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Abstract 

Preservation of genetic diversity is critical to successful conservation and there is 

increasing demand for the inclusion of ecologically meaningful genetic information in 

management decisions. Supportive breeding programmes are increasingly 

implemented to combat declines in many species, yet their effect on adaptive genetic 

variation is understudied. This is despite the fact that supportive breeding may 

interfere with natural evolutionary processes. Here, we assessed the performance of 

neutral and adaptive markers (Major Histocompatibility Complex; MHC) to inform 

management of European grayling (Thymallus thymallus), which routinely involves 

supplementation of natural populations with hatchery-reared fish (stocking). This 

study is the first to characterize MH II DAA and DAB loci in grayling and to 

investigate immune genetic variation in relation to management practice in this 

species. High-throughput Illumina sequencing of ‘introduced’, ‘stocked native’ and 

‘non-stocked native’ populations revealed significantly higher levels of allelic richness 

and heterozygosity for MH markers than microsatellites exclusively in non-stocked 

native populations. Likewise, significantly lower differentiation at the MH II than for 

microsatellites was apparent when considering non-stocked native populations, but 

not stocked populations. We developed a simulation model to test the effects of 

relaxation of selection during the early life stage within captivity. Dependent on the 

census population size and stocking intensity, there may be long-term effects of 

stocking on MH II, but not neutral genetic diversity. This is consistent with our 

empirical results. This study highlights the necessity for considering adaptive genetic 

variation in conservation decisions and raises concerns about the efficiency of 

stocking as a management practice. 
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Introduction 

In order to manage biodiversity in the light of elevated rates of species extinctions 

(Ceballos et al. 2015), it is acknowledged that the consideration of genetic variation 

is crucial (Pertoldi et al., 2007; Sgrò et al., 2011). In the short-term, the loss of 

genetic variation directly impacts population viability due to negative effects 

associated with inbreeding depression (Spielman et al., 2004). In the long-term, 

populations are expected to persist in a changing environment only if they harbour 

sufficient adaptive potential (Duplouy et al., 2013). The management of adaptive 

genetic variation is therefore at the core of conservation genetics (Allendorf et al., 

2010). Indeed, there is great promise in measuring adaptive genetic variation 

because it makes the consideration of evolutionary dynamics possible, which may 

greatly improve the effectiveness of conservation planning (Brodersen and 

Seehausen, 2014). Assessing adaptive genetic variation directly is important 

because neutral variation may be affected differently by demographic processes 

(e.g. through bottlenecks (Ejsmond and Radwan, 2011; Sutton et al., 2011)), thus 

conservation decisions based solely on assessment of neutral variation may be 

poorly informed. Whilst neutral marker surveys continue to be in wide use in 

conservation genetics due to their convenience, repeatability and low cost, 

increasingly, there are calls to study the dynamics of functional genetic variation 

underlying ecologically meaningful traits in conservation genetic studies (Piertney 

and Webster, 2010). Despite the great promise in monitoring and managing adaptive 

genetic variation, it has only become feasible to do so at a large scale in recent 

years due to the increasing accessibility of whole genomic screening techniques 

(Koboldt et al., 2013). 
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The assessment of adaptive genetic variation is particularly important where species 

management includes captive breeding. Although captive breeding is an important 

management tool to reduce biodiversity loss (Frankham, 2008; Griffiths and 

Pavajeau, 2008), it can interfere with adaptive processes (Ayllon et al., 2006). A 

good example is supportive breeding where adults are maintained temporarily in 

captivity to produce offspring that are released into the wild population. Neff et al. 

(2011) found that evidence for successful restoration of stable populations through 

supportive breeding is rare. Failing to preserve adaptive genetic variation is 

potentially one of the main causes of the ineffectiveness of current supportive 

breeding programmes, but more evidence is required to assess this (Neff et al., 

2011). Supportive breeding is predicted to affect both neutral and adaptive genetic 

diversity in some contexts (like the reduction of the effective population size through 

unequal reproductive contributions of hatchery fish (Ryman and Laikre, 1991)), but in 

others may only affect adaptive and not neutral variation. For example, both the lack 

of natural selection acting on early life stages (Lynch and O’Hely, 2001) (which might 

be particularly important in species with high rates of juvenile mortality (de Eyto et 

al., 2011)), and the lack of natural mate choice in supportive breeding programmes 

can interfere with the preservation of adaptive genetic variation (Quader, 2005). It is 

therefore crucial to enhance our understanding of the effects of supportive breeding 

on adaptive genetic variation for this management technique to become a more 

fruitful conservation tool.  
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An important adaptive marker in the context of optimizing fitness of offspring from 

artificial breeding programmes is the immune related Major Histocompatibility 

Complex (MHC)(Hedrick, 2003; Pitcher & Neff, 2007; Ujvari & Belov, 2011). Protein 

products of the MHC have a central role in the recognition and elimination of foreign 

peptides and pathogens (Zinkernagel and Doherty, 1974). A large body of evidence 

demonstrates an association between MHC variation or specific MHC variants with 

overall or pathogen specific resistance (e.g. Evans and Neff, 2009; Meyer-Lucht and 

Sommer, 2005; Miller et al., 2004; Savage and Zamudio, 2011). Pathogen-mediated 

selection through negative frequency dependent selection and heterozygote 

advantage are thought to be the main mechanisms maintaining high diversity in the 

MHC and can lead to habitat specific MHC gene diversity (Eizaguirre, Lenz, Kalbe, & 

Milinski, 2012). Sexual selection has also been implicated in maintaining 

polymorphism through MHC-mediated mate choice in a range of taxa (Consuegra 

and Leaniz, 2008; Setchell et al., 2010; Strandh et al., 2012). Whilst the MHC does 

not represent overall adaptive variation, the loss of variation at this marker can have 

a strong negative effect on fitness, e.g. in inbred populations (Arkush et al., 2002), 

and standing genetic variation at the MHC is particularly important in the context of 

developing resistance to emerging disease (Dionne et al., 2009). The MHC is 

therefore widely recognized as a key marker for monitoring adaptive genetic 

variation in a conservation context (Eyto et al., 2007; Sommer, 2005; Ujvari and 

Belov, 2011). 

