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Abstract 30 

Accelerated adaptive evolution is a hallmark of plant-pathogen interactions. Plant 31 

intracellular immune receptors (NLRs) often occur as allelic series with differential 32 

pathogen specificities. The determinants of this specificity remain largely unknown. 33 

Here, we unravelled the biophysical and structural basis of expanded specificity in the 34 

allelic rice NLR receptor Pik, which responds to the effector AVR-Pik from the rice 35 

blast pathogen Magnaporthe oryzae. Rice plants expressing the Pikm allele resist 36 

infection by blast strains expressing any of three AVR-Pik effector variants, whereas 37 

those expressing Pikp only respond to one. Unlike Pikp, the integrated HMA domain 38 

of Pikm binds with high affinity to each of the three recognised effector variants, and 39 

variation at binding interfaces between effectors and Pikp-HMA/Pikm-HMA 40 

domains encodes specificity. By understanding how co-evolution has shaped the 41 

response profile of an allelic NLR, we highlight how natural selection drove the 42 

emergence of new receptor specificities. This work has implications for engineering of 43 

NLRs with improved utility in agriculture.  44 
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Introduction 45 

The innate immune systems of plants and animals monitor the extracellular space and 46 

intracellular environment for the presence and activities of microbial pathogens1,2. In 47 

plants, immune receptors of the NLR (nucleotide-binding, leucine-rich repeat) 48 

superfamily monitor the intracellular space for signatures of non-self, typically 49 

detecting translocated pathogen effector proteins either by direct-binding, or 50 

indirectly via monitoring their activity on host targets3,4. Co-evolution between 51 

pathogens and hosts has driven diversification of plant NLRs, with many NLR genes 52 

present in allelic series, with distinct effector recognition profiles5-15. Pathogen effectors 53 

can show strong signatures of positive selection including high levels of non-54 

synonymous (resulting in amino acid changes) over synonymous 55 

polymorphisms5,7,12,16-18. How NLR and effector diversification contributes to gene-for-56 

gene immunity in plants is poorly understood. Defining how allelic NLRs recognise 57 

and respond to specific pathogen effectors offers new opportunities to engineer control 58 

of plant diseases19,20, leading to improved global food security. 59 

Many NLRs function synergistically, with some acting as a “sensors”, to detect 60 

pathogens, and others as “helpers”, required for initiation of immunity1,21,22. These 61 

NLRs can be genetically linked in pairs, with a shared promoter21,23-26, or unlinked but 62 

part of a complex genetic network27. One mechanism of effector recognition by sensor 63 

NLRs is via unconventional integrated domains that likely have their evolutionary 64 

origin as host effector targets28-31. Such integrated domains can act as “baits” to target 65 

effectors by direct binding, or act as substrates of an effector’s enzymatic activity28,31. 66 

Genetically paired NLRs with integrated domains have repeatedly evolved in rice29,30, 67 

and can detect effectors from the rice blast pathogen Magnaporthe oryzae (syn. 68 

Pyricularia oryzae), the causative agent of the most devastating disease of rice - the 69 

staple crop that feeds more than half the world population5,25,26,32.  70 

The rice NLR pair Pik is comprised of Pik-1 (the sensor) and Pik-2 (the helper). This 71 

receptor pair responds to the M. oryzae effector AVR-Pik by direct binding to an 72 

integrated HMA (heavy metal-associated) domain, positioned between the CC (coiled-73 

coil) and nucleotide-binding (NB) domains of Pik-133 (Fig. 1a). Both the AVR-Pik 74 

effectors and the Pik NLRs exist as an allelic series in M. oryzae and rice respectively, 75 

most likely arisen through co-evolutionary dynamics between pathogen and host5,34,35. 76 

As such, they represent an excellent system for understanding the mechanistic basis 77 

of recognition in plant immunity. Comparison of amino acid sequence identity 78 

between the domains of paired Pik NLR alleles shows the integrated HMA domain is 79 

the most polymorphic region35 (Fig. 1a,c), consistent with this being the direct binding 80 

region for the AVR-Pik effectors. The HMA domain also contains variable amino acids 81 

that have been used as a markers for Pik allele identification in rice35. In addition, AVR-82 

Pik is a remarkable example of an effector with an extreme signature of positive 83 

selection, as all known AVR-Pik nucleotide polymorphisms are non-synonymous, 84 

resulting in amino acid changes16,18 (Fig. 1b). Further, these polymorphisms map to 85 
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interface residues identified in the crystal structure of the effector variant AVR-PikD 86 

bound to the HMA domain of the NLR allele Pikp33, suggesting they are adaptive. 87 

While rice plants expressing the NLR allele Pikp are resistant to M. oryzae strains 88 

expressing the effector variant AVR-PikD, rice plants expressing the allele Pikm 89 

respond to strains expressing AVR-PikD, AVR-PikE, or AVR-PikA34 (Fig. 1b). 90 

Importantly, neither Pikp nor Pikm respond to the stealthy effector variant AVR-PikC, 91 

which evades detection by any known Pik NLR34. The molecular mechanism by which 92 

Pik NLR variation acts to expand effector recognition remains unclear. 93 

Previous work established the structural basis of AVR-PikD recognition by the Pikp-1 94 

NLR33. Here, we reveal how co-evolutionary dynamics between a pathogen and a host 95 

has driven the emergence of new receptor specificities. By taking advantage of our 96 

ability to reconstruct complexes between Pik-HMA domains and AVR-Pik effectors, 97 

and to recapitulate cell death responses (indicative of immunity) in the model plant 98 

