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Abstract

Nitrous oxide (N2O) is an important greenhouse gas that is also responsible for

stratospheric ozone depletion [1, 2]. Human activity is the main source of N2O due

to the use of fertilisers in agriculture. Nitrous oxide reductase (N2OR) is the only

enzyme to destroy N2O as part of a biological process termed denitrification. This

enzyme has a unique catalytic CuZ centre, an electron transfer CuA centre and

a high demand for Cu with 12 atoms required per functional dimer. A previous

transcriptomic study revealed that two putative Cu chaperones, ScoB and PCuC

were upregulated under Cu limiting conditions [3]. Here we demonstrate that

ScoB/PCuC is a high-affinity Cu system essential for N2O respiration.

Deletion of scoB causes N2O accumulation under anoxic and Cu-limited growth.

N2O respiration could be restored complementation in trans with recombinant

full-length, or soluble, periplasmic ScoB proteins (ScoBFL and ScoBsol, respectively).

ScoBsol was biochemically characterised and found to be a monomeric protein of

∼25 kDa that can bind Cu1+ or Cu2+ with an apparent KD value within the

subfemtomolar range. In contrast, PCuC is a multidomain protein with a Ycn-like

N-terminal domain [4], and a PCuAC-like C-terminal domain [5]. Recombinant

periplasmic proteins for each individual domain and full-length protein were gen-

erated (i.e., PCuCNt, PCuCCt and PCuCFL). The pcuC deletion strain has an

N2O-genic phenotype. Only complementation in trans with PCuCFL restored N2O

reduction under anaerobic and Cu-limited conditions.
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In addition, the crystallographic structure of Cu-bound PCuCNt was solved to a

resolution of 1.5 Å revealing a trimeric protein of ∼56 kDa with a novel histidine

brace metal binding site. PCuCNt can bind 1+ or 2+ and competition assays with
1+ chelators revealed that metallation occurs with femtomolar affinity. Analysis

of YcnI-type proteins revealed the presence of two defined families. Family A

contains a HX22HX101W consensus Cu-binding motif and was principally found

among alphaproteobacteria, while Family B contain a HX22DX90WX13H motif

and are distributed in actinobacteria and firmicutes. The Cu-bound structure of

PCuCCt was also solved to a resolution of 1.6 Å and reveals a ∼18 kDa monomer

that contains a defined H(M)X10MX21HXM Cu-binding site that can bind Cu1+

with subfemtomolar affinity. Further biochemical studies of native PCuC confirmed

that the full-length protein forms a ∼100 kDa homotrimer in solution regardless of

metallation state, with the N-terminal domain driving oligomerization exposing

individual C-terminal domains to bulk solution through a flexible linker region. Each

trimer can bind up to 6 Cu atoms with binding affinities within the subfemtomolar

range.

Finally, the maturation of the Cu centres of N2OR was studied in P. denitrificans

WT, scoB and pcuC deletion strains. A periplasmic and readily isolatable affinity-

tagged N2OR protein was expressed in cis under two different Cu regimes in P.

denitrificans. N2OR purified from WT cells grown under anaerobic and Cu-limited

conditions only contained a recognisable CuA centre. However, N2OR from scoB

and pcuC mutants lacked both Cu-centres, had significantly lower Cu content

and impaired enzymatic activity. A model for the metallation process of the CuA
centre of N2OR by the high affinity Cu-maturation system ScoB/PCuC has been

proposed.
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1
Introduction

1.1 Biogeochemical nitrogen cycle

Nitrogen is a common element in the universe, for instance it is the seventh most

abundant element in the Milky Way and the Solar System, and on Earth it accounts

for 78 % of the atmospheric gases. The element is an essential constituent of all

known forms of life, it is found in amino acids, the nucleic acids and in the so called

molecular unit of currency adenosine triphosphate (ATP) [6]. The biogeochemical

nitrogen cycle describes the set of reactions by which the element circulates between

the atmosphere and the biosphere in different organic and inorganic forms. NO –
3

can be considered as a junction key point of the N-cycle, it can be reduced down to

NH +
4 by plants and prokaryotes in a process called assimilatory nitrate reduction

[7]. Alternatively, microbes can use NO –
3 as an electron acceptor under anaerobic

conditions and also generate NH +
4 , this process is called dissimilatory nitrate

reduction (DNRA). Anammox (anaerobic ammonium oxidation) is another process

that was discovered almost twenty years ago whereby bacteria from the phylum

Planctomycetes convert aerobically NO –
2 and NH +

4 into N2 [8]. However, one of the

most relevant steps of the N-cycle for the purpose of this work is the dissimilatory

anaerobic reduction of NO –
3 into N2 called denitrification. N2 is then reintroduced

into the biosphere by nitrogen fixation. Finally, the cycle is closed with the process

of nitrification by which NH +
4 is oxidised into NO –

2 followed by the oxidation of

the NO –
2 into NO –

3 (see figure 1.1).
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Figure 1.1: Schematic representation of the biogeochemical nitrogen cycle.
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Figure 1.2: Schematic illustration of denitrification enzymes and their cellular location in Paracoccus denitrificans. Some organisms
contain a copper-containing (NirK) nitrite reductase instead of a heme-containing reductase (NirS). The ubiquinol pool is the source of
electrons for each reaction which then has to be replenish from the oxidation of organic carbon or inorganic electron donors. A net
movement of protons across the membrane is generated, the resultant proton motive force can be used for ATP synthesis. Abbreviations:
Nar, nitrate reductase; Nir, nitrite reductase; Nor, nitric oxide reductase; Nos, nitrous oxide reductase; Cyt bc1, cytochrome bc1; Ps az,
pseudo azurin; UQH2, ubiquinol; FeS, iron-sulphur centre; MGD, molybdopterin guanine dinucleotide; b, c and d1 are different types of

heme cofactors.3
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Denitrification is an intriguing example of the vast respiratory flexibility displayed by

prokaryotes, whereby many microorganisms may thrive during anaerobic conditions

using nitrogen oxyanions and nitrogen oxides as alternative electron acceptors in

the absence of oxygen [9]. Denitrification involves the transformation of nitrate

(NO –
3 ) to nitrite (NO –

2 ), NO –
2 to nitric oxide (NO), NO to nitrous oxide (N2O)

and N2O to N2. Each stage is catalysed by a different multidomain metalloprotein,

for example the active sites of nitrate reductases (Nar or Nap) requires molybdenum

as a part of the bis-molybdopterin guanine dinucleotide cofactor, nitrite reductase

(Nir) may exist in two forms that contain either heme iron (NirS) or copper (NirK),

nitric oxide reductase (Nor) requires heme and non-heme iron and the function of

nitrous oxide reductase (Nos) is dependent on copper. Nevertheless, denitrification

is a matter of general public interest since the use of nitrogen based fertilisers in

agriculture is affecting the health of ground and coastal water environments and

the atmospheric nitrous oxide global emissions [10].

Nitrous oxide is a colourless and highly soluble gas in water, which can persist

in the atmosphere up to 150 years due to its low reactivity, compared to most of

the atmospheric gases. Besides, each molecule of N2O has 300 times the warming

potential of a CO2 molecule [1] and it may be removed from the stratosphere via

UV photolysis, with the subsequent ozone layer depletion. At a global level, N2O

accounts a 9% to the total radiative forcing of greenhouse gas emissions and in the

future this contribution is likely to be significantly higher since N2O atmospheric

loading is increasing at a 0.25% per year.

The reduction of N2O to N2 requires two electrons and two protons and this reaction

is strongly exergonic (denoted by the large negative value of the free energy, ∆Go):

N2O + 2H+ + 2e− −−→ N2 + H2O [E°′pH7 = +1.35V ; ∆G°′ = −339.5 kJ mol−1]
(1.1)

At room temperature, this step needs the catalysis of nitrous oxide reductase

(N2OR) in order to occur in a cellular environment, since N2O is very stable and
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barely reactive [11, 12]. N2OR exists as a functional dimer, each monomer binds

6 copper ions distributed in two distinct copper centres [13] (see chapter 6 for

more information). Located at the N-terminal domain there is an unique catalytic

CuZ centre whereas at the C-terminal domain a CuA electron transfer centre is

found. Considering the high demand on copper that the enzyme imposes to the

microorganism and the relatively limited reward from a bioenergetic point of view,

it is not surprising that in electron acceptor-rich environments, such as nitrate

fertilised fields, microorganisms may simply opt to avoid reducing N2O. As a

result, denitrification is interrupted with the consequent release of N2O into the

atmosphere [14–16].

1.2 Heme-copper oxidases from Paracoccus den-

itrificans

The Gram negative bacterium Paracoccus denitrificans was isolated for the first

time in 1908 by the Dutch microbiologist Martinus Beijerinck [17] but we had to

wait almost a hundred years until the genome of the bacterium was fully sequenced

[18]. Since it was discovered, P. denitrificans has been the subject of numerous

studies and one of the reasons why this bacteria has been used over the years as

a model organisms is due to the similarity of its aerobic electron transport chain

to that of mitochondria [19]. One of the main characteristics that distinguish the

respiratory chain of P. denitrificans is its great metabolic complexity and versatility

which is highly branched and can end in up to five different terminal reductases

and four terminal oxidases [19, 20]. Among these terminal oxidases, three of them

belong to the diverse family of heme-copper oxidases, which are characterised by

the diversity of their subunit composition, cofactor content, electron donor and

oxygen affinity [21, 22]. In terms of their subunit compositions, all heme-copper

oxidases share the presence of a transmembrane subunit I (SUI) that contains a

low spin heme (of a- or b-type) and a binuclear metal centre composed of a high

spin heme (of a-, o-, or b-type, also named a3, o3 or b3)-iron, and a Cu ion. The

5
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Figure 1.3: Copper dependent terminal reductases from Paracoccus denitri-
ficans. (A) Under aerobic conditions P. denitrificans can express up to three
different heme-copper oxidases: an aa3, ba3 or cbb3. Only aa3 contains a CuA
centre. (B) Under anaerobic growth P. denitrificans expressing a CuA containing

NosZ and use N2O as an electron acceptor.
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low spin heme is responsible for transferring the electrons to the catalytic binuclear

centre (CuB) where the O2 is reduced to H2O [21, 23]. Subunit II (SUII) is also

frequently shared among heme-copper oxidases, is the primary electron acceptor,

and it can either hold a binuclear Cu centre (CuA) or a c-type cytochrome.

Heme-copper oxidases can be further classified into three different classes (A, B

and C) regarding to their subunit composition and key residues involved in proton

transfer pathways [23]. P. denitrificans happens to harbour one of each type of

cytochrome c oxidase (Cox): an aa3-Cox (type A), a ba3-Cox (type B) and a

cbb3-Cox (type C) (see figure 1.3).

The terminal oxidase from P. denitrificans that has been more extensively studied

is the heme-copper aa3-type cytochrome c oxidase (cytochrome aa3) [19, 24]. This

Cox is made up of four-subunits [25] three of them with mitochondrial equivalents

[26]. Within SUI a heme a and a heme a3 are found together with the catalytic

CuB centre whereas SUII presents an electron transfer CuA centre. In addition,

aa3 Cox has two different proton pathways (K and D) and an affinity for oxygen in

the order of the micromolar (KM ∼ 1 µM).

The ba3-type oxidase is a quinol oxidase [27] made up of two subunits. SUI contains

a heme b and a heme a3 in addition to the CuB centre whereas SUII compared

to aa3-type oxidase does not present a CuA centre although some other ba3-type

oxidases can have it such as in the case of ba3-type oxidase from T. thermophilus

[5]. In contrast to aa3, ba3-type oxidases have only a K proton pathway and a

higher affinity for oxygen (KM ∼ 0.1 µM) [28].

The cbb3-type oxidase was initially discovered in endosymbiotic rhizobia as the

type of Cox that the microbe uses at extremely low oxygen concentration within

the root nodules (KM ∼ 7 nM) [29]. This oxidase has three subunits, SUI contains

a b and a b3 heme as well as a CuB centre while the other two subunits are heme

containing membrane proteins that act as electron entry sites.

When oxygen levels drop and anaerobic conditions prevail, P. denitrificans can

utilise NO –
3 as an alternative electron acceptor and sequentially reduced it down to

7
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N2 [19]. Among all the terminal reductases that P. denitrificans carries cytochrome

c oxidase aa3, ba3, cbb3 and N2OR require copper as a redox active cofactor (see

figure 1.3). However, only aa3 and N2OR share structural homology in their

electron transfer CuA centre (ba3 from P. denitrificans lacks a CuA centre).

1.2.1 Eukaryotic cytochrome c oxidase CuA centre matu-

ration

The eukaryotic cytochrome c oxidase that is part of the electron transport chain

of the mitochondria is a macromolecular complex made up of nearly 13 subunits.

The majority of these subunits are encoded in the nuclear chromosome with the

exception of SUI and SUII which are encoded within the mitochondrial genome.

Likewise, the intervention of a multitude of accessory factors that originate from

the two sides the mitochondrial membrane are required [30]. Therefore, in order to

produce an active enzyme the process of membrane insertion and maturation of

each individual subunit as well as their cognate partners and the assemblage of the

cofactors has to be finely tuned and coordinated.

In particular, the maturation process of the CuA centre of SUII requires the

action of the Cu chaperones Cox17, Sco1, and Sco2 that perform step-specific

functions. Cox17 is a small Cu-binding protein that can transfer Cu to both Sco1

and Sco2, the Sco proteins in turn are part of a diverse family of proteins that

can have thioredoxin and/or Cu-binding activity (see Chapter 3). However, there

are some subtle differences in the metal interchange process. For instance, Cox17

can simultaneously reduce the metal-binding cysteine residues of oxidised Sco1

and transfer a Cu1+ ion, while electron transfer-coupled metallation of Cox17 to

oxidised apo-Sco2 is not possible and copper delivery has to be done to the reduced

apo-protein [31]. Once Sco1 and Sco2 have been metallated by Cox17, Cu1+-Sco2

interacts with the newly synthesised SUII stabilizing it, then Sco1 is recruited in

the Sco2-SUII complex and passes one Cu1+ to SUII to form the CuA site [32] (see

figure 1.4 A). The thioredoxin activity of Sco is considered to play a relevant role

in the reduction and maintenance of the cysteine residues of the CuA [32].
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Figure 1.4: Pathway of copper insertion into the CuA centre of cytochrome
c oxidase. (A) Maturation of mitochondrial aa3 oxidase. Cu1+-Cox17 can
deliver copper to oxidised apo-Sco1 coupled with electron transfer. However,
Cu1+ donation from Cu1+-Cox17 to apo-Sco2 only take places when the metal
centre of the protein is reduced. Holo Sco1 and Sco2 are then responsible for
the metallation of reduced apo-CuA. (B) Maturation of ba3 oxidase from T.
thermophilus. In this case, Sco prepares the CuA centre of SUII by reducing the
cysteine residues of the binuclear site, then two Cu1+ transfer event take place
from holo PCuAC to reduced CuA centre. The small green spheres represent
Cu1+ ions. For simplification Sco1 has been represented as a periplasmic protein

although the native protein is bound to the cell membrane.
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1.2.2 Prokaryotic cytochrome c oxidase CuA centre matu-

ration

The process of maturation of the prokaryotic CuA-containing ba3 cytochrome c

oxidase has been recently studied in depth in the Gram negative bacterium Thermus

thermophilus [5]. Prokaryotic microorganisms in general do not contain cox17 genes

and instead two protein families have been found to be required. The first family

consist of small periplasmic Cu1+-binding proteins called PCuAC [33] (see chapter

4) and the second one consist of the Sco proteins previously mentioned. Both sco

and pcuAC genes are encoded within the same gene cluster in T. thermophilus.

Contrary to the model of CuA maturation of Eukaryotic Cox, the Sco protein of

T. thermophilus was found to be unable to deliver copper to the CuA centre of

SUII, instead it worked as a thiol-disulfide oxidoreductase keeping the cysteine

residues of the CuA centre reduced. The copper chaperoning role was played by

PCuAC which in turn selectively and sequentially deliver two Cu1+ ions to reduced

apo-CuA giving rise to the Cu1+2 -CuA site of SUII (see figure 1.4 B).

1.3 Copper and microbiology

Copper like many other metals originated at the heart of massive stars although on

Earth is just a trace element that accounts for only 0.00005 % of the lithosphere

[34]. The transition metal can be found in two oxidation states Cu1+ and Cu2+.

The oxidised form of Cu has a 3 d9 outer electronic configuration while the reduced

ion is a closed shell d10 ion and therefore is diamagnetic.

At the formation of the Earth 4.5 billion years ago, oxygen was absent and microbial

life was anaerobic, principally based on Fe2+, while copper was in its Cu1+ state

sequestered by sulphur compounds into mineral precipitates. It was not until the

development of an oxic atmosphere 2 billion years later due to the metabolism of

photosynthetic cyanobacteria when Cu1+ began to be oxidised to the water soluble

Cu2+ ion and soluble Fe2+ was converted to the insoluble Fe3+ [35]. This event
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had enormous impact on life and consequently microorganisms had to develop

mechanisms for iron acquisition and at the same time the redox properties of copper

began to be used in enzymes such as cytochrome oxidase or multi-copper oxidases.

In fact, the evolution of cupredoxins can be traced back to the appearance of

photosynthesis [35]. Many examples can be found of copper- vs. iron-containing

enzymes that catalyse similar reactions (see table 1.1).

An inevitable side effect of Cu metabolism is that, as a result of its redox biology,

it catalyses the Fenton reaction with hydrogen peroxide and produces highly toxic

reactive oxygen species that principally target iron sulphur cluster containing

proteins (see equation 1.2) [35–37].

Cu1+ + H2O2 −−→ Cu2+ + OH− + OH· (1.2)

Copper toxicity is such that the current understanding is that no free Cu is

found within the cell. Instead, the transition metal gets to its final destination

bound to copper binding proteins or Cu chaperones, or to low molecular mass

ligands such as reduced glutathione (GSH) [38–41]. Indeed, for many years it has

been considered that most microorganisms do not even possess copper-containing

enzymes in their cytoplasm with the notable exception of the metal storage protein

Csp1 from Methylosinus trichosporium OB3b, which is folded in the cytosol where

it presumably acquires Cu before being exported [42, 43]. Overall, cells have

developed mechanisms of Cu transport, sequestration and compartmentalization in

order to be capable of tightly controlling Cu levels and to avoid Cu derived toxicity

effects [44].

1.3.1 Bacterial cuproenzymes

Superoxide dismutase (SOD) is an enzyme with an important antioxidant function

that catalyses the dismutation of O –
2 radical into either O2 or H2O2. Two different

types of bacterial SOD can be distinguished based on the metal co-factors present
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Function Iron PDB Copper PDB
O2 transport Hemoglobin 1A3N Hemocyanin 1JS8
Hydroxylation Cytochrome P450 1AMO Particulate MMO 1YEW
Oxidation Catechol dioxyge-

nase
2AZQ Dinuclear catechol

oxidase
1BUG

Electron transfer Cytochrome c550 155C Pseudoazurin 3ERX
Terminal oxidase Diiron alternative

oxidase
Cytochrome c oxi-
dase

1OCC

N2O reductase 1FXW
Anti-oxidant FeSOD 1COJ CuZnSOD 1ESO
NO –

2 reduction NirS 2AKJ NirK 1OE2

Table 1.1: Comparison of copper vs. iron enzymes that catalyse similar
reactions. SOD, superoxide dismutase; MMO, methane mono-oxygenase.

in their catalytic centres. SodA contains Mn2+ whereas SodC Cu1+ and Zn2+ (and

in same cases Fe2+) [45]. The Cu containing SOD is exported to the periplasm

through the Sec system where it is supposed to receive the transition metal from a

copper chaperone such as CueP from Salmonella typhimurium (see figure 1.5) [46,

47].

The periplasmic protein CueO is a multicopper oxidase (MCO) similar to PcoA

(described below). This MCO is up-regulated in the presence of copper through

the cueR regulon [48] and is considered to provide copper periplasmic tolerance by

oxidizing Cu1+ into the less toxic Cu2+ ion (see figure 1.5) [49, 50].

1.3.2 Copper import mechanisms

Overall, most of the research studies in relation to Cu homeostasis have addressed

the systems involved in Cu export while less attention has been paid to the

mechanisms required for Cu uptake. Copper ions are small and hydrophilic and

could potentially enter the bacterial cells utilizing the porin pathway, such as the

outer membrane proteins OmpF and OmpC from Escherichia coli (see figure 1.5)

[51, 52].

Alternatively, Cu can be sequestered from the extracellular environment by secreting

small ligands with great affinity and specificity to copper termed chalkophores. For
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Figure 1.5: Summary of characterised prokaryotic cuproenzymes responsible for copper homeostasis of the cell. Cu can enter the cell
through porins or bound to chalkophores that interact with TonB proteins. CcoA has been proposed as a system for Cu import into the
cytoplasm. CusCFBA and CopABDC are four-component Cu efflux pumps. CueP is a considered as a SOD chaperone. CueO is involved

in detoxification of Cu1+ through oxidation of the metal into Cu2+. The small green spheres represent Cu ions.13
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instance, methanotrophic organisms secrete a Cu1+-binding compound named

methanobactin when the organisms are grown under copper limiting conditions [53].

Instead of using porins, Cu loaded methanobactins are thought to be internalised

by energy dependent TonB transporters [54]. Likewise, P. denitrificans releases

coproporphyrin III when is grown in a Cu deprived media and is thought to be

incorporated through a TonB-dependent heme receptor/transporter that is encoded

in the vicinity of the nos gene cluster (see figure 1.5) [55].

In addition, a member of the major facilitator superfamily (MFS) has been proposed

to function as a Cu importer [56, 57]. In R. capsulatus CcoA is required for

cytochrome cbb3 oxidase synthesis since deletion of ccoA decreases intracellular Cu

and cbb3 activity (see figure 1.5) [56, 57].

1.3.3 Cu export systems

1.3.3.1 Cu-transporting P-type ATPases

Copper homeostasis in the cytosol is maintained by the P1B-type ATPase protein

CopA that removes excess of copper. The expression of this protein in E. coli is

induced in the presence of copper [58] and in B. subtilis copper transport is aided

by the periplasmic chaperone CopZ (see figure 1.5) [59]. CopA is supposed to

interact with other periplasmic copper chaperones such as CueP [60]

1.3.3.2 Cus system

The Cus system, which is exclusively present in Gram-negative bacteria, has been

proposed to act as a defence mechanism towards cytosolic derived copper toxicity.

It consists of six genes organised in two operons cusRS and cusCFBA [61]. CusRS

and CusCFBA are a two-component regulatory system and a resistance-nodulation

cell division system (RND), respectively. CusA is an inner membrane homotrimeric

protein that captures Cu ions from the cytoplasm and the periplasm and interacts

directly with the periplasmic protein CusB [62, 63]. CusC is a trimeric outer
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membrane protein that interacts with CusAB and forms a channel that bridges

the periplasmic space. In addition, CusF is a small periplasmic protein capable of

transferring Cu to the CusCBA complex (see figure 1.5). Deletion of any of these

four genes increased copper sensitivity in a cueO deletion background [64].

1.3.3.3 CopCD/PcoCD system

The CopCD/PcoCD pair is a system that confers copper resistance, in Enterobac-

teriaceae is predominantly encoded on plasmids while among Pseudomonadaceae

and Xanthomonadaceae is found in the chromosomal DNA. For instance, The E.

coli strain APEC O1 carries an additional plasmid with the seven-genes cluster

pcoABCDRSE [65]. PcoRS are proteins of a two-component regulatory system

while PcoABCD showed homology to the CopABCD proteins from P. syringae [66,

67]. The protein PcoB/CopB is located in the outer membrane. PcoA/CopA is a

periplasmic multicopper oxidase that can bind up to 11 copper atoms. PcoC/CopC

is a periplasmic Cu binding protein which can bind up to two Cu ions [68–71].

PcoD/CopD is cytoplasmic membrane protein involved in copper uptake (see figure

1.5) [72, 73]. YcnJ is a particular CopCD fusion protein from B. subtilis that will

be explained in more detail in section 4.

1.4 Nitrous oxide reductase

Nitrous oxide reductase (N2OR) was isolated for the first time in 1972 by Matsubara

et al. as a new type of copper binding protein that the researchers discovered as

a by-product of cytochrome cd1 purification [74]. However, scientists required 10

more years to identify the function of the protein, which they eventually achieved

through a thorough identification of the metal requirement for anaerobic respiration

of N2O [75, 76].
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1.4.1 Patterns in nos gene clusters

The coding gene for N2OR was initially identified within the nos genes cluster (NGC)

of P. stutzeri by mapping genomic insertions of the transposon Tn5 [77]. However,

a subsequent bioinformatic study by Sanford and collaborators distinguished at

least two distinctive NGC that can be generally classified in the following two

groups: those that harbour a type-I or typical nosZ gene and those with a type-II

or atypical nosZ [16, 78].

1.4.1.1 Typical nos gene clusters

The structural arrangement of typical NGC is characterised for being largely

conserved among prokaryotic denitrifiers. Within the gene cluster that contains

the functional gene for N2OR there are also coded a set of accessory genes involved

in the optimal transcription and assembly of N2OR, particularly the CuZ centre.

The most regular pattern of the accessory genes is a tricistronic nosDFY, along

with nosL downstream of nosY. Occasionally more than one copy of nosF and

nosY are present although nosL is the gene more likely to be redundant (see figure

1.6) [79–82].

Less conserved than nosDFY but still worth mentioning is the presence of the gene

neighbours nosC, nosR and nosX. The gene nosC codes for a putative cytochrome

c protein and is usually found preceding nosZ, or in certain occasions is divergently

encoded such as in Ralstonia eutropha. Another commonly conserved gene is nosR

which is usually located upstream of nosZ, but it may also be found between nosZ

and nosD or at the end of the gene cluster. Members of the α-proteobacteria group

occasionally contains a gene termed nosX that may follows or leads the NGC (see

figure 1.6) [79–82].

In the research of Sanford et al., the investigators determined that typical NGC

are generally present in genomes of α-, β- and γ-proteobacteria. The organisms

from these groups represent an ecophysiologically homogeneous group of complete
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denitrifiers and facultative aerobes (∼ 85 % of the genomes studied), which are able

to switch from aerobic respiration to denitrification when soil conditions become

anoxic [16, 78].

1.4.1.2 Atypical nos gene clusters

Atypical nos gene clusters are generally made up of 10 to 11 genes. These genes

show limited apparent organisation aside from the presence of a gene encoding a

putative transmembrane protein of unknown function that is frequently located

downstream of nosZ. At least five genes are shared in common with typical NGC.

Here, the nosDFYL genes are often found downstream the gene that codes for the

putative transmembrane protein and a c-type cytochrome homologous to nosC

that contains a CX2CH motif is also present (see figure 1.7) [78].

Noticeably, nosR and nosX genes are completely absent in atypical NGCs. Instead

three distinctive genes that code for putative polypeptides with the following motifs

are found: a protein with two [4 Fe−4 S] motifs (CX2CX2CX3CP), a protein with a

[2 Fe−2 S] motif (CXHXnCPCH) and another protein with a cytochrome -b domain.

These three proteins together with the product of nosC are predicted to be involved

in electron transport processes (see figure 1.7).

Sandford and collaborators determined that atypical NGC are found distributed

within diverse microbial taxa and in a considerable higher percentage (∼ 56 % of

genomes) of organisms that are not considered full denitrifiers. Overall, they shape

an ecophysiological diverse group present in a broad range of habitats, including

anoxic, microaerophilic, oxic or psychrophilic environments.

1.4.2 Mechanism of action of N2OR

Since 1982 when the enzymatic activity of N2OR from P. stutzeri was characterised

for the first time [83] and until 2011 when the structure of N2OR in its active form
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Figure 1.6: Comparison of the organisation of typical nos gene clusters. The
genes have been annotated as follow, pseudoazurin (PA); azurin (Az); protein
containing c-type cytochrome (nosC ); twin-arginine translocation (tatA). White

arrows stand for hypothetical proteins.
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Figure 1.7: Comparison of the organisation of atypical nos gene clusters. The
genes have been annotated as follow: predicted iron–sulphur-binding proteins
(labelled “Fe-S”), Rieske iron–sulphur proteins (S), b- (cy-b) or c-type (nosC )
cytochromes, transmembrane protein (TM) and accessory genes (nosD, nosF,

nosY, nosL).
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was published [13], around eight N2OR proteins from different microorganisms

have been purified and described [83–90]. Several forms of N2OR with different

redox properties were reported over this period of time depending on the genomic

background and purification procedure used, and an intense debate emerged

about the mechanism of action of the protein. According to the spectroscopic

characteristics and redox state of N2OR at least three different forms can be

distinguished: form I (or purple N2OR) is isolated under anoxic conditions, is

catalytically active with artificial electron donors and analysis of the UV-vis

spectra indicates that the CuA and CuZ centres were in their oxidised [Cu1.5+-

Cu1.5+] and [2Cu2+-2 Cu+] states, respectively. Form II and form III are pink and

blue, respectively; both are isolated in the presence of oxygen but in the case of

form III a reductant is added to the preparation. The CuZ centre of both forms is

in a [Cu2+-3Cu+] redox state and they differ in their CuA centre that is oxidised

in form II and fully reduced in form III. In both cases the enzyme is inactive as

purified and has to be re-activated by prolonged reduction with reduced methyl

viologen.

Finally, Pomowski and co-workers settled the discussion when in 2011 they published

the structure of N2OR purified from anaerobic conditions [13]. The crystal structure

of N2OR form I from P. stutzeri most likely represents its physiologically active form

and overall is similar to all previous solved structures [13]. N2OR is a homodimer

of approximately 130 kDa, each monomer is composed of two domains, the N-

terminal domain is a seven-bladed β-propeller domain and binds the tetranuclear

CuZ catalytic centre, while the C-terminal domain adopts a conserved cupredoxin

fold, typical for copper-binding proteins, and contains a binuclear CuA electron

transfer centre (see figure 1.8). The two monomers are arranged within an inverted

disposition where the two different copper centres from each monomer are brought

together at the very close distance of 10 Å. The main difference of N2OR form

I is the presence of a second sulphur atom within the CuZ centre (see extended

description in section 1.4.2.2).
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1.4.2.1 The CuA electron transfer centre of N2OR

Located at the C-terminal region of N2OR there is a cupredoxin-like domain that

contains a CuA centre similar to the one found in cytochrome c oxidase [25].

Both CuA centres are binuclear metal sites that perform a single electron transfer

reaction. The copper ions are coordinated by two cysteine ligands, two histidines, a

methionine and a backbone carbonyl oxygen from a tryptophan residue (see figure

1.8). The two cysteine residues bridge the two copper atoms (CuA1 and CuA2),

while the other residues bind only CuA1 (His and Met) or CuA2 (His and Trp).

CuA centres have a positive redox potential and a characteristic mix-valence high

spin [CuA1
+1.5:CuA2

+1.5] S = 1/2 state in its oxidised form. An unpaired electron

delocalised over two nuclei with a nuclear spin of ICu = 3/2 is deduced from a

narrow 7-line hyperfine splitting in the gII region of the electron paramagnetic

resonance (EPR) spectrum [91].

Based on the analysis of the structure of N2OR of P. stutzeri it was attributed a

molecular gating role for His583 that coordinates CuA1 [13]. Under anoxic conditions,

the imidazole side chain of the residue is rotated to form a short hydrogen bond with

the side chain of residue Ser550. At the same time, His583 preserves its hydrogen

bond to the conserved residue Asp576, which reaches the surface of the protein

and in a previous study of Marinobacter hydrocarbonoclasticus N2OR it has been

proposed to be the electron entry point to CuA [92]. Only when CuZ is degraded

upon O2 exposure, or when N2O binds to the CuZ site, does the conformation

of His583 revert to the state commonly observed in CuA centres. This event is

indicative of functional coupling of the two metal centres and suggests that binding

of the substrate has to take place before electrons can be transferred to CuA centre

[93].

1.4.2.2 The CuZ catalytic centre of N2OR

The CuZ cluster lies within the N-terminal region of N2OR. This metal centre is

coordinated by seven histidine residues that originate from six of the seven
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Figure 1.8: Schematic diagram of the copper centres of N2OR. (A) The
binuclear CuA centre and (B) the tetranuclear CuZ centre. Picture generated

using the software LigPlot [94]
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Figure 1.9: Cartoon representation of nitrous oxide reductase from Pseu-
domonas stutzeri. Protein monomers are coloured in blue and green while the
CuA and CuZ centres are represented as red and orange spheres. Note that a
molecule of N2O is bound to the blue monomer and it has been drawn as a white

sphere (PDB accession code: 3SBR)
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β-strands that form a β-propeller structure. As we mentioned above, three dif-

ferent forms of N2OR have been distinguished in the literature, which apart from

their different spectroscopic features and the purification procedure used, crucial

structural differences are also found in their CuZ centre. N2OR form I is considered

to represent the functional form of the protein and it is characterised for presenting

a CuZ with a [4Cu:2S] stoichiometry (Figure 1.8). Alternatively, the CuZ of N2OR

forms II and III share the central µ4-bridging sulfido ligand, although they lack

a second S atom which instead has being substituted by a water molecule or a

hydroxo ligand.

In fact, the presence of the labile sulphur within the CuZ of N2OR form I can

be identified spectroscopically. The reduced UV-vis spectrum of N2OR shows a

characteristic maximum at 538 nm that is the result of the contribution of both

Cu centres. This combined spectra can be easily deconvoluted into the subspectra

of the two the CuA and CuZ centres. With a mild reductant such as ascorbate the

CuA can be selectively reduced to a colourless form while a CuZ deficient strain can

be used to identify the bands of the CuA centre [90, 95]. Once the spectrum of both

metal sites has been isolated, the subspectrum of the CuZ site can be modelled

with two transitions at 552 and 650 nm which have been assigned to distinct charge

transfer to a copper ion, originating from atoms SZ2 and SZ1 , respectively [13]. It

is therefore considered that during purification of N2OR forms II and III SZ2 atom

is lost along with the 552 nm band. The result is a single remaining band at 650

nm that was previously described as the Cu*Z state.

1.4.2.3 N2O binding at the CuZ centre of N2OR

Currently, the only structural data available of the mode of binding of the nitrous

oxide substrate to N2OR comes from the work of Pomowski and co-authors [13].

In this study, the researchers pressurised anoxically purified N2OR crystals with

N2O and they identified the gas molecule located in the vicinity of the CuZ centre

in a side-on manner of the cluster face made up by atoms CuZ2 , CuZ4 and SZ1

[13]. However, the distance of the gaseous molecule to the cluster is peculiarly
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Figure 1.10: UV-visible spectra of P. stutzeri N2OR. (A) Spectral features
of N2OR form I (solid line) and deconvoluted CuA (grey dotted line) and CuZ
(dark dotted line) centres. (B) Spectral features of N2OR form I (solid line) and
deconvoluted CuZ site showing the contribution of SZ2 and SZ1 . (C) Spectral
features of N2OR form II showing CuZ∗ that lacks SZ2 . The figure has been

adapted from Zumft et al [96].

too long for covalent or even coordinative interactions. Therefore, the authors

hypothesised that within the catalytic cycle, a first reduction step and a consequent

structural conformational change might be responsible for a tighter binding of

N2O to CuZ site [13]. This assumption is based on the fact that although N2OR

form I is catalytically active as purified, the activity of the enzyme is low and

has to be activated by prolonged incubation with a strong reductant in order to

acquire maximum activity [97]. Alternatively, the only other piece of evidence

for the mechanism of action comes from synthetic chemistry studies. Bar-Nahum

and co-workers generated a mixed-valence [Cu3S2]2+ cluster that converts N2O to

N2 at low temperature. The authors suggested a mechanism of action involving

a pre-equilibrium formation of a di-copper complex and a subsequent reduction

of N2O via a transition state that features bridging of substrate between the two

copper ions through a single O atom [98].

1.4.3 Regulation of nos genes

While the biochemistry of nitrous oxide reduction has been extensively characterised,

the signals and transcriptional regulators controlling this process have received

considerably less attention. In addition, there is a high degree of diversity in the

organisation of regulatory networks, even among phylogenetically closely related
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organisms. Oxygen, nitric oxide and copper are the three most important signals

that are known to affect the expression of N2OR.

1.4.3.1 FNR transcriptional factor

The first FNR (fumarate and nitrate reductase regulator) protein was initially

described in Escherichia coli [99] were it is considered to be responsible for the con-

trol of the transition between aerobic and anaerobic respiration [100]. Structurally,

these proteins are divided in two domains. The N-terminal domain binds either

a [4 Fe−4 S]2+ or a [2 Fe−2 S]2+ cluster through four cysteine residues [101] while

the C-terminal region presents a DNA-binding helix-turn-helix (HTH) domain.

Under anoxic conditions, monomeric FNR acquires [4 Fe−4 S]2+ cluster dimerises

and specifically bind to the FNR box present within the promoter of target genes

[102]. Exposure to oxygen causes oxidation of the [4 Fe−4 S]2+ cluster and the

dissociation of the protein from the promoter.

Paracoccus denitrificans has three FNR paralogues that orchestrate the regulation

of the expression of the denitrification genes [103, 104]: NarR is a nitrate sensor

involved in the regulation of NO –
3 reductase (Nar). NnrR (nitrite and nitric oxide

reductase regulator) is a heme-containing NO sensor that regulates the expression

of nitrite (Nir), nitric oxide (Nor) and nitrous oxide reductases (Nos). FnrP is an

O2 sensor that regulates the transcription of N2OR [105].

1.4.3.2 NosR and NosX

The presence of a nosR gene is characteristic of typical nos gene clusters [78]

and in P. denitrificans is found adjacent to and upstream of nosZ. NosR is a

membrane-bound polypeptide of 78 kDa that contains a large N-terminal flavin-

binding domain that faces the periplasm. Within the C-terminal domain two

CX3CP motifs and a ferredoxin-like domain that binds two [4Fe:4S] clusters are

found [106]. Zhang and co-workers showed recently that NosR can bind flavin in

vitro and in vivo [107] and the presence of the two [4Fe-4S] clusters has been pro-
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Figure 1.11: NosR topology model. The transmembrane helix 1 is cleaved
upon membrane insertion and is not part of the mature protein. The predicted
transmembrane core is composed of 5 helices. Helices 4 and 6 have been placed
arbitrarily adjacent to emphasise a plausible interaction (X) of the CX3CP motifs

by a metal or –SH redox chemistry.
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posed by Zumft et al. based on EPR and metal content analysis [79] (see figures

1.11 and 6.1). In addition, the cytoplasmic location of the C-terminal domain of

NosR has been inferred from structural homology comparison of E. coli NapH

[108]. The deletion of the cofactors binding residues of NosR resulted in the

generation of holo N2OR that showed altered spectroscopic and redox properties of

the CuZ centre. N2OR protein was catalytically active in vitro using an artificial

electron donor despite the inability of the whole cells to reduce N2O [106]. All

together, these phenotypes point NosR as the likely electron donor for N2OR in

vivo. Moreover, NosR has been found to be required for the proper expression of

nosZDFY in P. stutzeri [106, 109–111] and P. denitrificans [3] even though it is

located in the membrane and lacks a DNA-binding motif. Alternatively, it has

been proposed that this role could be accomplished through the interaction with

other transcriptional factors such as DnrD [106].

The nosX gene is another ancillary gene of typical nos gene clusters, and when

is present the gene is either heading or tailing the NGC. NosX is found among α-

(e.g. P. denitrificans) and β-proteobacteria (e.g. R. capsulatus) although is absent

in γ-proteobacteria. NosX is a 32 kDa flavoprotein exported to the periplasm

through the Tat pathway. A redox role has been attributed based on Zhang and

co-workers study where they observed the flavin transfer reaction from the NosX

paralogue ApbE to NosR [107]. Moreover, nosX mutants lose whole-cell nitrous

oxide reductase activity, but fully assembled N2OR is still produced [112].

1.4.3.3 NasS-NasT

NasS-NasT is a two component regulatory system that controls the expression of

the nas and nos gene clusters in response to extracellular NO –
3 /NO –

2 levels [113,

114]. NasTS are broadly distributed in Gramnegative bacteria. NasS is a cytosolic

NO –
3 /NO –

2 sensor that contains a binding motif similar to the one described for

NrtA, the periplasmic component of the NO –
3 and NO –

2 ABC-type uptake system

of the cyanobacteria Synechocystis sp. PCC 6803 [115]. NasT contains an ANTAR

(AmiR and NasR transcription antitermination regulator) domain and is predicted
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to be a transcription anti-terminator [116]. Both proteins, form a complex that

dissociates in the presence of micromolar levels NO –
3 [113, 117]. Sánchez and

co-workers have recently identified a region within the nosR 5’-leader sequence

that is involved in the termination of nos transcription. In the presence of nitrate,

NasT interact with nosR mRNA and induces nos expression [114, 117].

1.4.3.4 Copper regulation

Denitrification is a highly copper demanding respiratory pathway [76, 118–120].

Depending on the organism, up to three copper containing proteins involved in

this process can be identified: pseudoazurin (Paz), nitrite reductase (NirK) and

nitrous oxide reductase (NosZ). Pseudoazurin contains a single Cu atom, NirK is

a homotrimer with two copper atoms per monomer [121] and a functional N2OR

requires 12 copper atoms per homodimer. Although there are copper-independent

alternatives for Paz and NirK, there is no recognised copper independent alternative

for N2OR for reducing N2O to N2.

Matsubara et al. pointed for the first time in 1982 that in Pseudomonas perfec-

tomarinus the end product in a copper limited media during anaerobic respiration of

NO –
3 was N2O [76]. Thirty years later, Felgate and co-authors explored the effect

of copper limitation in species with distinct Fe-dependent (i.e. P. denitrificans) and

Cu-dependent (i.e. Achromobacter xylosoxidans) nitrite reductase enzymes [122].

The researchers found that under NO –
3 sufficient and copper depleted conditions A.

xylosoxidans releases about 40% of NO –
3 consumed as NO –

2 while P. denitrificans

releases a similar proportion as N2O [122]. Furthermore, the biomass produced

by P. denitrificans under both copper sufficient or depleted conditions remained

fairly constant, but the N2O emissions in copper limited conditions were more

than a 1,000-times the rate of copper sufficient cultures. A year later Sullivan et

al. provided the first experimental evidence of a genetic control of the nos genes

based on extracellular copper levels [3]. In this transcriptomic study, the NGC of P.

denitrificans was strongly downregulated under copper limiting conditions and this

transcriptional control seemed to be mediated through NosC and NosR proteins. In
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Figure 1.12: Heat map representing the gene expression profile of P. denitrifi-
cans PD1222 under copper sufficient and limited regimes. (A) Genes regulated by
B12 riboswitches that are modulated by N2O. (B) The Cu-responsive genes for
N2O reduction and Cu-metabolism. Colours ranging from blue to red indicate
average log2 normalised expression values between three biological replicates.

Data used to produce the figure was obtained from Sullivan et al. [3]

addition, the accumulation N2O in copper deficient cultures induced the expression

of vitamin B12-independent genes controlled by vitamin B12 riboswitches [3].

1.5 Experimental Aims

Whether P. denitrificans uses O2 or NO –
3 as a terminal electron acceptor during

aerobic or anaerobic respiration, a high demand for acquiring Cu is imposed on

the cells. Cytochrome c oxidases and nitrous oxide reductase require the transition

metal as a redox active cofactor and they even share structural homology at their

electron transfer CuA centre (see figure 1.3). However, almost all the current

knowledge about the maturation process of this binuclear centre comes from the

extensive study of prokaryotic and eukaryotic Cox [5, 32]. Whereas it is still

debated and speculated how the Cu required for N2OR activity is chaperoned

around the cell and delivered to apo-N2OR. A recent transcriptomic analysis from

P. denitrificans by Sullivan and co-workers highlighted a putative hypothetical-

pcuC-ScoB gene cluster as a candidate system that could function either inserting

or maintaining Cu-centres of N2OR [3]. Hence the purpose of this thesis has been
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to systematically study the growth phenotypes of the deletion mutants of scoB

and pcuC as well as their genetic complementations. In addition, recombinant

ScoB and PCuC have been purified and characterised biochemically in order to

prove copper binding to the proteins and to estimate the affinity of the binding

events. We have also solved the crystallographic structure of the two domains that

conform PCuC and identified the copper binding residues within the protein. In

the last part of this study, we tried to explore the effect of scoB and pcuC deletion

mutants on N2OR Cu-centre assembly by isolating the terminal reductase from

different genomic backgrounds.
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2
Materials and Methods

2.1 Media and conditions for bacterial growth

Two different types of culture media were used in this thesis: a complete medium

for cell propagation and a defined minimal salt medium for physiological studies.

All culture media were prepared using water purified by reverse osmosis (RO,

Purelab Prima, ELGA) and sterilised by autoclaving at 121 ◦C for 15 minutes

before use.

2.1.1 Complete medium

A complete lysogeny broth (LB) medium essentially as described by Luria and

Bertani [123, 124] was used in routine culture of the Escherichia coli and Paracoccus

denitrificans PD1222 (a derivative of P. denitrificans DSM 413T [125]) strains

outlined in table 2.1. Although the original recipe has been modified over the years,

the standard recipe used throughout this work is given below in table 2.2.

LB cultures of E. coli and P. denitrificans were routinely grown with agitation

at 37 and 30 ◦C, respectively. Antibiotics were added to the media as outlined in

table A.1 of the appendix. Solid media contained 1.5 % (w/v) of agar.
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Bacteria Characteristics Source
Escherichia coli
E. coli 803 Met-; used as host for transformation with

large plasmids
[126, 127]

E. coli JM101 Used as host for small plasmids [128, 129]

P. denitrificans [125]
PD1222 (PdWT) Wild-type strain, rifR, SpecR [3]
PD2304 (Pden 4445) Non-polar strR mutant of Pd1222, deficient

in Pden 4445, rifR
[3]

PD2305 (pcuC-) Non-polar strR deletion mutant of Pd1222,
deficient in pcuC-, rifR

[3]

PD2306 (∆senC ) Non-polar deletion mutant of Pd1222, defi-
cient in ∆senC, rifR

[3]

PD2422 (gPdWT) Non-polar insertion mutant of Pd1222, in-
sertion of nosZ 3’ StrepII sequence, rifR

This study

PD2404 (g4445-) Non-polar insertion mutant of PD2304, in-
sertion of nosZ 3’ StrepII sequence, strR,
rifR

This study

PD2405 (gpcuC-) Non-polar insertion mutant of PD2305, in-
sertion of nosZ 3’ StrepII sequence, strR,
rifR

This study

PD2406 (g∆senC ) Non-polar insertion mutant of PD2306, in-
sertion of nosZ 3’ StrepII sequence, rifR

This study

Table 2.1: Bacterial strains used

Chemical g L-1

Yeast extract 5
Tryptone 10
NaCl 10

Table 2.2: Constituents of complete lysogeny broth
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2.1.2 Minimal medium

A defined minimal salts medium was used for the examination of microbial physio-

logical traits and in the determination of growth requirements of P. denitrificans

strains [130–132]. Minimal medium was prepared at pH 7.5 as standard containing

the core components outlined below in Table 2.3. Here, succinate and ammonium

were used as sole carbon and nitrogen sources respectively, while nitrate served as

the respiratory electron acceptor during anaerobic growth. In addition to these

core components, minimal medium was also supplemented with essential trace

metals (each given at their final concentration) as outlined in table 2.4. The trace

element supplement (also named Vishniac and Santer solution) was prepared as

a 500-times stock solution and the pH was adjusted to 6.2 using KOH [131, 132].

For preparation of copper (Cu)-low minimal medium, the CuSO4 salt was omitted

from the standard trace elements solution recipe (see table 2.4).

Chemical Mw mM g L-1

Na2HPO4 141.96 29.0 4.12
KH2PO4 136.09 11.0 1.50
NH4Cl 53.49 10.0 0.53
MgSO4 246.48 0.4 0.10
NaNO3 89.99 20.0 1.70
Succinate 270.14 30.0 8.10

Table 2.3: Core constituents of Paracoccus denitrificans defined mineral salts
medium.

