.4.6 Detailed Description of the Selected SSSP Approaches

	2.5 Benchmarking, Datasets and Measurements
	2.5.1 Benchmark Process
	2.5.2 Problem and approach’s classification
	2.5.3 Benchmark Measurements and Statistical Tests
	2.5.4 Available Repositories for Software Engineering Studies

	2.6 Conclusion

	Chapter 3 Benchmarking Process for Staffing and Scheduling Software Projects Optimization Approaches
	3.1. Introduction
	3.2. A Systematic Approach for Comparing SSSP Approaches
	3.3. Classification of SSSP Approaches
	3.4. Benchmark Dataset
	3.4.1 Dataset Complexity Levels
	3.4.2 Resource Allocation Scenarios of Dataset Complexity Levels

	3.5. Quality Metrics and Comparison Measurements
	3.6. Summary

	Chapter 4 Evaluation of Nine SSSP Approaches
	4.1 Introduction
	4.2 Experiment Aims and Parameters Settings
	4.3 Results
	4.4 Analysis
	4.5 Conclusion

	Chapter 5 SSSP with Team Formation and Distribution to Project Tasks
	5.1 Introduction
	5.2 SSSP Problem Formalization by Four Different Team Allocation Methods
	5.3 Genetic Algorithm Configurations and Operators Solution
	5.3.1 Solution Representation and Chromosome Encoding
	5.3.2 Initial Population
	5.3.3 Crossover Operator
	5.3.4 Mutation Operator
	5.3.5 Selection Operator
	5.3.6 Fitness Function

	5.4 Experiment Settings and Results
	5.4.1 Results:

	5.5 Conclusion

	Chapter 6 Empirical Evaluation in Industrial Settings
	6.1 Introduction
	6.2 Background
	6.3 Methodology
	6.4 Study Experiments
	6.4.1 Phase One: Evaluation of PMs’ Performance in solving SSSP Challenges
	6.4.2 Phase Two: Follow-up Interview for Qualitative Study
	6.5 Conclusion

	Chapter 7 Conclusions and Future Work
	7.1 Overall Findings and Lessons Learned
	7.2 Limitations and Future Work

	Bibliography
	Appendix A
	1. Research Information Sheet
	2. UEA Computing Science Research Ethics Committee Approval
	3. Participation Consent
	4. Software Project Managers Interview Protocol
	5. Software Project Managers Interview Questions

	Appendix B

