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Highlights

• Orthogonal projection is proposed to mitigate the domain shift problem;

• Semantic feature representation is included to alleviate visual category

ambiguity;

• Deep model is applied to improve the performance;

• Extensive experiments show the superiority of our algorithm.
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Abstract

To mitigate the problems of visual ambiguity and domain shift in conventional

zero-shot learning (ZSL), in this paper, we propose a novel method, namely,

dual-verification network (DVN), which accepts features and attributes in a

pairwise manner as input and verifies the result in both the attribute and fea-

ture spaces. First, the DVN projects a feature onto an orthogonal space, where

the projected feature has maximum correlation with its corresponding attribute

and is orthogonal to all the other attributes. Second, we adopt the concept of

semantic feature representation, which computes the relationship between the

semantic feature and class labels. Based on this concept, we project the at-

tributes onto the feature space by extending the attributes and labels from the

class level to instance level. In addition, we employ a deep architecture and

utilize the cross entropy loss to train an end-to-end network for dual verifica-

tion. Extensive experiments in ZSL and generalized ZSL are performed on four

well-known datasets, and the results show that the proposed DVN exhibits a

competitive performance relative to the state-of-the-art methods.
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1. Introduction

In recent times, numerous research studies have focused on extending im-

age or video classification to a large-scale owing to the emergence of large-scale

datasets such as ImageNet [6] and powerful techniques such as deep learning.

However, image classification of large-scale datasets is still a major problem be-5

cause there are many rare or fine-grained categories in addition to the common

image classes, and training samples of these categories are difficult to collect.

For example, there are 21,814 categories in ImageNet, among which 1,000 cat-

egories are common and easy to capture, and so, are often used for training.

However, the remaining approximately 21000 categories of the sample images10

are uncommon and difficult to obtain. Particularly, 296 of these categories have

only a single corresponding image. Therefore, it is necessary to determine meth-

ods for recognizing unseen images based on only the knowledge from the seen

images. Humans can identify over 30,000 classes and are particularly good at

recognizing unseen categories. For example, a child who has not seen a ’zebra’15

before but knows that a ’zebra’ resembles a ’horse’ and has ’white and black

stripes’, will be able to very easily recognize a ’zebra’. Many research studies

classify the unseen classes using the method used by humans to recognize unseen

classes, namely, zero-shot learning (ZSL) in the area of machine learning.

ZSL aims to learn a classification model that is trained on the samples be-20

longing to the seen classes but can be transferred to be applied to the test

data belonging to the unseen classes [22, 14, 46]. In zero-shot recognition, the

seen and unseen classes are typically related in a high-dimensional vector space,

which is called the semantic embedding space. Such a space is often an attribute

space or a word vector space.25

Conventional ZSL methods frequently rely on mapping visual features di-

rectly onto the semantic embedding space, e.g., one of the best concepts is

called attribute label embedding (ALE) [1], which learns the parameters of a

function based on the max-margin loss to ensure that the projected features

have the maximum distance between different class labels, whereas they have30
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the minimum distance between the same class labels. This type of projection for

visual feature embedding is learned only from the seen classes, and hence, the

projections of the unseen class images are expected to be shifted. Although the

seen and unseen classes have overlapping domains in the embedding space, they

are significantly different, e.g., for the same embedding, the visual appearance35

results of the seen classes may be quite different compared with those of the

unseen classes. This problem is often called the domain shift.

To mitigate the effect of domain shift, many researchers have introduced

transductive learning methods [10], which assume that both labeled and un-

labeled test data are available during the training process. These methods40

can significantly reduce the domain shift problem. However, in a realistic sce-

nario, unlabeled test data are not strictly accessible. Thus, these methods are

frequently discarded in practical applications. To solve this problem without

using unseen data, E. Kodirov et. al proposed a method called the semantic

auto-encoder (SAE)[17], which constructs an encoder–decoder paradigm, where45

the encoder projected a visual feature vector onto the semantic space, whereas

the decoder exerted an additional constraint such that the projection was able

to reconstruct the original visual feature. However, the SAE does not consider

increasing the distance between the different classes, which leads to the problem

of visual category ambiguity.50

In this paper, we propose a novel method to exploit orthogonal projection

and feature semantic representation, which can be considered as a dual verifi-

cation, to solve the problems of domain shift and category ambiguity. First,

to mitigate the problem of category ambiguity, we propose to project the vi-

sual features onto the semantic space and allow the projected vectors to have55

maximum correlation with their own attributes and be orthogonal to all the

other attributes. The process of orthogonal projection can be considered as a

verification conducted in the attribute space. Second, to alleviate the domain

shift problem, we introduce the concept of semantic representation of features

[49], which computes the relationship between the feature semantics and class60

labels and projects class level attributes onto the feature space. This concept
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also can be considered as a verification conducted in the feature space by ex-

tending the attributes and label vectors from the class level to instance level.

Therefore, our method can be treated as a dual verification in both the attribute

and feature spaces. Moreover, owing to the deep neural network performs suc-65

cessfully in many applications [42, 34, 43, 33, 12, 37, 41, 45], thus, in this work,

we adopted the cross entropy loss and replaced the linear projection matrix

with an end-to-end deep network, namely, the dual-verification net (DVN), to

achieve a better performance. We tested our method in both the attribute and

feature spaces in four well-known datasets for examining the accuracy of both70

ZSL and generalized ZSL (GZSL) and obtained competitive results relative to

the state-of-the-art methods.