 

Supportive breeding is becoming a widespread tool to re-invigorate species of 

conservation concern (Manlick et al., 2017; Moorkens, 2018; Tapley et al., 2015). It 

is a particularly common management strategy in salmonids (Fraser, 2008), so they 
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are a good model to investigate its effectiveness in meeting conservation goals. 

European grayling (Thymallus thymallus) is a non-anadromous salmonid fish species 

with a wide distribution, ranging from France and Great Britain in the West to the 

Ural mountains in the East and from Montenegro in the South to Scandinavia in the 

North (Gum et al., 2009). The species is listed as protected in Appendix II of the Bern 

convention (Swatdipong et al., 2010) and UK populations are considered 

endangered (Dawnay et al., 2011). A number of pathogens and parasites are known 

to infect grayling (Dorovskikh and Stepanov, 2009; Pylkkö et al., 2006), likely 

imposing selection pressures on natural populations. There are also emerging 

threats to grayling such as proliferative kidney disease (Wahli et al, 2002) and the 

spread of disease from fish farms (Algöet et al., 2009). European grayling exhibit a 

high degree of spatial genetic structure across their natural range in the UK and 

continental Europe (Dawnay et al., 2011; Koskinen et al., 2002). In the UK, limited 

gene flow was detected between populations and four demographic clusters have 

been identified (Dawnay et al. 2011). To compensate for declines, supportive 

breeding (stocking) is a common practice to manage natural populations (Dawnay et 

al., 2011; Persat et al., 2016) and stocking policy in the UK has been altered in 

response to neutral genetic data in order to avoid homogenisation of genetically 

differentiated populations (Environmental Agency, 2011; Dawnay et al., 2011). 

However, so far only neutral genetic markers have been assessed and there is no 

information available on adaptive genetic variation. 

 

Here, we combine empirical and modelling approaches to examine functional MHC 

genetic diversity of the class II α-chain (DAA) and β-chain (DAB) in European 

grayling and its relationship with neutral genetic diversity. Specifically, we test (i) the 
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degree to which neutral genetic variation reflects MHC genetic variation; (ii) the 

degree to which risk assessment of population viability and the definition of 

management units based on neutral genetic variation are consistent with results from 

MHC genetic variation; (iii) if there is an effect of management on neutral and 

adaptive genetic variation; (iv) using forward simulations we explore whether these 

effects can be explained by the lack of natural selection acting on hatchery produced 

offspring during captivity.  

 

Materials and Methods 

Tissue Samples 

Thirty-seven to forty individuals from each of twelve populations were used for this 

study. These samples are a subset of those previously genotyped at ten 

microsatellite loci by Dawnay et al. (2011, see Figure 1). Five of the sampled 

populations are classified as ‘non-stocked native’ (Dee, Severn, Ure, Wye and 

Wylye), four as ‘stocked native’ (Aire, Derbyshire Derwent, Dove and the Hampshire 

Avon) and three as introduced populations (Clyde, Eden and Itchen) (Dawnay et al., 

2011). These populations represent all four demographic units (DUs) that were 

identified by Dawnay et al. (2011). The introduced populations are thought to be 

sourced from the Dove and Derbyshire Derwent, with one or more introductions 

taking place over the past 200 years (Ibbotson et al., 2001; Wilson, 1963). For the 

stocked native populations detailed information available on exact timing and 

numbers of stocking events is limited. In the River Aire stocking was performed 

every year between 2006-2009, releasing between 1000 and 2000 individuals 

(Environmental Agency UK, personal communication). In the River Dove 1500 
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individuals were stocked in 2007 (Environmental Agency UK, personal 

communication). The age of stocked fish was between ~6-18 months (0+ or 1+). The 

likely provenance of the stocked fish is the river Test (Dawnay et al., 2011).  

 

MH II target loci 

In teleost fish, class I and class II major histocompatibility genes are not within one 

complex like in other vertebrates and hence are designated as MH (Stet et al., 

2003). Our methods target variation at the MH class II α-chain (DAA) and β-chain 

(DAB), covering most of the class II peptide binding region (PBR). Primer sequences 

for the DAA exon were based on published primers developed for brown trout 

(Salmo trutta; Stet et al., 2002; amplicon length: ~213 bp). Previously described 

primers for the β1 domain encoded by exon 2 of the DBB gene, involved in peptide 

binding, were modified from those described by Pavey et al. (2011) (forward: 5’- 

ATGTTTTCCTTTTAGATGGATATTTT -3’, reverse: 5’- GTCTTATCCAGTACGACAC 

-3’; amplicon length: ~286 bp). 

NGS library preparation 

Tagged sequencing was used in a nested PCR, with the outer primer containing the 

Illumina adapter sequences and tags and the inner primer the target-specific 

sequence (after Lange et al., 2014). This allows different inner primers to be used 

with the same set of tagged outer primers and is therefore flexible and cost-efficient. 