Nicotiana benthamiana, we show a correlation between protein binding affinities, and 99 

activation of immunity. By obtaining crystal structures of the Pikm-HMA domain in 100 

complex with three different AVR-Pik variants, we define the interfaces that support 101 

expanded effector recognition. We also obtained new structures of the Pikp-HMA 102 

domain in complex with the recognised effector AVR-PikD, but also with the 103 

unrecognised AVR-PikE. Together, these structures establish a previously 104 

unappreciated role for the C-terminus of the HMA domain in mediating effector 105 

interaction. Understanding how host NLRs have evolved new specificities in response 106 

to pathogen effectors highlights the potential to engineer new-to-nature receptors with 107 

improved functions such as recognition of stealthy effector variants, and has broad 108 

implications for rational design of plant NLRs.  109 
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Results 110 

Pikm-mediated cell death in N. benthamiana recapitulates allele-specific effector 111 

responses in rice 112 

Pikp-mediated cell death in N. benthamiana phenocopies effector variant-specific 113 

resistance in rice, with Pikp responding to AVR-PikD, but not AVR-PikE, AVR-PikA, 114 

or AVR-PikC33. Here, we show that Pikm responds to each of AVR-PikD, AVR-PikE, 115 

or AVR-PikA, but not to AVR-PikC, in this assay (Fig. 1d,e, Table 1). These results 116 

match the response of rice cultivars expressing Pikm to M. oryzae strains encoding the 117 

effectors34. Interestingly, we observe a qualitative hierarchy in the level of Pikm-118 

mediated cell death in response to the effectors in the order AVR-PikD > AVR-PikE > 119 

AVR-PikA (Fig. 1d,e). To allow for direct comparison, we repeated this assay using 120 

the Pikp NLRs and the effector variants in the same expression vectors. We obtained 121 

equivalent results to those shown previously33 (Supplementary Fig. 1a,b). The 122 

expression of each protein was confirmed by western blot (Supplementary Fig. 1c). 123 

 124 

Allele-specific effector responses in planta correlates with direct Pik-HMA 125 

interactions 126 

We used yeast-2-hybrid (Y2H) to investigate whether the binding of effectors to the 127 

Pikp-HMA domain (henceforth Pikp-HMA) or Pikm-HMA domain (henceforth Pikm-128 

HMA) correlates with in planta response profiles. We observed comparable growth of 129 

yeast on selective plates, and the development of blue colouration with X- α-gal (both 130 

indicative of protein/protein interactions), with Pikm-HMA and AVR-PikD, AVR-131 

PikE, and AVR-PikA, but not AVR-PikC (Fig. 2a). While the Y2H assay with Pikm-132 

HMA or Pikp-HMA showed comparable interaction with AVR-PikD, Pikm-HMA 133 

showed increased interaction with AVR-PikE and markedly stronger interaction with 134 

AVR-PikA (Fig. 2a). No growth was observed with Pikp-HMA and AVR-PikC. All 135 

proteins were confirmed to be expressed in yeast (Supplementary Fig. 2a). 136 

 137 

Pikm-HMA has tighter binding affinities for AVR-Pik effectors compared to Pikp-138 

HMA in vitro 139 

To produce stable Pikm-HMA protein for in vitro studies, we cloned a construct with 140 

a 5-amino acid extension at the C-terminus (encompassing residues Gly186 - Asp264 141 

of the full-length protein) compared to the previously studied Pikp-HMA33. Using gel 142 

filtration with separately purified proteins, Pikm-HMA forms complexes with the 143 

effectors AVR-PikD, AVR-PikE, or AVR-PikA, but not with AVR-PikC (Fig. 2b, 144 

Supplementary Fig. 2b). 145 

To determine the extent to which the expanded response of Pikm to AVR-Pik effectors 146 

in N. benthamiana is related to the strength of binding to the Pikm-HMA, we 147 
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determined binding affinities by Surface Plasmon Resonance (SPR). We monitored 148 

response units (RU) following Pikm-HMA injection after capturing effectors on the 149 

chip surface. Binding of Pikm-HMA to the different effectors was measured at three 150 

different concentrations, and RUs normalised to Rmax (theoretical maximum response, 151 

assuming a 1:1 interaction model). From this, we ranked the order of highest to lowest 152 

apparent affinity (Fig. 2c). We then extended the Pikm-HMA concentration range to 153 

enable estimation of the equilibrium dissociation constant, KD. Using a 1:1 kinetics 154 

interaction model, we found that Pikm-HMA bound to AVR-PikD with the highest 155 

affinity (lowest KD), followed by AVR-PikE and AVR-PikA (Fig. 2c, Supplementary 156 

Fig. 2c-e, Supplementary Table 1). We observed no significant binding of Pikm-HMA 157 

to AVR-PikC (Fig. 2c, Supplementary Fig. 2f, Supplementary Table 1). 158 

We also produced Pikp-HMA with its equivalent 5-amino acid C-terminal extension 159 

(including residues Gly186 – Asp263 of the full-length protein) and analysed effector 160 

binding by SPR (Fig. 2c). We ranked effector binding affinities in the order AVR-PikD 161 

> AVR-PikE > AVR-PikA (with no significant binding to AVR-PikC, and assuming a 162 

1:2 (effector:Pikp-HMA) interaction model, as previously observed33). However, we 163 

were only able to reliably determine the KD for Pikp-HMA bound to AVR-PikD (Fig. 164 

2c, Supplementary Fig. 2g), as the binding of AVR-PikE and AVR-PikA were of 165 

insufficient quality under our assay conditions to allow KDs to be determined 166 

(Supplementary Fig. 2h-i). 167 

Based on these results, and the interactions monitored by Y2H, we conclude that 168 

differential binding affinity to the HMA domains is the source of the allele-specific 169 

response profile in N. benthamiana, and of rice cultivars to M. oryzae strains expressing 170 

AVR-Pik variants34. 171 

 172 

Structures of Pik-HMAs in complex with AVR-Pik effectors reveals multiple 173 

interaction surfaces 174 

Using a co-expression strategy, we obtained complexes of Pikm-HMA bound to AVR-175 