Compound Mw µM g L-1

EDTA 292.24 342.2 50.00
ZnSO4 · 7H2O 287.55 15.3 2.20
MnCl2 · 4H2O 197.91 51.1 5.06
FeSO4 · 7H2O 278.01 35.9 4.99

(NH4)6Mo7O24 · 4H2O 1235.9 1.8 1.10
CuSO4 · 5H2O 249.68 12.6 1.57
CoCl2 · 6H2O 237.93 13.5 1.61
CaCl2 · 2H2O 147.02 99.8 7.34

Table 2.4: Constituents of the Vishniac and Santer trace elements solution.

The standard Vishniac and Santer solution (termed Cu-high, containing 13 µM

CuSO4) displays an intense green colour when freshly prepared that changes to
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a deep purple colour over time. While, a freshly prepared Cu-low trace elements

solution is of a pale orange-colour that ends up turning red. This colour change is

indicative of a time-dependent oxidation process between transition metal salts

of different oxidation states that equilibrate in air over time. Importantly, the

equilibration of the trace metal solution can be accelerated by sparging solutions

with compressed air or by adding small amounts of hydrogen peroxide. This process

can also be followed using UV-visible electronic absorbance spectroscopy (Figure

2.1 A and B). Given that the bioavailability of individual trace metals may depend

on their oxidation states, this was an important observation that may impact on the

denitrification process and bacterial growth. A series of control experiments that

when freshly-prepared solutions are used directly, the growth of P. denitrificans

both aerobically and anaerobically can be significantly compromised (Figure 2.1 C

and D). For the purpose of reproducibility of the results presented in this work and

given that the work of Sullivan and co-workers [3] has shown that N2O respiration

is dependent on Cu-availability, fully oxidised Vishniac and Santer stock solutions

were used. After preparing Vishniac and Santer solutions the UV-vis spectra of

the solutions were checked periodically to ensure no further spectral changes were

observed and that equilibrated "mature" stock solutions were ready to be stored at 4
◦C and used in experiments after filter sterilise them. Here, growth and production

of N2O of PD1222 was consistent with previous studies (Figure 2.1), providing a

solid platform for further comparative physiological studies presented in this work.

To ensure maximum aeration of cultures during aerobic growth experiments, bac-

terial strains were grown at 30 ◦C in 250 mL conical flasks containing 50 mL of

autoclaved media and agitated at 200 rpm.

For anaerobic growth, P. denitrificans was cultured in batch using 500 mL Duran

bottles filled with 400 mL of minimal salts media and sealed with screw-cap lids

and gas-tight silicone septa. The cultures were incubated without agitation at 30
◦C, allowing cells to consume residual oxygen present within the limited headspace

and to transition from aerobic to anaerobic respiration. For inoculation, 8 OD-units

(measured at 600 nm) of a stationary phase minimal medium pre-culture were

added per vessel. Importantly, special care was taken when preparing culture ve-
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Figure 2.1: The impact of Vishniac and Santer trace element solution on
bacterial growth. UV-vis spectra of a fresh (dash line) and oxidised (solid line)
(A) Cu-high and (B) Cu-low solutions. (C) Aerobic and (D) anaerobic growth
of P. denitrificans supplemented with Cu-H trace element solutions at three
different stages of maturation: fully oxidised (•), intermediate state ( ) and

freshly prepared ( ).
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ssels and all glassware was pre-washed thoroughly with 50 % (v/v) nitric acid

followed by RO water to remove trace metal contaminants.

2.2 Analytical Methods

2.2.1 Measurement of nitrate and nitrite in cultures

Nitrite and nitrate levels from anaerobic batch cultures were quantified by ion

chromatography using a Dionex ICS-5000 instrument with suppressed conductivity

detection (Thermo Scientific). The following set-up was used for the analysis:

Dionex Ion PacTM AG18 guard column (50 mm x 2 mm); Dionex Ion PacTM AS18

analytical column (250 mm x 2 mm); column oven temperature 30 °C; gradient

elution with KOH from 12 to 34 mM and a flow rate 0.25 mL min−1. Media

samples were diluted 400 times in analytical grade water, filtered and loaded onto

the column using an autosampler (injection volume: 10 µL). The instrument was

calibrated using a range of five mixed NaNO2 and NaNO3 standards (see figure 2.2

A). The data were processed using Chromeleon software 6.8 (Thermo Scientific).

2.2.2 Measurement of nitrous oxide in cultures

Nitrous oxide levels in anaerobic batch cultures were determined by sampling the

head space gas (220 mL) of sealed Duran culture bottles. For each time point, a 3

mL gas sample was recovered using a 5-mL gas-tight syringe (Hamilton). Over the

course of the experiments less than 5 % of the head space was removed for analysis

of each technical replicate.

Gas samples were transferred and stored in pre-evacuated screw cap vials (Labco

Exetainer) prior to analysis on a Clarus 500 Gas Chromatograph (Perkin Elmer).

Head space gases were separated using an Elite-Q PLOT Phase Column (length:

30 m, inner Diameter: 0.53 mm) and detected with a 63Ni Electron Capture

Detector (ECD). The carrier and auxiliary gases used were supplied by BOC (UK)
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an consisted of zero-grade N2 (BOC ) and a 95% (v/v) argon/5% (v/v) methane

mixture, respectively. A sample volume of 50 µL was manually injected onto the

column using a 250 µL gas-tight syringe (Hamilton). The following instrument

parameters were used for N2O detection: carrier gas flow, 60 psi; auxiliary gas

flow, 58 psi; injector temperature, 115 ◦C; column temperature, 90 ◦C and ECD

temperature, 350 ◦C. This configuration gave a retention time for N2O of 5.2 min.

In order to prevent column and detector saturation and to generate sharp defined

peaks suitable for analysis, a 20 or 95 sample split was used (with 6, 5 and 3

attenuation) depending on the sample concentration. The instrument was calibrated

for each method using a set (see figure 2.2 B) of pre-made N2O standards (Scientific

and Technical Gases). The total amount of N2O was calculated using a Henry’s

Law constant for N2O (at 30 ◦C) of Kcc
H = 0.5392 [3].

2.2.3 Analysis of metal content in protein samples

Trace element analysis of protein solutions was determined by inductively coupled

plasma atomic emission spectroscopy (ICP-AES) using a Vista Pro ICP (Varian)

equipped with a Helix spray chamber, glass expansion concentric nebuliser, and a

SPS-5 auto sampler. All standards and samples were measured in triplicate, and

the RSDs in most cases were lower than 2 %. Samples were prepared by addition of

100 µL of 21.7 % HNO3 to 100 µL of protein sample (0 - 200 µM) and the mixture

was incubated at 95 ◦C for 30 min. Samples were cooled to room temperature and

volume adjusted to 3 mL with analytical grade water.

2.2.4 Determination of protein concentration

Protein concentration was determined using the Bradford colorimetric method

[133], which is based on the binding of an acidic dye to the basic and aromatic

amino acid residues (particularly arginine) of a protein solution. A standard curve

of known concentrations of bovine serum albumin (Sigma) was used to obtain

relative measurement of protein concentrations (see figure 2.2 C).
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Figure 2.2: Representative standard curves. (A) NaNO2 and NaNO3 analysis
of culture samples. Solid and dash lines represent fits for NaNO2 and NaNO3,
respectively. (B) N2O analysis of culture samples. Data was recorded using the
following instruments parameters: 20 sample spit (•), 95 sample spit with 6 ( ), 5
( ) and 3 ( ) attenuation correction. (C) Determination of protein concentration

with bovine serum albumin
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Typically the reaction mixture would consist of 200 µL of Protein Assay Dye

Reagent (BioRad), the protein sample to be analysed and water to make up to

1 mL. Then, the reactions were incubated 5 min. at room temperature and the

absorbance values were measured at 595 nm.

2.2.5 Enzymatic assay for nitrous oxide reductase activity

The enzymatic activity of isolated nitrous oxide reductase (N2OR) was assayed

in vitro using reduced methyl viologen as an artificial electron donor according

to Kristjansson et al. [87]. All the reagents and material used were thoroughly

degassed and left to equilibrate for 24 hours in the glove box prior to the experiment.

Stocks of 100 mM methyl viologen and 97 mM sodium dithionite were routinely

prepared. A concentrated N2O solution was prepared by aliquoting 1 mL of the

reaction buffer (20 mM HEPES, 150 mM NaCl pH 7.5) into a 50 mL GC air tight

glass vial. Then, the flask was flushed for 5 minutes with N2O (BOC ) and the

overpressure was released and equilibrated to atmospheric pressure using a simple

airlock (made up with a needle and a syringe, without the plunger, filled with

water).

The protein was incubated for five minutes in 3 mL plastic cuvettes containing 10 –

15 µL of methyl viologen, 2 – 5 µL sodium dithionite and the reaction buffer. Once

the sample had been equilibrated the spectrophotometer was set up in time-resolved

mode at 600 nm. The absorbance of the cuvette was measured for a few seconds

in order to acquire a stable baseline before adding N2O solution using a 50 µL

gas-tight syringe (Hamilton).
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2.3 Preparation of nucleic acids

2.3.1 Isolation of genomic DNA

Genomic DNA from bacteria was performed using the Wizard Genomic DNA

Purification Kit (Promega). This method is based on a four-step process: cell lysis,

RNase digestion, protein precipitation and genomic DNA concentration and elution.

Purified gDNA is suitable for PCR, digestion with restriction endonucleases and

membrane hybridizations (e.g., Southern and dot/slot blots).

The cells of a 5 mL overnight culture were typically used and the DNA was generally

resuspended in 100 µL of H2O overnight at 4 ◦C.

2.3.2 Preparation of plasmid DNA

The isolation of plasmid DNA (up to 20 µg) was routinely performed using a

Spin Miniprep Kit (QIAGEN ). This kit is based on alkaline lysis of bacterial cells

followed by adsorption of DNA onto a silica membrane in the presence of high salt.

Typically plasmid DNA was extracted from 3 mL of an overnight culture of E. coli

and centrifugation steps were performed in a 5424 microcentrifuge (Eppendorf ).

The DNA was eluted with DNase and RNase free water (Sigma) after incubating

the column for 5 - 10 min before elution. Concentration and quality of DNA was

measured at 260 and 280 nm using a nanodrop 2000 UV-Vis Spectrophotometer

(Thermo Scientific).

2.3.3 Restriction enzyme digestion

Restriction enzymes were purchased from New England Biolabs (NEB). NEB

restriction digestions are carried out using SmartCut reaction buffer for all their

enzymes, therefore simplifying multiple digestion reactions. A typical reaction

contained 1 µg of plasmid DNA and was incubated for at least 15 min at 37◦C.
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Component Reaction
Restriction enzyme 1 µL (10 units)

Plasmid DNA 1 µg
NEB CutSmart Buffer 10X 5 µL

Water to 50 µL

Table 2.5: Standard restriction digestion reaction

2.3.4 Ligation of DNA fragments

DNA inserts were ligated into the desired vector using a commercial T4 DNA

ligase from New England Biolabs (NEB) in a 20 µL reaction at 16 ◦C overnight.

This enzyme catalyses the formation of a phosphodiester bond of both blunt and

cohesive ends of DNA. Typically, 50 ng of vector were used per reaction and up to

three molar ratio (1:1, 1:3, 1:5) of plasmid to insert were tested using equation 2.1.

A representative ligation reaction can be found in table 2.6.

Kb insert

Kb vector
x ng of vector x molar ratio of

insert

vector
= ng of insert (2.1)

Component Reaction
T4 DNA Ligase Buffer (10x) 2 µL

Vector DNA 1 (50 ng)
Insert DNA x ng

T4 DNA Ligase 1 µL
Water to 20 µL

Table 2.6: T4 DNA ligation standard recipe, where x is given by equation 2.1.
The water used was molecular biology reagent

2.3.5 Agarose gel electrophoresis

DNA gel electrophoresis was routinely performed using 1 % (w/v) agarose dissolved

in TAE buffer (45 mM Tris-acetate, 1 mM EDTA, pH 8) made from a 50-times stock

solution (ForMediumTM) and supplemented with 2 µM ethidium bromide (Sigma-

Aldrich) to stain the DNA. The agarose gel was then placed in a electrophoresis

tank and submerged in TAE buffer solution. DNA samples pre-mixed with GelPilot
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DNA Loading Dye 5-times (QIAGEN ) were loaded into the gel together with a 1

kb hyperladder (BioLine) as a DNA molecular weight standards. Typically, an

electric current of 120 mA was applied during 30 to 60 min and gels were latter on

imaged using a Gel Doc XR UV-transilluminator (BioRad).

2.3.6 Recovery of DNA from agarose gels

DNA was extracted and purified from agarose gels using a QIAquick gel extraction

kit (QIAGEN ). This kit allows the recovery of DNA fragments from 70 bp to 10

kb that are suitable for subsequent molecular biology applications.

Experiments were performed essentially as stated in the manufacturer’s instructions

with special care of not exceeding the 400 mg limit of agarose per spin column and

to add the colorimetric pH indicator of the QG buffer provided with the kit. This

buffer should remain yellow or the DNA recovery would be drastically reduced, if

necessary a small amount of sodium acetate was added to the reaction in order to

lower the pH of the sample. The purified DNA was eluted in 50 µL of nuclease

free water (Sigma).

2.3.7 DNA sequencing

Sequencing of plasmid DNA and purified PCR products was carried out by MWG

Eurofins Genomics (Ebersberg, Germany). Plasmid DNA was provided at a

concentration of 50 - 100 ng µL−1 while purified PCR products were provided at a

concentration of 2 - 10 ng µL−1 alongside with 150 pmol of the relevant primers.
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2.4 Amplification of DNA using the polymerase

chain reaction (PCR)

2.4.1 Oligonucleotide design

DNA oligonucleotides were designed using Primer 3 Plus, FastPCR (PrimerDigital)

and Artemis Genome Browser (Sanger) software [134–136] and ordered from MWG

Eurofins Genomic (Ebersberg, Germany). The list of primers used for this thesis

can be found in table 2.7.

For each oligonucleotide, an optimal length of 18-22 bases, a GC content below

60% and a melting temperature (Tm) of 60 ◦C was generally sought during primer

design. Primer modifications such as phosphate groups or restriction sites were

added to the 5’ end of the primers, including on occasions several extra bases

upstream the restriction sites in order to facilitate optimal cutting efficiency.

Name Sequence Use
pLMB509_F1 tgccagggtcgaccaactga pMSL001
pLMB509_R1 tcagttggtcgaccctggca

PCuC_NdeI_F1 aacatatgagaacgatcatgcagaacc pMSL003
PCuC_XmaI_R1 aacccggggtgcccgccatggccatctcc

PCuCNt_F1 cacggccatggccatggcgat pMSL005
PCuCNt_R1 ggccggggcctctgaccgctc
PCuCCt_F1 ggcgcgcaaaaaggagat pMSL006
PCuCCt_R1 atcgccatggccatggccgtg

scoB_NdeI_F1 aacatatgatggcgggcactgaacgcaaatc pMSL007
scoB_NdeI_R1 aaggatccatggcgggcactgaacgcaaatc
scoB_XmaI_R1 aacccggggctgctcagcaggcggcgcaggctggcca pMSL008
nosZ3fln_F1 aactgcagcctcgatcctgtccgacatc pMSL002
nosZ3fln_R1 aatctagaggcatcgagatccttgttcg

nosZ_StrepII_F1 caatttgaaaaatgagtcccatgcgca pMSL002
nosZ_StrepII_R1 ggggtggctccaggcctccttcggctc

Table 2.7: Primers used
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2.4.2 PCR of DNA using High-Fidelity Phusion Polymerase

The amplification of DNA fragments intended for cloning applications was per-

formed using Phusion High-Fidelity DNA polymerase (Thermo Scientific). This

polymerase is highly accurate due to its 3’ → 5’ exonuclease activity, it generates

blunt end products and is suitable for amplifying long amplicons. The ligation

of the PCR fragments generated has to be preceded by a phosphorylation event

unless 5’ phosphorylated primers are used.

PCR reactions were prepared in a 50 µl final volume according to the recipe

presented in table 2.8 and performed using a thermocycler (Techne) adapting the

PCR cycle protocol of table 2.9 to the Tm of the primers used.

2.4.3 Diagnostic PCR of DNA using Taq DNA polymerase

Routine PCR of DNA was carried out using MyTaq DNA polymerase (BioLine).

The reaction buffer of this product contains all the reagents (dNTPs, MgCl2, DNA

polymerase, etc.) necessary for the PCR reaction reducing the number of pipetting

steps and allowing a fast and efficient PCR.

PCR reactions were prepared in a 20 µl final volume according to the recipe

presented in table 2.10 and performed using a thermocycler (Techne) adapting the

PCR cycle protocol of table 2.11 to the Tm of the primers used.

2.4.4 Colony PCR

Colony PCR is a fast and conventional method employed to examine the genotype

of a bacterial strain. This methods has the advantage of eliminating the need to

grow colonies in liquid culture and isolate its genomic or plasmid DNA. However,

cell content and media compounds may cause inhibition of the PCR reaction.

Usually, 5 - 10 colonies were picked from an LB-agar plate, resuspended in 20 µl of

molecular-grade water (Sigma), incubated at 100 ◦C for 5 - 10 min and then let to
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Component Reaction (µl)
5 x Phusion HF Buffer 10.0
Forward primer (20 µm) 5.0
Reverse primer (20 µm) 5.0

dNTPs (10 mM) 5.0
Template ( 100 ng/µl) 1.0

Phusion DNA polymerase 0.5
Water to 50.0

Table 2.8: High-Fidelity Phusion polymerase PCR reaction recipe. The water
used was molecular biology reagent

Cycle step Temperature (◦C) Time (s) Cycles
Initial denaturation 98 60 1

Denaturation 98 5 - 10
Annealing 45 - 72 10 - 30 35
Extension 72 15 - 30

Final extension 72 600 1

Table 2.9: High-Fidelity Phusion polymerase cycling instructions

Component Reaction (µl)
MyTaq Mix (2x) 10.0

Forward primer (20 µm) 0.4
Reverse primer (20 µm) 0.4

Template 1.0
Water to 20

Table 2.10: MyTaq DNA polymerase PCR reaction recipe. The water used
was molecular biology reagent

Cycle step Temperature (◦C) Time (s) Cycles
Initial denaturation 95 60 1

Denaturation 95 15
Annealing 45 - 72 15 35
Extension 72 10

Final extension 72 600 1

Table 2.11: MyTaq DNA polymerase cycling instructions
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cool on ice. Then, the suspension was spun down at maximum speed for 1 min

and 1 µl of the supernatant was used as a template for the reaction shown in table

2.10. The presence or absence of PCR amplicons and size of the products can be

determined by electrophoresis on an agarose gel.

2.4.5 Purification of DNA PCR products

PCR products required for cloning and sequencing were purified using QIAquick

PCR purification kit (QIAGEN ). This protocol is based on a similar principle as

the Miniprep kit used for isolation of plasmid DNA previously described, where

the DNA binds to a silica membrane in the presence of high salt concentrations.

This kit was favoured when a single PCR product was observed on an agarose gel

in order to remove excess of primers that could affect downstream applications.

Protocol was carried out according to manufacturer’s instructions using a 5424

microcentrifuge (Eppendorf ) and DNA was eluted in 50 µL water (Sigma).

2.5 Transformation of E. coli with plasmid DNA

2.5.1 Preparation of competent cells

Chemically competent cells were routinely prepared using a modification of the

CaCl2 protocol from Cohen et al. [137]. To that end, a 50 mL LB culture of

the desired E. coli strain at early exponential phase was prepared (OD600 =

0.4− 0.6). The cells were harvested by centrifugation at 6,000 rcf for 10 min at 4
◦C, resuspended in 15 mL of sterile 0.1 M CaCl2 and incubated at 4◦C for 30 min.

Next, the cells were collected again by centrifugation, resuspend in 2 mL 0.1 M

CaCl2 and incubate at 4◦C for another 2 hours. The competence of the cells can

be increased by storing them at 4◦C overnight before transformation. After this,

the cells were ready to transform.
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2.5.2 Transformation of competent cells

E. coli strains WA803 [126, 127] and JM101 [128, 129] were routinely used to

prepare competent cells and used in cloning applications. These strains have a

high tolerance for cytosine methylation, are optimal host for M13mp vectors and

show a high transformation efficiency.

Normally, 200 µL of CaCl2-competent cells were transferred to a sterile pre-chilled

tube were the DNA (no more than 50 ng in a volume of 10 µL or less) was added.

The content was carefully mixed by swirling and stored on ice for 30 minutes. After

this, the tubes were transferred to a rack, placed in a preheated 42 ◦C water bath

and incubated for 2 minutes without agitation. Then, the samples were quickly

transferred to an ice bath where they were allowed to chill for 1-2 minutes. Next,

500 µL of LB medium was added to each tube and the cultures were incubated for

45-60 minutes at 37 ◦C to allow the bacteria to recover and to express the antibiotic

resistance marker encoded by the plasmid. Finally, the cells were recovered by

centrifugation (2 min at 6,000 rcf) and plated onto an agar LB medium containing

the appropriate antibiotic.

2.6 in vivo genetic manipulations

Plasmids not self-transmissible were mobilised from E. coli strains (donor) to P.

denitrificans (recipient) by tri-parental matings with E. coli containing the plasmid

pRK2013 (helper) [138].

2.6.1 Conjugation via patch crosses

This method [139] was mainly used for the transmission of plasmids with a high

efficiency such as in the case of protein expression plasmids. A loopful of each strain

(donor, helper and recipient) was deposited in a LB-agar plate without antibiotics,

mixed and incubated overnight at 30 ◦C. Then, single colonies of transconjugants
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of P. denitrificans were selected by streaking some of the cells, from the conjugation

plate, into a LB-agar plate with spectinomycin plus the corresponding antibiotic of

the transferred vector.

2.6.2 Conjugation via filter crosses

When the selection of a rare event is required, such as in the generation of mutants,

filter crosses were used [140]. For this purpose, three 50 mL LB cultures were

prepared: one in stationary phase of the recipient strain and two in early exponential

phase of the donor and helper strains (OD600 ∼ 0.6). The cells were then harvested

by centrifugation (10 min at 6,000 rcf and 4 ◦C) and resuspended all together in

1 mL of 50 % (v/v) glycerol. Next, the mixture was pipetted on top of a filter

(Whatman), that was previously placed on a solid LB-agar plate without antibiotics,

and let to dry close to the flame until the plate could be safely moved without

causing spillages. After two days of incubation at 30 ◦C, the cells were recovered

in 1 mL of 50 % (v/v) glycerol, which was then used to prepare serial dilutions. A

volume of 50 µL of each sample was plated on a LB-agar plate with the appropriate

antibiotics and incubated at 30 ◦C until single colonies of P. denitrificans could be

identified.

2.7 Polyacrylamide gel electrophoresis

2.7.1 Resolution of proteins by SDS-PAGE

Protein samples were assessed by polyacrylamide gel electrophoresis (PAGE) under

denaturing conditions [141] and using a discontinuous system [142] in order to

produce high resolution and optimal band definition. Standard SDS-PAGE gels

were produced according to the recipe shown in table 2.12 below.

Protein samples were prepared by mixing them with 0.2 volumes of a five times

concentrated sample buffer (300 mM Tris-Cl pH 6.8, 10 % SDS, 50 % glycerol,
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25 % β-mercaptoethanol, 0.05 % bromophenol blue) and boiled at 95 ◦C for 5

minutes. Then, they were left to cool on ice and briefly spun down before loading

into the gel. Typically, 5 µL of Precision Plus ProteinTM Prestained Standard

(BioRad) were used as a marker per gel. The electrophoresis was performed, using

a Mini-protean II electrophoresis system (BioRad) filled with running buffer (25

mM Tris-Cl, 192 mM glycine, 0.1 % SDS (w/v)), at constant current of 30 mA for

approximately 1 hour at room temperature. Once the electrophoresis had finished,

gels were submerged in InstantBlue Coomassie stain solution (Expedeon) and left

to incubate in a rocket platform for 30 mins.

Component Separating Gel Stacking Gel
Polyacrylamide 15 % (v/v) 4 % (v/v)
Tris-Cl pH 8.8 375 mM -
Tris-Cl pH 6.8 - 125 mM

SDS 0.1 (w/v) 0.1 (w/v)
Ammonium persulphate 0.05 (w/v) 0.05 (w/v)

Tetramethylethylenediamine (TEMED) 0.03 (v/v) 0.03 (v/v)

Table 2.12: Composition of a standard 15 % SDS-PAGE gel

2.7.2 Western-Blot analysis

Western-Blot (WB) was performed routinely as a diagnostic test for the iden-

tification of recombinant proteins. A Trans-Blot SD Semi-Dry Electrophoretic

Transfer Cell (BioRad) in combination with a three buffer system [143, 144] was

used to transfer proteins from SDS-PAGE gels to polyvinylidene difluoride (PVDF)

membranes (Amersham HybondTM-P, GE Healthcare).

The three buffer system mentioned above comprises a cathode 1 (C1) solution and

two anode buffers (A1 and A2). Buffer C1 (25 mM Tris, 40 mM ε-aminocaproic acid

pH 9.4) contains ε-aminocaproic acid which acts as a trailing ion which migrates

through the gel from the cathode towards the anode. Buffer A1 (0.3 M Tris pH

10.4) is used to neutralise the excess of protons generated on the surface of the

anode plate. Buffer A2 is composed of 25 mM Tris pH 10.4. The solutions were

supplemented with methanol to a final 20 % (v/v) concentration, this helps to

stabilise the dimensions of the gel and to remove complexed SDS from polypeptides.
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Western-blots were initiated by incubating an SDS-PAGE gel in a clean tank

containing buffer C1 for 15 minutes. In the meantime, three pieces of blotting

paper (Fisher Scientific) were soaked in buffer A1, three in buffer A2 and six in

solution C1. Also, the PVDF membrane was activated by immersing it in methanol

for 15 seconds (a colour change in the membrane should be perceived which turned

from opaque to semitransparent). Next, the membrane was carefully transferred

into a tank with analytical grade water in order to remove methanol excess and

then was placed into a tank with buffer A2 where it was left to equilibrate for at

least 5 minutes. Once the 15 minutes had elapsed, the three segments of blotting

paper previously soaked in A1 were placed in the centre of the anode electrode plate,

followed by the three segments of blotting papers soaked in A2. In order to ensure

an even transfer, air bubbles between layers of blotting paper were removed by

carefully rolling a pipette tip between each layer in the stack. Then, the membrane

was laid on top of the soaked papers followed by the SDS-PAGE gel and the six

segments of blotting paper soaked in C1.

The transfers were set at a constant current of 60 mA for approximately 45 minutes

and once it had finished, the membrane was incubated in a clean tank containing

20 mL of blocking solution (5 % (w/v) skimmed milk powder in PBS: 137 mM

NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4) for at least 60 minutes

at room temperature. After this incubation period, Monoclonal Anti-polyHistidine-

Peroxidase Antibody (Sigma) was added to the blocking solution to a working

dilution of 1:20,000 and incubated overnight at 4 ◦C. Recombinant strepII tag

proteins were incubated with Monoclonal Anti-StrepII-Peroxidase Antibody (IBA)

in PBS (therefore the blocking solution had to be thoroughly washed before addition

of the antibody) at a working dilution of 1:10,000. The next day, the membrane

was washed three times with PBS-T (PBS with 0.05 % (v/v) TWEEN20) for

10 minutes and once with PBS for another 10 minutes. The chemiluminescent

reaction was initiated by addition of SuperSignal West Pico Chemiluminescent

Substrate solution (Thermo Scientific) to the membrane which was then incubated

in the dark for 5 minutes. Western-blot images were recorded using a LAS-3000

gel imager (Fujifilm).
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2.8 Mass Spectrometry of proteins

The proteins of interests were identified by peptide mass fingerpinting after trypsin

digestion on a Bruker Autoflex Speed Maldi-TOF/TOF at John Innes Centre

Proteomics Facility (Norwich Research Park). Prior to sample submission, gel slices

had to be destained with 30 % (v/v) ethanol and reduced with 10 mM dithiothreitol

(DTT). Then, free cysteines were alkylated with 30 mM iodoacetamide (IAA) which

reacts with free sulfhydryl groups of cysteine residues irreversibly and cannot be

reoxidised to form disulfide bonds (this step is important for allowing trypsin

maximum digestion of the protein). Finally, samples were dehydrated using

acetonitrile and delivered to John Innes Centre Proteomics Facility where they

were digested with trypsin.

Raw data was extracted with BioWorks (Thermo Fisher Scientific Inc) and the

resulting peak list was used for a database search using an in-house Mascot 2.4 server

(Matrix Science) on all bacterial sequences of the UniProt Swiss-Prot/TrEMBL

database (release 20170418). The searches were performed with a peptide tolerance

of 5 ppm and a fragment tolerance of 0.6 Da. Iodoacetamide derivative of cysteine

was selected as a fixed modification, oxidation of methionine as variable, and

trypsin as the protease used (with up to three missed cleavages allowed).

Significance Sequence Expect
Protein Score Coverage (%) Value
PCuCWT 143 61 2.4 x 10−11

PCuCFL-6His 146 64 1.2 x 10−11

PCuCNt-6His 66 56 3.7 x 10−05

PCuCCt-6His 43 32 1.2 x 10−02

ScoBsol-6His 52 16 2.2 x 10−02

NosZ-SII 117 17 9.4 x 10−09

Table 2.13: Peptide mass fingerprinting results and mascot scores (values
greater than 49 were considered to be significant (p < 0.05).)
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2.9 Protein structure prediction

The Phyre2 web server (http://www.sbg.bio.ic.ac.uk/phyre2) in intensive mode was

used to predict the tertiary structure of ScoBsol (Pden_4443) [145]. Phyre2 uses

the alignment of hidden Markov models for homology-based protein modelling and

incorporates the ab initio folding simulation to model regions with no detectable

homology to known structures. The predicted protein structure was visualised

using the software Pymol [146].

2.10 Synthesis of pLMB510 and pLMB511 plas-

mid vectors

The taurine inducible expression vector for Alphaproteobacteria pLMB509 [147]

(Figure 2.3 A) allows high-throughput cloning and expression of His-tagged proteins

for purification. However, it presents certain limitations, such as a single NdeI

restriction site for cloning procedures and it is only adequate for the expression of

C-terminally His-tagged proteins. Therefore, two different derivatives of pLMB509

named pLMB510 and pLMB511 were generated (see figure 2.3 A and B). Both

plasmid have a new multicloning site (NdeI, BamHI, XmaI and EcoRI) and are

suitable for the expression of Factor X cleavable N-terminally tagged proteins or

enterokinase cleavable C-terminally tagged proteins. The main difference between

these two vectors is that pLMB510 contains 6His as affinity tag while pLMB511

codes instead a StrepII tag.

The generation process of pLMB510 and pLMB511 required the removal by inverse

PCR of the EcoRI site located in position 1107 bps in pLMB509 that precedes

the T1 terminator. Then the PCR product was digested with DpnI (NEB), PCR

purified (QIAGEN ) and the DNA was phosphorilated (NEB), religated (NEB) and

transformed into E. coli 803. Afterwards, the resultant plasmid was digested with

NdeI and EcoRI (NEB) in order to remove the fragment ranging from base 170
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Figure 2.3: The taurine inducible expression vectors for Alphaproteobacteria.
(A) pLMB509: C-terminal His-tagged proteins. (B) pLMB510: cleavable N-
or C-terminal His-tagged proteins. (C) pLMB511: cleavable N- or C-terminal

StrepII-tagged proteins [148]

55



Copper maturation of N2OR in P. denitrificans

to 928. Vectors pLMB510 and pLMB511 were produced by cloning the NdeI -

EcoRI fragments derived from the synthetic constructs supplied by GenScript (see

appendix section A.2).

2.11 Construction of knock-in mutants

Unmarked insertion mutants were generated in P. denitrificans using the mobilizable

multi-purpose cloning vector pK18mobsacB (Figure 2.4 and table 2.14) [149]. A

fragments of ∼1 kbp flaking the stop codon of nosZ was amplified by PCR (see

figure 2.5 A), using a pair of primers containing PstI and XbaI restriction sites (see

appendix table 2.7), and cloned into pJET1.2 (Thermo Scientific). Then, a StrepII

tag sequence was introduced upstream the stop codon of nosZ by inverse PCR

using phosphorylated primers (see figure 2.5 B). The PCR product was then DpnI

(NEB) digested, religated and transformed into E. coli 803. Next, the resultant

plasmid was digested using PstI and XbaI and the digestion fragment was cloned

into pK18mobsacB.

The plasmid pK18mobsacB containing the StrepII flaking region of nosZ (from

now on pMSL01) was then conjugated into wild-type P. denitrificans (PD1222),

Pden_4445− (PD2304), pcuC− (PD2305) and ∆scoB (PD2306) by triparental

mating using the filter cross technique as described above.

The basic principle of generating mutants using this system is that pK18mobsacB

is not replicative in P. denitrificans. Therefore, under the presence of a selective

pressure, such as the addition of kanamycin to the media, the only way the bacteria

can survive is by undergoing an homologous recombination event. As a result, the

whole plasmid is integrated in the chromosome at the location of the cloned flanking

regions (see figure 2.5 C). Single cross over recombination events were initially

selected by plating the cells from the conjugation into LB with spectinomycin and

kanamycin and identified by colony PCR (using universal M13 primers targeting

the multicloning site of pK18mobsacb).
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Plasmid Characteristics Source
pRK2013 Used as mobilizing plasmid in triparental

crosses, kanR
[138]

pK18mobsacB Allelic exchange suicide plasmid, sucrose-
sensitive, mob+, kanR

[149]

pJET1.2 Eco47IR, cloning vector, AmpR Thermo Scientific
pUC57 lacZ, cloning vector, AmpR GenScript
pLMB509 expression plasmid, tauP, mob+, genR [147]
pLMB510 pLMB509-derivative, EcoRI (1107 bps) de-

ficient, expression plasmid of his tagged
proteins, tauP, mob+, genR

This study

pLMB511 pLMB509-derivative, EcoRI (1107 bps) de-
ficient, expression plasmid of strepII tagged
proteins, tauP, mob+, genR

This study

pMSL001 pLMB509-derivative, EcoRI (1107 bps) de-
ficient, expression plasmid, tauP, mob+,
genR

This study

pMSL002 pK18mobsacB derivative, construct for
nosZ StrepII sequence insertion, kanR

This study

pMSL003 pLMB509-derivative, expression construct
for PCuCFL-6His, genR

This study

pMSL004 pLMB510-derivative, expression construct
for PCuCFL-6His, genR

This study

pMSL005 pMSL003-derivative, expression construct
for PCuCNt-6His, genR

This study

pMSL006 pMSL003-derivative, expression construct
for PCuCCt-6His, genR

This study

pMSL007 pLMB509-derivative, expression construct
for ScoB-6His, genR

This study

pMSL008 pLMB510-derivative, expression construct
for a soluble ScoB-6His, genR

This study

Table 2.14: Plasmids used
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Figure 2.4: Map of the mobilizable multi-purpose cloning vector pK18mobsacB
used for construction of insertion mutants.
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Figure 2.5: Schematic representation of the genetic events leading to gener-
ation of knock-in mutants. (A) Cloning of the flanking regions of nosZ. (B)
Introduction of a StrepII sequence by inverse PCR (C) First integrative homol-
ogous recombination event. (D) Second recombination event with two possible

outcomes: mutant generation or reverting parental strain
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The mutant is finally generated by forcing the bacteria to undergo a second

recombination event where the plasmid is excised from the chromosome. The

selective pressure in this case is driven by the expression of levansucrase, which is

an enzyme encoded by the sacB gene. Levansucrase uses sucrose as a substrate to

polymerise levans, a polysacharide that is then accumulated in the cytoplasm and

results in the lysis of the bacteria in hypotonic media (10 g L−1 tryptone, 5 g L−1

yeast extract, 4 g L−1 NaCl and 6 % (w/v) sucrose). The cells that were able to

grow in this media had either restored back to the wild-type phenotype or resulted

in the mutant strain (see figure 2.5 D). Mutants were screened by colony PCR and

the PCR products were sequenced for confirmation.

2.12 Protein overexpression and purification

Protein purification of recombinant soluble ScoB (here after ScoBsol), PCuC full

length (PCuCFL), PCuC Nt-domain (PCuCNt), PCuC Ct-domain (PCuCCt) and

NosZ was carried out from the following strains: P. denitrificans WT (PD1222)

carrying the plasmid pMSL008 for the purification of recombinant ScoBsol and

P. denitrificans pcuC− (PD2305) containing the expression plasmid pMSL004,

pMSL005 or pMSL006 for the isolation of recombinant PCuC proteins. P. denitrif-

icans gWT (PD2422), gpcuC− (PD2405) and P. denitrificans g∆scoB (PD2406)

are knock-in mutants for the purification of recombinant NosZ.

The preparative steps, of protein overexpression and cell lysis, prior to the purifi-

cation were in general common for ScoBsol, PCuC, PCuC Nt-domain and PCuC

Ct-domain. Typically, a 18 L LB culture (18 x 1 L conical flasks) was inoculated

with a 1 % inoculum of the corresponding strain and antibiotic (gentamicin). Then,

the cultures were incubated at 30 ◦C with agitation (150 rpm) until OD600 ∼ 0.6

- 0.9, at which point, expression was induced by the addition of taurine (10 mM

final concentration).

After 16 hours, cells were harvested by centrifugation at 6,000 g for 20 minutes

at 4 ◦C using an AvantiTM J-20 centrifuge (Beckman Coulter) and ScoBsol was
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resuspended in 0.01 culture volumes of buffer A (20 mM Hepes, 500 mM NaCl and

25 mM Imidazole, pH 7.5) while PCuC, PCuC Nt-domain and Ct-domain were

resuspended in buffer B (20 mMHepes, 150 mMNaCl and 25 mM Imidazole, pH 7.5).

DNase 1 from bovine pancreas (Sigma) and a protease inhibitor mixture (cOmplete,

EDTA-free, Roche) were added to the cell suspension before cell disruption by

French Press. Two passes at 1,000 psi (6.89 MPa) were needed to completely break

the cells, after which, the cell lysate was centrifuged at 205,000 g for 2 hours using

an Optima X100-K ultracentrifuge (Beckman Coulter). Next, the soluble fraction

was recovered and filtered using a 0.45 µM nitrocellulose filter paper (Sartorius

Stedim).

2.12.1 Purification of ScoBsol-6His and PCuCWT

Recombinant ScoBsol and PCuCWT were purified using an ÄKTA FPLC system

(GE Healthcare) fitted with a UPC-900 high precision monitor, that was set to

track the absorbance at a wavelength of 280, 360 and 460 nm, and a sample loading

pump that was used to load the filtered cell lysate. Three chromatographic steps

were needed to fully purify the protein: immobilised metal affinity (IMAC), anion

exchange (AEC) and size-exclusion chromatography (SEC). Firstly, the filtered cell

lysate was applied into a 5-mL Ni2+ column (HiTrap Chelating HP, GE Healthcare)

which had been previously equilibrated with buffer A. Next, unbound protein was

removed by applying 10 column volumes (CV) of buffer A. ScoBsol and PCuCWT

were eluted from the column after the application of a linear gradient of imidazole

25-500 mM for 10 CV with a flow rate of 1 mL min−1. Fractions containing ScoBsol

and PCuCWT were combined and diluted 50 times in buffer C (20 mM HEPES

pH 8). The diluted protein was loaded into a 5-mL HiTrap Q HP anion-exchange

column (GE Healthcare) and unbound protein was removed by washing with Buffer

C for 10 CV. ScoBsol was eluted from the anion-exchange column by applying a

linear gradient of 0 - 1000 mM NaCl over 10 CV with a flow rate of 0.2 mL min−1.

Peak fractions containing ScoBsol and PCuCWT were pooled, dialysed against buffer

D (20 mM HEPES, 150 mM NaCl pH 7) and concentrated by ultrafiltration. The
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concentrated sample was loaded into a 116-mL preparative size-exclusion column

(Sephacryl S-75 high resolution, GE Healthcare) pre-equilibrated with Buffer D

and eluted with a flow rate of 0.2 mL min−1.

2.12.2 Purification of recombinant PCuC proteins

Recombinant PCuCFL-6His, PCuCNt-6His and PCuCCt-6His were purified using

an ÄKTA FPLC system (GE Healthcare) fitted with a UPC-900 high precision

monitor, that was set to track the absorbance at a wavelength of 280 and 410 nm,

and a sample loading pump that was used to load the filtered cell lysate. Three

chromatographic steps were also needed to fully purify the proteins: IMAC, AEC

and SEC. The filtered cell lysate was applied into a 5-mL Ni2+ column (HiTrap

Chelating HP, GE Healthcare) which had been previously equilibrated with buffer

B. Next, unbound protein was removed by applying 10 column volumes (CV) of

buffer A. Finally, the recombinant protein was eluted from the column after the

application of a linear gradient of imidazole 25-500 mM for 10 CV with a flow rate

of 1 mL min−1. Fractions containing the recombinant protein were combined and

diluted 20 times in buffer C (20 mM HEPES pH 8). The diluted protein was loaded

into a 5-mL HiTrap Q HP anion-exchange column (GE Healthcare) and unbound

protein was removed by washing with Buffer C for 10 CV. The recombinant protein

was eluted from the anion-exchange column by applying a linear gradient of 0 - 1000

mM NaCl over 10 CV with a flow rate of 0.2 mL min−1. Peak fractions containing

the recombinant protein were pooled, dialysed against buffer D (20 mM HEPES,

150 mM NaCl pH 7) and concentrated by ultrafiltration. The concentrated sample

was loaded into a 116-mL preparative size-exclusion column (Sephacryl S-75 high

resolution, GE Healthcare) pre-equilibrated with Buffer D and eluted with a flow

rate of 0.2 mL min−1.
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2.12.3 Purification of recombinant N2OR

Nitrous oxide reductase was purified from P. denitrificans grown anaerobically

under two different copper regimes. Typically 3 L (3 x 1 L Duran bottle) of minimal

medium were sufficient for the purification of NosZ under copper high conditions,

while 20 - 30 L (2 - 4 x 5 L acid washed Duran bottle) of minimal medium where

normally needed to purify NosZ under copper limited conditions. Flasks were

inoculated with a 1 % inoculum of preconditioned cells of P. denitrificans gPdWT,

gpcuC− or g∆senC (Pd2422, Pd2305 or Pd2306), sealed with screw-cap lids and

gas-tight silicone septa and incubated at 30 ◦C without agitation.

After 24 hours, cells were harvested by centrifugation at 6,000 g for 20 minutes

at 4 ◦C using an AvantiTM J-20 centrifuge (Beckman Coulter) and resuspended

in 0.01 culture volumes of Buffer E (100 mM Tris-Cl, 150 mM NaCl, pH 8.0).

DNase 1 from bovine pancreas (Sigma) and a protease inhibitor mixture (cOmplete,

EDTA-free, Roche) were added to the cell suspension before cell disruption by

French Press. Two passes at 1,000 psi (6.89 MPa) were needed to completely break

the cells, after which, the cell lysate was centrifuged at 205,000 g for 2 hours using

an Optima X100-K ultracentrifuge (Beckman Coulter). Next, the soluble fraction

was recovered and filtered using a 0.45 µM nitrocellulose filter paper (Sartorius

Stedim).

Recombinant NosZ was purified using an ÄKTA FPLC system (GE Healthcare)

with the UPC-900 high precision monitor set at 280, 480 and 640 nm. The filtered

cell lysate was loaded into a pre-equilibrated 5-mL StrepII column (IBA) using the

sample loading pump and unbound protein was removed by applying 10 column

volumes (CV) of buffer E. Finally, the recombinant protein was eluted from the

column after applying a step gradient of buffer F (100 mM Tris-Cl, 150 mM NaCl,

20 mM Biotin pH 8.0) for 5 CV at a flow rate of 1 mL min−1.
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2.13 N-terminal sequencing of PCuC

2.13.1 Edman degradation

A pure sample of PCuCWT (10 µg) was applied onto a SDS-PAGE gel and trans-

ferred into a PVDF blotting membrane as described previously. Then, a clean

scalpel was used to cut around the PCuC band, using a coomassie stained SDS-

PAGE gel as a reference, and placed inside of a clean microcentrifuge tube. Sample

was submitted to Cambridge Peptides Ltd (Birmingham, UK) by ordinary mail for

analysis. The identified sequence was NH2-HATLE.

2.13.2 Protein sequencing by in source decay MALDI-TOF

A sample of 50 µL of pure PCuCWT (1 nmole) was submitted to the John

Innes Centre Proteomics Facility (Norwich Research Park) for N-terminal se-

quencing by in source decay (ISD) MALDI-TOF. The identified sequence was

NH2-HATLERSEAPAGAAYRAVIRIGHGC.

2.14 Addition of Cu ions to Cu-binding proteins

The ability to bind Cu1+ or Cu2+ of ScoBsol, PCuCWT, PCuCNt and PCuCCt and

the stoichiometry of the binding was tested by titrating a copper solution into the

proteins and following the changes of the UV-vis and fluorescence spectra.

As purified proteins were incubated with a 50-times excess of a mixture of the

high affinity Cu1+ and Cu2+-binding chelators diethyl-dithio-carbamate (DETC)

and ethylenediaminetetraacetic acid (EDTA) for ∼ 10 min at room temperature.

DETC develops an intense yellow colouration and becomes highly hydrophobic

when it binds to the metal. Therefore, the complexes were removed from the

solution by hydrophobic interaction chromatography (HIC) in flow-through mode
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Figure 2.6: UV-visible spectra of CuCl and CuSO4. (A) UV-visible absorbance
spectra of 0 to 105 µm CuCl in 100 mM MOPS and 150 mM NaCl pH 7.5. The
insert represents the absorbance changes at 270 nm; (B) UV-visible absorbance
spectra of 0 to 105 µm CuSO4 in 100 mM MOPS and 150 mM NaCl pH 7.5.

The insert represents the absorbance changes at 270 nm

a technique that is commonly used within the pharmaceutical industry to remove

aggregates from the production of monoclonal antibodies [150]. For this purpose,

the mixture was loaded into a 1-mL HiTrap Phenyl HP column (GE Healthcare) and

the flow-through was collected and buffer exchanged several times by ultrafiltration

in order to remove any trace of free DETC or EDTA into 100 mM MOPS and 150

mM NaCl pH 7.5 using a spin-concentrator (Merck Millipore). The protein was

then introduced in the glove box (mBraun) were oxygen was kept below 0.5 ppm,

and reduced with 5-times excess of DTT, which was later on removed by several

steps of ultrafiltration using a centrifugal filter (Merck Millipore).

Substoichiometric additions of Cu1+ were performed in the form of copper chloride

dissolved in 100 mM HCl and 500 mM NaCl solution, while Cu2+ was prepared

from copper sulphate dissolved in 500 mM NaCl. UV-visible absorbance spectra

were recorded during the titration using a Cary 4000 spectrophotometer (Agilent

technologies). The spectroscopic data were not corrected against buffer with Cu,

since both free CuCl and CuSO4 absorb within the 250 to 280 nm region which

therefore interferes with the small UV-vis changes appreciated of the Cu-protein

bound form (see Figure 2.6 A). The relative absorbance at 270 nm of the titration

of CuCl and CuSO4 result in a straight line (see Figure 2.6 B). While, the relative

absorbance of CuCl or CuSO4 bound to the protein of interest will result in a linear
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increase up to one equivalent and a breakpoint that will continue to increase with a

significantly less pronounce slope due to the contribution of free Cu in solution (see

Figures 3.9, 3.10, 4.19, 4.20, 4.21, 4.22 and 4.23). At the same time, Cu-binding

events were followed by fluorescence spectroscopy. The emission spectra of the same

samples were recorded using a Varian Cary Eclipse fluorescence spectrophotometer

(Agilent technologies) with excitation at 280 or 295 nm, emission slit widths of 5

nm and a 290 nm cut-off band pass filter was applied.

