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Abstract

River discharge and nutrient measurements are subject to aleatory and epistemic

uncertainties. In this study, we present a novel method for estimating these

uncertainties in colocated discharge and phosphorus (P) measurements. The “voting

point”‐based method constrains the derived stage‐discharge rating curve both on

the fit to available gaugings and to the catchment water balance. This helps reduce

the uncertainty beyond the range of available gaugings and during out of bank situa-

tions. In the example presented here, for the top 5% of flows, uncertainties are shown

to be 139% using a traditional power law fit, compared with 40% when using our

updated “voting point” method. Furthermore, the method is extended to in situ and

lab analysed nutrient concentration data pairings, with lower uncertainties (81%)

shown for high concentrations (top 5%) than when a traditional regression is applied

(102%). Overall, for both discharge and nutrient data, the method presented goes

some way to accounting for epistemic uncertainties associated with nonstationary

physical characteristics of the monitoring site.
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FIGURE 1 Cross section geometry of Newby Beck outlet. The black
dots show the heights of each of the 14 available gaugings. The grey
dashed lines show the channel cross section at the top and bottom of
the gauged range, and the black dashed line highlights the change in
channel cross section at high flows well beyond the gauged range
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1 | INTRODUCTION

Effective evaluation of process‐based water quality models requires

an understanding of the uncertainties in the observational data used

in calibration processes, as estimates of catchment discharge and

nutrient loads are affected by significant uncertainties (Beven,

Buytaert, & Smith, 2012; Coxon et al., 2015; Harmel, Cooper, Slade,

Haney, & Arnold, 2006; Harmel, Smith, King, & Slade, 2009; Johnes,

2007; McMillan, Krueger, & Freer, 2012; Westerberg, Guerrero,

Seibert, Beven, & Halldin, 2011). In some cases, the uncertainties

may be such that for some events the observational data may not be

useful for model calibration and evaluation (Beven & Smith, 2015;

Beven, Smith, & Wood, 2011; Beven & Westerberg, 2011).

Continuous river discharge measurements are often obtained by

observing the river water level (stage), and then using a fitted curve (rat-

ing curve) to convert these to an estimated discharge. A rating curve is a

model of the relationship between observed stage and discharge for a

gauging site. As a result, uncertainties in the resultant discharge data

can come from errors in river stage measurement, errors in the gauged

discharges, lack of gauged data over parts of the curve (particularly

the higher end), uncertainties that arise from the fitting of the rating

curve itself (e.g., structural error in the model used), and changes in

the rating curve over time (McMillan &Westerberg, 2015). When con-

sidering water quality data, nutrient loads are calculated for a specific

period (typically daily) using river discharge along with measurements

of concentrations of the nutrient of interest (e.g., phosphorus [P]).

Therefore, uncertainties in load estimations arise from uncertainties in

the discharge estimates and in the sampling and measurement of

determinand concentrations in addition to their aggregation to the

temporal and spatial scales of interest (McMillan et al., 2012).

In hydrology, all important uncertainties can be considered to be

epistemic in nature: that is, they arise from a lack of knowledge of the

key underlying processes (e.g., Beven, 2016; Nearing et al., 2016). How-

ever, we may choose to treat some uncertainties as aleatory (i.e., they

arise from simple random variability). Typically, measurement errors in

variables such as stage or nutrient concentrations are treated as

aleatory variables. In contrast, epistemic uncertainties can include

changes to the river cross section, vegetation growth, the effect of

sampling and analysis protocols on concentration measurements, and

the choice of a functional form for the rating curve; all of which can

affect subsequent estimates of discharges and nutrient loads.

Many previous studies have attempted to estimate the uncer-

tainties in both discharge and water quality measurements using a

wide range of techniques (Harmel et al., 2009; Johnes, 2007; Moatar

& Meybeck, 2005; Webb et al., 1997). For discharge, it is common

to fit a statistical regression model to the available stage and discharge

gaugings, which allows a statistical estimate of uncertainty in the

rating curve. Simple power law or polynomial functions have often

been applied, or multisegment functions where the rating curve

appears to show a complex shape (e.g., Herschy, 1999). There are,

however, alternatives, including drawing on fuzzy regression and fuzzy

set concepts (Blazkova & Beven, 2009; Krueger et al., 2010;

Pappenberger et al., 2006) and nonparametric regression techniques

(e.g., LOWESS, Cleveland, 1979; Coxon et al., 2015), which have been

employed on stage‐discharge measurements and water quality
variables to estimate the uncertainties in discharge and nutrient

concentrations and load calculations (Lloyd, Freer, Johnes, Coxon, &

Collins, 2016). A further method, focused on uncertainty in the rating

curve, has been suggested by McMillan and Westerberg (2015). Their

voting point method allowed for situations where channel form and

velocities might change over time so that many candidate rating

curves might be plausible.