The following is the list of our contributions: 1) Mitigation of the prob-

lem of visual ambiguity by performing an orthogonal projection to project the

features onto the orthogonal attribute space, in which all the projected class75

level attributes were orthogonal to each other. This projection can be consid-

ered as a verification in the attribute space; 2) Alleviation of the domain shift

problem by including the semantic feature representation to represent the rela-

tionship between the feature semantics and class labels, which can be treated

as a verification in the feature space; 3) Construction of an end-to-end deep80

DVN to learn a zero-shot recognition model, which can exhibit a competitive

performance compared with the state-of-the-art methods.

The remainder of this paper is organized as follows. In Section 2, we provide

a brief review of the recent ZSL methods. The details of our methods for the

orthogonal projection, feature semantic representation, and DVN are described85

in Section 3. Section 4 reports the experimental results of the ZSL and GZSL

and analyses the hyper-parameter and distribution of the projected features in

the attribute space. Finally, the results of this study are concluded in Section

5.
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2. Related Works90

Zero-shot Learning Since the proposal of visual attributes [8], extensive re-

search studies [15, 18, 29, 35] have been conducted to identify the approach for

learning the intermediate attribute classifiers for ZSL tasks. Based on the meth-

ods for using the features and attributes, we simply classify the methods into

four categories, namely, compatibility learning, hybrid learning, transductive95

learning, and synthetic learning.

In the first category, the compatibility learning framework first learns a

linear or non-linear projection from the feature space to the attribute space or

latent space by using only the seen features and attributes and then is applied to

unseen features. This category of methods includes linear models such as direct100

attribute prediction (DAP) [19], deep visual semantic embedding (DEVISE)

[9], attribute label embedding (ALE) [1], structured joint embedding (SJE) [2],

and semantic auto-encoder (SAE) [17], and non-linear models such as latent

embedding (LATEM) [39], cross model transfer (CMT) [35], and semantically

consistent regularization (SCoRe) [27].105

DAP [19] is one of the most fundamental compatibility algorithms for ZSL;

it learns probabilistic attribute classifiers and predicts a label by combining the

ranks of the learnt attribute classifiers. ALE [1], DEVISE, [9] and SJE [2] use a

bi-linear function to project features onto the embedding space or latent space,

and thereby, maximize the similarity in the related features and attributes in110

that space and minimize the unrelated features and attributes. SAE utilizes

an encoder-decoder paradigm that adds an additional decoder constraint to the

original encoder constraint, i.e., the projected code must be able to reconstruct

the original visual feature. Embarrassingly simple ZSL (ESZSL) [32] adds a

regularization term to the unregularized risk minimization formulation.115

The LATEM [39] model extends the linear projection to a non-linear piece-

wise mode, learns a set of mappings with a set of selections, and trains with

a ranking-based objective function that minimizes the incorrect matching of

the true class for a given image. The CMT [35] projects images onto the se-
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mantic word space, in which the mapping is learnt using a neural network.120

Furthermore, the CMT is improved using the novelty detection method to dif-

ferentiate the unseen classes from the seen classes. A study [47] proposed a

deep embedding model that used the visual space as the embedding space in-

stead of embedding in the semantic space or an intermediate space, aiming to

solve the hubness problem of the subsequent nearest neighbor search. SCoRe125

[27] leverages the advantages of both recognition using independent semantics

(RIS) [19] and recognition using semantic embedding (RULE) [31]. It enforces

first-order constraints (single semantics) and second-order (linear combinations)

constraints together and exploits the view of a CNN as the optimal classifier

for a multi-dimensional classification code. Our proposed method also has a130

non-linear compatibility learning framework.

In the second category, semantic similarity embedding (SSE) [48] and combi-

nation of semantic embedding (CONSE) [28] express the features and semantic

embedding attributes as a mixture of the seen class proportions and assume

that the mixture patterns have to be similar if both the features belong to the135

same unseen class. Therefore, we call these methods as hybrid learning. SSE

learns embedding functions that project an seen/unseen feature onto the same

semantic space where the similarity can be calculated. CONSE learns the prob-

ability of a seen feature belonging to a seen class and uses a CONSE to assign

an unseen feature to an unseen class. Synthesized classifiers (SYNC) [4] learn a140

mapping between the semantic class embedding and model spaces. In the model

space, the training classes and a set of phantom classes construct a weighted

bipartite graph. The semantic and model spaces are aligned by embedding real

and phantom classes in the weighted graph.

Recently, a new research direction for ZSL was proposed, namely, trans-145

ductive learning [10, 11, 16, 20], which postulates that in an ZSL problem,

the seen class source including the features and their corresponding attributes

is provided and unlabeled target domain data are also collected for learning a

mapping function.

One of the earliest concepts of transductive learning was proposed by Y.150
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Fu et al.[10], who learned a multi-label regression model to well-generalize the

unseen classes with both seen and unseen data. A semi-supervised framework

[20] considers both the labeled data from the seen classes and unlabeled data

from the unseen classes as input and learns a multi-class classification model

on all the classes jointly. This framework can consistently learn both the label155

representations and model parameters across the seen and unseen classes. Y.

