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Abstract: In the wide realm of applications of quantum electrodynamics, a non-covariant formulation
of theory is particularly well suited to describing the interactions of light with molecular matter.
The robust framework upon which this formulation is built, fully accounting for the intrinsically
quantum nature of both light and the molecular states, enables powerful symmetry principles to be
applied. With their origins in the fundamental transformation properties of the electromagnetic field,
the application of these principles can readily resolve issues concerning the validity of mechanisms,
as well as facilitate the identification of conditions for widely ranging forms of linear and nonlinear
optics. Considerations of temporal, structural, and tensorial symmetry offer significant additional
advantages in correctly registering chiral forms of interaction. More generally, the implementation
of symmetry principles can considerably simplify analysis by reducing the number of independent
quantities necessary to relate to experimental results to a minimum. In this account, a variety of
such principles are drawn out with reference to applications, including recent advances. Connections
are established with parity, duality, angular momentum, continuity equations, conservation laws,
chirality, and spectroscopic selection rules. Particular attention is paid to the optical interactions of
molecules as they are commonly studied, in fluids and randomly organised media.

Keywords: symmetry; parity; quantum electrodynamics; optics; nanophotonics; chirality; helicity;
optical activity; optical angular momentum; dual transform; electromagnetic duality; irreducible
tensor; multiphoton process; quantum information

1. Introduction

It is a truism that principles of symmetry lie at the heart of modern physics. Indeed, it is perhaps
to be expected, when scientific reductionism demands fundamental theory to be valid at every level
from the smallest subatomic particle upwards. A well-known illustration is afforded by the symmetry
principles associated with spherical geometry, which largely determine the character of electronic
transitions in atoms—and thereby the form of each atomic spectrum. By contrast, it might be supposed
that in the realm of the larger agglomerations we designate as molecules, with a vast multitude of
shapes and structures, the operation of symmetry principles would be less prominent. Yet, a moment’s
reflection tells us this is not so. Consider, for example, the lowly water molecule: it is only because
its three atoms, as a result of their intrinsic electronic structure, form a bent rather than a linear
arrangement (Schoenflies point group C2v as opposed to D∞h) that H2O possesses an electric dipole
moment—and every life as we know it could not exist otherwise.

The interactions of light with matter exhibit a range of especially puissant symmetry principles,
many owing their origin to the intrinsic features of electromagnetism as one of the four fundamental
forces of nature. Just as the atoms in a molecule are primarily held together by electrical forces,
molecules engage with light by primarily electrical—and to some extent, magnetic—forms of coupling.
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At this level, where the quantum nature of the world is very evident, the one theory that correctly
accounts for the optical properties of both molecules and light, in their mutual interactions, is molecular
quantum electrodynamics (QED) [1–8]. It draws on principles that operate at the deepest fundamental
level; QED is widely known as the most successful theory in physics, unsurpassed in the precision of
its agreement with experiment. However, it is not simply quantitative accuracy for which the theory
has value; it has a robust character of immense power for determining absolutely the validity, viability,
and necessary conditions for optical interactions of a wide-ranging nature, based on principles of
structural and mathematical symmetry.

In the concise overview that follows, a range of such principles is drawn out with reference to some
of the most recent applications. Connections are established with continuity equations, conservation
laws, and spectroscopic selection rules, and particular attention is paid to the optical interactions of
molecules in fluids (gas, liquid, or solution phases) or randomly organised media—which together
account for most common molecular systems. Although, with relatively little reformulation, almost the
same framework has been shown to apply to dielectric solids, quantum dots, and quantum wells,
those are excluded from the analysis that follows, simply for the sake of brevity. The article substantially
builds upon a recent review of the role of symmetry in the quantum theory of nanoscale optical
and material chirality [9]; the expanded scope of the present work more widely addresses optical
phenomena in molecular systems, with a particular focus on optical transitions. A differently
formulated group theoretical approach is necessary to address non-molecular, effectively continuous
materials [10].

The following analysis begins in Section 2 with a brief review of charge-parity-time (CPT )
symmetry with conservation laws and electro-magnetic dual symmetry discussed in Section 3.
(By happy coincidence, the initials CPT are shared by three pioneers in this field: Craig, Power, and
Thiru (as Thirunamachandran insisted he be called, for ease to Westerners). The three worked together
extensively, though seldom publishing as a threesome; they were very well known to both the present
author and the editor of this special issue. Sadly, all three have departed this life since the millennium).
The subsequent Section 4 introduces the full foundation for a detailed analysis of various forms of
photon–molecule interaction—those explicitly involving real quantum transitions in the material
medium, with directly associated selection rules. In Section 5, the further development of the theory
for multiphoton processes then introduces the construction of a convenient representation for radiation
and molecular tensors, whose structure and permutational symmetry receives detailed attention in
Section 6. After a focus on the general form of observables in Section 7, Section 8 introduces Cartesian
tensors of irreducible form, facilitating identification of the dependencies of multiphoton processes on
experimental configurations—such as beam geometries and polarization—and on molecular structure.
Here, the group theoretical connection with angular momentum coupling comes to the fore. On this
basis, Section 9 develops a symmetry categorisation of transition classes, establishing a connection
to information content. Then, in Section 10, it is shown how, as a result of effecting isotropic or
axial averaging procedures, dramatic simplification ensues when the theory is further developed for
application to measurements on fluids, or indeed any substantially or partially disordered molecular
system. To illustrate the application and significance of several principles outlined within this paper,
Section 11 provides a concise illustration of how they apply to the elucidation of some interesting
dichroic effects in the simple case of single-photon absorption. The paper ends in Section 12 with a
brief discussion of recent applications.

2. Charge-Parity-Time Symmetry in Molecular Electrodynamics

Symmetry principles are powerfully operative in determining the allowed or forbidden character
of optical processes in molecular systems. To fully appreciate the origin of the detailed rules that
emerge from such considerations, in each form of interaction, it is necessary to formulate theory that
treats both matter and light with full quantum rigour. The wide variety of symmetry types into which
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molecules fall affords an even greater variety regarding their individual electronic and vibrational
quantum states.

The realm of optics and electrodynamics generally addresses mechanisms that fundamentally
involve the positions and motions of electrical charges. Accordingly, it is the symmetry laws associated
with charge, spatial position, and time that are of primary significance, that is, the operations of charge,
space, and time inversion denoted by C, P , and T , respectively [11–13]. Each is formally represented
by the Abelian group Z2, whose ±1 eigenvalues signify even or odd parity. All optical phenomena
preserve symmetry under the product operation CPT—a proof of this universality and analysis of
its implications has been authoritatively presented in a recent review by Lehnert [12], and a broad
spectroscopic perspective on the topic has been given by Lazzeretti [14]. Nonetheless, considerations
of charge conjugation symmetry are seldom relevant for conventional electrodynamic phenomena, as
the mathematical operation C is never physically realized; clouds of negative charge always surround
positively charged nuclei. Accordingly, in the consideration of optical effects, it is usually sufficient to
restrict consideration to the PT product, which, through the constraints of Lorentz invariance, ensures
Hamiltonian operators of Hermitian form. Moreover, PT -symmetric quantum theory has been shown
to be exactly equivalent to standard (Hermitian) quantum mechanics in terms of all observables [15].

It is worth emphasizing that applying the symmetry operation of time reversal to any
mathematical representation both changes the sign of any explicitly occurring time variable, and it
effects Hermitian conjugation—which also subsumes complex variable conjugation. In terms of
relativity theory, this is consistent with the four-vector symmetry for Lorentz transformations on the
Minkowski space (ict, x, y, z); in the sphere of quantum mechanics, it also ensures, for example, that the
Hamiltonian operator i}∂/∂t is itself time-even [16,17]. An extensive summary of the properties,
physical significance, and interpretation of P and T within the framework of molecular QED is given
in the literature [9]. Other issues of non-Hermitian photonics and PT symmetry, which specifically
relate to non-molecular media, and are therefore beyond the scope of the present article, are notably
discussed in two other recent references [18,19].

3. Dual Symmetry and Conservation Laws in Quantum Electromagnetism

To proceed, it is appropriate to recall that for the constituent fields of electromagnetic radiation,
the electric field e is formally of odd parity under P as well as under T ; the converse applies to
the magnetic induction field b. This symmetry is indeed required by the structure of the Faraday
and Ampère Laws. Nonetheless, these and the other two Maxwell’s equations also support another
well-known, fundamental symmetry, registering a dual complementarity between the electric and
magnetic fields of optical radiation in free space. It is a symmetry that is compromised in the presence
of electric charge, owing to the asymmetry in existence of electric but not magnetic monopoles;
for the electric field, a charge-driven source term accordingly appears in Gauss’s Law, but there
is no counterpart in the expression for divergence of the magnetic field. Nonetheless, there is
sufficient interest and power in the underlying free-space symmetry that there is recurrent attention
in electromagnetic duality. Indeed, much of the recent interest—largely centred on structured and
singular light, with associated momentum and angular momentum issues—does concern essentially
free-space propagation.

In a range of acceptable formulations for the Poynting vector, for example, Berry advocates an
‘electric–magnetic democracy’ [20]. This is a feature that is evident not only the classical formulation,
but also in the operator formulation due to Power and Thirunamachandran;

p(r, t) =
1
2

ε0[e(r, t)× b(r, t)− b(r, t)× e(r, t)] (1)

which is Equation (3.1) in the literature [21], here recast in SI units: r and t are space and time
coordinates. For more general application, it is the transverse electric displacement field d⊥ that
should feature in (1), rather than the electric field e, but in source- and current-free regions, there is
no physical distinction (the symbol d is also commonly used in entirely different connections). Here,
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too, with a view to the microscopic formulation that is appropriate for application to systems on the
molecular scale, the standard lower-case symbols are used; the context will generally make it clear if
quantum operators are signified. Notably, in the above Equation (1), symmetrisation is necessary to
ensure Hermiticity, because of the non-commutativity of the electric and magnetic field operators at a
common point in space [4,22]: [

ei(r), bj
(
r′
)]

=
i}
ε0

εijk
∂

∂r′k
δ
(
r− r′

)
(2)

here and henceforth, there is implied summation over repeated tensor indices; εijk is the Levi–Civita
antisymmetric tensor. Equation (2) immediately exhibits quantum uncertainty in optics, manifested at
the photon level; it signifies that the electric and magnetic fields cannot be simultaneously determined
at any single position.

