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Abstract
Tissue water diffusion is non-Gaussian and the expressions used to calculate dif-
fusion parameters are approximations which introduce systematic errors depend-
ent on the maximum diffusion encoding, diffusion time, etc. This study aimed at 
characterizing biases in estimates of both apparent diffusion coefficient and kurtosis, 
and determines their dependence on these parameters. Similar to the approach of 
several previous studies, Taylor expansion of the diffusion signal was used to calcu-
late biases. Predicted errors were compared with data from one volunteer. Predicted 
errors agreed well with the measured errors and also the published diffusion tensor 
imaging measurements. The equations derived predict biases in measured diffusion 
parameters and explain much of the discrepancy between measurements obtained 
with different acquisition protocols. The equations may also be used to choose 
appropriate diffusion encoding for diffusion weighted, tensor, and kurtosis imaging.

1  Introduction

Quantitative diffusion magnetic resonance imaging (MRI) has proven useful in 
characterizing damaged tissue in a number of different diseases such as breast 
cancer [1–3], prostate cancer [4, 5], multiple sclerosis [6], etc. due to the effect of 
changes in cell density or morphology, and tissue composition on water diffusion.

In general, the signal generated in a diffusion-weighted MRI sequence is given 
by [7, 8]

(1)S = S0e
a1bD+a2b

2D2+a3b
3D3+⋯,
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where S0 is the signal in the absence of diffusion weighting, ai are a series of numer-
ical coefficients, D, is the diffusion coefficient, and b is the diffusion encoding 
parameter which for Stejskal–Tanner pulses is given by [9]

where γ is the gyromagnetic ratio, δ is the length of the diffusion weighting gradi-
ent pulses, Δ is the time interval between the leading edge of the pulses, and g is the 
amplitude of the pulses.

The coefficients, ai, depend on the shape of the probability density function, 
P(r), describing diffusional displacement. In bulk fluids, P is Gaussian, a1 = − 1, 
and ai>1 = 0 , leading to the familiar equation:

It has been recognised that diffusion in tissue is non-Gaussian due to compart-
mentalization, restriction, and hindrance of water. Hence, Eq. (3) is only approxi-
mate and the signal can be more accurately described by [10, 11]

where K is the kurtosis of P, i.e., the normalized fourth moment [10, 11]:

where s is net displacement vector, and n is the unit vector in the direction of 
interest.

Diffusion parameters are measured by acquiring images at multiple different 
diffusion encoding b values and fitting the model to these signals using non-linear 
least squares algorithms. Errors in estimates are due both to thermal noise in the 
signal and to biases due to failure to take the higher order terms of Eq. (1) into 
account. As a rule of thumb, errors in estimates of parameter X (either D or K) 
due to thermal noise are minimized using a maximum b value, bmax, that maxi-
mizes dS/dX [12, 13]. Minimizing thermal noise in simple estimates of D using 
Eq.  (3) requires bmax ∼ 1∕D . To measure kurtosis, larger values ( bmax > 2∕D ) 
are usually recommended [12]. However, as bmax increases, bias in estimates 
increases due to the increasing influence of higher order terms in Eq. (1). It has 
previously been recommended that for kurtosis imaging bmax should be less than 
3/DK [10, 11], the point at which signals described by Eq. (4) no longer mono-
tonically decrease.

Furthermore, there are numerous reports in the radiology literature on the effect of b 
value choice on diffusion estimates (e.g., [14–16]) but with little attempt at explanation.

In this report, we derive analytical expressions for the bias in estimates of D using 
Eq.  (3) and in D and K using Eq.  (4); this approach is similar to a recent study by 

(2)b = �2�2g2
(
Δ −

�

3

)
,

(3)S = S0e
−bD.

(4)S = S0e
−bD+

Kb2D2

6
+O(b3D3)

,

(5)K =
∫ r4P(r)dr

�∫ r2P(r)dr
�2 − 3 =

�
(�.�)4

�

⟨(�.�)2⟩2
− 3,
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Chuhutin et al. [17]. These expressions allow better assessment of the trade-off between 
errors due to thermal noise and estimation bias. Predicted biases are compared with 
results from a recently published diffusion tensor imaging (DTI) study of the brain [18].

