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Abstract  

In an effort to address climate change, in 2013 China launched the world’s largest government-

driven carbon emission reduction programme, the National Low Carbon Industrial Parks Pilot 

Programme (LCIPPP).  This paper analyses this newly developed pilot program.  To deepen 

our understanding of the causes and the impact of industrial park CO2 emissions, we use the 

STIRPAT (Stochastic Impacts by Regression on Population, Affluence and Technology) model 

and data from 20 pilot industrial parks involved in the LCIPPP for the period 2012-2016. This 

study quantitatively evaluates the effect of CO2 emissions on output, energy structure, energy 

intensity, industrial structure, R&D intensity, and population change in different regions and 
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nationally through an elasticity coefficient method. The results confirm that an increase in 

output and energy intensity is a dominant contributor to the growth of CO2 emissions whereas 

an increase of the share of tertiary industry and R&D intensity has significant effects on 

reducing CO2 emissions. The elasticity of energy intensity and renewable energy consumption 

on CO2 emissions in the eastern region of China is the highest, indicating that using renewable 

energy to reduce CO2 emissions for the industrial parks is more effective in the eastern region 

as compared to the central and western regions of the country. The elasticity of population is 

significantly negative in both the central and western areas while it is positive in eastern part of 

China, thereby illustrating that promoting labour intensive industries will be an effective way 

to reduce CO2 emissions for the industrial parks in China’s central and western regions.  Our 

study reveals that differentiated low carbon development pathways should be adopted. 

Concrete policy implications for reducing CO2 emissions are also provided. 
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Highlights:  

➢ China’s national low-carbon industrial parks pilot program is analyzed. 

➢ The STIRPAT model is used to reveal how driving factors affect CO2 emissions. 

➢ A regional analysis confirms distinct low carbon development patterns are needed. 

 

1. Introduction 

China, the largest CO2 emitter in the world, has made an impressive effort in recent years to 

move towards a low-carbon future. China has committed to reduce its carbon intensity by 60 

to 65 percent from 2005 levels by 2030, increasing non-fossil-fuel energy to 20 percent of its 

energy mix by 2030 and peaking its carbon emissions by 2030. [1] 

While industry is one of the key driving forces of economic growth in China, it is also 

responsible for approximately more than 60 percent of the nation’s total energy consumption 
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and CO2 emissions. China’s industrial emissions far outweigh any other sources of greenhouse 

gases (GHG) in the country. Therefore, managing energy consumption and CO2 emissions in 

industrial sectors is essential to achieve the transformation to a low-carbon economy.  Progress 

in this area will contribute measurably to global efforts to mitigate climate change and ensure 

sustainable development. 

Industrial parks have been one of the most effective approaches which China has taken in its 

recent and significant industrial development. According to the Directory of China’s 

Development Zone 2006 published by the National Development and Reform Council (NDRC), 

China had 222 state-level industrial parks and 1364 provincial-level industrial parks in 2006 

[2]. Up to 2017, there are more than 600 state-level industrial parks [3], including 219 National 

Economics and Development Zones [4] and 156 Hi-tech Industrial Development Parks. [5] 

Development of industrial parks has been one of the key driving forces of economic growth for 

local areas.  Most industrial parks cluster industries such as automotive, mining, petroleum, 

coal, and steel. These all require very large capital investments and rely heavily on intensive 

resources, energy and labour inputs. Industrial parks face the challenge of increased 

environmental pollution, in particular increased CO2 emissions. Therefore, it is essential to 

improve the overall eco-efficiency of industrial parks and manage their GHG emissions in a 

systematic and rigorous manner. 

To accelerate China’s transformation to a low-carbon economy and increase its industrial 

competitiveness, the Ministry of Industry and Information Technology (MIIT) and the NDRC 

jointly launched the Low Carbon Industrial Park Pilot Programme (LCIPPP). This pilot 

programme is one of the major policies in the industry sector that supports the achievement of 

industrial energy-savings and green development. It has been implemented for four years from 

2014 to 2017 and covers 51 parks selected from a total of 106 parks. The LCIPPP is not the 

first pilot programme for industrial parks initiated by the Chinese central government.  Other 

major initiatives include: the Eco-Industrial Park Demonstration Programme (EIPDP), led by 

the Ministry of Environmental Protection (MEP); the Circular Transformation of Industrial 

Parks (CTIPP), led by the NDRC and the Ministry of Finance (MoF). The CTIPP aims to 
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generate much higher productivity and efficiency of resource utilization. The EIPDP aims to 

develop industries capable of maintaining ecosystem balance and the sustainable use of natural 

resources. The primary objective that significantly differentiates the LCIPPP from these other 

related programmes is that LCIPPP has been dedicated to reducing the intensity and overall 

CO2 emissions in industrial parks through upgrading the industrial structure, promoting 

technology innovation and enhancing carbon management ability. The pilot parks use carbon 

accounting as a tool to quantify and measure carbon emissions, to set targets for carbon 

emissions, to make decisions and to design road maps for mitigation strategies which include 

the elimination of outdated high-energy-consuming industries, the transformation of existing 

industries to low-carbon production and the development of more low-carbon industries. To 

date no studies have summarized the latest progress of China’s LCIPPP and measured the 

effectiveness of the programme. Our study reviews the LCIPPP in China, and comprehensively 

examines CO2 emissions at the industrial park level based on data from 20 pilot industrial parks. 

This paper also analyses the corresponding mitigation strategies that these industrial parks 

might adopt taking into consideration their geographical distribution. More specifically, 

compared with the existing research which primarily focuses on the low carbonization of one 

particular industrial park, this study includes many more industrial parks where different 

leading industrial sectors are clustered. The findings seek to contribute to the policy making 

process to achieve low carbonization for industrial parks. China's progress and experience in 

implementing the LCIPPP will not only help industrial parks in China, but also encourage other 

countries to strive towards achieving low carbon levels.  