Another aspect of the free-space relationship between e and b is manifested in the form of the
duality transformation under which Maxwell’s source-free equations prove invariant:

(e, cb)→ (e cos θ + bc sin θ, bc cos θ − e sin θ) (3)

where the brackets simply denote the orthogonally paired fields. Here, θ is an arbitrary pseudoscalar,
signifying that it changes sign under spatial parity inversion. The odd parity of the electric field, and the
even parity of the magnetic field, both under P , are thus preserved in the transformation; temporal
parity is compromised, except in the case of θ = π/2 (or, trivially, multiples of π/2). In anticipation of
later details, it is worth noting that casting equations in units such as the commonly used c = } = 1
can obscure any connection between the transformation properties under P and T . For example, in the
above equation, every element necessarily has the same units, but c clearly does not change under any
such transformation; the e and b fields exhibit different spatial and temporal parities because they
have different physical dimensions.

Equation (3), known as a Heaviside–Larmor transformation, has the specific form of a 2D rotation,
with symmetry SO(2). In some accounts, it is misleadingly described as a Lorentz boost, because an
expression of Lorentz transformation equations in terms of hyperbolic (cosh and sinh) functions of
rapidity has a similar cast [23], and those functions convert to their trigonometric counterparts when
their argument is imaginary. However, the signs in (3) are not consistent with this interpretation;
moreover, the Lorentz transform necessarily engages time with one physical dimension. A useful
account of the Lorentz transforms of electric and magnetic fields is given by Ivezić [24].

The textbook compartmentalisation of optical angular momentum j into spin and orbital parts,
s and l, respectively, proceeds along the following lines [25]:

j =
∫

r× p d3r ≡ l + s (4)

l = ε0r̂i

∫
ej(r×∇)iajd3r (5)

s = ε0r̂i

∫
(e× a)i d3r (6)

where ε0 is the vacuum permittivity and a is the vector potential field. Quite apart from the
gauge-dependence of a, it is well known that this separation is beset with problems; the spin operator
s does not satisfy the necessary commutation relations amongst its Cartesian components, to be
acceptable as a true quantum mechanical operator [26]. As pointed out by Barnett et al., the same
conclusion therefore necessarily applies to the counterpart orbital angular momentum l, as the sum of
the two does constitute a mathematically correct formulation of the orbital momentum from the vector
product r× p. [27]. Their work nonetheless exhibits the dual transformation as essentially consistent,
within the paraxial approximation, to the rotations generated by treating l and s as infinitesimal
angle generators.

In an incisive analysis by Cameron et al. [28], it has been shown how, through application of
Noether’s theorem [29] to the appropriate symmetries of Maxwell’s equations, it is possible to secure
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a refined form of angular momentum conservation laws, revealing a subtle interplay of spin and
orbital angular momentum features. Further manipulation of the Maxwell equations in terms of
vector and scalar potentials, exploiting dual symmetry, has also been shown to reveal a cascade of
mathematically equivalent formulations, [30] though with a caveat that application in the presence
of charge will introduce complications. For any non-paraxial beam, it is possible to secure exact,
self-consistent operator descriptions of the spin and orbital angular momenta in both quantum and
classical energy-flow formulations [31]. The ultimately incomplete separability of spin and orbital
angular momenta for structured light is essentially connected to the spatial variation of momentum
flux, which undermines canonical separation [32]. Accordingly, there is a host of optical phenomena
that manifest optical spin-orbit coupling, as shown and summarised in a commendable review [33].
Not surprisingly, the extent and nature of such coupling is compounded when knotted fields are
entertained [34].

Bliokh et al. have highlighted problems with exploiting electromagnetic duality in standard
electromagnetic field theory, as its association with an incontrovertibly non-dual Lagrangian [35] leads
to conflicts in the associated conservation laws. Of course, for any dynamic system, the Lagrangian
is not unique; observables relate to equations of motion that are at least invariant to the addition to
the Lagrangian of any total time-derivative. However, by recasting the formulation in terms of a
dual field tensor, Bliokh’s work has shown how it is possible to resolve the issues, and also to afford
a more robust method for separately identifying spin and orbital parts of the angular momentum.
The analysis engages another field vector with a significant symmetry role, now usually known as the
Riemann–Silberstein vector f [36–38]:

f(r, t) = e(r, t) + icb(r, t) (7)

together with its Hermitian conjugate, this field also serves as a suitable basis for representing
electromagnetic fields. Fernandez-Corbaton and Molina-Terriza favour the Riemann–Silberstein (RS)
formulation in their account of duality symmetry in transformation optics [39], for the transformation
Equation (3) can then be cast as follows:

f(r)→ exp(±iθ)f(r) (8)

In a detailed analysis of the parity and general symmetry properties of dual symmetry, duality
transformations, and helicity density associated with electromagnetic waves in widely-ranging
dispersive media, it has recently been noted that the generator of the dual transformation has
eigenmodes that are fields of well-defined (±) helicity [40]. In earlier work, Bialynicki-Birula
proposed that the RS field vector fulfils the function of a photon wavefunction. [41] However, there
are obstacles to such an interpretation. Consider any specific radiation mode (k, η), for wave-vector k
and polarization η; there is no way to represent the wavefunction for the two-photon state, |2(k, η)〉,
as any kind of combination or product of one-photon |1(k, η)〉 state functions (just as it is not possible
to represent the wavefunction for a 2s electron in hydrogen in simple terms of 1s wavefunctions).
The notion of a photon wavefunction can serve as a workable pragmatism when single photons are
involved, and the distinction from a state vector poses less of a problem, but for states with two or
more identical photons, there is no conventional sense in which any one photon can be considered to
have its own wavefunction [42].

A range of conservation principles also relates to the symmetry properties of electromagnetic
radiation. However, the engagement of light with matter undermines the applicability in most
cases. For example, although energy is conserved between matter and radiation as an overall
quantity in any optical interaction, for any measurement that is made beyond a near-field region
of quantum uncertainty, the same cannot necessarily be asserted for all other quantities conserved
in freely propagating radiation. A key illustration, to be examined below, is afforded by an optical
chirality measure known after its originator as the Lipkin zilch. Associated with conservation of
polarization [43–46], this is just one of a group of properties that is conserved in free electromagnetic
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fields, representative of a group whose invariance under the space–time Poincaré group is associated
with an eight-dimensional Lie algebra of non-geometric symmetry transformations.

Work by Bliokh and Nori has uncovered close connections between the optical chirality density
and such measures as polarization helicity and energy density [47], and the results have been shown
to have a direct dependence on a difference in the photon number operators for left- and right- handed
modes [48]. For example, the helicity operator for the free field, defined by the volume integral of a.b
emerges as follows:

κ ≡
∫

a.b d3r =
}

cε0
∑
k

[
n(L)(k)− n(R)(k)

]
(9)

where the brackets on the right contain a difference of the number operators for left- and right-handed
circularly polarized photons. Locally, the appropriate operators for measures of radiation helicity
are a chirality flux ϕ(r, t) and chirality density χ(r, t), which together satisfy a continuity (helicity
conservation) equation [48];

∂χ

∂t
+∇.ϕ = 0 (10)

with the defining equations

χ =
ε0

2

[
e.(∇× e) + c2b.(∇× b)

]
(11)

ϕ =
c2ε0

2
[e× (∇× b)− b× (∇× e)] (12)

in terms of fundamental symmetries, the matrix elements of χ are pseudoscalar fields, odd with
respect to the operator for space inversion (or parity), P , but even under time reversal, T ; ϕ is a polar
vector field, even under P and odd under T . Together, the operators defined by Equations (11) and
(12) represent components of a four-vector (cχ,ϕ) in Minkowski space [49], signifying the conserved
Lipkin ‘zilch’ [43].

The issues of electromagnetic helicity become considerably more intricate for radiation passively
propagating within complex media; the subject is thoroughly explored in a recent paper by Alpeggiani
et al. [50]. However, the pursuit of conservation laws in connection with active processes, where real
electronic transitions occur and energy is exchanged between radiation and matter, is a fundamentally
different proposition [51]. In this respect, helicity-related aspects of optical radiation behave quite
differently from energy, linear momentum, and angular momentum, to which global conservation laws
apply. For example, when any molecule absorbs a circularly polarized photon, it does not thereby gain
in helicity, nor does circularly polarized emission deplete any measurable chiral character in the emitter.
Fundamentally, there is no quantum operator for helicity/chirality in a material system—nor can there
be. The spectroscopic study of circular dichroism (CD), that is, circularly differential single-photon
absorption, manifests the implausibility of any such measure, for quantitative measurements exhibit
a dependence on optical wavelength that is far from absolute; generally, the CD rate differential is a
sensitive and intricate function of the electronic wavefunctions, excited state energies, and transition
dipoles for each material.

