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Abstract

Many crude oils contain dissolved waxes that can cause significant problems,

such as blockage of pipeline, because of the precipitation and deposition of wax

particles during the production and transportation of the oil. The waxy oils

are transported through very long pipelines from warm natural reservoirs to

cooler conditions in the surrounding of the pipe. An important phenomenon

occurring during the under-cooling of the pipeline is the formation of solid

matter inside the pipe. The wax deposition is one of the most serious problems,

potentially restricting flow and plugging the pipe. Wax deposits begin to form

when the temperature is below the wax appearance temperature. We model

a particle’s growth in the oil pipe once the temperature falls below the wax

appearance temperature. We determine the temperature distribution in the oil,

formulate and solve a self-similar problem of wax particle growth from a single

point. A corresponding initial boundary value problem is studied numerically

by a time- stepping numerical algorithm. The numerical algorithm is used

to compute the non-linear solution of an initial value problem of diffusion and

transport of wax towards the particle. The numerical solution is compared with

and validated against the self-similar solution derived for specific conditions.

Then the boundary value problem is formulated for the general case. A coupled

diffusion/ flow problem of a single wax particle is formulated. An asymptotic
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analysis is used to describe the motion and growth of the wax particle. At the

leading order, we consider a spherical wax particle and assume the velocity of

the particle to be close to the local velocity of the flow. The flow relative to

the wax particle is negligible in the leading order problem. In the first-order

correction problem, the wax particle is treated as spherical initially, and the

correction to the particle shape is caused by a small difference between the

wax particle speed and the speed of the local flow. We draw conclusions and

recommendation for further work at the end of this thesis.
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Chapter 1

Introduction

This chapter contains four sections, beginning with the physical motivation,

then a problem description, the context of a literature survey, and ends with

a statement of the aim and structure of this thesis.

1.1 Physical motivation

Crude oils containing a quantity of waxes, are usually called waxy crude oils.

Crude oil is transported from offshore oil fields to refineries in subsea pro-

duction pipelines. The oil is extracted from offshore reservoirs from under

the seabed and the reservoirs usually have a uniform temperature between

70◦C − 150◦C, see [46]. However, during the transportation of oil through a

subsea pipeline, the temperature of the oil may decrease below the wax appear-

ance temperature, WAT. The wax appearance temperature is the temperature

at which paraffin starts to crystallize in a solution [26]. Heat is lost from the
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oil in the pipeline to the cold surrounding seawater at a temperature which

can be as low as 10◦C. As the temperature of the oil decreases due to the

cold environment of the sea, the solubility of the wax also decreases. However,

the wax molecules are dissolved at reservoir temperature and exist in the oil

as liquid phase. At the wax appearance temperature, the wax molecules start

to precipitate out of the solution and deposit on the wall of the pipe, or on

small impurities (e.g. dust), or on surfaces of existing solid wax particles mov-

ing in the oil. Wax precipitation during the flow of waxy crude oil through a

pipe causes the deposition of waxes on the pipe walls. Thus, wax deposition

occurs only if the temperature of the oil is lower than the wax appearance

temperature.

Wax deposition is a major problem in production pipelines. In the worst

case, the production must be stopped to remove the plugged portion in the

pipeline [46]. The wax deposits can be formed from the precipitation of dis-

solved wax molecules through the diffusion mechanism. Sigh et al. [71] reported

that there are two steps for the wax deposition, firstly wax gel formation and

then aging of deposited wax gel. The oil contains some water, sand, and gums,

which are trapped during the deposition process. The trapped oil causes dif-

fusion of wax molecules into the gel deposit. The diffusion transport process

leads to both an initial gel deposit, and an increase in the amount of wax in

a gel deposit. This in turn leads to a second step of wax deposition, which is

aging of the deposited wax. Sigh et al. [70] found the deposition of wax on the

pipe wall can be described by the following: gelation of waxy oil (formation

of an incipient gel layer) on the cold surface, diffusion of waxes from the flow

toward the gel layer, internal diffusion of these molecules inside the gel layer,