In this study, we extend the voting point method to use water

balance data to constrain rating curve uncertainties and also apply

the voting point method in the estimation of continuous nutrient

concentrations and loads. Further to this, we also place our results in

context with other uncertainty techniques by comparing with

estimates from using more traditional methods (e.g., fitting a power

law function to the available observations).
2 | METHODS

2.1 | Study area

Newby Beck is a small headwater subcatchment located in the River

Eden basin in the North West of England, in the United Kingdom.

The catchment is approximately 12.5 km2 in size with an average

elevation of 234 m above sea level. The discharge measurement site

for this catchment is a rated section of channel, with water level data

collected (with a Schlumberger Water Services (SWS) Mini‐Diver) at

15‐min intervals. As shown in Figure 1, the cross‐sectional area of

the rated section of the channel changes significantly at higher water

levels, which could contribute to the epistemic uncertainties associ-

ated with the discharge produced by the rating curve.

Fourteen discharge measurements were available to develop a site

specific rating curve. In addition, a high frequency bankside monitoring

station was situated at the outlet, which recorded nitrate (NO3), total P

(TP), and total reactive P (TRP) at 30‐min intervals (Outram et al., 2014).

The TP and TRP measurements were conducted using a Hach Lange

combined Sigmatax sampling module and Phosphax Sigma analyser

(Perks et al., 2015). Rainfall over the catchment was recorded at 15‐



HOLLAWAY ET AL. 2781
min intervals by three tipping bucket rain gauges, and daily rainfall data

were obtained from a gauge in the centre of the catchment from the

Met Office Integrated Data Archive System network (Met Office,

2012). Other meteorological data were provided by an automatic

weather station, which was located towards the centre of the catch-

ment. For this study, the data were analysed over three hydrological

years (2011–2012, 2012–2013, and 2013–2014).

2.2 | Constraining uncertainty at high flows using
water balance information

As applied by McMillan and Westerberg (2015) rating curves are typi-

cally fitted using power laws or segmented power laws. Typically, when

presented with limited numbers of river gaugings (in this application

only 14 in‐bank flow measurements were available), the majority of

the data falls at the lower flows, and therefore, extrapolation is required

beyond the end of the gauged range. With the power law, this extrapo-

lation often introduces large uncertainties, particularly for overbank

flow. At the Newby Beck outlet, very few of the gaugings are at the

higher flow values (Figure 1). To constrain the extrapolation beyond

the gauged range in such cases, we have incorporated the Velocity Area

Rating Extension (VARE) model of Ewen, Geris, O'Donnell, Mayes, and

O'Connell (2010). The advantage of the VARE method is that local

knowledge of the gauging site, such as river cross‐sectional area

(Figure 1) and water balance estimates, can be used to constrain this

extrapolation beyond the gauged range by imposing a maximum veloc-

ity that can be achieved in the river channel. In VARE, a sigmoidal func-

tion (G, Equation 2) that varies between two limits (the maximum and

minimum stream velocities, νmax and νmin) is used to determine the aver-

age velocity in the stream for a given stage measurement:

X ¼ MIN 1;
y−ymin

ymax−ymin

� �
; (1)

G ¼ 1
2

1þ
tanh 2αXβ−α

� �
tanh αð Þ

2
4

3
5; (2)

v ¼ vmin þ vmax−vminð Þ;G (3)

where y is the measured stage, ymin is the minimum stage, ymax is the

maximum stage, α and β are parameters that control the sigmoidal func-

tion, and v is the VARE calculated velocity. The velocity can then be

used with the cross‐sectional area of the stream at stage y to determine

the discharge (Ewen et al., 2010). In this case, we assume that the veloc-

ity is zero at the bottom of the channel (therefore giving us the values of

ymin and vmin), and thus need to calibrate the remaining four parameters

of the VARE model (α, β, ymax, and vmax). Furthermore, the VARE model

can be calibrated over a long period (in this case, three hydrological

years), such that a water balance is approximately satisfied, allowing

for uncertainty in both rainfall and actual evapotranspiration estimates

(see below). To explore the rating curve uncertainty, a Monte Carlo

analysis was run using the VARE rating curve model; 2,000 parameter

sets of the four VARE parameters were sampled using random uniform

sampling and evaluated using an extended voting point method.
2.3 | The extended voting point method