Guo et al. [11] proposed a method to solve transductive ZSL with a shared model

space (SMS), which is used to replace the shared attribute space in the existing

works. Within an SMS, the model parameters for a target class can be generated

directly via attribute representation. Unsupervised domain adaptation (UDA)160

[16] casts the visual-embedding projection function learning problem as a sparse

coding problem, in which each dimension of the semantic embedding space is set

to a dictionary basis vector and the coefficient/sparse code of each visual feature

vector is its projection in the semantic embedding space. Additionally, UDA

also adds constraints that the dictionary of the target domain should be similar165

to the that of the source domain and the embedded target data should be near

to that of the unseen class prototypes. Recently, Y. Li et al. [21] exploited and

formalized the intrinsic relationship between the semantic space manifold and

transfer ability of visual-semantic mapping and cast zero-shot recognition as a

joint optimization problem.170

Although transductive learning can significantly reduce the domain shift

problem, its setting differs from the original objective of ZSL because the target

domain data is strictly inaccessible in realistic scenarios.

The last category, synthetic learning [47, 25, 23, 44] is a new type of

method for ZSL that generates new features or new models from the original175

semantic embedding and then uses conventional classifiers such as SVM and

LDA to train a model.

D. Wang et al. [36] proposed extracting the relational knowledge from a data

manifold structure in the semantic knowledge space using the sparse coding the-

ory. The extracted knowledge was then transferred backward to generate virtual180

data for the unseen categories in the feature space. J. Lu et al. [25] proposed

8
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a new approach by generating pseudo feature representations (GPFRs) that

used the dataset of the seen classes and side information of the unseen classes

(e.g., attributes) to form the feature level pseudo representations for the unseen

classes used to train a model of the unseen class predictor. L. Zhang et al. [47]185

suggested to use the visual space as the embedding space instead of embedding

the features into the semantic space or an intermediate space, and then use a

deep network model to train a generator. Y. Long et al. [23] proposed a frame-

work that could generate visual features for the unseen classes using the unseen

visual data synthesis (UVDS) method. The semantic attributes were utilized as190

intermediate clues in the generation of unseen visual features. Hereafter, ZSL

recognition is converted into the conventional supervised classification problem,

i.e., the produced visual features can be directly fed to typical classifiers such as

SVM. Y. Guo et al. [44] utilized the probability distribution of the seen classes

and class attributes to estimate the distribution of the unseen class, which was195

then used to generate fake features for the subsequent training of the supervised

classification.

Semantic embedding ZSL-related methods often depend on intermediate at-

tributes, which represent the semantic embedding of both the seen and unseen

classes. Conventional attributes [13] are high dimensional and typically anno-200

tated with real values by experts. This type of annotation needs expert knowl-

edge and a high manpower cost. To solve this problem, some methods [3] use

Word2Vec to generate attributes based on the dataset, ‘Wikipedia’. However,

the textual description in ‘Wikipedia’ might be very noisy and not directly re-

lated to the visual appearance, which often leads to a major degradation of the205

performance. Another semantic attribute representation is based on similarity,

which can be annotated by humans [24] or textual vectors [5].

9
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Figure 1: Illustration of the framework of the prthogonal projection. We project features

onto the attribute space, where the projected vectors in the different classes are orthogonal

to each other, whereas the projected features and attributes belonging to same class lie in the

same/nearby directions. ai is the attribute of the ith class, and axi represents the projected

vector from xi. ‘·⊥·’ represents ·s are perpendicular to each other.

3. Methodology

3.1. Problem Definition

Let Y = {y1, · · · , ys} and Z = {z1, · · · , zu} denote a set of s seen and210

u unseen class labels, which are disjoint Y ∩ Z = ∅. Similarly, let AY =

{ay1, · · ·, ays} ∈ Rl×s and AZ = {az1, · · ·, azu} ∈ Rl×u denote the corre-

sponding s seen and u unseen attributes, respectively. Given the training data

in a three-tuple of N seen samples: (x1,a1,y1), · · · , (xN ,aN ,yN ) ⊆ Xs ×
AY × Y , where Xs denotes d-dimensional features extracted from N seen im-215

ages. When testing, the preliminary knowledge is u pairs of attributes and

labels:(â1, ẑ1), · · · , (âu, ẑu) ⊆ AZ ×Z. ZSL aims to learn a classification func-

tion, f : Xu → Z to predict the label of the input image from unseen classes,

where xi ∈Xu is totally unavailable during training.

10
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3.2. Linear Method220

3.2.1. Orthogonal Projection

Given input visual data or feature matrix X ∈ Rd×N , where N is the number

of input samples and d is the dimension of each feature. We also have another

input matrix, namely, semantic attribute matrix A ∈ Rm×C , where m is the

dimension of each attribute and C is the number of categories.225

We aim to discover linear projection matrix W ∈ Rd×m, which is used to

project feature xi ∈ X into attribute space A. We require that if xi and ai

belong to same category, the inner product of projected vectors Wxi and ai

should be 1, otherwise, it should be 0, implying that if these two vectors belong

to same category, they should have same direction, otherwise they should be

orthogonal to each other in the attribute space. Therefore, we can obtain the

following equation:

<W Txi,ai >= si, (1)

where si ∈ {0, 1} is the similarity value of xi and ai, < · > is the inner product.

Equation (1) can also be written in matrix form,

XTWA = BT , (2)

where in matrix B ∈ RC×N , each column bi is the one-hot vector label of

the corresponding feature, which is equivalent to the corresponding feature and

attribute belonging to the same category, its value is set as 1, otherwise 0.

We aim to obtain the best W to fit equation (2) with excessive samples. To

achieve a better result, we use the method of least square error (LSE) to solve

the problem and define the following loss function:

L(X,A,B|W ) = ‖XTWA−BT ‖2F + β‖W ‖2F , (3)

where ‖·‖F is the Frobenius norm. The first term in equation (3) corresponds

to constraining the verification loss of the feature projection, the second term230

represents the regularization of W , and β is a weighting coefficient that controls

the importance of the first and second terms.
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3.2.2. Learning Semantic Representation of Features

Till now, we have developed a relation between the features and attributes

by an orthogonal projection. In this section, we try to impose another constraint235

to improve projection matrix W via learning feature semantics.