4. Symmetry Principles for Photon–Molecule Interactions

Having outlined the symmetry principles that apply for free radiation, we can now undertake
a review of the principles that apply to photon–molecule interactions, with a particular view to
electronic transitions. Accordingly, this section begins with a concise summary of key equations that
will underpin any conventional deployment of QED, in deriving expressions for the observables in
optical transitions. The generic framework described in previous work [9,52], which provides a basis for
describing both processes and electrodynamic properties based on the Power–Zienau–Woolley (PZW)
Hamiltonian [1,53–55], is here consolidated for specific application to electronic transitions—facilitating
simplification by excluding features that would only feature in the theory of optically parametric
processes, or in the representation of static quantities such as permanent dipoles or susceptibilities.
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The approach to be taken allows provision for the full symmetry of the free electromagnetic field to
engage with the full symmetry of the molecular system. In this respect, it substantially differs in its
approach from complementary forms of analysis considering direct reductions of electromagnetic field
symmetry through propagation within gyrotropic media, for example [56].

Although the principles to be enunciated are in principle applicable to ‘photonic molecules’—a
term that was introduced to highlight a similarity between the optical modes in simple cavity photonics
and those of diatomic molecules [57]—the former constructs generally lack the rich diversity of
symmetry elements afforded by real molecular systems, and in this respect, a more general use of the
term is perhaps misleading. Equally, the fabrication of structures to impose excitation symmetry in
surface plasmonics has no real connection with the intrinsic selection rules for electronic transitions [58].
However, applications of the symmetry framework to be developed in the following analysis do invite
extension to nanofabricated dielectric structures, where transition processes such as circular dichroism
occur, even as specifically quantum aspects of the radiation become less prominent. An example of
recent work in this area is a fine combination of theory and experimental work on dichroism in chiral
sculptured thin films [59].

The key observable for optical transitions is a signal proportional to the rate Γ—which may
directly represent a rate of transition, or equally a rate of change in the energy, linear or angular
momentum content of the radiation fields that are responsible. Unless saturation occurs, the rate is
usually cast in terms of Fermi’s Golden Rule:

Γ =
2πρ

} |MFI |2 (13)

if either saturation or oscillatory behaviour occurs, the detailed dynamics is still essentially determined
by the matrix element for the process The density of states ρ exhibited in this equation is in principle
a convolution of functions representing the number of states per unit energy interval for each of the
light-matter system components; in practice, one component usually dominates, and for the many
applications (including almost all multiphoton processes) that involve narrow linewidth lasers, it is
usually the molecular excited state whose linewidth effectively determines the value. The core of
Equation (13) is MFI, the matrix element of an operator M that couples an initial state |I〉 to a final state
|F〉 in a composite system (i.e., molecule plus radiation). In the present connection, with a focus on
processes in which energy is exchanged between the radiation and matter, the final state is presumed
to be measurably different from, though necessarily isoenergetic with, the initial state of energy EI .
The operator M may itself be cast in the following resolvent operator form [22]:

M =
∞

∑
p=0

Hint(G0Hint)
p (14)

where the propagator is given by
G0 ' (EI − H0)

−1 (15)

H0 = Hmol + Hrad (16)

Here, H0 is the basis Hamiltonian, comprising the unperturbed molecular and radiation operators.
Implementing the completeness relation delivers the system matrix element (MFI)sys in the form
of a familiar expansion in the light-matter interaction operator Hint, representing a time-dependent
perturbation:

(MFI)sys = 〈F|Hint|I〉+ ∑
R

〈F|Hint|R〉〈R|Hint|I〉
(EI − ER)

+ ∑
R,S

〈F|Hint|S〉〈S|Hint|R〉〈R|Hint|I〉
(EI − ER)(EI − ES)

+ . . . (17)

the intermediate states |R〉, |S〉 associated with energies ER, ES, and so on, are also cast in the system
basis. Each Dirac bracket featured in the numerators of terms in Equation (17), and thus entails both
matter and radiation components—and to identify symmetry aspects, both must be brought into
explicit consideration.
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It is the structure of the operator M, given by Equation (14), that proves a key to unlocking the
symmetry aspects of light-matter interactions examined in the following section. As the system basis
comprises products of molecular and radiation states, the symmetry of the propagator G0 is separable
in each component. Clearly, all energies are scalar quantities, and Hmol is invariant under the same
full set of symmetry operations as the molecule, whose symmetry class is always identified with the
ground state (or higher, in the case of chiral species [60]—where the ground state wavefunction lacks a
two-fold permutational symmetry that is present in the molecular Hamiltonian).

As noted above, it is most expedient to deploy the PZW form of interaction Hamiltonian, cast
as multipolar coupling in terms of a transverse electric field operator e⊥ and a counterpart magnetic
induction operator b. This affords major calculational advantages and insights; expressing the
couplings between the optical fields and charges directly in terms of experimentally meaningful electric
and magnetic fields also highlights their involvement with corresponding multipole moments and
optical response tensors in Cartesian form, thus elucidating their connection to molecular symmetry.
Strictly, when casting theory in terms of a PZW Hamiltonian formulation, all orders of the electric
multipole coupling should be cast in terms of a transverse electric displacement d⊥, rather than the
electric field e⊥ [4,61]. However, in isotropic media such as gases, and all conventional liquids and
solutions, the two quantities are related by a scalar, so precisely the same symmetry arguments apply.
The equations here are written in terms of the electric field for simplicity, and consistency with previous
work. The leading terms of Hint are thus expressible as follows:

Hint = −µi e
⊥
i −Qij∇je

⊥
i − . . .− mibi − . . . (18)

where µ is the electric dipole operator, Q is the (second rank tensor) electric quadrupole operator, and m
is the magnetic dipole operator. The first and third of these are vectors; the quadrupole operator is a
second rank tensor; and the indices i, j represent coordinates in any consistent frame of spatial reference
with orthonormal axes—usually Cartesian, but not necessarily so (see Section 11). Every index that is
repeated signifies an implied summation over the 3D basis set.

For concise reference in the text, the three consecutive terms in the above Equation (18) will be
referred to as E1, E2, and M1, respectively, and as a rule, the first of these represents a coupling that is
significantly stronger than the other two—where selection rules permit them all to occur (see later).
It is important to recognize that the E2 and M1 forms of coupling may in principle constitute equally
significant contributions to the light-matter coupling, together representing a leading correction to the
E1 term. The proof of this connection is straightforward; both terms emerge from the same level of
approximation in transforming between minimal coupling and multipolar Hamiltonian forms [62].

In addition to the terms explicitly exhibited in Equation (18), there are further terms of higher
order—which generally indicates that they will be responsible for much weaker effects. These include
a diamagnetisation contribution that has recently attracted fresh interest. As this term is quadratic in
the optical magnetic field, it is of even parity with respect to both space and time, and may therefore
in principle be considered pervasive (in this respect it is like the conventional polarizability, which is
non-zero for every material). However, the same property also renders this form of coupling less
potentially useful as a tool of symmetry analysis. Thus, although it is now recognized that in some
connections, diamagnetisation coupling may prove quantitatively more significant than warrants its
usual disregard [63–65], it is not a concern in a primary focus on symmetry features.

For most optical applications—the majority, which do not specifically concern the confined
geometries of a fabricated microcavity, or an exotic beam structure as such may be imparted by
optical elements—electromagnetic fields are most expediently commonly cast in terms of plane waves;
these represent propagation modes whose wave-fronts are perpendicular to a single director in all
cases. Moreover, in order to accommodate multimode radiation fields, the field operators are best
expressed as mode expansions in the form of Fourier representations. Promoting the two fields to
operator status leads to the following standard expansions [4]:
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e⊥(r) = ∑
k,η

{
i
(

}ck
2ε0V

) 1
2
ε(η)(k)a(η)(k) exp(ik · r) + h.c.

}
(19)

b(r) = ∑
k,η

{
i
(

}k
2ε0cV

) 1
2 (

k̂× ε(η)(k)
)

a(η)(k) exp(ik · r) + h.c.

}
(20)

where h.c. denotes Hermitian conjugate. The above equations express the fields at position r, within
an arbitrary quantization volume V, in terms of sums over wave-vector k and polarization state η.
The latter sum may in principle be taken on a basis comprising any two states that are represented by
opposing points on the Poincaré sphere; [66] commonly, those chosen are either left and right circular
polarizations, or horizontal and vertical plane polarizations. The circularly polarized basis can in fact be
expressed in terms of the following unit vectors:

ε(L)(k) =
1√
2

(
î + iĵ

)
; ε(R)(k) =

1√
2

(
î− iĵ

)
(21)

where î and ĵ are Cartesian unit vectors such that
(
î, ĵ, k̂

)
comprise a right-handed orthogonal

group. The quantum optical features of Equations (19) and (20) reside in the photon annihilation
operators a(η)(k) for each mode (k, η), and in their counterpart creation operators a†(η)(k) implicit
in the Hermitian conjugate part of each expression. In passing, it is interesting to observe that the
RS field vectors, constructed from (19) and (20) using the defining Equation (7), have the particular
property that f annihilates a left-handed photon and creates a right-handed photon, whereas its
Hermitian conjugate f† does the opposite [37]. An important corollary follows; noting the linearity of
the electromagnetic fields in Hint (a feature that also carries through to the RS expression of coupling,
see below), it becomes evident from the above sequence of expressions that the nth term in the matrix
element MFI, Equation (17), delivers the leading contribution for any process involving n photons.

We can now introduce symmetry principles—but first, a caveat. A difference in the symmetry
behaviour of electric and magnetic transition moments is sometimes expressed in terms of their being
orthogonal to each other—presumably an inference derived from that feature of the relationship
between the vector characters of the electric and magnetic fields, exhibited by the cross-product in
Equation (20). Others write of the difference as signifying the two kinds of moments are out of
phase, as indeed the counterpart fields are out of phase in circularly polarised radiation. In certain
applications to atoms, such essentially classical arguments may appear superficially credible, but in
general, such inferences are very misleading—not least, because transition moments are very different
from induced moments. Moreover, quadrupole and higher moments cease to be amenable to such
straightforward unidirectional interpretations. In molecules, more significantly, both static and
transition moments are quantities whose vector or tensor components relate specifically to directions
with a fixed and specific relation to the internal molecular geometry.

