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Abstract
Raw images are more useful than JPEG images for machine

vision algorithms and professional photographers because raw
images preserve a linear relation between pixel values and the
light measured from the scene. A camera is radiometrically cal-
ibrated if there is a computational model which can predict how
the raw image is mapped to the corresponding rendered image
(e.g. JPEGs) and vice versa. Our method makes use of the ob-
servation that the rank order of pixel values are mostly preserved
post color correction. We show that this observation is the key
for getting a compact and robust radiometric calibration model.
Since our method requires fewer variables, it can be solved for
using less calibration data. An additional advantage is that we
can derive the camera pipeline from a single pair of raw-JPEG
images. Experiments demonstrate that our method delivers state-
of-the-art results (especially for the most interesting conversion
from JPEG to raw).

Introduction
Many computer vision algorithms (e.g. photometric

stereo [21], photometric invariants [12], shadow removal [16, 15],
and color constancy [2]) rely on the assumption that the cap-
tured RGBs in images are linearly related to the actual scene
radiance. However, mostly, the actual output of a digital camera
imaging pipeline is necessarily non-linear in order to produce
perceptually-pleasing photos as opposed to their physically-
meaningful counterparts. In this paper, we present a compact
rank-based radiometric calibration method which solves for the
bi-directional mappings between the camera’s raw responses and
the rendered RGBs produced by digital cameras.

There is prior art in this field which models the pipeline
with a large number of parameters (up to several thousand [5])
which both means a large corpus of data is required to uncover
the pipeline and that there is at least tacitly the premise that the
underlying pipeline is quite complex. The key insight in our ap-
proach is that post-color correction (a 3⇥3 matrix correction) the
linear corrected raw RGBs are to the greatest extent in the same
rank order as the final rendered RGBs. Based on this insight, we
develop a compact rank-based radiometric calibration model that
models the camera pipeline with many fewer parameters and con-
comitantly needs much less training data.

In Fig. 1, we illustrate a typical image reproduction pipeline
which is representative of many cameras [18]. An exemplar raw
image, Fig. 1a, is mapped by a 3⇥ 3 color correction matrix to
give a color corrected image (Fig. 1b). The color correction ma-
trix implements several processing steps (e.g. illumination cor-
rection [23, 4], display RGB mapping [1], and color preference
adjustments [23]). It is well-known that a display device cannot
show all captured image colors and some RGBs will fall outside

the RGB cube after mapping (e.g. the pixels marked in light purple
in Fig. 1b). Gamut mapping is therefore required, e.g. [18, 5, 13],
to move the colors back inside the cube as shown in Fig. 1c. Fi-
nally, the gamut mapped image is tone mapped to arrive at the
final rendered output [23, 4, 18] shown in Fig. 1d. Tone mapping
accounts for the display non-linearity [1], dynamic range com-
pression and some aspects of preference [24].

In general, the camera color processing pipeline can be writ-
ten as Eqn. 1.

P = f (G(Mr))
| {z }

= G( f (Mr))
| {z }

⇡ LUT(r)
| {z }

(1a) (1b) (1c)
(1)

where r denotes a camera raw and P refers to its rendered RGB
counterpart. Respectively, the 3 ⇥ 3 correction matrix, gamut
mapping and tone mapping are denoted by the matrix M and the
functions G() and f (). The function f () can implement a single
or three per-channel tone curves. Since gamut mapping only im-
plements a small change in comparison with color and tone map-
ping steps, the order of gamut mapping and tone mapping may be
switched (Eqn. 1b & c), a property that we exploit in this paper.
Equally, we can also merge three processing steps into one and
directly solve for a 3-D LUT (Look-Up-Table) that maps raw to
rendered counterparts. This LUT function is denoted LUT() [19]
in Eqn. 1c. Readers may refer to the top row of Fig. 1 to link each
mathematical function to our example processed image.

In radiometric calibration, given a set of r and P, we solve
for the parametrised pipeline parts (e.g. M, G(), f () and LUT()).
A disadvantage of the current best performing methods is that a
great deal of data may be required to fit their assumed models. In
Eqns. 1a and 1b, the gamut mapping step could be modeled by
1000s of Radial Basis functions [18, 19, 5] and in Eqn. 1c, the
deployed LUT could also have several thousand control points.