We first define new matrix G = XBT ∈ Rm×C to represent the correlation

between the image features and labels, which can be referred to as high-level

concepts. Note that Gij =
∑

k Xik ·Bkj , where Xik is the value of the ith visual

feature in the kth image, and Bkj is the similarity value of the jth class with240

the kth image. Gij is large when some of the values of the ith visual feature in

the images with the jth class are large, which implies that if Gij is large then

the ith image feature and jth class may have a strong correlation.

Motivated by the latent semantic analysis (LSA) [50] and to extract the

latent semantic features from the image feature, we apply a matrix factorization

to decompose G into latent factor matrices as,

G = UTV ⇐⇒XBT = UTV , (4)

where U ∈ Rg×d, V ∈ Rg×C and g is the number of latent factors. Then ui can

be considered as a latent semantic representation of the ith image feature and245

vj can be treated as a latent semantic representation of thw jth label. Here, we

consider that W should be the semantic representation of image features and

A should be the semantic representation of the labels. Therefore, here we set

g = m and replace UT and V with W and A, respectively, then we can obtain

XBT = WA.250

Considering the above-mentioned orthogonal projection strategy, we com-

bine these two constraints and obtain the following formulation:

L(X,A,B|W ) = ‖XTWA−BT ‖2F + α‖XBT −WA‖2F + β‖W ‖2F , (5)

where α and β are the weighting parameters for controlling the balance of the

three items.

Since equation (5) has a standard quadratic formulation, it is a convex func-

tion, which has a global optimal solution, and can achieve a closed-form solution.

12



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

m Inner P

m

A);( ΘXF Sigm

C
ross E

d d
(ReLU)

m

Product

X A~
1W 2W Sim

m
oid

Entropy

A m
ilarity (

Loss1

Loss2
+

Inner P

T
1

WT
2

Wm d
(ReLU)

d

A X~

(0/1)

Sigm

C
ross 

Loss2

Product
d

X
);( TG ΘA

m
oid

Entropy

X

Figure 2: Illustration of the training framework of our dual-verification network.

To optimize this, we simply consider a derivative of equation (5) with respect

to W and then set it as 0. We can obtain the following equation:

(XXT + αI)W + W (β(AAT )−1) = (1 + α)XBTAT (AAT )−1. (6)

If we define Â = XXT +αI, B̂ = β(AAT )−1 and Ĉ = (1+α)XBTAT (AAT )−1,

then we can obtain,

ÂW + WB̂ = Ĉ. (7)

Equation (7) is the well-known Sylvester equation, which can be solved ef-

ficiently by the Bartels- Stewart algorithm. It can be solved in MATLAB by

using only a one line code, W = sylvester(Â, B̂, Ĉ)1.255

3.3. Deep Dual-verification Network

In this section, for the purpose of improving the performance of the ver-

ification function, we will extend the linear projection introduced in the last

subsection to a non-linear deep projection.

1https://uk.mathworks.com/help/matlab/ref/sylvester.html
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3.3.1. Network Model260

To use a deep net structure, we extend matrix A from class level RC×m

to instance level RN×m. Correspondingly, matrix B is also extended from

{0, 1}C×N to {0, 1}N×N , which can be treated as the similarity matrix between

N image features X and N instance level attributes A. Furthermore, we rewrite

equation (5) as follows:

L(X,A,B|W ) =
1

N2

N∑

i,j=1

(xT
i Waj − bij)2 +

α

N

N∑

i=1

‖aT
i W

T − xi‖2F + β‖W ‖2F .

(8)

We extend and rewrite the second item as the first item using similarities,

and utilize the verification form to represent the total formulation. Then we

can obtain,

L(X,A,B|W ) =
1

N2

N∑

i,j=1

(<W Txi,aj > −bij)2

+
α

N

N∑

i,j=1

(<Wai,xj > −bij)2 + β‖W ‖2F .
(9)

From equation (9), we can note that if we replace linear projection matrix W

with nonlinear functions F (xi; Θ) and G(ai; Θ
T ) and use cross entropy (CE)

to substitute the LSE, then equation (9) can be represented as,

L(X,A,B|W ) =− 1

K

K∑

i=1

(si lnSF + (1− si) ln(1− SF ))

− α

K

K∑

i=1

(si lnSG + (1− si) ln(1− SG)) + β‖Θ‖2F .
(10)

where SF = sigmoid(< F (xi; Θ),ai >) and SG = sigmoid(< G(ai; Θ
T ),xi >),

sigmoid(·) is the sigmoid function, K is the number of sample pairs, si is the

similarity between feature xi and attribute ai, if xi and ai belong to the same

category, si = 1, otherwise si = 0.

We build an end-to-end neural network as illustrated in Figure (2) to train265

the deep projection model. For feature projection function F (xi; Θ)), we utilize

a simple network with two fully connected layers and add a ReLU layer between

14
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them. Because we know that input feature x has a dimension of d, we define

the dimension of the following two layers as d and m. Thus, feature projec-

tion function F (·) is d → d(ReLU) → m. For attribute projection function270

G(ai; Θ
T ), we also use a similar architecture as F (·), but with a different layer

dimension, which is m→ d(ReLU)→ d. In our model, the cross entropy is used

to calculate the verification loss and similarity is binarized as {0, 1}; hence, we

should constrain the result of the inner product to approximate {0, 1}. Con-

sequently, we adhere a sigmoid layer after the inner product. This model is a275

typical fully connected neural network, and hence, the loss function 10 can be

minimized by mini-batch back-propagation. The network parameter is updated

by subtracting the gradient of L(X,A,B|W ) with respect to W , which is often

called the stochastic gradient descent (SGD) method. The SGD can be easily

implemented in Tensorflow with several lines of codes, so that we do not make280

significant effort to describe it here.