To establish the ensuing analysis on a firm footing, we first recall that the electric field of the
radiation is formally odd with respect to parity P , and even with respect to T ; the magnetic field has
the opposite character in both respects. Individual modes of the radiation field need not conform to
either parity, but in the sum over all modes, this is the definitive character [17]. Clearly, since Hint

is an energy operator, and therefore even in both space and time, the electric dipole operator µ is
necessarily also odd with respect to parity P , and even with respect to T , its magnetic counterpart
m is even in P and odd in T . Accounting for the gradient operator featured in the second term
of (18), the electric quadrupole operator Q has to be even in both forms of parity. To illustrate the
significance of a difference in spatial parity, it emerges that the difference between electric and magnetic
transition moments is the key to most common forms of chirality-sensitive response. As the former
are polar vectors (odd in P), and the latter are axial vectors (even in P), it takes a molecule with no
center of symmetry—that is, one that is not invariant under P , such as a chiral molecule—to support
an electronic transition involving both electric and magnetic transition moments. It is indeed an
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interference of these two kinds of coupling that proves to supply the main mechanism for chiroptical
differentiation—see the literature for an example [67].

Before proceeding further, it is worth returning to the Riemann–Silberstein formulation introduced
in Section 3, to observing a superficial appeal in connecting creation and annihilation operations with
photons of a specific handedness. To this end, for processes of potentially chiroptical significance,
the interaction Hamiltonian is, in some accounts, written as follows:

Hint ' −
1
2

[
d†.f + d .f†

]
(22)

where
d = µ + ic−1m (23)

this cast of the interaction operator is readily shown to precisely replicate the E1 and M1 terms in
Equation (18). Although electric quadrupole interactions are thereby excluded from consideration,
it transpires for phenomena such as circular dichroism and optical rotation that the absent E2 term
in fact plays no role in randomly oriented media; in conjunction with E1 coupling, it generates only
terms that vanish on orientational averaging (see Section 10).

The combination of electric and magnetic dipole operators in (23) is real (the former involves
only charge positions, and the latter only the corresponding angular momenta operators) and it is
of even temporal parity, but it is not an eigenfunction of P ; spatial parity is not a good quantum
number. The same, of course, is true for f . So although, for chiral molecules, transition dipoles
based on Equation (23) may comprise non-vanishing contributions from both its electric and magnetic
components, the difference in selection rules that applies for most other materials means that d itself
cannot be regarded as a secure gauge of chiral propensity. Moreover, for many chiroptical processes,
E2 contributions do not indeed disappear on orientational averaging; Raman optical activity is a
familiar example [68,69]. Any advantage of deploying the RS formulation for light-matter coupling is
therefore circumscribed; the representation is not generally applicable.

5. The Coupling of Radiation and Molecular Tensors

When we consider any multiphoton process involving n ≥ 2 photons, the detailed structure
of the relevant term in Equation (17) generates tensorial forms of interaction, coupling the material
response to elements of the optical fields. Because the denominators of each term in (18) are scalars,
symmetry aspects of the result are entirely associated with the products of Dirac brackets in numerator
expressions. The rule for each Dirac bracket is that the product of the irreducible representations
(irreps) of the states of the molecule at each end of the bracket must be spanned by one or more
components of the appropriate multipole operator. With regard to the initial and final states for the
overall process, the same rule applies with respect to the operator M, introduced in Equation (14).
From earlier observations on the symmetry of the associated propagator G0, it follows that the irrep
χ(M) for M is a product of the individual irreps for each of the multipoles involved in the whole
process. Attending to the leading multipole terms given in Equation (18), we can write the following:

χ(M) =
e

∏
i=1

m

∏
j=1

q

∏
k=1

χi(e)χj(m)χk(q) (24)

where labels e, m, and q represent the number of E1, M1, and E2 interactions, respectively, whose sum
n = (e + m + q) is the total number of photon interactions. For most absorption or scattering
processes—and also emission to the ground state—the irreducible representation of the transition
specifies the extent of symmetry difference between the relevant molecular excited state and the stable,
ground state.

Commonly, excited state wavefunctions lack invariance under the full set of operations
corresponding to symmetry elements of the ground state function. For example, in centrosymmetric
molecules, whose equilibrium nuclear coordinates from a suitable point of origin represent a set that
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is even under parity P , some excited states will also be even; others will display odd parity. Often,
under Cn rotations to which a ground state is invariant, excited states acquire an integer power of the
phase factor exp(2πi/n). Consider, for example, each term of the matrix element for a two-interaction
process (noting that more than one term will usually arise, because all sequences of interaction are
accommodated in the theory). Each term may entail one Dirac bracket of E1 form and the other of
M1 form; all combinations of multipoles are possible in principle, though not all will necessarily be
symmetry-allowed. Nonetheless, a first step is to consider what constraints are imposed on each
individual interaction, as a result of the group theoretical rules imposed by molecular symmetry [70].

The matrix element MFI for any specific n-photon interaction now emerges in the form of a linear
combination of terms, each of which entails vector and tensor interactions between molecule-based and
radiation-based properties. The molecular system is cast in terms of products of transition moments,
and the corresponding radiation constructs comprise products of components of the field vectors.
The general form can be expressed as follows:

MFI ∼
n

∑
e=0

n

∑
q=0

n

∑
m=n−e−q

S(e+m+2q)
e;m;n−e−m �(e+m+2q) T(e+m+2q)

e;m;n−e−m (25)

which is Equation (25) in the literature [9], without the phase factor that becomes redundant for
transition processes—where it disappears in the Fermi rate equation. Here, the result comprises the
inner product, signified by �, of a radiation tensor S and a molecular response tensor T. Specifically,
S(r) ≡ Si1i2 ...ir comprises an outer product of components of the electric field and the magnetic field
(and in addition, where quadrupoles are involved, the field wave-vector); the corresponding molecular
tensor T(r) = Ti1i2 ...ir entails products of n Dirac brackets, and its spatial symmetry properties are
determined by Equation (24). Each tensor has a rank r given by r = (e + m + 2q) so that the inner
product contrasts this number of indices; the molecular tensor T(r) specifically incorporates (e + m + q)
products of transition multipole moments.

Because their product MFI has the physical dimensions of energy, the S(r) and T(r) tensors must
have identical signatures of parity for each separate parity operation, P and T . The respective
eigenvalues are (–1)e and (–1)m, as determined by the space-odd, time-even character of the electric
field, and the space-even, time-odd character of the magnetic field. Any electric quadrupole, having
even parity under both P and T , plays no part in this determination. If, for example, the S(r) and
T(r) tensors are odd with respect to both parity operations, their product will remain the same if both
radiation and matter are inverted in space, physically representing opposite parity enantiomers, and
also opposite helicity radiation.

In this connection, it is worth briefly noting certain aspects of the physics relating to molecular
orientation, with an important bearing on chirality principles. The angular disposition of molecules
with respect to any propagating stimulus can play a role in the exhibition of chiral differentiation;
the commonly long lifetime for quantum tunneling between oppositely handed enantiomeric forms
(which are usually high orders of magnitude greater than optical interaction times) may also be a
significant factor. Consider, as a counterexample, a molecule of hydrogen peroxide, H2O2; in its
ground electronic state, it has only C2 rotational symmetry and is therefore chiral in principle, but it
is not normally regarded as such—because at common ambient temperatures, where the substance
is a liquid, thermal energy is sufficient to provide equilibration between the two oppositely handed
forms. Relatively low potential energy barriers must be surmounted for interconversion to occur [71];
in this case, evidence is readily afforded by the significant energy splitting between even and odd
parity combinations of the two enantiomeric state functions [72].

Conversely, consider a molecule such as boric acid, B(OH)3, which possesses, in addition to a pure
rotational (C3) axis, a plane of symmetry (it belongs to the C3h point group); it is not intrinsically chiral,
but if the molecule is held at a fixed angle with respect to any transversely propagating signal beam of
light, it has the capacity to differentiate between circular polarizations. This type of effect—essentially
2D chirality—is more commonly encountered (and more easily registered) in the surface features of
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suitably fabricated metamaterials—gammadion structures are a well-studied example—where even
in the absence of an external stimulus, there is a clear disparity across the planar interface between
physically dissimilar regions. In this way, effects more commonly associated with optical activity
may be exhibited by an intrinsically achiral material or metamaterial [73]. Nonetheless, consideration
of the complete light-matter system reveals that chiroptical differentiation will only be manifest in
optical fields with a helical character—either through circular polarizations, in chirally configured
beams, or within optical nanofibres [74]. When circularly polarized light impinges upon a suitably
nanostructured surface, propagation by reflection or transmission may exhibit differences according
to direction of travel, as opposite directions are not equivalent under the operations of spatial parity
P [75].

6. Structure and Permutation Symmetry in Material and Radiation Tensors

It is easy to recognise, in the general tensor form of light-matter coupling for nonlinear optical
interactions, a potential for the theory to deliver expressions of great complexity, rapidly increasing with
the number of photons involved. It will emerge that three-photon absorption, for example, in its most
general formulation, leads to a rate equation with 225 independent terms; for four-photon absorption,
the figure is 8281 (the explanation of these figures will emerge in Section 10). Such complicated
results are of little practical value, and only narrow academic interest. However, a raft of symmetry
considerations dramatically redeems the situation. The features discussed below will often reduce the
number of independent parameters to a mere handful. The implementation of symmetry principles
thus not only lends important physical insights, it also leads to equations that are realistic for
experimental application and data interpretation.