PikD, AVR-PikE, or AVR-PikA. Each of these were crystallised, and X-ray diffraction 176 

data were collected at the Diamond Light Source (UK) to 1.2 Å, 1.3 Å, and 1.3 Å 177 

resolution respectively. Details of X-ray data collection, structure solution, and 178 

structure completion are given in the Methods and Supplementary Table 2. The 179 

overall orientations of each component in the Pikm-HMA/effector complexes are 180 

similar to each other, and to the previously determined Pikp-HMA/AVR-PikD 181 

structure33 (Fig. 3a, Supplementary Fig. 3a,b, Supplementary Table 3). Interestingly, 182 

the Pikm-HMA/effector structures form a 1:1 complex, in contrast to Pikp-183 

HMA/AVR-PikD, which formed a 2:1 complex33. Pikp-HMA dimerization is most 184 

likely an artefact of in vitro protein expression and purification. 185 

Analysis of the interfaces formed between Pikm-HMA and the effectors using 186 

QtPISA36 (Supplementary Table 4, Supplementary Fig. 4) reveals they are broadly 187 
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similar to each other, although there is a trend of reducing total interface area in the 188 

order AVR-PikD > AVR-PikE > AVR-PikA. Graphical representation of key interface 189 

components (using QtPISA interaction radars36, Supplementary Fig. 4) reveals a high 190 

likelihood that each interface is biologically relevant: each key component value lies 191 

well above the 50% threshold when considered against statistical distributions derived 192 

from the Protein DataBank (PDB) (see Methods and 36).  193 

Three predominant regions can be identified within each Pikm-HMA/effector 194 

interface (Fig. 3b, Fig. 1c). These regions (interfaces) are defined here from the HMA 195 

side as: interface 1, N-terminal residues Glu188 – Lys191; interface 2, residues from 2 196 

and 3 (Ser219 – Val233), and Lys195 from 1; interface 3, residues from 4 to the C-197 

terminus (Met254 – Asp264) (Fig. 3b, Fig. 1c).  198 

Interface 1 is a minor component of the Pikm-HMA/effector interaction, with a single, 199 

weak hydrogen bond formed by the side-chain of Lys191 (to the main-chain carbonyl 200 

group of Thr69 of the effector), and a hydrophobic interface contributed by the side 201 

chain of Met189 (to the side chain of Ile49 of the effector). Interface 2 is more extensive, 202 

and predominately interacts with AVR-Pik residues from the N-terminal extension of 203 

the conserved MAX effector fold37, including Arg39 – Phe44 and His46 – Ile49. This 204 

interface includes the polymorphic residues at positions 46, 47, and 48 of the effector 205 

variants34 (Fig. 1b, Fig. 3a-d). Interface 2 also includes salt-bridge/hydrogen bond 206 

interactions via the side chains of Asp225 (to Arg64 of the effectors), and Lys195 (to 207 

Asp66 of the effectors, Fig. 3a). Finally, interface 3 includes both main-chain hydrogen 208 

bonding interactions between 4 of the HMA and 3 of the effectors, and inserts the 209 

side-chain of Lys262 into a surface pocket on the effector lined by residues Glu53, 210 

Tyr71, Ser72, and Trp74. Lys262 makes a number of interactions in this pocket, 211 

including salt-bridge/hydrogen bonds with the side-chains of Glu53 and Ser72 (Fig. 212 

3a, Fig. 4a).  213 

We also obtained crystal structures of Pikp-HMA, with the 5-amino acid extension at 214 

the C-terminus of the HMA, bound to AVR-PikD or AVR-PikE at 1.35 Å and 1.9 Å 215 

resolution respectively (see Methods, Supplementary Table 2, Supplementary Fig. 216 

3c,d). The Pikp/AVR-PikE combination does not give rise to responses in planta, but 217 

we were able to obtain the complex in solution. The new structure of the Pikp-218 

HMA/AVR-PikD complex is essentially identical to that previously determined33, 219 

except for the 5-amino acid extension. Interface analysis with QtPISA (Supplementary 220 

Table 4, Supplementary Fig. 4) reveals that the Pikp-HMA/AVR-PikD complex has 221 

broadly similar properties to those of Pikm-HMA/effectors (total interface area and 222 

key component values well above the 50% threshold in interaction radars). In contrast, 223 

while the Pikp-HMA/AVR-PikE interface shows a broadly similar total interface area 224 

to the other complexes, the total calculated binding energy is reduced (area of the 225 

polygon in Supplementary Fig. 4), and 5 out of 6 key interface components fall below 226 

the 50% threshold, questioning this interface’s biological relevance.  227 

 228 
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Structural changes at interface 2 underpin differential effector recognition by Pikm 229 

Effector variants AVR-PikD, AVR-PikE, and AVR-PikA differ at amino acid positions 230 

46, 47 and 48, which localise to interface 2 (Fig. 1b, Fig. 3b). Pikp-HMA binds AVR-231 

PikD(His46) via hydrogen bonds with residues Ser218 and Glu23033. In Pikm, the Ser 232 

is conserved, but Glu230 is replaced by Val231 at the structurally equivalent position, 233 

resulting in the loss of a direct hydrogen bond. Despite this, AVR-PikD(His46) 234 

occupies the same position in both complexes (Fig. 3c). Surprisingly, in the Pikm-235 

HMA/AVR-PikE complex, AVR-PikE(Asn46) is rotated out of the binding pocket, 236 

well away from Val231 (Fig. 3d), and a water molecule occupies the resulting space. 237 