2.15 Analytical ultracentrifugation

Protein samples for sedimentation equilibrium experiments were prepared as de-

scribed previously in section 2.14 and applied, under anaerobic conditions, into

12-mm charcoal-filled Epon double-sector cells with quartz windows. The sample

and reference sectors were loaded with 105 µl of sample and 120 µl of buffer,

respectively. The cells were placed in a AN-50 Ti rotor and run in a XL-I analytical

ultracentrifuge (Beckman Coulter) at 25 ◦C.

Absorbance data was acquired at 280 nm and samples were spun until equilibrium

was reached (noted by the absence of changes in the profile of scans collected 4 h

apart). The partial specific volume of the analysed proteins was calculated from

the amino acid composition (see table 2.15) and the density of the buffer was

estimated as 1.006 mL g−1 using the software Sednterp (v. 20130813 BETA) [151].

Absorbance data was analysed using Ultrascan (v. 9.9) [152].

Protein Partial specific volume (mL g−1)
ScoBsol 0.72
PCuCWT 0.73
PCuCNt 0.72
PCuCCt 0.73

Table 2.15: Partial specific volumes calculated using Sednterp [151]
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2.16 Analytical size exclusion chromatography

Analytical size exclusion chromatography (ASEC) is a common technique used to

calculate the molecular weight of proteins. Apo and metallated protein samples

were analysed in a Superdex 200 column 10/300 GL (GE Healthcare) connected

to an ÄKTA FPLC system (GE Healthcare) with the UPC-900 high precision

monitor.

The column was equilibrated with 2 CV of deoxygenated buffer (20 mM HEPES,

150 mM NaCl and 0.25 mM DTT pH 7.5) and 0.15 mL of sample was injected at

a flow rate of 0.25 mL min−1. A commercial standard kit (Sigma) was used to

generate a calibration curve under the conditions mentioned before (Figure 2.7).

The Kav of the standards was calculated according to the following equation:

Kav = Ve − V0

Vc − V0
(2.2)

Where Kav is the partition coefficient which is a proportion of pores available to

the molecule and is a function of the elution volume (Ve), the column void volume

(V0) and the geometric column volume (Vc). Vc is equal to 24 mL for the column

used and V0 was calculated experimentally with Blue Dextran 2000 (Sigma) and is

equal to 8.18 mL.

2.17 Estimation of metal dissociation constants

using copper chelators

The binding of Cu1+ by ScoBsol, PCuC, PCuC N- and C-terminal domain was

investigated in the presence of bicinchoninic acid (BCA) or bathocuproine disulfonic

acid (BCS). The affinity of this type of proteins for metals (M) is very tight (KD
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Figure 2.7: Analytical size exclusion chromatography standards. Cytochrome C (CC, 12.4 kDa), carbonic anhydrase (CA, 29 kDa),
albumin (A, 66 kDa), alcohol dehydrogenase (AD, 150 kDa) and β-amilase (β, 200 kDa).

68



Chapter 2 Materials and Methods

< 10−7 M) and it cannot be measured by direct titration of metals into apo-

proteins [153, 154], since the detection sensitivity of most of the methods is within

the micromolar range. At such relatively high concentration, the system is not

at equilibrium and all the protein is instead saturated with metal. As a result,

the estimation of the derived KD is limited by the protein concentration of the

experiment.

BCA and BCS are ligands that bind Cu1+ quantitatively to produce 1:2 complex

[ML2] (where L is either BCA o BCS) according to equation 2.3 and their overall

formation constant (by convention denoted as β since is a cumulative constant) is

1019.8 and 1017.2 M−2, respectively [43, 154].

M + 2L′ βA−−⇀↽−−ML2 βA = [ML2]
[M ][L′]2 (2.3)

The binding of Cu1+ to a protein (P) that binds a single copper and the corre-

sponding dissociation constant is given in equation 2.4:

M + P
KA−−⇀↽−−
KD

MP KD = 1
KA

= [M ][P ]
[MP ] (2.4)

Equation 2.5 shows a typical experimental situation where two ligands compete for

the same metal ion that is present at a limiting concentration:

MP + 2L′
Kex1−−−⇀↽−−−ML2 + P Kex1 = [ML2][P ]

[MP ][L′]2 (2.5)

Kex1 =
(

[M ][P ]
[MP ]

)(
[ML2]

[M ][L′]2

)
= KDβ

′
2 (2.6)

Equation 2.6 can be transformed into equation 2.10 based on the mass balances of

equations 2.7, 2.8 and 2.9:

[P ] = [P ]total − [MP ] (2.7)
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[L′] = [L]total − 2[ML2] (2.8)

[M ]total − [MP ] ≈ [ML2] (2.9)

KDβ
′
2 =

[P ]total
[MP ] − 1(

[L]total
[ML2] − 2

)2

[ML2]
(2.10)

Equation 2.10 can be used to calculate KD, since the βA values of BCS and

BCA are known and [ML2] can be determined experimentally from the solution

absorbance of the reaction equilibrium 2.5 (L = BCS, ε483 = 12, 500 M−1cm−1

and for L = BCA, ε560 = 7, 900 M−1cm−1) [43, 154].

Experiments were carried out in a glove box in both directions of equation 2.6. The

forward reaction was prepared by titrating the apo-protein and maintaining the

ligand concentration constant, while for the reverse reaction the ligand was titrated

and the apo-protein kept constant. In both cases, copper concentration was main-

tained constant at 10 µM and prepared from a stock solution ([Cu(CH3CN)4]PF6)

dissolved in acetonitrile and then diluted in 20 mM HEPES and 150 mM NaCl pH

7.5. Each reaction was prepared independently, in triplicates and aliquoted into a

96 well plate which was sealed with SureSeal DWB plastic coverslips (Molecular

Dimensions) and wrapped with parafilm. After 60 minutes of incubation, whole

spectrum was collected in a Sense Microplate Reader (HIDEX). Reduced methyl

viologen was also added to a separate well to check for oxygen leaking. Data was

normalised at 800 nm and fitted using the script shown in appendix A.6 and A.7

for the software Dynafit (v. 4.07.096) [155].

70



Chapter 2 Materials and Methods

2.18 Small-angle X-ray scattering

Small-angle X-ray scattering (SAXS) experiments were performed at beamline

B21 Diamond Light Source (Harwell Science and Innovation Campus). PCuC and

ScoBsol samples (10 mg mL−1) were applied to a Sephadex 200 5/150 GL column

(GE Healthcare) attached to an in-line 1200 series HPLC (Agilent) and eluted with

a flow rate of 0.1 mL min−1. The buffer (20 mM HEPES, 150 mM NaCl and 1 mM

DTT pH 7.5) eluted after one column volume was used as a blank. SAXS images

were continuously collected at 1 second intervals for a total exposure time of 10

minutes at 15 ◦C on a PILATUS3 2 M detector (Dectris) situated at 3.9 m from

the sample and an X-ray wavelength of 1.0 Å.

Buffer subtractions and data merging were performed with the software SCATTER

(v. 3.0j) [156]. Downstream analysis were done with the following programs from

the ATSAS suite (v. 2.8.0) [157]: GNOM (v. 4.6) to calculate structural parameters

such as the radius of gyration (Rg) and the pair distance distribution functions

(p(r)) [158], DAMMIF (v. 1.1.2) was used to create 23 independent rapid ab initio

bead models [159], DAMAVER (v. 5.0) to average the ab initio bead models

[160], DAMMIN (v. 5.3) to further refine the previous models, SUPCOMB (v.

2.3) was used to fit the crystal structure into the resulting ab initio model [161],

CRYSOL (v. 2.8.2) was used to assess the agreement between experimental and

theoretical curves [162–164] and GASBOR to model protein surface envelops based

on chain-like ensemble of dummy residues [165].

2.19 Protein crystallography

The selection of the crystallisation conditions, protein harvest, data collection

and model building was performed in collaboration of the structural biologist Dr.

Marcus Edwards.
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2.19.1 Crystal formation

Protein crystals of PCuCNt and PCuCCt were formed by the vapour diffusion

method in a sitting drop format. The crystallisation conditions for each protein

were found using commercially available sparse matrix screening kits (QIAGEN ). A

volume of 50 µL of each solution was aliquoted into the reservoir well of 96-well MRC

2 drop plates (Molecular Dimensions). Then, an Oryx Nano protein crystallography

robot (Douglas Instruments) was used to dispense protein samples and precipitant

solution in drops of 0.6 µL which contained a ratio of precipitant:protein solution of

1:1 or 2:1. Plates were then sealed with SureSeal DWB plastic coverslips (Molecular

Dimensions) and incubated at 16 ◦C. Protein crystal formation of PCuCNt (10

mg mL−1) was observed in 20 % PEG 8000, 200 mM magnesium chloride and

100 mM Tris-Cl pH 7.5. The optimal concentration of PEG 8000 and magnesium

chloride was optimised by testing a range of concentrations from 16 - 26 % (in 2 %

increments) and from 100 - 400 mM (following 100 mM increments), respectively.

PCuCCt (20 mg mL−1) crystallised in 100 mM trisodium citrate, 200 mM potassium

sodium tartrate and 2.0 M ammonium sulphate pH 5.6. This condition was further

optimised by testing a set of concentration of ammonium sulphate following a

gradient of 0.5 - 3.0 M (in 0.5 M increments) and by changing the concentration of

potassium sodium tartrate from 50 - 400 mM (following 50 mM increments).

Crystals were harvested using 0.1 - 0.2 mm mounted LithoLoops (Molecular

Dimensions) and then incubated for a few seconds in a cryogenic solution before

flash freezing them in liquid nitrogen. The cryogenic solution was made up in

precipitant solution containing 20 % (v/v) ethylene glycol for PCuCNt and 35 %

glycerol for PCuCCt.

2.19.2 Data collection

X-ray diffraction experiments were performed at beamline IO3 Diamond Light

Source (Harwell Science and Innovation Campus). Typically, an exploratory

screening of three test images using a 0.979 Å wavelength was performed on each
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crystal to then prioritise the rest of the data collection session and determine a

data collection strategy using MOSFLM [166] and/or EDNA [167].

2.19.2.1 PCuCNt

For PCuCNt, a crystal that initially diffracted to 1.5 Å and had a predicted P3

space group was selected to perform a single-wavelength anomalous diffraction

(SAD) experiment. For this purpose, the wavelength was adjusted to 1.378 Å

as required for anomalous scattering by copper and a total of 288 images were

collected across 720° in 2.5° oscillations using a beam of 11 x 5 µm and 0.2 s

exposures. These parameters had been calculated using the integrated software

MOSFLM [166]. The images were then merged and scaled with XIA2 [168] that

calculated a maximum resolution of 1.84 Å, although the data was adjusted to

2.00 Å using the software AIMLESS within the CCP4 suite [169] to improve the

completeness statistic. This SAD dataset was used to determine the phases and

an initial model was built using Crank2 pipeline component of the CCP4 on-line

programs [170]. Two chains and a total of 323 residues were initially built.

Then the wavelength was adjusted to 0.979 Å and another PCuCNt crystal that

had been previously screened was used to collect a complete native dataset. A total

of 450 images were recorded across 180° in 0.4° oscillations, 0.2 s exposures and an

unattenuated 63 x 50 µm beam as indicated by MOSFLM [166]. After processing

the images with XIA2 [168] a maximum resolution of 1.46 Å was calculated. The

structure was then solved by molecular replacement with the program PHASER

[170] using the coordinates from the experimentally phased structure. This was

followed by manual inspection and iterative cycles of model building in COOT and

crystallographic refinement using REFMAC5 [171].

2.19.2.2 PCuCCt

A crystal that initially diffracted down to 1.54 Å and had a P21 space group was

selected to collect a full native dataset. The wavelength was set at 0.928 Å and

73



Copper maturation of N2OR in P. denitrificans

a total of 3600 images were collected across 180° in 0.05° oscillations using an

unattenuated 63 x 50 µm beam and 0.04 s exposures. These parameters had been

calculated using the integrated software MOSFLM [166]. The images were then

merged and scaled with XIA2 [168] and the crystallographic structure was solved

to a resolution of 1.6 Å by molecular replacement (MR) using the software MoRDa

[172]. The initial model generated by MoRDa contained one polypeptide with 127

residues. MoRDa automatically selected the coordinates of the extracytoplasmic

copper chaperone-like protein (ECuC) from S. lividans (PDB accession codes:

3ZJA) as a search template. The solution had space group P21, a MoRDa Q-

factor of 0.673 out of 1 and a probability of correct solution of 3 over 3. The

crystallographic unit contained a single protein molecule and continuous and well

defined electron density was observed for 127 residues (out of 169 that were deduced

from the genetic construct used to over-expressed the protein) ranging from position

54 to 184.
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3
Biochemical characterisation of ScoBsol

3.1 Introduction

Synthesis of cytochrome oxidase (Sco), sensor of cytochrome oxidase (SenC) [173],

photosynthetic regulatory response (PrrC) [174] or YpmQ [175] are names that

have been given to members of a protein family that has been mainly studied in

relation to the biogenesis of copper and heme-dependent oxidases of the respiratory

chain [32]. Genes encoding Sco proteins are present in all kingdoms of life, and

often found in more than one copy within the same genome as a consequence of

independent duplication events. This multiplicity of sco genes may be indicative

of the possible functional divergence of the encoded proteins, which may differ

between organisms belonging to the different kingdoms of life [176–178].

In eukaryotes, all sco genes are considered to derive from a gene present in the

last common ancestor of choanoflagellates, plants and metazoans [179]. Flowering

plants, yeast and vertebrate genomes contain two sco genes and in each case they

are considered to result from independent duplication events [180]. In bacteria

and archea the occurrence of sco genes is even more variable. For example, in a

study where 311 prokaryotic genomes were analysed (285 from bacteria and 26

from archea) it was shown that, when sco genes are present, in most cases they are

found in more than one copy. However, it was also shown that there are organisms

or even entire groups of prokayotes (such as cyanobacteria) that do not contain any
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Sco homologues at all [177]. In this study the co-occurrence of sco, cox2 and nosZ

genes was also assessed and the authors found that there seems to be a general

correlation between sco and cox2 genes (e.g. the genes are either both present or

both absent in 82 % of the genomes analysed). Only 12 % of the organisms studied

had cox2 but not sco genes and 6% had sco but not cox2 genes. Genes encoding

NosZ proteins were identified in 27 organisms of the 311 analysed, and 25 of the

NosZ containing organisms encoded at least one sco gene.

Sco are membrane proteins with a globular domain facing the intermembrane

space (IMS) in eukaryotic mitochondria or the periplasm in bacteria, and a sin-

gle N-terminal transmembrane helix that anchors them to the cell membrane.

The globular domain exhibits a thioredoxin fold [181] that consists of a core of

four-stranded β sheets (β3, β4, β6, β7) flanked by three α helices (α3, α5, α6).

Thioredoxin proteins are known to function as general disulfide oxido-reductase

through a mechanism of reversible oxidation of two cysteine thiol groups to a

disulfide, accompanied by the transfer of two electrons and two protons (see figure

3.1 A). As a result, a disulfide bond is exchanged with a thioredoxin to produce

two dithiols on the substrate protein partner [181]. Some Sco proteins are known

to have maintained thioredoxin activity (e.g. P. putida Sco [182], R. sphaeroides

PrrC [183]) while others have completely lost this activity (e.g. H. sapiens Sco1

[184], S. lividans Sco [185]). The structure of thioredoxin and Sco proteins tolerates

modifications in certain regions without disruption of their activity [180, 181]. In

Sco proteins one of these alterations is an insertion at the N-terminus of an α-helix

that anchors the protein to the membrane followed by a β-hairpin structure (β1

and β2) and an α-helix (α2). Another region susceptible of modification is between

β4 and α5, where a helix (α4) and a strand (β5) that forms a parallel β-sheet with

β4 are inserted (see figure 3.1 B). Lastly, eukaryotic Sco proteins present an extra

β-hairpin at the loop that connects α5 and β6 [186, 187].

A recognised motif lies within the globular domain of Sco proteins that consists of

two conserved cysteines and a histidine residue (see sequence alignment in Figure

3.2 A). In some Sco proteins this motif has been found to have conserve thioredoxin
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Figure 3.1: Proposed mechanism of action of thioredoxin proteins and schematic
representation of the general fold topology of a bacterial Sco protein. (A)
Proposed mechanism by which the thiolate group of a reduced thioredoxin
(Thrx) undergoes a nucleophilic attack. As a result, a transient mixed disulfide
is formed between Thrx and its protein partner (X) that acts as a substrate.
A second nucleophilic attack of the deprotonated cysteine of Thrx generates a
disulfide bond between the cysteines of Thrx and two reduced cysteines in the
protein partner. (B) Schematic representation of the general fold topology of a
bacterial Sco protein. The typical elements of a thioredoxin fold are coloured
in orange and additional secondary structural elements are shown in blue (N-
terminal transmembrane α-helix) and green (α4 and β5 forming a parallel β-sheet

with β4).
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Figure 3.2: Sequence alignment and cartoon representation copper binding
site of Sco proteins. (A) Sequence alignment of Sco proteins using the program
MUSCLE [188], conserved residues have been coloured using Clustal X colour
scheme (see appendix A.1). Residues involved in copper binding have been
highlighted with a (?) symbol. Cartoon representation of the copper binding
site of (B) apo-Sco1 and (C) Cu1+-Sco1 from H. sapiens (PDB accession codes:

2GVP and 2GT6, respectively).
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activity while in others had acquired the ability to bind both Cu1+ and Cu2+

species (see table 3.2). Mutation of any of the residues that forms the motif

results in the loss of copper-binding ability by the Sco protein and a reduction in

cytochrome c oxidase (COX) activity [189, 190]. Furthermore, copper binding is

also known to drive a conformational change in the protein that alternates between

an open-mobile form and a close-rigid form (see Figure 3.2 B and C) [184, 186].

This degree of conformational change is variable between Sco homologues, for

instance eukaryotic Sco2 has shown higher flexibility in both states compared to

Sco1 that is structurally more rigid [187]. This higher degree of flexibility has

been proposed as one of the reasons for Sco2 plasticity, which is involved in other

processes apart from CuA assembly [191, 192].

3.2 A Sco protein from P. denitrificans neces-

sary for N2O reduction

A BLAST search of Paracoccus denitrificans PD1222 genome showed the presence

of two sco genes: scoA and scoB (Figure 3.3). A multiple sequence alignment of

ScoA and ScoB using MUSCLE within the software package Jalview [193] was used

to calculate a pairwise sequence identity and similarity of 29 and 39 % with the

on-line service SIAS [194]. Both Sco proteins present features typical of members

of the Sco family, such as, a N-terminal transmembrane helix, a globular domain

with a general thioredoxin fold, a distinctive copper binding CX3C motif and a

conserved histidine residue (Figure 3.3 A). The scoA gene is encoded as part of a

RegAB system and is present in chromosome 1 in a putative scoA-regA-hvrA gene

cluster, with a regB gene divergently transcribed. hrvA codes for a histone-like

protein that exhibits significant sequence similarity to Escherichia coli heat-stable

nucleoid-structuring (H-NS) repressor [195]. RegAB is a redox regulatory system

comprising a histidine sensor kinase and a partner DNA-binding response regulator

[196]. In B. japonicum SenC is thought to be involved in the modulation of RegAB

through the oxidation and reduction of a redox-active cysteine residue within RegB
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Figure 3.3: Properties of scoA and scoB genes from P. denitrificans. (A) Gene
clusters of scoA and scoB. (B) Sequence alignment of ScoA, ScoB and ScoBsol
polypeptides. The blue line below ScoB and ScoA denotes the location of the
N-terminal α-helix, while in ScoBsol represents the the region replaced by PCuC
signal peptide in ScoBsol sequence. Conserved residues have been coloured using

Clustal X colour scheme (see appendix A.1)

[197]. In P. denitrificans, deletion of scoA showed no apparent phenotype on

cytochrome c oxidase activity [198].

The scoB gene is present on chromosome two embedded in a putative hypothetical-

pcuC-Sco gene cluster. The hypothetical gene (Pden_4445) is predicted to encode

a membrane protein anchored to the cell membrane through a single N-terminal

transmembrane helix and does not show sequence similarity to any other studied

gene. The predicted gene product of pcuC is a polypeptide made up of the fusion

of two proteins, a N-terminal YcnI-like domain [4] and a C-terminal domain homol-

ogous to the known copper chaperone PCuAC that has been studied in Deinococcus

radiodurans [33]. In contrast to scoA, deletion of scoB from P. denitrificans had a

severe effect on cytochrome c oxidase activity [198]. Sullivan and co-workers showed

that the gene expression of this whole gene cluster is sensitive to extracellular

copper concentrations, and deletion of any of the three genes of this gene cluster

attenuates N2OR activity during anaerobic respiration [3].
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In this chapter we focused our attention on ScoB. For the study of this protein

we generated a soluble version of the protein in the periplasm (ScoBsol) in order

to avoid all the associated issues of performing subsequent analytical experiments

in the presence of detergents. Using the software PHOBIUS [199] and SignalP

[200] we predicted the location of the N-terminal α-helix for ScoB (see figure 3.3 B)

and the signal peptide of the putative periplasmic PCuC protein found within the

same gene cluster (see chapter 4 for more information), respectively. We therefore

designed and synthesised (GenScript) a gene were the first 33 residues of scoB

had been replaced with the first 38 residues of pcuC. Throughout this chapter, we

report the properties of the resultant periplasmic protein upon addition of Cu1+

and Cu2+ and the effect of copper on its oligomeric state. Parallel in vivo studies

have also been performed and revealed that ScoB is responsible for the maintenance

of N2O reductase activity under conditions where extracellular copper is limiting.

3.3 Phenotypical characterisation of scoB

To test if ScoB is involved in the assembly of terminal oxidases in P. denitrificans,

we compared the growth of scoB in-frame unmarked deletion mutant (PD2306),

wild-type and two in trans complemented strains. The complemented strains were

generated by conjugating the low copy number taurine inducible plasmids pMSL007

and pMSL008 into ∆scoB. pMSL007 codes for a full length membrane-anchored

ScoB protein (ScoBFL) and pMSL008 a soluble ScoB (ScoBsol) with the signal

peptide of PCuC that directs the protein to the periplasm through the Sec system

(see figure 3.3 for sequence comparison). Under aerobic conditions, the growth rate

of the mutant and complemented strains was not affected whether the bacteria was

grown in media with sufficient amounts of copper (e.g. average of 0.155 ± 0.003

h−1) or in the absence of the metal (e.g. 0.154 ± 0.010 h−1) (figures 3.4 A and B).

The addition of the inducer to the media did not affect the growth phenotype of

the strains under the two copper regimes studied (e.g. copper sufficient, 0.157 ±

0.013 h−1 and copper limited, 0.154 ± 0.033 h−1) (figure 3.4 C and D).

83



Copper maturation of N2OR in P. denitrificans

Figure 3.4: Aerobic growth characteristics of P. denitrificans WT ( ), ∆scoB
deletion mutant ( ), ScoBFL ( ) and ScoBsol ( ) complemented strains in batch
culture conditions. The growth in the absence of taurine is shown in graphs (A)
and (B), and in the presence of the inducer in (C) and (D). Cultures shown in
the left and right column contained 13.5 and < 0.5 µM of copper, respectively.

Standard errors of the mean are indicated by the error bars (n = 3).
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Figure 3.5: Growth characteristics of P. denitrificans WT ( ), ∆scoB deletion
mutant ( ), ScoBFL ( ) and ScoBsol ( ) complemented strains in batch culture
conditions in the absence of taurine. The anaerobic growth is shown in graphs
(A) and (B). Plots (C) and (D) represent the consumption of NO –

3 in millimole
of N in the form of NO –

3 . (E) and (F) show N2O production in millimole of N
in the form of N2O. Cultures shown in the left and right column contained 13.5
and < 0.5 µM of copper, respectively. Standard errors of the mean are indicated

by the error bars (n = 3).
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Figure 3.6: Growth characteristics of P. denitrificans WT ( ), ∆scoB deletion
mutant ( ), ScoBFL ( ) and ScoBsol ( ) complemented strains in batch culture
conditions in the presence of 1 mM taurine. The anaerobic growth is shown in
graphs (A) and (B). Plots (C) and (D) represent the consumption of NO –

3
in millimole of N in the form of NO –

3 . (E) and (F) show N2O production in
millimole of N in the form of N2O. Cultures shown in the left and right column
contained 13.5 and < 0.5 µM of copper, respectively. Standard errors of the

mean are indicated by the error bars (n = 3).
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In a similar way, under anaerobic conditions the growth rate of the strains showed

no significant change under copper sufficient (e.g. 0.102 ± 0.009 h−1) and limited

conditions (e.g. 0.111 ± 0.007 h−1). Likewise, addition of the inducer to the media

did not affect the growth capabilities of the strains (e.g. copper sufficient, 0.111 ±

0.017 h−1 and copper limited, 0.119 ± 0.022 h−1) (figures 3.5 and 3.6 A and B).

Moreover, all the nitrate was completely depleted throughout the growth without

any remarkable difference in terms of rate of consumption between the strains

(figures 3.5 and 3.6 C and D).

The most interesting result came from the analysis of N2O production of the

cultures. When sufficient extracellular copper concentration was present in the

media no N2O was detected independently of the addition of the inducer (figures

3.5 and 3.6 E). However, in copper depleted media and in the absence of inducer,

∆scoB mutant and the complemented strains accumulated N2O above WT levels

(figures 3.5 F). The excess of N2O observed in ∆scoB complemented strains could

be brought back to below wild-type levels after the addition of 1 mM taurine

(figures 3.6 F) consistent with a higher N2OR activity.

3.4 Soluble ScoBsol-6His purification

Recombinant soluble ScoB protein was expressed and purified from whole cell

extracts of P. denitrificans. The soluble fraction was applied to a Ni2+ IMAC column

(Figure 3.7 A) and two main peaks were detected in the elution chromatogram.

These two peaks corresponded with a 37 and 25 kDa band in a SDS-PAGE gel, that

were confirmed by mass spectrometry as wild-type PCuC (PCuCWT) and ScoBsol,

respectively. For the next step of the purification, the fractions containing both

proteins were combined, reloaded into an anion exchange column and eluted with a

gradient of salt. Once more, the chromatogram revealed the presence of two main

species and the gel showed that the order of elution had reversed, ScoBsol eluted

first followed by PCuCWT (Figure 3.7 B). For the final step of the purification, the

fractions containing both proteins were combined, concentrated and loaded onto
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Figure 3.7: Steps of the purification of ScoBsol-6His. Chromatograms and SDS-
PAGE gels of (A) Ni2+ IMAC purification, (B) anion exchange chromatography

and (C) Size exclusion chromatography.
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Figure 3.8: Cleavage of affinity tag and apo-ScoBsol generation. (A) En-
terokinase digestion ScoBsol-6His and western-blot of the cleaved and uncleaved
forms using anti-6His primary antibody. (B) Representative UV-vis spectrum
of ScoBsol as purified (-) and apo-ScoBsol (-). The arrows indicate the position
of the absorbance peaks of a type 2 red copper protein.(C) Chemical structure

of the copper bound form of DETC.
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a gel filtration column which was successful in resolving both proteins as judged

by the chromatogram and SDS-PAGE gels (Figure 3.7 C). An average yield of

approximately 2.5 mg of purified ScoBsol protein was obtained from 18 L batch

culture. Recombinant ScoBsol-6His contained an unique enterokinase cleavable

sequence in order to facilitate the removal of the histidine tag after purification.

Samples of ScoBsol-6His were incubated with enterokinase (NEB) and uncleaved

protein was separated by applying the protease reaction mixture to a Ni2+ IMAC

column. The cleaved form was collected in the flow through while the uncleaved

form was retained and eluted with 500 mM imidazole (Figure 3.8 A).

The protein as purified showed an spectrum characteristic of type 2 red copper

proteins (Figure 3.8 B) with peak absorbance present at 363, 467 and 565 nm that

have been attributed to arise from S(Cys)-Cu2+ charge transfer band [201, 202].

Apo-ScoBsol was generated as described in section 2.14 [203] after treatment with

diethyl-dithio-carbamate (DETC) as deduced from the spectrum from Figure 3.8

B.

3.5 UV-visible absorbance and fluorescence spec-

troscopy characterisation of copper binding

to ScoBsol

To determine whether ScoB binds Cu1+ and/or Cu2+ and how many copper

equivalents is able to bind, reduced apo-ScoB was titrated with solutions of either

CuCl or CuSO4. When apo-ScoB was titrated with Cu1+ high energy absorbance

bands (below 280 nm) appeared due to S(Cys)→Cu ligand to metal charge transfer

(LMCT) transitions [204, 205]. The absorbance increase at 250, 260, 270, 290 nm

was plotted as a function of Cu1+ per ScoBsol and showed a linear increase up to

one copper equivalent above which the absorbance stopped increasing and remained

constant (Figure 3.9 A and B). The copper-binding behaviour of ScoBsol was also

followed by fluorescence spectroscopy. Since ScoBsol contains two tryptophans when
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excitation is applied at 295 nm intrinsic tryptophan fluorescence is observed from the

protein which can be used to follow metallation that causes a quench in fluorescence

[206]. Excitation of reduced apo-ScoBsol at 295 nm gave rise to an emission spectra

with a maxima at 336 nm. A plot of the fractional fluorescence against Cu1+

concentration over ScoBsol shows that the addition of Cu1+ quenched 60 % of the

fluorescence linearly with a clear inflection point at one copper equivalent, and

subsequent additions of Cu1+ did not affect the fluorescence emission spectrum

(Figure 3.9 C and D).

By contrast, additions of Cu2+ to reduced apo-ScoBsol gave rise to high (below

280 nm) and low energy bands (peak absorbance present at 363, 467 and 565 nm,

as previously mentioned) that have also been attributed to S(Cys)→Cu LMCT

transitions [201, 202, 204, 205]. Increase in absorbance at 363 nm observed in

response to copper additions was plotted as a function of Cu2+/ScoBsol and showed

again a distinctive copper-binding phase up one copper equivalent (Figure 3.10 A

and B). Binding of Cu2+ was also followed by fluorescence spectroscopy during

titrations. Excitation at 295 nm also gave an emission spectrum with a maximum

at 336 nm. Addition of Cu2+ quenched 80 % of the fluorescence in a similar

fashion as Cu1+, but with the particularity that it showed a blue shift of λmax
from 336 to 322 nm with increasing concentrations of Cu2+ (Figure 3.10 C and

3.11). This deviation is indicative of a conformational change of ScoBsol that shifts

the Trp residues towards a more hydrophobic environment [207]. Both Cu1+ and

Cu2+ UV-vis and fluorescence spectroscopy titrations are consistent with a 1:1

stoichiometry.
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Figure 3.9: Absorbance and fluorescence studies of Cu1+ binding by reduced
apo-ScoBsol. (A) UV-visible absorbance spectra following the addition of 0 -
1.5 Cu1+ ions per protein; (B) Plot of absorbance changes at 250 (2), 260 (4)
and 265 nm (#) as a function of Cu1+ per ScoBsol; (C) Fluorescence quench
of the tryptophan emission peak in response to increasing concentrations of
copper (excitation wavelength of 295 nm); (D) Plot of the maximal fractional
fluorescence intensity as a function of Cu1+ per ScoBsol. The concentration of
ScoBsol was determined using the colorimetric Bradford reagent as 70 µM in
100 mM MOPS and 150 mM NaCl, pH 7.5. Standard errors of the mean are

indicated by the error bars (n = 3).
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Figure 3.10: Absorbance and fluorescence studies of Cu2+ binding by reduced
apo-ScoBsol. (A) UV-visible absorbance spectra following the addition of 0 -
1.5 Cu2+ ions per protein; (B) Plot of absorbance changes at 365 nm (#) as
a function of Cu2+ per ScoBsol; (C) Fluorescence quench of the tryptophan
emission peak in response to increasing concentrations of copper (excitation
wavelength of 295 nm); (D) Plot of the maximal fractional fluorescence intensity
as a function of Cu2+ per ScoBsol. The concentration of ScoBsol was determined
using the colorimetric Bradford reagent as 70 µM in 100 mM MOPS and 150
mM NaCl, pH 7.5. Standard errors of the mean are indicated by the error bars

(n = 3).
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Figure 3.11: Copper binding solvatochromic effect of ScoBsol. The position of
λmax of the emission peak remains ∼ 336 nm upon Cu1+ binding to ScoBsol ( ),
while Cu2+ binding shits the position ∼ 14 nm ( ) towards the blue region

3.6 Investigating the solution state of ScoBsol

The effect of Cu1+ and Cu2+ binding on the oligomeric state of reduced apo-ScoBsol

was studied by sedimentation equilibrium analytical ultracentrifugation (AUC).

Samples of ScoBsol containing 0.0, 0.5, 1.0 and 1.5 Cu1+ or Cu2+ equivalents per

protein were prepared and sedimentations experiments performed at 10,000, 20,000

and 30,000 rpm. The data was plotted as a function of the absorbance at 280 nm

versus the square of the radial distance of the sample at any position within the cell

(r) minus the square of the radial position at a reference point (r2
ref ) (Figure 3.12

A and B). The data were fit to a single-component model shown as solid lines. The

residual difference between the experimental data and the fitted curve were also

shown. The calculated molecular mass of ScoBsol was 20,018 ± 2,485 Da which is

in agreement with the theoretical mass (20,668 Da) and indicates that ScoBsol is a

monomeric protein irrespective the concentration and redox state of copper.

In order to use a different technique to further validate the effect of copper loading

on the oligomeric state of ScoBsol analytical size exclusion chromatography (ASEC)

experiments were performed. Figures 3.13 A and B show the elution chromatograms

of apo-ScoBsol and Cu2+-ScoBsol. Note that the copper binding to ScoBsol in Figure
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Figure 3.12: Effect of copper on the sedimentation equilibrium of ScoBsol. (A)
The top panel shows the profile of ScoBsol samples prepared with Cu1+ and (B)
the lower panel with Cu2+. Within each panel, the top graph represents the
absorbance profiles of ScoBsol (25 µM) at 10,000 (2), 20,000 (4) and 30,000
(#) rpm at 20 ◦C and the lines the fits to a single-component model. The lower
graphs show the residual differences between the experimental data and the

fitted curves.
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Cu1+ Cu2+

Sample Mw (kDa) Std Mw (kDa) Std
Apo-ScoBsol 20.7 2.6 18.7 1.0
Cu0.5-ScoBsol 19.3 3.0 19.5 1.7
Cu1.0-ScoBsol 20.5 4.2 19.5 1.7
Cu1.5-ScoBsol 21.5 4.2 20.1 1.9

Table 3.1: Calculated Mw of ScoBsol by sedimentation equilibrium analytical
ultracentrifugation. Standard errors of the mean of three technical replicates

(n = 3).

Figure 3.13: Analytical size exclusion chromatography of ScoBsol. The graph
shows the absorbance intensity at 280, 365 and 460 nm against elution volume
(ml) of (A) apo-ScoBsol and (B) Cu2+-ScoBsol (140 µM) in 20 mM HEPES,

150 mM NaCl and 0.25 mM DTT pH 7.
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3.13 (B) can be appreciated by the absorbance increase at 365 and 460 nm that

is absent in apo-ScoBsol. In both cases, a single main peak could be detected at

16.4 mL that correspond to a molecular mass of 29 kDa. This result indicates that

copper binding does not affect the oligomerization state of ScoBsol, and is therefore

consistent with the analytical ultracentrifugation results described in the previous

section.

3.7 Small-Angle X-ray scattering of ScoBsol

We also characterised the association state and conformation of ScoBsol in solution

by small-angle X-ray scattering (see scattering curve in figure 3.14 A). Kratky

analysis is often used to qualitatively asses the globularity and flexibility of proteins.

Interpretation is based on the asymptotic behaviour of the intensity decay in the

Guinier region in a q2 x I(q) vs. q plot [208]. The scattering profile of ScoBsol

produced a bell-shaped plot with an incipient tail at higher q, which indicates

that ScoBsol is in overall a globular protein with signs of flexibility (see figure 3.14

B), similar profiles have been found in other thioredoxin-like proteins [209]. The

Kratky plot was also used to calculate the volume and molecular weight of ScoBsol,

since the integrated area of the graph is inversely proportional to the excluded

volume of the hydrated particle. A volume of 4,100 Å3 was measured for ScoBsol

and a molecular weight and 26 kDa. These values are agreement with the AUC

and ASEC results and indicate that ScoBsol is a globular monomeric protein in

solution.

Information about the overall size of ScoBsol was obtained from a Guinier plot

(Figure 3.14 C) that was generated from the representation of q2 vs. logI(q) and

by making a linear fit at small scattering vectors (limited by q x Rg < 1.3). A

radius of gyration (Rg) of 17.6 Å and a forward scattered intensity (I(0)) of 6.3 x

10−3 was calculated for ScoBsol.

The pair-wise distance distribution function was estimated by Fourier inversion of

the experimental intensities using Scatter [156]. This is a real space representation
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Figure 3.14: Solution characterization of ScoBsol by SAXS. (A) Scattering
curve of ScoBsol and fitting of the calculated scattering curve from the homology
model of ScoBsol (red line); (B) Kratky plot showing that ScoBsol is a globular
protein with signs of flexibility; (C) Guinier plot and calculated Rg value; (D)
P(r) distribution function of ScoBsol, Rg and Dmax values are indicated; (E)
Front and side view of the overall envelope generated from shape reconstruction
using DAMMIF and DAMMIN [210] represented as a grey mesh; and (F)
homology model of ScoBsol monomer docked into the SAXS envelope using

SUPCOMB [161]
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of the scattering data which can be used to extract shape features of the particle.

P(r) function of ScoBsol generated a bell-shaped profile with a maximum at 21 Å

and a Dmax of 56 Å. Typical globular particles have peak maximums at Dmax/2, the

offset of the peak from 28 to 21 Å might suggest that the overall geometry of ScoBsol

is a spheroid with either prolate (elongated) or oblate (flattened) characteristics.

The real space Rg from the P(r) function was calculated to be 17.6 Å and is

consistent with the reciprocal Rg obtained from the Guinier Plot (Figure 3.14 D).

The theoretical scattering curve for the homology model of ScoBsol was calculated

using the software package Scatter [156] and compared to the experimental scat-

tering curve with the program Crysol [164] (Figure 3.14 A). The fit determined in

Crysol indicated that the homology model of ScoBsol (generated with the software

Phyre2 [145] in intensive mode) is in good agreement with the experimental X-ray

scattering data, with a χ2 of 1.88. As a result, 78 % of the residues were modelled

at >90 % of confidence. The predicted model of ScoB was derived from 6 previously

described Sco structures with a high confidence (see table A.2 from the appendix

section).

The real space distribution can be also used for ab initio shape-determination in

order to generate a surface envelope of the protein. Initially, an averaged model

was generated from 23 different models using the program DAMMIF [159] in slow

mode. The averaged model was then used to feed the software DAMMIN [210] for

further refinement. The final model contained 1,277 atoms with a total volume of

44,686 Å3 (see figure 3.14 E) which correspond to a protein of 26.3 kDa. Docking

of the homology model was achieved using the program SUPCOMB [161].

3.8 Discussion

Sco proteins have been primarily studied in relation to copper metabolism in both

eukaryotic and prokaryotic organisms [5, 203] (see table 3.2). In particular, the Sco

protein from T. thermophilus was found to be required for the maintenance of the

correct redox state of the CuA centre of cytochrome c oxidase before metallation
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by PCuAC [5]. By contrast, nitrous oxide reductase is another copper containing

terminal reductase responsible for N2O consumption in P. denitrificans. N2OR

carries two different multi-copper sites, an active site CuZ and an electron transfer

centre CuA. The CuZ site of N2OR is located at the N-terminal domain while the

CuA site is at the cupredoxin-like C-terminal domain and is structurally similar

to the CuA site from COX. However, the protein chaperones responsible for the

copper insertion into both CuZ and CuA centres and their mechanism of action still

remain unknown. In this work, we have attempted to gain insight into the role of

ScoB in the maturation process for N2OR from P. denitrificans which is naturally

found encoded in a copper responsive gene cluster (hypothetical-pcuC-scoB) [3].

The in vivo study of scoB mutant conducted under aerobic conditions did not

distinguish a significant phenotype compared to the wild-type strain. Interestingly,

in a previous study from P. denitrificans where scoB was mutated they found

a decrease in cytochrome c oxidase activity under copper limiting conditions

that could be rescued by addition of copper [198]. However, the authors did

not report if this reduction in activity was also associated with a decrease in

growth capacity. Taking both observations together, we consider that the lack

of a growth phenotype and the reduction in COX activity in the scoB mutant

could be potentially explained by the bacterial growth being supported by the

activity of cytochrome ba3 oxidase which expression is increased by 3.7-fold in

copper limited aerobic cultures (personal communication from Dr. M. Sullivan).

By contrast, during the in vivo study carried out under anaerobic conditions and

copper limitation ScoB showed to be necessary for the correct functioning of N2OR.

The reduction of N2O could be rescued by in trans complementation of scoB (with

either full length or periplasmic ScoBsol) or by supplementation with copper. It

is also worth mentioning the fact that ∆scoB complemented strains produced

even less N2O than wild-type. This could be due to the fact that production of

ScoB under the control of the taurine inducible promoter could reach even higher

levels than in wild-type, and therefore being able to scavenge even more copper.

Similarly, previous studies from P. aeruginosa [211], R. capsulatus [212], S. lividans

[185] and B. subtilis [175] showed that mutation of sco produced a reduction in
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terminal reductase activity in a copper depleted media that could also be recovered

by genetic complementation or supplementing growth media copper. The fact

that addition of copper to the media is enough to restore the enzymatic activity

of the terminal reductase has generally been attributed to two possible factors:

spontaneous self-assembly or the possibility that a different protein partner could

take the role of assembling the copper centre in the absence of Sco.

The in vitro reconstitution of reduced apo-ScoBsol from P. denitrificans with copper

has shown that the protein can bind one equivalent of either Cu1+ or Cu2+. Binding

of Cu1+ to Sco proteins has been previously demonstrated in human Sco1 and

Sco2 [203, 213, 214], B. subtilis BsSco [215], S. lividans Sco [185, 216] and T.

thermophilus Sco [5], and it has also been reported for yeast Sco1 [189, 217]. On

the other hand, Cu2+ binding to Sco proteins has been reported for human Sco1

and Sco2 [203, 213, 214], S. cerevisiae Sco1, B. japonicum Sco [218], R. capsulatus

ScoB [212], and T. thermophilus Sco [5] and it has only been demonstrated for

B. subtilis BsSco [215], S. lividans Sco [185, 216] and R. sphaeroides PrrC [183].

Copper binding to P. denitrificans ScoB is vastly tight as deduced from the UV-vis

and fluorescence titrations. Since metal–ligand and metal concentrations cannot be

simultaneously measured in the reaction with enough accuracy, a KD of ∼ 10−7 M

has to be used as an upper limit for both Cu1+ and Cu2+ binding unless titrations

in the presence of well-characterised copper chelators of known KD are performed

[154]. An initial exploratory experiment of ScoBsol with Cu1+ and the copper

chelator BCA resulted in a KD of 1.50 ± 0.28 x 10−16 (see figure 3.15). This value

is within the range of other Sco proteins from the literature that span from 10−12

M (e.g. B. subtilis BsSco) to 10−17 M (e.g. S. lividans Sco [218]). However, up

to date it has not been reported any Cu2+ KD performed by direct competition

using a divalent copper chelator and the only known values are from calorimetric

titrations (KD ∼ 10−12 M [215]) or stopped-flow (KD ∼ 10−12 M [185]) that could

be imposing an upper limit to the detection of an accurate KD.

An additional piece of evidence supporting the role of ScoB as a copper chaperone

in P. denitrificans comes from the fact that periplasmic recombinant ScoB purified

from soluble cell extracts of P. denitrificans contained copper (∼ 0.375 equivalents
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Figure 3.15: Estimation of Cu1+ binding affinity of ScoBsol at pH 7.5 using the
ligand BCA. The plot shows the forward reaction in which ScoBsol was titrated
into a solution of [Cu1+BCA2]3−. The graph represents the absorbance changes

as a function of ScoBsol:Cu1+ indicating the binding of Cu1+ by ScoBsol.

of Cu as calculated from the extrapolation of the Cu2+ titration performed in section

3.5). Apo-ScoBsol could be generated for subsequent experiments by incubation

with DETC (as described in section 2.14) which is a chelator with a very high

affinity for Cu1+ [203]. Similarly, other Sco proteins such as human and yeast Sco1

contained copper when they were purified from either bacteria or yeast [189, 219].

The amount of copper bound to P. denitrificans ScoB could draw attention since a

higher metallation could in theory be expected considering the high affinity of the

protein for Cu. A reason for this could be that LB broth used for the overexpression

of the protein is in fact Cu-limiting. Another point to have in consideration is the

difference between total copper and bioavailable copper within the medium as it

has already being suggested in Chapter 2 section 2.1.2.

An interesting observation about Cu1+-ScoBsol is that the UV-vis spectrum does not

show any recognisable feature. Therefore, the copper binding can only be followed

by the increase of the high energy absorbance bands (e.g. below 280 nm) due to
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S(Cys)→Cu LMCT transitions [204, 205]. Alternatively, the UV-vis spectrum of

the Cu2+ bound form of ScoBsol presents an intense electronic absorption band at

362 nm (ε = 5902 M−1 cm−1) due to Spσ(Cys)→Cu2+ LMCT, a lower band at

465 (ε = 1364 M−1 cm−1) due to Spπ(Cys)→Cu2+ LMCT and a low-energy minor

absorption band at 558 nm (ε = 727 M−1 cm−1) [201, 202, 204, 205]. The UV-vis

spectrum of Cu2+-ScoB is similar to other known Sco proteins [185, 220] and is

characteristic of a tetragonal type 2 Cu thiolate [221, 222]. Fluorescence titrations

using Cu1+ and Cu2+ generated a similar result as UV-vis titrations with the

interesting remark that the position of λmax of the emission peak of Cu2+ shifted

∼ 12 nm towards the blue region and the shift was accompanied by a reduction

in the intensity (Cu1+ quenched 60 % of the fluorescence and Cu2+ 80 %). This

shift was not observed with Cu1+ and is indicative of a conformational change in

the protein in which the tryptophan residues move towards a more hydrophobic

environment (see figure 3.16) [207]. As it has been described in the introduction, it

is known that copper binding drives a conformational change in the protein that

alternates between an open and mobile form and a close and rigid form [184, 186].

Therefore, it is possible that the blue shift observed could be indicative of the

protein adopting a closed form upon Cu2+ binding.

Characterisation of the soluble polypeptide by analytical ultracentrifugation and

size exclusion chromatography as well as small angle x-ray scattering indicates

that ScoBsol is a monomeric globular protein of 25.2 ± 4.8 kDa, which is a close to

the theoretical calculated molecular weight of the recombinant protein (21.5 kDa).

Homology ScoBsol model showed reasonable agreement with the SAXS-based ab

initio envelope. Other recombinant Sco proteins have been found to be monomeric

such as B. subtilis BsSco [223, 224], human Sco1 and Sco2 [187, 213], P. putida

Sco [182] and R. sphaeroides PrrC [183, 225]. Peculiarly, the oligomeric state of

ScoBsol was not altered upon copper binding independently of the redox form of

the metal added unlike other known copper binding proteins such as CopA [226] or

CopZ [227] that oligomerised in their holo form. However, it is plausible that ScoB

may form oligomers in vivo driven by the transmembrane region of the protein,

in the same way that it is thought to occur in human and yeast Sco proteins
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[228, 229]. Anyhow, the oligomeric state of ScoB from P. denitrificans does not

seem to be relevant for function since ScoBsol was also capable of restoring ∆scoB

denitrification phenotype.

In conclusion, the periplasmic soluble fraction of ScoB (ScoBsol) from P. denitrifi-

cans is a metalloprotein capable of binding a single Cu1+ or Cu2+ ion. Furthermore,

ScoBsol is a monomeric globular protein which does not oligomerise upon copper

binding or due to the redox state of the metal bound. The absence of ScoB under

copper limiting conditions results in N2OR inactivation with the consequent accu-

mulation N2O. However, the activity of N2OR can be restored by supplementing

the media with micromolar levels of copper or by expressing in trans ScoB or the

periplasmic soluble version of the protein.