There are three distinct structure and geometry-related symmetry properties that can produce
major simplifications; in each case, considerations of symmetry lead to a reduction in the number of
independent variables. One aspect concerns the inherent photonic character of the nonlinear process
itself, reflected in a permutational symmetry between equivalent photon interactions. Another is
the possibility of polarization-configured symmetry, which is directly under experimental control.
Finally, there are symmetry features determined by the intrinsic symmetry of the molecular component,
dependent upon the geometry of its nuclear framework and the spatial symmetry of the transition
taking place. We are now in a position to address the first two of these, and in the following section,
each feature is illustrated by a specific, typical case: the hyper-Raman effect. Issues associated with
molecular structural symmetry are deferred to Sections 8 and 9, pending the further development of
the tensor formulation that next ensues.

First, we consider the photonic symmetry that may be intrinsic in the nature of any optical
process. The hyper-Raman effect [76] is an inelastic scattering effect in which an intense input beam of
optical frequency ω produces scattering, Stokes-shifted (slightly lowered in frequency) from the second
harmonic 2ω by a vibrational frequency ωvib for one of the normal modes of the molecule. Thus, it is a
three-photon process, detectable in the optical output of a frequency ω′ = 2ω−ωvib. Recognising that
the leading form of coupling is associated with E1 transitions alone, Equation (25) casts the matrix
element as S(3)

3;0;0 �3 T(3)
3;0;0. The detailed structure of the molecular tensor T(3)

3;0;0—a form of transition
hyperpolarizability—is usually determined through the construction of time-ordered diagrams [77],
which represent every topologically distinct sequence of the individual photon interactions—three in
this case; see Figure 1. The same information is in fact conveyed by a single state-sequence diagram,
Figure 2 [78,79]. Each path in a state-sequence diagram is in a topological sense a dual transform of
one of the time-ordered diagrams, interchanging vertices with line segments. The complications that
arise in this case, when other multipoles are entertained, will be considered subsequently. The explicit
expression for the E13 molecular tensor, written as a sum of three corresponding terms, accounting for
overall energy conservation in each case, is as follows:
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βnm
λµν = ∑

r,s

[
µns

λ µsr
µ µrm

ν

(Esm − 2}ω)(Erm − }ω)
+

µns
µ µsr

λ µrm
ν

(Esn + }ω)(Erm − }ω)
+

µns
µ µsr

ν µrm
λ

(Esn + }ω)(Ern + 2}ω)

]
(26)

where h̄ is the reduced Planck’s constant h/2π, subscript Greek indices denote Cartesian indices
referring to a molecule-fixed reference frame, vector components of the form µab

λ and so on refer to
electric dipole transition moments for transition a← b , and Eab denotes an energy difference Ea − Eb.
Three terms arise because this is the order of index permutations given by the symmetric group product
S3 × S2.

It will be evident on inspection that Equation (26) does not exhibit the permutational symmetry
between the indices µ and ν connected with the two physically indistinguishable input photons
(vertices coloured red in Figure 1). However, the radiation tensor with which it forms an inner product,
does so as follows:

Sλµν = ε′λεµεν (27)

where an overbar (on the polarization vector for the emitted photon) denotes complex conjugation. This
same permutational symmetry can therefore be accommodated in a symmetrized tensor, expediently
identified by bracketing the relevant index pair:
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βnm
λ(µν) ≡

1
2

(
βnm

λµν + βnm
λνµ

)
(28)

it is readily shown that this serves to deliver the same completely correct result when it is implemented
as T(3)

3;0;0 in Equation (25).
In general, for any multiphoton process in which two or more of the photons derive from the

same monochromatic beam, a corresponding permutational symmetry will be latent in the radiation
tensor. This symmetry is ensured if the corresponding photon interactions engage the same level if
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multipole interaction—usually E1; it is potentially compromised by admitting mixtures of different
multipoles. For example, in any form of frequency-doubling conversion—including second harmonic
generation (SHG) and elastic second harmonic (hyper-Rayleigh) scattering, as well as the hyper-Raman
effect—the substitution of one E1 interaction by M1 or E2 gives the leading correction terms of the form
E12M1 and E12E2. The associated ‘J’ and ‘K’ tensors molecular tensors retain index permutational
symmetry if the M1 or E2 interaction is involved in the output emission, but not if it is linked with one
of the two input photon annihilation events [80,81].

The second form of index symmetry is now easily identified. Again, consider the hyper-Raman
case, exhibited in (27). There need not be any correlation between the polarizations of the two input
and single output photons—but in an experiment, it may prove useful to make a measurement (using
polarizing optics) in which the polarizations are identical. One example for the commonly studied
case of right-angle scattering is if all polarizations are linear and perpendicular to the scattering plane;
another is if a forward-scattering geometry is used and the input and output photons are circularly
polarized with opposite helicity, as follows from the form of Equation (21). In either case, the S tensor
acquires full permutational symmetry amongst all three of its indices—and by similar arguments to
those presented above, the same index symmetry is effectively conferred upon the molecular tensor.

To address The third symmetry feature, associated with molecular symmetry and the nature of
transitions, will become more accessible on the introduction of an irreducible form of tensor analysis
in Section 8. As will emerge, there are further considerations that can serve to very substantially
ameliorate the complexity of analysis in the case of more complex forms of optical interaction; to secure
their application, there are additional symmetry principles that first need to be developed.

7. Observables

At this stage, it becomes important to return to the generalized matrix elements MFI to
distinguish expectation values (signifying identical initial and final system states) from the off-diagonal
matrix elements that feature as modulus squares in process observables. The distinction, recently
re-emphasized by Stokes [82], becomes especially important when physically identifiable effects arise
from the interference between terms involving different kinds of multipolar coupling—chiral and
mechanical effects in particular, as shown in other recent work [83–85] To secure an expression for the
rate of an observable transition process, we now work from Equation (13) to arrive at the following:

Γ ∼
n
∑

e=0

n
∑

q=0

n
∑

m=n−e−q

n
∑

e′=0

n
∑

q′=0

n
∑

m′=n−e′−q′
Σ(e+m+2q+e′+m′+2q′) �(e+m+2q+e′+m′+2q′) Π(e+m+2q+e′+m′+2q′) (29)

where
Π(e+m+2q+e′+m′+2q′) ≡

(
T(e+m+2q)

e;m;n−e−m ⊗t T(e′+m′+2q′)
e′ ;m′ ;n−e′−m′

)
(30)

Σ(e+m+2q+e′+m′+2q′) =
(

S(e+m+2q)
e;m;n−e−m ⊗t S(e′+m′+2q′)

e′ ;m′ ;n−e′−m′

)
(31)

Here, the superscript t denotes ‘total’—signifying that in the outer product, ⊗t effects no index
contractions and therefore generates a tensor product whose rank is the sum of ranks for its tensor

multiplicands. In Equation (30), the shorter representation of the outer product T(r)T(r′) may be

regarded as a material tensor Π(r+r′); the S(r)S(r′)
construct in (31) may equally be regarded as a

radiation tensor Σ(r+r′). It is evident that for the terms with r = r′, each Σ(r+r′) and counterpart Π(r+r′)

tensor product in (29) will have even parity with respect to both P and T . However, in the quantum
interference terms, r 6= r′, some products may have odd parity.

The alarming complexity of the above equations primarily reflects the generality of form in which
they are cast; major simplifications arise in almost every specific application. Consider, for example,

a single-photon transition α← 0 . In the leading E12 contribution to the rate equation, Γ =
∣∣∣M(E1)

FI

∣∣∣2,

is expressible in terms of the product S(1)
1;0;0 ⊗ S(1)

1;0;0 �2 T(1)
1;0;0 ⊗ T(1)

1;0;0. Here, the material and radiation
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tensor constructs, as defined above, take the form of a transition electric dipole product µα0
λ µα0

µ , and a
polarization component product eλeµ (where these subscript indices imply components in principle
referred to the molecule-fixed Cartesian frame—with implications to be addressed in the following
sections). This rate contribution, which even for chiral molecules retains its sign irrespective of the
enantiomeric form or the circular handedness of the input radiation, is almost invariably the term that
generates the largest contribution to the absorption rate. However, attending to the terms beyond E1
in the coupling delivers a corrected rate equation of the form

Γ =
∣∣∣M(E1)

FI

∣∣∣2 + M(E1)
FI M(M1)

FI + M(E1)
FI M(M1)

FI + . . . (32)

in which the E1M1 correction terms—which may be non-zero for transitions in chiral media—deliver

odd-parity Σ(r+r′) ≡ S(1)
1;0;0⊗ S(1)

1;0;0�2 T(1)
1;0;0⊗T(1)

0;1;0, and its conjugate, both of which clearly change sign

either on substituting enantiomers (necessarily changing the sign of T(1)
1;0;0 ⊗ T(1)

0;1;0)—or, alternatively,

by inverting the circularity of the input (producing the same effect on S(1)
1;0;0 ⊗ S(1)

0;1;0)). In either case, the
absolute value of the sum (32) changes, resulting in circular dichroic absorption. [84] In the less familiar

case, of the hyper-Raman effect, Equation (29) delivers the product S(3)
1;0;0 ⊗ S(3)

1;0;0 �6 T(3)
1;0;0 ⊗ T(3)

1;0;0.