Hydrogen bonds are formed between AVR-PikE(Asn46:N2) and both Pikm-238 

HMA(Ser219:OH) and the new water molecule. This configuration impacts the 239 

position of effector residues Phe44 – Gly48, pushing them away from the HMA, further 240 

altering interactions across interface 2. These structural changes correlate with reduced 241 

binding affinity of AVR-PikE with Pikm-HMA compared to AVR-PikD. In the Pikm-242 

HMA/AVR-PikA complex, Asn46 is rotated even further out of the HMA pocket, and 243 

while a hydrogen bond is still formed with Pikm-HMA(Ser219:OH), this is 244 

significantly different in orientation (Fig. 3d). These changes serve to move residues 245 

Asn46 – Pro50 of AVR-PikA further away from the HMA, and again these structural 246 

observations correlate with reduced effector binding affinity. Interestingly, the 247 

polymorphic residues in AVR-PikA (Ala47 and Asp48) have no direct role in Pikm-248 

HMA interaction. The polymorphisms in AVR-Pik do not significantly alter 249 

protein/protein interactions across interfaces 1 and 3, and these regions appear to 250 

stabilise the complexes.  251 

We conclude that the structural changes at interface 2 underlie the weaker binding 252 

affinities of Pikm-HMA for AVR-PikE and AVR-PikA, compared to AVR-PikD. 253 

 254 

Interactions across interface 3 contribute more to Pikm-HMA than Pikp-HMA 255 

binding to AVR-PikD  256 

As observed at interface 3 for the Pikm/effector complexes (Fig. 4a), a Lys residue 257 

from Pikp-HMA (Lys262) locates to the binding pocket on the effector containing 258 

Glu53 and Ser72 (Fig. 4b). However, this Lys is shifted one residue to the C-terminus 259 

in the sequence of Pikp-1 (Fig. 1c). This results in a different conformation of Pikp-260 

HMA residues Ala260 and Asn261 when compared to Pikm-HMA (Val261 and 261 

Lys262), changing the interactions across interface 3. The most dramatic difference is 262 

the “looping-out” of Pikp-HMA(Asn261), to retain Lys262 in the effector binding 263 

pocket (Fig. 4b, Fig. 5d,e), which affects the packing of Pikp-HMA(Ala260) (Val261 in 264 

Pikm-HMA) and hydrophobic packing of the side-chain of Lys262. 265 

Pik alleles also differ in the composition of residues at interfaces 1 and 2. Of most 266 

significance are the changes at interface 2 that contact AVR-PikD(His46), as discussed 267 

above and Fig. 3c.  268 
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We propose that Pikm has evolved more robust interactions across interface 3 269 

compared to Pikp to compensate for loss of binding, such as direct hydrogen bonds, 270 

at interface 2.  271 

 272 

Interactions across interfaces 2 and 3 underpin specificity of Pikp to AVR-PikD over 273 

AVR-PikE 274 

Underpinning the global analysis of the Pikp-HMA/AVR-PikD and Pikp-275 

HMA/AVR-PikE complexes are extensive differences at interfaces 2 and 3. At interface 276 

2, AVR-PikE(Asn46) is fully rotated out of the AVR-PikD(His46) binding pocket (Fig. 277 

5a-c). A hydrogen bond is still formed between AVR-PikE(Asn46) and Pikp-278 

HMA(Ser218), but in a very different orientation (Fig. 5a-c). This results in residues 279 

Asn46-Pro50 moving away from the HMA. This re-configuration is coupled with 280 

changes at interface 3 (Fig. 5d,f,g). Interestingly, in the Pikp-HMA/AVR-PikE 281 

complex, Lys262 adopts a similar orientation to that found in the Pikm-HMA 282 

complexes (Fig. 5e,f,g). But to enable this, residues Ser258 – Asn261 adopts a 283 

dramatically different position, looping-out residues Gln259 and Ala260 from their 284 

positions in the Pikm-HMA complex (Fig. 5e,f,g), with consequent impacts on this 285 

interface. 286 

We conclude that interface 2 is key for effector recognition by Pikp and, unlike for 287 

Pikm, interfaces 1 and 3 are not able to compensate to enable productive binding. 288 

 289 

Mutations at separate interfaces have differential effects on Pik-HMA/effector 290 

interactions and immunity phenotypes 291 

We subsequently tested whether mutations in the effectors at interfaces 2 and 3 have 292 

differential effects on Pik-HMA binding and responses by Y2H, SPR and in N. 293 

benthamiana. We used the previously characterised AVR-PikD(His46Glu) mutant at 294 

interface 2, and a Glu53Arg mutant at interface 3 in AVR-PikD, AVR-PikE, and AVR-295 

PikA. While AVR-PikD(His46) occupies a central position at interface 2, AVR-296 

Pik(Glu53) locates to the Pik-HMA(Lys262) binding pocket, at the periphery of 297 

interface 3. 298 

As previously observed (although without the C-terminal extension33), the AVR-299 

PikD(His46Glu) mutant essentially blocks the Pikp-HMA/effector interaction in Y2H 300 

and SPR, and abolishes Pikp-mediated cell death in N. benthamiana (Fig. 6a-c, 301 

Supplementary Fig. 5). Interestingly, AVR-PikD(His46Glu) interacts with Pikm-HMA 302 

in Y2H (Fig. 6a). However, when measured by SPR, Pikm-HMA binding to this mutant 303 

is reduced to ~11% compared to wild-type (Fig. 6b). This reduction of binding in vitro 304 

is reflected in N. benthamiana, where we observe weak AVR-PikD(His46Glu)-305 

dependent Pikm cell death (Fig. 6c, Supplementary Fig. 5b-d). 306 
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For each of the Glu53Arg effector mutants, we observe little impact on Pikm-HMA 307 

interaction in Y2H compared to wild-type, except a reduced interaction of AVR-308 