In the voting point method of McMillan and Westerberg (2015),

randomly generated rating curves are assessed using an informal

likelihood measure based on how close each curve falls to each of

the available discharge–water level pairs. A logistic function was

used to account for error in the gauging measurements, although

they suggest this can be replaced with a function of the modeller's

choosing. In this study, we replace the logistic function with a

triangular fuzzy weighting measure, which uses Equations 4 and 5

to calculate a normalized score (Score(g) in Equation [4]) and weight

(W(g) in Equation [5]) at each of the 14 available gauging points (see

Figure 2).

Score gð Þ ¼
bYg−yg

� �
= yg−ymin;g

� � bYg<yg

bYg−yg
� �

= ymax:g−yg
� � bYg≥yg:

8><
>: (4)

W gð Þ
Score gð Þ−Llwrð Þ=abs Llwrð Þ½ �N Llwr≤Score gð Þ<0
Lupr−Score gð Þð Þ=abs Luprð Þ½ �N 0≤Score gð Þ<Lupr

0Score gð Þ∉ Llwr ; Luprð Þ

8><
>: (5)

Here, Ŷg is the rating curve estimated value of discharge; yg is the

gauged discharge value; ymin,g is the lower limit of error (see below);

and ymax,g is the upper limit of error for a given gauging point. This

therefore gives a score of zero for a value at the best estimate of

the observed value, −1 at the lower limit and +1 at the upper limit. If

the normalized score lies between −1 and +1 for a given gauging, a

triangular fuzzy weight (W(g), Figure 2) is calculated for the gauging

point g in Equation 5. Here, Llwr and Lupr are the lower and upper limits

of the normalized scores required to consider the simulated values

acceptable across all the gauged points (in this case −1 and 1); and N

is a shaping factor (set to 1 in this case).

The method requires that the limits ymin, gand ymax. g can be

specified for each gauging point. This information is not usually avail-

able for single gauging points but typical uncertainties of ±10% for

in‐bank flows have been determined, for example, by Schmidt and

Yen (2008); Krueger et al. (2010); McMillan et al. (2012). A rating

curve model was then considered behavioural based on the

constraint that it returned a normalized score of between 0 and 1

for at least one gauging point. Any behavioural parameter sets from

the 2,000 sampled are assigned an overall voting point likelihood

weighting (Lvp) based on Equation 6:

Lvp∝wvp ∑
n

g¼1
W gð Þ; (6)

where W(g) is the weight at gauging g, and wvp is the voting point

weighting based on the number of gaugings the candidate curve

passes through. The voting point weighting is calculated as follows:

wvp ¼ max hfitð Þ−min hfitð Þ
max hð Þ−min hð Þ

� �
·

max qfitð Þ−min qfitð Þ
max qð Þ−min qð Þ

� �
; (7)

where h and q are the gauged stage and flow values; hfit and qfit are

the subsets that are intersected by the candidate curve. As discussed

by McMillan and Westerberg (2015), wvp is a weighting based on the



FIGURE 2 Schematic of the voting point
method for discharge. (a) Errors on discharge
measurements are estimated as +/− 10% of
the gauged value, and defined using triangular
fuzzy weighting (see text). (b) A candidate
Velocity Area Rating Extension sigmoidal
rating curve is sampled, and the number of
gauging points the curve passes through is
counted. The number of hits, along with a test
of water balance satisfaction (not shown),
allows the voting point likelihood of that
curve to be calculated. (c) Further, candidate
curves are selected using Monte Carlo
sampling until a predetermined number of
curves have been sampled. The 95%
prediction uncertainty (95PPU) bounds on the
resultant discharge time series are defined on
the basis of the number of behavioural curves
and their associated voting point weightings
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space (area) of gauging points that the candidate curve spans. This is

to avoid situations where the distribution of gaugings is highly

skewed (in this case, towards lower stages), which can lead to

divergence from the gauging points, particularly at the top and bot-

tom ends of the stage range.