Figure 3.16: Cartoon representation of the predicted structure of apo-ScoBsol.
Copper binding residues and tryptophans have been represented as sticks. The

model was generated with the software Phyre2 [145]
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Sco Cu1+ Cu2+ Thrx
protein Binding KD Binding KD activity

H. sapiens Sco1 Yes 3.1 x 10−15 (competition) [203, 214] Yes [213] − No [184]
H. sapiens Sco2 Yes 3.7 x 10−15 (competition) [203] Yes [213] − −
S. cerevisiae Sco1 Yes [189, 217] − Yes [217] − −

< 1.9 x 10−5 (titration) [215] 3.5 x 10−12 (DSC) [215]
B. subtilis Yes 10−12 (competition) [202] Yes < 6.5 x 10−8 (ITC) [230] −

− Adventitious (titration) [224]
B. japonicum − − Yes [218] − −
P. putida Yes Weak (titration) [182] No [182] − Yes [182]

R. capsulatus − − Yes [212] − −
R. sphaeroides − − Yes [183, 225] − Yes [183]
S. lividans Yes 4.6 x 10−17 (competition)[216] Yes < 10−12 (stopped−flow) [185] No [185]

T. thermophilus Yes < 10−10 (titration) [5] Yes − −

Table 3.2: Copper binding properties and thioredoxin activity of known Sco proteins. Abbreviations used: differential scanning
calorimetry (DSC); isothermal titration calorimetry (ITC).
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4.1 Introduction

Neighbouring scoB there is another gene within the same gene cluster that en-

codes a putative periplasmic copper-binding protein termed PCuC (see figure

4.6). In Paracoccus denitrificans the N-terminal domain of PCuC is similar to

the YcnI protein from B. subtilis [4] and is fused through a linker region to a

C-terminal domain homologue to PCuAC (periplasmic CuA chaperone protein)

from T. thermophilus [5, 33]. YcnI proteins are thought to be part of a mechanism

for copper acquisition and/or resistance, while PCuAC proteins have been mainly

studied in relation to the maturation process of cytochrome c oxidase. In this

chapter we focus our attention on the study of P. denitrificans PCuC (we use the

nomenclature PCuCWT to refer to the native protein and PCuCFL to a full length

affinity-tagged recombinant protein expressed in P. denitrificans). Specifically, the

ability of this protein to bind copper will be investigated and its involvement in the

maturation process of nitrous oxide reductase. For this purpose we have studied

the biochemical characteristics of each domain of PCuC individually as well as the

properties of the full-length protein.
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4.1.1 The novel two-domain fusion protein PCuC

YcnI and PCuAC are two different types of proteins involved in copper metabolism

that typically occur as single domain proteins in a range of organisms (i.e. 656

and 1687 sequences predicted as YcnI and PCuAC single domain polypeptides,

respectively; as deposited in Pfam by July 30, 2018). However, they may also

be found combined with other known copper-binding proteins such as Sco, CopC

and CopD (see figure 4.1). Importantly, there are at least 76 examples where

they are encountered fused together as a two-domain YcnI-PCuAC protein con-

figuration, such as that present in P. denitrificans. A phylogenetic analysis of

non-redundant PCuC sequences revealed that the overwhelming majority of the

organisms that carry a copy of a pcuC gene are Gram-negative bacteria that belong

to the phylum proteobacteria. Within proteobacteria, 92 % are members of the

alphaproteobacteria group with just 8 % representatives among betaproteobacteria.

Of the alphaproteobacteria microorganisms, the three most abundant groups were

rhizobiaceae, methylobacteriaceae and hyphomicrobiaceae, while all betaprotebac-

teria belonged to the burkholderiales. A further inspection of the genome of these

organisms revealed that 96 % of them contained a gene in their genome that codes

for a CuA containing protein, of which 17 % where N2OR (see figure 4.2).

Figure 4.1: Representation of the domain configuration of YcnI and PCuAC
proteins. Examples of each type of protein can be found in (A) P. denitrificans,
(B) Gemmatimonas aurantiaca, (C) Sphingomonas hengshuiensis, (D) Conex-
ibacter woesei and (E) Arthrobacter nitrophenolicus. The yellow boxes represent

the signal peptide sequence and the grey boxes transmembrane regions.
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Figure 4.2: Cladogram of PCuC proteins. Identified species are shown for
each entry, blue boxes represent the presence of a cytochrome c oxidase subunit
II gene and the orange circles the presence of a N2OR gene. The maximum
likelihood tree was constructed with the software Jalview [193] and the cladogram

was drawn with the on-line program iTOL [231]
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This represents a good correlation between YcnI-PCuAC and potential N2O reducing

bacteria.

Further inspection of the neighbouring genes of 15 representative organisms that

belong to the principal families shown in figure 4.2 revealed that in all cases pcuC

is preceded by a small hypothetical gene (see figure 4.3) homologous to Pden_4445

(Uniprot ref. A1BAG5) from P. denitrificans. This hypothetical gene codes for

a putative protein of ∼ 130 amino acids of unknown function and together with

pcuC is frequently found forming a binomial hyp-pcuC gene cluster. However, it is

not unusual to encounter a tonB-dependent transporter gene located between the

hypothetical gene and pcuC, or either a sco and another pcuAC gene at the end of

the gene cluster. The putative product of the hypothetical gene is predicted to be

a membrane-anchored protein that is fixed to the cell membrane by an N-terminal

transmembrane region spanning residue 21 to 38 according the program PRED-TAT

[232]. The amino acidic composition of the putative hypothetical protein is rich in

alanine, leucine and proline residues. A multiple sequence alignment of hypothetical

protein reveals the presence of three conserved cysteine residues (Cys73, Cys100

and Cys103) in what seems to be a CX27CX2C motif, which could also potentially

bind copper and a rich proline region at the C-terminus of the protein (see figure

4.4). However, attempts to overexpress Pden_4445 in P. denitrificans using the

low-copy number plasmid pLMB509 [147] have so far been unsuccessful.

As described above, P. denitrificans PCuC is a novel two-domain protein and

this is clearly apparent through a multiple sequence alignment analysis (see figure

4.5). The YcnI N-terminal domain comprises approximately the first 190 amino

acids and the PCuAC C-terminal domain nearly 170 amino acids. Within the

N-terminal domain two histidine and two cysteine residues (His28, His50, Cys52,

Cys145) are conserved within a putative HX21HXCX93C motif that could poten-

tially bind copper. In addition, the C-terminal domain contains the well-defined

H(M)X10MX21HXM motif present in PCuAC proteins [33]. The gene product of

pcuC from P. denitrificans is also predicted to be a Sec substrate and thus exported

to the periplasm. The most likely cleavage site is located at position 1 - 29 accor-
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Figure 4.3: Overview of the gene neighbourhood of pcuC genes in bacteria.
The gene clusters of 15 representative organisms that belong to the principal

families shown in figure 4.2 have been represented.
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Figure 4.4: Multiple sequence alignment of hypothetical gene products homol-
ogous to Pden_4445 using the program Jalview [188]. Conserved residues have
been coloured using Clustal X colour scheme (see appendix A.1) and conserved
cysteines are highlighted using the symbol (?). Below the alignment the sec-
ondary structure prediction of P. denitrificans hypothetical gene product has
been displayed, green arrows represent β-strands and red bars the α-helices.
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Figure 4.5: Multiple sequence alignment of PCuC proteins using the program
Jalview [188]. Conserved residues have been coloured using Clustal X colour
scheme (see appendix A.1) and conserved copper-binding residues are highlighted

using the symbol (?)
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ding to the program PRED-TAT [232]. Consequently, the mature protein would

consist of a polypeptide of ∼ 300 amino acids with two domains connected through

a linker region. This bridging region has a length of ∼25 residues and is rich in

glycines (n = 7), alanines (n = 5) and histidines (n = 4).

A BLAST search using B. subtilis YcnI or T. thermophilus PCuAC amino acid

sequences (Uniprot ref. YCNI_BACSU and Q5SGY7, respectively) as a query

resulted in the identification of three different proteins. Firstly, a gene encoding a

PCuAC-like single domain protein (Pden_0519, Uniprot ref. A1AZD7) within chro-

mosome one. Secondly, a YcnI-PCuAC two-domain protein encoded in chromosome

two (Pden_4444, Uniprot ref. A1BAG4) which is the main focus of this chapter.

Thirdly, a YcnI-like single domain protein (Pden_5009, Uniprot ref. A1BC25)

encoded within the megaplasmid of P. denitrificans (see figure 4.6 A). Both, the

predicted mature single-domain YcnI protein and the N-terminal YcnI-containing

domain of PCuC have a pairwise sequence identity and similarity of 35.2 and 33.0

% as calculated from a multiple sequence alignment generated using the MUSCLE

algorithm within the software package Jalview [193] and the on-line service SIAS

[194] (see figure 4.6 B). While mature single-domain PCuAC and the C-terminal

domain of PCuC have a relatively higher pairwise sequence identity and similarity

of 40 and 47 % (see figure 4.6 C).

The two-domain PCuC protein is encoded within the hypothetical-pcuC-scoB gene

cluster that has been described in section 3.2 (see figures 3.3 and 4.6). In contrast,

the gene encoding the single-domain YcnI protein is found within a considerably

large gene cluster that encodes components for an acyl-CoA dehydrogenase, an

alkane monooxygenase, an ABC transporter and a copCD gene. Similarly, other

copper resistance genes are often located in megaplasmids that confer copper

resistance to the microorganism such as CopC that is encoded in pPT23D plasmid

in Pseudomonas syringae [71, 233]. Moreover, the single-domain pcuAC gene is

encoded within a putative hypothetical-sod-pcuAC-lipase-copA gene cluster. An

analysis using the program SignalP [200] predicted PCuAC as a cytosolic protein,

alternatively the software Phobius [199] and PRED-TAT [232] detected the presence
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Figure 4.6: Properties of YcnI and PCuAC domain containing proteins from
P. denitrificans. (A) Gene clusters of pcuAC, pcuC and ycnI. (B) Sequence
alignment of YcnI proteins from P. denitrificans using the program Jalview
[188]. The location of signal peptide has been underlined in red. (C) Sequence
alignment of matured single-domain PCuAC protein and C-terminal domain
of PCuC, numbering is relative to the position of the first residue of processed
PCuAC. Conserved residues have been coloured using Clustal X colour scheme

(see appendix A.1).
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of a Sec leader sequence. The most likely cleavage site was identified between

residues 29 to 53 and would result in a mature protein of 123 amino acids. The

hypothetical gene found within the same gene cluster is also predicted to be ex-

ported to the periplasm through the Sec system although its function is unknown.

Downstream of the hypothetical gene, there is a gene that codes for a putative

cytoplasmic Fe/Mn-type superoxide dismutase probably involved in detoxification

and protection against cell damage caused by reactive species of oxygen [234].

Divergently transcribed to pcuAC there is a putative tesA gene that codes for a

periplasmic protein similar to the well-characterised TesA from Escherichia coli.

TesA is a lipase with thioesterase, esterase, arylesterase, protease and lysophospho-

lipase activity [235]. Upstream of tesA, there is also a putative Cu2+-exporting

ATPase that shows sequence homology to the copper resistance protein CopA [236].

Importantly, Sullivan and co-workers observed in a transcriptomic study from P.

denitrificans that the expression of the whole gene cluster where the pcuC gene is

encoded was sensitive to extracellular copper concentration [3]. In addition, the

three genes of this short gene cluster (hypothetical, pcuC and sco) had a crucial role

in achieving correct N2OR activity in a copper depleted media [3]. Shortly after,

Dash and co-authors found that deletion strains of pcuC (Pden_0519) and pcuAC

(Pden_4444) genes had no apparent effect on cytochrome c oxidase activity [198].

Interestingly, inspection of the transcriptomic data of Sullivan et al. showed that

the gene clusters of YcnI and PCuAC were constitutively expressed irrespective of

copper concentration.

4.1.2 The N-terminal YcnI domain of PCuC

Overall the literature concerning YcnI-like proteins is rather scarce. Currently no

more than six or seven research studies can be found where a reference to a YcnI

protein or a protein containing the domain of unknown function 1775 (DUF1775)

is mentioned. The first record of an YcnI protein in the literature is given in 2008

by Karlsen et al. who identified the first YcnI type of protein called ’MCA0347’ as
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Figure 4.7: Proposed mechanism of action of YcnLKJI in Bacillus subtilis.
Adapted from Hirooka et al. [237]
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Figure 4.8: Overview of the gene neighbourhood of ycnI genes in bacteria.
Abbreviations used, hyp: hypothetical gene, gss: glutathione synthetase.
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Figure 4.9: Multiple sequence alignment of YcnI proteins using the program
Jalview [188]. Conserved residues have been coloured using Clustal X colour
scheme (see appendix A.1) and conserved residues are highlighted using the

symbol (?)
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part of the surfactome of the methanotrophic bacterium Methylococcus capsulatus

(Bath) at low copper concentrations [238, 239]. Later, Chillippagari and co-workers

described the presence of the ycnI gene within a copper-import system in B. subtilis

although its function was not determined [4]. Serventi et al. identified an ycnI -like

gene present in a copper-responsive gene cluster that also contained a pcuAC and

a copCD gene [240]. The most recent mention is from Akanuma and co-authors,

where SGR3624, another YcnI homologue, was identified in enriched membrane

fractions from Streptomyces griseus. SGR3624 was found to be co-transcribed with

a Sco protein and showed a delayed growth in solid medium [241]. Of these three

organisms, the system of B. subtilis is the one that has been studied in most detail.

The Bacillus YcnI protein is encoded within a gene cluster that is up-regulated

under copper-limiting conditions and consists of ycnL-ycnK-ycnJ-ycnI (see figure

4.7). The gene ycnL is located upstream and in the opposite direction to ycnK

and codes for a putative reductase or disulfide isomerase. The gene ycnK in

turn, encodes a two-domain transcriptional repressor [237, 242]. The N-terminal

domain of YcnK contains an helix-turn-helix motif of the DeoR/GlpR family of

transcriptional regulators, while the C-terminal domain contains a putative Cu-

binding motif from the NosL superfamily. Downstream of ycnK lies ycnJ, which has

a high-sequence similarity to the membrane protein CopCD [66]. The N-terminal

region of YcnJ is homologous to the periplasmic copper-binding protein CopC

[71], while the C-terminal transmembrane region presents a domain homologous to

the inner membrane copper transport protein CopD of Pseudomonas syringae [66,

233].

Despite the limited information concerning YcnI protein family members are fairly

well distributed. For example, a search of YcnI protein sequences using the Hidden

Markov Model [243] deposited in Pfam (date of accession: July 30, 2018) as a query

in the HMMER web server [244] identified 924 sequences from 746 microorganisms.

Of these 924 sequences, 892 belonged to bacteria while at least 31 of them were from

eukaryotic microorganisms principally among fungi, oomycetes and ichthyosporea.

Nearly 80 % of the microorganisms analysed contained only one copy of a ycnI gene,

16 % of them had two and 3.5 % more than two, with some extraordinary exceptions
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such as Kutzneria sp. 744 an actinobacteria isolated from the mycorrhizal root

tips of Norway spruce seedlings [245] that carries up to five copies. The gene

neighbourhood of ycnI was analysed using the web service STRING [246] which

confirmed that ycnI genes are often found next to sco, pcuAC and copCD (see

figure 4.8).

A multiple sequence alignment (MSA) of the YcnI proteins from the organisms

displayed in figure 4.8 highlighted the presence of seven highly-conserved residues

including Ala-X-Ala-His-X16-Gly-X19-Thr-X7-Pro-X97-Trp (see figure 4.9). It is

also worth noticing that P. denitrificans single-domain YcnI protein and the YcnI

N-terminal domain of PCuC (see figure 4.6) only share two of these conserved

residues (His and Trp). Considering that principally histidines and cysteines are

typically involved in copper coordination, a single histidine and a tryptophan would

not provide sufficient ligands for copper coordination [221, 247]. In addition, a

signal peptide is predicted at the N-terminus of all YcnI sequences analysed, and

interestingly, certain examples of YcnI proteins, such as the one from B. subtilis,

N. farcinica and Catenulispora acidiphila present a hydrophobic region at the

C-terminus that could potentially anchor the protein to the cell membrane.

4.1.3 The C-terminal PCuAC-like domain of PCuC

The periplasmic CuA chaperone protein (PCuAC) is a type of copper-binding

protein involved in the maturation of the CuA site of cytochrome c oxidase [5].

This protein was initially identified after a gene neighbourhood analysis of sco

genes by Artesano et al. [178] and shortly after this study, the copper binding

properties and biological structure were described by the same group [33]. PCuAC

proteins are exclusively present in prokaryotes, specifically the majority of them

belong to Gram-negative bacteria and in a lesser extent to some Gram-positive

organisms [178]. In general, only one pcuAC gene is encoded within the same

organism although quite often two or more can be present within different genetic

contexts [178]. Artesano and co-workers also analysed the gene neighbourhood of
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Figure 4.10: Overview of the gene neighbourhood of pcuAC genes in bacteria.
Abbreviations used, hyp: hypothetical gene, thr : thioredoxin.
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Figure 4.11: Multiple sequence alignment of PCuAC proteins using the program
Jalview [188]. Conserved residues have been coloured using Clustal X colour
scheme (see appendix A.1) and conserved copper-binding residues are highlighted

using the symbol (?)
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pcuAC genes and found that they frequently appear together with sco genes,

ycnI -like genes [4] of unknown function and a gene made up of the fusion of the

copper-binding proteins CopC and CopD [248]. It is also striking how in some

organisms pcuAC genes are encoded surrounding genes that code for Cu-dependent

terminal reductases, such as cytochrome c oxidase in Deinococcus radiodurans and

Aeropyrum pernix or N2OR in Dechlorosoma suillum (see figure 4.10). A multiple

sequence alignment (MSA) of pcuc proteins from the organisms displayed in figure

4.10 highlighted the presence the previously mentioned H(M)X10MX21HXM motif

(see figure 4.11).

4.2 Generation of the tools for the study of PCuC

from P. denitrificans

As a first approach, we generated three different genetic constructs for the study

of PCuC (see figure 4.12). One for the overexpression of the full-length protein

(hereafter, PCuCFL-6His) and two for each individual domain, the N-terminal

domain (PCuCNt-6His) and the C-terminal domain (PCuCCt-6His). The pcuC

gene (987 bps) from P. denitrificans was subcloned into pLMB509 plasmid (termed

pMSL003, see appendix table 2.14). After that, pMSL003 was used as a template

Figure 4.12: Representation of recombinant PCuCFL, PCuCNt and PCuCCt.
The top ruler represent the approximate number of the residues of the proteins,
the yellow box indicates the location of the signal peptide that is not present
in the mature protein. The dotted line is the region that has been deleted in
PCuCCt. The aromatic composition of PCuC has been drawn with coloured

pins (tryptophans are in blue and tyrosines in brown)
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to generate two plasmid derivatives by inverse PCR, for PCuCNt-6His construct

(named pMSL005) a pair of primers was designed to truncate the last 402 bps of

pcuC (see figure 4.12 B). While for PCuCCt-6His construct (termed pMSL006), 471

bps were truncated (see figure 4.12 C) after the initial 114 bps where the signal

peptide had been predicted using the software SignalP [200].

Once the genetic constructs had been generated, they were subsequently conjugated

into P. denitrificans wild-type and pcuC− non-polar deletion mutant (PD2305)

and used in an initial small scale exploratory experiment in order to test their

expression. From this initial small scale exploratory experiment we deduced that

for future experiments the purification of PCuCFL-6His, PCuCNt-6His and PCuCCt-

6His should be performed from a pcuC− knock-out mutant. The reason is that a

strong interaction was observed with PCuCWT when the proteins were purified

from a P. denitrificans WT background (this will be further explored in chapter 5).

4.3 Characterisation of pcuC- deletion strains

To test whether PCuC is involved in the assembly of terminal oxidases in P.

denitrificans, we examined the growth of a pcuC− in-frame deletion mutant (PD2305)

versus WT and three different in trans complemented strains. The complemented

strains were generated by conjugating the low-copy number taurine inducible

plasmids pMSL003, pMSL005 and pMSL006 into pcuC−. The plasmid pMSL003

codes for a full-length PCuCFL-6His protein, while pMSL005 and pMSL006 code

for each individual domain PCuCNt and PCuCCt, respectively.

The growth of the strains studied was unaltered in the presence of oxygen when 13.5

µm of copper was present in the culture media (e.g. average of 0.184 ± 0.012 h−1,

see figure 4.13 A) and addition of taurine did not affect significantly the growth

rate (e.g. 0.177 ± 0.010 h−1, see figure 4.13 C). Interestingly, when extracellular

copper was limiting (below 0.5 µm) only WT remained able to grow (e.g. 0.178 ±

0.004 h−1). PCuCFL showed a reduced growth rate (e.g. 0.089 ± 0.004 h−1) pro-
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Figure 4.13: Aerobic growth characteristics of P. denitrificans WT ( ), pcuC−
( ), and three pcuC− strains complemented with recombinant PCuCFL ( ),
PCuCNt ( ) and PCuCCt ( ). The growth in the absence of taurine is shown
in graphs (A) and (B), and in the presence of the inducer in (C) and (D).
Cultures shown in the left and right columns contained 13.5 and < 0.5 µm of
copper, respectively. Standard errors of the mean are indicated by the error bars

(n = 3).
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Figure 4.14: Anaerobic growth characteristics of P. denitrificans WT ( ),
pcuC− ( ), and three pcuC− strains complemented with recombinant PCuCFL
( ), PCuCNt ( ) and PCuCCt ( ) in the absence of taurine. The growth is shown
in graphs (A) and (B). Plots (C) and (D) represent the consumption of NO –

3
in milimoles of N in the form of NO –

3 . (E) and (F) show N2O production in
milimoles of N in the form of N2O. Cultures shown in the left and right columns
contained 13.5 and < 0.5 µm of copper, respectively. Standard errors of the

mean are indicated by the error bars (n = 3).
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Figure 4.15: Anaerobic growth characteristics of P. denitrificans WT ( ),
pcuC− ( ), and three pcuC− strains complemented with recombinant PCuCFL
( ), PCuCNt ( ) and PCuCCt ( ) in the presence of 1 mM taurine. The growth is
shown in graphs (A) and (B). Plots (C) and (D) represent the consumption of
NO –

3 in milimoles of N in the form of NO –
3 . (E) and (F) show N2O production

in milimoles of N in the form of N2O. Cultures shown in the left and right
columns contained 13.5 and < 0.5 µm of copper, respectively. Standard errors of

the mean are indicated by the error bars (n = 3).
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bably due to leaky expression of the plasmid while the rest of the strains were

severely affected (e.g. average of 0.023 ± 0.014 h−1, see figure 4.13 B). Addition of

taurine to the media stimulated protein production from the relevant complemen-

tation vector. Expression of recombinant PCuCFL managed to fully restore the

growth of the mutant (e.g. 0.200 ± 0.018 h−1), while expression of PCuCNt (e.g.

0.100 ± 0.008 h−1) and PCuCCt (e.g. 0.106 ± 0.017 h−1) barely recovered it (see

figure 4.13 D). PCuCNt and PCuCCt showed significantly longer lag-phases of 20

and 30 hours, respectively, compared to ∼ 7 hours for WT.

In contrast, under anoxic conditions the growth rate observed of the strains in the

present of copper (e.g. average of 0.110 ± 0.012 h−1) was very similar to the one

observed when the metal was limiting (e.g. 0.095 ± 0.013 h−1) (see figures 4.14 and

4.15 A and B). During denitrification, nitrate was added to the system as the initial

electron acceptor and its consumption was monitored throughout the experiment.

In all cases, the strains studied were able to consume all the NO –
3 added to the

media (Figure 4.14 and 4.15 C and D). However, the most remarkable finding came

from the analysis of the N2O generated in the cultures (Figure 4.14 and 4.15 E

and F). When copper was added to the media, the cultures rapidly converted the

N2O into N2, i.e. full denitrification. Meanwhile, when copper and taurine were

omitted from the culture media, P. denitrificans WT accumulated ∼ 2 milimoles

of N2O and pcuC− mutant and the complementations were completely unable to

reduce N2O. Addition of 1 mM taurine to the culture media only restored N2O

reduction in PCuCFL, which managed to reduce N2O below WT levels.

4.4 Production of PCuC proteins for biochemi-

cal analyses

4.4.1 Purification of recombinant PCuCFL-6His protein

Although for subsequent experiments PCuCWT (previously purified in section 2.12.1

and 3.4) was used to characterise the biophysical properties of the protein. As a
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proof of concept, recombinant PCuCFL-6His used for phenotypical studies (section

4.3) was purified from P. denitrificans pcuC− mutant. The clarified cell lysate of a 12

L LB culture was applied to a Ni2+-IMAC column and bound proteins were eluted

using an imidazole gradient (25 - 500 mM). A main single peak was detected in the

chromatogram that eluted at high concentrations of imidazole and the coomassie

SDS-PAGE gel of eluted fractions revealed that it was predominantly composed

of PCuCFL-6His. In order to increase the purity of PCuCFL-6His, fractions were

diluted 10 - 15 times in binding buffer (buffer C from section 2.12.2) and applied to

an anion exchange column. The elution chromatogram showed a main peak that

eluted with 50 % of elution buffer (comparable to what was observed in section 3.4

where PCuCWT co-purified with ScoBsol-6His) and the SDS-PAGE gel confirmed it

as a main band of 35 kDa that corresponds to the predicted molecular weight of

monomeric PCuCFL-6His. However, the latest fractions displayed a green colour

and their UV-vis spectrum had a pronounced band at 410 nm indicative of the

presence of an hemoprotein contaminant. Therefore, PCuCFL-6His samples were

combined, concentrated and further purified by gel filtration. The chromatogram

showed a dominant peak that eluted at 50 mL (similarly to the behaviour of

PCuCWT in section 3.4) and SDS-PAGE gel confirmed it as mainly PCuCFL-6His

(Figure 4.18 C). Fractions containing the contaminant were separated from the

remaining fractions, combined, concentrated and re-loaded into a preparative gel

filtration column in order to remove the hemoprotein that may obscure the UV-vis

spectra of subsequent experiments.

The PCuC protein as purified does not show any recognisable feature in the UV-vis

spectrum and ICP-AES analysis revealed that contained <1 copper atom per

protein as purified. Apo-PCuCWT was generated as described in section 2.14 after

treatment with DETC to remove residual copper.

4.4.2 Purification of recombinant PCuCNt-6His protein

Recombinant PCuC N-terminal domain (PCuCNt-6His) was expressed and purified

from whole cell extracts of P. denitrificans pcuC− mutant since the protein cannot
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Figure 4.16: Purification of PCuCFL-6His from P. denitrificans pcuC− mutant.
Chromatograms and coomassie SDS-PAGE gels of (A) Ni2+-IMAC affinity, (B)
anion exchange and (C) gel filtration chromatography with western-Blot using

anti-6His primary antibody.
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be fully isolated from WT due to a strong interaction of PCuCNt with native PCuC

(as commented in section 4.2 and further discuss in chapter 5). The clarified soluble

fractions from a typical 18 L LB cell culture was applied to a Ni2+-IMAC column

(Figure 4.17 A). The elution chromatogram showed a series of small intensity

peaks at low imidazole concentrations composed of non-specific proteins, and a

main peak that eluted with 500 mM imidazole containing the vast majority of

PCuCNt-6His. For the next step of purification, samples of PCuCNt-6His were

diluted 15 - 20 times in binding buffer (buffer C from section 2.12.2) and loaded into

a Q-Sepharose column. In this case, the elution chromatogram showed the presence

of two closely-spaced peaks and PCuCNt-6His could be found in both of them as

deduced visually from a coomassie SDS-PAGE gel (Figure 4.17 B). However, the

UV-vis spectrum of the fractions corresponding to the second peak indicated the

presence of a hemoprotein contaminant with a band in the UV-vis spectrum with

a λmax at 410 nm. Despite this observation, the contaminant represented a very

small proportion of the eluted protein (not clearly detectable in a SDS-PAGE gel),

in order to fully isolate PCuCNt-6His, fractions of the second peak were combined,

concentrated and loaded into a preparative gel filtration column that was used

to fully purify PCuCNt-6His (Figure 4.17 C) for study. Similarly to what was

observed in section 4.4.1, during the purification of PCuCFL-6His, the recombinant

as purified PCuCNt-6His protein does not show any recognisable feature in the

UV-vis spectrum, and ICP-AES analysis revealed that contained ∼ 0.2 equivalents

of copper per protein. Apo-PCuCNt was generated as described in section 2.14

after treatment with DETC.

4.4.3 Purification of recombinant PCuCCt-6His protein

In order to characterise the C-terminal domain of PCuC and to test whether this

protein is also able to bind copper in vitro, we expressed and purified PCuCCt-6His

from whole cell extracts of P. denitrificans pcuC−. The clarified soluble cell lysate of

a typical 18 L LB culture was loaded into a Ni2+-IMAC column and bound proteins

were eluted with a 25-500 mM imidazole gradient. The elution chromatogram sho-
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Figure 4.17: Purification of PCuCNt-6His from P. denitrificans pcuC− mutant.
Chromatograms and coomassie SDS-PAGE gels of (A) Ni2+-IMAC affinity, (B)
anion exchange and (C) gel filtration chromatography with western-Blot using

anti-6His primary antibody.

133



Copper maturation of N2OR in P. denitrificans

wed two closely-spaced peaks of similar intensity and, PCuCCt-6His could be

identified visually in a coomassie SDS-PAGE gel as a ∼ 15 kDa band predominantly

present in the second peak (see figure 4.18 A). As the purity of PCuCCt-6His was

quite low, the protein was subjected to a second purification step by anion exchange

chromatography. Fractions containing PCuCCt-6His were combined and diluted 10

- 15 times in binding buffer (buffer C from section 2.12.2), applied to the column

and eluted with a 0.0-1.0 M NaCl gradient. The elution chromatogram also showed

a double peak but in this case PCuCCt-6His was mainly present in the first peak

that eluted with ∼ 30 % elution buffer. Similar to what we observed during the

purification of PCuCFL-6His and PCuCNt-6His, the latest fractions of the anion

exchange chromatography of PCuCCt-6His displayed an UV-vis spectrum with

an absorption maxima at 410 nm indicative of the presence of an hemoprotein

contaminant. For the last step of the purification, samples containing PCuCCt-6His

were combined and concentrated before loading them into a preparative gel filtration

column. The chromatogram showed a single dominant peak that SDS-PAGE gel

confirmed as mainly PCuCCt-6His. The hemoprotein contaminant eluted ahead

of PCuCCt-6His indicating that it is probably a protein with a higher molecular

weight and non-interacting such that both species could be effectively separated

(see figure 4.18 C). Fractions of PCuCCt-6His that showed signs of containing the

contaminant were subjected to additional gel filtration runs to increase sample

purity.

The recombinant PCuCCt-6His protein as purified does not show any recognisable

feature in the UV-vis spectrum and ICP-AES analysis revealed that contained ∼

0.3 equivalents of copper per protein. Apo-PCuCCt was also generated as described

in section 2.14 after treatment with DETC.
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Figure 4.18: Purification of PCuCCt-6His from P. denitrificans pcuC− mutant.
Chromatograms and coomassie SDS-PAGE gels of (A) Ni2+-IMAC affinity, (B)
anion exchange and (C) gel filtration chromatography with western-Blot using

anti-6His primary antibody.

135



Copper maturation of N2OR in P. denitrificans

4.5 Investigating Cu-binding by PCuC

4.5.1 Cu-binding to wild-type PCuC

PCuC from P. denitrificans is an unusual polypeptide made up from the fusion

of two different proteins: an N-terminal domain similar to YcnI from B. subtilis

and a C-terminal domain homologue to PCuAC from T. thermophilus. In order

to determine whether PCuC is able to bind Cu1+ and/or Cu2+, substoichiometric

amounts of CuCl or CuSO4 were added to reduced apo-PCuCWT and followed by

UV-vis and fluorescence spectroscopy under stringent anaerobic conditions using a

glove box.

Additions of Cu1+ to reduced apo-PCuCWT gave rise to high energy bands in the

UV-vis spectrum (below 280 nm) likely due to N(His)→Cu LMCT transitions [249–

251]. A plot of relative absorbance from 250 to 280 nm against Cu1+ equivalents

per PCuCWT showed a linear increase from 0 to 2 and a plateau from 2 to 3 Cu1+

equivalents per PCuCWT (Figure 4.19 A). As the UV-vis response was modest,

the intrinsic fluorescence of PCuCWT arising from the aromatic residues of the

protein (Trp, n = 4) was also used to monitored Cu1+-binding events to reduced

apo-PCuCWT by fluorescence spectroscopy with an excitation wavelength of 295

nm. The emission spectra of reduced apo-PCuCWT had λmax at 355 nm and 60 % of

the fluorescence was steadily quenched upon the addition of two Cu1+ equivalents,

after this point Cu1+ did not affect the spectrum significantly (Figure 4.19 B).

The Cu2+-binding properties of reduced apo-PCuCWT were also studied by UV-vis

and fluorescence spectroscopy. In contrast to what we observed for Cu1+, additions

of Cu2+ generated a plot of relative absorbance against Cu2+ per PCuCWT that

increased linearly from 0.0 to 1.0 Cu2+ equivalents, after that the response continued

increasing with a less pronounced slope (Figure 4.20 A and B). Fluorescence

spectroscopy clearly showed a linear quench of 60 % of the fluorescence emission

spectrum up to one Cu2+ equivalent after which no further quenching was observed.

This result suggests that both N-terminal and the C-terminal domains of PCuCWT
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are able to bind one equivalent of Cu1+, while only one of the two domains is

capable of binding Cu2+ (see figure 4.20 C and D).

4.5.2 Cu-binding to PCuCNt

The N-terminal domain of PCuC is homologous to YcnI from B. subtilis which is an

uncharacterised protein with a genetic context that points to a copper chaperoning

role [4]. In order to explore if PCuCNt has the ability to bind both Cu1+ and

Cu2+ species and to define the stoichiometry of the binding, substoichiometric

amounts of CuCl or CuSO4 were added to reduced apo-PCuCNt under anaerobic

conditions. Reduced apo-PCuCNt was obtained after treatment with DETC and

DTT as described in section 2.14 and ∼ 0.02 copper equivalents per protein were

detected by ICP-AES, revealing that the starting material was devoid of bound Cu.

Cu1+-binding events to apo-PCuCNt were again monitored by UV-vis spectroscopy

and gave rise to high energy absorbance bands (below 280 nm) due to N(His)→Cu

LMCT transitions [249–251]. A plot of the absorbance changes at 260 - 280 nm as a

function of Cu1+ per PCuCNt showed a linear increase with an inflection point at 1.0

Cu1+ equivalent (Figure 4.21 A), after this point, no further binding was observed.

The intrinsic fluorescence of PCuCNt was also used to monitor copper-binding to

apo-PCuCNt. The fluorescence emission spectrum of apo-PCuCNt has a λmax at

355 nm and the addition of one copper equivalent quenched 60 % of the emission

spectrum in a linear fashion and subsequent additions had no longer an effect on

the fluorescence emission spectrum (Figure 4.21 B).

Comparative experiments assaying Cu2+-binding behaviour of reduced apo-PCuCNt

were also performed and followed by UV-vis and fluorescence spectroscopy. Likewise

to what was observed for Cu1+, additions of Cu2+ showed an absorbance increase

in the high energy region of the spectrum up to one equivalent of Cu2+ (see figure

4.22 A) and a 60 % quench of the fluorescence emission spectrum (see figure 4.22

B). In summary, these results indicate that PCuCNt is in fact a copper-binding

protein, which can bind one equivalent of either Cu1+ or Cu2+.
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Figure 4.19: Absorbance and fluorescence spectroscopy studies of Cu1+ binding
to reduced apo-PCuCWT. (A) UV-vis absorbance spectra following the addition
of 0.0 - 3.0 Cu1+ ions per protein; (B) Plot of relative absorbance changes from
250 to 275 nm as a function of Cu1+ per PCuCWT; (C) Fluorescence quench of
tyrosine and tryptophan emission peak in response to increasing concentrations
of copper (excitation wavelength of 280 nm); (D) Plot of the maximal fractional
fluorescence intensity as a function of Cu1+ per PCuCWT. The concentration of
PCuCWT was determined using the colorimetric Bradford reagent as 40 µM in
100 mM MOPS and 150 mM NaCl, pH 7.5. Standard errors of the mean are

indicated by the error bars (n = 3).
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Figure 4.20: Absorbance and fluorescence spectroscopy studies of Cu2+ binding
to reduced apo-PCuCWT. (A) UV-vis absorbance spectra following the addition
of 0.0 - 3.0 Cu2+ ions per protein; (B) Plot of relative absorbance changes from
260 to 280 nm as a function of Cu2+ per PCuCWT; (C) Fluorescence quench of
tyrosine and tryptophan emission peak in response to increasing concentrations
of copper (excitation wavelength of 280 nm); (D) Plot of the maximal fractional
fluorescence intensity as a function of Cu2+ per PCuCWT. The concentration of
PCuCWT was determined using the colorimetric Bradford reagent as 40 µM in
100 mM MOPS and 150 mM NaCl, pH 7.5. Standard errors of the mean are

indicated by the error bars (n = 3).
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Figure 4.21: Absorbance and fluorescence spectroscopy studies of Cu1+ binding
to reduced apo-PCuCNt. (A) UV-vis absorbance spectra following the addition
of 0.0 - 1.5 Cu1+ ions per protein; (B) Plot of relative absorbance changes from
260 to 280 nm as a function of Cu1+ per PCuCNt; (C) Fluorescence quench of
tyrosine and tryptophan emission peak in response to increasing concentrations
of copper (excitation wavelength of 280 nm); (D) Plot of the maximal fractional
fluorescence intensity as a function of Cu1+ per PCuCNt. The concentration of
PCuCNt was determined using the colorimetric Bradford reagent as 35 µM in
100 mM MOPS and 150 mM NaCl, pH 7.5. Standard errors of the mean are

indicated by the error bars (n = 3).
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Figure 4.22: Absorbance and fluorescence spectroscopy studies of Cu2+ binding
to reduced apo-PCuCNt. (A) UV-vis absorbance spectra following the addition
of 0.0 - 1.5 Cu2+ ions per protein; (B) Plot of relative absorbance changes from
255 to 280 nm as a function of Cu2+ per PCuCNt; (C) Fluorescence quench of
tyrosine and tryptophan emission peak in response to increasing concentrations
of copper (excitation wavelength of 280 nm); (D) Plot of the maximal fractional
fluorescence intensity as a function of Cu2+ per PCuCNt. The concentration of
PCuCNt was determined using the colorimetric Bradford reagent as 35 µM in
100 mM MOPS and 150 mM NaCl, pH 7.5. Standard errors of the mean are

indicated by the error bars (n = 3).
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4.5.3 Cu-binding to PCuCCt

PCuAC family members are prokaryotic proteins known to be capable of binding

copper through a conserved H(M)X10MX21HXM motif [33]. Based on this previous

knowledge, we attempted to determine whether the C-terminal domain of PCuC

from P. denitrificans, that is homologue to PCuAC from T. thermophilus, is also able

to bind copper using similar spectroscopic methods as employed to study PCuCWT

and the PCuCNt variants. Within an anaerobic atmosphere substoichiometric

amounts of CuCl were added to apo-PCuCCt and the binding events of the metal

to the protein were followed by UV-vis and fluorescence spectroscopy. High

energy bands (below 280 nm) within the UV-vis spectrum were recorded for Cu1+-

PCuCCt probably due to N(His)→Cu LMCT transitions [250, 251]. Analysis of the

differential spectral changes from 250 to 275 nm as a function of Cu1+ per PCuCCt

showed a rapid and systematic linear increase from 0 to 1 Cu1+ equivalents per

PCuCCt and a slow binding after this point (see figure 4.23 A and B). However,

the content of aromatic residues of PCuCCt is very poor (1 Tyr and 5 Phe) and

although a 20 % quench of the emission peak was recorded during the fluorescence

titration, analysis of the fractional intensity did not show a significant trend and

due to the high signal-to-noise ratio we cannot be certain that quench is not just

collisional (see figure 4.23 C and D).

Titrations of Cu2+ into apo-PCuCCt were also performed and measured by UV-vis

and fluorescence spectroscopy (data not shown). However, unlike the profiles

observed for PCuCWT and PCuCNt the analysis of the relative absorbance and

fractional intensity showed a continuous linear increase with no clear inflection.

This result suggests that PCuCCt does not show Cu2+-binding features and is

consistent with the Cu-binding profile of full-length PCuC.
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Figure 4.23: Absorbance and fluorescence spectroscopy studies of Cu1+ binding
to apo-PCuCCt. (A) UV-vis absorbance spectra following the addition of 0.0
- 1.5 Cu1+ ions per protein; (B) Plot of relative absorbance changes from 250
to 275 nm as a function of Cu1+ per PCuCCt; (C) Fluorescence quench of
tyrosine and tryptophan emission peak in response to increasing concentrations
of copper (excitation wavelength of 280 nm); (D) Plot of the maximal fractional
fluorescence intensity as a function of Cu1+ per PCuCCt. The concentration of
PCuCCt was determined using the colorimetric Bradford reagent as 105 µM in
100 mM MOPS and 150 mM NaCl, pH 7.5. Standard errors of the mean are

indicated by the error bars (n = 3).

143



Copper maturation of N2OR in P. denitrificans

4.6 Cu1+ binding affinity of PCuC proteins

Copper binding proteins are frequently characterised for their extremely high metal

binding affinities [154]. For this exceptional case, equation 4.1 is primarily shifted

towards the formation of the metal-protein complex. UV-vis and fluorescence

spectroscopy (such as the one presented in section 4.5) can generally only inform

us about about the protein-bound form of the metal. This is typically indicative of

systems that is not at equilibrium and estimation of the binding affinity cannot

be made through direct interpretation of the titration data since copper binding

proteins are actually capable of binding copper with submicromolar affinity (see

section 2.17). Therefore, a different technique had to be put in place in order

to accurately estimate the dissociation constant of proteins with such a high

affinity. For this purpose, titrations were therefore performed in the presence of

a competitive chelating agent of known KD [154, 252]. BCA and BCS are two

commonly used high affinity Cu1+ ligands (β2 = 1017.2 and 1019.8 M−2 for BCA and

BCS, respectively [154]) that form 1:2 chromophoric complexes [Cu1+L2]3− that

can be followed by UV-vis spectroscopy. Such methodology has been used to study

other Cu-binding proteins in the past such as Sco, PCuAC, CopC, Csp1, etc. [43,

68, 203]. The competition reactions were performed under anaerobic conditions in

the glove box in both directions of equation 2.5 (see Chapter 2 section 2.17). For

the forward reaction, the ligand and copper concentration was maintained constant

while the protein was titrated. Reduction of the 562 nm band for BCA or the 483

nm for BCS indicated that the protein had managed to extract the copper from

the ligands. Alternatively, for the reverse reaction of equation 2.5 the protein and

copper concentration were maintained constant while in this case the ligands were

titrated into the solution. Chelation of Cu1+ by the ligands from Cu1+-protein

complex was therefore followed by the increase of the 562 and 483 nm bands. Three

different concentrations of ligand and protein were tested in triplicates for each

reaction and always in excess over the copper concentration in order to ensure

effective competition.
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M + P
KA−−⇀↽−−
KD

MP (4.1)

4.6.1 Cu1+ binding affinity of wild-type PCuC

For the forward reaction PCuCWT was titrated into a solutions of 10 to 70 mM

of BCA or 0.04 to 1.00 mM of BCS and the disappearance of the chromogenic

UV-vis band was followed for each ligand. Meanwhile, for the reverse reaction the

formation of [Cu1+L2]3− was measured when the copper chelators were titrated into

a solutions of 10 to 60 µm of Cu1+-PCuCWT. Fitting of the data for titrations of

apo-PCuCWT into [Cu1+BCA2]3− and BCA into Cu1+-PCuCWT (see table 4.1 and

figure 4.24 A and B) generated an average KD value of 2.3 ± 4.8 x 10−21. While

titrations in the presence of the higher affinity ligand BCS estimated a KD value of

1.5 ± 1.9 x 10−17 (see Table 4.1 and Figure 4.24 C and D).

4.6.2 Cu1+ binding affinity of PCuCNt

Since we have evidence from section 4.4.2 that PCuCNt can bind copper we tried

to estimate the affinity of the metal binding. For the competitive forward titration,

PCuCNt was added into solutions of 50 to 200 µm [Cu1+BCA2]3− or 25 to 45 µm

[Cu1+BCS2]3− and the decrease in the absorbance maximum at 562 or 483 nm

was followed, respectively. Alternatively, for the reverse reaction the formation

of [Cu1+BCA2]3− or [Cu1+BCS2]3− was measured as an increase in the UV-vis

spectrum (at 562 or 483 nm) when the ligands were titrated into solutions of 10

to 55 µm of Cu1+-PCuCNt. Fitting of the data for titrations of apo-PCuCNt into

[Cu1+BCA2]3− and BCA into Cu1+-PCuCNt (see Table 4.2 and Figure 4.25 A and

B) generated an averaged KD value of 9.1 ± 7.3 x 10−15. While titrations in the

presence of BCS estimated a KD value of 5.2 ± 1.8 x 10−15 (see Table 4.2 and

Figure 4.25 C and D).
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Figure 4.24: Estimation of Cu1+ binding affinity of PCuCWT at pH 7.5 using
the ligands BCA and BCS. Plots (A) and (C) show the forward reactions in
which PCuCWT was titrated into a solution of [Cu1+BCA2]3− and [Cu1+BCS2]3−,
respectively. The graphs represent the absorbance changes as a function of
PCuCWT:Cu1+ indicating the binding of Cu1+ by PCuCWT. Plots (B) and (D)
show the reverse reactions in which BCA or BCS was titrated into a solution of
Cu1+-PCuCWT, in this case the absorbance changes of the plots represented as a
function of BCA or BCS indicate the binding of Cu1+ by the ligands. Standard

errors of the mean are indicated by the error bars (n = 3).
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Figure 4.25: Estimation of Cu1+ binding affinity of PCuCNt at pH 7.5 using
the ligands BCA and BCS. Plots (A) and (C) show the forward reactions in
which PCuCNt was titrated into a solution of [Cu1+BCA2]3− and [Cu1+BCS2]3−,
respectively. The graphs represent the absorbance changes as a function of
PCuCNt:Cu1+ indicating the binding of Cu1+ by PCuCNt. Plots (B) and (D)
show the reverse reactions in which BCA or BCS was titrated into a solution of
Cu1+-PCuCNt, in this case the absorbance changes of the plots represented as a
function of BCA or BCS indicate the binding of Cu1+ by the ligands. Standard

errors of the mean are indicated by the error bars (n = 3).
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Figure 4.26: Estimation Cu1+ binding affinity of PCuCCt at pH 7.5 using
the ligands BCA and BCS. Plots (A) and (C) show the forward reactions in
which PCuCCt was titrated into a solution of [Cu1+BCA2]3− and [Cu1+BCS2]3−,
respectively. The graphs represent the absorbance changes as a function of
PCuCCt:Cu1+ indicating the binding of Cu1+ by PCuCCt. Plots (B) and (D)
show the reverse reactions in which BCA or BCS was titrated into a solution of
Cu1+-PCuCCt, in this case the absorbance changes of the plots represented as a
function of BCA or BCS indicate the binding of Cu1+ by the ligands. Standard

errors of the mean are indicated by the error bars (n = 3).
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Forward reaction Reverse reaction
Ligand KD app. Std PCuCWT KD app. Std
10 mM 1.2 x 10−20 3.2 x 10−21 20 µm 3.1 x 10−22 9.3 x 10−23

BCA 30 mM 7.8 x 10−22 1.3 x 10−22 40 µm 1.9 x 10−22 5.1 x 10−23

70 mM 1.2 x 10−22 8.5 x 10−24 60 µm 1.1 x 10−22 1.9 x 10−23

0.40 mM 5.2 x 10−17 6.7 x 10−18 10 µm 7.3 x 10−18 2.3 x 10−18

BCS 0.65 mM 1.7 x 10−17 1.4 x 10−18 20 µm 2.0 x 10−18 8.6 x 10−19

1.00 mM 7.9 x 10−18 4.7 x 10−18 45 µm 1.7 x 10−18 3.1 x 10−19

Table 4.1: Estimated Cu1+ dissociation constants for PCuCWT

Forward reaction Reverse reaction
Ligand KD app. Std PCuCNt KD app. Std
50 µm 1.8 x 10−14 1.3 x 10−15 10 µm 1.6 x 10−14 1.3 x 10−15

BCA 100 µm 1.2 x 10−14 1.4 x 10−15 20 µm 1.5 x 10−15 4.8 x 10−15

200 µm 5.9 x 10−15 9.2 x 10−16 30 µm 9.2 x 10−15 1.2 x 10−15

25 µm 3.8 x 10−15 4.0 x 10−16 10 µm 6.3 x 10−15 2.1 x 10−15

BCS 35 µm 3.0 x 10−15 2.9 x 10−16 50 µm 7.5 x 10−15 1.7 x 10−15

45 µm 5.3 x 10−15 9.4 x 10−16

Table 4.2: Estimated Cu1+ dissociation constants for PCuCNt

Forward reaction Reverse reaction
Ligand KD app. Std PCuCCt KD app. Std
10 mM 2.9 x 10−19 1.3 x 10−16 10 µm 4.4 x 10−20 2.4 x 10−17

BCA 30 mM 7.4 x 10−20 4.8 x 10−17 20 µm 4.4 x 10−20 8.8 x 10−13

70 mM 4.3 x 10−20 2.1 x 10−17 40 µm 4.3 x 10−20 2.1 x 10−17

0.2 mM 1.8 x 10−18 3.2 x 10−18 10 µm 9.9 x 10−19 3.8 x 10−17

BCS 0.5 mM 9.7 x 10−19 3.7 x 10−18 20 µm 1.1 x 10−18 6.3 x 10−18

1.0 mM 9.1 x 10−19 6.9 x 10−18 40 µm 6.4 x 10−19 8.5 x 10−18

Table 4.3: Estimated Cu1+ dissociation constants for PCuCCt
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4.6.3 Cu1+ binding affinity of PCuCCt

For the forward reaction of equation 2.5, apo-PCuCCt protein was titrated into a

solutions of 10 to 70 mM BCA or 0.2 to 1.0 mM BCS plus Cu1+. Fitting of the

data for titrations with the ligand BCA (see Table 4.3 and Figure 4.26 A and B)

generated an average KD value of 8.6 ± 6.7 x 10−20, while titrations in the presence

of the higher affinity ligand BCS estimated a KD value of 1.2 ± 0.39 x 10−18 (see

Table 4.3 and Figure 4.26 C and D).