 

2. Literature review 

Industrial parks are essential to increasing agglomeration economies for industrial cluster 

development which promotes efficient resource utilization and reduces infrastructural costs. [6] 

Abundant studies are focused on GHG emission mitigation through industrial symbiosis 

activities in Eco-Industrial Park (EIP) development. For instance, Hashimoto et al. [7] presents 
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Kawasaki Eco-town as a case study to demonstrate potential performances of CO2 emission 

reduction though industrial symbiosis. Harris’ [8] research also shows that firms operating as a 

community within an EIP and engaging in industrial symbiosis collaborations could realize 

greater benefits collectively. These include GHG emission reductions through by-product 

exchanges and thermal recovery, which is better than if each business optimized its performance 

in isolation. Geng et al. [9] finds that the Shenyang Economic and Technological Development 

Zone applied an industrial symbiosis strategy to reduce total energy consumption and energy-

related emissions. Liu et al. [10] cites the Tianjin Economic Development Area (TEDA) in 

China and claims that it reduced its CO2 emissions by 42 thousand tons (as of 2012) through 

industrial symbiosis activities. Liu et al. also demonstrate how to implement comprehensive 

development of industrial symbiosis for the purpose of GHG emission mitigation in China 

from a theoretical perspective. Pan et al. [11] build a four-level modeling framework for EIP 

research which emphasizes the aspects to be considered in future industrial ecology including 

carbon emission, reuse of by-products, water consumption and energy consumption. Although 

many eco-industrial parks were not initially built for carbon reduction purposes, industrial 

symbiosis could help reduce carbon emissions. Similar opinions are also adopted by other 

researchers, such as Liu et al. [12], Zhang et al., [13], Dong et al. [14] and Kastner et al. [15]  

Considering the existing research, low-carbonization of industrial parks continues to be 

examined through various perspectives. Some scholars focus exclusively on how low carbon 

technologies help to reduce CO2 emission. Hassiba et al. [16] make use of the recently proposed 

CO2 integration approach to explore carbon management options across an entire industrial 

park. In order to explore the lowest cost footprint reduction options for a given industrial park, 

Midthun et al. [17] first present an approach to the systematic design of low cost carbon 

integration networks for industrial parks through an integrated analysis of sources, utilization 

and storage options, as well as capture, separation, compression and transmission options. 

Hassiba and Linke [18] propose an optimization-based approach to explore synergies across 

heat integration and carbon capture, utilization and storage (CCUS), and renewable energy in 

industrial parks. Another popular approach is to discuss the carbon accounting and carbon 

http://www.sciencedirect.com/science/article/pii/S0959652616314354
http://www.sciencedirect.com/science/article/pii/S1875510012000339
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footprint of industrial parks. Fang et al. [19] establish an embodied carbon accounting 

framework based on energy to identify the input–output structure and embodied carbon 

emission flows of the industrial park. Dong et al. [20] introduce a tiered hybrid life-cycle 

method to trace the carbon footprint of industrial parks. Some studies examine energy flows 

and energy conservation in industrial parks. Hackl and Harvey [21] investigate options for 

clusters of chemical processing plants to decrease their energy and emission footprints, such as 

increasing heat integration, replacing fossil feedstocks with renewables and bio-refinery 

integration, an intelligent energy management system for EIP is proposed [22]. Other studies 

choose some industrial parks as case studies for low carbon development. The research of 

Huang et al. [23] on low carbon practice applied targets to Caohejing High-Tech Industrial 

Park of Shanghai as a case study. Wang et al. [24] and Liu et al. [12] use Suzhou Industrial 

parks as a case study to assess GHG emissions and to identify potential mitigation measures. 

In China, the output value of over 1,700 national and provincial industrial park account for 

more than 60% of the nation’s gross industrial output value. [25] Although industrial parks 

greatly contribute to national economic development, they are accompanied by environmental 

drawbacks, including more carbon emissions and environmental pressures [24].  While EIPs in 

China have been the subject of academic research, discussion and publication, the focal point 

of existing literature has been the EIPs, not the low-carbon industrial parks.  Most research 

papers about EIPs regard the reduction in carbon emissions as a by-product of industrial 

symbiosis. There are few articles that specifically study low-carbon industrial parks.  Most 

research focuses on a single aspect of low carbon development, or a single park, and fail to 

conduct a mixed and comprehensive analysis, especially in combination with nation-wide 

policies that constrain CO2 emissions. Existing literature lacks quantitative analysis of the 

driving factors of CO2 emissions at the industrial park level.  This is due, in part, to the fact that 

industrial parks seldom undertake carbon accounting. As a new initiative, China’s national 

LCIPPP is the first and the largest scale industrial low-carbon initiative promoted by any 

government in the world. This paper seeks to address the lacuna in research about China’s 

LCIPPP performance.  It summarizes the best practices of the LCIPPP, and uses econometric 

http://www.sciencedirect.com/science/article/pii/S0925527316000426
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methods to assess the performance of 20 pilot industrial parks while seeking to identify the 

driving factor affecting industrial CO2 emissions. This study reveals some traits and trends of 

the industrial park low-carbonization pathway. The research may provide insight not only for 

other industrial parks in China and those in developing countries, while at the same time 

contributing valuable observations for the world with respect to low-carbonization economic 

activities and strategies for mitigating climate change. 