The assay was designed as a one-step PCR on a Fluidigm Access Array microfluidic 

chip (Lange et al., 2014), but was modified here to a two-step PCR for conventional 

thermocyclers.  
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Library preparation using PCR was performed as follows. Inner target-specific PCR 

was performed with a total volume of 6 μl, containing 3.75 mM MgCl2, 0.2 mM each 

dNTP, 4% DMSO, 0.2 μM of each target-specific primer, FastStart High Fidelity 

Reaction Buffer and 0.15 U of FastStart High Fidelity Blend Enzyme (Roche/Sigma 

Aldrich) on Prime (Bibby) PCR cyclers or in a ABI 1 PCR cycler. Amplification used a 

thermal profile of: 95°C for 10 min, followed by 15 cycles at 95°C for 25 s, target-

specific temperature and annealing time and 72°C for 90 s, and a final extension at 

72°C for 5 min. Target-specific temperatures and annealing times were 59°C for 60 s 

(DAA locus) or 60°C for 45 s (DAB). PCR products were diluted (1:20) in H2O and 3 

μl used as template in the second PCR which was carried out in a total volume of 7 

μl containing 3.75 mM MgCl2, 0.2 mM each dNTP, 4% DMSO, 0.1 μM of each outer 

primer, FastStart High Fidelity Reaction Buffer and 0.25 U of FastStart High Fidelity 

Blend Enzyme (Roche/Sigma Aldrich). The thermal profile of the second PCR was 

95°C for 10 min, followed by 27 cycles at 95°C for 25 s, 60°C for 60 s and 72°C for 

90 s, and a finishing step at 72°C for 5 min. Amplification success was verified on 

20% of samples using 1% agarose gels. All samples were prepared in independent 

replicates along with ten randomly distributed negative controls for each locus, which 

represent samples without DNA input. Subsequently, PCR products were pooled per 

locus for each population prior to purification using AmpureXP (Beckmann and 

Coulter) and quantification using a Qubit 3.0 Fluorometer (Thermo Fisher Scientific). 

All populations were then pooled for each locus (equimolar concentrations) and run 

on an Agilent 2100 Bioanalyzer to check product size and successful removal of 

unincorporated adapters and primers. Samples were then pooled in equal 

concentrations across loci and sequenced using an Illumina Miseq Nano (250bp 

paired end). 
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Data analysis 

For quality control, all reads with a quality score below 20 in more than 90 percent of 

the sequence were filtered using the Filter by Quality tool on Galaxy Server (Goecks 

et al., 2010). Only sequences with both paired-end reads of sufficient quality were 

retained and aligned to each other using Mothur (Schloss et al., 2009). Primer 

mismatches (>1bp) and frame-shifts were filtered and examined for repeated 

sequences that could be derived from co-amplifying pseudo-genes. Read counts 

were adjusted if a variant (unique sequence) was present in a negative control. In 

this case, the highest read count of the variant observed in a control was subtracted 

from all amplicons where this variant was detected. Genotyping was performed if 

amplicons had a minimum of twenty reads. Because of the challenges associated 

with genotyping highly variable multi-gene families such as the MHC (Lighten et al., 

2014a), like the distinction between natural recombinants and artificial chimeras, our 

genotyping approach builds upon the combination of two previously described 

pipelines to allow for high genotyping confidence. Briefly, genotyping was primarily 

done following the method described by Sommer et al. (2013), which is based on the 

comparison between replicate samples and also accounts for differences in allele 

amplification efficiency. Where the most frequent variant within one amplicon was 

not present within the technical replicate, an assignment error was assumed and the 

individual excluded from the analysis. Where no replicate sample was available the 

genotyping methods described by Lighten et al. (2014b) were used as an additional 

criterion to assure genotyping confidence. Non-replicated genotyping estimates were 

only considered if they were consistent between the ‘Sommer’ and ‘Lighten’ 

estimate. The methods described by Lighten et al. (2014b) are based on the 

calculation of the degree of change (DOC-method) between variants and the 
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comparison of read numbers to expectations under a number of alternative copy 

number scenarios (CNV method). The CNV-method was also applied to compare the 

effect of control read subtraction on the overall fit of the data to specific copy number 

scenarios. In this case up to five loci were considered. Here, the F-ratio test was 

used to decide whether control read subtraction resulted in significantly lower 

variance and better fit. 

 

Genetic diversity analysis 

Summary statistics of genetic diversity were calculated for all populations. 

Conformity to Hardy-Weinberg equilibrium and allele frequency difference amongst 

populations were investigated using the Fisher’s exact test implemented in Genepop 

(Rousset, 2008) using 10,000 dememorizations, 100 batches and 10,000 iterations 

per batch. Observed and expected heterozygosity were calculated in GenAlex 6.5 

(Peakall and Smouse, 2012). F-statistics (Weir and Cockerham, 1984) and allelic 

richness were calculated using Fstat (Goudet, 2001). Whilst Weir and Cockerham’s 

FST can be biased by differences in mutation rates (Hedrick 1999), which can be 

elevated for microsatellite markers, here variation at microsatellites was not higher 

than for MH markers, so that FST was considered sufficient to reflect differentiation 

(Whitlock, 2011). Tests of significant differences of FIS estimates and of FST 

estimates were based on 24000 randomisations and 66000 permutations 

respectively. The peptide binding region (PBR) was inferred by alignments of 

grayling MH II sequences to human HLA sequences (Brown et al., 1993). Amino acid 

(AA) diversity was calculated for the PBR as p-distance within and across 

populations in MEGA 7.021 and also as average pairwise p-distance across 
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individuals for the whole sequence and only for the PBR (Kumar et al., 2016). A 

Mann-Whitney-Wilcoxon test was used to compare the pairwise p-distance across 

individuals for the whole sequence and only for the PBR. 

 

MH locus data were compared to neutral microsatellite diversity for the same 

populations to evaluate how well neutral genetic variation reflects ecologically 

meaningful genetic variation. We conducted a simulation analysis by sequentially 

removing two microsatellite loci and measuring their correlation with the remaining 

eight loci over 1000 bootstrap cycles for all standard measures of genetic diversity to 

assess our ability to detect significance.  