Our proposed method exploits the simple observation [8]
that, assuming the gamut mapping step slightly changes image
colors and the tone curves are always monotonically increasing,
we expect mostly the rank ordering of the rendered P to be the
same as r multiplied by the correction matrix M. Suppose that
two rendered (JPEG) responses – in the 1st red color channel –
are denoted Pa

1 and Pb
1 and that Pa

1 > Pb
1 . The rank order of two

corresponding raw red channel measurements post color correc-
tion is written as M1ra > M1rb (where M1 denotes the first row
of M and ra and rb are a pair of raw RGBs). This implies that
M1(ra �rb)> 0 which defines a half-space constraint.

The row vector M1 can be considered as a point in 3-space
and this inequality (ranking constraint) forces the point to be lo-
cated in only one half of 3-space. Because we have multiple pix-
els, each pair of pixels (2 raw and 2 JPEG RGBs) generates a half
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Figure 1. a) a raw input image is color corrected to give image b). Non-displayable colors are highlighted in purple pseudo color. Gamut mapping, in step c),
brings colors within gamut. Finally, in d), a tone mapping step results in the final rendered image. The image is taken from [10].

space constraint and intersecting all these constraints delimits the
region in which M1 must lie. Our experiments demonstrates that
a small numbers of patches suffices to estimate M accurately.

Once we have M we then find the best rank preserving tone
curves f (). At this stage, only using M and f () we have a good
approximation of the pipeline. Indeed, we argue that our con-
struction of M and f () also incorporates, to a first order, gamut
mapping. Now we adopt (Eqn 1b) and find a 125-parameter per
channel LUT to reduce any remaining errors due to gamut map-
ping (higher order terms).

In Section 2, we review radiometric calibration paying spe-
cial attention to methods which adopt Eqns. 1. Rank-based ra-
diometric calibration is described in Section 3 and is shown to
provide leading performance on a public dataset in Section 4. An
application of one-shot radiometric calibration without the access
to raw is shown in Section 5. The paper concludes in Section 6.

Related Work
Using the pipeline form of Eqn 1b, Chakrabarti et al. [5] first

solve for M and f () in iteration and then solve directly for G().
In their approach, f () is constrained to be a 7th order increasing
polynomial. They model G() by the radial basis function (RBF)
method of [18] where several thousands of RBFs are potentially
used. A restriction of the above calibration is presented in [4]
where the gamut mapping G() is ignored. This less general model
works tolerably well on many real pairs of raw and rendered im-
ages and this is a point we will return to later in this paper. In
either version ([5] or [4]), the coupled nature of the minimization
indicates that a global minimum is not guaranteed. Therefore, a
random start point search is implemented to find a better set of
parameters.

Kim et al. [18] solve for the pipeline in the form of Eqn. 1a
and makes additional assumptions to decouple the optimization.
They assume that images of the same scene are captured with re-
spect to two or more exposures and their G() is a multi-thousand
set of RBFs. Regarding solving for f (), Debevec et al. [6] showed
how relating corresponding pixels under known exposure differ-
ences suffices to solve for f () (assuming there is no gamut map-
ping step). Importantly, in [18], it was argued that for the set of
desaturated pixels (i.e. raws far from the RGB cube boundary),
the gamut mapping step has little or no effect and can be ignored.

Relative to this assumption, f () can be solved using the Debevec
method. Given f () then the color correction matrix M can be
found (again using desaturated pixels).

We point out that for most off-shelf capture devices (e.g. for
most mobile phones), manual exposure control is usually unavail-
able and the requirement of multiple exposures is impractical. We
also note that, in [18], the adopted gamut mapping RBF network
requires a large number of parameters and thus a large corpus of
data [18, 5].

In [19], it was shown that it is possible to ignore the under-
lying structure of the color processing pipeline and directly solve
for the best 3-D surjective function – implemented as a LUT that
maps the raws to rendered RGBs (Eqn. 1c). Finally, in [20], a
method is presented for solving for f () by examining the edge
distribution in an image. This method has the advantage that the
method works for a single image (without multiple exposures) but
the method is sensitive to processing steps such as image sharpen-
ing which is used extensively in mobile phone image processing.

The Rank-Based Method
In this paper, we are interested in calibrating in the most gen-

eral circumstances when the amount of training data is modest and
there is only a single calibration image. Assuming that the rank
order of intensities are almost preserved after the camera process-
ing steps, we present a method that solves for an accurate rank-
preserving camera pipeline model. This paper extends our pre-
viously published rank-based method [17] with more details and
experiments.