 

3. The development process of LCIPPP in China 

3.1 The context for LCIPPP 

In 2013, the LCIPPP was implemented by China’s central government, the MIIT and the 

NDRC. The two ministries jointly issued a Notice of the Launching of Pilot Projects for 

National Low-Carbon Industrial Parks as a guideline for the programme. [26] Any industrial 

park listed in the Directory of China’s Development Zone 2006 could apply for a LCIPPP 

certificate. Initially provincial branches of the MIIT and the NDRC chose 2 or 3 candidates 

from each province. Upon submission, the candidate list was then verified and approved by the 

MIIT and the NDRC. The ministries nominated the final list for inclusion in the LCIPPP giving 

consideration to geographic disparity and industry distribution. In the first batch, a total of 55 

out of 106 industrial parks were approved, with 51 of them entering the pilot implementation 

stage. From the end of 2017 to the beginning of 2018, these industrial parks will go through 

evaluation and certification. According to the 13th Five-Year GHG Emissions Control Work 

Plan [27] issued by China’s State Council, in the future, the LCIPPP will be expanded to 

include 80 industrial parks, making it a major step in Chinese industry’s efforts to tackle climate 

change. 

 

3.2 The  current status of the LCIPPP 

The LCIPPP has been implemented for more than 3 years. From a geographical perspective, 

China’s unbalanced economic growth and regional disparity was reflected in the pilot industrial 

parks’ geographical distribution, 40% pilot industrial parks in eastern, 33% in central and 27% 
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in western. (Fig.1). Many of the parks specialize in one or more leading industrial 

sectors. Industrial parks that feature classic heavy manufacturing, such as iron and steel, 

construction materials, nonferrous metals and petrochemicals account for 32% of the total. 

Environmentally friendly industry and hi-tech industrial parks account for 15%, the rest are 

mixed industries parks. 

Fig. 1.  The geographical distribution of the national low carbon pilot industrial park sites.1 

In 2012, the Gross Domestic Product (GDP) of the 51 pilot industrial parks totalled 2.25 trillion 

RMB, accounting for 4.16% of the national GDP. The value-added industrial outputs of these 

pilot parks totalled over 1.37 trillion RMB, accounting for 6.7% of the country’s total industrial 

value added. Some of the pilot industrial parks made crucial contributions to local economic 

success. For instance, from 2012 to 2016, the GDP of Tianjin Economic Technological 

Development Area soared from 220.5 billion RMB to 304.9 billion RMB, maintaining an 

average annual growth rate of 10.5% and accounting for 11.4% of the GDP in Tianjin. Suzhou 

Industrial Park contributed an average 14% of Suzhou city’s gross output during the trial period. 

                                                             
1 Note: Central including both central and northeast 
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The GDP of Suzhou Industrial Park increased from 173.8 billion RMB to 215 billion RMB 

from 2012 to 2016 [29] According to incomplete statistics surveys, however, due to intensive 

energy consumption, industrial parks are also a major contributor to GHG emissions. The CO2 

emissions in 2012 from energy (electricity and fossil fuel) consumption and waste incineration 

of the 51 industrial parks totalled 318.36 million tonnes. With national carbon emission over 

8.62 billion tonnes for China that year [28], these 51 industrial parks accounted 3.69% of the 

national total. Since the launch of the LCIPPP, nearly 60% of the pilot parks have seen a 

reduction in their carbon emissions per unit of industrial value added. Some industrial parks 

experienced increases in total energy consumption and emissions levels but a decrease in 

carbon emissions intensity. [29] 

 

4. Data and methodology 

In order to measure the impact of different driving factors on the CO2 emissions of the industrial 

parks, and provide guidance for the future design of low-carbon models, this study selected 20 

participating pilot parks. These industrial parks were then subject to quantitative analysis to 

evaluate their performance during the pilot’s initial time period. 

 

4.1 Sample selection 

A sample of 20 participating industrial parks were selected giving due regard to the regional 

diversity, considering the representativeness of the sample and the data availability. Regional 

inequality is a multidimensional phenomenon in China. In the Seventh Five-Year plan, which was 

approved in 1983, the State Development Planning Commission divided the country into three 

economic regions: eastern, central and western. The three regions differ drastically in terms of 

economic development. The unbalanced economic growth and regional disparity also were 

reflected in the pilot industrial parks development, so we choose 8 out of the 20 sample parks 

locate in the eastern area, 6 in the central region, and 6 in the western part of the country. The 

sample industrial parks not only vary in regions but also in leading industries. We summarized 

the leading industrial of the sample parks in Table 1. 
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Table 1. List of the sample industrial parks 

REGION INDUSTRIAL PARK LEADING INDUSTRIAL CLUSTER 

EAST 

Tianjin Binhai Hi-Tech Industrial 

Development Zone 
Information Industry, Modern Services 

Shenyang Economic and 

Technological Development Zone  
Equipment Manufacturing, Automobiles & Parts, 

Pharmaceutical Chemicals 

Shanghai JinQiao Economic & 

Technological Development Zone 
Automobiles, Information & Communication Industry, 

Household Electrical Appliances, Biomedicine, Food  

Industry 

Yixing Environmental Technology  

Industrial Park 
Energy-saving and Environment-friendly Industries 

Suzhou Industrial Park Electronic Information 

Xiuzhou National High-tech Zone Textile Industry, Equipment Manufacturing, New energy 

and New Materials 

The National Linyi Economic and 

Technological Development Area 
Construction Machinery, Chemicals, New Energy 

Rizhao Economic-Technological 

Development Area 
Automobiles & Parts, Paper manufacturing, Grain and Oil 

Processing 

CENTRE 

Jilin Chemical Industry Circular  

Economy Pilot Park 
Petrochemical Industry 

Changchun Economic & 

Technological Development Zone 
Automobiles & Parts, Biochemical Industry 

National Hefei Economic and 

Technological Development Area 
Household Electrical Appliances, Equipment 

Manufacturing, Automobile Industry 

Anhui Chizhou Economic 

Development Zone 
Nonferrous Metals, Building Materials, Electronic 

Information, High-End Equipment Manufacturing 

Nanchang National High-tech 

Industrial Development Zone 
Biomedicine, Photovoltaics, Aviation, New Materials,  