PikA(Glu53Arg) (Fig. 6a). Interestingly, the Glu53Arg mutant in AVR-PikE abolishes 309 

interaction of this effector with Pikp-HMA in Y2H. Using SPR, the AVR-310 

Pik(Glu53Arg) mutants show reduced binding to both Pik-HMA domains when 311 

compared pairwise with wild-type in each effector background (Fig. 6b). However, in 312 

each case, the Glu53Arg mutant has a greater effect in Pikm-HMA binding compared 313 

to Pikp-HMA. Surprisingly, in the N. benthamiana cell death assay, we observe a slight 314 

increase in the AVR-PikD(Glu53Arg)-dependent cell death compared to wild-type for 315 

both Pikp and Pikm (Fig. 6c, Supplementary Fig. 5b-d). However, we see a reduction 316 

in intensity of Pikm-mediated cell death for the effector variants AVR-PikE(Glu53Arg) 317 

and AVR-PikA(Glu53Arg) (Fig. 6c, Supplementary Fig. 5b-d). 318 

We conclude that interactions across interface 2 are critical for effector recognition by 319 

Pikp, and important for Pikm, and interface 3 has an important role in the extended 320 

response of Pikm to AVR-PikE and AVR-PikA.  321 
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Discussion 322 

Despite intensive study, 25 years since the cloning of the first plant NLRs38-40 very little 323 

is known about the molecular mechanistic basis of how these proteins recognise 324 

pathogen effectors and initiate immune signalling. The recent identification of plant 325 

NLRs with integrated domains28-30 has enabled new opportunities to investigate how 326 

these receptors directly recognise pathogen effectors at the biochemical and structural 327 

level, and how these binding events are linked to disease resistance33,41-44. Here we 328 

have generated five structures of different complexes between the integrated domains 329 

of an allelic NLR (Pik), and the variants of the effector (AVR-Pik) they recognise. When 330 

combined with analysis of biophysical interactions in vitro, and cell death responses 331 

in the model plant N. benthamiana, these structures provide new understanding, and 332 

unexpected findings, on how co-evolution has driven the emergence of new plant NLR 333 

receptor specificities. 334 

High levels of diversifying selection in allelic plant NLRs and pathogen effectors 335 

suggest direct interaction between the proteins. Previous studies where structures of 336 

the effectors, but not the interacting NLR domain, were available showed that 337 

distributed surface-presented residues on the effectors defined NLR recognition 338 

specificity, mediated by polymorphic LRR domains14,15. The integrated HMA domains 339 

are the most polymorphic regions of the rice Pik-1/Pik-2 paired NLRs, and Pik-HMA 340 

amino acids that form the interfaces with effectors are likely under the strongest 341 

selective pressure. Therefore, during the course of plant-pathogen co-evolution, at 342 

least two alternative solutions for recognising divergent effectors have emerged. One 343 

of these involves the integration and diversification of non-canonical domains in the 344 

NLR architecture. The second involves diversification of LRR domains. An important 345 

question raised by these studies is what has driven the emergence of these different 346 

systems? An advantage of the integrated domain is that (once stably incorporated) it 347 

may tolerate accelerated accumulation of mutations, followed by selection for 348 

function, as mutations may be less likely to disrupt to the overall structure and 349 

function of the NLRs.  350 

One outcome from this work is the surprising plasticity of the Pik-HMA interfaces that 351 

supports differential recognition of AVR-Pik variants. Interactions across interface 2 352 

are important for effector binding by Pikp-HMA and Pikm-HMA. Disruption of 353 

interface 2 by amino acid polymorphisms in AVR-PikE and AVR-PikA eliminates 354 

Pikp-mediated cell death in planta, and weakens Pikm-mediated cell death. The 355 

unique polymorphism that defines AVR-PikC (Ala67Asp) also maps to interface 2, and 356 

may result in a steric clash preventing, or severely reducing, Pik-HMA binding. Our 357 

structural data support a conclusion that more favourable interactions across interface 358 

3 have evolved in Pikm-HMA to, in-part, compensate for the impact of AVR-Pik 359 

variation at interface 2, and support cell-death signalling. Our biophysical data suggest 360 

that quantitative binding differences, visualised as disruption of interfaces in the 361 

structures, underpins differential effector recognition by Pik-HMAs, and a threshold 362 

of binding is required for activation of response in planta. These insights will inform 363 
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future structure/function studies to address whether rational engineering of Pik-364 

HMA effector-binding interfaces can generate NLR receptors with improved 365 

recognition profiles. Ultimately, we must understand how recognition of effectors, 366 

through either integrated domains or other mechanisms, results in triggering of 367 

immune responses in the context of the full-length proteins and, potentially, 368 

oligomeric states.  369 
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Methods 370 

Gene cloning  371 

For details of gene cloning, please see Supplementary Methods. 372 

Expression and purification of proteins for in vitro binding studies  373 

pOPINM encoding Pikm-HMA or Pikp-HMA was transformed into E. coli SHuffle 374 

cells45. Inoculated cell cultures were grown in auto induction media46 at 30 °C for 6hr 375 

and 18 °C overnight. Cells were harvested and proteins extracted as previously 376 

reported33. AVR-Pik effectors with a cleavable N-terminal SUMO or MBP tag and a 377 

non-cleavable C-terminal 6xHis tag were produced in and purified from E. coli SHuffle 378 

cells as previously described33 using either auto induction media46, or Power Broth 379 

(Molecular Dimensions). 380 

Protein concentration of AVR-Pik effectors was determined by absorption at 280 nm 381 

using a NanoVue spectrophotometer (GE Lifesciences). Measurements were corrected 382 

using the molar extinction coefficient 25,105 M-1 cm-1, as calculated by Expasy 383 

(http://web.expasy.org/protparam). Due the lack of aromatic residues in Pik-HMA 384 

domains, protein concentrations were measured using a Direct Detect® Infrared 385 