and precipitation of these wax molecules in the deposit.
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Let the temperature near the wall or a piece of dust be lower than the wax

appearance temperature. This leads to a concentration gradient of dissolved

wax (lower concentration near the particle than elsewhere in the fluid) and so

molecular transport toward the wall or the dust surface through the diffusion

process. The shape and size of wax particles will be different from those of

the wax particles at the centre of the pipe, because the temperature near the

pipe wall drops due to the cooler environment. The wax deposition can be due

to different mechanisms such as molecular diffusion, Brownian diffusion, and

shear dispersion [12]. In this thesis we only take into account the molecular

diffusion as the main deposition mechanism. We suppose there are nuclei in

the oil. A typical nucleus becomes the site of growth of wax, when the nucleus

moves into a region where the oil temperature is below the wax appearance

temperature. We study the deposition of waxes onto nucleus, while assuming

the deposition thickness is small compared with the pipe radius. The rest of

this introductory chapter discusses the problem, a review of technical litera-

ture, and ends with the aim and the structure of the thesis.
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1.2 Description of the problem
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Figure 1.2.1: Sketch of a steady viscous flow in a stationary pipe of circular

cross-section. The fluid temperature at the inlet is T0 and the wall temperature

is T1.

The problem is described mathematically in the geometry of cylindrical pro-

duction pipeline of crude oils. The inlet end of the pipe is beneath the sea

bottom with, say, 60◦C for the inlet oil temperature [13]. The pipe is sur-

rounded by sea water at, say, 10◦C so that the pipe wall also has the tem-

perature 10◦C. Once the oil leaves the reservoir and flows through the subsea

pipeline, its temperature drops due to the cold environment of the sea. The

temperature at which wax molecules start to solidify is known as the wax ap-

pearance temperature. The temperature of the oil is varying along the pipe

and the oil temperature at the entrance of the pipe is greater than the wax

appearance temperature. The waxy oils are transported through pipelines and

an important phenomenon occurring during the under-cooling of the pipeline

is the formation of solid matter inside the pipe.
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Figure 1.2.2: The deposition of wax in the pipe

In the past a main part of published research was focused on deposition of

wax onto the inner wall of the pipe where the wall temperature is lower than

the WAT, see figure 1.2.2. However, in this thesis, at a distance from the wall

and far from the entrance to the pipe, where the temperature is below the wax

appearance temperature, there are wax particles in the flow and we are most

interested in this region and these particles. We will study how a wax particle

grows in the fluid domain being sufficiently far from the wall, that is, far from

the wall.

Initially there is a small impurity in the oil (e.g. dust), and the solid wax

molecules start to build up on its surface when the temperature around this

piece of dust becomes lower than the wax appearance temperature. This grows

and becomes a wax particle. It grows due to a mass flux of wax molecules

moving towards this wax particle. In this way wax particles become bigger

and start to interact and contact each other, making a gel of particles. Such

wax gel particle conglomerates contribute to the gel layer. The oil flow presses

the gel layer to the wall and increases the deposition of wax on the wall of the
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pipe. In this thesis, wax deposition is modelled in the laminar flow regime and

the oil wax solution is saturated when the temperature is lowered below the

wax appearance temperature, taking only the molecular diffusion into account.

The concentration profile is the driving force of the diffusion of wax molecules

toward the piece of dust that moves inside the pipe.

1.3 Literature Review

Wax deposition in production pipes which are draining oil from a subsea reser-

voir is a significant problem in the petroleum industry. The deposition of wax

in waxy crude oil has been studied by several authors. The most important

pioneering studies were done by Burger et al. [12], Bern et al. [10], Brown et

al. [11], Creek et al. [22], and Hamouda et al. [40] on the wax deposition model.