4.7 Discussion

PCuC from P. denitrificans is an interesting protein apparently arising from the

fusion of a YcnI and a PCuAC protein. YcnI are proteins characterised for containing

the domain of unknown function 1775 (DUF1775) and although in general have

been poorly studied these proteins appear to be involved in copper metabolism.

In contrast to YcnI, PCuAC proteins have been extensively studied more often in

relation to the maturation process of the CuA center of cytochrome c oxidase in T.

thermophilus [5]. In this chapter we have attempted to gain additional evidence

for the role of PCuC in the maturation process of N2OR by identifying the metal

binding properties of this novel two-domain high-affinity Cu-binding protein.

The in vivo study of pcuC showed that deletion of the gene had a severe effect

on the aerobic growth of P. denitrificans and on N2OR activity under copper

limiting conditions. Interestingly, the presence of copper at micromolar levels in

the growth medium was enough to fully restore the aerobic growth of the mutant

and the activity of N2OR during anaerobic respiration. However, none of the

single domain complemented strains were capable of restoring either the aerobic

or anaerobic phenotypes of the pcuC- mutant, which could only be convincingly

recovered by complementation and expression using the full-length protein. As

we discussed in section 3.8, a previous work from Dash et al. in P. denitrificans

looked at the effect of sco and pcuAC genes on cytochrome c oxidase activity [198].
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Curiously, the authors did not observe a reduction on cytochrome oxidase aa3

activity in a pcuC mutant, although they did not mention or explore the growth

capabilities of such mutant. However, since we know that cytochrome oxidase

ba3 expression is up-regulated under copper limiting conditions (3.7-fold increase,

personal communication from Dr. M. Sullivan) it could be argued that PCuC may

be involved in both the maturation of cytochrome oxidase ba3 and N2OR. Similarly,

it has been suggested in B. japonicum that a PCuAC protein participates in the

maturation of more than one copper dependent terminal reductase [240]. Moreover,

the fact that only PCuC full length complementation could recover the observed

phenotypes makes us wonder whether each domain work independently or on the

contrary their mechanism of action requires them to be fused together through a

linker region in order to exert their function.

4.7.1 The native full-length PCuC protein

The in vitro reconstitution of reduced native apo-PCuC protein (that was co-

purified alongside ScoBsol-6His, see section 3.4) with copper confirmed that the

full-length protein is able to bind two equivalents per monomer of Cu1+, but only

one of Cu2+. An increment proportional to the amount of Cu1+ added was observed

in the high energy region of the spectrum which were attributed to N(His)→Cu

LMCT transitions [249–251]. Analysis of the relative absorbance changes below

280 nm showed a clear linear increase from 0 to 2 copper equivalents after which

no further binding was observed. Due to the relatively low signal-to-noise ratio

of the Cu1+-PCuCWT UV-vis bands fluorescence spectroscopy was also used to

monitor the copper binding events. This technique could be applied since the

full-length protein contains four tryptophan residues located in the N-terminal

domain (see figure 4.12) and were used as intrinsic fluorescence probes. Similarly,

the plots of the relative fractional intensity indicated that the protein is able to bind

two equivalents of Cu1+ per monomer. By contrast, titrations with Cu2+ showed

binding by UV-vis and fluorescence spectroscopy from 0 to 1 Cu2+ equivalents,

and a clear and abrupt cessation of the binding with subsequent additions. The
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Cu1+ and Cu2+ titrations of PCuC full-length protein are in strong agreement with

the in vitro study of each individual domain (see sections 4.5.2 and 4.5.3). These

results also imply that one of the domains of full-length PCuC can bind Cu1+ and

Cu2+ (i.e. the YcnI-like N-terminal domain) while the other domain specifically

binds only Cu1+ (i.e. the PCuAC-like C-terminal domain).

The binding affinity of PCuCWT was also studied using the Cu1+ probes BCA

and BCS. A 2-order magnitude difference between BCA and BCS competition

experiments was observed. This disparity was also attributed to the relatively higher

KD of BCA compared to BCS. The Cu1+-binding affinity of PCuCWT measured

by competition with BCS was 1.5 ± 2.0 x 10−17 M which is an intermediate

value between the KD of PCuCNt and PCuCCt (see section 4.6.2 and 4.6.3). This

calculated KD is consistent with PCuCWT being a high-affinity copper scavenger

capable of binding copper with an extremely low dissociation-constant and in

turn could be part of the reason why the pcuC− phenotype is only observed at

low copper levels at which this chaperone is optimally capable of responding to

copper-levels. The conservation of such system in bacteria may point to the low

bioavailability of this core life-sustaining metal.

4.7.2 PCuC N-terminal domain variant

YcnI are a family of proteins poorly studied and the only information currently

present in the literature is from studies referring to copper metabolism. In fact,

YcnI proteins are generally found within copper responsive gene clusters that are

up-regulated during copper starvation such as in B. subtilis [4], P. denitrificans [3]

and Methylococcus capsulatus Bath [238]. Furthermore, YcnI proteins are typically

encoded along other copper-binding proteins such as Sco, PCuAC and CopCD.

All together at least provides circumstantial evidence for a role in metabolisms or

binding of copper. However, the most important point regarding this work, is that

YcnI proteins may be relevant during N2O respiration. Sullivan and co-workers

indicated for the first time that P. denitrificans deletion of the YcnI containing

pcuC gene disrupted N2O reduction under copper limiting conditions [3]. It has
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been therefore the purpose of this chapter to shed further light on the role of YcnI

and its involvement in the maturation process for N2OR from P. denitrificans.

One of the first indicators of the YcnI domain of PCuC being capable of binding

copper came from the detection of ∼ 0.14 copper equivalents within the as purified

PCuCNt protein from P. denitrificans. It is immensely common that when copper-

binding proteins are over-expressed in an heterologous organism such as Escherichia

coli, the purified protein does not contain any metal bound to it such as for instance

PCuAC from D. radiodurans [33], PCuAC from T. thermophilus [5], ECuC from S.

lividans [216], Sco2 from H. sapiens [187], YcnI from N. farcinica [253], Csp1 from

Methylosinus trichosporium OB3b [43], etc. However, more substantial evidence

of Cu-binding was obtained when reduced apo-PCuCNt was reconstituted in vitro

with either Cu1+ or Cu2+. Addition of copper to the reduced apo-protein developed

low extinction coefficient bands in the high energy region of the UV-vis spectrum

that were attributed to N(His) → Cu LMCT transitions [249–251]. Despite the

low signal-to-noise ratio, plots of the absorbance changes below 280 nm showed a

distinct copper binding phase from 0 to 1 copper atoms and no apparent binding

above 1 copper equivalent per PCuCNt. Fluorescence spectroscopy was also used

to monitor copper binding, sizeable spectroscopic changes were observed on copper-

binding due to the presence of four tryptophan residues within PCuCNt (see figure

4.12). Addition of one equivalent of copper to reduced apo-PCuCNt quenched 60 %

of the intrinsic fluorescence of the protein independently of the oxidation state of

the copper added. Subsequent additions had no apparent effect on the fluorescence

spectrum of the protein.

Given that the data presented so far indicates that PCuCNt is a copper-binding

protein, we thereby calculated the affinity with which the protein binds Cu1+

using the bidentate ligands BCA and BCS. Competition experiments showed that

PCuCNt is a high affinity copper-binding protein capable of chelating Cu1+ within

the femtomolar range (see figure 4.25 and table 4.2). This is therefore the first

reported KD value of an YcnI-type protein and since we also know that PCuCNt

can bind Cu1+ as well as Cu2+ it would be reasonable to question whether the Cu2+

binding affinity of PCuCNt is similar to the one for Cu1+ or if the protein shows any
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preference for one of the two oxidation states of the metal, particularly considering

that Cu2+ is likely to be a more physiologically relevant metal for PCuCNt due to

the more oxidizing location of the protein in the periplasm.

4.7.3 PCuC C-terminal domain variant

PCuAC are Cu1+-binding proteins involved in maturation of the CuA center of

cytochrome oxidase ba3 in T. thermophilus [5]. The model proposed by Abriata and

co-workers requires the concerted action of PCuAC and a Sco protein. Firstly the

Sco protein with thioredoxin activity reduces the cysteine residues of the CuA center

and then two Cu1+-transfer events are carried out by PCuAC proteins [5]. This

maturation process may not be exclusive to cytochrome c oxidase CuA site if not

potentially common to other terminal reductases such as the CuA containing N2OR.

Since Sullivan and co-workers found that pcuC gene was required for optimal N2OR

activation we therefore focused on elucidating the role of the C-terminal domain of

PCuC in the maturation process of N2OR.

Unfortunately, the C-terminal domain of PCuC from P. denitrificans has a very

low extinction coefficient due to the poor aromatic composition of the protein (see

figure 4.12). Despite this, in vitro addition of Cu1+ to apo-PCuCCt did result in

the development of low intensity bands in the high energy region of the UV-vis

spectrum that were attributed to Cu → N(His) LMCT [250, 251]. Analysis of the

relative absorbance of the titration spectra showed a rapid and linear increase from

0 to 1 Cu1+ equivalents per monomer and a slow absorbance raise after this point.

Due to the lack of high fluorescence quantum yields tryptophan residues, titrations

of Cu1+ into PCuCCt did not reflect any significant change in the fluorescence

emission spectrum and may thus result in non-specific collisional quenching of

protein fluorescence by metals. By contrast, when Cu2+ was titrated into apo-

PCuCCt no apparent binging was detected under the experimental conditions.

Therefore, it is not entirely clear whether other PCuAC are able to bind Cu2+.

For example, Banci et al. were unable to detect an EPR signal of Cu2+-PCuAC

from D. radiodurans and since the researchers observed that the NMR spectra of
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apo-PCuAC titrated with Cu1+ and Cu2+ were relatively similar they suggested

that PCuAC could have the ability of reducing Cu2+ to Cu1+ for binding to occur

[33]. In T. thermophilus PCuAC seems to be an specific Cu1+-binding protein

although the authors apparently did not explore the Cu2+ binding or reduction

characteristics of the protein [5]. Blundell and co-workers reported the formation of

Cu1+–ECuC (extracytoplasmic copper chaperone) from S. lividans after addition

of Cu2+ although they did not specify which technique was used to detect the

binding [216]. The fact that PCuCCt is unable to bind Cu2+ in P. denitrificans may

be indicative of the specificity of PCuCCt for Cu1+ in vivo. Nevertheless, another

indicator of the ability of the protein to bind Cu is the presence of 0.34 ± 0.13

copper equivalents per PCuCCt as purified from P. denitrificans.

The Cu1+-binding affinity of PCuCCt was also investigated with the Cu1+ ligands

BCA and BCS. The measured KD for PCuCCt differed in two orders magnitude

between BCA and BCS and this can be attributed to the experimental limitation

of the probe BCA which is relatively a weaker ligand compared with BCS. Since

BCA has a higher KD (6.3 x 10−18 M) than BCS (1.6 x 10−20 M) an excess of ∼

1,000-times over the concentration of protein had to be used (compared to 75-times

for BCS) in order to achieve effective competition. PCuCCt KD measured with

BCS is extremely low suggesting that PCuCCt is capable of binding copper within

the attomolar concentration under our experimental conditions. The KD value for

P. denitrificans PCuCCt is the lowest reported for this family of proteins, which

is five orders of magnitude lower than the KD of PCuAC from T. thermophilus

(2.2 ± 0.1 x 10−13 [5]) and two orders to the one of PCuAC from S. lividans (2.0

± 0.2 x 10−16 [216]). However, the KD value of PCuCCt is reasonable within the

paradigm of absolute control of free copper within the cell and is comparable to the

extremely low dissociation-constant values observed for other Cu-binding proteins

such as Atx1 from S. cerevisiae (10−18) [254], Ccc2af from S. cerevisiae (10−18)

[254] or CueR from E. coli (10−21) [255].
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Figure 4.27: Summary of the Cu-binding properties of P. denitrificans PCuC
and its constituent domains. The arrows indicate the Cu1+ and/or Cu2+ binding
preference of the native full length PCuC protein (dotted line) and each individual
domain. Average apparent KD values obtained with the Cu1+ chelators BCA

and BCS are also indicated. Abbreviation used, n.d. not determined.
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5
Solution properties and structural resolution of

PCuC

5.1 Introduction

PCuC from Paracoccus denitrificans is an unusual two-domain metallochaperone

with an extremely high affinity for copper (KD = 1.5 ± 1.9 x 10−17 M). As a

consequence, the outcomes of the loss of the coding gene are in principle only

appreciable amid copper-limited conditions. For instance, in P. denitrificans

when copper is excluded from the formulation of the mineral salt medium the

growth of pcuC- mutant is severely impaired during aerobic respiration, while

under denitrifying conditions N2O reduction is prevented. The N-terminal domain

of PCuC is homologous to YcnI from B. subtilis [4] and in chapter 4 we have

shown for the first time that this type of proteins can tightly bind copper (KD

= 5.2 x 10−15 ± 1.8 x 10−15 M). However, we were unable to infer a putative

copper binding motif within PCuCNt through bioinformatic analysis. In contrast

to PCuCNt, the C-terminal domain of PCuC is very similar to PCuAC, a known

and structurally defined Cu-binding protein responsible for the metallation of the

CuA center of cytochrome c oxidase in T. thermophilus [5]. The copper binding

residues of PCuCCt have been identified as well as the copper binding behaviour

of the protein (KD = 1.2 ± 0.4 x 10−18 M). However, we are still missing the

mechanism by which both domains are organised within full length PCuC protein.
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And this might be relevant in order to understand the physiology of the protein

since both domains seem to be necessary for the proper functioning of N2OR in

vivo. Therefore, in this chapter we elucidate the solution properties and structural

characteristics of PCuCNt, PCuCCt and the PCuC full-length protein.

5.1.1 PCuC N-terminal domain

Apart from the work of Chillappagari and co-workers the other most relevant study

concerning a member of the YcnI-family of proteins is the structure of YcnI from N.

farcinica. This protein structure was solved by Bonanno et al. under the Protein

Structure Initiative (PSI [256]), however there is no publication associated with

this PDB entry since it was released in 2008 (PDB accession code: 3ESM [253]).

An analysis of the overall structure of the protein with the on-line programs CATH

[257] and PDBsum [258] revealed that it is composed of eleven β-strands that form

three β-sheets arranged within a global β-sandwich configuration that resembles

an immunoglobulin-like fold (see figure 5.1 A). However, the deposited structure

presents several uncertainties, for instance it contains four point mutations of

unknown purpose: Leu61 for Met, L76 for Met, Asp149 for the modified residue

L-3-aminosuccinimide (SNN) and Gly150 for a molecule of acetic acid (ACY). In

addition, a total of 44.3 % of the residues have not been modelled in the molecule.

At the N-terminus, a signal peptide is predicted by the software SignalP [200] with

a cleavage site between position 28 and 29. Instead 26 residues are missing and the

sequence NH2-SLHVTA is found where Ser1 and Leu2, that have positions 4 and

5 in the original sequence are followed by His29. Furthermore, at the C-terminus

where a transmembrane region is predicted from residue 192 to 219 a section of

71 residues is missing. Moreover, two molecules of SO 2–
4 and one of dimethyl

sulfoxide (DMS) are found in the surrounding of the protein, which may have

originated from either the crystallisation conditions (100 mM citric acid pH 3.5,

2.0 M (NH4)2SO4) or the cryoprotectant and therefore are unlikely to be relevant

to the role of the protein.
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Figure 5.1: Structural representation of YcnI from Nocardia farcinica (PDB
accession code: 3ESM). (A) 2D topology diagram representation of YcnI, the
3 β-sheets are coloured in blue, green and purple. (B) Cartoon and trans-
parent surface representation. Abbreviations: ACY, acetic acid; SNN, L-3-

aminosuccinimide; and DMS, dimethyl sulfoxide.
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5.1.2 PCuC C-terminal domain

PCuAC proteins are non-cytoplasmic proteins with a signal peptide that directs

them to the periplasmic space and/or may anchor them to the cell membrane

through an N-terminal transmembrane-spanning helix. In Gram-negative bacteria

both cases of soluble and membrane associated PCuAC protein are encountered

while all Gram-positive are membrane proteins [33]. The soluble domain of PCuAC

is composed of 9 - 10 β-strands arranged in two β-sheets forming a Greek key motif

that resembles to the cupredoxin-fold (see figure 5.2 A) [5, 33, 216]. Although

the structure of PCuAC proteins differs from the classical cupredoxin-fold and

instead presents a flexible and solvent exposed β-hairpin comprising β4 and β5.

Within the soluble domain of PCuAC lies the recognised and highly conserved

H(M)X10MX21HXM motif responsible for copper binding (see figure 5.2) [33]. The

histidine and methionine residues of this motif are responsible for the coordination

of a single Cu1+ atom within a tetrahedral geometry [5, 33, 216]. Even though

the Cu1+ ion is located close to the protein surface, the structural arrangement of

Met61 within the copper-binding motif has the peculiarity of hindering sterically

the metal. At the same time, Met61 has shown to be relatively flexible as shown by

the apo- and holo-form structure determination (see figure 5.2). The displacement

of this methionine upon recognition of a protein partner could be part of the

mechanism of metal donation from PCuAC to its partner protein [5, 33, 216].

5.2 Solution state characterisation of PCuC pro-

teins

The effect of copper on the oligomeric state of PCuCNt, PCuCCt and PCuCWT was

studied by sedimentation equilibrium analytical ultracentrifugation (AUC) and

analytical size exclusion chromatography (ASEC).
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Figure 5.2: Structural representation of PCuAC from Thermus thermophilus.
(A) 2D topology diagram representation of PCuAC, the β-sheet is coloured
in blue and the position of the residues of the H(M)X10MX21HXM motif in-
volved in copper binding are also included. (B) Cartoon representation of the
copper binding site of apo-PCuAC and (C) Cu1+-PCuAC. The Cu1+ ion has
been represented as an ochre sphere (PDB accession codes: 2K6W and 2K6Z,

respectively).
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5.2.1 Investigating the solution state of PCuCNt

Samples of reduced apo-PCuCNt containing 0.0, 0.5, 1.0 and 1.5 equivalents of

Cu1+ or Cu2+ were rotated at three different speeds i.e., 10,000, 20,000 and 30,000

rpm. The data was plotted as a function of the absorbance at 280 nm versus

r2 − r2
ref (Figure 5.3 A and B) and fitted to a single-component model. In the

graph, the measured absorbance values have been represented with symbols and

the theoretical as solid lines, the residual difference between the experimental data

and the fitted curve is shown in a separate box. The averaged calculated molecular

mass of PCuCNt was 51.9 ± 3.0 kDa (see Table 5.1 for detailed Mw calculation of

each sample) which is approximately three times the theoretical mass of a monomer

(18.4 kDa) and indicates that PCuCNt is a trimeric protein in solution. Regardless

of the copper concentration the same sedimentation average molecular mass were

observed, therefore the protein adopts an oligomer regardless copper status.

The oligomeric state of PCuCNt in solution and the effect of Cu2+ loading were

also studied by analytical size exclusion chromatography. Figure 5.4 shows the

elution profiles of apo-PCuCNt and Cu2+-PCuCNt. In both cases, a single main

peak was detected after 14.9 mL which is characteristic of a globular protein of

60.82 kDa. These results are consistent with the Mw calculated by AUC presented

above which denoted PCuCNt as a trimeric protein. In the same manner binding

of the metal did not affect to the oligomerization state of the protein.

5.2.2 Investigating the solution state of PCuCCt

The molecular mass and assembly stoichiometry of PCuCCt was studied by sedi-

mentation equilibrium analytical ultracentrifugation. Equilibrium concentration

gradients at lower centrifugal fields i.e., 20,000, 30,000 and 50,000 rpm of apo-

PCuCCt containing 0 to 1.5 of Cu1+ equivalents in 0.5 increments were fit to a

single-component model (Figure 5.5). In the graph, the absorbance values has

been represented with symbols and the theoretical data as solid lines, the residual

difference between both data sets is shown in the lower panel. The calculated mole-
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Figure 5.3: Effect of (A) Cu1+ and (B) Cu2+ on the sedimentation equilibrium
of PCuCNt. Top graphs represent the absorbance profiles of PCuCNt (16.8 µM)
at 10,000 (2), 20,000 (4) and 30,000 (#) rpm at 20 ◦C and the lines the fits to
a single-component model. Lower panels show the residual differences between

the experimental data and the fitted curves.
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Cu1+ Cu2+

Sample Mw (kDa) Std Mw (kDa) Std
Apo-PCuCNt 50.9 6.4 51.6 6.2
Cu0.5-PCuCNt 50.6 8.3 50.8 1.2
Cu1.0-PCuCNt 49.2 6.0 53.9 7.3
Cu1.5-PCuCNt 49.8 6.4 58.5 6.9

Table 5.1: Calculated Mw of PCuCNt by sedimentation equilibrium analytical
ultracentrifugation. Standard errors of the mean of three technical replicates

(n = 3).

Figure 5.4: Analytical size exclusion chromatography of PCuCNt. Plots of the
absorbance at 280 nm as a function of the elution volume for a 60 µM sample of
(A) reduced apo-PCuCNt and (B) Cu2+-PCuCNt in 20 mM HEPES, 150 mM

NaCl and 0.25 mM DTT (pH 7.5).
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cular mass of PCuCCt was 13.4 ± 1.2 Da (see Table 5.2 for detailed Mw calculation

of each sample) which is close estimate of the theoretical mass of PCuCCt (17,383

Da), suggesting that PCuCCt is a monomeric protein in solution which does not

aggregate upon Cu1+-binding. The effect of Cu2+ was not investigated since the

results from section 4.5.3 indicated that PCuCCt does not bind Cu2+.

The oligomeric state of PCuCCt was also determined by analytical gel filtration

chromatography. Addition of Cu1+ to apo-PCuCCt was performed in an anaerobic

glove box and thoroughly degassed buffers were used for the chromatography. Due

to the very low extinction coefficient of PCuCCt samples of 100 µM concentration

were loaded into the column in order to be able to detect a significant peak. Figure

5.6 shows the elution chromatograms of apo-PCuCCt and Cu1+-PCuCCt. In both

cases, a single main peak was detected after 17.0 mL which is characteristic of a

globular protein of 22.2 kDa. The experimental Mw obtained is ∼ 5 kDa higher

than the theoretical molecular weight (17.4 Da) and 12 kDa less than the Mw

of a dimer, indicating that PCuCCt is more likely to be monomeric protein in

solution and Cu1+-binding does not affect the oligomerization state of the protein.

Therefore, the ASEC of PCuCCt is in agreement with the AUC results presented

in figure 5.5

Figure 5.5: Effect of Cu1+ on the sedimentation equilibrium of PCuCCt. The
top graph represent the absorbance profiles of PCuCCt (110 µM) at 20,000
(2), 30,000 (4) and 50,000 (#) rpm at 20 ◦C and the lines the fits to a single-
component model. The lower panel shows the residual differences between the

experimental data and the fitted curves.
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Sample Mw (kDa) Std
Apo-PCuCCt 13.4 6.2

Cu1+
0.5-PCuCCt 11.7 1.2

Cu1+
1.0-PCuCCt 13.6 7.9

Cu1+
1.5-PCuCCt 14.5 8.5

Table 5.2: Calculated Mw of PCuCCt by sedimentation equilibrium analytical
ultracentrifugation. Standard errors of the mean of three technical replicates

(n = 3).

Figure 5.6: Analytical size exclusion chromatography of PCuCCt. Plots of
absorbance at 280 nm (black line) and 260 nm (red line) as a function of the
elution volume for a 100 µM sample of (A) apo-PCuCCt and (B) Cu1+-PCuCCt
in 20 mM HEPES, 150 mM NaCl and 0.25 mM DTT (pH 7.5). Sample volume:

150 µL; flow rate: 0.15 mL min−1
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5.2.3 Investigating the solution state of PCuCWT

The molecular mass and solution state of the native full-length PCuC protein was

studied by AUC and ASEC. Equilibrium concentration gradients at lower centrifugal

fields (10,000, 18,000 and 25,000 rpm) of reduced apo-PCuCWT containing 0 to

3.0 Cu1+ equivalents in 0.5 increments of Cu1+, and 0.0 to 1.5 of Cu2+ with 0.5

increments were fit to a single-component model (Figure 5.7 A and B). In graph

5.7, the experimental data has been represented with symbols and the theoretical

as solid lines, the residual difference between both data sets is shown in the lower

panel. The calculated molecular mass of PCuCWT was 85.3 ± 2.8 kDa (see Table

5.3 for detailed Mw calculation of each sample) which is nearly three times the

theoretical mass of PCuCWT (32.2 kDa) and indicates that the protein forms

trimers in solution and copper does not affect the oligomeric state adopted by the

protein.

The oligomeric state of PCuCWT was also determined by analytical size exclusion

chromatography. Addition of Cu2+ to apo-PCuCWT was performed under anaerobic

conditions in the glove box and buffers were thoroughly degassed with nitrogen

before to the chromatography. Figure 5.8 A and B shows the elution chromatograms

of apo- and Cu2+-PCuCWT. In both cases, a single main peak was detected after

13 mL which is characteristic of a globular protein of 116.5 kDa. This experimental

molecular weight is slightly greater than the theoretical weight of a trimeric

PCuCWT but smaller than a tetrameric form, indicating that PCuCWT is more

likely to form trimers in solution as previously observed by AUC. In addition,

copper binding did not affect the oligomerization state of PCuCWT, which is also

consistent with the AUC results.
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Figure 5.7: Effect of (A) Cu1+ and (B) Cu2+ on the sedimentation equilibrium of PCuCWT. The top graphs represent the absorbance
profiles of PCuCWT (15 µM) at 10,000 (2), 18,000 (4) and 25,000 (#) rpm at 20 ◦C and the lines the fits to a single-component model.

The lower panels show the residual differences between the experimental data and the fitted curves.
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Cu1+ Cu2+

Sample Mw (kDa) Std Mw (kDa) Std
Apo-PCuCWT 79.3 6.4 88.7 6.2
Cu0.5-PCuCWT 82.7 8.3 85.7 1.2
Cu1.0-PCuCWT 81.8 6.0 86.0 7.3
Cu1.5-PCuCWT 85.4 6.4 84.0 6.9
Cu2.0-PCuCWT 86.0 6.4 - -
Cu2.5-PCuCWT 87.5 6.4 - -
Cu3.0-PCuCWT 87.2 6.4 - -

Table 5.3: Calculated Mw of PCuCWT by sedimentation equilibrium analytical
ultracentrifugation. Standard errors of the mean of three technical replicates

(n = 3).

Figure 5.8: Analytical size exclusion chromatography of PCuCWT. Plots of
absorbance at 280 nm as a function of the elution volume for a sample of 60 µM
of (A) apo-PCuCWT and (B) Cu2+-PCuCWT in 20 mM HEPES, 150 mM NaCl
and 0.25 mM DTT (pH 7.5). Sample volume: 150 µL; flow rate: 0.15 mL min−1

171



Copper maturation of N2OR in P. denitrificans

5.3 Structural determination of PCuC proteins

5.3.1 Crystallographic structure of PCuCNt

With the purpose of trying to solve the crystal structure of PCuC and to understand

which of the conserved residues characteristic of YcnI-family proteins (shown in

figure 4.9) are involved in copper-binding, samples of 30 mg ml−1 of reduced apo-

PCuCWT were titrated with CuSO4 (as described in section 2.14) and screened

using the sitting drop vapour diffusion method with different commercially available

sparse matrix screening kits. After ∼7 days of incubation at 16 ◦C crystal growth

was observed in the conditions listed below in table 5.4. The best diffraction was

achieved with the protein crystals that appeared in the condition that contained 20

% PEG8000, 200 mM MgCl2 and 0.1 M Tris-HCl at pH 7.5 and hence this condition

was further investigated by varying the concentration of salt, precipitant and the

pH range of solutions (see Figure 5.9). During the data acquisition process from

PCuC polygonal crystals, it seemed reasonable to use the anomalous scattering of

copper for determining the structure, since we had previous evidence that PCuCNt

could bind copper and the protein had been treated with CuSO4. The images

collected for the (single-wavelength anomalous dispersion) SAD and native dataset

were scaled and merged using the software XIA2 [168] with a resolution of 2.0 and

1.5 Å for the SAD and native dataset, respectively. This software also provides

a series of indicators for assessing the quality of the diffraction data (see table

5.5). XIA2 determined the space group of the SAD and native datasets as P63

and their unit cell dimensions as a=68.74, b=68.74 and c=128.71 Å and a=68.58,

Condition Diffraction
20 % PEG8000, 200 mM MgCl2, 0.1 M Tris-Cl, pH 7.5 ∼ 2 Å

2.0 M (NH4)2SO4, 0.2 M NaCl, 0.1 M sodium cacodylate, pH 6.5 ∼ 8 Å
25 % PEG3350, 0.2 M ammonium acetate, 0.1 M HEPES, pH 7.5 -

25 % PEG1500, 0.1 M PCB buffer -
25 % PEG4000, 0.1 M sodium cacodylate, pH 6.5 -

Table 5.4: Crystallisation conditions where PCuC crystals were produced. The
symbol (-) indicates that the crystals were not suitable for data collection.
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b=68.58 and c=128.52 Å, respectively. The precision-indicating merging R factor

(Rp.i.m), which ideally should be lower than 0.5 [259], had a value of 0.018 and

0.165 for the inner and outer shell of the SAD dataset, and 0.014 and 0.135 for the

native dataset, respectively. The relevance of the measured intensities is estimated

with the parameter I/σ(I) which can also be used to determine the cut-off level of

the highest resolution shell. Typical values of I/σ(I) should be greater than 2.0

[260] as found for the SAD (outer shell=40.0, inner shell=7.5) and native (outer

shell=27.1, inner shell=4.9) dataset. Another parameter that can be used for

selecting high-resolution cut-off for data processing and estimates the effective

signal-to-noise of the data is the Pearson’s correlation coefficient CC1/2, which

ranges from 0 to 1 and has preferable values above 0.5 [260]. For the SAD dataset,

CC1/2 of outer and inner shell was 1.000 and 0.979, respectively; and for the native

dataset, outer shell=0.995 and inner shell=0.966. The completeness of the SAD

dataset was 99.8 for both the outer and inner shell, while for the native dataset

had a value of 98.8 and 100, respectively. The redundancy is an indicator of the

average number of observations of each reflection and we attempted to satisfy a

multiplicity of at least 3 measurements per reflection for the SAD (outer shell=19.4,

inner shell=36.9) and native dataset (outer shell=9.8, inner shell=9.9).

The SAD dataset was used to determine the phases and to build a first model

with the software Crank2 [170], then this SAD model was feed into the software

PHASER [170] in order to solved the PCuCNt native dataset. Initially PHASER

Figure 5.9: Protein crystals of PCuCNt grown at 16 ◦C in optimised conditions
containing PEG8000, MgCl2 and Tris-HCl. Morphology: (A) polygonal crystals,

(B) funnel shaped crystals (C) and needle shaped crystals

173



Copper maturation of N2OR in P. denitrificans

PCuCNt (SAD) PCuCNt (Native)
Data collection

Space group P63 P63
Cell dimensions

a, b, c (Å) 68.74, 68.74, 128.71 68.58, 68.58, 128.52
α, β, γ (°) 90, 90, 120 90, 90, 120

Wavelength (Å) 1.378 0.979
Resolution (Å) 59.53 - 2.00 (2.05 - 2.00) 64.26 - 1.52 (1.56 - 1.52)
Rp.i.m 0.018 (0.165) 0.014 (0.135)
I/σ(I) 40.0 (7.5) 27.1 (4.9)
CC1/2 1.000 (0.979) 0.995 (0.966)
Completeness (%) 99.8 (98.8) 100 (100)
No. of reflections 10553 (23435) 35609 (23202)
No. of unique reflections 299 (1707) 3578 (3457)
Redundancy 35.3 (13.7) 10.0 (6.7)
Anomalous completeness 97.9 (83.1) 98.8 (4.3)
Anomalous multiplicity 18.2 (6.8) 5.1 (3.6)

Refinement
Resolution (Å) 1.52
Rwork/Rfree 0.168 / 0.193
No of atoms

Protein 2302
Ligand/ion 2
Water 331

B-factor (Å2)
Protein 25.72
Ligand/ion 23.36
Water 47.82

R.m.s. deviations
Bond lengths (Å) 0.026
Bond angles (°) 2.368

Table 5.5: Data collection and structure refinement statistics for PCuCNt.
Values indicated in parentheses for outer shell
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built two protein chains with 145 residues each and after manual inspection in

COOT, an extra residue could be modelled at the C-terminus of each protein

molecule. Continuous and defined electron density was observed from residue His28

to Asn94 and from Thr97 to Gly173, residues 95 and 96 were modelled from the

calculated non-crystallographic symmetry (NCS) electron density maps. N-terminal

sequencing by Edman degradation and ISD MALDI-TOF of PCuCWT (Uniprot

ref. A1BAG4) confirmed His28 as the first residue of the mature protein after

removal of the signal peptide by the Sec apparatus in vivo. Conversely since the

last residue at the C-terminus was Gly173, this means that although PCuCWT

samples were put into crystallisation only the N-terminal domain of the protein

managed to crystallise in the pursued condition. Examination of the diffraction

data showed that the asymmetric unit contained two protein chains while the

biological assembly was in fact a trimer as it had been previously observed for

PCuCNt by AUC and ASEC in section 5.2.1. The standard parameters used to

validate refined structural models are indicated in table 5.5. R-factors are indicators

of the overall relative disagreement between the experimental and the calculated

amplitudes. Rfree unlike Rfactor is calculated for only a subset of randomly selected

reflections excluded from refinement itself and it helps to highlight when model bias

has taken place since the difference between Rfactor and Rfree increases drastically.

The values obtained for PCuCNt model were (Rfactor = 0.168 and Rfree = 0.193)

within the range for typical structures with a resolution of 1.52 Å as calculated

with the software PHENIX (Rfactor = 0.102 − 0.232 and Rfree = 0.130 − 0.239).

Root-mean-square deviation (RMSD) parameters measure how well the model fits

the expected values for bond length and angles. Typical range of values for RMSD

bond length is 0.004 - 0.028 and for angles 0.710 - 2.270, the final model had values

of 0.026 and 2.368, respectively. Although, RMSD bond angle value is close to

the upper limit, this parameter became less important at high-resolution since the

experimental data plays a more relevant role during refinements [261]. Another

way of model validation came from the Ramachandran plot, which is a form of

visualizing energetically allowed regions for backbone dihedral angles (i.e., angles

between two intersecting planes) φ (phi) against ψ (psi) of amino acid residues in
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Figure 5.10: Ramachandran plot generated from a PCuCNt monomer. The red,
brown and yellow regions represent the favoured, allowed and generously allowed
regions, respectively. A total of 143 were plotted, 27 glycines and prolines as

triangles (4) and the remaining 116 residues as squares (2).
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Figure 5.11: Cartoon and transparent surface representation of the crystallo-
graphic structure of a Cu-bound PCuCNt trimer. (A) Side and (B) top view of

PCuCNt trimeric complex. Cu ions have been drawn as ochre spheres.
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Figure 5.12: Crystallographic structure of PCuCNt. (A) 2D topology diagram
representation of PCuCNt, the 3 β-sheets are coloured in blue, green and purple
and the cysteines and histidines residues have also been represented. (B) Cartoon
and transparent surface representation of a PCuCNt monomer. Cysteine residues
have been coloured in pink to denote the location of the disulphide bond. (C)
Side and (D) top view of the copper binding site and the 2F0 − Fc electron
density map contoured at 1.2 σ. Cu ions have been drawn as ochre spheres and

water molecules as small red spheres.
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Figure 5.13: Schematic diagram of PCuCNt histidine brace using the software
LigPlot [94]

Bond Length/angle (Å, °)
His28 N1 2.19
His28 Nδ1 1.94
His50 Nε2 2.15
H2O 1 2.22
H2O 2 2.22

His28 N1 - Cu - His28 Nδ1 89.6
His28 N1 - Cu - His50 Nε2 84.5
His28 Nδ1 - Cu - His50 Nε2 159.0

H2O 1 - Cu - H2O 2 105.7
H2O 1 - Cu - His28 N1 94.0
H2O 1 - Cu - His28 Nδ1 97.0
H2O 1 - Cu - His50 Nε2 103.6
H2O 2 - Cu - His28 N1 159.8
H2O 2 - Cu - His28 Nδ1 92.6
H2O 2 - Cu - His50 Nε2 86.6

Table 5.6: Bond lengths and angles of the Cu-binding site of PCuCNt

179



Copper maturation of N2OR in P. denitrificans

protein structures. A total of 146 residues were plotted of which 119 were analysed

(excluding 16 glycines and 11 prolines). From the 119 residues, 109 were found

in most favoured regions, 10 in additional allowed regions and none in generously

allowed or disallowed regions (Figure 5.10).

PCuCNt trimer was reconstituted by applying crystallographic symmetry (see

figure 5.11). Analysis of the trimeric model using the on-line software PISA [262]

for the exploration of macromolecular interfaces showed that the oligomerization

interface between each monomeric unit has an area of ∼ 466 Å2. At least four-

teen residues intervene in the oligomerization forming a total of five hydrogen

bonds and four salt bridges between each monomer. The structure of monomeric

PCuCNt is composed of a total of twelve β-strands distributed in a topology that

resembles an inmunoglobuline-like fold [263] according to the protein structure

classification database CATH [257]. The β-strands are organised in three β-sheets,

two antiparallel β-sheets and one mixed, and together they are structured in an

overall β-sandwich framework within a classical Greek-key topology (Figure 5.12

A). However, perhaps the most interesting feature is the presence of a copper atom

coordinated within a rectangular pyramid geometry at the N-terminus of PCuCNt

by two histidine residues and two water molecules. The copper assignment to the

metal site was also validated using the server CheckMyMetal [264] which uses a

combination of several well-established concepts that have been frequently used in

structural biology such as bond valence [265], vector sum of bond valences (VEC-

SUM) [266], metal binding sites [267], coordination geometries [268], metal binding

environment [269], etc. The base of the rectangular pyramid is formed by solvent

exposed ligands, two nitrogens (Nδ1 and N1) in a T-shaped arrangement from His28,

one nitrogen from the imidazole ring (Nε2) of His50 and a water molecule (see figure

5.12 C and D). A fifth water molecule completes the square pyramidal geometry

in an axial position while the protein-facing position is occluded by Cη2 from the

indole group of Trp153 (at a distance of 3.57 Å). The close proximity of Trp153 to

the Cu-binding site could be the reason for the fluorescence quench observed in

section 4.5.1 and 4.5.2. The particular geometry of His28 that contributes as a

bidentate ligand has previously been termed as histidine brace [270]. Two cysteine
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residues are present within PCuCNt, the first cysteine residue (Cys53) is located

downstream His50 in a loop region at the end of β3 while the second cysteine residue

(Cys146) is also found in a loop region at the end of β9. Cys53 and Cys146 form a

disulfide bond in PCuCNt model.

5.3.2 Crystallographic structure of PCuCCt

Based on the assumption that the holo form of PCuCCt would be more likely

to crystallise. We reconstituted samples of 20 mg ml−1 of apo-protein with one

equivalent of Cu1+ in the glove box. Cu1+-PCuCCt samples were screened aerobi-

cally with hundreds of crystallisation solutions using commercially available sparse

matrix screening kits by the sitting drop vapour diffusion method. After more than

30 days of incubation at 16 ◦C crystals of polygonal morphology were observed in a

solution of 100 mM trisodium citrate, 200 mM potassium sodium tartrate and 2.0

M ammonium sulphate pH 5.6 (see figure 5.14). The crystallographic structure of

Cu1+-PCuCCt was solved to a resolution of 1.6 Å by molecular replacement (MR).

The software MoRDa [172] used the coordinates of the extracytoplasmic copper

chaperone-like protein (ECuC) from S. lividans (PDB accession codes: 3ZJA) as a

search template, as described in Chapter 2 section 2.19.2.2. The indicators used to

assess the quality of the diffraction data and refined model are listed below in table

5.7. Analysis of the 127 residues built within the model by the Ramachandran

representation (excluding 19 glycines and 11 prolines) showed that 87 residues

were found in most favoured region, 10 in additional allowed regions and none in

generously allowed of disallowed regions (see figure 5.16).

Figure 5.14: Example of polygonal crystals obtained for PCuCCt.
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PCuCCt (Native)
Data collection

Space group P21
Cell dimensions

a, b, c (Å) 73.8, 43.5, 41.6
α, β, γ (°) 90.0, 111.3, 90.0

Wavelength (Å) 0.979
Resolution (Å) 4.34 - 36.81 (1.60 - 1.63)
Rp.i.m 0.014 (0.135)
I/σ(I) 13.7 (1.0)
CC1/2 1.0 (0.7)
Completeness (%) 100 (99.9)
No. of reflections 5320 (5300)
No. of unique reflections 1673 (1583)
Redundancy 3.2 (3.3)
Anomalous completeness 88.9 (92.5)
Anomalous multiplicity 1.8 (1.8)

Refinement
Resolution (Å) 1.60
Rwork/Rfree 0.179 / 0.240
No of atoms

Protein 956
Ligand/ion 7
Water 65

B-factor (Å2)
Protein 26.64
Ligand/ion 19.16
Water 34.39

R.m.s. deviations
Bond lengths (Å) 0.019
Bond angles (°) 1.974

Table 5.7: Data collection and structure refinement statistics for PCuCCt.
Values indicated in parentheses for outer shell
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Figure 5.15: Schematic diagram of PCuCCt Cu1+ binding site using the
software LigPlot [94]

Bond Length/angle (Å, °)
His79 Nδ1 2.1
Met90 Sσ 2.2
His113 Nε2 2.3
Met115 Sσ 2.3

His79 Nδ1 – Cu – Met90 Sσ 106.4
His79 Nδ1 – Cu – His113 Nε2 114.1
His79 Nδ1 – Cu – Met115 Sσ 108.5
Met90 Sσ – Cu – His113 Nε2 110.1
Met90 Sσ – Cu – Met115 Sσ 111.1
His113 Nε2 – Cu – Met115 Sσ 106.7

Table 5.8: Bond lengths and angles of the Cu-binding site of PCuCCt
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Figure 5.16: Ramachandran plot generated for a PCuCCt monomer. The red,
brown and yellow regions represent the favoured, allowed and generously allowed
regions, respectively. A total of 127 were plotted, 30 glycines and prolines as

triangles (4) and the remaining 97 residues as squares (2).
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Figure 5.17: Crystallographic structure of PCuCCt. (A) 2D topology diagram
representation of PCuCCt, the β-sheet is coloured in blue, the methionine and
histidine residues involved in copper binding have also been represented. (B)
Cartoon and transparent surface representation of a PCuCCt monomer. (C)
Copper binding site and the 2F0 − Fc electron density map contoured at 1.2 σ.

Cu ions have been drawn as ochre spheres.
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Figure 5.18: Symmetry axis of PCuCCt. (A) Cartoon and transparent surface
representation of two monomers of PCuCCt facing the symmetry axis. (B)
Copper ion on special position. Cu ions have been drawn as ochre spheres.
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Figure 5.19: Schematic diagram of the residues involved in the coordination
of the special position Cu ion of PCuCCt using the software LigPlot [94]
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Bond Length/angle (Å, °)
Glu77 Oε2 chain A 2.6
Glu92 Oε1 chain A 2.3
Glu92 Oε2 chain A 2.3
Glu77 Oε2 chain B 2.1
Glu92 Oε1 chain B 2.6
Glu92 Oε2 chain B 2.7

Imidazole N1 2.3
Glu77 Oε2 chain A – Cu – Glu92 Oε1 chain A 82.9
Glu77 Oε2 chain A – Cu – Glu92 Oε2 chain A 85.9
Glu77 Oε2 chain A – Cu – Glu77 Oε2 chain B 167.4
Glu77 Oε2 chain A – Cu – Glu92 Oε1 chain B 79.8
Glu77 Oε2 chain A – Cu – Glu92 Oε2 chain B 82.3

Glu77 Oε2 chain A – Cu – Imidazole N1 81.7
Glu92 Oε1 chain A – Cu – Glu92 Oε2 chain A 57.5
Glu92 Oε1 chain A – Cu – Glu77 Oε2 chain B 98.0
Glu92 Oε1 chain A – Cu – Glu92 Oε1 chain B 81.6
Glu92 Oε1 chain A – Cu – Glu92 Oε2 chain B 130.7

Glu92 Oε1 chain A – Cu – Imidazole N1 139.8
Glu92 Oε2 chain A – Cu – Glu77 Oε2 chain B 105.2
Glu92 Oε2 chain A – Cu – Glu92 Oε1 chain B 138.0
Glu92 Oε2 chain A – Cu – Glu92 Oε2 chain B 164.2

Glu92 Oε2 chain A – Cu – Imidazole N1 84.5
Glu77 Oε2 chain B – Cu – Glu92 Oε1 chain B 87.9
Glu77 Oε2 chain B – Cu – Glu92 Oε2 chain B 87.8

Glu77 Oε2 chain B – Cu – Imidazole N1 104.9
Glu92 Oε1 chain B – Cu – Glu92 Oε2 chain B 49.6

Glu92 Oε1 chain B – Cu – Imidazole N1 131.1
Glu92 Oε2 chain B – Cu – Imidazole N1 83.3

Table 5.9: Bond lengths and angles of the special position copper of PCuCCt
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PCuCCt is a soluble monomeric protein and is made up of a total of eleven β-

strands. These β-strands are arranged in a single β-sheet within a Greek key

β-barrel motif. Peculiarly striking is the presence of a flexible and solvent exposed

β-hairpin that involves β6 and β7 and protrudes from the β-barrel. However and

more importantly, a single Cu1+ atom was modelled within the soluble domain

of PCuCCt coordinated by residues His79, Met90, His113 and Met115 forming the

highly conserved H(M)X10MX21HXM copper binding motif (see figure 5.17). The

two methionine Cu-ligands are solvent-exposed with their Cγ atoms located at the

protein surface, while the histidine Cu-ligands are further away from the protein

surface. The bond length and angles between the ligands and Cu1+ suggest that

the copper atom is coordinated within a distorted tetrahedral geometry (see table

5.8).