Electronic Information 

Luoyang National New and High 

Tech Industry Development Zone 
Biomedicine, New Materials, Energy Conservation and  

Environmental Protection, Intelligent Equipment 

Manufacturing 

WEST 

Zunyi Economic and Technological 

Development Zone 
Equipment Manufacturing, Light Industry with Local  

Characteristics, Electronic Information 

Inner Mongolia Etog Economic 

Development Zone 
Coal Industry, Electricity, Chemicals, Building Materials 
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Inner Mongolia Chifeng Hongshan 

Economic Development Zone 
Nonferrous Metals, Pharmaceutical Industry, Equipment 

Manufacturing, Textile Industry, Energy & Power 

Chongqing Bishan National High-

technology Zone 
Electronic Information, Food and pharmaceutical industry, 

Equipment Manufacturing (Automobile and motorcycle 

industry included), Shoemaking 

Sichuan Dazhou Industrial Park Energy & Chemical, Metallurgical and Building Material, 

Automobile Machinery, Producer Services 

Ningxia Shizuishan High-tech 

Industrial Development Zone  
New Materials, Automobiles & Parts, Machinery  

Manufacturing 

 

 

Through exploratory data analysis, we observe that the total carbon emissions continued to 

increase but did so at a significantly slower pace after the pilot programme was initiated in 

2014. The increase rate of CO2 emissions from 2015 to 2016 was only 0.66%, which was 

significantly lower than the 6.84% from 2012 to 2013. The CO2 emissions per unit of GDP 

shows a mild yet decreasing trend. (Fig. 2)    

 

Fig. 2. CO2 intensity and total CO2 emissions of the 20 sample industrial parks 

The overall share of the tertiary sectors rose steadily to nearly 30% in 2016 from 2012.  While 

increasing, renewable energy has yet to become a significant source of energy usage. As of 

2016, renewable energy accounted for less than 5% of the total energy consumed. The research 

and development (R&D) intensity (R&D expenditure as a share of GDP) rose slightly from 4% 

in 2012 to 4.6% in 2016. (Fig. 3)  

2.66 

2.55 

2.48 

2.41 

2.34 10,586

11,310

11,930

12,153
12,233

10,500

11,000

11,500

12,000

12,500

2.3

2.4

2.4

2.5

2.5

2.6

2.6

2.7

2.7

2012 2013 2014 2015 2016

T
o
ta

l 
E

m
is

si
o
n
s 

 (
1

0
4

 T
o
n

n
e
s 

)

In
te

n
si

ty
 (

T
o
n

n
e
s 

/ 
1

0
4

 Y
u

a
n

)

CO₂ intensity Total CO₂ emission



12 

 

Fig. 3. Industrial structure, R&D intensity and energy structure of the sample industrial parks2 

We further group the sample industrial parks into eastern, central and western regions and 

analyze each group. (Fig. 4).The eastern industrial parks generally have a significantly larger 

share of tertiary sectors and a higher growth rate. Industrial parks in the eastern regions also 

have lower energy intensity. In 2012, the base year for the LCIPPP, the average energy intensity 

of the western industrial parks was 4 times that of the eastern industrial parks. In 2016, this 

difference was still significant, but the energy intensity dropped faster in the western region 

than in the eastern and central regions, with a 20% decrease from 2012 to 2016. Despite the 

overall low share of renewable energy consumption to the total energy consumption, the eastern 

industrial parks exhibit a significant advantage in both the total amount and growth rate of 

renewable energy consumption. The amount of renewable energy consumed by western 

industrial parks was the least among the three regions in 2012. However, western industrial 

parks saw their renewable energy usage growing steadily, and equaled the central industrial 

parks in 2016.  

In the eastern regions, industrial parks’ R&D intensity was significantly higher than the other 

two regions, but it had a slower growth rate. R&D intensity in western industrial parks was the 

                                                             
2  Specifically, industrial structure is the percentage of tertiary sector output to the total output; R&D intensity is 

the percentage of R&D expenditure to GDP, and Energy structure is the percentage of renewable energy to total 

primary energy consumption. 
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lowest, but it had a relatively high growth rate. Contrary to the slow growth rate in the east and 

the fast growth rate in the west, the R&D investment of central regions exhibits a fluctuating 

pattern. The R&D intensity in the central group decreased in 2013, while rising slightly in 2014 

and falling again in 2015. It was not until 2016 that the figure returned to its 2014 level.  

Based on the 2012 statistics, the central regions, rather than the eastern, had the highest share 

of high-tech industry output as a percentage of total industrial value added. However, since 

2014, this figure for the central industrial parks steadily decreased from 45% in 2012 to 37.5% 

in 2016. By contrast, for the western group, the share of high-tech industry outputs dramatically 

rose, from a mere 16.2% in 2012 to 31% in 2016.  

 

Fig. 4. The variables of the sample industrial parks in the different regions in China 

The analysis confirms that localisation and institutions-related aspects cannot be overlooked. 