To detect differences in functional relative to neutral genetic variation across 

management classes, differences in observed and expected heterozygosity, 

inbreeding coefficient FIS and allelic richness between MH II and microsatellites were 

tested for non-stocked native, stocked native and introduced populations. This was 

done using a clustered Mann-Whitney-Wilcoxon test implemented in the R-package 

‘clusrank’, using the Datta-Satten method and 1000 bootstrap cycles (Jiang et al., 

2017), to account for the dependency of measurements derived from the linked DAA 

and DAB genes respectively. The Kruskal-Wallis test was used to identify differences 

in measurements of genetic diversity across management classes for each marker 

type. Pairwise FST estimates were compared using a Mann-Whitney-Wilcoxon test 

between MH II and microsatellite loci, using (i) all populations, (ii) non-stocked native 

and stocked native or (iii) only non-stocked native populations. For all tests involving 

multiple comparisons, the Benjamini-Hochberg method was used to correct for 

multiple testing (Hochberg and Benjamini, 1990). To assess whether population 
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structure reflected by neutral markers is supported by adaptive genetic 

differentiation, a neighbour-joining phylogenetic tree was built based on Nei’s genetic 

distance (Nei, 1972) in PHYLIP using a consensus of 2000 bootstrapped replications 

for all genes studied (Felsenstein, J, 1989). An analysis of molecular variance was 

done for both microsatellite and MH II data in GenAlex 6.5 (Peakall and Smouse, 

2012). 

 

Inference of selection 

Recent effects of selection on each gene and population were evaluated in 

ARLEQUIN 3.5 (Excoffier and Lischer, 2010) using a Ewens-Watterson 

homozygosity test (Ewens, 1972; Watterson, 1978). The Ewens-Watterson test 

compares allele frequencies observed within each population to those expected 

under neutrality for populations at mutation-drift equilibrium. The test assumes 

population equilibrium and is sensitive to demographic changes. During population 

bottlenecks low frequency alleles are lost at a higher rate, producing allele 

frequencies that are more even than expected under neutrality (Ewens, 1972; 

Watterson, 1978). Similarly population expansion leads to an increase in low 

frequency alleles and lower heterozygosity than expected under neutral-equilibrium 

(Meyer et al., 2006). In order to distinguish demographic and selective forces and 

their effect on allele frequency changes a Ewens-Watterson test was also performed 

on the microsatellite data from Dawnay et al. (2011) for all populations studied. 

Where recent demographic events are the reason for deviations from neutrality both 

neutral and adaptive markers are expected to be affected, whilst selection is 

expected to only affect MH II markers. Following Larson et al. (2014) alpha margins 
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of 10% (p < 0.1, p > 0.9) were considered as evidence of selection, because of the 

limited statistical power of the Ewens-Watterson test in detecting weak or moderate 

selection (Ewens, 1972) . 

 

Simulations 

We implemented a simulation model using simuPop, version 1.1.8.3 (Peng and 

Kimmel, 2005), in order to investigate whether the lack of natural selection during 

early life-stages of hatchery reared juveniles could result in changes in observed and 

expected heterozygosity in supplemented populations where population census size 

differs (script available on request). We assumed a natural population with constant 

size and with an age class structure as described for grayling populations in 

Woolland and Jones (1975). We assumed age-dependent female fecundity (Charles 

et al., 2006). We assumed allele frequencies for DAA and DAB MH loci were the 

same as our estimates of the native Dee population (this study). We used a 

heterozygote advantage model for offspring survival with a selection coefficient of 

0.1, which is within the range reported for loci under balancing selection in natural 

populations (0.05-0.15, Aguilar et al., 2004) and a model without selection to 

represent a comparable neutral marker reference. Thus, the probability of survival 

was given by the average fitness value across the two MH loci divided by the sum of 

probabilities across all individuals of a certain age class. We did not evaluate the 

scenario of using foreign stocks and introducing potentially maladaptive alleles as 

this does not represent the generally recommended practice in a conservation 

context and is not the current practice of the Environmental Agency for grayling in 

the UK (Dawnay et al., 2011). After simulating the evolution of the population for ten 
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years, ten adult males and females were selected randomly to produce the simulated 

hatchery offspring, before the adults were returned to the population. Selection-

dependent survival on hatchery produced offspring was removed in the first year, 

before 1000 individuals at the age of 1 year were stocked into the source population. 

Of these individuals 50% were randomly removed from this cohort to simulate non-

genetic effects of high initial mortality in stocked fish (Pedersen et al., 2003). This 

stocking procedure was simulated in three consecutive years and the allele 

frequencies in the population monitored for another ten years. Stocking intensity and 

frequency generally followed those actually practiced in the native stocked 

populations described above (Environmental Agency UK, personal communication). 

Stocking intensity was kept constant for different source population sizes of 500, 

750, 1500 and 2000, so that the ratio of naturally produced offspring surviving to an 

age of one year to those stocked that initially survived (50%) were roughly 0.5:1, 

0.8:1, 1.6:1 and 2:1 respectively. The population was replicated with or without 

stocking 100 times respectively. Observed and expected heterozygosity was 

compared between them, across the following ten years after stocking, using a 

Mann-Whitney-Wilcoxon test. Differences between stocked and non-stocked 

replicates were also tested for significance in each year after stocking for neutral and 

MH markers using a Mann-Whitney-Wilcoxon test. 
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Results 

Quality control 

The Illumina Nano run resulted in n=1,227,780 reads. A small number of reads were 

observed in negative controls: the mean reads for these across 10 control samples 

respectively were 10 ± 26 (total 103) and 1.8 ± 6 (total 19), representing 0.02% and 

0.005% of the total reads for the DAA and DAB locus respectively. The fit of the 

overall dataset to specific copy number scenarios was significantly better after 

control read subtraction (F-test: F=0.67, p<.0005). Genotypes were obtained for a 

total of 389 individuals for the DAA and 359 individuals for the DAB locus. Of these 

82% were derived from replicated samples for the DAA and 52% for the DAB locus. 