The possible mechanisms of wax deposition on a pipe wall are molecular dif-

fusion, shear dispersion, brownian diffusion, and gravity settling.

Molecular diffusion. The wax molecules in the oil crystallize on the wall

where the pipe wall temperature is below the wax wax appearance temperature

(WAT). This leads to a concentration gradient of wax molecules near the pipe

wall. According to Fick’s diffusion law, the wax molecules in the oil flow

migrate to the wall of the pipe are deposited on the wall. The rate of wax

transport to the wall is given by Fick’s law of diffusion:

dm

dt
= ρDA

dC

dr
, (1.3.1)

where m is the mass of deposited wax, ρ is density of solid wax deposited,

D is the diffusion coefficient, A is the area of deposition, dC
dr

is the radial

concentration gradient of wax molecules in solution.
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Shear dispersion. When the oil flows, there is a certain velocity gradient

in the radial direction of the flow. Bern et al. [10] defines this as ”.., the

shearing of the fluid close to the pipe wall also induces a lateral movement of

the particles known as shear dispersion.”

Brownian diffusion. ”The erratic random movement of microscopic

particles in a fluid as a result of continuous bombardment of molecules of

surrounding medium.”, see [72].

Gravity settling. When a wax particle is precipitated from the oil it

is more dense than the liquid oil. Over a long time the wax particles are

deposited at the bottom of the pipe due to the effect of gravity.

Burger et al. [12] studied wax deposition mechanisms in the Trans-Alaska

pipeline. They showed the deposition of wax on the pipe wall occurs as a

result of molecular diffusion, shear dispersion, Brownian diffusion, and Gravity

settling. In their experiments, deposition of wax in vertical and horizontal

pipes was compared to assess the contribution of gravity settling. They found

there was no significant influence of gravity settling on total deposition. The

shear dispersion might redisperse settled solids in pipeline flow, therefore any

effect of gravity settling on rate of wax deposition can be eliminated. They

identified as possible mechanisms, molecular diffusion, shear dispersion, and

Brownian diffusion. They found the contribution of Brownian diffusion is small

compared with two other mechanisms. They concluded that the molecular

diffusion is the main mechanism for transporting wax towards the wall of

the pipe. There was a radial temperature gradient, when the oil is being

cooled in the pipe. They showed that the solubility of wax in the oil is a

decreasing function of temperature. They found that the size distribution of

the precipitated wax particles increases linearly with decreasing temperature.
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The temperature gradient produced a concentration gradient of dissolved wax

in oil. This dissolved wax was transported towards the wall of the pipe by

molecular diffusion. They wrote the equation (1.3.1) in terms of wax solubility

coefficient of the oil, dC
dT

, as

dm

dt
= ρDA

dC

dT

dT

dr
, (1.3.2)

where dT
dr

is the radial temperature gradient at the wall which can be deter-

mined from the solution of the energy equation.

Bern et al. [10] measured the wax deposition rates using their laboratory

data, and used these rates to estimate the effect of wax deposition on realis-

tic pipeline pressure drops. They concluded that the total deposition of wax

results from a combination of molecular diffusion of dissolved wax and shear

dispersion of previously precipitated solid waxes. They tested the shear dis-

persion mechanism and they found the shear dispersion becomes important

when the precipitated wax content in the turbulent core is high. Increasing

shear rate (flow rates) leads to more wax particles dispersing toward the wall,

but the corresponding increase in wall shear stress may cause the looser held

deposits to be stripped from the wall .

Brown et al. [11] discussed an experimental technique to measure wax de-

position rates. They indicated that the wax deposition by shear dispersion

is not significant, as confirmed by their field experience. This is due to no

deposition being observed under conditions of zero heat flux.