In addition to this, a further constraint was imposed on each of

the 2,000 candidate curves, in that the modelled mass balance was

required to fall within a particular tolerance of the observed value as

calculated from the rainfall and weather station data. The water

balance was determined by comparing the total discharge estimated

using the candidate rating curve to the total rainfall minus the

estimated evapotranspiration (estimated using the FAO

Penman‐Monteith equation (Allen, Pereira, Raes, & Smith, 1998) for

a crop representative of improved grassland, from data measured by

the automatic weather station) during the calibration period

(2011–2012, 2012–2013, and 2013–2014 hydrological years). It is

assumed that the change in storage over this time is negligible relative

to other uncertainties. To allow for errors in the water balance calcu-

lation arising from both the estimates of rainfall over the catchment

area, the evapotranspiration estimate and change in catchment stor-

age, rating curves were accepted if they gave estimated discharges

within 10% of the water balance estimate. A normalized score

(Scoremb) was calculated using Equation 4; allowing ±10% tolerance
on the water balance) and if this fell between −1 and 1, a likelihood

weight (Lmb) was calculated as follows:

Lmb

Scoremb−MBlwrð Þ=abs MBlwrð Þ½ �N MBlwr≤Scoremb<0

MBupr−Scorembð Þ=abs MBuprð Þ½ �N 0≤Scoremb<MBupr

0Scoremb∉ MBlwr ;MBuprð Þ

8><
>: : (8)

If a candidate rating curve was classed as behavioural (likeli-

hoods > 0) using both the mass balance and the voting point criteria

described above, an overall likelihood weighting for each behavioural

candidate curve was calculated as follows:

LVARE ¼ Lvp:Lmb

C
; (9)

where LVARE is the overall weighting, Lvp is the likelihoodmeasure calcu-

lated for the voting point fit to gaugings, Lmb is the likelihood measure

for the mass balance criteria, and C is a scaling factor such that the

sum of likelihoods scales to unity in each case. If either evaluation

measure returned a likelihood of zero (Lvp or Lmb), then according to

Equation 9, the overall likelihood (LVARE) is also zero and the candidate

curve is classed as nonbehavioural and plays no further role in the anal-

ysis. Once a set of behavioural models has been obtained, prediction

quantiles can be formulated at a given point on the curve (i) as follows:
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P bZi<zi
� �

¼ ∑
j¼N

j¼1
L M ΘjÞ

� ��bZi: j<zi
i
:

h
(10)

Here, P is the prediction quantile for Ẑi (the simulated value of

variable Z at point i using candidate curve M (Θj)) being less than z; L

is the likelihood weighting associated with candidate curve M (Θj); Θj

is the jth parameter set; and N is the number of candidates accepted

as behavioural. We then define the 95 percent prediction uncertainty

(PPU) limits on the estimated discharge from the 2.5 and 97.5

quantiles derived from Equation 10. The upper and lower limits of

uncertainty on the resultant discharge time series were based around

the 2.5 and 97.5 percentiles, respectively (95PPU limits). The 50th

percentile (median) was defined as the best estimate of the observed

discharge.