2 � Theory

2.1 � Diffusion Measurement Bias

For simplicity, we will consider only the simplest diffusion measurement using two b 
values, bmin and bmax. Our estimate of D is then given by

where we have assumed that the higher order terms of Eq. (1) are dominated by the 
kurtosis term. Fractional error caused using very high maximum b values then given 
by

2.2 � Diffusion Kurtosis Measurement Bias

Calculation of the bias in kurtosis measurements requires calculation of the third order 
term in Eq.  (1), corresponding the sixth moment of P. Following the approach of 
Jensen et al. [10, 19], we can derive the following expression for the sixth moment, L 
[20] (details are given in the “Appendix”):

where again s is net displacement vector, and n is the unit vector in the direction 
of interest. We refer to L as the ektasis after the Greek for stretching out or exten-
sion (kurtosis is derived from the Greek for bulging). Including ektasis in the Taylor 
expansion [10, 21, 22] of the diffusion signal gives

where the additional term has been derived by a simple extension of the method 
given in the appendix of Ref. [10].

For free (i.e., Gaussian) diffusion, L, like K, is zero. For a box-car distribution cor-
responding to diffusion in an impermeable cavity with small radius compared with the 

(6)D̃ = −
In
[
S
(
bmax

)/
S
(
bmin

)]

bmax − bmin

≈ D −
KD2(bmax + bmin)

6
,

(7)eD =
||||
D̃ − D

D

||||
=

DK(bmax + bmin)

6
.

(8)L =

�
(�.�)6

�

⟨(�.�)2⟩3
− 15

�
(�.�)4

�

⟨(�.�)2⟩2
+ 30,

(9)ln(S(b)∕S0) = − bD +
b2D2K

6
+

b3D3L

90
+ O(b4D4),
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diffusion distance, L is 48/7. By comparison, D = r2
/
6TTD , where r is the radius of 

the cavity and TTD is the total diffusion time, and K = − 1.2 [23] (the derivation of these 
values are given in the “Appendix”).

To calculate errors in estimates of D and K, we make the simplifying assumptions 
that only three b values are used: 0, bmax/2 and bmax. It can be shown that D and K can 
be estimated by the equations [11]:

where

and S1 and S2 are the signals acquired with b = bmax/2 and b = bmax, respectively. 
Following the same procedure as before gives (derivation of D̃ and K̃ is in the 
“Appendix”):

2.3 � Extension to More Complex Acquisitions

These expressions allow an estimate of the maximum b value to use to avoid bias of 
greater than a specified fraction for simple measurements of single isotropic com-
partments. It is straightforward to extend the results to more complex situations.

2.3.1 � Biexponential Diffusion

The prostate appears to consist of two slowly exchanging compartments, proba-
bly the fluid filled ducts and surrounding cellular tissue [4], and thus generates a 
biexponential diffusion signal [24, 25] which is the sum of the signals from each 
of these compartments. For simple Gaussian measurements, the error in ADC 
estimate is proportional to DK [Eq. (7)]. Therefore, setting the maximum b value 

(10)
D̃ = 2Q1 − Q2

K̃ = 12
Q1 − Q2

bmaxD̃
2
,

(11)
Q1 = 2

ln
(
S0
/
S1
)

bmax

Q2 =
ln
(
S0
/
S2
)

bmax
,

(12)
eD =

||||
D̃ − D

D

||||
=
|||||

b2maxD
2L

180

|||||

eK =
||||
K̃ − K

K

||||
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1

(1 + eD)
2

(||||
bmaxDL

10K

||||
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)
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to limit measurement error in the compartment with the larger value of DK will 
automatically also limit measurement error in the other compartment. A similar 
approach can be taken with non-Gaussian measurements, with the further compli-
cation that fractional errors in estimates of D and K are different. If ADC is pri-
marily of interest, maximum b value should be based on the compartment with the 
largest value of D2L [Eq. (12)]. Conversely, if kurtosis is of most interest, maxi-
mum b value should be set based on the compartment with higher values of DL/K.

2.3.2 � Non‑isotropic Diffusion

For organs with high diffusion anisotropy, such as white matter multiple directions 
of diffusion weighting are required [26]. Maximum b value should be chosen on 
the basis of the highest directional DK (for Gaussian measurements), or DL or D2L 
(for non-Gaussian measurements). Since axonal direction is not known a priori, it 
is necessary to apply this value in all gradient directions. This may be of particular 
importance in estimates rooted in diffusion models [27, 28], since different biases in 
directional estimates can lead to incorrect estimates of derived parameters such as 
axonal density, etc.

3 � Methods

3.1 � Imaging

This study was approved by the institutional review board of Tehran University of 
Medical Sciences. To verify Eqs. (7) and (12), a healthy volunteer underwent a multi 
b value double echo-planar diffusion-weighted imaging  (DWI) brain scan using a 
3 T Prisma scanner (Siemens Healthcare, Erlangen, Germany), with a 64-channel 
head coil. Nine b values were used (0, 150, 500, 700, 1000, 1500, 2000, 2500, and 
3000  smm−2). Other acquisition parameters were: number of slices, 68; diffusion 
directions, 30; FOV, 256 × 256 mm2; voxel size, 2 × 2×2 mm3; TR/TE, 9000/90 ms.