3.3.2. Feature Verification

When there is a new test feature, x̂, we have two approaches for verifying

whether the feature belongs to a certain category. One approach is that the

verification is in attribute space A. First, the feature is fed into the network

and a corresponding embedding F (x̂i; Θ) is generated, which is tested by using

the inner product with all the attributes (for GZSL) or all the unseen attributes

(for ZSL). The corresponding index of the largest value of inner products is its

category. This computation can be represented as,

z(x̂i) = arg max
16c6C

< F (x̂i; Θ),ac >, (11)

where C is the total number of unseen classes (for ZSL) or all the classes (for

GZSL). Alternatively, the other approach for verification in feature space X is

the description of computation using the following equation:

z(x̂i) = arg max
16c6C

< G(ac; Θ
T ), x̂i > . (12)

15
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4. Experiments

In this section, we first provide a brief review of the selected datasets for

the evaluation and then present the results for both ZSL and GZSL. Finally, we285

discuss some details of hyper-parameter α and the distribution of the projected

features.

4.1. Datasets and Settings

4.1.1. Datasets

ZSL assumes that the training and testing sets are disjointed and the samples290

belong to the unseen classes will not appear in the training process. However,

the training sets of the conventional split [19] contain many classes that ap-

pear in the ImageNet [6], which is used for training the deep feature extraction

model. ImageNet includes 7 aPY, 6 AWA, 1 CUB, and 6 SUN test classes,

which break the rules of the disjoint of the training and testing sets. Therefore,295

in our experiments, we choose to utilize the split strategy proposed by [40],

which rearranges the train and test datasets and guarantees that no test class

appears in the training set and ImageNet. The statistics of the split datasets are

presented in Table (1). In our experiments, we also evaluate our ZSL method

using these four well-known datasets. The datasets are described as follows:300

(1) SUN (SUN attributes) [30] SUN is a fine-grained and medium-

sized dataset that contains 14,340 images from 717 types of scenes. Among the

total number of 717 classes, 1,440 samples of 72 classes are used as the unseen

testing data, and the remaining 645 classes are divided into two parts: 10,320

seen training samples and 2,580 seen testing samples.305

(2) CUB (Caltech-UCSD-Birds 200-2011) [38] CUB is also a fine-

grained and medium-sized dataset that is composed of 11,788 images from 200

different categories of birds. In our experiments, 50 of the total 200 classes,

including 2,967 images, are set as the unseen training set, and the remaining

are set as the seen training set, which contains 7,057 seen training images and310

1,764 seen testing images.
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Table 1: Statistics of the four benchmark datasets used in our experiments

Dataset # classes of seen/unseen # images # train seen # test seen # test unseen

SUN [30] 645/72 14,340 10,320 2,580 1,440

CUB [38] 150/50 11,788 7,057 1,764 2,967

AWA [7] 40/10 30,475 19,832 4,958 5,685

aPY [19] 20/12 15,339 5,932 1,483 7,924

(3) Animals with attributes (AWA) [7] AWA is a coarse-grained and

medium-scale dataset that contains 30,475 images in 50 categories. A study [40]

proposed a split strategy in which 40 classes were used for training, of which

19,832 images were set as seen the training set, 4,958 images were set as the315

seen test set, and remaining 10 classes of the 5,685 images were used for testing.

We also followed this setting.

(4) Attribute Pascal and Yahoo) (aPY) [19] aPY is a coarse-grained

and small-scale dataset that has 15,339 image instances from 32 classes. Among

the 32 classes, in our experiments, 20 Pascal classes of 7,415 images are utilized320

for training and the remaining 12 Yahoo classes are utilized for testing. For the

purpose of GZSL, the 20 Pascal classes are also divided into seen training set of

5,932 images and seen test set of 1,483 images.

4.1.2. Settings

Image features As reported many times, deep features outperform shallow325

features by a significant margin. Therefore, we only consider the deep features

in a pre-trained model of a 101-layered ResNet, which extracts 2048-dimensional

features from the top layer, except the classification layer.

Training pairs sampling In our experiments, we not only need similar pairs

that include their features and corresponding attributes but also the dissimilar330

pairs that contain features and attributes belonging to different classes, e.g. A

feature tells the type of ‘Chimpanzee’ and an attribute belongs to the type of

‘Chimpanzee’ constructing a similar pair. A feature of ‘Chimpanzee’ and an

attribute of ‘Leopard’ form a dissimilar pair. In our deep model method, we set

the input as three-tuple vector (xi,ai, si), where if feature xi and attribute ai335
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belong to the same class, then si is set as 1, otherwise it is set as 0. At each

epoch, similar pairs are selected using all the features and their corresponding

attributes; thus, there are N similar pairs. Dissimilar pairs are composed of

all the features and randomly selected dissimilar attributes, which also form

N dissimilar pairs; thus, we have 2N pairs in each epoch. In addition, at the340

beginning of each epoch, all the dissimilar and similar pairs are regenerated and

the 2N input pairs are shuffled.