2.4 | Extension of voting point method to nutrient
data

Uncertainty in calculated nutrient loads results from both the discharge

uncertainty, the concentrations measurements themselves, and the

cross‐sectional and temporal variability. To evaluate the uncertainty in

nutrient concentrations from the bank‐side analyser, in situ measure-

ments from the instrument were paired with laboratory analysed spot

and ISCO samples taken at a corresponding time. An empirical power

law relationship was then fitted using Monte Carlo analysis to identify

behavioural parameter sets. A sample of 2,000 parameter sets (of the

power law) was tested, and the modified voting point method was used

to assign likelihoodweightings to each proposed parameter set. The lab-

oratory analysed sample was assumed to be the best estimate of the

true concentration, and the deviation between the in situ measurement

and this value was used to define the unit normalized limits for calcula-

tion of evaluation scores. In this case, the evaluation scores were calcu-

lated using the approach outlined in Equation 4), and the overall

weighting of each candidate curve was calculated on the basis of the
FIGURE 3 (a) Rating curve at the Newby
Beck outlet as estimated using the Velocity
Area Rating Extension method. Solid line
shows curve with best fit to gaugings, large
dashed lines show 95% prediction bounds,
and black dots show the gaugings. The dashed
and dotted line shows the official rating curve.
The solid dark grey line shows a standard
power law fitted with regression and the grey
shading shows the 95% prediction intervals
from the regression analysis. (b) Rating
between total phosphorus (TP) concentration
as measured using the bank‐side analyser and
corresponding samples analysed in the lab.
The solid line shows the best fit to the lab
analysed data, and the dashed lines show the
95% prediction bounds. The black dots show
the pairs of TP concentrations from the
analyser and the lab. The solid dark grey line
shows a standard power law fitted with
regression and the grey shading shows the
95% prediction intervals from the regression
analysis
number of measurement pairs intersected (following a similar approach

to Equations 5–6). The method will be demonstrated for the case of TP

concentrations and loads.

The unique combinations of the behavioural discharge and TP

concentration time series from the voting point analysis were then

used to determine TP loads using Equation 11:

Load ¼ ∑
n

i¼1
QiCi; (11)

where Qi is the discharge at time i, Ci is the concentration, and n is the

number of measurement time steps in a day. Any day with missing data

was excluded from the model evaluation. As with discharge, prediction

quantiles were calculated at each time step, with the combined final

likelihood weight of each behavioural model determined as follows:

Lload ¼ LVARE·Lconc
C

; (12)

where Lload is the overall likelihood of eachTP load time series, LVARE is

the likelihoodweighting of each behavioural parameter set from the rat-

ing curve uncertainty analysis, and Lconc is the likelihood weighting from

the concentration uncertainty analysis. C is a scaling factor, such that

the sum of likelihoods scale to unity in each case. As with discharge,

the upper and lower limits of uncertainty on the resultant load time

series were based around the 2.5 and 97.5 percentiles, respectively

(95PPU limits). The 50th percentile (median) was defined as the best

estimate of the observed in‐stream load.
3 | RESULTS

Figure 3 shows the uncertainty limits calculated for discharge

(Figure 3a) and TP concentrations (Figure 3b). Overall, the uncer-

tainty interval (based on 95% prediction quantiles) on the discharge

measurements was, on average, 70% throughout the duration of the
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calibration period, with a range of 21–140%. The higher relative

uncertainty intervals were seen in the low flow periods (here

defined as the lowest 5% of discharges, which equates to values

<0.032 m3 s−1), where they were on average 128%. However, this

equated to a mean absolute uncertainty interval of 0.032 m3 s−1.

In contrast, the high flow periods (here defined as the highest 5%

of discharges which equates to values greater than 1.22 m3 s−1)

had much smaller relative uncertainty intervals, on average 40%.

This range is much larger compared with those determined during

a recent study on 500 UK catchments (Coxon et al., 2015), which

showed that the majority of catchments had 20–40% relative

uncertainty intervals, though the maximum uncertainty of 140%

determined for Newby Beck here is much lower than the maximum

value of 397% quoted by Coxon et al. (2015).

Figure 3a also shows a comparison with a rating curve generated

for this catchment using the traditional power law (fitted using regres-

sion). The power law (solid grey line in Figure 3a) gives much higher

values at the high end of the rating than when the water balance con-

straint is imposed for the VARE method (solid black line in Figure 3a).
FIGURE 4 Time series of stream discharge, half‐hour total phosphorus co
5–6, 2015) for the voting point method (a, c, and e) and the power law me
shading shows the 95% uncertainty limits derived for both methods. Note
Furthermore, outside the range of the available gaugings, the uncer-

tainty (95% prediction intervals from the regression) in the rating curve

(grey shading) is much larger than the curve generated from the voting

point method (large dashed black lines). The power law regression gives

157% uncertainty on discharge for the high flows (top 5%), compared

with 40% when using the VARE voting method. For the low flow

(bottom 5%), both methods produce similar uncertainties, with the

power law regression showing slightly higher average uncertainties at

139%, compared with 128% from the VARE voting method.