3.2 � Verification of DKI biases

To obtain predicted errors for diffusion kurtosis imaging (DKI) estimates, similar to 
those obtained for DWI, it is necessary to measure ektasis. However, such measure-
ments require acquisitions with very high b values (i.e., > 3000 smm−2) and hence 
low signal-to-noise ratios (SNRs). Estimates of L were obtained by non-linear least 
squares fitting of Eq. (9) on all of the b values employed. This process was applied 
to multiple brain voxels and measured fractional errors in D and K were calculated 
as

(13)

D − D̃

D

K − K̃

K
.
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These measured fractional errors were compared with values predicted from 
Eq. (12).

In addition, we compared DKI estimates obtained with two different sets of b 
values: 150, 1000, and 2000 smm−2, and 150, 1500, and 3000 smm−2. D and K were 
derived for each set and plotted against each other. The slope of the regression lines

where the subscripts to D and K refer to the set of b values used for the estimate, 
were then found.

3.3 � Tissue‑Specific b Value Selection

Similar to [17], the dependency of diffusion estimates on maximum b values was 
investigated separately for the white and grey matters. For this aim, eD and eK of 200 
voxels containing white matter or grey matter voxels were averaged for maximum b 
values of 1500, 2000, and 3000 smm−2.

4 � Results

4.1 � Theoretical predictions

Figure 1 gives plots of the fractional error in diffusion estimates calculated using 
Eq. (7) vs. the dimensionless quantity D.bmax with bmin = 0. Even at moderate values 
of kurtosis, bias in estimates of D are ~ 10% when bmax = D. Figure 2 gives plots in 
the fractional error of both D and K calculated using Eq. (12) vs. D.bmax. The bias in 
estimates of D is much reduced in diffusion kurtosis imaging to diffusion weighted 
imaging, even for higher values of bmax. However, bias in estimates of K itself is 
large for even for low values of ektasis. 

4.2 � DKI

Figure 3 gives plots of measured fractional errors vs. fractional errors predicted by 
Eq. (12) for D (Fig. 3a) and K (Fig. 3b). The correlation coefficients between meas-
ured and predicted errors were 0.9660 and 0.9344 for D and K, respectively.

Figure 4 shows plots of D (a) and K (b) derived using b values of 150, 1500, and 
3000 smm−2 against those derived using b values of 150, 1000, and 2000 smm−2. 
The slopes of the regression lines, kD and kK [Eq. (14)] were 0.87, and 0.85, respec-
tively. Both values are less than one in agreement with the theoretical predictions of 
Eq. (12).

(14)
D150,1500,3000 = kDD150,1000,2000

K150,1500,3000 = kKK150,1000,2000,
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4.3 � DKI Biases for WM and GM

Measured (eD, eK) in grey matter were (0.06, 0.23), (0.07, 0.27), and (0.12, 0.36) 
for maximum b values of 1500, 2000, and 3000 smm−2, respectively. In comparison 
measured (eD, eD) for white matter were (0.02, 0.16), (0.03, 0.21), and (0.07, 0.28) 
for maximum b values of 1500, 2000, and 3000  smm−2, respectively. In addition, 
ADC and kurtosis of a single slice at two different maximum b values, and the cor-
responding eD, eD for maximum b value of 3000 smm−2 are shown in Fig. 5.

5 � Discussion

There are numerous reports in the radiology literature of the b value dependence 
of diffusion estimates (e.g., [14–16, 29–33]). Such protocol dependencies compli-
cate the comparison of results from different institutions and hinder establishment 
of reliable diagnostic thresholds. Although standardization is one means of ensur-
ing consistency, this is difficult to achieve, since researchers and clinicians are often 
reluctant to modify protocols with which they have become familiar, and trust. Fur-
thermore, there are often differing restrictions on parameter selection imposed by 
different scanner manufacturers. In this study, we demonstrate that much of the b 
value dependence is due to the failure to take into account high order terms in the 
equation used to derive diffusion parameters.

Lanzafame et al. [18] had already observed biases in estimation of axonal, radial, 
and mean diffusivity with increasing the maximum b values. The theoretical pre-
dictions presented here are in good agreement with their findings. In addition, the 
results are in agreement with the conclusions of [34] that decreasing maximum b 
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four values of kurtosis, K 
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values results in more accurate estimation of diffusion kurtosis parameters at the 
cost of additional random noise.