Hyper-parameters In our method, there are three hyper-parameters, namely,

deep learning rate lr, balance coefficient α, and regularisation coefficient β. β

is set as β = 1× 10−4 in all our experiments. In ZSL test, we set lr = 1× 10−4345

for datasets SUN and CUB, lr = 1× 10−5 for dataset AWA, and lr = 1× 10−6

for dataset aPY. In GZSL, we use the same learning rates as those in ZSL. For

balance coefficient α, we set α = 1 and α = 10 for verification in attribute space

A and feature space X , respectively, when testing ZSL, and α = 5 and α = 0.1

respectively for GZSL.350

4.2. Results of Zero-Shot Learning

Image classification accuracy with a single label is generally evaluated with

top-1 accuracy, i.e., if the predicted label is same as the real label, then we the

prediction is considered to be correct. In some conventional evaluation methods

[48, 17], the ZSL accuracy is averaged for all the images, which leads to a bad

scenario where a high performance on densely populated classes is promoted,

e.g., one of the unseen aPY classes, ‘person’, accounts for 64% of the total unseen

samples. However, we are interested in achieving a high performance in all the

classes, even in sparsely populated classes. Hence, we choose to use the average

of each class accuracy [40], which can be described as follows:

accS =
1

‖S‖

‖S‖∑

c=1

# correct predictions in c

# samples in c
, (13)

where ‖S‖ is the number of test classes S. In ZSL, we set S = Z, and the search

space is based on Z.
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Table 2: Results of the accuracy tests of ZSL using four well-known datasets. We set α = 1

and α = 10 for verification in attribute space A and feature Space X , respectively.

Method SUN CUB AWA aPY

DAP[19] 39:9 40.0 44.1 33.8

IAP[19] 19.4 24.0 35.9 36.6

CONSE[28] 38.8 34.3 45.6 26.9

CMT[35] 39:9 34.6 39.5 28.0

SSE[48] 51:5 43.9 60.1 34.0

LATEM[39] 55.3 49.3 55.1 35.2

ALE[1] 58.1 54.9 59.9 39.7

DEVISE[9] 56.5 52.0 54.2 39.8

SJE[2] 53.7 53.9 65.6 32.9

ESZSL[32] 54.5 53.9 58.2 38.3

SYNC[4] 56.3 55.6 54.0 23.9

SAE[17] 53.4 42.0 58.1 32.9

Ours(A) 56.5 50.1 68.2 39.4

Ours(X ) 62.4 57.8 67.7 41.2
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We compare our proposed method with 12 state-of-the-art methods using the

above-mentioned four datasets and their corresponding attributes. The results355

are recorded in Table (2), in which parts of the results come from [40] directly.

SAE is implemented by us according to the description of the original paper.

From the results in Table (2), we can see that before our proposed method, the

best performances with the four datasets are exhibited by ALE [1], SYNC [4],

SJE [2], and DEVISE [9], respectively. Our method with verification in attribute360

space A outperforms the other 12 methods on dataset AWA and ranks second

among all the methods listed in Table (2) with dataset SUN, just lower than

ALE [1] by 1.6%. For dataset aPY, our method is lower than the best method,

DEVISE [9] by 0.4%, and ranks in the third place. The worst performance of

our method is on dataset CUB, and it is lower than the best method SYNC [4]365

by over 5%. However, with the verification in feature space X , our method can

outperform all the other 12 methods in all the four datasets, and the differences

in our results and the strongest competitors range from 1.4% to 4.3%.

Moreover, from Table (2), we can find that the result of the verification in

the attribute space is slightly worse than some of the previous methods and370

our method in the feature space. This phenomenon is caused by the hubness

problem, i.e., a few unseen class prototypes become the nearest neighbors of

many data points or hubs. Using the semantic space as the embedding space

implies that the visual feature vectors need to be projected onto the semantic

space, which will reduce the variance in the projected data points, and thus,375

aggravate the hubness problem.

4.3. Results of Generalized Zero-Shot Learning

Until now, we have obtained the test accuracy of ZSL, but in real-world

applications, we typically do not know whether a new image belongs to a seen

class or an unseen class. Hence, in GZSL, the search space for evaluating a

novel image is expanded to both test classes and train classes, which is more

realistic. Furthermore, to remove the unbalanced situation of seen and unseen

tests, we avoid utilizing the arithmetic mean and instead use the harmonic
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Table 3: Results of the generalized zero-Shot learning with the four well-known attribute

datasets. For harmonic accuracy, our method with a verification in the attribute space outper-

forms all the other 13 methods (CMT*: CMT with a novelty detection) with all the datasets,

except SUN. The method verification in the feature space exceeds all the other methods with

all the four datasets. We set α = 5 and α = 0.1 for verification in attribute space A and

feature space X , respectively.