The uncertainty intervals (based on 95% prediction quantiles from

the fitted empirical power law), generated from the comparison

between the continuous bank‐side analyser data and the lab analysed

samples, showed a similar pattern with the lowest 5% of concentra-

tions (those below 0.0049 mg L−1) showing the highest relative uncer-

tainty intervals (on average 231%). For the higher concentrations (the

top 5%; 0.179 mg L−1), the intervals were smaller, at around 81%. The

TP concentration and discharge uncertainties are reflected in the TP

load calculations, which see a relative interval of on average 292%

for the lowest loads (bottom 5%) and 74% for the highest loads (top
ncentration and half‐hour TP load during Storm Desmond (December
thod (b, d, and f). The black line shows the median value, and the grey
the difference in scale on the y axis for the power law method
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5%). Overall, these intervals are larger than those reported by McMil-

lan et al. (2012), who provided a summary of uncertainties in water

quality data showing relative errors of up to 150% on TP loads and

concentrations. However, recent work by Lloyd et al. (2016),

employing the use of a bank‐side analyser similar to that used at

Newby Beck, resulted in uncertainties of up to 83% on the estimation

of TP loads when compared with laboratory analysed data.

Figure 3b shows the relationship between the bank‐side analyser

and laboratory TP concentrations as predicted using a power law

fitted using standard regression (solid grey line shows fit, and grey

shading shows 95% prediction intervals). As with the discharge, the

uncertainty intervals at the higher concentrations (top 5%) were much

greater using the regression (102%) than with the voting point method

(81%). For the lower concentrations (bottom 5%), however, the

regression tended to show much lower uncertainties at 103% com-

pared with the voting point method (231%). Note that because none

of the rating curves using either the functional form (Equation 2) or

power law can have negative values, these large uncertainty values

indicate that the distribution of estimated values at any particular flow

or load must be skewed.
4 | DISCUSSION AND CONCLUSIONS

This scientific briefing presents a new approach to the estimation of

uncertainty in rating curves applied to discharge and water quality

measurements. This method builds upon a modified voting point

method (McMillan & Westerberg, 2015) combined with the VARE

model of Ewen et al. (2010). This helps constrain the maximum dis-

charge, particularly in situations where the river is likely to go out of

bank. This is demonstrated in Figure 4, which shows a comparison of

the river discharge from VARE and the power law methods (Figure 4

a,b) during Storm Desmond (December 5–6, 2015), where there was

widespread flooding and out of bank flow. Using VARE, the discharge

peaks at 8.2 m3 s−1 with an uncertainty range of 7.0–9.7 m3 s−1

(Figure 4a). If the power law method is used, we are well beyond the

gauged range (Figure 3a). The maximum discharge during Desmond

was 57.4 m3 s−1 with a much larger uncertainty range of 25.4–

129.5 m3 s−1 (Figure 4b). Therefore, the use of the VARE and voting

method allows the modeller to constrain the uncertainty using local

knowledge of the catchment.

Furthermore, VARE allows the hydrologist to impose a (uncertain)

mass balance constraint on the evaluation of candidate rating curves

using available weather data over a long period (three hydrological

years in this application to Newby Beck). This, therefore, ensures that

the rating curve model is consistent with the catchment water balance

(see Beven and Smith (2015), for example, where this is not the case in

another catchment). However, it is acknowledged here that the uncer-

tainty in the mass balance calculation is dependent on the accuracy in

the available weather data and consequent precipitation and evapo-

transpiration estimates on which to perform the analysis.

The advantage of the VARE method in the voting point frame-

work is that the weighting imposed on the overall likelihood of a can-

didate model can be stronger towards either the fit to the gaugings or

the mass balance (e.g., a multiplier can be added to each likelihood in
Equation 9 when calculating the overall likelihood for a candidate

curve, LVARE). The weighting towards either constraint can be split

evenly or allowed to give preference to one of the measures depend-

ing on the model user, knowledge of the catchment, the available data

to calculate mass balance, and the nature of the application the model

user wants to use the model for.

As we have demonstrated in this work (Figures 3 and 4), the

downside of using the power law method to fit rating curves is often

the lack of available gaugings during high flow periods. Therefore,

when extrapolating the curve beyond the gauged range, there is the

potential for overestimation at the higher end of the curve

(Figure 3). In effect the power law does not take account of the rapid

change in cross‐sectional area and consequent decrease in average

velocities that often arises in overbank flows. Hydraulic modelling

can go someway to reducing such errors in the extrapolation of the

rating curve, but then requires specific assumptions about changes in

roughness coefficients or conveyance. In our case, the VARE approach

avoids this by imposing hydrological consistency through the uncer-

tain mass balance constraint. This reduces the uncertainty when

extrapolating the curve beyond the gauged range, as shown in

Figure 3.