8. Irreducible Cartesian Tensor Framework for Multiphoton Interactions

Molecules, necessarily of less than spherical symmetry, may possess no other symmetry elements
than those that can together constitute a subset of the orthogonal group O(3) [86]. Mapping the
irreducible representations of this group onto any lower symmetry is surjective, and the physical
consequence is to permit transitions to occur between states of more than one symmetry class.
The irreducible representations of any molecular point group are therefore related through chain
decomposition to irreps of O(3) associated with odd or even parity representations of quantum
angular momentum states S, P, D, and so on [87]. Functional expressions of the latter are, of course,
the vector spherical harmonics, which thereby constitute a natural choice for describing atomic
transitions [88,89]. However, with the lower symmetry of molecules, at least one direction within the
structure is commonly distinct—usually an axis with the highest level rotational symmetry. The nature
of most commonly arising symmetry elements then generally favors a representation of molecular
vector or tensor properties in terms of a Cartesian basis. In fact, the advantage often carries over to the
representation of the radiation field too.

In principle, the derivation and expression of selection rules for molecular transition moments
and other properties can therefore benefit from expression in either a spherical tensor or a Cartesian
basis. The deployment of spherical tensors [90] most clearly exhibits angular momentum aspects;
it can, for example, elicit important physical insights with regard to angular momentum transfer and
multipolar forms of interaction in single-photon processes [91,92]. However, developing an equivalent
irreducible Cartesian basis can also establish connections with aspects of beam geometry and molecular
shape; it is much more directly suited to analyzing multiphoton processes with regard to optical
selection rules, because molecular symmetry properties are also usually registered in Cartesian form [70,
93–97]. This is especially important because, in the nonlinear optical spectroscopy of molecules,
different lines or bands in the spectrum will commonly be associated with transitions of disparate
symmetry, and it is possible, by judicious experimentation based on multiple polarization studies,
to elicit their individual character. It is also notable that optical beam configurations are most readily
specified in an (x, y, z) form. For example, in a conventional geometry optical table set up for scattering
or fluorescence measurements, a Cartesian basis is the standard for describing the orientations of
beam propagation and polarization vectors. It has furthermore been shown how the applicability of
Cartesian bases extends to beams of complex Gaussian-weighted structure [98].

The two distinct formalisms, spherical and Cartesian—which are, of course, rigorously
equivalent—both have an intricacy that rapidly escalates with the tensor rank. However,
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while conversion between the two forms is not simple [90,93,94,96,99], it is rarely necessary, and the
power of analysis that they afford proves its value in processes of more complex photonic interactions.
Because the detailed forms of results for arbitrary tensors of up to fourth rank have been calculated,
the necessary formulae can be directly deployed [95,97,100,101]. Most of the original QED work on
multiphoton electronic processes in molecules was conducted using such an irreducible Cartesian
framework [102–106], as well as subsequent studies based on a semiclassical formulation [107]; it is
this Cartesian cast of theory that most readily establishes connections between the angular momentum
properties of electromagnetic radiation and the multipoles or nonlinear response tensors of molecules,
with which the light engages in any particular form of interaction.

The starting point for constructing an irreducible Cartesian calculus is to identify a natural tensor
basis. Natural tensors are tensors that are fully symmetric under interchange of any (Cartesian) index
pair, and are also fully traceless with respect to each such pair. Any such tensor of rank n can be
expressed in terms of exactly (2n + 1) linearly independent, non-zero components. In the more general
case, a reducible Cartesian tensor of a given rank n comprises a sum of irreducible constituent tensors
of the same rank n, individually distinguished by weights j = 0 . . . n. Each irreducible tensor of
weight j and rank n thus represents a natural tensor of rank j embedded in a space of rank n. [70]
The advantages of connection to an angular momentum basis are retained in the Cartesian basis,
as the coupling between irreducible tensors follows the usual rules of angular momentum coupling.
For tensors or rank greater than two, individual weights may have a degenerate representation;
in general, the multiplicity of weights j for a tensor of rank n is given by the following [108,109];

Q(j)
n =

b(n−j)/3c

∑
k=0

(−1)k n(n− 1)(2n− 3k− j− 2)!
k!(n− 3k− j)!(n− k)!

(33)

in which the upper limit on the summation is cast in terms of the floor function (signifying the highest
integer no greater than the argument). The above result necessarily satisfies the following formula for
the total number of independent components:

n

∑
j=0

(2j + 1) Q(j)
n = 3n (34)

the factor of (2j + 1) accounts for the fact that, for even parity tensors, any j = 0 term transforms
under the symmetry operations of the molecular point group as a scalar, any j = 1 term as a vector
(three independent components), j = 2 as a deviator (a traceless symmetric second rank tensor with five
independent components), and so on. For odd parity tensors, j = 0 represents a pseudoscalar (odd under
P) and so on. However, when any degree of index symmetry is present in the tensor, the number of
independent components is obviously decreased, and accordingly the multiplicities in representation
of each weight are also subject to reductions.

Table 1 lists the structure of decomposition into weights relevant for the most extensively studied
kinds of optical interaction; the most prevalent forms of index symmetry are accommodated in tensors
up to rank n = 6 (which, though less familiar, arise, for example, for six-wave mixing). [110–114]
In this table, the tilde on Q̃(j)

n indicates that index symmetry is taken into account. Other cases of
index permutational symmetry are possible, and most can be identified from the distinct partitions
of n; although additional possibilities such as T((λµ)(νπ)) are possible in principle, no experimental

implementations of such cases are evident in the optics literature as yet. The parameters tn and
_
t n

listed in the right-hand pair of columns will be introduced in Section 10.



Symmetry 2018, 10, 298 17 of 30

Table 1. Maximum number of independent components for the tensors T(n) that most
commonly arise in n-photon molecular interactions, brackets embracing indices with permutational
symmetry. Illustrative examples: Abs—single photon absorption; nPA—n-photon absorption
(single-beam); RRE—resonance Raman effect; HR—hyper-Raman effect; HS—second harmonic
scattering; SFG—sum-frequency generation; SFS—sum-frequency scattering; 4WM—four-wave mixing;
OKE—optical Kerr effect; THS—third harmonic scattering; SWM—six-wave mixing.

T(n) Effect N Q̃
(0)
n Q̃

(1)
n Q̃

(2)
n Q̃

(3)
n Q̃

(4)
n Q̃

(5)
n Q̃

(6)
n tn

_
t n

n = 1
Tλ Abs 3 0 1 1 1

n = 2
Tλµ RRE 9 1 1 1 3 3

T(λµ) 2PA 6 1 0 1 2 2
n = 3
Tλµν SFG/SFS 27 1 3 2 1 15 11

Tλ(µν) HR/SHS 18 0 2 1 1 6 5
T(λµν) 3PA 10 0 1 0 1 2 2
n = 4

Tλµ(νπ) 4WM 54 2 3 4 2 1 34 23
T(λµ)(νπ) OKE 36 2 1 3 1 1 16 12
Tλ(µνπ) THS 30 1 1 2 1 1 8 7
T(λµνπ) 4PA 15 1 0 1 0 1 3 3

n = 5
T(λµνπρ) 5PA 21 0 1 0 1 0 1 3 3

n = 6
T(λµνπ)(ρσ) SWM 90 2 1 4 2 3 1 1 36 25
T(λµνπρσ) 6PA 28 1 0 1 0 1 0 1 4 4

Returning once again to the hyper-Raman effect to provide an example, it is immediately evident
from the above that considerable simplification ensues in the response tensor on taking account of the
pair index symmetry in βnm

λ(µν)
, observed in Section 6. The number of independent tensor elements is

reduced from 27 to 18; just as significantly, weight 0 contributions fall away entirely; weights 1, 2, and 3
are sustained. So the conclusion is that transitions are only allowed when the product of irreducible
representations for the initial and final state—which in the hyper-Raman case, equates to the symmetry
of the molecular vibration excited in its course—must span one or more of the irreps for weights 1, 2,
and/or 3 in the relevant molecular point group. The odd parity of the E13 coupling also applies.

It is relatively straightforward to derive the transformation properties for successive weights of
either even or odd parity, and an extensive tabulation of the results is available in the literature. [17,70]
Earlier work identified specific components rather than weights, [115] but these prove unnecessary for
effective conclusions to be drawn on the simple basis of considering symmetry. Consider, for example,
the case of the octahedral molecule sulfur hexafluoride, SF6; the Schoenflies point group is Oh and
the odd-parity representations of weights 1, 2, and 3 are T1u, (Eu+T2u), (A2u+T1u+T2u), respectively.
This signifies that only vibrations of A2u, Eu, T1u, or T2u symmetry can produce a hyper-Raman
signal. For vibrations of all other symmetries, the process is forbidden. It is to be emphasized that the
symmetry properties of the transition are key here—not the permanent properties of the molecule itself.
Again, taking the instance of SF6; because it is octahedral, it has no permanent hyperpolarizability—and
as such, it cannot exhibit the elastic frequency doubling process of second harmonic generation (SHG).
Nonetheless, the molecule can produce a hyper-Raman spectrum.

In other connections, decomposition into irreducible terms still has considerable value and power
when it is applied to static tensor properties—in which case the rule for a non-vanishing response
is simply that one or more of the irreps for non-vanishing weights must transform under the totally
symmetric representation of the relevant molecular point group. In a classic paper, Zyss showed
in clear and elaborate detail how such principles provide a basis for the molecular engineering of
nonlinear optical materials [116]. (In that and subsequent work, the term with weight j is referred to as
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a 2j-pole, e.g., a deviator is identified as quadrupolar. In its own specific context, where it is implicit
that every photon interaction in fact has E1 form, there is no likelihood of confusion, but the potential
ambiguity is noted.)