Method
SUN CUB AWA aPY

ts tr H ts tr H ts tr H ts tr H

DAP [19] 4.2 25.1 7.2 1.7 67.9 3.3 0.0 88.7 0.0 4.8 78.3 9.0

IAP [19] 1.0 37.8 1.8 0.2 72.8 0.4 2.1 78.2 4.1 5.7 65.6 10.4

CONSE [28] 6.8 39.9 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.0 91.2 0.0

CMT [35] 8.1 21.8 11.8 7.2 49.8 12.6 0.9 87.6 1.8 1.4 85.2 2.8

CMT* [35] 8.7 28.0 13.3 4.7 60.1 8.7 8.4 86.9 15.3 10.9 74.2 19.0

SSE [48] 2.1 36.4 4.0 8.5 46.9 14.4 7.0 80.5 12.9 0.2 78.9 0.4

LATEM [39] 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 0.1 73.0 0.2

ALE [1] 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 4.6 73.7 8.7

DEVISE [9] 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 4.9 76.9 9.2

SJE [2] 14.7 30.5 19.8 23.5 59.2 33.6 11.3 74.6 19.6 3.7 55.7 6.9

ESZSL [32] 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 2.4 70.1 4.6

SYNC [4] 7.9 43.3 13.4 11.5 70.9 19.8 8.9 87.3 16.2 7.4 66.3 13.3

SAE [17] 17.1 28.1 21.3 17.4 50.7 25.9 11.0 83.8 19.5 6.7 59.6 12.1

Ours(A) 20.8 31.0 24.9 29.0 58.6 38.8 34.7 77.6 48.0 24.5 56.1 34.1

Ours(X ) 25.3 34.6 29.2 26.2 55.1 35.5 34.9 73.4 48.5 13.7 72.2 23.1
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accuracy computed from the training and testing accuracy, following the setting

of [40].

H =
2× acctr × accts
acctr + accts

, (14)

where acctr and accts are the accuracies of the test seen features and test unseen

features, respectively, with all the classes. acctr and accts are computed using

equation (13), and the search space is set as Y ∪ Z. S = Y and S = Z are380

executed when calculating acctr and accts, respectively. The results are recorded

and listed in Table (3), where parts of the results are directly cited from [40]

and the SAE implemented by us is according to the description in its original

paper [17].

In Table (3), the results of accts are significantly lower than the results385

listed in Table (2) because the seen classes are included in the search space.

This extends the search space and makes it difficult for a feature to find its cor-

responding class. From Table (3), we can note that for harmonic accuracy, our

method utilizing the verification in the attribute space yields the best perfor-

mance in comparison with the 13 state-of-the-art methods with datasets CUB,390

AWA, and aPY. The best result is with AWA, when our method can exceed

the strongest competitor, ALE by over 20%. The smallest achievement is with

dataset CUB, which can also surpass the best method, ALE by 4.4%. The only

failure result is with dataset SUN, but its performance is only below ALE [1].

The best method is obtained with dataset SUN, by only 1.4%, which may be395

because the total class number of SUN is 717, which is much larger than the

attribute dimension of 102 , and so, leads to a bad extension for the orthogonal

projection. For the results of ts, our method yields similar results to H: it

outperforms other methods with datasets AWA, CUB, and aPY, and ranks in

the second place with dataset SUN, where our result is only 1% less than the400

best method, ALE. For the results of tr, our method does not emerge as the

method with any of the four datasets, but it exhibits a good performance for ts

and H, which implies that some of these methods that have a high tr but low ts

are over-fitting in the seen classes and resulting in the problem of domain shift.
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Regarding the strategy of verification in the feature space in our method,405

the results show that our method outperforms all the other 13 methods for har-

monic accuracy H and test accuracy ts with all the four datasets. Because the

largest category number is 717, which is much smaller than the feature dimen-

sion of 2048 in our experiments, there is sufficient dimensionality to construct

an orthogonal space. With all the four datasets, the difference in the harmonic410

accuracy between our results and the strongest competitor ranges from 1.1% to

21%, with the smallest value being with CUB and the largest being with AWA.

4.4. Detailed Analysis

4.4.1. Network depth

In this section, we discuss the effect of the network depth on the accuracy of415

ZSL with the four datasets. In our experiment, we use the same settings as those

listed in Table (2) and select four different depths, which are layers = {1, 2, 3, 4}.
The results are shown in Figure (3). From the figure, we can see that the model

with two layers performs best with all the four datasets. The one-layer model

ranks the second place, but when the depth is more than 2, its performance420

decreases rapidly, particularly when verifying in X . This phenomenon reveals

that the one-layer model is slightly under-fitting, whereas the multi-layer (more

than 2) models lead to over-fitting. Briefly, the best model has two layers, which

is the model we have selected to study in this work.

4.4.2. Hyper-parameters425

Our method has two hyper-parameters, α and β. β controls the regulariza-

tion item of Θ and is usually set a small value, e.g., β = 1×10−4. α is a balance

coefficient, which adjusts the importance of the verifications in the attribute and

feature spaces. To determine the extent of the effect of this parameter on the per-

formance, we set the iteration time as 8×105 and α = {0.05, 0.1, 0.5, 1, 5, 10, 20},430

respectively. We utilize these settings with dataset SUN and present the corre-

sponding curves of the ZSL test accuracy in Figure (4), unseen test accuracy in

Figure (5), seen test accuracy in Figure (6), and harmonic accuracy in Figure
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Figure 3: ZSL results of our model with different network depths.
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Figure 4: Test accuracy of ZSL with different α

(7). In addition to these curves, we also list the maximum values of the test

accuracy of both the ZSL and GZSL and their corresponding ts and tr in Table435

(4) for all the four datasets.

When verifying in the attribute spaces using dataset SUN, we note from

figure (4) that a smaller α implies a higher accuracy of the ZSL, whereas the

trend is opposite when verifying in the feature space. This phenomenon indicates

that when we verify the results in the attribute space, the first term in equation440

(11) is more important, whereas the second term in equation (11) when verifying

in the feature space. For the test accuracy of GZSL, we obtain trends different

from the ZSL results. In figure (5), we see that a smaller α leads to a higher

accuracy of ts of GZSL when verifying in both the attribute and feature spaces,

which implies that the first term in equation (11) is more important than the445

second term for ts with the SUN dataset.