Spectrometer (Merck). 386 

Co-expression and purification of Pik-HMA/AVR-Pik effectors for crystallisation. 387 

Relevant Pik-HMA domains and AVR-Pik effectors were co-expressed in SHuffle cells 388 

following co-transformation of pOPINM:Pik-HMA and pOPINA:AVR-Pik, as 389 

previously described33. Cells were grown in autoinduction media (supplemented with 390 

both carbenicillin and kanamycin), harvested, and processed as described in the 391 

Supplementary Methods. Protein concentrations were measured by absorbance at 280 392 

nm using a NanoVue spectrophotometer and an extinction coefficient of 25,105 M-1 cm-393 
1 for Pikm-HMA complexes, and 26,720 M-1 cm-1 for Pikp-HMA complexes, as 394 

calculated by Expasy (http://web.expasy.org/protparam). 395 

Protein:protein interaction: Analytical gel filtration 396 

Pikm-HMA and the AVR-Pik effectors were mixed in a molar ratio of 2:1 and 397 

incubated on ice for 60 min. In each case a sample volume of 110 μl was separated at 398 

4°C on a Superdex 75 10/300 size exclusion column (GE Healthcare), pre-equilibrated 399 

in buffer B, and at a flow rate of 0.5 ml/min. Fractions of 0.5 ml were collected for 400 

analysis by SDS-PAGE. The Superdex 75 10/300 column has a void volume of 7.4 ml 401 

and a total volume of 24 ml. 402 

Protein:protein interaction: Surface plasmon resonance 403 

Surface plasmon resonance (SPR) experiments were performed on a Biacore T200 404 

system (GE Healthcare) using an NTA sensor chip (GE Healthcare). All proteins were 405 

prepared in SPR running buffer (20 mM HEPES pH 7.5, 860 mM NaCl, 0.1% Tween 406 
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20). Details of the cycling conditions are given in the Supplementary Methods. 407 

The equilibrium dissociation constants (KD) for Pikm-HMA binding to AVR-Pik 408 

alleles, and Pikp-HMA binding to AVR-PikD, were determined from multicycle 409 

kinetics curves using the Biacore T200 BiaEvaluation software (GE Healthcare), with a 410 

1:1 or 2:1 fit model respectively. For the interaction between Pikp-HMA and AVR-PikE 411 

and AVR-PikA, and for both Pik-HMAs and the AVR-Pik mutants, it was not possible 412 

to accurately determine the KD due to the insufficient quality of the data. In these cases, 413 

the level of binding was expressed as a percentage of the theoretical maximum 414 

response (Rmax) normalized for the amount of ligand immobilized on the chip. SPR 415 

data was exported and plotted using Microsoft Excel. Each experiment was repeated 416 

a minimum of 3 times, with similar results.  417 

Protein:protein interaction: Yeast-2-hybrid analyses  418 

The Matchmaker® Gold Yeast Two-Hybrid System (Takara Bio USA) was used to 419 

detect protein–protein interactions between Pik-HMAs and AVR-Pik effectors. DNA 420 

encoding Pik-HMAs in pGBKT7 was co-transformed with either the individual AVR-421 

Pik variants or mutants in pGADT7, into chemically competent Saccharomyces cerevisiae 422 

Y2HGold cells (Takara Bio, USA). Single colonies grown on selection plates were 423 

inoculated in 5 ml of SD-Leu-Trp and grown overnight at 30˚C. Saturated culture was 424 

then used to make serial dilutions of OD600 1, 1-1, 1-2, 1-3, respectively. Five μl of each 425 

dilution was then spotted on a SD-Leu-Trp plate as a growth control, and also on a SD-Leu-426 
Trp-Ade-His plate containing X-α-gal and aureobasidine, as detailed in the user manual. 427 

Plates were imaged after incubation for 60 - 72 hr at 30 ˚C. Each experiment was 428 

repeated a minimum of 3 times, with similar results. 429 

To confirm protein expression in yeast, total protein was extracted from transformed 430 

colonies by boiling the cells for 10 minutes in LDS Runblue® sample buffer. Samples 431 

were centrifugated and the supernatant was subjected to SDS-PAGE prior to western 432 

blotting. The resulting membranes were probed with Anti-GAL4 DNA-BD (Sigma) for 433 

HMA domains in pGBKT7 and Anti-GAL4 Activation Domain (Sigma) antibodies for 434 

AVR-Pik effectors in pGADT7. 435 

N. benthamiana cell death assays 436 

Transient gene-expression in planta was performed by delivering T-DNA constructs 437 

with Agrobacterium tumefaciens GV3101 strain into 4-week old N. benthamiana plants 438 

grown at 22–25 °C with high light intensity. Pik-1, Pik-2, AVR-Pik and P19 were mixed 439 

at OD600 0.4, 0.4, 0.6 and 0.1, respectively.  Detached leaves were imaged at 5 dpi from 440 

the abaxial side. Images are representative of three independent experiments, with 441 

internal repeats. The cell death index used for scoring is as presented previously33 (also 442 

included in Supplementary Fig. 1d). Scoring for all replicas is presented as boxplots, 443 

generated using R v3.4.3 (https://www.r-project.org/) and the graphic package 444 

ggplot247. The centre line represents the median, box limits are upper and lower 445 
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quartiles, whiskers are 1.5x interquartile range, and all data points are represented as 446 

dots.  447 

The presence of each protein, as expressed in representative assays, was determined 448 

by SDS-PAGE/western blot. For this, leaf tissue was frozen, and ground to fine 449 

powder in liquid nitrogen using a pestle and mortar. Leaf powder was mixed with 2 450 

times weight/volume ice-cold extraction buffer (10% glycerol, 25 mM Tris pH 7.5, 1 451 

mM EDTA, 150 mM NaCl, 2% w/v PVPP, 10 mM DTT, 1x protease inhibitor cocktail 452 

(Sigma), 0.1% Tween 20 (Sigma)), centrifuged at 4,200g/4 °C for 20-30 min, and the 453 

supernatant filtered (0.45 μm).  454 

Crystallization, data collection and structure solution 455 

For crystallization, Pik-HMA/AVR-Pik complexes were concentrated in buffer B (see 456 