To make the rank-based method work we need to assume that
the gamut mapping step G() only changes color slightly. In fact
our assumption is more nuanced. We assume that – to a first order
– gamut mapping can mostly be implemented as an affine trans-
form and that this affine transform can be folded into the color
correction matrix M and the monotonically increasing tone map-
ping functions f ().

Gamut Mapping as An Affine Transform
After color correction, some colors are mapped outside the

color cube and become non-displayable. To address this, gamut
mapping in Eqn. 1b is applied. A Taylor expansion to model G()



around a point a inside the gamut is used:

G(Mr)⇡ G(a)+ J(a)(Mr �a) (2)

where J is the 3⇥3 Jacobian (matrix of derivatives of G). Not only
does Eqn. 2 show that, to a first approximation, gamut mapping is
an affine transform it is also one of the gamut mapping algorithms
proposed in [13].

min
T,o

Si||T Mr i +o�Mr i||
2 s.t. 0  T Mr i +o  1 (3)

In Eqn. 3, T and o are respectively a 3⇥ 3 matrix and 3⇥ 1 off-
set vector defining the affine gamut mapping algorithm, i is the
index of an input RGB vector. The 3-vectors of 0s and 1s are
denoted 0 and 1. Eqn. 3 is solved directly by Quadratic Program-
ming [14]. The gamut mapping shown in Fig. 1c is the result of
solving Eqn. 3.

Here, we make two important remarks about affine gamut
mapping: 1) Gamut mapping and color correction combined can
be represented by the single affine transform: 3⇥ 3 matrix T M
and offset o; 2) It follows that the rank-based method presented in
the next section will actually solve for T M. The offset term can
be incorporated directly in f ().

Our hypothesis is that the part of gamut mapping that is not
described by an affine transform will be small and the remaining
error can be modeled with a function that has fewer parameters
(100s in contrast to the prior art 1000s).

Rank-Based Estimation for Color Correction
Denote the kth row of M as Mk. We assume that given two

color corrected raws, Mkra and Mkrb, that the rank order is the
same as for the corresponding rendered RGBs:

Pa
k > Pb

k ) Mkra > Mkrb ) Mk(ra �rb)> 0 (4)

Defining the difference vector d j = ra �rb:

Mkd j > 0 (5)

where it is understood the superscript j denotes the difference vec-
tor from the jth of

�n
2
�

pairs of image pixel values (n is the total
number of image pixels). Suppose that we have a vector Mk where
Eqn. 5 holds, then the inequality cannot be true for �Mk. That is
Eqn. 5 defines a half plane constraint [8, 3]. The vector d j is per-
pendicular to the half-plane: any Mk less than 90 degrees to d j

is a possible solution. Given multiple difference vectors then we
have multiple half-plane constraints which taken together delimit
a region in 3-space where Mk must lie. Denoting the half-plane as
H (d j), Mk must satisfy:

Mk 2
\

j
H (d j) (6)

The intersection in Eqn. 6 defines an unbounded cone, anchored
at the origin, in 3-D space. Clearly, if Mk is in the intersection
region defined by Eqn. 6 then aMk (where a is a positive scalar)
is another solution. Using ranking we solve for each rows of M
up to an unknown scalar multiplier.

Let us visualize the computation of Mk using ranking. With-
out loss of generality let us assume that Mk,3 = 1. We rewrite
Eqn. 5 as

Mk,1d j
1 +Mk,2d j

2 +d j
3 > 0 (7)

If [a b c] is a solution to Eqn. 6, then [a/c b/c c/c] for Eqn. 7 is also
true since Mk,1 = a/c and Mk,2 = b/c. Solutions for [Mk,1,Mk,2]
lie on one side of the line, i.e. the 3-D half-space constraints maps
directly to a 2-D half-plane constraint. Or, if we consider the
whole set of intersections, the cone in 3-D, defined by Eqn. 6,
maps to a 2D convex region [7]. Denoting half-planes as P(d j)
we, equivalently, solve for

[Mk,1,Mk,2] 2
\

j
P(d j) (8)

The intersection problem of Eqn. 8 is easily visualized. In Fig. 2a
we show the intersection of 4 half plane constraints and indicate
the solution set where Mk must lie.