In figure (6) presenting seen test accuracy tr, we observe that with dataset

SUN, the best results for verification in the feature space are much better than

that for verification in the attribute space. We know that the attribute dimen-

sionality for dataset SUN is 102 but the category number is 645; therefore, when450

conducting verification in the attribute space, the dimension is insufficient to
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Figure 5: Unseen test accuracy ts of GZSL with different α.
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Figure 6: Seen test accuracy tr of GZSL with different α
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Figure 7: Harmonic accuracy H of GZSL with different α

project all the classes onto the orthogonal space. However, when verifying in

the feature space, the feature space has 2048 dimensions, which is much larger

than the category number. Therefore, we can conclude that in our method,

the dimension of the verification space plays an important role in improving455

the performance of tr. The accuracy curves of H are illustrated in Figure (7).

We obtain similar results with different α when verifying in the feature space

because these results are a combination of ts and tr.

The maximum values of ZSL and GZSL are also presented in Table (4),

and they show that typically, ts of ZSL is inconsistent with ts of GZSL. The460

results with datasets SUN and CUB are same with a smaller α in the attribute

space or larger α in the feature space leading to a better performance. In

comparison, with dataset AWA, when testing ZSL, a larger α implies a higher

ts, and but the effect is opposite when testing GZSL. The difference in the

performances with these datasets is caused by the differences in the attribute465

structure, dimensionality of the attributes, and categories of the samples.

In addition, we also show the results of optimization with verification in only

one space, i.e., we optimize the equation (10) by discarding the first or second

term. Table (5) lists the accuracy of both ZSL and GZSL using the four datasets.
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Table 4: Maximum values of test accuracy ts of ZSL and harmonic accuracy H of GZSL.

DataSet Space
ZSL GZSL

ts α ts tr H α

SUN
A 57.2 0.5 22.6 33.1 26.9 0.05

X 62.4 10 25.3 34.6 29.2 10

CUB
A 51.3 5 29.6 57.2 39.0 0.05

X 58.5 20 25.8 63.1 36.7 20

AWA
A 69.4 0.05 36.3 77.7 49.5 10

X 67.7 10 38.8 77.4 51.7 0.5

APY
A 39.8 20 24.5 56.1 34.1 5

X 41.2 10 16.0 66.0 25.8 0.05

We observe three phenomena based on this table. First, mostly, the verification470

in X outperforms the verification in A, which affirms the occurrence of the

hubness problem [47] again. Second, we can see that both the results in the

single verification space are worse than the results presented in Table (2), which

demonstrates the effectiveness of the proposed DVN. Third, in this experiment,

we also compute the results in X while training with A and the results in A475

but training with X . These results reveal that the performance is better when

the training and testing are in the same space than when they are in different

spaces.

4.4.3. Distribution of projected features

To better demonstrate the performance of our method, it is necessary to show480

the distributions of the projected features or attributes. Because the attributes

are class level, there is no need to show the projected attributes in the feature

space. Thus, in this experiment, we only show the distribution of the projected

features in the attribute space. Concurrently, we also present the results of two

baseline methods DAP [19] and SAE [17]. The distribution figures drawn with485

t-sne [26] are displayed in Figure (8). Because dataset SUN has 72 classes of

testing samples, which will make recognition difficult for humans, we discard
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(a) DAP [19] (b) SAE [17] (c) Ours

Figure 8: Distribution of the projected unseen features in the attribute space using three

selected datasets
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Table 5: Results of the optimization with verification in only one space.

Dataset Space

Optimisation in A only Optimisation in X only

ZSL GZSL ZSL GZSL

ts ts tr H ts ts tr H

SUN
A 55.1 18.3 33.8 23.7 52.8 12.8 22.6 16.4

X 37.1 17.2 24.6 20.3 58.8 17.8 37.2 24.1

CUB
A 49.8 18.0 64.8 28.2 50.4 20.0 46.9 28.1

X 24.7 11.0 18.9 13.9 56.7 25.5 62.7 36.3

AWA
A 67.2 17.8 67.1 28.1 60.2 17.0 80.0 28.0

X 59.4 12.4 81.4 21.5 67.6 25.0 87.0 38.0

aPY
A 37.6 8.7 56.4 15.1 35.8 7.2 56.1 12.8

X 36.3 2.2 83.4 4.2 36.3 16.1 77.2 26.6

this set and utilize the remaining three datasets. Figure (8) reveals that the

distribution of the projected features generated by our method is easier to be

classified, e.g., the points belonging to the same category cluster are much closer490

than those generated by other methods, particularly using datasets AWA and

aPY. This implies that the projected features of the same class generated by

our method are easier to be classified with the same label than those obtained

by the other two methods.

5. Conclusion495

In this paper, we proposed a new method, namely, dual-verification net-

work for zero-shot learning. Our method constructs an orthogonal projection

from the feature space to the attribute space, where all the projected vectors

have maximum correlation with these attributes in the same categories and are

orthogonal to those from different classes. Furthermore, in this method, the500

feature semantic representation is adopted to learn the relationship between the

semantic features and class labels. Through this representation, the attributes

can be mapped to the feature space and should be orthogonal to the correspond-
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ing features. In addition, to optimize these two verifications simultaneously, we

introduced a deep network, which utilizes the cross entropy loss as its objec-505

tive function. Extensive experiments for ZSL and GZSL were performed with

four popular datasets, and the results show that our method outperforms all

the current competitive methods. Detailed analysis also shows the effect of the

hyper-parameters on the performance.
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