There are other epistemic uncertainties that can lead to

nonstationarities in rating curves that are not always obvious. For

example, during a flood there can be changes in the physical cross sec-

tion of the channel due to erosion or sediment build up (Lang, Pobanz,

Renard, Renouf, & Sauquet, 2010). This can alter the stage‐discharge

relationship from any single calibrated curve. Using the voting point

method in combination with the VARE approach aims to reduce this

uncertainty by assuming that each of our 14 gaugings are representa-

tive of a given rating curve at the time of measurement. Therefore, our

condition of any candidate curve only needing to hit one gauging to be

classed as behavioural aims to account for any potential variation in

the rating curve with time.

We also present an extension of the voting point method to

account for uncertainties in our P observations and the translation

of these errors through to the estimates of daily P loads. As most

water quality models typically work on a mass balance basis, the focus

is on uncertainties in the observed load data. As load data are calcu-

lated using the combination of discharge and concentration, the errors

in both measurements must be accounted for.

Therefore, the error in the load measurement (for this particular

dataset) will be a combination of rating curve uncertainty, procedural

and instrument error in the measurement of nutrient concentrations

(in this case P), and cross‐sectional variation. Previous methods to

estimate load uncertainty (Johnes, 2007; Lloyd et al., 2016) provide

some estimation of this combination of errors. However, the discharge

error is based on the aforementioned power law rating curve fitted

using methods such as LOWESS. Therefore, these methods are

susceptible to the issues of extrapolation beyond the range of the

gauging data. Our application of the VARE method to estimate the

discharge component of the load calculation accounts for this issue

as discussed above.

For the concentration errors, we have employed similar methods

to those used previously, whereby the bank‐side analyser data are

compared with those generated in a lab, to check for inconsistencies
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in the measurements. However, the previous methods tend to quan-

tify the relationship between these data using a regression analysis

or LOWESS that requires a fit to all data pairings. As with discharge

data, epistemic errors in nutrient data can arise due to changes in

the monitoring equipment, such as instrument drift in the bank‐side

analyser data over time. Therefore, the relationship between labora-

tory data (which is often generated infrequently, such as with gauging

data) and the in situ data may shift. Therefore, to account for these

epistemic errors, we utilized the voting point method to estimate the

uncertainty in our bank‐side analyser data, assuming the lab data were

the best estimate of the true measurement.

Overall, the uncertainties in concentrations at Newby Beck

(~231% for the lowest 5% of concentrations and ~81% for the

highest 5% of concentrations) and loads (relative interval of on

average 292% for the lowest loads [bottom 5%] and 74% for the

highest loads [top 5%]) were similar to those reported by previous

studies (Lloyd et al., 2016; McMillan et al., 2012). However, we tend

to show higher relative uncertainties towards the lower end of the

range.

Again, when the stream went out of bank during Storm Desmond

(Figure 4), the application of the extended voting point method led to

more constrained uncertainties on TP load. The maximum half hourly

TP load using the voting point method was 3.7 kg with an uncertainty

range of 0.9–7.1 kg (Figure 4e). With the power law method, the esti-

mated load was much higher at 21.4 kg with an uncertainty range of

5.8–78.6 kg (Figure 4f). As shown in Figure 4c,d, both the voting point

method and the power law method produce similar uncertainty esti-

mates on theTP concentrations, with the voting point method tending

to show slightly higher uncertainties towards the lower concentrations

(as abovementioned). Therefore, during Storm Desmond, the higher

levels of uncertainty exhibited for TP loads when using the power

law method are most likely as a result of the large errors shown at

the higher end of the rating curve. Our combined VARE and voting

point method approach significantly constraints this load uncertainty

(Figure 4e) and consequently the estimate of the total load from the

catchment integrated over time because of the importance of the high

flow events in P export.

As the computational cost of running this procedure is relatively

cheap, and as more gauging information or additional data regarding

the characteristics of the catchment become available, the rating curve

information or the empirical relationship between the lab and in situ P

measurements can be updated easily. This will allow further

constraints on the estimation of uncertainties in the discharge,

nutrient concentrations, and estimated loads. These uncertainties

can then be used as limits of acceptability in the evaluation of water

quality models as demonstrated by Hollaway et al. (2018).
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