Spatial factors need to be taken into consideration in order to understand better potential 

development pathways of industrial parks. 
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4.2 Model specification 

We use the STIRPAT (Stochastic Impacts by Regression on Population, Affluence and 

Technology) model to analyze how different factors contribute to changes in CO2 emissions in the 

industrial parks over the pilot period. The STIRPAT model has been widely applied in studies 

on the driving factors of energy consumption and GHG emissions trends. Martínez-Zarzoso and 

Maruotti [30], Lin et al. [31] and Zhang et al. [32] use the STIRPAT model to investigate country-

wide patterns of carbon emissions. The STIRPAT model is also adopted by researchers to study 

carbon emissions in specific countries, such as Malaysia [33], Pakistan [34] and China [35, 36]. 

Some researchers utilize the STIRPAT model to analyze carbon emissions for the regions in China, 

such as in Xinjiang province [37], Guangdong province [38], also cities in China, such as Beijing 

[39] and Chongqing [40]. However, this is the first time the STIRPAT model has been used to 

conduct a comparative analysis at the industrial park level.  

Ehrlich and Holdren [41] first introduced the IPAT model, where I represents the human impact 

on the environment, typically measured as the emissions level of a pollutant; P denotes 

population size; A represents a society's affluence and T represents technology:  

I P A T                                               (1) 

Because the  model is simple and has limitations, Dietz and Rosa [42] propose the 

STIRPAT model as follows:  

b c d

i i i i iI aP A T e                        (2) 

Taking logarithms on both sides of the equation leads to the following: 

ln (ln ) (ln ) (ln )it it it it itI a b P c A d T e    
                        (3) 

where a represents a constant term; P, A and T are the same as those in Eq. 1; b, c and d represent 

the elasticity of environmental impacts with respect to P, A and T, respectively; 
ite  is the error 

term; and subscript i denotes the units, which is industrial parks here, t denotes the year.  

http://www.sciencedirect.com/science/article/pii/S0959652617318255
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In this study, we refine the STIRPAT model to conduct the empirical analyses. First, we define 

the carbon elasticity, which refers to the proportional change in carbon emissions due to a 

change in driving forces. Then, we calculate the component elasticity for each driving force 

using panel data. The explained variable I is the total CO2 emissions, which is the carbon 

emissions from the fossil fuel, industrial production processes, net inflows of electricity or heat 

power and other sources in the industrial park, as measured in ten thousand tons. The 

explanatory variable P is measured by the employed population, A is measured by the industrial 

value added, and T is measured by the R&D intensity. As noted in York et al. [43], additional 

factors can be added to the basic STIRPAT model as long as they are conceptually appropriate 

for the multiplicative specification of the model. To conduct a comprehensive analysis of the 

factors that influence CO2 emissions, we add the energy intensity, energy structure, and the 

industry structure into Eq. 3. Eq. 3 could be written as follows:         

2ln (ln ) (ln ) (ln )it it it it it it it itCO a b PEM c IVD d RD EI ES IS e           (4) 

where EI represents energy intensity and ES represents renewable energy as a share of primary 

energy consumption. IS represents industrial structure, measured by the percentage of tertiary 

sector output to the total output. PEM represents the employed population. The employed 

population in 2012 is the actual number of employed. Due to missing data, the number of 

employed in year 2013-2016 is estimated by the base year data in 2012 and the annual change 

in the corresponding provincial employment rate.  IVD represents the industrial value-added. 

RD represents the R&D intensity. Regional effects can be captured via regional-specific 

dummy variables. We add regional dummy variables in Eq. 4 and rewrite it into:   

 
2ln (ln ) (ln ) (ln )

(ln ) (ln ) (ln )

it it it it it it it

it it it it it it it

CO a b PEM c IVD d RD EI ES IS

Dummy PEM IVD RD EI ES IS e

  

     

       

      
              (5) 

In this case, a series of dummy coded (0/1) variables are used, where the dummy takes 1 for any 

industrial park located in eastern provinces and 0 otherwise ; the same principle was applied for the 

central and western regions. The descriptive statistics of the variables used in the regression is listed 

in Table 2.  
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Table 2. Descriptive statistics of the variables used in the analysis 

VARIABLES DEFINITION MEAN STD. DEV. MIN MAX 

CO2 Total CO2 emissions 593.049 726.323 10.131 3,380.08 

PEM Employed population 11.898 18.269 1.7 110.446 

IVD Industrial value-added 304.724 285.987 30.77 1,136.49 

RD R&D intensity 0.418 0.248 0.002 0.101 

ES Energy structure 0.255 0.030 0.000 0.147 

EI Energy intensity 0.718 0.889 0.068 3.993 

IS Industrial structure 0.259 0.149 0.013 0.548 

 

 

5. Empirical results and discussion 

We use ordinary least squares (OLS) regression to analyze the different driving forces on the 

total CO2 emissions of the selected 20 samples. Regional analysis is also conducted to measure 

the regional effects by using dummy variables. The time period ( 5t   ) was much smaller than 

the cross-sectional samples =20N , which generates little possibility of pseudo-regression3; the 

unit root test and cointegration test were not necessary in our study.  

 

5.1 Overall analysis 

Table 3 presents the estimated results of the linear effects of output, energy structure, energy 

intensity and the other factors on CO2 emissions at an aggregate level. ln(PEM) exhibits 

significantly positive impacts on carbon emissions, which indicates that a larger industrial park 

tends to have a higher emission level. IS has an elasticity of -2.019 (result (3-1)), indicating that 

a 1% increase in the industrial structure will lead to a 2.019% decrease in total CO2 emissions 

when other variables remain constant. Similar results are also found when the regression is used 

with fixed effects of time and area (result (3-2), (3-3), (3-4)). The elasticity of ln(IVD) and EI 

is 0.701 and 0.985 (result (3-1)), respectively. This indicates that a 1% increase in output and 

energy intensity will lead to 0.701% and 0.985% increases in total CO2 emissions respectively, 

                                                             
3 Only long-term series panel data require a unit root test and cointegration test to rule out pseudo-regression. 
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when the other dependent variables remain constant. The coefficients of ES are not statistically 

significant in all regressions while the coefficients of ln(RD) are negative and statistically 

significant at a confidence level of 5% when the area effect is controlled (result (3-3)) or both 

the area and time effects are controlled (result (3-4)).  