We solve for Mk one sensor channel at a time. Due to noise
or small deviations in real camera data, it is likely that no common
intersection can be found that satisfies every half-plane’s con-
straint. To solve this problem, we generate 100,000 unit length
vectors that are uniformly distributed on the surface of the unit
sphere [22], which is visualized in Fig. 2b. With respect to this
sampling, the furthest distance between any point and its nearest
neighbor is less than 1.15 degrees. Therefore, the orientation of
the rows of M are found to this accuracy. For each point on the
sphere (i.e. a possible row of Mk), we count how many half-space
constraints are satisfied. The point on the unit sphere that has the
largest number of satisfying half-plane constraints – or the median
of multiple points if there is a tie – defines Mk.

To maintain a reasonable computational cost, we have to be
careful not to generate too many half planes. We simply select
200 random RGB-JPEG pairs for estimating M. Since it is not
guaranteed that these 200 random pairs are the optimum selec-
tions, we practically generate 25 random sets of 200 RGB-JPEG
pairs and select the “best luck” set which gives the lowest training
error. Note that the other pipeline components introduced later
are also applied to evaluate the training error.

Overall, we find the M that places all the corresponding raw
and rendered image RGBs in the most similar rank order. That is,
if we plot the mapped raw red responses, for example, against the
rendered red JPEG corresponding values then the graph should be
a monotonically increasing function. How well a monotonically
increasing function fits our data can be used to judge the efficacy
of each M.

Rank-Preserving Optimization of Tone Curves
We now solve for the optimal per-channel tone curves which

map color corrected raws to corresponding rendered RGBs. Let
us denote the ith color corrected raw and rendered RGB pixel pairs
for the kth channel as (Mkrk,i,Pk,i). Then, the kth-channel rank-
preserving tone curve fk() is optimized as a 7th order monotonic
and smooth polynomial function as follows:

min
fk()

Si|| fk(Mkrk,i)�Pk,i||2+l
Z

t
|| f 00k (t)||

2dt s.t. f 0k()� 0. (9)

where the first term is for data fitness, the second term is for curve
smoothness and l is a small weight (e.g. 10�5). This polynomial
fitting is solved by Quadratic Programming [14]. Note that these
7th order polynomials already include the Affine gamut mapping
offset parameters described previously. In this paper, we further
denote the combination of all 3-channel mappings f1�3() as f ().
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Figure 2. a) The region where 4 half-plane constraints intersect delimit the region where [Mk,1,Mk,2] must lie where the black point is a feasible solution. b)
On an unit sphere, each vector represented by the origin and a blue surface point is a probe for a possible solution (e.g. the black arrow). All 3-D points and
constraints are projected to a 2D plane Mk,3 = 1.

Gamut Correction Step

As argued previously, we propose that f (Mr) has the ex-
pressive power to implement color correction, tone correction and
gamut mapping (to the first order in a Taylor expansion). How-
ever, we wish to add a further gamut mapping step for the higher
order terms. But, since our hypothesis is that much of the gamut
mapping will have been accounted for we are going to adopt a
simple small parameter solution. Further, this additional correc-
tion is going to be carried out at the end of the process, we adopt
Eqn. 1b. Specifically, we find a 5⇥ 5⇥ 5 LUT by using lattice
regression [11] that minimizes minLUT () Si||LUT(g( f (Mr i)))�
Pi||2 where g() is a non-linear function that stretches highlights.
We found empirically there was an advantage in deploying more
LUT resolution in the highlight region where gamut mapping is
created. We implemented this not by changing the sampling struc-
ture of the LUT (which is uniform) but by stretching our data, by
applying the function g() shown in Figure 3. The function g() is
fixed for all our experiments.

0 0.5 1
x

0

0.5

1

g(
x)

Figure 3. Plot of a non-linear function g(x) where g(0) = 0 and g(1) = 1.

Rank-Based Recovery of Raw
Suppose we wish to map rendered RGBs to raws. Us-

ing the previously described method, M has already been solved
in the RAW-to-JPEG forward estimation phrase. Now, in a
least-squares optimal way, we use the same polynomial fitting
method (Eqn. 9) to find f�1 by optimizing min f�1() Si|| f�1(Pi)�
Mr i||. Finally, we solve for the backward LUT() by optimizing
minLUT () Si||LUT(g(M�1 f�1(Pi)))�r i|| where the LUT is fit-
ted by a 5⇥5⇥5 lattice regression [11].