A second copper atom has been modelled within the crystallographic unit. Curiously,

this copper is located at the surface of the protein on a symmetry axis and is

probably a crystal artefact as a result of the crystallisation process of the protein.

This Cu is coordinated by an imidazole ring (also located across the symmetry axis),

two glutamic acid residues from one protein molecule and another two glutamic

acid from a symmetry-related molecule (see figure 5.18). In this case the bond

length and angles between the ligands and the copper atom suggest of a pentagonal

bipyramidal molecular geometry (see table 5.9).

5.3.3 Small-Angle X-ray scattering, SAXS

Despite extensive screening, we were unable to obtain protein crystals of full length

PCuC protein. This is likely due to the presence of a disordered region that links

both N- and C-terminal domains together, such flexibility may be incompatible

with protein crystal formation. Therefore, we tried to elucidate the structural

arrangement of PCuCNt and PCuCCt within the two-domain protein by small-angle

X-ray scattering (SAXS). This technique provides valuable information about the

size and shape of macromolecules in solution and is a commonly used in the study
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Figure 5.20: Solution characterisation of native full-length PCuC by SAXS.
(A) Scattering curve of PCuC and fitting of the protein envelope generated with
the software GASBOR [165] (red line); (B) Kratky plot showing that PCuC is
a multidomain protein with signs of flexibility; (C) Guinier plot and calculated
Rg value; (D) P(r) distribution function of PCuC, Rg and Dmax values are

indicated.
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Figure 5.21: PCuC full length structural model. (Side view and (B) top view.
The monomers of the trimer have been coloured in green magenta and blue.

Copper atoms are represented as spherical atoms and coloured in orange.)
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of flexible proteins. Samples of PCuCWT were analysed at Diamond Light Source

beamline B21 by ASEC-SAXS as described in section 2.18.

Throughout the analysis of the scattering curves, features of protein flexibility and

signs of the presence of a multidomain protein were observed. For instance, the

Kratky plot analysis (see figure 5.20 B) presented a double peak bell-shaped curve

at low q and a rise to a plateau at high q, which is typical of a multidomain protein

with disordered regions. From the Guinier plot (see figure 5.20 C) we could infer a

radius of gyration (Rg) of 36.82 Å3 and a forward scattered intensity (I(0)) of 5.80

x 10−3. In addition, the pair-wise distance distribution function was estimated by

Fourier inversion of the experimental intensities using Scatter [156]. The real space

representation of the scattering data generated a bell-shaped profile with a Dmax

of 107 Å and two humps or shoulders, also typical of multidomain proteins. The

real space Rg from the P(r) function was calculated to be 37.8 Å3 and is consistent

with the reciprocal Rg obtained from the Guinier Plot.

The software GASBOR from the ATSAS suite was used for ab initio shape-

determination in order to generate a surface envelope of native full-length PCuC

protein. Instead of using dummy atoms as DAMMIF or DAMMIN [159, 210],

GASBOR attempts to reconstruct a protein structure based on chain-like ensemble

of dummy residues [165]. The program was set up to model 310 residues in slow

mode and P3 symmetry (due to our previous knowledge of the solution properties

of PCuCWT). The fitting of the surface enveloped model (see figure 5.21) is shown

as a red line along the scattering curve in figure 5.20 A. The crystallographic

structures of PCuCNt and PCuCCt were superposed manually on Pymol [146] into

the surface envelope of PCuCWT (see Figure 5.21 C). The best fit indicated that

PCuCNt and PCuCCt are more likely to be arranged forming a trimeric protein

in which the N-terminal domain of each monomer is forming a central core, i.e.

contain the majority of protein-protein interactions (as observed with the X-ray

structure of the PCuCNt) leaving the C-terminal domain at the outer side of the

protein exposed towards surrounding solution through a flexible linker region (see

Figure 5.21 C). This structural model is therefore in agreement with the AUC

and ASEC data of PCuC, and the fact that the affinity-tagged N-terminal domain
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can pull down native full-length PCuC when purified from P. denitrificans WT by

affinity chromatography.

5.4 Discussion

PCuC from P. denitrificans is an interesting protein made up of a YcnI N-terminal

domain and a PCuAC C-terminal domain. Importantly, PCuC is a metal binding

protein with an affinity for copper below the femtomolar level and is required for

N2OR respiration when copper is a scarce resource in the bacterial media. Here

we have identified and characterised the solution properties PCuCNt, PCuCCt and

PCuCWT. In addition, we have resolved the crystallographic structure of PCuCNt

and PCuCCt. By performing SAXS on PCUCWT we have built a structural model

for full length PCuC protein.

Investigation of the oligomeric state of PCuCNt and PCuCWT by analytical ul-

tracentrifugation and size exclusion chromatography showed that both proteins

behave as trimers (of ∼ 56.4 and 100.7 kDa, respectively) while PCuCCt behaved

as a monomer under all conditions studied (of ∼ 17.6 kDa). In addition, a common

feature of the three proteins is that complex formation preceded independently of

copper binding indicating that the protein may oligomerise prior to copper loading.

Similar oligomeric features have been reported for YcnI from N. farcinica that

forms homodimers within its biological assembly [253] and for monomeric PCuAC

from D. radiodurans [5] and S. lividans [216]. The fact that PCuCNt trimerises and

that two histidines of each monomer are involved in metal coordination may explain

why PCuCWT binds naturally to a Ni2+-IMAC column. This is something that

we have repeatedly observed, for instance during the purification of ScoBsol (see

figure 3.7 A) or especially during the isolation of PCuCNt (see figure 5.22), where

in both cases the identity of the 35 kDa band has been confirmed by MALDI-TOF

as PCuCWT. This is also the reason why after the initial exploratory experiment

from section 4.2 we decided to purify all PCuC proteins from a pcuC− mutant ba-
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Figure 5.22: Purification of PCuCNt-6His from wild-type P. denitrificans.
Top graph is the elution chromatogram and the bottom graph is the coomassie
SDS-PAGE gels of the corresponding fraction along with a Western-Blot from

pooled eluted fractions. FT: flow through
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ckground since it was not possible to break the strong interaction of PCuCWT and

PCuCNt and separate them using chromatographic techniques.

The crystal structure of Cu2+-PCuCNt represents the first copper-bound structural

determination of a YcnI-type protein. Overall, PCuCNt is a trimeric protein and

each monomer is solely composed of β-strands that are distributed within a topology

that resembles an immunoglobulin-like fold [263]. The software DALI [271] was used

to search the Protein Data Bank (PDB) [272] for proteins that share a similar fold

to PCuCNt. The closest match found was YcnI (PDB accession code: 3ESM) from

N. farcinica (Z-score: 15.2 %, Id: 25%) and the rest of the structures identified had

Z-score values and sequence identity below 9 and 15 %, respectively. Superposition

of Cu2+-PCuCNt and YcnI structures showed a similar overall structure, with the

major difference being the presence of an extended disorder loop region between

β6 and β6 in PCuCNt that is not present in YcnI. However, the most interesting

remark about PCuCNt structure is the presence of a single copper ion per monomer

that is coordinated by the first residue of PCuCNt. The first N-terminal residue in

the mature protein, once it has been processed by the Sec apparatus and exported

to the periplasm, is His28 (which has been confirmed by Edman degradation and

ISD MALDI-TOF) and acts as a bidentate ligand to the copper arranged in a

T-shaped manner. This special disposition has been previously observed in other

copper-binding proteins, such as the copper resistance protein CopC [69] and in

lytic polysaccharide monooxygenases (LPMO) proteins [273] and has received the

generic name of histidine brace (see figure 5.23) [270]. The high Cu1+ affinity of

PCuCNt is similar to other histidine-brace copper-binding proteins (see table 5.10).

However, it is relevant to notice that the values reported in table 5.10 are only

relative to Cu2+ based on the assumption that CopC and LPMO are Cu2+-binding

proteins although the literature is not clear about whether these proteins can also

bind Cu1+. Moreover, almost all KD determinations of LPMO proteins have been

performed by direct titration of Cu2+ by ITC, a technique that is not sensitive

enough to accurately calculate such a low binding affinities [154, 274].

This manner of protein maturation has important implications, for instance during

experimental design identifying the first residue of the mature protein is crucial if a
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Figure 5.23: Structural aspects of histidine brace copper-binding proteins.
Cartoon and transparent surface representation and active-site architectures of
(A) and (B) PCuCNt from P. denitrificans, (C) and (D) LPMO (PDB: 4OY7)
and (E) and (F) CopC (PDB: OB3B). The overall structures are coloured
according to secondary structure, with α-helices in red, β-strands in yellow and
disordered regions in green. Active-site residues are shown as sticks and coloured
by atom type. Cu ions have been drawn as ochre spheres and water molecules

as small red spheres.
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Organism Protein (Cu-binding residues) KD (M)
CopC proteins
Escherichia coli Ec-PcoC (H1, H90) 3.2 x 10−14 (competition) [275]

Pseudomonas fluorescens Pf-CopC (H1, H3, H85) 3.2 x 10−16 (competition) [276]
Pseudomonas syringae Ps-CopC (H1, H90) 2.0 x 10−14 (competition) [275]

LPMO proteins
Aspergillus oryzae AoAA11 (H1, H60) < 10−9 (ITC) [277]
Aspergillus oryzae AoAA11 (H1, H60) 7.9 x 10−10 (displacement ITC) [277]
Aspergillus oryzae AoAA13 (M-H1, H91) 1.3 x 10−8 (ITC) [278]

Bacillus amyloliquefaciens BaAA10 (H1, H97) 6.0 x 10−9 (ITC) [279]
Serratia marcescens SmAA10_A (H1, H86) 5.5 x 10−8 (ITC) [280]

Streptomyces coelicolor ScLPMO10C (H1, H109) 3.1 x 10−8(ITC) [281]
Streptomyces coelicolor ScLPMO10B (H1, H107) 1.2 x 10−8 (ITC) [281]
Streptomyces lividans SliLPMO10E (H1, H90) 2 x 10−9 (ITC) [282]

Thermoascus aurantiacus TaAA9_A (H1, H86) < 10−9 (ITC) [282]

Table 5.10: Cu2+ binding properties of CopC and LPMO proteins
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functional truncated cytoplasmic protein is the desired final product. Alternatively,

if the full length protein is overexpress special attention has to be paid to the choice

of host organism, otherwise the use of an inappropriate heterologous host would

fail to produce functional periplasmic polypeptide. For example, Wijekoon and co-

workers introduced point substitutions in Ps-CopC and in PcoC to substitute His1

for Phe1 they observed a drastic decrease in the binding capabilities of the proteins

[276]. Another example may be YcnI from N. farcinica, which undoubtedly contains

an unprocessed signal peptide with the most likely cleavage site at position 26 or

28 (see table A.3). However the seven initial residues of the deposited structure

are NH2-SLHVTA, which may mean that the signal peptide have not been taken

into account in the genetic construct and the whole sequence of N. farcinica was

expressed in Escherichia coli, an organism with a Sec system perhaps too distant

to the one from N. farcinica to process the polypeptide to form the complete

metal binding site. Another option is that the signal peptide could have been

predicted inaccurately since slightly different result can be obtained depending on

the software used (see table A.3). In summary, the reason why N. farcinica YcnI is

found in its apo-form could be due to the election of an inappropriate heterologous

host, perhaps incapable of processing the signal peptide of the protein. This has as

a direct consequence a drastic decrease in the metal binding affinity of the protein

due to the disruption of the histidine brace.

An intriguing detail that we observed after solving the structure of PCuCNt is

that His50 was actually not a conserved residue in a multiple sequence alignment

of YcnI proteins (see figure 4.9) despite being part of the copper binding site of

Cu2+-PCuCNt. However, when we tried to compare the copper sites of PCuCNt

and YcnI from N. farcinica we quickly realised that in reality under the domain of

unknown function 1775 there are two distinct families of proteins grouped together

as one (see figure 5.24). Conceding that the first residue of mature YcnI is a

histidine as predicted bioinformatically (see table A.3), both proteins would share

an N-terminal histidine and a highly conserved tryptophan. Whereas in PCuCNt
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Figure 5.24: Superposition of PCuCNt from P. denitrificans and YcnI from N. farcinica. The cartoon representation of PCuCNt is
coloured in green and YcnI in white.
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YcnI-type proteins (named family-A) the third Cu-ligand arises from a second

histidine residue located ∼22 amino acids apart from the first one, in N. farcinica

YcnI-type of proteins (named family-B), the second histidine has been substituted

by a glutamic acid also located ∼22 amino acids from the first histidine. Even more

interesting is the presence of a potential second histidine ligand, that may act as a

fourth ligand to the copper located 126 residues apart from the initial amino acid of

the mature protein. The presence of this third histidine in family B of YcnI proteins

could have a direct influence on the binding affinity of this proteins for copper.

A similar effect has been observed in Pseudomonas fluorescens CopC (Pf-CopC)

that presents an extra histidine and has a Cu2+ affinity 2 orders of magnitude

higher than that of Pseudomonas syringae CopC (Ps-CopC) [275, 276]. In order

to test this hypothesis, we manually selected a subset of protein sequences of YcnI

families A and B, generated multiple sequence alignments using the software Jalview

[193]. These MSA were then used as queries in the HMMER web server [244] to

search for protein sequences matching each YcnI family. We identified about 280

protein sequences belonging to family A and nearly 500 to family B. The majority

of the microorganisms from family A belonged to alphaproteobacteria and in a

lesser extend to a few actinobacteria. Within alphaproteobacteria the three most

abundant groups were rhizobiaceae, phyllobacteriaceae and bradyrhizobiaceae. By

contrast, family B YcnI-type proteins were mainly characteristic of actinobacteria

and firmicutes. Within actinobacteria, the actinomycetales, corynebacteriales and

pseudonocardiales were the three main groups. This distribution correlates with

the overall phylogenetic tree constructed with the sequences deposited in Pfam

(accession date: July 30, 2018) (see figures 5.26, 5.27 and 5.25).

The structure of Cu1+-PCuCCt showed to have an overall β-barrel motif that

resembled the one observed for PCuAC from D. radiodurans, T. thermophilus

and S. lividans (see figure 5.28). Remarkably, within the structure two copper

atoms were modelled, one present at what in structural biology is referred as a

special position and therefore we consider that this copper may be involved in the

crystallisation process of the protein. The other copper atom however is located
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Figure 5.25: Phylogenetic tree of YcnI proteins. Member of each family A
and B are showed in red and green, respectively. The colours of the branches
respond to the following pattern: Rhizobiales (red), Rhodobacterales (orange),
Burkoderiales (yellow), Actinobacteria (green), Bacillales (blue). The parameters
for the maximum likelihood tree were calculated with the software Jalview [193]

and the tree was drawn with the on-line program iTOL [231]
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Figure 5.26: Multiple sequence alignment of YcnI proteins belonging to family
A. The conserved residues of the Cu-binding HX22HX101W motif are highlighted

with the symbol (?)
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Figure 5.27: Multiple sequence alignment of YcnI proteins belonging to family
B. The conserved residues of the putative Cu-binding HX22DX90WX13H are

highlighted with the symbol (?)
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within the well-known H(M)X10MX21HXM Cu1+-binding motif characteristic of

PCuAC proteins [33].

The structure of Cu1+-PCuCCt presents two solvent exposed β-strands that form a

hairpin which protrudes from the β-barrel structure. This hairpin is similar but

less accentuated than the one found in PCuAC from T. thermophilus but slightly

more obvious than the one present in PCuAC fromS. lividans (see figure 5.28).

The collective study of the solution properties of PCuCNt, PCuCCt and PCuCWT,

crystallographic resolution of PCuCNt and PCuCCt, and the analysis of the solution

structure of PCuCWT have led to the proposal of a structural model for PCuC.

In this model, PCuCNt is responsible for creating a central core that drives the

oligomerization of the protein, a flexible linker region joins the N-terminal domain

to PCuCCt that remains monomeric and has certain freedom of movement within

the protein, this may be responsible for the inability to crystallographically resolve

the full length protein. Copper binding motifs are present in both domains, at

the N-terminal domain a novel type of histidine brace within the characteristic

H22H101W motif has been described, and at the C-terminal domain a classical

H(M)X10MX21HXM motif is present. The calculated KD points PCuCWT as a

high-affinity copper scavenger capable of binding both Cu1+ and Cu2+ and of

storing up to 6 copper atoms per trimer within the periplasm of the cell, ready to

deliver them to protein partner(s).
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Figure 5.28: Structural aspects of PCuAC proteins. Cartoon and transparent
surface representation of (A) PCuCCt from P. denitrificans, (B) PCuAC from
D. radiodurans (PDB: 1X9L), (C) PCuAC from T. thermophilus (PDB: 2K6Z)
and (D) ECuC from S. lividans (PDB: 3ZJA). (E) Superposition of the copper-
binding site of PCuCCt (yellow), Dr-PCuAC (blue), Tt-PCuAC (green) and

ECuC (red). Cu ions have been drawn as ochre spheres.
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6
Purification and characterisation of N2OR from

pcuC and scoB deficient strains

6.1 Introduction

Nitrous oxide reductase (N2OR) [87], nitrogenase [283, 284] and multicopper

oxidase [285] are known metalloenzymes capable of catalysing in vitro reaction

6.1. However, of these three proteins only N2OR is considered to perform the two

electron reduction of N2O in vivo [9].

N2O + 2H+ + 2e− −−→ N2 + H2O; ∆G°′ = −339.5 kJ mol−1 (6.1)

Thermodynamically, N2O is a stable molecule due to electronic delocalisation and

although it is a strong oxidant, an activation energy barrier of 250 kJ mol−1 [286]

prevents decomposition or reduction of the molecule. This kinetic barrier can be

overcome through binding an activation by metal ions and in N2OR this has been

solved by using an unique catalytic copper-sulphur cluster [13].

6.1.1 Assembly of copper centres in N2OR

Nitrous oxide reductases are generally soluble proteins that are directed to the

periplasm through a signal peptide sequence [79]. A bioinformatic analysis by
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Jones and co-authors identified that N2OR proteins group in atypical or typical

clades according to the predicted export pathways that the proteins present [287].

Atypical N2OR proteins are commonly exported through the Sec system, with

some exceptions such as the hyperthermophilic archea Ferroglobus placidus, Ther-

momicrobium roseum and Sphaerobacter thermophilum. Meanwhile, typical N2OR

proteins are predominantly exported to the periplasm by the TAT apparatus [287].

In addition to the export machinery of N2OR to the periplasm, an array of accessory

proteins are required for the assembly of the two copper centres of N2OR in its

final and functional location. However, the exact function and cellular location of

these proteins is yet not fully understood. At least three proteins encoded by the

genes nosD, -F, and –Y have been found to be involved in the maturation process

of the CuZ centre [96]. Meanwhile, despite the similarity of the CuA centres of

N2OR and cytochrome c oxidase (Cox) [25] and that the maturation process for

Cox has been extensively studied [5], the chaperones responsible for CuA centre of

N2OR are yet to be defined.

6.1.1.1 Maturation of the CuZ centre of N2OR

The gene product of nosDFY have been proposed to form an ABC-type transporter

based on structure prediction analysis [96] (see figure 6.1). This system is thought

to be involved in the transport of sulphur required for the formation of the CuZ of

N2OR [96]. This assumption is primarily based on the fact that the N2OR protein

purified from nosDFY mutants present a CuA, but lacks CuZ centre therefore,

copper addition does not seem to be affected [89, 90, 95, 288].

The protein NosF has a molecular weight of 30 kDa, a cytosolic location as deduced

from lacZ reporter gene fusion experiments [289] and ATPase activity [109]. Based

on these characteristics, it has been proposed that NosF could couple energy-

dependent transfer of sulphur across the membrane through NosY [96]. NosF

differs from other ATP-binding proteins in the presence of an extended C-terminal

domain which does not show similarity to any other solved protein structure. NosF

is proposed to interact with NosY, a 30 kDa integral membrane protein that

208



Chapter 6 Purification and characterisation of N2OR

spans the inner membrane five times and is thought to represent the transport

protein. NosD is a 45 kDa periplasmic protein containing two predicted CASH

(carbohydrate-binding proteins and sugar hydrolases) domains within a β-helical

structure [290]. The function of NosD remains unclear as it has yet not been proven

that it act as a binding protein.

Another accessory gene broadly distributed among denitrifying organisms and

frequently found downstream nosDFY is nosL [96]. The nosL gene codes for a

20 kDa periplasmic protein that is predicted to be exported via the Lol transport

system and lipid anchored to the outer-face of the inner-membrane [96, 291] (see

figure 6.1). Based on the studies of McGuirl and co-workers using a recombinant

form of NosL from the facultative anaerobe A. cycloclastes, the researchers deduced

that NosL is a metallochaperone that binds one Cu1+ atom per monomer and

releases the metal upon oxidation or incubation with EDTA [242]. The only

known structure available of a NosL protein was generated by Taubner et al. and

does not present any metal bound [292]. The overall structure consists of two

homologous domains that adopt a ββαβ topology similar to the one observed in

the mercury resistance protein MerB [293]. However, the role of NosL remains

elusive since interruption of nosL gene [291] or expression in trans of nosZDFY

in a non denitrifying organism [89] result in the synthesis of a functional N2OR.

Therefore, it has been suggested that NosL could be involved in copper transport

or assembly of N2O or other copper containing denitrifying enzymes [96].

6.1.1.2 Maturation of the CuA centre of N2OR

The CuA centre of N2OR is homologue to the electron transport centre of cy-

tochrome c oxidase (Cox) [25]. Cytochrome c oxidase is the terminal component

of the aerobic respiratory chain located in the inner mitochondrial membrane of

eukaryotes and in the plasma membrane of many prokaryotes. The enzyme is com-

posed of three highly conserved large subunits (Cox1, Cox2 and Cox3) [25]. Both

Cox1 and Cox2 contain metal cofactors necessary for Cox acting, Cox1 contains
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the catalytic CuB centre while Cox2 binds two copper ions forming the dinuclear

CuA centre.

Two protein families have been proposed to be involved in CuA site assembly in

prokaryotes, a process that has been studied in detail by Banci and co-workers in

the Gramnegative bacteria Thermus thermophilus [5]. The first family consists of

the Sco proteins which have been described in chapter 3. These proteins seem to

have a main thioredoxin role in prokaryotes, despite of being able to bind both

Cu1+ and Cu2+ ions through a conserved CX3C motif [180]. The second family

of proteins is referred as PCuAC and have been described in chapter 4. These

proteins are able to bind Cu1+ through a highly conserved H(M)X10MX21HXM

motif [33]. In a recent NMR study, Abriata et al. showed that T. thermophilus

Sco was unable to transfer copper to the CuA site of Cox2, but instead it was

responsible for maintaining the correct oxidation state of the CuA cysteine residues.

Copper insertion into Cox2 was carried out by the sequential delivery of Cu1+ ions

from PCuAC into apo-CuA site giving rise to the holo form of the protein [5].

In the transcriptomic study mentioned in section 1.4.3.4, Sullivan and co-authors

identified a gene cluster hyp-pcuC-scoB and noted that these genes were essential

for N2O respiration under copper limiting conditions [3]. The hypothetical gene

codes for a putative protein with unknown function that has been described in

section 4.6. The gene product of scoB and pcuC have been studied in this thesis and

their characteristics are detailed in chapters 4 and 3, respectively. In short, ScoB

is a copper binding protein capable of binding both Cu1+ and Cu2+ forms. PCuC

in turn is a two-domain protein, the N-terminal domain is a new type of copper

binding protein that can also bind both copper ions while the C-terminal domain is

homologue to PCuAC and chelates only Cu1+ with a very high affinity (see figure

6.1). These proteins are expected to be involved in either insertion or maintenance

of the Cu-centres of N2OR. Therefore in this chapter, we explore the effect of these

two proteins on N2OR through the generation of a recombinant N2OR protein that

can be isolated by affinity chromatography for biological analysis and is expressed

in cis under the control of its native promoter.
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Figure 6.1: Schematic illustration of the components involved in N2OR biogen-
esis and their cellular location in P. denitrificans. The complex NosD-NosF-NosY
and NosL are the proposed proteins involved in CuZ centre maturation of N2OR.
ScoB and PCuC proteins are the proposed proteins responsible for the assembly
of CuA centre of N2OR in P. denitrificans. The membrane-bound NosR and
NosX are considered to have a redox role during N2O respiration. [S] is a sulphur
species of unknown chemical nature. The small green spheres represent Cu ions.
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6.2 Nitrous oxide reductase purification and char-

acterisation

In order to study the in vivo role of ScoB and PCuC in the maturation process of

N2OR we knocked-in an affinity tag coding sequence at the 3’ end of nosZ from P.

denitrificans before the stop codon as described in section 2.11. Due to the small size

and efficient one-step purification that the eight-residues Strep-tag II sequence (Trp-

Ser-His-Pro-Gln-Phe-Glu-Lys) provides, this sequence was chosen as the preferred

affinity tag for the genomic insertions [294]. Initially the Strep-tag II sequence was

inserted within the nosZ gene present in P. denitrificans WT (NosZWT), and the

growth and N2O phenotype of P. denitrificans WT and NosZWT variant under

anaerobic conditions was examined (see figure 6.2). Overall, no apparent differences

in terms of growth and N2O reduction capabilities were observed under copper

sufficient and limited conditions. Then, after the initial phenotypical examination

of NosZWT mutant Strep-tag II knock-in strains were generated in P. denitrificans

∆scoB (NosZ∆scoB) and pcuC− (NosZpcuC−) backgrounds.

The strength of this experimental approach is that these three knock-in mutants

(NosZWT, NosZ∆scoB and NosZpcuC−) facilitates a framework for the purification

of N2OR produced under the control of the native promoter of the coding gene

and therefore is expressed under physiologically relevant conditions. In all cases,

N2OR was purified as a polypeptide of ∼ 69 kDa from whole cell soluble extract

of P. denitrificans (see figures 6.3 and 6.4). The purity of N2OR was considerably

higher when the protein was obtained from copper high cultures as judged from

SDS-PAGE gels, while some higher and lower Mw bands than N2OR could be

observed in copper limited conditions. However, this contaminant were present

in an small proportion and did not affect significantly downstream applications.

Purification of N2OR from cultures grown under copper sufficient conditions yielded

3.6 ± 0.7 mg of protein per litre of culture. Meanwhile, approximately 25-times less

N2OR (0.1 ± 0.05 mg per litre) was obtained from cultures grown under copper

limited conditions.
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With the purpose of characterizing spectroscopically N2OR, the eluted fractions

from the purifications shown in figures 6.3 and 6.4 were combined, concentrated

and analysed for their spectroscopic purity. Isolated N2OR from cultures grown in

the presence of micromolar amounts of copper displayed as purified a strong 640

nm band (see figure 6.5 A, B and C). These absorbance spectra profile resembled

to the one of reduced N2OR form I or anaerobically purified N2OR [13, 88], with

the difference that NosZWT, NosZ∆scoB and NosZpcuC− spectra had a minor band at

550 nm that could be indicative of the presence of a subpopulation of air-oxidised

protein. By oxidizing N2OR with ferricyanide the UV-vis features of both CuA and

Figure 6.2: Anaerobic growth characteristics of P. denitrificans WT and
NosZWT mutant in batch culture conditions. (A) The anaerobic growth under
copper sufficient and (B) limited conditions. (C) and (D) show N2O production
in milimole of N in the form of N2O. Cultures contained either < 0.5 or 13.5 µM
of copper. Standard errors of the mean are indicated by the error bars (n = 3)
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Figure 6.3: Strep-tag II affinity purification of recombinant N2OR expressed
under copper sufficient conditions. Chromatograms and SDS-PAGE of eluted
fractions from (A) and (B) P. denitrificans NosZWT, (C) and (D) NosZ∆scoB
and (E) and (F) NosZpcuC− mutant strains. Lanes: Whole cell lysate (CL),

flow-through (FT).
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Figure 6.4: Strep-tag II affinity purification of recombinant N2OR expressed
under copper limited conditions. Chromatograms and SDS-PAGE of eluted
fractions from (A) and (B) P. denitrificans NosZWT, (C) and (D) NosZ∆scoB
and (E) and (F) NosZpcuC− mutant strains. Lanes: Whole cell lysate (CL),

flow-through (FT).
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Figure 6.5: UV-vis spectra of purified Strep-tag II recombinant N2OR by affinity chromatography. (A) As purified, oxidised and
reduced spectra of NosZWT, (B) NosZ∆scoB and (C) NosZpcuC− purified from copper sufficient conditions. (D) NosZWT, (E) NosZ∆scoB

and (F) NosZpcuC− purified from copper limited conditions

216



Chapter 6 Purification and characterisation of N2OR

CuZ centres are revealed. A shoulder and a peak at 488 and 770 nm, respectively,

appeared in the oxidised spectra of NosZWT, NosZ∆scoB and NosZpcuC− in contrast

to the as purified. In addition, an increase in the intensity of the 550 nm band and

a reduction of the 640 nm was also noted. Of the three spectra, NosZ∆scoB differed

the most from the rest. In the spectrum of this particular protein, the intensity

of 540 and 640 nm bands were almost the same similarly to ferricyanide-oxidised

N2OR form II [13, 88]. Conversely, reduction of N2OR with the strong reductant

dithionite hides the features of the CuA centre and only allows examination of CuZ.

The spectra of the reduced proteins compared to the as purified flattened the 550

nm band, that in NosZWT and NosZpcuC− stayed as a pronounced shoulder, while

the intensity of the 640 nm band remained almost unaltered. When the same N2OR

proteins were purified from copper limited conditions the UV-vis spectrum of as

purified NosZWT showed the presence of two peaks at 476 and 540 nm and no sign

of the 640 nm band. By contrast, NosZ∆scoB and NosZpcuC− presented flat spectra

with no apparent recognisable features (see figure 6.5 D, E and F). Oxidation

of the proteins with ferricyanide revealed a peak at 800 nm and intensified the

bands described for NosZWT, while addition of the oxidizing agent did not affect

the UV-vis spectra of NosZ∆scoB and NosZpcuC− . Reduction of the proteins with

dithionite under anaerobic conditions in the glove box caused the disappearance of

the 476, 540 and 800 nm bands of NosZWT, which resulted in a flat spectrum such

us the one displayed by reduced NosZ∆scoB and NosZpcuC− .

Analysis of the difference absorption spectrum of the ferricyanide-oxidised minus

dithionite-reduced N2OR is shown in figure 6.6. NosZWT, NosZ∆scoB and NosZpcuC−

isolated from copper sufficient conditions revealed almost identical profiles to one

another and to the absorption spectrum of isolated CuA. The absorption spectrum

of N2OR CuA was described by Farrar et al. in a mutant form of N2OR and its

characteristic bands at 480, 540 and 800 nm (see figure 6.6 A) [295]. However,

when the same proteins where purified under copper limited conditions only N2OR

purified from WT presented CuA UV-vis features, while N2OR purified from a
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Figure 6.6: Ferricyanide-oxidised minus dithionite-reduced UV-vis difference
spectra of N2OR. Purified NosZWT (−), NosZ∆scoB (−)and NosZpcuC− (−) from

(A) Copper sufficient and (B) limited conditions.
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Figure 6.7: Methyl viologen activity assay of N2OR proteins. Dark bars
represent N2OR purified from copper sufficient conditions and empty bars from
copper sufficient conditions. Standard errors of the mean are indicated by the

error bars (n = 3)
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∆scoB or a pcuC− mutants seemed to lack the absorption bands of such domain

(see figure 6.6 B).

The enzymatic activity of N2OR was also analysed using the methyl viologen

method as described in section 2.2.5. When NosZWT, NosZ∆scoB and NosZpcuC−

were purified from P. denitrificans grown under anaerobic and copper sufficient

conditions an average enzymatic activity of ∼ 53 µmol of N2O min-1 mg of NosZ-1

was observed. However, when the same proteins were purified under copper limited

conditions only NosZWT had a detectable activity of ∼ 0.4 µmol of N2O min-1

mg of NosZ-1, while NosZ∆scoB and NosZpcuC− were essentially inactive (see figure

6.7). The UV-vis spectra and enzymatic activity analysis are in agreement with

the metal analysis of N2OR proteins by ICP-AES. When NosZWT, NosZ∆scoB and

NosZpcuC− were purified from copper sufficient conditions an average of 5.6 ± 0.1

copper equivalents per monomer of N2OR were detected. However, under copper

limited conditions NosZWT contained ∼ 1.5 and, NosZ∆scoB and NosZpcuC− less

than 0.3 ± 0.1 copper equivalents per monomer of N2OR.

6.3 Discussion

Nitrous oxide reductase (N2OR) is the only known enzyme in nature capable of

conducting the reduction reaction of N2O into N2 [80]. The protein is made up

to two domains, the active site or CuZ centre is located at the N-terminus and,

the electron transfer site or CuA centre at the C-terminus site. A high copper

demand is exerted by this protein on the cell during full denitrification since it

requires a total of 12 copper atoms per functional homodimer. The CuZ site is a

tetranuclear copper centre and there is evidence of the involvement of NosDFY

or NosL in the maturation of N2OR [79]. In contrast to the CuZ centre, the CuA
is a binuclear copper site and it has been long considered that the assembly is

this site is carried out by the same proteins that are involved in the maturation

of heme-copper oxidases [79]. In this thesis we have studied the role of ScoB and

PCuC from P. denitrificans in relation to the maturation process of N2OR based
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on the initial work of Sullivan and co-workers where they observed that during

copper starvation the coding genes of these two proteins are overexpressed and

required for proper N2OR activity [3].

After having explored the biochemical characteristics of ScoB (see chapter 3) and

PCuC (see chapter 4) we examined the role of these two proteins in the matura-

tion process of N2OR. The experimental approach consisted in the isolation and

comparative analysis of the properties of recombinant N2OR from P. denitrificans

WT, ∆scoB and pcuC− strains from two different copper regimes. At least in two

previous occasions recombinant N2OR proteins have been used in the past, Savelieff

et al. cloned an N2OR gene into a pET vector in order to study the link between

blue, red and purple copper cupredoxins [296]. Overexpression of this N2OR protein

in E. coli resulted in the purification of the apo-form of the protein, which was

reconstituted in vitro with copper. Earlier on, Fujita and co-workers purified a

recombinant N2OR from Achromobacter cycloclastes using the broad host range

plasmid pML10 [297]. However, the metal analysis content of the protein revealed

a mis-population of N2OR with considerably different levels of copper. For this

reason a more stringent system was put in place that allowed the generation of a re-

combinant N2OR that could be purified from P. denitrificans under physiologically

relevant conditions through a 1-step affinity chromatography. This was achieved

by knocking-in a Strep-tag II sequence in-frame at the C-terminus of nosZ gene.

The phenotypical analysis of P. denitrificans WT and NosZWT strains confirmed

that there is not any significant difference in terms of growth capacity and N2O

reduction activity between the NosZ-Strep-tag II variant and WT. Moreover, the

metal content analysis confirm that the purified protein contained approximately 6

copper equivalent per monomer as expected from a fully assembled N2OR [13].

Recombinant N2OR, isolated from cultures grown in the presence of micromolar

amounts of copper, displayed as purified an UV-vis spectra similar to what has

been previously categorised as N2OR form I or anaerobically purified N2OR. Some

features characteristics of N2OR form II could also be appreciated, especially

in ferricyanide-oxidised NosZ∆scoB spectrum. However, the protein purification

procedure was carried out in all cases in the presence of oxygen since we were
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primarily interested in studying the copper loading properties of N2OR proteins.

The prevalence of form I despite aerobic purification among the purified proteins

could be probably explained by the short time that is required to complete the

purification procedure (that can be achieved in approximately three hours). Because,

the differential spectra analysis of NosZWT, NosZ∆scoB and NosZpcuC- confirmed

the presence of fully metallated CuA centres with almost identical profiles, the

form II features of NosZ∆scoB are probably originated from the air oxidation of the

CuZ centre. For comparison, the same air oxidised spectrum would also arise in

NosZWT and NosZpcuC− over the course of a day (see figure 6.8). This is consistent

with purification of form I from anaerobically prepared cells that converts to form

II over time as a consequence of prolonged exposure to oxygen

In contrast to N2OR proteins purified from the variant strains under copper

sufficient conditions, when copper was excluded from the formulation of the growth

media isolated N2OR proteins lacked the CuZ centre irrespective of the copper

chaperoning genetic background of the P. denitrificans strain used (see table 6.1).

More importantly, only N2OR from P. denitrificans WT showed a metallated CuA
site while N2OR proteins isolated from both ∆scoB and pcuC− mutant background

were in their apo form. In addition, only NosZWT showed some residual enzymatic

activity that was completely absent in ∆scoB and pcuC−. Since the metal content

of NosZWT indicated the presence of nearly 2 copper equivalents per monomer, the

residual activity could be therefore explained by a small subpopulation of fully or

partially loaded catalytically capable CuZ centre.

Overall, the UV-vis spectroscopy, metal content and enzymatic activity of N2OR

proteins are in agreement with the growth phenotypes of scoB and pcuC strains

studied in sections 3.3 and 4.3. When micromolar amount of copper is added to

the growth media, fully metallated and active N2OR protein is produce and no

N2O phenotype is observed independently of whether scoB or pcuC genes have

been deleted or not (see table 6.1). However, in a copper deficient growth media

P. denitrificans WT produced an N2OR protein which is primarily metallated

at the CuA centre and only retained basal enzymatic activity, nevertheless cells

accumulated N2O transiently and were able to reduce the gas over an extended
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time period. When scoB or pcuC genes were deleted, N2OR was produced in its

apo form and no activity was detected, therefore the cells accumulated all the

nitrogen added to the growth media in the form of N2O (see table 6.1). Wunsch

and co-workers studied the effect of the deletion of a sco gene (named scoP)

from P. putida, although the authors did not find any significant effect on N2OR

associated with the mutation [89]. However, at the time of this study the genome

of P. putida was yet not available and inspection of the genome of P. putida with

contemporaneous bioinformatics tools reveals that scoP is encoded within a surf1-

hypothetical-cox15-cox10-scoP gene cluster. Surf1, Cox15 and Cox10 are proteins

that are associated with the maturation and delivery of heme a to cytochrome c

oxidase [298–300]. Moreover, a BLAST search of P. putida genome using ScoP as

a query identified a second Sco protein with a pairwise identity of 27 %. The gene

coding for the second Sco protein is encoded in a binomial sco-pcuAC gene cluster

such as the classical gene cluster of D. radiodurans [33] or T. thermophilus [5] that

have been found to be involved in cytochrome c oxidase CuA centre metallation.

Gene redundancy is a common feature of sco genes as pointed out by Banci et al.

[177], and it is consider that when the pairwise identity is ∼ 24 % the Sco proteins

expressed by a given organism might have adapted to play specific roles within the

cell, instead of performing redundant functions. Besides, it is not surprising that

in P. denitrificans N2OR phenotype of ScoB and PCuC are only apparent when

the extracellular concentration of copper drops drastically below micromolar levels

since these two types of proteins have been described to hold extremely low copper

binding affinities within the order of the femtomolar range [5, 216]. This might

account for another reason of why an N2OR phenotype was not observed since the

culture media was supplemented with 5 µm of copper. In a similar manner, as we

mentioned in section 3.8, mutation of sco in P. aeruginosa [211], R. capsulatus [212],

S. lividans [185] and B. subtilis [175] entailed a reduction in terminal reductase

activity which was only evident in a copper depleted media. Moreover, deletion of

pccA gene (homologue to pcuAC ) from R. capsulatus resulted in a lower activity of

cytochrome cbb3 in copper limited media [301]. In R. sphaeroides deletion of pcuAC

gene has associated a reduction in the accumulation of both cytochrome aa3 and
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cbb3 and affect the assembly of both CuA and CuB in a copper depleted media [302].

In B. japonicum deletion of the whole gene cluster where pcuC (homologue to

PCuAC)and pcuD (homologue to YcnI) are encoded resulted in a growth reduction

under both oxic and denitrifying conditions only in a copper depleted media

[240]. The authors also observed an accumulation of nitrite attributed to the

malfunction of the copper dependent nitrite reductase. PCuC was also required

for full activation of cytochrome aa3 and cbb3 during symbiosis [240].

Figure 6.8: UV-vis spectrum of recombinant N2OR. As purified NosZWT
presents a spectrum similar to N2OR form I (−), during the time course of a day
the protein is air oxidised and develops the features typical of a form II protein

(−)
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Analysis NosZWT NosZ∆scoB NosZpcuC−

Cu sufficient Phenotype N2-genic N2-genic N2-genic
UV-vis CuZ, CuA CuZ, CuA CuZ, CuA

Cu content 5.6 5.7 5.6
Activity 40.66 ± 3.10 71.7 ± 3.99 50.3 ± 4.37

Cu limited Phenotype N2-genic N2O-genic N2O-genic
UV-vis CuA - -

Cu content 1.4 0.3 0.2
Enzymatic activity 0.6 ± 0.25 0.04 ± 0.02 0.01 ± 0.01

Table 6.1: Summary of the characteristics of recombinant N2OR proteins
purified from P. denitrificans from growth media supplemented or limited with
copper. The results from the phenotypical analysis from sections 3.3 and 4.3
are summarised under the labels N2-genic/N2O-genic to refer to whether the
cultures produced N2 or N2O. UV-vis CuZ and CuA indicate the presence
of the absorbance features distinctive of these Cu centres. The units of the
copper content analysis are in equivalents of Cu per monomer of N2OR and the

enzymatic activity in µmol of N2O min-1 mg of NosZ-1
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Conclusions and future perspectives

The process of nitrous oxide reduction imposes a tremendous demand on the copper

requirements of the cell: a total of 12 Cu ions are need per functional dimer of

N2OR. It is not surprising that when copper becomes scarce in the extracellular

environment (i.e. < 0.5 µM), high affinity systems such as ScoB-PCuC from

Paracoccus denitrificans turn out to be essential for achieving full enzymatic

activity of N2OR. Although the most plausible role of ScoB from P. denitrificans

is to function as a Cu binding protein given that titrations of both Cu ions point

to a very low KD. In future investigations it would be interesting to address

whether ScoB from P. denitrificans also has thioredoxin activity. Nevertheless,

at this point we only count with a preliminary competition assay experiment for

ScoB from P. denitrificans and more conditions and different ligands need to be

analysed in order to determine a KD value within a confident range. Conversely,

it would be worth exploring how amenable is ScoB to crystallisation in its apo

and holo forms since in bacteria Sco proteins seem to be reluctant to crystallise

in the presence of the metal [180]. The only deposited Cu-bound prokaryotic Sco

structure up to date is from Bradyrhizobium japonicum (pdb: 4WBR) but it lacks

a publication associated with it. This could also shed some light in relation to

whether a significant conformational change takes place upon Cu2+ binding as

indicated by Cu2+ titration (see 3.5). Alternatively, there is also the possibility

that the thioredoxin function could be performed by another specialised protein.

For instance, a BLAST search of P. denitrificans revealed the presence of four
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thioredoxins containing a CX2C motif which are: Pden_1410, 2023, 2371 and 2793

(see figure 7.2). Among these proteins, Pden_1410 is a CcmG type protein with a

periplasmic export sequence, which has been shown to be required for aa3-type

cytochrome biogenesis in P. denitrificans [303].

However, the questions of which direction does Cu follows between ScoB and

PCuC, and which Cu-chaperone is actually capable of transferring the metal to

NosZ still remain to be answered. To test if ScoB and PCuC act together and one

pass the metal to the other or whether they individually interact with NosZ. A

simple experiment can be set up where the Cu1+ or Cu2+ bound forms of ScoB

or PCuC and the apo form of the other are mixed. Then, ScoB and PCuC can

be easily separated by size exclusion or affinity chromatography and analysed for

their metal content by ICP-AES. Alternatively, Cu2+ changes of the characteristic

spectrum of Cu2+-ScoB can be used to tell whether the protein is being metallated

or demetallated. Conversely, although a considerably inefficient process due to

the low protein yields obtained, apo-NosZ can be isolated from ∆scoB or pcuC−

mutants grown in copper limited cultures and used in Cu transfer studies. Apo-

NosZ does not have any spectroscopic feature within the visible region of the

electromagnetic spectrum. Therefore, the Cu loaded form of ScoB and/or PCuC

can be mixed with reduced apo-NosZ. As a consequence of the Cu transfer from

ScoB and/or PCuC the features of a NosZ Cu loaded should reappear within the

UV-vis spectra. At the same time, NosZ can also be separated from ScoB and

PCuC by affinity chromatography and checked for its metal content.

Nevertheless, it is unclear what pathway follows the metal once it enters the cell,

but it has to be bound to a protein until it reaches its final destination [39]. Several

scenarios have been contemplated within the context of N2O respiration, and the

two that we consider more probable are shown in figure 7.1. In the first model

the main role of ScoB would be to reduce the cysteine residues of the CuA centre

of N2OR in a similar manner in which Sco from T. thermophilus interacts with

cytochrome c oxidase [5]. Once the CuA centre is ready to receive the redox active

cofactor, transfer is performed by a copper loaded PCuC protein. Alternatively,
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Figure 7.1: Proposed mechanisms of maturation of the CuA centre of nitrous
oxide reductase from P. denitrificans. (A) In this model ScoB functions primarily
as a thiol disulfide isomerase and prepares the CuA centre to be metallated by
Cu-loaded PCuC. (B) In this other model, ScoB acts as a metallochaperone of
PCuC, which in turn is responsible for transferring the copper ions to reduced
CuA centre of nitrous oxide reductase. Alternatively, PCuC could also provide
Cu to other metallochaperones such as NosL and be part of the CuZ maturation
mechanism. For simplification ScoB has been represented as a periplasmic

protein although the native protein is bound to the cell membrane.
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ScoB could instead be responsible for the metallation of PCuC, which in turn once

fully metallated would transfer the Cu ions to reduced N2OR apo-CuA centre.

Either way, since the current understanding is that copper is transferred between

proteins following affinity gradients [203]. Based on the KD values estimates for

ScoBsol and PCuC (see Chapters 3 and 4), we consider that the protein responsible

for the metallation step of the CuA centre of N2OR would be therefore PCuC as

it has an average KD value at least one order of magnitude higher than the one

for ScoB. In addition, the oligomeric nature of PCuC from P. denitrificans and

the two domain organisation of the protein implies that the protein may indeed

be capable of transferring either two Cu1+ ions from the Ct-domain to the CuA
centre, or a Cu1+ and a Cu2+ ion from both N- and C-domain, giving rise to the

production of the mixed valence bimetallic centre present in N2OR. Likewise, we

cannot rule out the possibility that the ScoB/PCuC system may also participate in

the maturation process of CuZ centre of N2OR, either through direct Cu-donation

to the Cu centre or through metal transfer to other chaperone i.e., NosL (see figure

7.1 A).

ScoB-PCuC system may indeed have a Cu scavenging role in copper limited

environments. In Europe, copper deficiency is encountered in many regions due to

the prevalence of sandy, calcareous, leached soils enriched in organic matter. Areas

dedicated to cereal crops and intensive agricultural practices are also at risk of

suffering from Cu-deficiency. For example, Alloway et al. estimated that nearly

40 % of arable soils in Ireland and Poland, 30 % in Scotland, 25 % in Germany

and Denmark, 20 % in Finland are Cu-deficient or potentially deficient [304] (see

figure 7.3). Many aquatic ecosystems are also Cu-deficient and in general Cu is

less abundant in seawater than in lakes and soil pore waters (see table 7.1).