Table 3. Linear OLS regression with time and area as fixed effects 

 (3-1) (3-2) (3-3) (3-4) 

VARIABLES ln(CO2) ln(CO2) ln(CO2) ln(CO2) 

ln(PEM) 0.401*** 0.401*** 0.289*** 0.271*** 

 (0.077,3) (0.078,1) (0.082,2) (0.078,7) 

ln(IVD) 0.701*** 0.698*** 0.658*** 0.642*** 

 (0.083,0) (0.085,2) (0.082,8) (0.083,4) 

ln(RD) -0.094,3 -0.097,3 -0.239** -0.278** 

 (0.092,2) (0.094,3) (0.117) (0.113) 

ES 4.021 3.849 1.003 -0.242 

 (3.634) (3.787) (3.667) (3.789) 

EI 0.985*** 0.985*** 1.074*** 1.084*** 

 (0.071,9) (0.073,3) (0.080,6) (0.081,3) 

IS -2.019*** -2.030*** -2.221*** -2.301*** 

 (0.666) (0.681) (0.648) (0.658) 

Time Effect  YES  YES 

Area Effect   YES YES 

Constant 0.509 0.483 0.796* 0.745 

 (0.408) (0.444) (0.451) (0.482) 

     

Observations 100 100 100 100 

R-squared 0.722 0.722 0.738 0.742 

 

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 

 

5.2 Regional analysis 

We add the regional dummy variable Deast to the model and create 6 interaction items 

Deast*ES, Deast*EI, Deast*IS, Deast*ln(RD), Deast*ln(IVD) and Deast*ln(PEM). The OLS 

regression results are reported in Table 4.  
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Table 4. OLS regression at the regional level: eastern region 

 (4-1) (4-2) (4-3) (4-4) (4-5) (4-6) 

VARIABLES ln(CO2) ln(CO2) ln(CO2) ln(CO2) ln(CO2) ln(CO2) 

       

ln(PEM) 0.385*** 0.283*** 0.322*** 0.301*** 0.328*** 0.515*** 

 (0.077,1) (0.073,4) (0.097,5) (0.101) (0.107) (0.147) 

ln(IVD) 0.719*** 0.792*** 0.817*** 0.893*** 0.791*** 0.698*** 

 (0.085,7) (0.080,3) (0.075,0) (0.118) (0.118) (0.121) 

ln(RD) -0.025,4 -0.025,2 0.030,2 0.033,4 -0.015,4 0.011,5 

 (0.101) (0.089,7) (0.097,9) (0.097,4) (0.093,0) (0.101) 

ES 8.339*** 12.34*** 10.64*** 10.33*** 10.04*** 8.556** 

 (2.714) (3.027) (3.736) (3.723) (3.768) (3.788) 

EI 0.970*** 0.987*** 0.994*** 0.982*** 0.991*** 1.033*** 

 (0.069,4) (0.065,5) (0.068,7) (0.070,9) (0.069,8) (0.071,8) 

IS -2.091*** -2.045*** -1.472* -1.515* -1.504* -1.514* 

 (0.663) (0.639) (0.829) (0.820) (0.849) (0.784) 

Deast*ES -5.565 -19.65*** -17.18*** -17.57*** -17.30*** -16.89*** 

 (3.969) (4.494) (5.691) (5.624) (5.631) (5.458) 

Deast*EI  2.250*** 2.531*** 4.465** 5.391** 5.182** 

  (0.409) (0.549) (1.776) (2.102) (2.214) 

Deast*IS   -1.000 0.415 0.062,9 0.157 

   (1.186) (1.600) (1.538) (1.509) 

Deast*ln(RD)    0.389 0.845 0.807 

    (0.337) (0.596) (0.619) 

Deast*ln(IVD)     0.224 0.316 

     (0.198) (0.206) 

Deast*ln(PEM)      -0.278 

      (0.191) 

Constant 0.681 0.283 0.225 -0.088,9 0.201 0.451 

 (0.427) (0.385) (0.414) (0.546) (0.544) (0.601) 

       

Observations 100 100 100 100 100 100 

R-squared 0.725 0.765 0.769 0.772 0.776 0.780 
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Standard errors in parentheses;  *** p<0.01, ** p<0.05, * p<0.1.  

The signs and significance of the coefficients of ln(PEM), ln(IVD), EI remain the same 

compared with the regression results at an aggregate level as shown in Table 3. The coefficients 

of ln(RD) are not significant when the interaction items are included in the model. The 

elasticities of IS remain negative, but the confidence level changes. ES shows positive 

coefficients in all regression results at a confidence level of 1%, but it is worth noting that the 

elasticities of interaction item Deast*ES exhibited statistically significant negative signs, 

making the coefficients of ES for the eastern industrial parks -7.31, -6.54, -7.24, -7.24, -7.26 

and -8.334, respectively (result (4-2) -result (4-6)), at a confidence level of 1%. The interaction 

item Deast*EI indicates a positive and statistically significant coefficient, which means that 

compared with the western and central industrial parks (when Deast=0), the energy intensity in 

the eastern part of China has larger elasticity.  