Parameter Counting
Assuming we solve for 3 independent tone curves then our

method requires 9 (for M) + 8⇥3 (for f ()) + 125⇥3 (for G()) =
408 parameters which is significantly less (even an order of mag-
nitude less) than [5, 18, 19].

Evaluation
Our evaluation is based on two challenging datasets from

Harvard [5] and NUS [18]. The Harvard dataset [5] contains the
RAW/JPEG intensity pairs of 140 color checker patches viewed
under multiple viewing conditions. The color chart is captured
by 8 cameras and under 16 illuminants across many different ex-
posures. Compared with the Harvard dataset, the NUS dataset
contains large data captured with a 24-patch color checker and 31
camera sensors though its capture conditions (i.e. light and expo-
sure) are relatively limited.

We carried out the same experiment described in [5, 18]. We
are interested in validating whether our method, with much re-
duced number of parameters can produce, similar or even bet-
ter results compared with the state-of-the-art [5]. We evaluate
both RAW-to-JPEG and JPEG-to-RAW. The Harvard dataset [5]
captures a sort of “worst-case” viewing conditions. Normally,
when we capture a picture there is a single prevailing illuminant
color. In the Harvard dataset, all camera processing parameters
are turned off and then the same reflectances are viewed under
multiple colored lights. As Forsyth observed [9], the reddest red



camera response cannot be observed under a blue light. And, then
he exploited this observation to solve for the color of the light. In
real imaging conditions, the greenest green and the bluest blue do
not typically appear at the same time. A pipeline that suffices for
the combinations of all lights and all surfaces is unlikely needed.
This means the prior art pipelines are probably more complex than
they need to be. As described in [5], for each camera, we estimate
the parameters of a calibration model using different subsets of the
available RAW-JPEG pairs. For each subset and a selected cam-
era, the root mean-squared error (RMSE) between the prediction
and ground truth is validated by using all available RAW-JPEG
pairs.

Figure 4 (top half) shows the raw-to-JPEG mapping error
plot (where pixel intensities are coded as integers in the inter-
val [0,255]. In both forward and backward tests, our RB (Rank-
Based) method [17] is significantly better than the independent
polynomial method (IndPoly) [4]. IndPoly is a simple model
which only contains 3 per-channel tone mapping (or linearization)
curves and a 3⇥3 gamut mapping matrix. We also found that our
RB’s forward errors are close to the results of the state-of-the-art
ProbRC [5], especially for the condition of less than 3 illuminants
which are more likely to occur in the real world. Evidently, for
the many illuminant case the prior art has a small advantage. Re-
membering that JPEGs are coded as integers in [0,255] the RMSE
is typically 1 or less. Practically, when the “fits” are viewed vi-
sually (by looking at images) it is hard to see the difference. For
computer vision, we are more interested in the performance of
JPEG-to-RAW mapping which is shown in Figure 4 (bottom half).
In ProbRC [5], a probabilistic framework for mapping rendered
RGB to raw was presented. Here we take their mean estimates
as the most likely raw predictions. We found that our methods
generally reduce the errors of [5] by ⇠ 34%.

We also verify the results with a wider range of camera sen-
sors using the NUS dataset [18] by a 4-fold cross validation. Since
IndPoly [4] performs significantly worse, we omit it in our NUS
dataset test. The data in [18] contain an uneven number of capture
modes for each camera sensors. Therefore, in Figure 5, we show
the overall performance categorized by camera sensor. We found
that the results in general shows a similar trend for the forward
raw-to-JPEG mapping. For the backward JPEG-to-raw mapping
our RB has a significant advantage over [5] as our backward map-
ping errors are only ⇠ 10% of [5].

The reader might be interested in why our simple method
seems to work so well going from rendered to raw (better than [5])
but not quite as well as the prior art in the forward direction (albeit
visually almost indistinguishable). Our hypothesis here is that
the LUT in the forward direction is applied post the tone curve.
This curve (at least for dark values) has a very high slope and,
consequently, the coarsely quantized 5⇥ 5⇥ 5 per-channel LUT
cannot capture gamut mapping well. Yet, in the reverse direction
(JPEG to RAW) the LUT is applied in linear raw where a coarse
uniform quantization is more justified. The full calibration results
maybe found in our supplementary materials.