Supplementary Methods). Sitting drop, vapor diffusion crystallization trials were set 457 

up in 96 well plates, using an Oryx nano robot (Douglas Instruments, United 458 

Kingdom). Plates were incubated at 20°C, and crystals typically appeared after 24 - 48 459 

hours. For data collection, all crystals were harvested from the Morpheus® HT-96 460 

screen (Molecular Dimensions), and snap-frozen in liquid nitrogen. Details of each 461 

crystallisation condition are given in the Supplementary Methods.  462 

X-ray data sets were collected at the Diamond Light Source (Oxford, UK). The data 463 

were processed using the xia2 pipeline48 and AIMLESS49, as implemented in CCP450. 464 

The structures were solved by molecular replacement using PHASER51 and the Pikp-465 

HMA/AVR-PikD structure33. The final structures were obtained through iterative 466 

cycles of manual rebuilding and refinement using COOT52 and REFMAC553, as 467 

implemented in CCP450. Structures were validated using the tools provided in COOT 468 

and MOLPROBITY54. 469 

Protein interface analyses 470 

Protein interface analyses were performed using QtPISA36. For each complex, one Pik-471 

HMA/AVR-Pik effector assembly was used as a representative example. QtPISA 472 

interaction radars36 were produced using the reference parameter “Total Binding 473 

Energy”. The area of the polygon indicates the likelihood of the interface to constitute 474 

part of a biological assembly (the greater the area the more likely). The scales along the 475 

beams compare key interface properties to statistical distributions derived from the 476 

Protein Databank. In general, if the radar area is contained within the 50% probability 477 

circle then the interface is considered superficial, and its biological relevance is 478 

questionable. In cases where the radar area is expanded outside the 50% probability 479 

circle, the interface is considered more likely to be significant and biologically 480 

relevant36.  481 
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Data availability 482 

The co-ordinates and structure factors have been deposited in the Protein Data Bank 483 

with accession codes 6FU9 (Pikm-HMA/AVR-PikD), 6FUB (Pikm-HMA/AVR-PikE), 484 

6FUD (Pikm-HMA/AVR-PikA), 6G10 (Pikp-HMA/AVR-PikD) and 6G11 (Pikp-485 

HMA/AVR-PikE).  486 
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Figures 495 

 496 

Figure 1: The Pikm-mediated cell death response to AVR-Pik effector variants in N. 497 

benthamiana phenocopies the Pikm resistance profile in rice. (a) Schematic 498 

representations of Pik NLR alleles. The sensor NLR (Pik-1) and helper NLR (Pik-2) 499 

share a common promoter and the same overall domain architecture. Pikp-1/Pikp-2 500 

(top) are shown in ice blue, and Pikm-1/Pikm-2 (bottom) are shown in gold. Pairwise 501 

protein sequence identity between each domain is indicated, highlighting 502 

diversification of the integrated HMA domain, (b) Schematic representations of AVR-503 

Pik variants with amino acid polymorphisms shown (single letter code, SP = Signal 504 

Peptide), along with their Pikp- or Pikm-mediated response profiles in rice34, (c) 505 

Amino acid sequence alignment of Pikp-1 and Pikm-1 HMA domains. Secondary 506 

structure features of the HMA fold are shown above, and the residues located to the 507 

interfaces described in the text and Figure 3 are highlighted in purple (interface 1), 508 

pink (interface 2), and magenta (interface 3), (d) Representative leaf image showing 509 

Pikm-mediated cell death to AVR-Pik variants as autofluorescence under UV-light, 510 

Pikp-mediated cell death with AVR-PikD is included as a positive control (surrounded 511 

by dashed circle, no Pikm-1/Pikm-2 in this spot), (e) Box-plots showing repeats of the 512 

cell death assay, for each sample the number of repeats was 90. The cell-death scoring 513 

scale used is shown in Supplementary Fig. 1d. For brevity, effectors are labelled 514 

without the ‘Pik’ designation in panels (d) and (e) and, where appropriate, in Figs. 2 – 515 

6.  516 
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 517 

 518 

Figure 2: Different affinities underpin recognition and response of Pik NLR alleles 519 

to AVR-Pik effector variants. (a) Yeast-2-hybrid demonstrates binding of effector 520 

variants to both the Pikm- and Pikp-HMA domains, control plate for yeast growth is 521 

on the left, with selective plate on the right, (b) Analytical gel filtration confirms that 522 

Pikm-HMA forms complexes with AVR-PikD, AVR-PikE, and AVR-PikA in vitro, but 523 

not AVR-PikC. Note that earlier elution correlates with increased molecular mass. 524 

Retention volumes for peaks are labelled (black arrow indicates Pikm-HMA elution 525 

volume, Pikm-HMA does not absorb light at 280 nm). SDS-PAGE with relevant 526 

fractions are shown in Supplementary Fig. 2b. (c) Surface Plasmon Resonance (SPR) 527 

reveals in vitro binding affinity between Pik-HMA domains and effectors correlates 528 

with in planta responses. %Rmax is the percentage of the theoretical maximum 529 

response, assuming a 1:1 binding model for Pikm (effector:HMA), and a 1:2 binding 530 

model for Pikp, at the HMA concentrations shown. Bars represent the average of 3 531 

measurements, with corresponding standard deviation. Where KD values are given, a 532 

wider range of HMA concentrations were used for this calculation (see 533 

Supplementary Fig. 2c-e, g), N.D. = Not Determined.   534 
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 535 