Table 5. OLS regression at the regional level: central region 

 (5-1) (5-2) (5-3) (5-4) (5-5) (5-6) 

VARIABLES ln(CO2) ln(CO2) ln(CO2) ln(CO2) ln(CO2) ln(CO2) 

       

ln(PEM) 0.331*** 0.321*** 0.317*** 0.327*** 0.354*** 0.359*** 

 (0.078,0) (0.082,5) (0.080,0) (0.086,4) (0.089,8) (0.090,5) 

ln(IVD) 0.729*** 0.782*** 0.886*** 0.881*** 0.890*** 0.878*** 

 (0.086,5) (0.091,1) (0.101) (0.103) (0.105) (0.107) 

ln(RD) 0.011,0 0.002,06 0.050,7 0.052,9 0.018,4 0.017,7 

 (0.098,8) (0.094,0) (0.092,2) (0.091,8) (0.098,7) (0.099,0) 

ES 1.745 3.672 1.070 1.275 1.911 1.963 

 (3.905) (4.316) (4.201) (4.304) (4.439) (4.471) 

EI 0.975*** 0.936*** 0.803*** 0.812*** 0.809*** 0.811*** 

 (0.066,0) (0.057,0) (0.050,4) (0.055,7) (0.057,6) (0.058,3) 

IS -1.994*** -2.345*** -3.177*** -3.169*** -3.353*** -3.342*** 

 (0.657) (0.661) (0.551) (0.552) (0.573) (0.578) 

Dcentral*ES 10.18*** -0.0676 11.47* 10.99* 13.08** 23.39** 

 (3.444) (4.987) (6.168) (6.393) (5.938) (9.982) 

Dcentral*EI  0.795*** 1.578*** 1.549*** 0.939*** 1.543** 
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  (0.203) (0.271) (0.276) (0.285) (0.589) 

Dcentral*ln(PEM)   -0.450*** -0.564*** -0.654*** -0.931*** 

   (0.098,3) (0.119) (0.121) (0.307) 

Dcentral*ln(RD)    -0.079,4 0.063,3 0.537 

    (0.068,1) (0.087,0) (0.394) 

Dcentral*IS     4.145*** 2.259 

     (1.461) (2.187) 

Dcentral*In(IVD)      0.415 

      (0.355) 

Constant 0.845* 0.562 0.662* 0.654* 0.473 0.520 

 (0.438) (0.458) (0.348) (0.344) (0.381) (0.370) 

       

Observations 100 100 100 100 100 100 

R-squared 0.732 0.752 0.780 0.781 0.788 0.790 

 

 

Standard errors in parentheses;  *** p<0.01, ** p<0.05, * p<0.1. 

Compared with the aggregate regression results in Table 3, the coefficients of variables 

ln(PEM), ln(IVD), ES, EI and IS exhibit the same sign and significance with the interaction 

items of dummy variable Dcentral when all the driving forces are included in the model (Table 

5). The coefficients of ln(RD) are not statistically significant. However, Dcentral*ES shows 

positive elasticity with a confidence level at 1% in result (5-1), 5% in result (5-3) and result (5-

4), and 10% in results (5-5) and (5-6), which is opposite from what we get in the regression for 

eastern region. Thus, for the central industrial parks, as the share of clean energy increases, the 

total CO2 emissions also increase when other factors remain constant. The coefficients of 

Dcentral*EI are positive and statistically significant, indicating higher EI elasticities in the 

central area. Dcentral*ln(PEM) has negative elasticities, and the coefficients are significant at 

a confidence level of 1%; the elasticities of LPEM in the central area are -0.133, -0.237, -0.3, 

and -0.572, which indicates that an increase in population size would lead to a decrease in the 

total CO2 emissions for the central region.  

Table 6. OLS regression at the regional level: western region 

 (6-1) (6-2) (6-3) (6-4) (6-5) (6-6) 
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VARIABLES ln(CO2) ln(CO2) ln(CO2) ln(CO2) ln(CO2) ln(CO2) 

       

ln(PEM) 0.240*** 0.203** 0.193** 0.193** 0.176** 0.164* 

 (0.077,5) (0.094,7) (0.091,4) (0.089,2) (0.087,4) (0.088,6) 

ln(IVD) 0.844*** 0.823*** 0.891*** 0.882*** 0.868*** 0.848*** 

 (0.082,7) (0.082,0) (0.088,5) (0.093,4) (0.096,6) (0.116) 

ln(RD) -0.038,3 -0.097,3 -0.016,5 -0.181 -0.235* -0.289 

 (0.077,9) (0.095,5) (0.090,5) (0.125) (0.140) (0.203) 

ES -0.431 -0.732 -0.271 -1.121 -2.163 -2.471 

 (3.364) (3.418) (3.385) (3.393) (3.570) (3.747) 

EI 2.196*** 2.102*** 2.412*** 2.314*** 2.274*** 2.208*** 

 (0.193) (0.244) (0.273) (0.270) (0.274) (0.314) 

IS -2.408*** -2.026** -1.339 -0.806 -0.624 -0.474 

 (0.605) (0.936) (0.950) (1.007) (1.037) (1.113) 

Dwest*EI -1.258*** -1.152*** -1.639*** -1.665*** -1.607*** -1.553*** 

 (0.189) (0.254) (0.291) (0.280) (0.281) (0.311) 

Dwest*IS  -0.751 -2.311** -3.843*** -4.665*** -4.550*** 

  (0.921) (1.078) (1.213) (1.386) (1.355) 

Dwest*ln(IVD)   0.193*** 0.450*** 0.412*** 0.499*** 

   (0.057,5) (0.094,4) (0.086,4) (0.157) 

Dwest*ln(PEM)    -0.782*** -0.744*** -0.623*** 

    (0.238) (0.227) (0.169) 

Dwest*ES     13.80** 12.50** 

     (6.439) (5.852) 

Dwest*ln(RD)      0.162 

      (0.195) 

Constant 0.131 0.0761 -0.407 -0.995** -1.062** -1.111** 

 (0.419) (0.427) (0.434) (0.487) (0.496) (0.508) 

       

Observations 100 100 100 100 100 100 

R-squared 0.787 0.788 0.802 0.809 0.812 0.813 

 

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1. 