At this juncture, however, it needs to be pointed out that erroneous deductions can be (and
some studies have been) made if complete tensor index symmetry is assumed. Such an approach,
which became widespread owing to its appealing simplicity, is largely credited to Kleinman [117],
whose expressly limited intention was indeed to make the interpretation of early experiments in
nonlinear optics more tractable. The slender argument, not to be pursued in detail here, is based on
a case that in expressions such as Equation (26), photon energy terms such as h̄ω and 2h̄ω are small
compared with the electronic energy differences that arise in the sum over states. Appeals to such
arguments led to a supposition that the hyper-Raman and analogous tensors could effectively be
treated as fully index-symmetric. As Table 1 shows, in its entry for T(λµν), one hidden implication
was that weight 2 contributions could not arise. In the SF6 case examined above, this would wrongly
suggest that Eu vibrations are also forbidden. The essential flaws and general inapplicability of
Kleinman symmetry were in fact quickly pointed out by Wagnière [118]. Recent work on third
harmonic scattering has again shown that emphatic differences arise, according to whether or not full
index symmetry is assumed [119]. As a corollary to all such cases, however, it is of interest that in a
specific case where all the photons involved in the interaction have identical polarization, then, for the
same reasons discussed in Section 6, the results will indeed be consistent with Kleinman symmetry.

9. Transition Classes and Information Content

The various combinations of weight that are possible for each order n have been used to designate
classes of transition symmetry, which are individually discernible with suitably configured polarization
measurements in principle. For n ≥ 2, the permissible classes are essentially the partitions of n,
subject to the exclusion rules: 2⇒ 4 , and the combination p1⇒ p + 1 for any integer p. For example,
the pairing 01, equivalent to 10, implies the additional presence of weight 2. Then, allowing weight 2
serve to introduce the pair 21, which in turn implies weight 3 (rank allowing), and so forth. While not
excluded by these rules, in rank 4, there are no known occurrences of 41 or 30. Classes up to
n = 4, with known implementations among the commonly listed molecular point groups, are shown
in Table 2.

Table 2. Combinations of weight that arise in processes involving up to four photons, in all common
molecular point groups (those with up to six-fold rotational symmetry, and also the linear groups).

Tλµ 210 21 20 2 1 0
T(λµ) 20 2 0
Tλµν 3210 321 320 32 31 30 20 3 2 1 0

Tλ(µν) 321 32 3 2 1
T(λµν) 31 3 1
Tλ(µνπ) 43210 4321 4320 432 431 430 420 43 42 40 4 3 1 0
T(λµνπ) 420 42 4 0

Every one of the classes exhibited in Table 2 is represented in different point group/irrep
combinations. More strikingly, any transition, in a molecule of any known symmetry, must conform
to one of them; extensive listings are given elsewhere [70]. There are no known materials in which
every class arises, however. In the octahedral group Oh, for example, the following classes arise for
any even-parity, fourth rank tensor lacking full index symmetry: (432)—T2g; (431)—T1g; (42)—Eg;
(40)—A1g; and (3)—A2g. As shown in the Table, the number of classes is generally diminished by any
admission of tensor index symmetry. Specific processes for which classification schemes based on these
principles have been introduced are hyper-Raman scattering, [84] multiphoton absorption [85–88], and
third harmonic scattering [96].
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It is interesting to observe the growth in order of the number of classes, which can be considered
physical (i.e., excited state) implementations of symmetry properties conferred through multiphoton
excitation. Given the associated experimental difficulty, it is evident that there is only a marginal
advantage to be gained in progressing from n = 3 to 4. The number of distinctly identifiable classes in
either instance might nonetheless appear to present a potential prospect for high-dimensional data,
with a capacity to exceed the second order of a simple binary basis per photon. However, a single
n-photon experiment cannot provide an unequivocal basis for class assignment. To achieve that end,
in general, requires a complete polarization study—a term and concept enunciated by McClain [120,121].
As will become evident in the next section, the number of such experiments required always exceeds
the number of distinct classes.

Before moving on to consider fluid media, it is noteworthy that casting electrodynamic
theory in terms of irreducible Cartesian tensors proves its value in a variety of other connections.
One clever example is afforded by Bancewicz’s work on two-centre (collisional) corrections to
molecular hyperpolarizabilities, [122] and there are several applications connected with multipole
coupling in intermolecular energy transfer [123–125]. The same formalism also facilitates the
derivation of analytically tractable formulations for the properties of optically ordered anisotropic
nanoparticles [126].

10. Isotropic and Axial Invariants and Ensemble Averages

The majority of optical phenomena in molecules are registered in liquid or solution, where individual
molecular constituents are orientationally unconstrained over the timespan for most experimental
measurements. The molecules’ effective symmetry can then accurately be identified with the properties
of their intrinsic nuclear framework in the ground state equilibrium. To secure the appropriate forms
of results for experiments on such systems, it therefore becomes necessary to account for an optical
response whose time-average, for any individual molecule, will equate to the ensemble average, based
on the ergodic theorem. Moreover, the distribution of orientations within the ensemble is usually
isotropic (unless orienting fields are present; a case to be considered shortly). The analysis that follows,
pursuing the irreducible tensor formulation, represents an alternative perspective to the one given in
detail in Section 9 of Ruggenthaler [9].

To begin, a general result can be noted. In general, the product of two irreducible tensors A(n1)
j1

and B(n2)
j2

may entail a fully outer product, in which case it generates a result of the highest possible
rank, or at the other extreme, a fully inner product (if the two have the same rank), thus generating a
tensor of rank 0—that is, a scalar. In the most general case comprising p inner products (tensor index
contractions, p ≤ min(n1, n2)), the result may be expressed as follows:

A(n1)
j1
⊗n1+n2−2p

�p B(n2)
j2

=
rmax

∑
r=0

C(n1+n2−2p)
|j1−j2|+r (35)

where rmax = min[2j1, 2j2, (n1 + n2 − 2p− |j1 − j2|)]. The principles involved in this coupling are
illustrated in Figure 3. Relation (35) proves to be extremely important for the simplifications that it can
effect as we consider isotropic fluids. To this end, consider the constructs for the product tensors Π as
given by Equation (30). To most simply illustrate the implementation of an orientational average, let us
restrict consideration to dipole (allowing for both E1 and M1) coupling—that is, the representation
of E2 couplings, q = 0. The product tensor thus has rank e + m + e′ + m′, which equates to 2n. Again,
one example from hyper-Raman scattering is the sixth rank term βnm

λ(µν)
β

nm
π(πρ).
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Now, as follows from a theorem by Jeffreys [127], orientation-averaged parameters (in the present
application both molecular and radiation forms) must have the transformation properties of scalars
under the full rotation group SO(3). As such, they can only be cast as scalar multiples of isotropic
tensors g with the same, even rank (r + r′ = 2n), which comprise products of Kronecker deltas.
Averaging can proceed on this basis using Equation (32) in the literature [9]—which also provides for
more complicated cases—but by utilising irreducible forms, we now take a different tack. The inner
product of the Π and g tensors generates results of the following form, utilizing Equation (35) from
the present section and the defining Equation (30) for the explicit form of Π (while the Σ tensors are
treated in the same way):

Π(2n) �2n g(2n) =
n

∑
j1=0

n

∑
j2=0

T(n)
j1

T(n)
j2 �

2n g(2n) =
n

∑
j=0

T(n)
j T(n)

j �
2n g(2n) (36)

the simplification in the second step, which enforces j1 = j2, is a consequence of the range for the
coupled weights being subject to an upper limit of 0—as the isotropic tensors are weight 0 alone,
and the whole expression (which results in a scalar, i.e., a tensor of rank zero) must itself result in
weight 0.

Averaging can now proceed on the basis of the above Equation (36), as shown by Andrews and
Blake [128]. It then follows that the emerging rate equation will be cast in terms of molecular invariants
generated by this equation. These comprise a set of tn linearly independent set of parameters whose
number follows from the multiplicity Q̃j

n of each weight, as listed in Table 1; each weight only couples
with itself, and hence we have the following:

t =
n

∑
j=0

(
Q̃j

n

)2
(37)

this is the result for the general case (complex T); if the molecular tensor can be treated as real (which
generally applies for E1 coupling in regions far from optical resonance), then it follows that the number
of invariants reduces to the following:

_
t =

1
2

n

∑
j=0

[(
Q̃j

n

)2
+ Q̃j

n

]
(38)

therefore, for example, the orientationally averaged rate equation for a three-photon process entailing
the index non-symmetric tensor Tλµν is cast in terms of tn = 15 molecular invariants. Because, in general,
the radiation tensor is subject to the same development, the rate (29) in principle accommodates
t2
3 = 152 = 225 terms (for four-photon processes lacking permutational symmetry, the corresponding
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number is t2
4 = 8281). However, if the molecular tensor is real,

_
t 3 = 11 and the number of terms in the

rate is almost halved.
In practice, because the set of molecular invariants in any case constitutes a complete, linearly

independent set, it is equally possible to express results in terms of any other set obtained by injective
linear transform—and these are the invariants that emerge from the direct averaging process [127,129].
McClain’s approach to securing the maximum information from multiphoton studies of fluids is

fundamentally based on the premise of conducting a number
_
t n of experiments with polarization

conditions ensuring linearly independent radiation terms. In general, it is not possible to configure
the radiation tensor constructs Σ, using electromagnetic fields of conventional, plane wave form
to only comprise any chosen, arbitrary combination of weights. By exploiting the orbital angular
momentum of structured beams, Molina-Terriza et al. have shown that it is in fact possible to
prepare photons in multidimensional vector states of angular momentum [130]—but orbital angular
momentum is known not to engage with the leading E1 form of coupling for electronic transitions [131].
In consequence, as observed earlier, to secure the fullest information from separate experiments with
different polarization conditions, the required number of studies always exceeds the number of distinct
symmetry classes. Whichever method of tensor representation is deployed (reducible or irreducible),
it is noteworthy that it is unnecessary to derive expressions for individual tensor components; they are
not required, nor are they measurable in fluid media.