Several samples were excluded from the analysis due to a potential assignment 

error (DAA n=7; DAB n=1), where the most frequent variant within one amplicon was 

not present in the replicate. The genotypes of most individuals were consistent with 

the single classical class II locus system found within other salmonids (Stet et al., 

2002). However, individuals for the DAA (n=4; 1%) and DAB (n=1; 0.3%) loci 

exhibited three alleles and were excluded from subsequent analysis. The mean per 

amplicon coverage was 143 for the DAA locus and 89 for the DAB locus. For the 

DAA and DAB locus 15 and 10 alleles were identified, of which 14 and 10 encoded 

different protein sequences respectively. 
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Genetic diversity 

The total number of alleles per population ranged from 2-7 for the DAA locus and 2-6 

for the DAB locus. Two populations, the stocked native Aire (AIR) and non-stocked 

native Severn (SEV), showed significant heterozygote deficits (Table 1) and 

departure from HWE for the DAB gene. FIS estimates ranged from -0.22 to 0.33 for 

the DAA locus and from -0.2 to 0.6 for the DAB locus. Average AA diversity within 

the PBR was 0.11 for DAA and 0.41 for DAB across all populations. There was 

greater within-population than between-population AA diversity for all but the Eden 

population for the DAB locus (Table 1). Average pairwise AA distance across 

individuals was significantly higher for the PBR than for the whole sequence for both 

the DAA and DAB locus (Mann-Whitney-Wilcoxon test: p<0.001). 

No significant correlations were observed between microsatellite and MH expected 

heterozygosity (Spearman: rho = 0.26, p = 0.22), observed heterozygosity 

(Spearman: rho = 0.39, p = 0.06), allelic richness (Spearman: rho = 0.36, p = 0.09) 

or FIS (Spearman: rho = 0.21, p = 0.32). However, the results of the simulation 

analysis indicated that correlations between random subsets of two and ten of the 

microsatellite markers resulted in lower values of rho in 17.6% for expected 

heterozygosity, 54% for observed heterozygosity, 40% for allelic richness and 7% for 

FIS. Thus, there is insufficient power to detect correlations between MH and 

microsatellite loci.  
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Expected heterozygosity and allelic richness differed significantly for the MH II 

among management classes (Kruskall Wallis test: p = 0.003, p = 0.007, Figure 2). 

Introduced populations showed the lowest diversity and native non-stocked 

populations the highest. This pattern was not evident for microsatellite loci. Expected 

heterozygosity and allelic richness were significantly higher for MH II genes than for 

microsatellites in non-stocked native populations (clustered Mann-Whitney-Wilcoxon 

test: p = 0.002, p = 0.008; Figure 2). This was not the case for the other 

management classes. No significant differences were observed between 

management classes for observed heterozygosity, FIS values or effective population 

size which was inferred from microsatellites (Dawnay et al., 2011). Percentages of 

molecular variance were 68% within populations, 30% among populations and 2% 

among individuals for microsatellites and were 51% within populations, 23% among 

populations and 26% among individuals for the MH II genes. 

 

Population differentiation 

We found a significant correlation between MH II and microsatellite pairwise FST 

estimates (Mantel test DAA: P = 0.001, r= 0.55; DAB: p = 0.02, r =0.38; Figure 3). 

Pairwise FST estimates were not significantly different between MH II and 

microsatellite estimates across all populations and when comparing non-stocked 

native and stocked native populations (Figure 4A, B). However, considering only 

non-stocked native populations pairwise FST estimates were significantly lower for 

MH II genes than for microsatellites (Pairwise Mann-Whitney-Wilcoxon; DAA: p = 

0.009, DAB: p = 0.02) (Figure 4C). 
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Pairwise FST estimates significantly greater than zero were found for most population 

pairs for all genes (Table 2). Dawnay et al. (2011) identified four demographic units 

based on microsatellites (A-D). Un-rooted neighbour-joining phylogenetic trees 

suggest a similar pattern of population sub-groups for MH II genes as for neutral 

markers (Figure 5). However, the Dee population groups with cluster C rather than A 

and the Derbyshire Derwent with A rather than D, where they were grouped for 

neutral markers (Figure 5).  

 

Selection 

For the stocked native Aire (AIR) and Dove (DOV) and the introduced Clyde (CLD) 

populations no evidence for selection was identified by the Ewens-Watterson test for 

any MH gene and microsatellite results suggested a recent population decline 

(Supporting Information 1). For the non-stocked native Dee (DEE), Severn (SEV) 

and Wylye (WLA/B), as well as for the introduced Eden (EDN) and stocked native 

Hampshire Avon (HAV) populations allele frequencies deviated significantly from 

expectations under neutrality for both MH II genes and microsatellites, but in each 

case the difference between observed and expected allele frequencies was greater 

for microsatellites, indicating a dominant effect of a recent population decline 

(Supporting Information 1). Populations that did not show larger significant 

differences between observed and expected allele frequencies for microsatellites 

than for MH genes were the non-stocked native Ure (URE) and Wye (WYE) 

populations. The DAA locus showed evidence for balancing selection for the Ure 

population and the DAB locus for the Wye population. 
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Simulations 

Simulating the effect of stocking between neutral and MH II markers for different 

population census sizes, showed that at very low population sizes (census size 500) 

neutral markers are affected more strongly than MH II markers, as measured by 

stronger reductions in observed and expected heterozygosity (Figure 6). There was 

no significant difference in MH observed heterozygosity between stocked and non-

stocked replicates at this population size. In all other cases, there was a significant 

reduction of MH heterozygosity (observed and expected, Figure 6) after stocking. 

Comparing the marker types, for higher population sizes (census size 750, 1500, 

2000) the effect of stocking was significantly stronger on MH expected 

heterozygosity than on microsatellites in all cases and for observed heterozygosity 

for population census sizes of 750 and 1500 (Figure 6). For population sizes of 1500 

and 2000 there was no significant effect of stocking on expected heterozygosity on 

neutral markers and for observed heterozygosity a significant effect of stocking was 

found only for a population size of 2000 (Figure 6). Looking at the effect of stocking 

separately for each year, shows that a persisting significant effect on MH 

heterozygosity is observed at a population size of 750 (Figure 7B).  