When the interaction items of the regional dummy variables Dwest with the six driving factors 
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of total CO2 emissions are included in the model, the coefficients of ln(PEM), ln(IVD) and EI 

exhibit the same sign as those in the aggregate model (Table 3, Table 6). The elasticities of 

ln(RD) are negative but not significant, except in result (6-5). IS has negative coefficients with 

a 1% confidence level in result (6-1) and 5% in result (6-2). The interaction Dwest*EI has 

statistically significant negative elasticities at a level of 1%, which means that for the western 

area, the EI elasticity is much lower than that in eastern and central regions. Dwest*IS has 

negative coefficients, and in result (6-3), the confidence level is 5%, whereas in results (6-4), 

(6-5) and (6-6), the level is 1%.These results indicate that for the western area, when the share 

of tertiary industry increases by 1%, the total CO2 emissions would decrease by at least 2.311%, 

other factors remaining constant. Dwest*ln(IVD) has positive elasticities  which are statistically 

significant at a confidence level of 1%, indicating that the ln(IVD) of western area has larger 

elasticities than that of the eastern and central areas, although the ln(IVD) also has a positive 

effect on total CO2 emissions for these two areas. The coefficient of ln(IVD) in the eastern and 

western areas (when Dwest=0) in result (6-6) is 0.848, whereas this coefficient is 1.347 for the 

ln(IVD) in the western area, indicating that a 1% increase in industrial value-added production 

will lead to a 1.347% increase in the total CO2 emissions, which is 0.499% higher than in the 

eastern and central areas. The coefficient of Dwest*ln(PEM) is negative and statistically 

significant, indicating that larger industrial parks may have lower CO2 emissions in the western 

area. The positive sign of the elasticities of Dwest*ES indicate that the increased proportion of 

clean energy may lead to an increase in the total carbon emissions of industrial parks in the 

western region. 

 

6. Conclusion and policy implication 

Using panel data covering 20 industrial parks in China for the period 2012-2016, this paper 

analyzed the linear effects of industry value-added output, employment population, R&D 

intensity, energy structure, energy intensity and industrial structure on CO2 emissions with 

STIRPAT model. The overall analysis results confirm that the increase in output and energy 

intensity is a dominant contributor to the growth of CO2 emissions whereas the increase of the 
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share of tertiary industry and R&D intensity have significant effects on reducing CO2 emissions. 

These findings indicate a set of policies for industrial parks to realize low-carbon and 

sustainable growth: (i) accelerating the elimination of obsolete and excess production capacity 

in GHG-intensive sectors; (ii) improving the development of low-carbon technology in heavy 

industries; (iii) optimizing the industrial structure by promoting the development of tertiary 

industry especially high value-added and low carbon intensive industries. 

With distinct economic development levels and industrial structures, Chinese regions exhibit 

evident spatial differences and industrial heterogeneity. We conduct further analysis 

considering regional difference by adding dummy variables in the model. 

The regional analysis results shed light on the different development mode of industrial parks 

in different areas of China. For the eastern region, the increase in the share of renewable energy 

will significantly decrease CO2 emissions. This may be attributed to the fact that exploiting 

renewable energy is an effective way to reduce carbon emissions for industrial parks in this 

area. In the central and western areas an increase in renewable energy consumption is projected 

to cause an increase in CO2 emissions, this result is counter-intuitive.  Possible explanations 

include the fact that the proportion of renewable energy as a percentage of total energy 

consumption is too low to affect CO2 emissions.  Another possibility is that in the central and 

western regions renewable energy is not efficiently used in production process. The western 

area lacks efficient energy management, proper distribution of renewable energy and smart grid 

development. The central area may also have lower efficiency in terms of renewable energy 

utilization. 

The future pathways for low carbon development in eastern industrial parks should consider 

our study's findings that a 1% increase in energy intensity in the eastern region will result in 

more CO2 emissions than would be the case in the central and western regions. Therefore our 

study makes the case that the eastern region is not suitable for the development of additional 

high energy intensity industries. Implementing low carbonisation cross-cutting and cost-

effective technologies to improve the energy efficiency will be crucial. 
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The regional results also support the idea that labour intensive industries could play an 

important role in the low-carbon economic development in the central and western region of 

China. There are numerous hi-tech industry development zones locate in the central region. 

Compared to the traditional heavy industrial parks, most hi-tech industrial parks have lower 

carbon emissions and lower energy consumption per unit of value added and can offer 

numerous job opportunities. An effective way to realize the low-carbon development for the 

industrial parks in the central region is to take advantage of the rich human resources in central 

and western China. 

As agglomeration zones for production, industrial parks will remain a major contributor to 

China’s energy consumption and GHG emissions. The low-carbonization process of China’s 

industrial sectors is of great importance for reaching the country’s commitments of combating 

climate change and maintaining long-term sustainable development. The LCIPPP has an 

important role to play in this process. It provides valuable insights for industrial low-carbon 

transformation and the implementation of the concept of low-carbon development in spatial 

planning, industrial development and infrastructure design for industrial parks. Industrial parks 

across China are made up of a diverse range of activities and product manufacturing. Hence, it 

is important to enact specific policies according to the regions and industries for the low-

carbonization of industrial parks. There is no single and unifying approach for all of the 

industrial parks.  The strategies to approach low-carbon development must differ, thus making 

them more deserving of policy attention.  
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