Chuhutin et al. [17] recommend reasonable maximum b values of 2500 smm−2 
for measuring DKI parameters in the white matter; however, their recommended 
maximum b values for grey matter are too small if the effect of noise on parameter 
estimation is considered. This is because using higher b values are necessary to get 
precise parameter estimates in diffusion kurtosis imaging [12]. Hence, finding the 
trade-off between accuracy (the systematic estimate biases) and increased precision 
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eD is independent of K



1 3

Bias in MRI Measurements of Apparent Diffusion Coefficient…

(using higher maximum b values) remains an open question for each study depend-
ing on the tissue type and protocol details.

There are a variety of sources of variation in diffusion estimates. First, measured 
ADC depends on diffusion time (e.g., [4]), signal-to-noise ratio of the scanner, and 
tissue type. In this study, we have shown one of the most important sources of varia-
tion is the choice of maximum b value and also how these sources error are depend-
ent on each other. In other words, the choice of maximum b values for any tissue 
type, region, or organ of interest should consider (a) its eD, eK for different b val-
ues and diffusion times and (b) the optimization tables in [12] that formulate D and 
K estimation errors due to thermal noises which are dependent on signal-to-noise 
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ratios. Second, the value of the minimum b value will determine the contribution of 
microvascular signal through the IVIM effect.

In addition, for tissues with biexponential diffusion signal such as the prostate 
[4, 5], separate consideration of biases for each compartment might help in better 
modelling and estimation of their water fractions. Such knowledge might also help 
in improving multi-exponential models aiming at characterization of diffusion at 
boundaries of white matter, grey matter, or cerebrospinal fluids [28].

There are several limitations to this study. First, only the simplest two and three 
b value acquisitions were considered. Biases in over-determined, multiple b value 
acquisitions are less amenable to analysis. This problem might be addressed with 

Fig. 4   Plot of parameter estimates obtained with b values of 150, 1500, and 3000, vs. those obtained 
with b values of 150, 1000, and 2000 smm−2 for a D and b K in the brain of a volunteer. The red and 
green lines are the lines of identity and regression, respectively (color figure online)
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Monte Carlo simulations similar to those performed previously [12, 13]. However, 
the inclusion of additional scans with b < bmax will tend to reduce bias and the values 
given by the above equations will, therefore, represent the maximum error. Finally, 
the equations that predict the biases did not consider bias introduced by noise in the 
signal. Although thermal noise has a mean value of zero, it will introduce bias due 
to the non-linear relationship between diffusion parameters and signal [12, 13, 35]. 
Hence, there is a trade-off between using high maximum b values to minimize the 
effect of thermal noise on estimating diffusion parameters and using low maximum 
b values to minimize the biases investigated in this study. The greater variability in 
estimates in Fig. 3 near the origin is probably due to the effect of thermal noise on 
parameter estimates. Optimization of b value selection taking into account both bias 
and thermal noise should be the subject of future studies.

6 � Conclusion

Despite these limitations, we believe that the above study provides valuable insight 
into the b value dependence of diffusion parameter estimates and a useful guide to 
b value selection. This study suggests two of methods, other than protocol stand-
ardization, of overcoming this source of protocol dependence. First, maximum b 
value could be set to a relatively low value. This would, however, increase noise in 
estimates and reduce precision [12]. Alternatively, additional b value scans could 
be acquired and higher order equations used to calculate parameters. For example, 
ADC could be calculated with three b values using Eq.  (4). This would markedly 
reduce bias in ADC estimates, even though substantial bias might remain in kurtosis 
estimates.
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Appendix

Derivation of eD and eK

Assuming S1 and S2 are the signal at bmax/2 and bmax, respectively:

(15)
S1 = S0e

−Dbmax

2
+

K(Dbmax )
2

24
+

L(Dbmax )
3

720

S2 = S0e
−Dbmax+

K(Dbmax )
2

6
+

L(Dbmax )
3

90 .
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Then, Q1 and Q2 are

In addition, accordingly, D̃ and K̃ are

Kurtosis and Ektasis for a Uniform Distribution

For a uniform (top-hat) probability density function

the nth moment, �n , is given by

where all of the odd terms are zero because of symmetry, and g(t) is the moment 
generating function [20]:

In the absence of bulk flow, odd moments (and hence the mean and skewness) are 
zero. The variance, V, kurtosis, K, and ektasis, L, are given by consecutive normal-
ized even moments:

(16)
Q1 = D −

bmaxD
2K
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−

b2
max

D3L

360

Q2 = D −
bmaxD

2K

6
−

b2
max

D3L
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.

(17)

D̃ = D +
b2
max

D3L

180

K̃ =
D2K +

bmaxD
3L
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b2
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D3L
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(18)P(x) =
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,
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dtn
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