 

Discussion 

In order to maintain adaptive genetic variation in threatened populations, it is 

important to understand how management impacts on functional genetic diversity 

and evolutionary processes. In this study we compared the performance of neutral 

and functional markers in informing conservation and management decisions, using 

salmonids as a model to evaluate the effect of supportive breeding on these different 
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types of genetic markers. Measurements of genetic diversity at functional MH loci 

could not be predicted by neutral markers. Across different grayling population 

management classes only non-stocked native populations showed evidence for 

selection maintaining higher levels of variation at the MH II than at neutral loci. We 

implemented a simulation model to test if the removal of natural selection on early 

life-stages within the hatchery could explain our empirical results. A significant 

reduction in MH diversity but not neutral diversity was predicted by our model at 

intermediate population sizes. This is consistent with our empirical results. Further, a 

significant reduction in the response to selection resulting from supportive breeding 

was predicted by all simulated scenarios. Overall, our results show clear differences 

between functional versus neutral genetic loci, confirming the imperative to use 

adaptive genetic markers to inform conservation decisions (Piertney and Webster, 

2008; Sutton et al., 2011). Our results have clear implications for population 

management involving augmentation, calling into question its efficiency in supporting 

long term viable populations with high adaptive potential. 

 

We found significant differences in allelic richness and expected heterozygosity for 

MH II genes, but not microsatellites, across management classes. Although the 

lowest diversity was found in introduced populations, which might be expected as the 

consequence of a bottleneck this result is not supported by neutral markers. The loss 

of diversity in introduced populations was specific to the MH II. Explanations other 

than founder effects must explain the loss of variation. In a similar study looking at 

population genetic variation in translocated rainbow trout (Onchorhynchus mykiss), 

Monzón-Argüello et al. (2013) found low MH II diversity relative to neutral markers. 

These authors attribute this to selection pressures against MH alleles that perhaps 
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did not provide a selective advantage in the novel environment into which they were 

introduced. Such habitat specific adaptations, where there is a fitness advantage of 

local genotypes, have been found at the MH II in river and lake populations of three-

spined stickleback (Eizaguirre et al., 2012b). Our study further underlines that, using 

neutral markers as a surrogate of adaptive genetic variation is unreliable. This 

observation has been demonstrated in a range of taxa, e.g. mammals (Aguilar et al., 

2004), other salmonids (Dionne et al., 2007) and birds (Hartmann et al., 2014). 

Specific consideration of adaptive markers and likely impacts of demographic history 

and management on them needs to be a routine part of conservation genomic 

research. 

 

Few studies (e.g. Schenekar and Weiss, 2017) have focussed on assessing 

adaptive versus neutral variation specifically in supportive breeding programmes, a 

practice becoming increasingly adopted as means to effectively manage population 

declines. Here, significantly higher genetic diversity (allelic richness and expected 

heterozygosity) of MH genes than microsatellites was observed in non-stocked 

native populations. Non-stocked native populations also showed significantly lower 

differentiation for MH II markers than neutral markers. This suggests that balancing 

selection is acting to retain variation at the MH in natural populations, but that this is 

not the case for introduced or stocked native populations. On the one hand, stocked 

native populations with reduced MH II diversity could be undergoing drift and this has 

removed variation more rapidly at MH II loci due to the combined effect of drift and 

selection (Ejsmond and Radwan, 2011; Sutton et al., 2011). This seems unlikely 

because Dawnay et al. (2011) found evidence for bottlenecks in ten populations and 

these included populations of all three categories (introduced, stocked native and 
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non-stocked native). Thus, there is no evidence that most grayling populations 

selected for stocking suffered recent and severe population decline, or exhibit lower 

effective population sizes (Dawnay et al., 2011). Therefore, considering a direct 

effect of the stocking process on the efficiency of selection to act within the 

supplemented population is consistent with our results. 

 

We found no correlation between MH II and neutral markers using any measure of 

genetic diversity, however we show that for the number of microsatellite markers 

genotyped (twelve) by Dawnay et al. (2011) and two MH loci, the statistical power for 

detection is insufficient to identify differences between functional versus neutral loci 

we analysed. This highlights the importance of caution when making inferences of 

overall genetic diversity from only a low number of markers (DeWoody and 

DeWoody, 2005) and the importance of considering power explicitly when designing 

a programme of sampling. However, we found evidence for recent selection on MH 

loci as outlined above. Additionally, we found higher within-population amino acid 

(AA) diversity than between populations, and significantly more even allele 

frequencies than expected, while we did not observe this for microsatellites.  

 

The levels of diversity reported for the MH II here, compare to those of other 

salmonids, where generally both the alpha and beta chain show similar levels of 

diversity (Gómez et al., 2010). This contrasts with other vertebrates ( e.g. chicken, 

Salomonsen et al., 2003; humans, Reche & Reinherz, 2003), where the alpha chain 

shows much lower levels of diversity. Two populations, Aire and Severn, significantly 

departed from HWE due to heterozygote deficiency at the DAB locus (Table 1). 
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Whilst a technical cause, such as allelic drop-out at the DAB locus, cannot be ruled 

out, elevated (but not significant) FIS vales have also been found for the same 

populations at the DAA locus. This is not consistent with uneven reproductive 

success between families or a Wahlund effect (Wahlund, 1928) because the pattern 

is not also shown by neutral loci. To observe higher levels of inbreeding for genes 

under balancing selection than for neutral markers seems counterintuitive. However, 

a loss of diversity under the simultaneous effects of selection and drift has been 

shown both empirically and theoretically (Ejsmond and Radwan, 2011; Sutton et al., 

2011). Additionally, MH II mediated mate choice is not necessarily disassortative, 

seeking highest offspring dissimilarity, but assortative, where particular alleles confer 

highest resistance, e.g. under frequency dependent selection (Eizaguirre et al., 

2009). We report more than 20 times higher proportion of molecular variance found 

among individuals for the MH II than for microsatellites, which supports an important 

role of frequency dependent or heterogeneous selection in space and time opposed 

to overdominant selection. Thus, unbalanced reproductive success for particular MH 

II genotypes, resulting in elevated inbreeding, might be expected, particularly where 

competition for mating opportunities is high (Milinski, 2006). This can be for example 

the case when spawning grounds are scarce (Castric et al., 2002), which has been 

documented for the Severn population (Lewis, 2006). 