Calibration Stability of Random Sample Se-
lection

We are also interested in how the randomly selected samples
for estimating the 3⇥ 3 color correction matrix affects the cali-
bration results. We select the most common “1 illuminant + 10
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Figure 4. Test RMSE bar chart of the Harvard dataset [5] for IndPoly [4],
Prob [5], and our RB [17]. The figure shows RMSE between ground truth
and prediction for bidirectional raw and JPEG mappings. “Exp.” and “Illu.” are
respectively short for “Exposure” and “Illuminant”. Each bin color indicates a
capture condition. The horizontal and vertical axes indicate camera sensor
and calibration error respectively. The displayed forward and backward errors
are clipped at 15.0 and 0.20 respectively.

exposures” data from the Harvard dataset and repeat the calibra-
tion experiment for 50 times. This calibration stability test results
are shown in Table 1. As shown, the variation for forward estima-
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Figure 5. Test RMSE bar chart of the NUS dataset [18] for Prob [5] and our RB [17]. The figure shows RMSE between ground truth and prediction for
bidirectional raw and JPEG mappings. “Exp.” and “Illu.” are respectively short for “Exposure” and “Illuminant”. Each bin color indicates a capture condition. The
horizontal and vertical axes indicate camera sensor model code and calibration error respectively. The displayed forward and backward errors are clipped at
25.0 and 0.015 respectively.

a) RAW-to-JPEG 40D G9 S90 D7000 LX3
mean 10.52 8.85 4.92 14.19 9.74
std 1.65 2.54 0.41 3.14 1.00

b) JPEG-to-RAW 40D G9 S90 D7000 LX3
mean 0.073 0.106 0.058 0.124 0.071
std 0.002 0.003 0.001 0.004 0.001

Table 1: RMSE of our rank-based method between ground
truth and prediction for bidirectional RAW and JPEG conver-
sions. The results are based on 50 repeated tests.

tion is about 15% of the mean value while that of the backward
estimation can be omitted.

Calibration Error Distribution
To better understand how well the proposed algorithm per-

forms w.r.t. input hue and saturation, we visualize the distribu-
tions of forward and backward mapping errors (RMSE) over the
hue and saturation gamut (HSV color space [25]) which is shown
in Fig. 6. The distributions are generated for the common capture
condition set – “1 illuminant + 10 exposures” – as the examples.
Specifically, the complete distribution data is interpolated for a
400⇥ 400 uniform grid. This grid (as an image) is then filtered
by a 41⇥41 Gaussian kernel with a 20 standard deviation.

In addition, in Fig. 7, we also plot the RMSE distributions
for the same capture condition – “1 illuminant + 10 exposures” –
w.r.t. lightness (i.e. value channel of the HSV color space). Simi-
larly, the complete distribution data are interpolated for a 400-tick
uniform 1-D space. This interpolated 1-D space data is then fil-
tered by a 41⇥1 Gaussian kernel with a 20 standard deviation.

Overall, higher forward errors are observed when hue and
saturation are both high. Value (of the HSV color space) does not
seem to have a great impact for the forward errors although lower
forward errors are found near both clipping boundaries of 0 and 1.
Higher backward errors are found when value is high while hue
and saturation have less impact on the backward error.

Calibration with Small Numbers of Parame-
ters

We wished to visually validate our claim that we can cal-
ibrate with few parameters. We took 4 RAW+JPEG pairs (for
different cameras) from [4]. We then uniformly selected 140 cor-
responding pixels from the RAW and JPEG. We solved for all the
408 parameters in our rank-based method. We then applied our
model to the rest of the image. The result of this experiment for 4
images (JPEG-to-RAW) is shown in Fig. 8.
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Figure 6. Distributions of forward and backward mapping RMSE of our
method over the input hue and saturation gamut. It is tested with the “1
illuminant + 10 exposures” set from the Harvard dataset [5].

Conclusion
In this paper we have shown how the rank order of image

responses is a powerful tool for solving for the individual steps
in a camera processing pipeline (color correction, gamut and tone
mapping). A simple ranking argument, relating color corrected
raws to corresponding rendered RGBs suffices to solve for the
color correction matrix. Then, the rank-preserving tone map is
found and, finally, a simple gamut correction step is derived.
Compared with the prior art, our rank-based method requires the
fewest assumptions and delivers state-of-the-art radiometric cali-
bration results. Experiments also show that excellent calibration
is possible given a single image exposure and limited color diver-
sity (e.g. a color chart).
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