The same kinds of approaches as those considered above can be applied to molecular systems
with partial orientational order—one familiar example being cholesteric liquid crystals under the
influence of a static electric field acting as a director vector. In the most general case, the distribution of
molecular orientations is no longer isotropic, but residual degrees of freedom provide for an axially
weighted distribution. In the dipole approximation, the associated orientational averaging procedure
then requires contracting the radiation and material constructs Π and Σ with isotropic tensors of rank
(2n + 1), as shown in Andrews [9] and detailed in reference Wagnière [132].

Although the focus through much of this account is on processes involving up to four photons,
it is interesting to note that some theory has been developed for absorption processes of higher
order—notably by Wagnière [133] and Friese [134], the latter recently providing remarkable results for
five-, six-, and seven-photon excitations. Those calculations make explicit use of index symmetry from
the outset, so the results are not claimed to have general applicability for multiphoton interactions.
It does not appear that group theoretical methods have as yet been applied to such cases—but the
degree of experimental challenge in resolving the associated spectra suggests that such a symmetry
analysis would not serve any immediately practicable purpose.

11. Intricate Aspects of Dichroism

To illustrate the principles, and to highlight the powerful significance of orientational
averaging, it proves salutary to consider some potentially circular dichroic aspects of single photon
absorption—where, despite the simplicity, some recent developments invite such a perspective. At its
simplest, there is only a single interaction to consider, as given by Equation (18); the interference terms
between forms of coupling with different parity signatures can only be elicited in chiral materials,
and using radiation with a degree of helicity—which, as we observed earlier, generally indicates the
use of circular polarizations. The original case of circular dichroism (CD), introduced at the end of
Section 7, has been addressed in numerous works—see, for example, the treatment given in Craig and
Thirunamachandran [4].

One of the features of conventional CD is that in leading order, it entails E1–M1, but not E1–E2,
interference terms. The reason for the exclusion of the latter, which also satisfies the spatial symmetry
criterion for eliciting chiral response, is that in a fluid, the associated orientational average entails
isotopic tensors of rank 3—which are scalar multiples of a Levi–Civita antisymmetric tensor. The inner
product of this tensor with the E1–E2 molecular tensor product vanishes, because of the index symmetry
in the quadrupole transition moment. However, the fact that this situation changes when orientational
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order is present, has invited study of the possible engagement of E2 terms in chirality associated with
vortex beams (whose photons convey the orbital angular momentum introduced in Section 3). A recent
analysis has shown that this is indeed the case, leading to a distinctive circular vortex dichroism (CVD)
provided orientational order is present [135]. It nonetheless emerges, by applying the orientational
average in a cylindrical coordinate basis (in which the local orthonormality of the basis unit vectors
still applies), that the effect once more disappears in isotropic media.

Now, returning to the case of conventional radiation, let us consider that a static magnetic field is
introduced. As discussed by Andrews [9], the presence of a static magnetic field is often described
as ‘symmetry breaking’. When it engages with any optical interaction linearly (or indeed in any
odd power), its time-odd character imparts a propensity to undermine Helmholtz reciprocity (i.e.,
forward-backward equivalence), as, for example, in the familiar Faraday effect. However, due inclusion
of the field as a full component of the light-matter system confirms that its involvement is entirely
consistent with PT symmetry. In principle, a static magnetic field might engage with electron spin,
in molecules or radicals with one (or more) unpaired electron. In such cases, strong magnetic fields
can lift the degeneracy of spin states to a photophysically significant degree, and the result is to permit
circularly polarized photons of opposite handedness to excite each component of any resulting spin
doublet. However, there are other more interesting, and more general mechanisms that may come
into play where magnetic fields are involved, where the significance of both molecular symmetry and
rotational averaging become especially evident. In the following section, we assume ‘closed-shell’
states of time-even parity, for simplicity excluding states with unpaired electron spin. By far the
majority of stable molecules and larger assemblies are known to be of this kind.

To suitably develop the theory, we now extend the single-interaction Equation (18) by writing the
following:

MFI = ∑
Ω

M(Ω)
FI

(Ω ≡ E1, E2, M1, E1M01, E2M01, M1M01, . . .) (39)

where the first three terms can be identified in explicit form with those given in Equation (18), and the
second three are double-interaction terms engaging each multipolar form of photon interaction,
along with a static magnetic field dipole interaction denoted M01. Figure 4 shows the salient
forms of time-ordered diagram, for the influence of the magnetic field on single-photon absorption,
with the static (i.e., non-propagating) field depicted by a horizontal line; Figure 5 is the corresponding
state-sequence diagram, accommodating all time-orderings to this level of interaction.
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two distinct time-orderings.
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Before proceeding further, it is worth noting that the present method of dealing with the
engagement in an optical process of any static field, whether magnetic or electric, is a pragmatic
shortcut to correct results. Formally, although static fields are absent in the PZW Hamitonian, their
effect on a system of interest can be introduced either by applying time-independent perturbation
theory to establish static field-modified basis states for a standard time-dependent perturbation
theoretic treatment of the optical process [136], or equally by including, as a source, a static dipole
whose influence on the system is mediated by E1–E1 or M1–M1 virtual photon coupling; the former
has been demonstrated in several connections—see the literature for an example [137].

Now, applying Equation (13) to secure an observable, the rate of absorption, Equation (39)
yields a series of terms; details have been reported elsewhere [138]. The leading term is quadratic in
E1 (assuming the transition is conventionally allowed); then follow cross-terms such as E1–E1M01,
and so on. Suppose we look for terms that will exhibit involvement with the magnetic field, but which
are allowed only by non-centrosymmetric molecules. As E1 is of odd parity under P , but E2, M1,
and M01 are even, the leading terms of interest are E1–E2M01 and E1–M1M01. The significance of
these was first considered by Wagnière and Meier [139], whose depiction of the former cross-term
deploys another diagrammatic form shown in Figure 6.
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Consider first the E1–E2M01 term. This generates fourth rank Π and Σ tensors constructed
according to Equations (30) and (31), each to be contracted with an isotropic tensor of the same
rank that is, a product of two Kronecker deltas. In particular, the field tensor Σ comprises products
of components of ε(η)(k), ε(η)(k), k, and B (one component of the polarization vector, one of its
complex conjugate, one of the wave-vector, and one of the magnetic field). Therefore, the result of
contraction with two deltas, which produces two scalar products, may appear to be non-zero and
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acquire its maximum value if the static field is aligned with the direction of beam input; because
ε(η)(k) · ε(η)(k) = 1 for any polarization, the result is ostensibly non-zero. An interesting aspect
for chiral molecules is that the two opposite enantiomeric forms would appear to produce opposite
E1–E2M01 contributions of opposite signs, even when linearly polarized light is deployed. However,
the molecular part Π of this result involves two terms, each one entailing a transition magnetic dipole
moment—one with the transition dipole mαr and the other mr0, corresponding to the interaction
vertices denoted by empty blue circles in the middle and right-hand diagrams in Figure 4. With real
wavefunctions, the values of these moments are imaginary, because the angular momentum operator
implicit in a magnetic moment operator is itself imaginary; hence, the associated rate contribution in
fact vanishes (the rate equation entails twice the real part of this imaginary cross-term contribution).

A similar logic, but with a different outcome, applies to the E1–M1M01 term. Here, the Π and
Σ tensors that arise are third rank, and accordingly, each demands contraction with the isotropic
tensor of rank 3, that is, the Levi–Civita tensor. For Σ, comprising a product of components of ε(η)(k),
k̂× ε(η)(k), and B, this generates a vector triple product that can again be non-zero if B is aligned with k.
In this case, the molecular part Π of the result again entails two terms, from the middle and right-hand
diagrams in Figure 4, but now each one comprises two magnetic moments, so that the molecular part
of the rate contribution is real. The result persists for both linearly and circularly polarized light;
the vector triple product entails the cross-product of ε(η)(k) with k̂× ε(η)(k), which equals k̂ for any
polarization state—which, therefore, also includes the case of unpolarized light. This distinct difference
in physical significance, compared with E1–E2M01, appears not to have been noted before.

It can, therefore, be directly concluded that the presence of a static magnetic field, with any
non-zero component along the propagation axis of incident light, enables chiral molecules to exhibit
a differential response according to the handedness of the enantiomer. The involement of this
phenomenon, which has been categorised as one aspect of a magnetochiral anisotropy [140], has been
suggested as being responsible for magneto-chiral enantioselective photochemistry [141]. It is now
conjectured that it may also play a role in recent reports of enantioselective adsorption onto a magnetic
substrate [142], interpreted using CD measurements.

12. Discussion

This account has aimed to exemplify symmetry principles that can profitably be applied to
secure information of various kinds, in the context of molecular photonics. Over and above its
well-known relevance to material properties, symmetry considerations most obviously provide a
basis for determining whether any specific form of optical effect is allowed or forbidden. This kind of
criterion has comprehensive application to optical phenomena of all kinds; furthermore, it extends
to individual optical transitions. Using a quantum electrodynamical basis for the physics provides a
framework of equations in which the interplay of radiation and material symmetries becomes especially
lucid, as the molecules and radiation are treated as twin components of a fully quantized system.
QED methods also facilitate the identification of information content relating to transition symmetry
classes, and they provide a framework for devising or interpreting the relevant optical experiments.
In this connection, an emphasis on observables—generally process rates and signal intensities—has
additional impact; it affords advantages over semiclassical equations whose potentiality in representing
observables can be obscure. The distinction is especially important in dealing with theory for systems
in which the molecules are randomly oriented, as the implementation of orientational averaging can
itself have major implications for the viability of the mechanism. The results of averaging provide a
means for establishing rigorous conditions under which processes may be detected. The spheres of
optical and material chirality provide numerous examples of how all these principles lend insights
into the prospects and possibilities for achieving chiroptical differentiation.
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