 

Our ability to directly compare native populations before and after stocking is limited 

by lack of pre- and post-stocking samples. Our simulation model addresses this 

focussing on plausible genetic effects caused by unequal reproductive contributions 

of hatchery reared young in relation to naturally produced offspring and the different 

selective environments experienced by each respectively.  
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The key outcome of our simulation is that the consideration of stocking intensity in 

relation to naturally produced offspring is crucial to reduce negative long-term effects 

on adaptive genetic diversity. Across taxa, empirical and simulated data need to be 

obtained to establish the effects of supplementary breeding on adaptive genetic 

variation that underlies fitness. For example, our results show that stocking can have 

a strong effect on genetic variation at lower population census sizes (500 and 750) 

where the stocking intensity exceeded numbers of naturally produced offspring. The 

largest effect of drift was observed at a low census size (500), where the differential 

effect of stocking was larger at neutral loci than at MH II loci (Figure 6). With 

increasing population census size the effect of drift decreased and in all other cases 

variation at the MH II was lost at a higher rate than at neutral markers as a result of 

stocking. At a population census size of 750, heterozygosity remained significantly 

lower for the MH II in year wise comparisons, but not neutral markers even ten years 

after stocking (Figure 7B). Marie et al. (2010) also reported that the loss of genetic 

integrity correlates with stocking intensities in brook charr (Salvelinus fontinalis). 

Even for larger census sizes (1500 and 2000) where the ratio of naturally produced 

offspring to stocked offspring was high there was a large effect on MH loci but a 

negligible effect on neutral markers. However, the effect was weaker than for smaller 

population sizes as would be theoretically predicted. As populations with low census 

size would be most likely to be considered for stocking it is important to notice their 

vulnerability to genetic deterioration. Furthermore, our results are likely to 

underestimate the role of selection, because MH related mate choice was not 

considered, though it has been shown to maintain MH diversity in teleost (Consuegra 

and Leaniz, 2008; Eizaguirre et al., 2009). Also, we focus specifically on the effect of 
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the removal of natural selection within the artificial rearing environment and do not 

consider adaptation to the hatchery environment, which would be likely to further 

exacerbate differences in adaptive genetic diversity. 

 

It is interesting from a theoretical point of view that a lower differential effect of 

stocking on the MH compared to neutral markers was observed at a census size of 

500. This could be explained by the expectation that in the population prior to 

stocking, MH diversity is lost at a greater rate than neutral genetic diversity through 

the combined forces of drift and selection (Ejsmond and Radwan, 2011; Sutton et al., 

2011). Considering that selection becomes less efficient through stocking fish that 

have not experienced natural selection at the early life stage, the supplemented 

population is partly alleviated from this additional force, so that the difference 

between stocked and non-stocked MH diversity is smaller than that observed for 

neutral markers.  

In the simulation model, we assume that a limited number of individuals is selected 

as brood stock (20 individuals), which reflects current practice. However, selecting a 

larger number of individuals would likely retain more genetic diversity within the 

hatchery brood stock and reduce the effect of drift. Also, we assume an initial 

mortality of stocked fish of 50%, as described in Salmo trutta (Pederson, 2003). The 

survival of stocked grayling has shown to be highly variable, e.g. in some places 

natural populations do not show any signs of introgression with hatchery stocks, 

whilst in other places the original population was completely replaced (Persat et al., 

2016). Evidence that stocked grayling within UK rivers do survive and contribute to 

the population is provided by the observation that genetic relationships of stocked 
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populations agreed with stocking records and through the recapture of stocked 

individuals (Dawnay et al., 2011). Given the uncertainty around exact rates of initial 

survival of stocked fish, the most relevant parameters here are the ratios of 

supplemented individuals relative to the number of offspring naturally produced 

within the recipient population. This also allows for high transferability of the model 

predictions to other systems and specific cases.  

Whilst the MH represents only a specific locus of adaptive importance, our findings 

may have implications for loci under selection in a broader sense. Both our empirical 

results and simulations suggest a dilution effect through the supplementation of a 

natural population with individuals reared within an artificial environment, which 

adversely affects the efficiency of selection. Though we evaluated a case of 

balancing selection, a reduction in the efficiency of selection to act upon a population 

might be expected to extend to other types of selection. As dynamic adaptive 

responses are crucial under the pressure of current rates of environmental change 

conservation management should carefully evaluate the possible inference with 

natural evolutionary processes. In this context it is important to assess the rate of 

natural production of a population, which in the case of grayling is frequently 

restricted by habitat deterioration, which reduces the availability of suitable spawning 

grounds (Nykänen and Huusko, 2002). This will much better inform the number of 

individuals to supplement into a natural population and offers the possibility to 

implement measures of habitat restoration as a first resort where natural 

reproductive capacities are not fully exploited. This reflects the general need for a 

more comprehensive evaluation of potential risks and benefits from ex situ versus in 

situ management practices before these are implemented in a conservation context 

(Dolman et al., 2015).  
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Conclusions 

MH II genes in non-stocked native populations of European grayling showed higher 

variation than was predicted by microsatellites. We also found significant differences 

at MH loci between different population management regimes (introduced, stocked 

native and non-stocked native populations) which were not detected by neutral 

markers. Our findings highlight the importance of using functional genetic markers to 

inform the conservation management of genetic diversity (Kirk and Freeland, 2011; 

Piertney and Webster, 2008). We present evidence consistent with selection 

maintaining genetic variation in functional loci for non-stocked native populations, 

which is aligned with results from our simulation model. Simulation results suggest 

selection is less efficient to maintain genetic variation at functional loci in stocked 

populations, while the effect is negligible in neutral loci.  