However, Cu deficiency is not just determined by the quantity of the trace element

present in the environment, but by the bioavailability of the metal. One of the

factors that defines the bioavailability of Cu is given by the fluxes of the metal

between different pools. According to Alloway’s monograph about micronutrient

deficiencies in agricultural soils, the total copper of a soils is made up of three di-
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Figure 7.2: Multiple sequence alignment of proteins containing a thioredoxin
motif encoded in P. denitrificans. The CX2C motif of thioredoxin proteins
has been highlighted with the symbol (?) below the residues. Pden_1410 is
predicted to be exported to the periplasm by the Sec system, the signal peptide

is underlined in red.
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Figure 7.3: Concentration of Cu (mg kg−1) in soil of the European Union.
Adapted from [305]
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Sample site Cu Reference
Representative anoxic waters
Peat bog waters 0.02–2 [306, 307]
Santa Monica basin sediment pore waters (>5cm
depth)

<0.005 [308]

Black Sea sulfidic water column (>200m) <0.002 [309, 310]
Framvaren Fjord water column (>20m) <0.001 [309, 310]
Baltic Sea water column (>150m) <0.007 [311]

Representative oxic waters
Seawater <0.001–0.005 [312–314]
Soil pore water 0.1–0.5 [315]
Oxic lake water 0.01–0.8 [316]

Table 7.1: Summary of dissolved trace metal concentrations. All concentration
units are in micromolar (µM). Adapted from [317]

fferent pools: the soil solution, the labile potentially available pool and the not

accessible pool [304]. The soil solution contains free ions and soluble complexes

that can be readily uptaken by plant roots and microbes. The labile pool of Cu

consists primarily of organo-mineral cation-exchange complexes and hydrous oxides

of Mn, Fe, and Al. The fluxes of Cu between the labile and soil solution pools are

strongly dominated by the soil pH and in general cationic ions such as copper are

more soluble in acidic soils. The unavailable copper pool is mainly compound of

primary and secondary mineral crystals and stable organic complexes. These forms

of copper are only released by weathering, which can be intensified in low pH soils.

Therefore, a soil can potentially be copper deficient even if the total amount of

copper is high but the copper soil solution pool is not capable of supplying the

microbial needs [304].

Copper availability is also affected by either synergistic or antagonistic interactions

between different micronutrients. This process has been known for more than 60

years and initially described by Prevot and Smith within the context of agricultural

sciences [318, 319]. The induced Cu-deficiencies are often caused by the presence of

relatively high concentrations of other micronutrients such as Zn, Fe and Mn and

may occur at different levels: such as ion uptake, translocation or accumulation.

Examples have extensively described in medical [320–325] and agricultural sciences

[318, 319, 326–328]. Therefore, based on all these factors it would be advisable
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to include in future studies the assessment of the N2O genic capacity of a soil

due to potential Cu-deficiencies based on the parameters described above: total

Cu content of the soil, soil pH, type of minerals present in the soil, percentage of

organic matter and chance of antagonistic reactions from Zn, Fe or Mn.

In conclusion, the sequential reduction of NO –
3 into N2 under anaerobic conditions

is a process highly dependent on copper. When Cu is limiting in the environment

bacteria such as P. denitrificans express a high affinity system ScoB/PCuC that is

fundamental full denitrification. ScoBsol is a monomeric protein that contains a

mononuclear copper site, the metal ion can be bound in its Cu1+ or Cu2+ state and

the KD of the binging lies below the femtomolar range. In contrast to ScoB, the

metallochaperone PCuC is a complex trimeric multidomain protein. The formation

of the oligomer is driven by the YcnI-like N-terminal domain that forms a central

core that is connected through a linker region to the monomeric PCuAC-like Ct-

domain. Two families of YcnI proteins have been identified in this work, family A

holds a novel H22H101W motif such as the one found in PCuC Nt-domain from P.

denitrificans, and family B contains a H22D90W13H motif such as in the canonical

YcnI from B. subtilis or N. farcinica. This new type of histidine brace motif binds a

single Cu1+ or Cu2+ ion with a femtomolar affinity. Furthermore, the PCuC protein

contains a recognised Cu1+ binding site located within its C-terminal domain that

binds the metal with a subfemtomolar affinity. As a result, the full length PCuC

protein can potentially harbour up to 6 coper atoms per trimer with a global

binding affinity below the subfemtomolar range. Both proteins ScoB and PCuC,

were observed to be required for proper CuA centre assembly and activity of N2OR

under copper limiting conditions.
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A.1 Antibiotics and supplements

Antibiotic [Stock] (mg mL−1) [Final] (µg mL−1) Storage

Carbenicillin (car) 100 100 4 ◦C

Gentamicin (gen) 20 20 4 ◦C

Kanamycin (kan) 50 50 4 ◦C

Spectinomycin (Spec) 25 25 4 ◦C

Streptomycin (str) 60 60 4 ◦C

Taurine (tau) 62.5 1251.5 RT

Table A.1: Antibiotics and supplements

A.2 Sequences of DNA synthesized

pLMB510 CATATGCATCATCACCATCATCACATCGAAGGGCGGGGATCCATG 45

pLMB510 AGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTT 90

pLMB510 GAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGA 135

pLMB510 GAGGGTGAAGGTGATGCAACATACGGAAAACTTACCCTTAAATTT 180
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pLMB510 ATTTGCACTACTGGAAAACTACCTGTTCCATGGCCAACACTTGTC 225

pLMB510 ACTACTTTGACTTATGGTGTTCAATGCTTTTCAAGATACCCAGAT 270

pLMB510 CACATGAAACGGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGT 315

pLMB510 TATGTACAGGAAAGAACTATATTTTTCAAAGATGACGGGAACTAC 360

pLMB510 AAGACACGTGCTGAAGTCAAGTTTGAAGGTGATACCCTTGTTAAT 405

pLMB510 AGAATCGAGTTAAAAGGTATTGATTTTAAAGAAGATGGAAACATT 450

pLMB510 CTTGGACACAAATTGGAATACAACTATAACTCACACAATGTATAC 495

pLMB510 ATCATGGCAGACAAACAAAAGAATGGAATCAAAGTTAACTTCAAA 540

pLMB510 ATTAGACACAACATTGAAGATGGAAGCGTTCAACTAGCAGACCAT 585

pLMB510 TATCAACAAAATACTCCAATTGGCGATGGCCCTGTCCTTTTACCA 630

pLMB510 GACAACCATTACCTGTCCACACAATCTGCCCTTTCGAAAGATCCC 675

pLMB510 AACGAAAAGAGAGACCACATGGTCCTTCTTGAGTTTGTAACAGCT 720

pLMB510 GCTGGGATTACACATGGCATGGATGAACTATACAAAAGGCCTGCA 765

pLMB510 GCAAACGACGAAAACTACGCTTTAGTAGCTCCCGGGGACGACGAC 810

pLMB510 GACAAGCATCATCACCATCATCACTAAGAATTC 843

pLMB511 CATATGTGGAGCCACCCCCAATTTGAAAAAATCGAAGGGCGGGGA 45

pLMB511 TCCCCCGGGGACGACGACGACAAGTGGAGCCACCCCCAATTTGAA 90

pLMB511 AAATAAGAATTC 102
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A.3 Clustal X Colour Scheme

Figure A.1: Clustal X Colour Scheme [329]
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A.4 Structures used as templates for homology

ScoB model

Protein PDB ID Organism
Sco1 2B7K Saccharomyces cerevisiae
Sco1 2K6V Thermus Thermophilus
Sco2 2RLI Homo sapiens
Sco1 2B7K Saccharomyces cerevisiae
Sco1 1WP0 Homo sapiens
Sco1 4TXO Bradyrhizobium diazoefficiens

Table A.2: Templates used for Phyre2 ScoB model

A.5 Signal peptide prediction

Software PCuCNt YcnI
SignalP [200] 1-27 1 - 28
Phobius [199] 1 - 29 1 - 26
Pred-TAT [232] 1 - 29 1 - 28

Table A.3: Signal peptide prediction for PCuCNt from P. denitrificans and
YcnI from N. farcinica
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A.6 Dynafit script: Competition with proteins

that bind one ligand

[task]

task = fit ;

data = equilibria ;

[mechanism]; interaction

M + L + L <==> ML.L : K1 dissociation

P + M <==> PM : K2 dissociation

[constants]

K1 = 6.30957344480194E-18

K2 = 6.1E-19?

[concentrations]

M = 0.00001

[responses]

ML.L=1

[data]

directory C:\DynaFit4\DATA

variable P

file BCA50.txt | concentrations L = 0.00005

[output]

directory C:\DynaFit4\DATA\output

[end]
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A.7 Dynafit script: Competition with proteins

that bind two ligands

[task]

task = fit ;

data = equilibria ;

[mechanism]; interaction

M + M + L + L + L + L <==> ML.L + ML.L: K1 dissociation

P + M + M <==> PM.M : K2 dissociation

[constants]

K1 = 6.30957344480194E-18

K2 = 6.1E-19?

[concentrations]

M = 0.00001

[responses]

ML.L=1

[data]

directory C:\DynaFit4\DATA

variable P

file BCA50.txt | concentrations L = 0.00005

[output]

directory C:\DynaFit4\DATA\output

[end]

242







Bibliography

1. Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O):

the dominant ozone-depleting substance emitted in the 21st century. Science

326, 123–125 (2009).

2. Climate Change 2013 - The Physical Science Basis (ed Intergovernmen-

tal Panel on Climate Change) doi:10.1017/CBO9781107415324. <http:

//ebooks.cambridge.org/ref/id/CBO9781107415324> (Cambridge Uni-

versity Press, Cambridge, 2014).

3. Sullivan, M. J., Gates, A. J., Appia-Ayme, C., Rowley, G. & Richardson,

D. J. Copper control of bacterial nitrous oxide emission and its impact on

vitamin B12-dependent metabolism. Proceedings of the National Academy of

Sciences of the United States of America 110, 19926–19931 (2013).

4. Chillappagari, S., Miethke, M., Trip, H., Kuipers, O. P. & Marahiel, M. A.

Copper acquisition is mediated by YcnJ and regulated by YcnK and CsoR

in Bacillus subtilis. Journal of bacteriology 191, 2362–2370 (2009).

5. Abriata, L. A., Banci, L, Bertini, I, Ciofi-Baffoni, S, Gkazonis, P, Spyroulias,

G. A., Vila, A. J. & Wang, S. Mechanism of CuA assembly. Nature Chemical

Biology 4, 599–601 (2008).

6. Nelson, D. L., Cox, M. M. & Lehninger, A. L. Lehninger principles of

biochemistry 5th, 45 (W. H. Freeman, 2008).

245

http://dx.doi.org/10.1017/CBO9781107415324
http://ebooks.cambridge.org/ref/id/CBO9781107415324
http://ebooks.cambridge.org/ref/id/CBO9781107415324


Copper maturation of N2OR in P. denitrificans

7. Bothe, H., Ferguson, S. J. & Newton, W. E. Biology of the nitrogen cycle

427 (Elsevier, 2007).

8. Jetten, M. S. M., Strous, M., Fuerst, J. A., Kramer, E. H. M., Logemann, S.,

Muyzer, G., van de Pas-Schoonen, K. T., Webb, R. & Kuenen, J. G. Missing

lithotroph identified as new planctomycete. Nature 400, 446–449 (1999).

9. Zumft, W. G. Cell biology and molecular basis of denitrification. Microbiology

and Molecular Biology Reviews 61, 533–616 (1997).

10. Mosier, A., Kroeze, C., Nevison, C., Oenema, O., Seitzinger, S. & van

Cleemput, O. Closing the global N2O budget: nitrous oxide emissions through

the agricultural nitrogen cycle. Nutrient Cycling in Agroecosystems 52, 225–

248 (1998).

11. Tolman, W. B. Binding and activation of N2O at transition-metal centers:

recent mechanistic insights. Angewandte Chemie 49, 1018–1024 (2010).

12. Banks, R. G. S., Henderson, R. J. & Pratt, J. M. Reactions of nitrous oxide

with some transition-metal complexes. Chemical Communications 8, 387–388

(1967).

13. Pomowski, A., Zumft, W. G., Kroneck, P. M. H. & Einsle, O. N2O binding

at a [4Cu:2S] copper-sulphur cluster in nitrous oxide reductase. Nature 477,

234–237 (2011).

14. Richardson, D., Felgate, H., Watmough, N., Thomson, A. & Baggs, E.

Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle -

could enzymic regulation hold the key? Trends in biotechnology 27, 388–397

(2009).

15. Simon, J. & Klotz, M. G. Diversity and evolution of bioenergetic systems

involved in microbial nitrogen compound transformations. Biochimica et

Biophysica Acta (BBA) - Bioenergetics 1827, 114–135 (2013).

16. Hallin, S., Philippot, L., Löffler, F. E., Sanford, R. A. & Jones, C. M.

Genomics and ecology of novel N2O-reducing microorganisms. Trends in

Microbiology 69, 2712–2718 (2017).

246



Bibliography

17. Beijerinck, M. W. & Minkman, D. C. J. Bildung und Verbrauch von Stick-

oxydul durch Bakterien. Zentralblatt für Bakteriologie, Parasitenkunde und

Infektionskrankheiten und Hygiene, Abteilung II 25, 30–63 (1910).

18. Paracoccus denitrificans PD1222 complete genome. European Nucleotide

Archive <http://www.ebi.ac.uk/ena/data/view/GCA{\_}000203895>

(2017).

19. Baker, S. C., Ferguson, S. J., Ludwig, B, Page, M. D., Richter, O. M. & van

Spanning, R. J. Molecular genetics of the genus Paracoccus: metabolically

versatile bacteria with bioenergetic flexibility. Microbiology and molecular

biology reviews 62, 1046–1078 (1998).

20. Richardson, D. J. Bacterial respiration: a flexible process for a changing

environment. English. Microbiology 146, 551–571 (2000).

21. Garcia-Horsman, J. A., Barquera, B., Rumbley, J., Ma, J. & Gennis, R. B.

The superfamily of heme-copper respiratory oxidases. Journal of Bacteriology

176, 5587–5600 (1994).

22. Pitcher, R. S. & Watmough, N. J. The bacterial cytochrome cbb3 oxidases.

Biochimica et Biophysica Acta (BBA) - Bioenergetics 1655, 388–399 (2004).

23. Pereira, M. M., Santana, M. & Teixeira, M. A novel scenario for the evolution

of haem–copper oxygen reductases. Biochimica et Biophysica Acta (BBA) -

Bioenergetics 1505, 185–208 (2001).

24. Haltia, T, Puustinen, A & Finel, M. The Paracoccus denitrificans cytochrome

aa3 has a third subunit. European journal of biochemistry 172, 543–546

(1988).

25. Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. Structure at 2.8 Å

resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature

376, 660–669 (1995).

26. Denis, M. Structure and function of cytochrome c oxidase. Biochimie 68,

459–470 (1986).

27. Ludwig, B. Terminal oxidases in Paracoccus denitrificans. Biochimica et

Biophysica Acta (BBA) - Bioenergetics 1101, 195–197 (1992).

247

http://www.ebi.ac.uk/ena/data/view/GCA{\_}000203895


Copper maturation of N2OR in P. denitrificans

28. Ekici, S., Pawlik, G., Lohmeyer, E., Koch, H.-G. & Daldal, F. Biogenesis

of cbb3-type cytochrome c oxidase in Rhodobacter capsulatus. Biochimica et

biophysica acta 1817, 898–910 (2012).

29. Preisig, O, Anthamatten, D & Hennecke, H. Genes for a microaerobically

induced oxidase complex in Bradyrhizobium japonicum are essential for

a nitrogen-fixing endosymbiosis. Proceedings of the National Academy of

Sciences of the United States of America 90, 3309–3313 (1993).

30. Carr, H. S. & Winge, D. R. Assembly of cytochrome c oxidase within the

mitochondrion. Accounts of Chemical Research 36, 309–316 (2003).

31. Banci, L., Bertini, I., Ciofi-Baffoni, S., Hadjiloi, T., Martinelli, M. & Palumaa,

P. Mitochondrial copper(I) transfer from Cox17 to Sco1 is coupled to electron

transfer. Proceedings of the National Academy of Sciences 105, 6803–6808

(2008).

32. Banci, L., Bertini, I., Cantini, F. & Ciofi-baffoni, S. Cellular copper distribu-

tion: a mechanistic systems biology approach. Cellular and Molecular Life

Sciences 67, 2563–2589 (2010).

33. Banci, L., Bertini, I., Ciofi-Baffoni, S., Katsari, E., Katsaros, N., Kubicek, K.

& Mangani, S. A copper(I) protein possibly involved in the assembly of

CuA center of bacterial cytochrome c oxidase. Proceedings of the National

Academy of Sciences of the United States of America 102, 3994–3999 (2005).

34. Romano, D. & Matteucci, F. Contrasting copper evolution in Centauri and

the Milky Way. Monthly Notices of the Royal Astronomical Society: Letters

378, 59–63 (2007).

35. Crichton, R. & Pierre, J.-L. Old iron, young copper: from Mars to Venus.

BioMetals 14, 99–112 (2001).

36. Macomber, L. & Imlay, J. A. The iron-sulfur clusters of dehydratases are

primary intracellular targets of copper toxicity. Proceedings of the National

Academy of Sciences 106, 8344–8349 (2009).

248



Bibliography

37. Changela, A., Chen, K., Xue, Y., Holschen, J., Outten, C. E., O’Halloran,

T. V. & Mondragón, A. Molecular basis of metal-ion selectivity and zepto-

molar sensitivity by CueR. Science 301, 1383–1387 (2003).

38. Finney, L. A. & O’Halloran, T. V. Transition metal speciation in the cell:

insights from the chemistry of metal ion receptors. Science 300, 931–936

(2003).

39. Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C. & O’Halloran,

T. V. Undetectable intracellular free copper: the requirement of a copper

chaperone for superoxide dismutase. Science 284, 805–808 (1999).

40. Boal, A. K. & Rosenzweig, A. C. Structural biology of copper trafficking.

Chemical Reviews 109, 4760–4779 (2009).

41. Stephen Tottey, Duncan R. Harvie & Robinson, N. J. Understanding how

cells allocate metals using metal sensors and metallochaperones. Accounts

of Chemical Research 38, 775–783 (2005).

42. Zhang, Y. & Gladyshev, V. N. Comparative genomics of trace elements:

emerging dynamic view of trace element utilization and function. Chemical

Reviews 109, 4828–4861 (2009).

43. Vita, N., Platsaki, S., Baslé, A., Allen, S. J., Paterson, N. G., Crombie, A. T.,

Murrell, J. C., Waldron, K. J. & Dennison, C. A four-helix bundle stores

copper for methane oxidation. Nature 525, 140–143 (2015).

44. Waldron, K. J. & Robinson, N. J. How do bacterial cells ensure that met-

alloproteins get the correct metal? Nature reviews. Microbiology 7, 25–35

(2009).

45. Kroll, J. S., Langford, P. R., Wilks, K. E. & Keil, A. D. Bacterial [Cu,Zn]-

superoxide dismutase: phylogenetically distinct from the eukaryotic enzyme,

and not so rare after all! Microbiology 141, 2271–2279 (1995).

249



Copper maturation of N2OR in P. denitrificans

46. Fang, F. C., DeGroote, M. A., Foster, J. W., Bäumler, A. J., Ochsner, U,

Testerman, T, Bearson, S, Giárd, J. C., Xu, Y, Campbell, G & Laessig, T.

Virulent Salmonella typhimurium has two periplasmic Cu, Zn-superoxide

dismutases. Proceedings of the National Academy of Sciences of the United

States of America 96, 7502–7507 (1999).

47. Krishnakumar, R., Kim, B., Mollo, E. A., Imlay, J. A. & Slauch, J. M.

Structural properties of periplasmic SodCI that correlate with virulence

in Salmonella enterica serovar Typhimurium. Journal of Bacteriology 189,

4343–4352 (2007).

48. Outten, F. W., Outten, C. E., Hale, J. & O’Halloran, T. V. Transcriptional

activation of an Escherichia coli copper efflux regulon by the chromosomal

MerR homologue, CueR. Journal of Biological Chemistry 275, 31024–31029

(2000).

49. Roberts, S. A., Weichsel, A., Grass, G., Thakali, K., Hazzard, J. T., Tollin,

G., Rensing, C. & Montfort, W. R. Crystal structure and electron transfer

kinetics of CueO, a multicopper oxidase required for copper homeostasis

in Escherichia coli. Proceedings of the National Academy of Sciences 99,

2766–2771 (2002).

50. Singh, S. K., Grass, G., Rensing, C. & Montfort, W. R. Cuprous oxidase

activity of CueO from Escherichia coli. Journal of bacteriology 186, 7815–

7817 (2004).

51. Lutkenhaus, J. F. Role of a major outer membrane protein in Escherichia

coli. Journal of bacteriology 131, 631–637 (1977).

52. Egler, M., Grosse, C., Grass, G. & Nies, D. H. Role of the extracytoplasmic

function protein family sigma factor RpoE in metal resistance of Escherichia

coli. Journal of bacteriology 187, 2297–2307 (2005).

53. Kim, H. J., Graham, D. W., DiSpirito, A. A., Alterman, M. A., Galeva,

N., Larive, C. K., Asunskis, D. & Sherwood, P. M. A. Methanobactin, a

copper-acquisition compound from methane-oxidizing bacteria. Science 305,

1612–1615 (2004).

250



Bibliography

54. Balasubramanian, R., Kenney, G. E. & Rosenzweig, A. C. Dual pathways for

copper uptake by methanotrophic bacteria. Journal of Biological Chemistry

286, 37313–37319 (2011).

55. Anttila, J., Heinonen, P., Nenonen, T., Pino, A., Iwaï, H., Kauppi, E., Soliy-

mani, R., Baumann, M., Saksi, J., Suni, N. & Haltia, T. Is coproporphyrin

III a copper-acquisition compound in Paracoccus denitrificans? Biochimica

et Biophysica Acta (BBA) - Bioenergetics 1807, 311–318 (2011).

56. Ekici, S., Yang, H., Koch, H.-G. & Daldal, F. Novel transporter required

for biogenesis of cbb3-type cytochrome c oxidase in Rhodobacter capsulatus.

mBio 3, 293–304 (2012).

57. Khalfaoui-Hassani, B., Verissimo, A. F., Koch, H.-G. & Daldal, F. Uncovering

the transmembrane metal binding site of the novel bacterial major facilitator

superfamily-type copper importer CcoA. mBio 7, 1981–1996 (2016).

58. Petersen, C & Møller, L. B. Control of copper homeostasis in Escherichia

coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator,

CopR. Gene 261, 289–298 (2000).

59. Radford, D. S., Kihlken, M. A., Borrelly, G. P., Harwood, C. R., Brun, N. E.

& Cavet, J. S. CopZ from Bacillus subtilis interacts in vivo with a copper

exporting CPx-type ATPase CopA. en. FEMS Microbiology Letters 220,

105–112 (2003).

60. Osman, D., Patterson, C. J., Bailey, K., Fisher, K., Robinson, N. J., Rigby,

S. E. J. & Cavet, J. S. The copper supply pathway to a Salmonella Cu,Zn-

superoxide dismutase (SodCII) involves P1B -type ATPase copper efflux and

periplasmic CueP. Molecular Microbiology 87, 466–477 (2013).

61. Loftin, I. R., Franke, S., Roberts, S. A., Weichsel, A., Héroux, A., Montfort,

W. R., Rensing, C. & McEvoy, M. M. A novel copper-binding fold for the

periplasmic copper resistance protein CusF. Biochemistry 44, 10533–10540

(2005).

251



Copper maturation of N2OR in P. denitrificans

62. Long, F., Su, C.-C., Zimmermann, M. T., Boyken, S. E., Rajashankar, K. R.,

Jernigan, R. L. & Yu, E. W. Crystal structures of the CusA efflux pump

suggest methionine-mediated metal transport. Nature 467, 484–488 (2010).

63. Su, C.-C., Yang, F., Long, F., Reyon, D., Routh, M. D., Kuo, D. W., Mokhtari,

A. K., Van Ornam, J. D., Rabe, K. L., Hoy, J. A., Lee, Y. J., Rajashankar,

K. R. & Yu, E. W. Crystal structure of the membrane fusion protein CusB

from Escherichia coli. Journal of Molecular Biology 393, 342–355 (2009).

64. Franke, S., Grass, G., Rensing, C. & Nies, D. H. Molecular analysis of the

copper-transporting efflux system CusCFBA of Escherichia coli. Journal of

bacteriology 185, 3804–3812 (2003).

65. Rensing, C. & Grass, G. Escherichia coli mechanisms of copper homeostasis

in a changing environment. Fems Microbiology Reviews 27, 197–213 (2003).

66. Cha, J. S. & Cooksey, D. A. Copper resistance in Pseudomonas syringae

mediated by periplasmic and outer membrane proteins. Proceedings of the

National Academy of Sciences of the United States of America 88, 8915–8919

(1991).

67. Brown, N. L., Barrett, S. R., Camakaris, J, Lee, B. T. & Rouch, D. A. Molec-

ular genetics and transport analysis of the copper-resistance determinant

(pco) from Escherichia coli plasmid pRJ1004. Molecular microbiology 17,

1153–1166 (1995).

68. Djoko, K. Y., Xiao, Z., Huffman, D. L. & Wedd, A. G. Conserved mechanism

of copper binding and transfer. A comparison of the copper-resistance proteins

PcoC from Escherichia coli and CopC from Pseudomonas syringae. Inorganic

Chemistry 46, 4560–4568 (2007).

69. Arnesano, F., Banci, L., Bertini, I., Felli, I. C., Luchinat, C. & Thompsett,

A. R. A strategy for the NMR characterization of type II copper(II) proteins:

the case of the copper trafficking protein CopC from Pseudomonas Syringae.

Journal of the American Chemical Society 125, 7200 –7208 (2003).

252



Bibliography

70. Arnesano, F., Banci, L., Bertini, I., Mangani, S. & Thompsett, A. R. A redox

switch in CopC: an intriguing copper trafficking protein that binds copper(I)

and copper(II) at different sites. Proceedings of the National Academy of

Sciences of the United States of America 100, 3814–3819 (2003).

71. Arnesano, F., Banci, L., Bertini, I. & Thompsett, A. R. Solution structure

of CopC. Structure 10, 1337–1347 (2002).

72. Cooksey, D. A. Copper uptake and resistance in bacteria. Molecular Micro-

biology 7, 1–5 (1993).

73. Puig, S., Rees, E. M. & Thiele, D. J. The ABCDs of periplasmic copper

trafficking. Structure 10, 1292–1295 (2002).

74. Matsubara, T & Iwasaki, H. A new-type of copper-protein from Alcaligenes

faecalis. Journal of biochemistry 71, 747–750 (1972).

75. Iwasaki, H., Saigo, T. & Matsubara, T. Copper as a controlling factor of

anaerobic growth under N2O and biosynthesis of N2O reductase in denitrify-

ing bacteria. Plant and Cell Physiology 21, 1573–1584 (1980).

76. Walter, G, Matsubara, T., Frunzke, K. & Zumft, W. G. Modulation by

copper of the products of nitrite respiration in Pseudomonas perfectomarinus.

Journal of bacteriology 149, 816–823 (1982).

77. Viebrock, A & Zumft, W. G. Molecular cloning, heterologous expression, and

primary structure of the structural gene for the copper enzyme nitrous oxide

reductase from denitrifying Pseudomonas stutzeri. Journal of bacteriology

170, 4658–4668 (1988).

78. Sanford, R. a., Wagner, D. D., Wu, Q., Chee-Sanford, J. C., Thomas, S. H.,

Cruz-García, C., Rodríguez, G., Massol-Deyá, A., Krishnani, K. K., Rita-

lahti, K. M., Nissen, S., Konstantinidis, K. T. & Löffler, F. E. Unexpected

nondenitrifier nitrous oxide reductase gene diversity and abundance in soils.

Proceedings of the National Academy of Sciences of the United States of

America 109, 19709–19714 (2012).

253



Copper maturation of N2OR in P. denitrificans

79. Zumft, W. G. & Kroneck, P. M. H. Respiratory transformation of nitrous

oxide (N2O) to dinitrogen by Bacteria and Archaea. Advances in microbial

physiology 52, 107–227 (2007).

80. Pauleta, S. R., Dell’Acqua, S. & Moura, I. Nitrous oxide reductase. Coordi-

nation Chemistry Reviews 257, 332–349 (2013).

81. Pauleta, S. R., Carreira, C. & Moura, I. in Metalloenzymes in Denitrification

141–169 (Royal Society of Chemistry, Cambridge, 2016).

82. Torres, M., Simon, J., Rowley, G., Bedmar, E., Richardson, D., Gates, A. &

Delgado, M. in Advances in microbial physiology 353–432 (2016).

83. Zumft, W. G. & Matsubara, T. A novel kind of multi-copper protein as

terminal oxidoreductase of nitrous oxide respiration in Pseudomonas perfec-

tomarinus. FEBS Letters 148, 107–112 (1982).

84. Jeannine M. Chan, John A. Bollinger, Cassidy L. Grewell & Dooley, D. M.

Reductively activated nitrous oxide reductase reacts directly with substrate.

Journal of the American Chemical Society 126, 3030–3031 (2004).

85. Prudencio, M., Pereira, A. S., Tavares, P., Besson, S., Cabrito, I., Brown, K.,

Samyn, B., Devreese, B., Van Beeumen, J., Rusnak, F., Fauque, G., Moura,

J. J. G., Tegoni, M., Cambillau, C. & Moura, I. Purification, characteriza-

tion, and preliminary crystallographic study of copper-containing nitrous

oxide reductase from Pseudomonas nautica 617. Biochemistry 39, 3899–3907

(2000).

86. SooHoo, C. K. & Hollocher, T. C. Purification and characterization of nitrous

oxide reductase from Pseudomonas aeruginosa strain P2. The Journal of

biological chemistry 266, 2203–2209 (1991).

87. Kristjansson, J. K. & Hollocher, T. C. First practical assay for soluble nitrous

oxide reductase of denitrifying bacteria and a partial kinetic characterization.

The Journal of biological chemistry 255, 704–707 (1980).

88. Rasmussen, T., Berks, B. C., Butt, J. N. & Thomson, A. J. Multiple forms

of the catalytic centre, CuZ, in the enzyme nitrous oxide reductase from

Paracoccus pantotrophus. The Biochemical journal 364, 807–815 (2002).

254



Bibliography

89. Wunsch, P., Herb, M., Wieland, H., Schiek, U. M. & Zumft, W. G. Re-

quirements for CuA and Cu-S center assembly of nitrous oxide reductase

deduced from complete periplasmic enzyme maturation in the nondenitrifier

Pseudomonas putida. Journal of Bacteriology 185, 887–896 (2003).

90. Riester, J, Zumft, W. G. & Kroneck, P. M. Nitrous oxide reductase from

Pseudomonas stutzeri. Redox properties and spectroscopic characterization of

different forms of the multicopper enzyme. European journal of biochemistry

178, 751–762 (1989).

91. Kroneck, P. M., Antholine, W. A., Riester, J. & Zumft, W. G. The nature

of the cupric site in nitrous oxide reductase and of CuA in cytochrome c

oxidase. FEBS Letters 248, 212–213 (1989).

92. Dell’Acqua, S., Pauleta, S. R., Monzani, E., Pereira, A. S., Casella, L.,

Moura, J. J. G. & Moura, I. Electron transfer complex between nitrous oxide

reductase and cytochrome c552 from Pseudomonas nautica: cinetic, nuclear

magnetic resonance, and docking studies. Biochemistry 47, 10852–10862

(2008).

93. Wüst, A., Schneider, L., Pomowski, A., Zumft, W. G., Kroneck, P. M. H.

& Einsle, O. Nature’s way of handling a greenhouse gas: the copper-sulfur

cluster of purple nitrous oxide reductase. Biological chemistry 393, 1067–

1077 (2012).

94. Wallace, A. C., Laskowski, R. A. & Thornton, J. M. LIGPLOT: a pro-

gram to generate schematic diagrams of protein-ligand interactions. Protein

engineering 8, 127–34 (1995).

95. Dooley, D. M., McGuirl, M. A., Rosenzweig, A. C., Landin, J. A., Scott,

R. A., Zumft, W. G., Devlin, F. & Stephens, P. J. Spectroscopic studies of

the copper sites in wild-type Pseudomonas stutzeri N2O reductase and in an

inactive protein isolated from a mutant deficient in copper-site biosynthesis.

Inorganic Chemistry 30, 3006–3011 (1991).

255



Copper maturation of N2OR in P. denitrificans

96. Zumft, W. G. Biogenesis of the bacterial respiratory CuA, Cu-S enzyme

nitrous oxide reductase. Journal of Molecular Microbiology and Biotechnology

10, 154–166 (2005).

97. Chan, J. M., Bollinger, J. A., Grewell, C. L. & Dooley, D. M. Reductively

activated nitrous oxide reductase reacts directly with substrate. Journal of

the American Chemical Society 126, 3030–3031 (2004).

98. Bar-Nahum, I., Gupta, A. K., Huber, S. M., Ertem, M. Z., Cramer, C. J. &

Tolman, W. B. Reduction of nitrous oxide to dinitrogen by a mixed valent

tricopper-disulfido cluster. Journal of the American Chemical Society 131,

2812–2814 (2009).

99. Lambden, P. R. & Guest, J. R. Mutants of Escherichia coli K12 unable to use

fumarate as an anaerobic electron acceptor. Journal of General Microbiology

97, 145–160 (1976).

100. Kiley, P. J. & Beinert, H. Oxygen sensing by the global regulator, FNR: the

role of the iron-sulfur cluster. FEMS microbiology reviews 22, 341–52 (1998).

101. Hutchings, M. I. & Spiro, S. The nitric oxide regulated nor promoter of

Paracoccus denitrificans. Microbiology 146, 2635–2641 (2000).

102. Hutchings, M. I., Crack, J. C., Shearer, N., Thompson, B. J., Thomson, A. J.

& Spiro, S. Transcription factor FnrP from Paracoccus denitrificans contains

an iron-sulfur cluster and is activated by anoxia: Identification of essential

cysteine residues. Journal of Bacteriology 184, 503–508 (2002).

103. Van Spanning, R. J., De Boer, A. P., Reijnders, W. N., Westerhoff, H. V.,

Stouthamer, A. H. & Van Der Oost, J. FnrP and NNR of Paracoccus

denitrificans are both members of the FNR family of transcriptional activators

but have distinct roles in respiratory adaptation in response to oxygen

limitation. Molecular microbiology 23, 893–907 (1997).

104. Wood, N. J., Alizadeh, T, Bennett, S, Pearce, J, Ferguson, S. J., Richardson,

D. J. & Moir, J. W. Maximal expression of membrane-bound nitrate reductase

in Paracoccus is induced by nitrate via a third FNR-like regulator named

NarR. Journal of bacteriology 183, 3606–3613 (2001).

256



Bibliography

105. Bergaust, L, van Spanning, R. J. M., Frostegard, A & Bakken, L. R. Ex-

pression of nitrous oxide reductase in Paracoccus denitrificans is regulated

by oxygen and nitric oxide through FnrP and NNR. Microbiology-Sgm 158,

826–834 (2012).

106. Wunsch, P & Zumft, W. G. Functional domains of NosR, a novel transmem-

brane iron-sulfur flavoprotein necessary for nitrous oxide respiration. Journal

of Bacteriology 187, 1992–2001 (2005).

107. Zhang, L., Trncik, C., Andrade, S. L. & Einsle, O. The flavinyl transferase

ApbE of Pseudomonas stutzeri matures the NosR protein required for nitrous

oxide reduction. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1858,

95–102 (2017).

108. Brondijk, T. H. C., Nilavongse, A., Filenko, N., Richardson, D. J. & Cole,

J. A. NapGH components of the periplasmic nitrate reductase of Escherichia

coli K-12: location, topology and physiological roles in quinol oxidation and

redox balancing. The Biochemical journal 379, 47–55 (2004).

109. Honisch, U. & Zumft, W. G. Operon structure and regulation of the nos

gene region of Pseudomonas stutzeri, encoding an ABC-Type ATPase for

maturation of nitrous oxide reductase. Journal of Bacteriology 185, 1895–

1902 (2003).

110. Vollack, K. U. & Zumft, W. G. Nitric oxide signaling and transcriptional con-

trol of denitrification genes in Pseudomonas stutzeri. Journal of Bacteriology

183, 2516–2526 (2001).

111. Cuypers, H, Viebrock-Sambale, A & Zumft, W. G. NosR, a membrane-bound

regulatory component necessary for expression of nitrous oxide reductase in

denitrifying Pseudomonas stutzeri. Journal of Bacteriology 174, 5332–5339

(1992).

112. Wunsch, P., Körner, H., Neese, F., van Spanning, R. J., Kroneck, P. M. &

Zumft, W. G. NosX function connects to nitrous oxide (N2O) reduction by

affecting the CuZ center of NosZ and its activity in vivo. FEBS Letters 579,

4605–4609 (2005).

257



Copper maturation of N2OR in P. denitrificans

113. Luque-Almagro, V. M., Lyall, V. J., Ferguson, S. J., Roldán, M. D., Richard-

son, D. J. & Gates, A. J. Nitrogen oxyanion-dependent dissociation of a

two-component complex that regulates bacterial nitrate assimilation. Journal

of Biological Chemistry 288, 29692–29702 (2013).

114. Sánchez, C., Mitsui, H. & Minamisawa, K. Regulation of nitrous oxide reduc-

tase genes by NasT-mediated transcription antitermination in Bradyrhizo-

bium diazoefficiens. Environmental Microbiology Reports 9, 389–396 (2017).

115. Koropatkin, N. M., Pakrasi, H. B. & Smith, T. J. Atomic structure of a

nitrate-binding protein crucial for photosynthetic productivity. Proceedings

of the National Academy of Sciences 103, 9820–9825 (2006).

116. Shu, C. J. & Zhulin, I. B. ANTAR: an RNA-binding domain in transcription

antitermination regulatory proteins. Trends in biochemical sciences 27, 3–5

(2002).

117. Sánchez, C., Itakura, M., Okubo, T., Matsumoto, T., Yoshikawa, H., Gotoh,

A., Hidaka, M., Uchida, T. & Minamisawa, K. The nitrate-sensing NasST

system regulates nitrous oxide reductase and periplasmic nitrate reductase

in Bradyrhizobium japonicum. Environmental Microbiology 16, 3263–3274

(2014).

118. Minagawa, N. & Zumft, W. G. Cadmium-copper antagonism in the acti-

vation of periplasmic nitrous oxide reductase of copper-deficient cells from

Pseudomonas stutzeri. Biology of Metals 1, 117–122 (1988).

119. Granger, J. & Ward, B. B. Accumulation of nitrogen oxides in copper-limited

cultures of denitrifying bacteria. Limnology and Oceanography 48, 313–318

(2003).

120. Moffett, J. W., Tuit, C. B. & Ward, B. B. Chelator-induced inhibition of

copper metalloenzymes in denitrifying bacteria. Limnology and Oceanography

57, 272–280 (2012).

258



Bibliography

121. Jacobson, F., Pistorius, A., Farkas, D., De Grip, W., Hansson, O., Sjölin, L.

& Neutze, R. pH dependence of copper geometry, reduction potential, and

nitrite affinity in nitrite reductase. The Journal of biological chemistry 282,

6347–6355 (2007).

122. Felgate, H, Giannopoulos, G, Sullivan, M. J., Gates, A. J., Clarke, T. A.,

Baggs, E, Rowley, G & Richardson, D. J. The impact of copper, nitrate and

carbon status on the emission of nitrous oxide by two species of bacteria with

biochemically distinct denitrification pathways. Environmental Microbiology

14, 1788–1800 (2012).

123. Bertani, G. Studies on lysogenesis. The mode of phage liberation by lysogenic

Escherichia coli. Journal of bacteriology 62, 293–300 (1951).

124. Bertani, G. Lysogeny at mid-twentieth century: P1, P2, and other experi-

mental systems. Journal of bacteriology 186, 595–600 (2004).

125. De Vries, G. E., Harms, N., Hoogendijk, J. & Stouthamer, A. H. Isolation

and characterization of Paracoccus denitrificans mutants with increased

conjugation frequencies and pleiotropic loss of a (nGATCn) DNA-modifying

property. Archives of Microbiology 152, 52–57 (1989).

126. Wood, W. B. Host specificity of DNA produced by Escherichia coli: bacterial

mutations affecting the restriction and modification of DNA. Journal of

molecular biology 16, 118–133 (1966).

127. Woodcock, D. M., Crowther, P. J., Doherty, J, Jefferson, S, DeCruz, E,

Noyer-Weidner, M, Smith, S. S., Michael, M. Z. & Graham, M. W. Quanti-

tative evaluation of Escherichia coli host strains for tolerance to cytosine

methylation in plasmid and phage recombinants. Nucleic acids research 17,

3469–3478 (1989).

128. Messing, J. A multipurpose cloning system based on the single-stranded

DNA bacteriophage M13. Recombinant DNA technical bulletin 3, 43–48

(1979).

259



Copper maturation of N2OR in P. denitrificans

129. Yanisch-Perron, C, Vieira, J & Messing, J. Improved M13 phage cloning

vectors and host strains: nucleotide sequences of the M13mp18 and pUC19

vectors. Gene 33, 103–119 (1985).

130. Harms, N., de Vries, G. E., Maurer, K., Veltkamp, E. & Stouthamer, A. H.

Isolation and characterization of Paracoccus denitrificans mutants with

defects in the metabolism of one-carbon compounds. Journal of Bacteriology

164, 1064–1070 (1985).

131. Vishniac, W. & Santer, M. The thiobacilli. Bacteriological reviews 21, 195–

213 (1957).

132. Robertson, L. A. & Kuenen, J. G. Thiosphaera pantotropha gen. nov. sp.

nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium.

Microbiology 129, 2847–2855 (1983).

133. Bradford, M. M. A rapid and sensitive method for the quantitation of

microgram quantities of protein utilizing the principle of protein-dye binding.

Analytical biochemistry 72, 248–254 (1976).

134. Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R. & Leunissen,

J. A. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids

Research 35, 71–74 (2007).

135. Kalendar, R., Lee, D. & Schulman, A. H. in Methods in molecular biology

271–302 (2014).

136. Rutherford, K, Parkhill, J, Crook, J, Horsnell, T, Rice, P, Rajandream, M. A.

& Barrell, B. Artemis: sequence visualization and annotation. Bioinformatics

(Oxford, England) 16, 944–945 (2000).

137. Cohen, S. N., Chang, A. C. & Hsu, L. Nonchromosomal antibiotic resistance

in bacteria: genetic transformation of Escherichia coli by R-factor DNA.

Proceedings of the National Academy of Sciences of the United States of

America 69, 2110–2114 (1972).

260



Bibliography

138. Figurski, D. H. & Helinski, D. R. Replication of an origin-containing deriva-

tive of plasmid RK2 dependent on a plasmid function provided in trans.

Proceedings of the National Academy of Sciences of the United States of

America 76, 1648–1652 (1979).

139. Johnston, A. W. B., Beynon, J. L., Buchanan-Wollaston, A. V., Setchell,

S. M., Hirsch, P. R. & Beringer, J. E. High frequency transfer of nodulating

ability between strains and species of Rhizobium. Nature 276, 634–636

(1978).

140. Beringer, J. E. & Hopwood, D. A. Chromosomal recombination and mapping

in Rhizobium leguminosarum. Nature 264, 291–293 (1976).

141. Laemmli, U. K. Cleavage of structural proteins during the assembly of the

head of bacteriophage T4. Nature 227, 680–685 (1970).

142. Williams, D. E. & Reisfeld, R. A. Disc electrophoresis in polyacrylamide

gels: extension to new conditions of pH and buffer. Annals of the New York

Academy of Sciences 121, 373–381 (1964).

143. Schafer-Nielsen, C, Svendsen, P. J. & Rose, C. Separation of macromolecules

in isotachophoresis systems involving single or multiple counterions. Journal

of biochemical and biophysical methods 3, 97–128 (1980).

144. Kyhse-Andersen, J. Electroblotting of multiple gels: a simple apparatus

without buffer tank for rapid transfer of proteins from polyacrylamide to

nitrocellulose. Journal of biochemical and biophysical methods 10, 203–209

(1984).

145. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E.

The Phyre2 web portal for protein modeling, prediction and analysis. Nature

Protocols 10, 845–858 (2015).

146. Schrödinger, L. The PyMOL Molecular Graphics System, Version 1.8 2015.

147. Tett, A. J., Rudder, S. J., Bourdes, A., Karunakaran, R. & Poole, P. S.

Regulatable vectors for environmental gene expression in alphaproteobacteria.

Applied and Environmental Microbiology 78, 7137–7140 (2012).

261



Copper maturation of N2OR in P. denitrificans

148. Bond, S. R. & Naus, C. C. RF-Cloning.org: an online tool for the design of

restriction-free cloning projects. Nucleic Acids Research 40, 209–213 (2012).

149. Schäfer, a, Tauch, A, Jäger, W, Kalinowski, J, Thierbach, G & Pühler, A.

Small mobilizable multi-purpose cloning vectors derived from the Escherichia

coli plasmids pK18 and pK19: selection of defined deletions in the chromosome

of Corynebacterium glutamicum. Gene 145, 69–73 (1994).

150. Ghose, S., Tao, Y., Conley, L. & Cecchini, D. Purification of monoclonal anti-

bodies by hydrophobic interaction chromatography under no-salt conditions.

mAbs 5, 795–800 (2013).

151. Laue TM, Shah BD, R. T.&.P. S. Computer aided interpretation of an-

alytical sedimentation data for proteins. In the analytical ultracentrifuge

in biochemistry and polymer science. Royal Society of Chemistry, 90–125

(1992).

152. B, D. Ultrascan 2003.

153. Magyar, J. S. & Godwin, H. A. Spectropotentiometric analysis of metal

binding to structural zinc-binding sites: accounting quantitatively for pH

and metal ion buffering effects. Analytical Biochemistry 320, 39–54 (2003).

154. Xiao, Z. &Wedd, A. G. The challenges of determining metal–protein affinities.

Natural Product Reports 27, 768 (2010).

155. Kuzmič, P. Program DYNAFIT for the analysis of enzyme kinetic data:

application to HIV proteinase. Analytical Biochemistry 237, 260–273 (1996).

156. Bioisis: scatter 2017. <http://www.bioisis.net/scatter> (2017).

157. Petoukhov, M. V., Franke, D., Shkumatov, A. V., Tria, G., Kikhney, A. G.,

Gajda, M., Gorba, C., Mertens, H. D. T., Konarev, P. V. & Svergun, D. I.

New developments in the ATSAS program package for small-angle scattering

data analysis. Journal of Applied Crystallography 45, 342–350 (2012).

158. Svergun, D. I. Determination of the regularization parameter in indirect-

transform methods using perceptual criteria. Journal of Applied Crystallog-

raphy 25, 495–503 (1992).

262

http://www.bioisis.net/scatter


Bibliography

159. Franke, D. & Svergun, D. I. DAMMIF, a program for rapid ab-initio shape

determination in small-angle scattering. Journal of Applied Crystallography

42, 342–346 (2009).

160. Volkov, V. V. & Svergun, D. I. Uniqueness of ab initio shape determination

in small-angle scattering. Journal of Applied Crystallography 36, 860–864

(2003).

161. Kozin, M. B. & Svergun, D. I. Automated matching of high- and low-

resolution structural models. Journal of Applied Crystallography 34, 33–41

(2001).