 536 

Figure 3: Structures of Pikm-HMA in complex with AVR-Pik effectors. (a) Schematic 537 

representation of the structure of Pikm-HMA in complex with AVR-PikD. Pikm-HMA 538 

is shown in gold cartoon representation with selected side chains as sticks; the 539 

molecular surface of this domain is also shown. AVR-PikD is shown in green cartoon, 540 

with selected side chains as sticks. Hydrogen bonds/salt bridges are shown as dashed 541 

lines and the di-sulfide bond as yellow bars, (b) Buried surface area of AVR-PikD and 542 

Pikm-HMA shown from the perspective of the partner (change in orientation from 543 

panel (a) indicated). The buried surfaces are coloured according to interfaces described 544 

in the text (interface 1 is in purple, interface 2 is in pink, interface 3 is magenta), (c) 545 

Close-up views (part of interface 2) of the orientation and interactions of AVR-546 

PikD(His46) in the Pikp-HMA and Pikm-HMA complexes, (d) Close-up views (part of 547 

interface 2) of the orientation and interactions of AVR-PikE(Asn46), left, and AVR-548 

PikA(Asn46), right, in complex with Pikm-HMA. Water molecules are shown as red 549 

spheres.  550 
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 551 

 552 

Figure 4: Different interactions at interface 3 in the complexes of Pikm-HMA and 553 

Pikp-HMA with AVR-PikD support recognition and response. Close-up view of the 554 

interactions across interface 3 in the (a) Pikm-HMA and (b) Pikp-HMA complexes with 555 

AVR-PikD, showing different conformations for the C-terminal regions of the HMA 556 

domains. In particular, note the looping-out of Asn261 of Pikp-HMA, and the different 557 

orientation of the Lys262 sidechain. In each panel, AVR-PikD is shown in green 558 

cartoon, with side chains as sticks, the molecular surface of the effector is also shown. 559 

The Pik-HMA domains are coloured as labelled.  560 
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 561 

 562 

Figure 5: Altered interactions across interfaces of Pikp-HMA with AVR-PikD and 563 

with AVR-PikE underpin differences in recognition and response. (a, b) Zoom-in 564 

views of the interactions across interface 2 in the Pikp-HMA complexes with AVR-565 

PikD and AVR-PikE. In each panel the Pikp-HMA domain is shown as ice-blue sticks, 566 

the molecular surface is also shown. Effector variant residues are coloured as labelled 567 

and shown in C-worm with sidechain representation, (c) Superposition of panels (a) 568 

and (b), with only selected sidechains shown for clarity. The polymorphism at position 569 

46 occupies a very different position, fully flipped out of the His46 binding pocket in 570 

the AVR-PikE structure, which alters the position of residues Asn44-Pro50 relative to 571 

the Pikp-HMA domain, (d-f) Zoom-in views of the interactions across interface 3 in 572 

the Pikp-HMA complex with AVR-PikD, Pikm-HMA complex with AVR-PikD, and 573 

Pikp-HMA with AVR-PikE. In each panel the effector is shown as sticks, and the 574 

molecular surface is also shown and coloured as labelled. Pik-HMA residues are 575 

coloured as labelled and shown in C-worm with sidechain representation. The 576 
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looping-out of Asn261 in Pikp compared to Pikm, when in complex with AVR-PikD, 577 

is seen in panels d and e, and the displacement of residues Gln259 and Ala260 in Pikp, 578 

between the complexes with AVR-PikD or AVR-PikE, is seen in panels d and f, (g) 579 

Superposition of panels (d-f), with only the sidechain of Pik-HMA Lys262, and only 580 

the surface of AVR-PikD, shown for clarity.  581 
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 582 

 583 

Figure 6: Mutations at different interfaces in the Pik-HMA/effector complexes have 584 

differential effects on interactions and phenotypes. (a) Effector mutations at 585 

positions 46 and 53 perturb interactions with Pikm- and Pikp-HMA domains as 586 

assayed by Y2H, (b) Changes in in vitro binding for effector mutants with Pikm- and 587 

Pikp-HMA domains, as measured by SPR. %Rmax was calculated as described in the 588 

text. To emphasise the altered binding for each effector mutant, the averaged 589 

difference % Rmax, across the 3 different concentrations measured, is shown. Bars 590 

represent the average of 3 measurements, with corresponding standard deviation (c) 591 
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Box-plots of Pikm- or Pikp-mediated cell death triggered by the effector mutants, for 592 

each sample the number of repeats was 90.  593 
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Table 1: Summary Table detailing the various interactions and phenotypes 594 

between Pik NLR alleles and effector variants in this study. 595 

  AVR-D AVR-E AVR-A AVR-C AVR-D
H46E

 AVR-D
E53R

 AVR-E
E53R

 AVR-A
E53R

 

Interaction in 

Y2H 

Pikp +++ ++ + - + ++ - - 

Pikm +++ +++ +++ + +++ ++ ++ + 

Interaction in 

SPR 

Pikp +++ ++ + - - +++ + - 

Pikm +++ +++ ++ - + ++ + -/+ 

Recognition in 

rice plants 

Pikp +++* +* (-) (-) -* N.D. N.D. N.D. 

Pikm (+++) (+++) (+++) (-) N.D. N.D. N.D. N.D. 

CD response in 

N. benthamiana 

Pikp +++ - - - - +++ - - 

Pikm +++ ++ + - + +++ + + 

Y2H = yeast-2-hybrid, SPR = Surface Plasmon Resonance, Recognition in rice plant Pikp = rice cv. K60, Pikm= rice cv. 596 
Tsuyuake, CD = cell death, N.D. not determined, parenthesis from34, *from33. SPR and Y2H interactions used the 597 
isolated HMA domains, in planta experiments were performed with full length proteins.  598 
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