Our findings have implications for population conservation management where 

translocation, reintroduction or population augmentation is practised. Our results 

highlight the need for a clear understanding of the interaction of selective processes 

with management actions. Conservation programmes need to more explicitly 

incorporate and consider possible interference with natural evolutionary and adaptive 

processes during supplementation, especially considering the current rate of 

environmental change. 
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  Microsatellites (from Dawnay et al. (2011)) DAA               DAB               

pop class N Ne Na He Ho Fis N Na He Ho Fis  NP 

Mean 

AA     

distance 

alleles 

PBR 

Mean 

pairwise 

AA 

distance 

all/PBR 

N Na He Ho Fis NP 

Mean 

AA     

distance 

alleles 

PBR 

Mean 

pairwise 

AA 

distance 

all/PBR 

CLD I 64 68.6* 2.3 0.39 0.37 0.05 40 2 0.31 0.38 
-

0.22 
0 0.44 0.06/0.18 37 2 0.29 0.35 -0.2 0 0.5 0.07/0.18 

EDN I 45 48.7* 2.5 0.4 0.38 0.04 33 3 0.36 0.24 0.33 0 0.29 0.03/0.08 36 3.5 0.34 0.25 0.26 0 0.4 0.04/0.11 

ITH I 50 86.6 2.5 0.39 0.38 0.02 34 2 0.42 0.29 0.31 0 0.25 0.04/0.08 20 2 0.41 0.45 -0.1 0 0.65 0.1/0.29 

DEE N 52 43.2* 3.5 0.54 0.51 0.04 27 6.7 0.8 0.74 0.07 0 0.3 0.08/0.2 26 5.9 0.77 0.54 0.3 0 0.42 0.08/0.21 

SEV N  39 40.8 2.8 0.42 0.41 0.03 31 3 0.53 0.39 0.27 0 0.29 0.04/0.12 30 3.9 0.57 0.23 0.6* 0 0.42 0.03/0.1 

URE N 58 62.5 2.9 0.35 0.32 0.09 31 6 0.8 0.58 0.28 4 0.27 0.08/0.18 30 5 0.59 0.4 0.32 2 0.47 0.08/0.2 

WYE N 55 121 3 0.4 0.4 0 30 3.7 0.64 0.63 0.02 0 0.28 0.06/0.18 22 3 0.65 0.55 0.16 0 0.47 0.08/0.23 

WLA/B N 48/51 33.5* 2.2 0.34 0.32 0.05 34 4 0.73 0.68 0.07 0 0.29 0.08/0.22 25 4 0.75 0.56 0.26 0 0.43 0.09/0.25 

AIR N S 39 63.9 3 0.45 0.44 0.02 31 4 0.59 0.42 0.3 1 0.23 0.05/0.1 29 4 0.54 0.28 0.5* 1 0.42 0.05/0.13 

DBD N S 39 36.9 2.7 0.42 0.45 0.07 35 3.4 0.54 0.57 
-

0.06 
2 0.32 0.1/0.26 36 2 0.5 0.58 

-

0.18 
0 0.5 0.11/0.29 

DOV N S 50 64.4 2.6 0.35 0.32 0.04 26 2.8 0.3 0.23 0.23 0 0.33 0.04/0.1 35 2.9 0.3 0.26 0.14 0 0.51 0.05/0.13 

HAV N S 58 32.5* 2.5 0.42 0.45 0.07 37 4.9 0.73 0.7 0.04 0 0.34 0.09/0.25 33 4.9 0.75 0.73 0.03 0 0.46 0.12/0.33 
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DAA AIR CLD DEE DBD DOV EDN HAV ITH SEV URE WYE 

CLD 0.81 

          
DEE 0.28 0.29 

         
DBD 0.53 0.14 0.16 

        
DOV 0.74 -0.01 0.26 0.15 

       
EDN 0.69 0.01 0.22 0.15 -0.01 

      
HAV 0.33 0.31 0.05 0.21 0.28 0.25 

     
ITH 0.65 1.10 0.26 0.74 1.07 0.95 0.33 

    
SEV 0.73 0.95 0.32 0.28 0.96 0.85 0.48 1.04 

   
URE 0.28 0.50 0.15 0.31 0.45 0.42 0.19 0.53 0.47 

  
WYE 0.49 0.52 0.13 0.27 0.49 0.36 0.26 0.71 0.23 0.28 

 
WLA/B 0.39 0.78 0.10 0.48 0.72 0.66 0.09 0.21 0.57 0.27 0.40 

DAB AIR CLD DEE DBD DOV EDN HAV ITH SEV URE WYE 

CLD 0.99 

          
DEE 0.45 0.26 

         
DBD 0.68 0.10 0.14 

        
DOV 0.66 0.00 0.17 0.07 

       
EDN 1.03 -0.01 0.27 0.15 0.01 

      
HAV 0.50 0.37 0.09 0.25 0.26 0.39 

     
ITH 0.69 0.87 0.27 0.53 0.59 0.91 0.29 

    
SEV 0.89 0.98 0.26 0.37 0.74 1.04 0.50 0.71 

   
URE 0.43 0.12 0.13 0.15 0.06 0.12 0.19 0.39 0.64 

  
WYE 0.72 0.76 0.13 0.37 0.55 0.76 0.37 0.54 0.09 0.43 

 
WLA/B 0.52 0.63 0.07 0.39 0.43 0.67 0.01 0.28 0.52 0.28 0.38 
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