162. Rambo, R. P. & Tainer, J. A. Accurate assessment of mass, models and

resolution by small-angle scattering. Nature 496, 477–481 (2013).

163. Schneidman-Duhovny, D., Hammel, M., Tainer, J. A. & Sali, A. Accurate

SAXS profile computation and its assessment by contrast variation experi-

ments. Biophysical Journal 105, 962–974 (2013).

164. Svergun, D., Barberato, C. & Koch, M. H. J. CRYSOL-a program to eval-

uate X-ray solution scattering of biological macromolecules from atomic

coordinates. Journal of Applied Crystallography 28, 768–773 (1995).

165. Svergun, D. I., Petoukhov, M. V. & Koch, M. H. Determination of domain

structure of proteins from X-ray solution scattering. Biophysical journal 80,

2946–53 (2001).

166. Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie,

A. G. W. iMOSFLM: a new graphical interface for diffraction-image process-

ing with MOSFLM. Acta crystallographica. Section D, Biological crystallog-

raphy 67, 271–281 (2011).

167. Incardona, M.-F., Bourenkov, G. P., Levik, K., Pieritz, R. A., Popov, A. N.

& Svensson, O. EDNA : a framework for plugin-based applications applied

to X-ray experiment online data analysis. Journal of Synchrotron Radiation

16, 872–879 (2009).

168. Winter, G. XIA2: an expert system for macromolecular crystallography data

reduction. Journal of Applied Crystallography 43, 186–190 (2010).

263



Copper maturation of N2OR in P. denitrificans

169. Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P.,

Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W., McCoy,

A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A.,

Powell, H. R., Read, R. J., Vagin, A. & Wilson, K. S. Overview of the CCP4

suite and current developments. Acta crystallographica. Section D, Biological

crystallography 67, 235–242 (2011).

170. Pannu, N. S., Waterreus, W.-J., Skubák, P., Sikharulidze, I., Abrahams,

J. P. & de Graaff, R. A. G. Recent advances in the CRANK software

suite for experimental phasing. Acta Crystallographica Section D Biological

Crystallography 67, 331–337 (2011).

171. Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A.,

Nicholls, R. A., Winn, M. D., Long, F. & Vagin, A. A. REFMAC5 for

the refinement of macromolecular crystal structures. Acta crystallographica.

Section D, Biological crystallography 67, 355–367 (2011).

172. Vagin, A. & Lebedev, A. MoRDa, an automatic molecular replacement

pipeline. Acta Crystallographica Section A Foundations and Advances 71,

19 (2015).

173. Buggy, J & Bauer, C. E. Cloning and characterization of senC, a gene

involved in both aerobic respiration and photosynthesis gene expression in

Rhodobacter capsulatus. Journal of bacteriology 177, 6958–6965 (1995).

174. Eraso, J. M. & Kaplan, S. Oxygen-insensitive synthesis of the photosynthetic

membranes of Rhodobacter sphaeroides: a mutant histidine kinase. Journal

of bacteriology 177, 2695–2706 (1995).

175. Mattatall, N. R., Jazairi, J & Hill, B. C. Characterization of YpmQ, an

accessory protein required for the expression of cytochrome c oxidase in

Bacillus subtilis. The Journal of biological chemistry 275, 28802–28809

(2000).

176. Chinenov, Y. V. Cytochrome c oxidase assembly factors with a thioredoxin

fold are conserved among prokaryotes and eukaryotes. Journal of molecular

medicine 78, 239–242 (2000).

264



Bibliography

177. Lucia, B., Bertini, I., Cavallaro, G. & Rosato, A. The functions of Sco

proteins from genome-based analysis. Proteome 6, 1568–1579 (2007).

178. Arnesano, F., Banci, L., Bertini, I. & Martinelli, M. Ortholog search of

proteins involved in copper delivery to cytochrome c oxidase and functional

analysis of paralogs and gene neighbors by genomic context. Proteome 4,

63–70 (2005).

179. Porcelli, D., Oliva, M., Duchi, S., Latorre, D., Cavaliere, V., Barsanti, P.,

Villani, G., Gargiulo, G. & Caggese, C. Genetic, functional and evolutionary

characterization of scox, the Drosophila melanogaster ortholog of the human

SCO1 gene. Mitochondrion 10, 433–448 (2010).

180. Banci, L, Bertini, I, Cavallaro, G & Ciofi-Baffoni, S. Seeking the determinants

of the elusive functions of Sco proteins. FEBS Journal 278, 2244–2262 (2011).

181. Martin, J. L. Thioredoxin: a fold for all reasons. Structure 3, 245–250 (1995).

182. Banci, L., Bertini, I., Ciofi-Baffoni, S., Kozyreva, T., Mori, M. & Wang, S.

Sco proteins are involved in electron transfer processes. Journal of biological

inorganic chemistry 16, 391–403 (2011).

183. Badrick, A. C., Hamilton, A. J., Bernhardt, P. V., Jones, C. E., Kappler, U.,

Jennings, M. P. & McEwan, A. G. PrrC, a Sco homologue from Rhodobacter

sphaeroides, possesses thiol-disulfide oxidoreductase activity. FEBS Letters

581, 4663–4667 (2007).

184. Williams, J. C., Sue, C., Banting, G. S., Yang, H., Glerum, D. M., Hendrick-

son, W. A. & Schon, E. A. Crystal structure of human SCO1: implications for

redox signaling by a mitochondrial cytochrome c oxidase "assembly" protein.

The Journal of biological chemistry 280, 15202–15211 (2005).

185. Blundell, K. L.I. M., Wilson, M. T., Svistunenko, D. A., Vijgenboom, E.

& Worrall, J. A. R. Morphological development and cytochrome c oxidase

activity in Streptomyces lividans are dependent on the action of a copper

bound Sco protein. Open Biology 3 (2013).

265



Copper maturation of N2OR in P. denitrificans

186. Banci, L., Bertini, I., Calderone, V., Ciofi-Baffoni, S., Mangani, S., Martinelli,

M., Palumaa, P. & Wang, S. A hint for the function of human Sco1 from

different structures. Proceedings of the National Academy of Sciences of the

United States of America 103, 8595–8600 (2006).

187. Banci, L., Bertini, I., Ciofi-Baffoni, S., Gerothanassis, I. P., Leontari, I.,

Martinelli, M., Wang, S., Yaono, R., Yoshikawa, S. & Robinson, B. A

structural characterization of human SCO2. Structure 15, 1132–1140 (2007).

188. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy

and high throughput. Nucleic acids research 32, 1792–1797 (2004).

189. Nittis, T., George, G. N. & Winge, D. R. Yeast Sco1, a protein essential

for cytochrome c oxidase function is a Cu(I)-binding protein. Journal of

Biological Chemistry 276, 42520–42526 (2001).

190. Rentzsch, A, Krummeck-Weiss, G, Hofer, A, Bartuschka, A, Ostermann, K

& Rödel, G. Mitochondrial copper metabolism in yeast: mutational analysis

of Sco1p involved in the biogenesis of cytochrome c oxidase. Current genetics

35, 103–108 (1999).

191. Leary, S. C., Cobine, P. A., Kaufman, B. A., Guercin, G.-H., Mattman, A.,

Palaty, J., Lockitch, G., Winge, D. R., Rustin, P., Horvath, R. & Shoubridge,

E. A. The human cytochrome c oxidase assembly factors SCO1 and SCO2

have regulatory roles in the maintenance of cellular copper homeostasis. Cell

metabolism 5, 9–20 (2007).

192. Matoba, S., Kang, J.-G., Patino, W. D., Wragg, A., Boehm, M., Gavrilova,

O., Hurley, P. J., Bunz, F. & Hwang, P. M. p53 regulates mitochondrial

respiration. Science 312, 5780 (2006).

193. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton,

G. J. Jalview Version 2-a multiple sequence alignment editor and analysis

workbench. Bioinformatics 25, 1189–1191 (2009).

194. Pedro Reche. Sequence Identity And Similarity (SIAS) <http://imed.med.

ucm.es/Tools/sias.html> (2017).

266

http://imed.med.ucm.es/Tools/sias.html
http://imed.med.ucm.es/Tools/sias.html


Bibliography

195. Dorman, C. J. H-NS: a universal regulator for a dynamic genome. Nature

Reviews Microbiology 2, 391–400 (2004).

196. Elsen, S., Swem, L. R., Swem, D. L. & Bauer, C. E. RegB/RegA, a highly

conserved redox-responding global two-component regulatory system. Mi-

crobiology and Molecular Biology Reviews 68, 263–279 (2004).

197. Swem, L. R., Kraft, B. J., Swem, D. L., Setterdahl, A. T., Masuda, S.,

Knaff, D. B., Zaleski, J. M. & Bauer, C. E. Signal transduction by the global

regulator RegB is mediated by a redox-active cysteine. The EMBO journal

22, 4699–4708 (2003).

198. Dash, B. P., Alles, M., Bundschuh, F. A., Richter, O.-M. & Ludwig, B.

Protein chaperones mediating copper insertion into the CuA site of the

aa3-type cytochrome c oxidase of Paracoccus denitrificans. Biochimica et

Biophysica Acta (BBA) - Bioenergetics 1847, 202–211 (2015).

199. Kall, L., Krogh, A. & Sonnhammer, E. L. Advantages of combined trans-

membrane topology and signal peptide prediction–the Phobius web server.

Nucleic Acids Research 35, 429–432 (2007).

200. Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0:

discriminating signal peptides from transmembrane regions. Nature Methods

8, 785–786 (2011).

201. Andruzzi, L., Nakano, M., Nilges, M. J. & Blackburn, N. J. Spectroscopic

studies of metal binding and metal selectivity in Bacillus subtilis BSco, a

homologue of the yeast mitochondrial protein Sco1p. Journal of the American

Chemical Society, 16548–16558 (2005).

202. Siluvai, G. S., Nakano, M., Mayfield, M. & Blackburn, N. J. The essential role

of the Cu(II) state of Sco in the maturation of the CuA center of cytochrome

oxidase: evidence from H135Met and H135SeM variants of the Bacillus

subtilis Sco. Journal of biological inorganic chemistry 16, 285–297 (2011).

203. Banci, L., Bertini, I., Ciofi-Baffoni, S., Kozyreva, T., Zovo, K. & Palumaa, P.

Affinity gradients drive copper to cellular destinations. Nature 465, 645–648

(2010).

267



Copper maturation of N2OR in P. denitrificans

204. Ford, P. C. & Vogler, A. Photochemical and photophysical properties of

tetranuclear and hexanuclear clusters of metals with d10 and s2 electronic

configurations. Accounts of Chemical Research 26, 220–226 (1993).

205. Pountney, D. L., Schauwecker, I, Zarn, J & Vasák, M. Formation of mam-

malian Cu8-metallothionein in vitro: evidence for the existence of two Cu(I)4-

thiolate clusters. Biochemistry 33, 9699–9705 (1994).

206. Lakowicz, J. R. Principles of fluorescence spectroscopy 954 (Springer, 2006).

207. Vivian, J. T. & Callis, P. R. Mechanisms of tryptophan fluorescence shifts

in proteins. Biophysical Journal 80, 2093–2109 (2001).

208. Mertens, H. D. & Svergun, D. I. Structural characterization of proteins and

complexes using small-angle X-ray solution scattering. Journal of Structural

Biology 172, 128–141 (2010).

209. Peng, M., Cascio, D. & Egea, P. F. Crystal structure and solution character-

ization of the thioredoxin-2 from Plasmodium falciparum, a constituent of

an essential parasitic protein export complex. Biochemical and Biophysical

Research Communications 456, 403–409 (2015).

210. Svergun, D. Restoring low resolution structure of biological macromolecules

from solution scattering using simulated annealing. Biophysical Journal 76,

2879–2886 (1999).

211. Frangipani, E. & Haas, D. Copper acquisition by the SenC protein regulates

aerobic respiration in Pseudomonas aeruginosa PAO1. FEMS Microbiology

Letters 298, 234–240 (2009).

212. Lohmeyer, E., Schröder, S., Pawlik, G., Trasnea, P.-I., Peters, A., Daldal, F.

& Koch, H.-G. The ScoI homologue SenC is a copper binding protein that

interacts directly with the cbb3 type cytochrome oxidase in Rhodobacter

capsulatus. Biochimica et biophysica acta 1817, 2005–2015 (2012).

213. Horng, Y.-C., Leary, S. C., Cobine, P. A., Young, F. B. J., George, G. N.,

Shoubridge, E. A. & Winge, D. R. Human Sco1 and Sco2 function as copper-

binding proteins. The Journal of biological chemistry 280, 34113–34122

(2005).

268



Bibliography

214. Banci, L., Bertini, I., Ciofi-Baffoni, S., Leontari, I., Martinelli, M., Palumaa,

P., Sillard, R. & Wang, S. Human Sco1 functional studies and pathological

implications of the P174L mutant. Proceedings of the National Academy of

Sciences of the United States of America 104, 15–20 (2007).

215. Davidson, D. E. & Hill, B. C. Stability of oxidized, reduced and copper

bound forms of Bacillus subtilis Sco. Biochimica et biophysica acta 1794,

275–281 (2009).

216. Blundell, K. L.I. M., Hough, M. A., Vijgenboom, E. & Worrall, J. A. R.

Structural and mechanistic insights into an extracytoplasmic copper traf-

ficking pathway in Streptomyces lividans. Biochemical Journal 459, 525–538

(2014).

217. Rigby, K., Cobine, P. A., Khalimonchuk, O. & Winge, D. R. Mapping the

functional interaction of Sco1 and Cox2 in cytochrome oxidase biogenesis.

The Journal of biological chemistry 283, 15015–15022 (2008).

218. Bühler, D., Rossmann, R., Landolt, S., Balsiger, S., Fischer, H.-M. & Hen-

necke, H. Disparate pathways for the biogenesis of cytochrome oxidases in

Bradyrhizobium japonicum. The Journal of biological chemistry 285, 15704–

15713 (2010).

219. Beers, J., Glerum, D. M. & Tzagoloff, A. Purification and characterization

of yeast Sco1p, a mitochondrial copper protein. The Journal of biological

chemistry 277, 22185–22190 (2002).

220. Siluvai, G. S., Mayfield, M., Nilges, M. J., DeBeer George, S. & Blackburn,

N. J. Anatomy of a red copper center: spectroscopic identification and

reactivity of the copper centers of Bacillus subtilis Sco and its cys-to-ala

variants. Journal of the American Chemical Society 132, 5215–5226 (2010).

221. Holm, R. H., Kennepohl, P. & Solomon, E. I. Structural and functional

aspects of metal sites in biology. Chemical reviews 96, 2239–2314 (1996).

222. Lieberman, R. L., Arciero, D. M., Hooper, A. B. & Rosenzweig, A. C.

Crystal structure of a novel red copper protein from Nitrosomonas europaea.

Biochemistry 40, 5674–5681 (2001).

269



Copper maturation of N2OR in P. denitrificans

223. Ye, Q., Imriskova-Sosova, I., Bruce C. Hill & Jia, Z. Identification of a

disulfide switch in BsSco, a member of the Sco family of cytochrome c

oxidase assembly proteins. Biochemistry 44, 2934–2942 (2005).

224. Balatri, E., Banci, L., Bertini, I., Cantini, F. & Ciofi-Baffoni, S. Solution

structure of Sco1: a thioredoxin-like protein involved in cytochrome c oxidase

assembly. Structure, 1431–1443 (2003).

225. McEwan, A. G., Lewin, A., Davy, S. L., Boetzel, R., Leech, A., Walker, D.,

Wood, T. & Moore, G. R. PrrC from Rhodobacter sphaeroides, a homologue

of eukaryotic Sco proteins, is a copper-binding protein and may have a

thiol-disulfide oxidoreductase activity. FEBS Letters 518, 10–16 (2002).

226. Singleton, C., Banci, L., Ciofi-Baffoni, S., Tenori, L., Kihlken, M. A., Boetzel,

R. & Le Brun, N. E. Structure and Cu(I)-binding properties of the N-terminal

soluble domains of Bacillus subtilis CopA. The Biochemical journal 411,

571–579 (2008).

227. Kihlken, M. A., Leech, A. P. & Le Brun, N. E. Copper-mediated dimerization

of CopZ, a predicted copper chaperone from Bacillus subtilis. The Biochemical

journal 368, 729–739 (2002).

228. Lode, A., Kuschel, M., Paret, C. & Rödel, G. Mitochondrial copper metabolism

in yeast: interaction between Sco1p and Cox2p. FEBS Letters 485, 19–24

(2000).

229. Leary, S. C., Kaufman, B. A., Pellecchia, G., Guercin, G.-H., Mattman, A.,

Jaksch, M. & Shoubridge, E. A. Human SCO1 and SCO2 have independent,

cooperative functions in copper delivery to cytochrome c oxidase. Human

Molecular Genetics 13, 1839–1848 (2004).

230. Imriskova-Sosova, I., Diann Andrews, Katherine Yam, David Davidson,

Yachnin, B. & Hill, B. C. Characterization of the redox and metal binding

activity of BsSco, a protein implicated in the assembly of cytochrome c

oxidase. Biochemistry, 16949–16956 (2005).

231. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL): an online tool for

phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007).

270



Bibliography

232. Bagos, P. G., Nikolaou, E. P., Liakopoulos, T. D. & Tsirigos, K. D. Combined

prediction of Tat and Sec signal peptides with hidden Markov models.

Bioinformatics 26, 2811–2817 (2010).

233. Cha, J. S. & Cooksey, D. A. Copper hypersensitivity and uptake in Pseu-

domonas syringae containing cloned components of the copper resistance

operon. Applied and environmental microbiology 59, 1671–1674 (1993).

234. Knapp, S., Kardinahl, S., Hellgren, N., Tibbelin, G., Schafer, G. & Ladenstein,

R. Refined crystal structure of a superoxide dismutase from the hyperther-

mophilic archaeon Sulfolobus acidocaldarius at 2.2 Å resolution. Journal of

Molecular Biology 285, 689–702 (1999).

235. Lo, Y.-C., Lin, S.-C., Shaw, J.-F. & Liaw, Y.-C. Crystal structure of Es-

cherichia coli thioesterase I/protease I/lysophospholipase L1: consensus

sequence blocks constitute the catalytic center of SGNH-hydrolases through

a conserved hydrogen bond network. Journal of molecular biology 330, 539–

551 (2003).

236. Allen, G. S., Wu, C.-C., Cardozo, T. & Stokes, D. L. The architecture of

CopA from Archeaoglobus fulgidus studied by cryo-electron microscopy and

computational docking. Structure 19, 1219–1232 (2011).

237. Hirooka, K., Edahiro, T., Kimura, K. & Fujita, Y. Direct and indirect

regulation of the ycnKJI operon involved in copper uptake through two

transcriptional repressors, YcnK and CsoR, in Bacillus subtilis. Journal of

bacteriology 194, 5675–5687 (2012).

238. Karlsen, O. A., Lillehaug, J. R. & Jensen, H. B. The presence of multiple

c-type cytochromes at the surface of the methanotrophic bacterium Methy-

lococcus capsulatus (Bath) is regulated by copper. Molecular Microbiology

70, 15–26 (2008).

239. Karlsen, O. A., Larsen, Ø. & Jensen, H. B. The copper responding surfaceome

of Methylococccus capsulatus Bath. FEMS Microbiology Letters 323, 97–104

(2011).

271



Copper maturation of N2OR in P. denitrificans

240. Serventi, F., Youard, Z. A., Murset, V., Huwiler, S., Bühler, D., Richter, M.,

Luchsinger, R., Fischer, H.-M., Brogioli, R., Niederer, M. & Hennecke, H.

Copper starvation-inducible protein for cytochrome oxidase biogenesis in

Bradyrhizobium japonicum. The Journal of biological chemistry 287, 38812–

38823 (2012).

241. Akanuma, G., Nanamiya, H., Mouri, Y., Ishizuka, M. & Ohnishi, Y. Pro-

teomic analysis of the Streptomyces griseus ribosomal fraction. Bioscience,

Biotechnology, and Biochemistry 76, 2267–2274 (2012).

242. McGuirl, M. A., Bollinger, J. A., Cosper, N., Scott, R. A. & Dooley, D. M.

Expression, purification, and characterization of NosL, a novel Cu(I) pro-

tein of the nitrous oxide reductase (nos) gene cluster. Journal of biological

inorganic chemistry 6, 189–195 (2001).

243. Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755–763

(1998).

244. Finn, R. D., Clements, J., Arndt, W., Miller, B. L., Wheeler, T. J., Schreiber,

F., Bateman, A. & Eddy, S. R. HMMER web server: 2015 update. Nucleic

Acids Research 43, 30–38 (2015).

245. Broberg, A., Menkis, A. & Vasiliauskas, R. Kutznerides 1-4, depsipeptides

from the actinomycete Kutzneria sp. 744 inhabiting mycorrhizal roots of

Picea abies seedlings. Journal of Natural Products 69, 97–102 (2006).

246. Von Mering, C., Jensen, L. J., Snel, B., Hooper, S. D., Krupp, M., Foglierini,

M., Jouffre, N., Huynen, M. A. & Bork, P. STRING: known and predicted

protein-protein associations, integrated and transferred across organisms.

Nucleic Acids Research 33, 433–437 (2004).

247. Robinson, N. J. & Winge, D. R. Copper metallochaperones. Annual review

of biochemistry 79, 537–562 (2010).

248. Lawton, T. J., Kenney, G. E., Hurley, J. D. & Rosenzweig, A. C. The

CopC family: structural and bioinformatic insights into a diverse group of

periplasmic copper binding proteins. Biochemistry 55, 2278–2290 (2016).

272



Bibliography

249. Zhang, L., Koay, M., Maher, M. J., Xiao, Z. & Wedd, A. G. Intermolecular

transfer of copper ions from the CopC protein of Pseudomonas syringae.

Crystal structures of fully loaded CuICuII forms. Journal of the American

Chemical Society 128, 5834–5850 (2006).

250. Casella, L. & Gullotti, M. Coordination modes of histidine. Journal of

Inorganic Biochemistry 18, 19–31 (1983).

251. Sarkar, B & Wigfield, Y. The structure of copper(II)-histidine chelate. The

question of the involvement of the imidazole group. The Journal of biological

chemistry 242, 5572–5577 (1967).

252. Velázquez Campoy, A. & Freire, E. ITC in the post-genomic era. . . ? Priceless.

Biophysical Chemistry 115, 115–124 (2005).

253. Bonanno, J., Freeman, J, Bain, K., Hu, S, Romero, R, Wasserman, S, Sauder,

J., Burley, S. & Almo, S. Crystal structure of an uncharacterized protein

from Nocardia farcinica reveals an immunoglobulin-like fold. To be Published.

254. Badarau, A. & Dennison, C. Copper trafficking mechanism of CXXC-

containing domains: insight from the pH-dependence of their Cu(I) affinities.

Journal of the American Chemical Society 133, 2983–2988 (2011).

255. Changela, A., Chen, K., Xue, Y., Holschen, J., Outten, C. E., O’Halloran,

T. V. & Mondragón, A. Molecular basis of metal-ion selectivity and zep-

tomolar sensitivity by CueR. Science (New York, N.Y.) 301, 1383–1387

(2003).

256. Protein Structure Initiative (program ended 7/1/2015) - National Institute

of General Medical Sciences <https://www.nigms.nih.gov/Research/

specificareas/PSI/Pages/default.aspx> (2017).

257. Sillitoe, I., Lewis, T. E., Cuff, A., Das, S., Ashford, P., Dawson, N. L.,

Furnham, N., Laskowski, R. A., Lee, D., Lees, J. G., Lehtinen, S., Studer,

R. A., Thornton, J. & Orengo, C. A. CATH: comprehensive structural and

functional annotations for genome sequences. Nucleic Acids Research 43,

376–381 (2015).

273

https://www.nigms.nih.gov/Research/specificareas/PSI/Pages/default.aspx
https://www.nigms.nih.gov/Research/specificareas/PSI/Pages/default.aspx


Copper maturation of N2OR in P. denitrificans

258. De Beer, T. A. P., Berka, K., Thornton, J. M. & Laskowski, R. A. PDBsum

additions. Nucleic Acids Research 42, 292–296 (2014).

259. Weiss, M. S. Global indicators of X-ray data quality. Journal of Applied

Crystallography 34, 130–135 (2001).

260. Karplus, P. A. & Diederichs, K. Linking crystallographic model and data

quality. Science 336, 1030–1033 (2012).

261. Wlodawer, A., Minor, W., Dauter, Z. & Jaskolski, M. Protein crystallography

for non-crystallographers, or how to get the best (but not more) from

published macromolecular structures. FEBS Journal 275, 1–21 (2008).

262. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from

crystalline state. Journal of Molecular Biology 372, 774–797 (2007).

263. Bork, P., Holm, L. & Sander, C. The immunoglobulin fold. Journal of

Molecular Biology 242, 309–320 (1994).

264. Zheng, H., Chordia, M. D., Cooper, D. R., Chruszcz, M., Muller, P., Sheldrick,

G. M. & Minor, W. Validation of metal-binding sites in macromolecular

structures with the CheckMyMetal web server. Nature Protocols 9, 156–170

(2013).

265. Brown, I. D. Recent developments in the methods and applications of the

bond valence model. Chemical reviews 109, 6858–6919 (2009).

266. Müller, P., Köpke, S. & Sheldrick, G. M. Is the bond-valence method able to

identify metal atoms in protein structures? Acta crystallographica. Section

D, Biological crystallography 59, 32–37 (2003).

267. Harding, M. M., Nowicki, M. W. & Walkinshaw, M. D. Metals in protein

structures: a review of their principal features. Crystallography Reviews 16,

247–302 (2010).

268. Kuppuraj, G., Dudev, M. & Lim, C. Factors governing metal-ligand distances

and coordination geometries of metal complexes. The Journal of Physical

Chemistry B 113, 2952–2960 (2009).

274



Bibliography

269. Zheng, H., Chruszcz, M., Lasota, P., Lebioda, L. & Minor, W. Data mining

of metal ion environments present in protein structures. Journal of inorganic

biochemistry 102, 1765–1776 (2008).

270. Quinlan, R. J., Sweeney, M. D., Lo Leggio, L., Otten, H., Poulsen, J.-

C. N., Johansen, K. S., Krogh, K. B.R. M., Jørgensen, C. I., Tovborg, M.,

Anthonsen, A., Tryfona, T., Walter, C. P., Dupree, P., Xu, F., Davies, G. J.

& Walton, P. H. Insights into the oxidative degradation of cellulose by a

copper metalloenzyme that exploits biomass components. Proceedings of

the National Academy of Sciences of the United States of America 108,

15079–15084 (2011).

271. Holm, L. & Rosenström, P. Dali server: conservation mapping in 3D. Nucleic

Acids Research 38, 545–549 (2010).

272. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig,

H., Shindyalov, I. N. & Bourne, P. E. The Protein Data Bank. Nucleic Acids

Research 28, 235–242 (2000).

273. Frandsen, K. E. H. & Lo Leggio, L. Lytic polysaccharide monooxygenases: a

crystallographer’s view on a new class of biomass-degrading enzymes. IUCrJ

3, 448–467 (2016).

274. Velazquez-Campoy, A. & Freire, E. Isothermal titration calorimetry to

determine association constants for high-affinity ligands. Nature Protocols 1,

186–191 (2006).

275. Young, T. R., Wijekoon, C. J. K., Spyrou, B., Donnelly, P. S., Wedd, A. G.,

Xiao, Z., O’Halloran, T. V., Faller, P., Dorlet, P., Foster, A. W. & Robinson,

N. J. A set of robust fluorescent peptide probes for quantification of Cu(II)

binding affinities in the micromolar to femtomolar range. Metallomics 7,

567–578 (2015).

276. Wijekoon, C. J. K., Young, T. R., Wedd, A. G. & Xiao, Z. CopC protein from

Pseudomonas fluorescens SBW25 features a conserved novel high-affinity

Cu(II) binding site. Inorganic Chemistry 54, 2950–2959 (2015).

275



Copper maturation of N2OR in P. denitrificans

277. Hemsworth, G. R., Henrissat, B., Davies, G. J. & Walton, P. H. Discovery

and characterization of a new family of lytic polysaccharide monooxygenases.

Nature Chemical Biology 10, 122–126 (2013).

278. Lo Leggio, L., Simmons, T. J., Poulsen, J.-C. N., Frandsen, K. E. H.,

Hemsworth, G. R., Stringer, M. A., von Freiesleben, P., Tovborg, M., Jo-

hansen, K. S., De Maria, L., Harris, P. V., Soong, C.-L., Dupree, P., Tryfona,

T., Lenfant, N., Henrissat, B., Davies, G. J. & Walton, P. H. Structure and

boosting activity of a starch-degrading lytic polysaccharide monooxygenase.

Nature Communications 6, 5961 (2015).

279. Hemsworth, G. R., Taylor, E. J., Kim, R. Q., Gregory, R. C., Lewis, S. J.,

Turkenburg, J. P., Parkin, A., Davies, G. J. & Walton, P. H. The copper

active site of CBM33 polysaccharide oxygenases. Journal of the American

Chemical Society 135, 6069–6077 (2013).

280. Aachmann, F. L., Sorlie, M., Skjak-Braek, G., Eijsink, V. G. H. & Vaaje-

Kolstad, G. NMR structure of a lytic polysaccharide monooxygenase provides

insight into copper binding, protein dynamics, and substrate interactions.

Proceedings of the National Academy of Sciences 109, 18779–18784 (2012).

281. Forsberg, Z., Mackenzie, A. K., Sorlie, M., Rohr, A. K., Helland, R., Arvai,

A. S., Vaaje-Kolstad, G. & Eijsink, V. G. H. Structural and functional

characterization of a conserved pair of bacterial cellulose-oxidizing lytic

polysaccharide monooxygenases. Proceedings of the National Academy of

Sciences 111, 8446–8451 (2014).

282. Chaplin, A. K., Wilson, M. T., Hough, M. A., Svistunenko, D. A., Hemsworth,

G. R., Walton, P. H., Vijgenboom, E. & Worrall, J. A. R. Heterogeneity in

the histidine-brace copper coordination sphere in auxiliary activity family

10 (AA10) lytic polysaccharide monooxygenases. The Journal of biological

chemistry 291, 12838–12850 (2016).

283. Jensen, B. B. & Burris, R. H. N2O as a substrate and as a competitive

inhibitor of nitrogenase. Biochemistry 25, 1083–1088 (1986).

276



Bibliography

284. Christiansen, J., Seefeldt, L. C. & Dean, D. R. Competitive substrate and

inhibitor interactions at the physiologically relevant active site of nitrogenase.

Journal of Biological Chemistry 275, 36104–36107 (2000).

285. Fernandes, A. T., Damas, J. M., Todorovic, S., Huber, R., Baratto, M. C.,

Pogni, R., Soares, C. M. & Martins, L. O. The multicopper oxidase from the

archaeon Pyrobaculum aerophilum shows nitrous oxide reductase activity.

FEBS Journal 277, 3176–3189 (2010).

286. Tolman, W. B. Binding and activation of N2O at transition-metal centers:

recent mechanistic insights. Angewandte Chemie International Edition 49,

1018–1024 (2010).

287. Jones, C. M., Graf, D. R., Bru, D., Philippot, L. & Hallin, S. The unaccounted

yet abundant nitrous oxide-reducing microbial community: a potential nitrous

oxide sink. The ISME Journal 7, 417–426 (2013).

288. Arai, H., Mizutani, M. & Igarashi, Y. Transcriptional regulation of the nos

genes for nitrous oxide reductase in Pseudomonas aeruginosa. Microbiology

(Reading, England) 149, 29–36 (2003).

289. Cuypers, H., Jürgen, B. & Zumft, W. G. Multiple nosZ promoters and

anaerobic expression of nos genes necessary for Pseudomonas stutzeri nitrous

oxide reductase and assembly of its copper centers. Biochimica et Biophysica

Acta (BBA) - Gene Structure and Expression 1264, 183–190 (1995).

290. Ciccarelli, F. D., Copley, R. R., Doerks, T., Russell, R. B. & Bork, P. CASH–a

beta-helix domain widespread among carbohydrate-binding proteins. Trends

in Biochemical Sciences 27, 59–62 (2002).

291. Dreusch, A, Riester, J, Kroneck, P. M. & Zumft, W. G. Mutation of the

conserved Cys165 outside of the CuA domain destabilizes nitrous oxide reduc-

tase but maintains its catalytic activity. Evidence for disulfide bridges and a

putative protein disulfide isomerase gene. European Journal of Biochemistry

237, 447–453 (1996).

277



Copper maturation of N2OR in P. denitrificans

292. Taubner, L. M., McGuirl, M. A., Dooley, D. M. & Copié, V. Structural

studies of apo NosL, an accessory protein of the nitrous oxide reductase

system: insights from structural homology with MerB, a mercury resistance

protein. Biochemistry 45, 12240–12252 (2006).

293. Lello, P. D., Benison, G. C., Valafar, H., Pitts, K. E., Summers, A. O.,

Legault, P. & Omichinski, J. G. NMR structural studies reveal a novel

protein fold for MerB, the organomercurial lyase involved in the bacterial

mercury resistance system. Biochemistry 43, 8322–8332 (2004).

294. Schmidt, T. G. & Skerra, A. The Strep-tag system for one-step purification

and high-affinity detection or capturing of proteins. Nature Protocols 2,

1528–1535 (2007).

295. Farrar, J. A., Neese, F., Lappalainen, P., Kroneck, P. M. H., Saraste, M.,

Zumft, W. G. & Thomson, A. J. The electronic structure of CuA: a novel

mixed-valence dinuclear copper electron-transfer center. Journal of the Amer-

ican Chemical Society 118, 11501–11514 (1996).

296. Savelieff, M. G., Wilson, T. D., Elias, Y., Nilges, M. J., Garner, D. K. &

Lu, Y. Experimental evidence for a link among cupredoxins: red, blue, and

purple copper transformations in nitrous oxide reductase. Proceedings of

the National Academy of Sciences of the United States of America 105,

7919–7924 (2008).

297. Fujita, K., Chan, J. M., Bollinger, J. A., Alvarez, M. L. & Dooley, D. M.

Anaerobic purification, characterization and preliminary mechanistic study

of recombinant nitrous oxide reductase from Achromobacter cycloclastes.

Journal of Inorganic Biochemistry 101, 1836–1844 (2007).

298. Tzagoloff, A, Nobrega, M, Gorman, N & Sinclair, P. On the functions of

the yeast COX10 and COX11 gene products. Biochemistry and molecular

biology international 31, 593–598 (1993).

299. Bundschuh, F. A., Hannappel, A., Anderka, O. & Ludwig, B. Surf1, associ-

ated with Leigh syndrome in humans, is a heme-binding protein in bacterial

278



Bibliography

oxidase biogenesis. The Journal of biological chemistry 284, 25735–25741

(2009).

300. Bareth, B., Dennerlein, S., Mick, D. U., Nikolov, M., Urlaub, H. & Rehling, P.

The heme a synthase Cox15 associates with cytochrome c oxidase assembly

intermediates during Cox1 maturation. Molecular and cellular biology 33,

4128–4137 (2013).

301. Trasnea, P.-I., Utz, M., Khalfaoui-Hassani, B., Lagies, S., Daldal, F. & Koch,

H.-G. Cooperation between two periplasmic copper chaperones is required for

full activity of the cbb3-type cytochrome c oxidase and copper homeostasis

in Rhodobacter capsulatus. Molecular Microbiology 100, 345–361 (2016).

302. Thompson, A. K., Gray, J., Liu, A. & Hosler, J. P. The roles of Rhodobacter

sphaeroides copper chaperones PCuAC and Sco (PrrC) in the assembly of

the copper centers of the aa3-type and the cbb3-type cytochrome c oxidases.

Biochimica et Biophysica Acta - Bioenergetics 1817, 955–964 (2012).

303. Page, M. D. & Ferguson, S. J. Paracoccus denitrificans CcmG is a periplasmic

protein-disulphide oxidoreductase required for c- and aa3-type cytochrome

biogenesis; evidence for a reductase role in vivo. Molecular microbiology 24,

977–990 (1997).

304. Alloway, B. J. Micronutrient deficiencies in global crop production (ed Al-

loway, B. J.) 369 (Springer Netherlands, Dordrecht, 2008).

305. Tóth, G., Hermann, T., Szatmári, G. & Pásztor, L. Maps of heavy metals

in the soils of the European Union and proposed priority areas for detailed

assessment. Science of The Total Environment 565, 1054–1062 (2016).

306. Basiliko, N. & Yavitt, J. B. Influence of Ni, Co, Fe, and Na additions on

methane production in Sphagnum-dominated Northern American peatlands.

Biogeochemistry 52, 133–153 (2001).

307. Bragazza, L. Heavy metals in bog waters: An alternative way to assess

atmospheric precipitation quality? Global and Planetary Change 53, 290–

298 (2006).

279



Copper maturation of N2OR in P. denitrificans

308. Shaw, T. J., Gieskes, J. M. & Jahnke, R. A. Early diagenesis in differing

depositional environments: The response of transition metals in pore water.

Geochimica et Cosmochimica Acta 54, 1233–1246 (1990).

309. Haraldsson, C. & Westerlund, S. Trace metals in the water columns of the

Black Sea and Framvaren Fjord. Marine Chemistry 23, 417–424 (1988).

310. Emerson, S. R. & Huested, S. S. Ocean anoxia and the concentrations of

molybdenum and vanadium in seawater. Marine Chemistry 34, 177–196

(1991).

311. Kremling, K. The behavior of Zn, Cd, Cu, Ni, Co, Fe, and Mn in anoxic

baltic waters. Marine Chemistry 13, 87–108 (1983).

312. Bruland, K. W. Oceanographic distributions of cadmium, zinc, nickel, and

copper in the North Pacific. Earth and Planetary Science Letters 47, 176–198

(1980).

313. Collier, R. W. Molybdenum in the Northeast Pacific Ocean. Limnology and

Oceanography 30, 1351–1354 (1985).

314. Johnson, K. S., Gordon, R. M. & Coale, K. H. What controls dissolved iron

concentrations in the world ocean? Marine Chemistry 57, 137–161 (1997).

315. Kinniburgh, D. G. & Miles, D. L. Extraction and chemical analysis of

interstitial water from soils and rocks. Environmental Science & Technology

17, 362–368 (1983).

316. Wetzel, R. G. Limnology : lake and river ecosystems 1006 (Academic Press,

2001).

317. Glass, J. B. & Orphan, V. J. Trace metal requirements for microbial enzymes

involved in the production and consumption of methane and nitrous oxide.

Frontiers in Microbiology 3, 61 (2012).

318. P., P. & M., O. Law of the minimum and balanced mineral nutrition. Reuther

W (Am Inst BioI Sci, Washington DC, 1961).

319. Smith, P. F. Mineral analysis of plant tissues. Annual Review of Plant

Physiology 13, 81–108 (1962).

280



Bibliography

320. Copper Bioavailability and Metabolism (ed Kies, C.) 308 (Springer US,

Boston, MA, 1989).

321. Grace, N., Wilson, P. & Quinn, A. Impact of molybdenum on the copper

status of red deer (Cervus elaphus). New Zealand Veterinary Journal 53,

137–141 (2005).

322. Shen, X.-y., Du, G.-z., Chen, Y.-m. & Fan, B.-l. Copper deficiency in yaks

on pasture in western China. The Canadian veterinary journal = La revue

veterinaire canadienne 47, 902–906 (2006).

323. Xiao-yun, S., Guo-zhen, D. & Hong, L. Studies of a naturally occurring

molybdenum-induced copper deficiency in the yak. The Veterinary Journal

171, 352–357 (2006).

324. Zhou, L., Long, R., Pu, X., Qi, J. & Zhang, W. Studies of a naturally

occurring sulfur-induced copper deficiency in Przewalski’s gazelles. The

Canadian veterinary journal 50, 1269–1272 (2009).

325. Ha, J.-H., Doguer, C., Wang, X., Flores, S. R. & Collins, J. F. High-iron con-

sumption impairs growth and causes copper-deficiency anemia in Weanling

Sprague-Dawley rats. PLOS ONE 11 (ed Pantopoulos, K.) 161033 (2016).

326. Inorganic plant nutrition (eds Läuchli, A. & Bieleski, R. L.) (Springer Berlin

Heidelberg, Berlin, Heidelberg, 1983).

327. Marques, A. P. L., Botteon, R. d.C.C. M., de Amorim, E. B., Botteon,

P. D.T. L. & Botteon, P. d.T. L. Copper deficiency conditioned by high

levels of zinc, manganese and iron in the Middle Paraíba, RJ, Brazil. Semina:

Ciências Agrárias 34, 1293–1300 (2013).

328. Gielen, H., Vangronsveld, J. & Cuypers, A. Cd-induced Cu deficiency re-

sponses in Arabidopsis thaliana: are phytochelatins involved? Plant, Cell &

Environment 40, 390–400 (2017).

329. Clustal X Colour Scheme <http://www.jalview.org> (2017).

281

http://www.jalview.org

	Abstract
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Acknowledgements
	1 Introduction
	1.1 Biogeochemical nitrogen cycle
	1.2 Heme-copper oxidases from Paracoccus denitrificans
	1.2.1 Eukaryotic cytochrome c oxidase CuA centre maturation
	1.2.2 Prokaryotic cytochrome c oxidase CuA centre maturation

	1.3 Copper and microbiology
	1.3.1 Bacterial cuproenzymes
	1.3.2 Copper import mechanisms
	1.3.3 Cu export systems
	1.3.3.1 Cu-transporting P-type ATPases
	1.3.3.2 Cus system
	1.3.3.3 CopCD/PcoCD system


	1.4 Nitrous oxide reductase
	1.4.1 Patterns in nos gene clusters
	1.4.1.1 Typical nos gene clusters
	1.4.1.2 Atypical nos gene clusters

	1.4.2 Mechanism of action of N2OR
	1.4.2.1 The CuA electron transfer centre of N2OR
	1.4.2.2 The CuZ catalytic centre of N2OR
	1.4.2.3 N2O binding at the CuZ centre of N2OR

	1.4.3 Regulation of nos genes
	1.4.3.1 FNR transcriptional factor
	1.4.3.2 NosR and NosX
	1.4.3.3 NasS-NasT
	1.4.3.4 Copper regulation


	1.5 Experimental Aims

	2 Materials and Methods
	2.1 Media and conditions for bacterial growth
	2.1.1 Complete medium
	2.1.2 Minimal medium

	2.2 Analytical Methods
	2.2.1 Measurement of nitrate and nitrite in cultures
	2.2.2 Measurement of nitrous oxide in cultures
	2.2.3 Analysis of metal content in protein samples
	2.2.4 Determination of protein concentration
	2.2.5 Enzymatic assay for nitrous oxide reductase activity

	2.3 Preparation of nucleic acids
	2.3.1 Isolation of genomic DNA
	2.3.2 Preparation of plasmid DNA
	2.3.3 Restriction enzyme digestion
	2.3.4 Ligation of DNA fragments
	2.3.5 Agarose gel electrophoresis
	2.3.6 Recovery of DNA from agarose gels
	2.3.7 DNA sequencing

	2.4 Amplification of DNA using the polymerase chain reaction (PCR)
	2.4.1 Oligonucleotide design
	2.4.2 PCR of DNA using High-Fidelity Phusion Polymerase
	2.4.3 Diagnostic PCR of DNA using Taq DNA polymerase
	2.4.4 Colony PCR
	2.4.5 Purification of DNA PCR products

	2.5 Transformation of E. coli with plasmid DNA
	2.5.1 Preparation of competent cells
	2.5.2 Transformation of competent cells

	2.6 in vivo genetic manipulations
	2.6.1 Conjugation via patch crosses
	2.6.2 Conjugation via filter crosses

	2.7 Polyacrylamide gel electrophoresis
	2.7.1 Resolution of proteins by SDS-PAGE
	2.7.2 Western-Blot analysis

	2.8 Mass Spectrometry of proteins
	2.9 Protein structure prediction
	2.10 Synthesis of pLMB510 and pLMB511 plasmid vectors
	2.11 Construction of knock-in mutants
	2.12 Protein overexpression and purification
	2.12.1 Purification of ScoBsol-6His and PCuCWT
	2.12.2 Purification of recombinant PCuC proteins
	2.12.3 Purification of recombinant N2OR

	2.13 N-terminal sequencing of PCuC
	2.13.1 Edman degradation
	2.13.2 Protein sequencing by in source decay MALDI-TOF

	2.14 Addition of Cu ions to Cu-binding proteins
	2.15 Analytical ultracentrifugation
	2.16 Analytical size exclusion chromatography
	2.17 Estimation of metal dissociation constants using copper chelators
	2.18 Small-angle X-ray scattering
	2.19 Protein crystallography
	2.19.1 Crystal formation
	2.19.2 Data collection
	2.19.2.1 PCuCNt
	2.19.2.2 PCuCCt



	3 Biochemical characterisation of ScoB sol
	3.1 Introduction
	3.2 A Sco protein from P. denitrificans necessary for N2O reduction
	3.3 Phenotypical characterisation of scoB
	3.4 Soluble ScoBsol-6His purification
	3.5 UV-visible absorbance and fluorescence spectroscopy characterisation of copper binding to ScoB sol
	3.6 Investigating the solution state of ScoB sol
	3.7 Small-Angle X-ray scattering of ScoB sol
	3.8 Discussion

	4 Biochemical characterisation of PCuC
	4.1 Introduction
	4.1.1 The novel two-domain fusion protein PCuC
	4.1.2 The N-terminal YcnI domain of PCuC
	4.1.3 The C-terminal PCuAC-like domain of PCuC

	4.2 Generation of the tools for the study of PCuC from P. denitrificans
	4.3 Characterisation of pcuC- deletion strains
	4.4 Production of PCuC proteins for biochemical analyses
	4.4.1 Purification of recombinant PCuCFL-6His protein
	4.4.2 Purification of recombinant PCuCNt-6His protein
	4.4.3 Purification of recombinant PCuCCt-6His protein

	4.5 Investigating Cu-binding by PCuC
	4.5.1 Cu-binding to wild-type PCuC
	4.5.2 Cu-binding to 
	4.5.3 Cu-binding to 

	4.6 Cu1+ binding affinity of PCuC proteins
	4.6.1 Cu1+ binding affinity of wild-type PCuC
	4.6.2 Cu1+ binding affinity of PCuC Nt
	4.6.3 Cu1+ binding affinity of PCuC Ct

	4.7 Discussion
	4.7.1 The native full-length PCuC protein
	4.7.2 PCuC N-terminal domain variant
	4.7.3 PCuC C-terminal domain variant


	5 Solution properties and structural resolution of PCuC
	5.1 Introduction
	5.1.1 PCuC N-terminal domain
	5.1.2 PCuC C-terminal domain

	5.2 Solution state characterisation of PCuC proteins
	5.2.1 Investigating the solution state of PCuC Nt
	5.2.2 Investigating the solution state of PCuC Ct
	5.2.3 Investigating the solution state of PCuC WT

	5.3 Structural determination of PCuC proteins
	5.3.1 Crystallographic structure of PCuC Nt
	5.3.2 Crystallographic structure of PCuC Ct
	5.3.3 Small-Angle X-ray scattering, SAXS

	5.4 Discussion

	6 Purification and characterisation of N2OR from pcuC and scoB deficient strains
	6.1 Introduction
	6.1.1 Assembly of copper centres in N2OR
	6.1.1.1 Maturation of the CuZ centre of N2OR
	6.1.1.2 Maturation of the CuA centre of N2OR


	6.2 Nitrous oxide reductase purification and characterisation
	6.3 Discussion

	7 Conclusions and future perspectives
	A Supplementary information
	A.1 Antibiotics and supplements
	A.2 Sequences of DNA synthesized
	A.3 Clustal X Colour Scheme
	A.4 Structures used as templates for homology ScoB model
	A.5 Signal peptide prediction
	A.6 Dynafit script: Competition with proteins that bind one ligand
	A.7 Dynafit script: Competition with proteins that bind two ligands

	Bibliography