Creek et al. [22] studied experimentally wax deposition using crude oil

from the Gulf of Mexico. They studied the effect of temperature difference

between the oil and the pipe wall. They found there was an increase in the

wax deposition rate with increasing difference in temperature between the oil
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and the pipe wall. They also reported that the deposition rate decreases with

increasing flow velocity. The oil flow velocity can be so large that the flow

becomes turbulent (non laminar). They also concluded that the oil fraction of

the gel layer in turbulent flow was significantly lower than the oil fraction of

the gel layer in laminar flow.

Hamouda et al. [40] investigated the effect of various combinations of

flow characteristics on paraffin wax deposition rates. They present a three-

dimensional model for the behaviour of oil in a Teesside pipeline, in various

flow regimes. They concluded that molecular diffusion is the dominant mech-

anism, and the radial concentration gradient of the paraffin dC
dr

, is the driving

force for this molecular diffusion.

Many authors [11, 16, 22, 40, 70] have shown that Brownian diffusion and

shear dispersion mechanisms are not significant, and that molecular diffusion

is the dominant mechanism in wax deposition. They concluded that molecular

diffusion toward the wall is the main mechanism for the transport of waxes

from solution to the wall of the pipe.

In our study we neglect the gravity settling and the Brownian diffusion.

Also we neglect the shear dispersion which is negligible because we study the

growth of small wax particle far from the wall of the pipe, and the flow velocity

around the wax particle is approximately uniform. The wax deposition in our

study is modelled assuming the laminar flow regime and we take into account

only the molecular diffusion mechanism.

Svendsen et al. [74] have developed a mathematical model for prediction of

wax deposition in a horizontal pipeline, by using a combination of analytical

and numerical modelling. They calculated the temperature distribution which

depends on the velocity profile, v(r) = vmax
(
1− ( r

a
)m+1) , where vmax is the
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maximum velocity of the flow and a is the internal radius of the pipe, for the

oil flow in terms of the radial coordinate r measured from the centreline. For

a Newtonian fluid m = 1 and the flow is laminar. They solve the problem of

plug flow, where m =∞, and they ignored the heating and axial thermal dif-

fusion term in the energy equation. The solution of this problem can then be

expressed in terms of Bessel functions, as shown in [15]. In chapter 2 we find

the solution of the energy equation when m = 1, for a parabolic velocity pro-

file. The molecular diffusion has been assumed to be the dominant mechanism

in the wax deposition [55]. The more complicated problem of modelling wax

deposition in non-isothermal flow is still in an early stage of development [6].

The heat transfer is one of the main processes that come from conduction and

convection which affect the deposition of wax in a pipeline. The radial compo-

nent of the convective velocity in the region, which contains the wax deposition

for the laminar flow, has been neglected in the past [10–12,23,55,65,67,70,74].

The radial velocity component is expected to be relatively small, compared

with the axial velocity component. To the best of our knowledge, in most of

the models in the literature the driving force for the radial diffusion is written

in terms of the concentration gradient and then, using the chain rule, in terms

of the temperature gradient [10, 12, 30, 34, 40, 47, 55]. In our model, the mass

transfer coefficient kr(T ) is a function of the local temperature. On the other

hand, we consider the diffusion be driven by a concentration gradient, not by

the temperature gradient. Hunt et al. [47] and Eaton et al. [28] experimentally

studied the wax deposition with zero heat flux conditions, and they concluded

that no wax deposition occurred at zero heat flux condition. Wardhaugh et

al. [80] made an assumption related to the flow: if the temperature is below

the wax appearance temperature, then the waxy oils are non-Newtonian fluids,
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and if the temperature is above the wax appearance temperature, then waxy

oils are Newtonian fluids.

Correa et al. [19] studied the deposition of solid matter on the pipe walls

during the transport of oil. The solidification occurs on the wall when the

external temperature is lower than the wax appearance temperature, and this

leads to a deposit on the wall of the pipe. They modelled wax deposition onto

a pipe wall in a turbulent flow of waxy crude oil, in a cylindrical pipeline, and

they took into account the molecular diffusion. The diffusion of wax molecules

towards the cold wall is caused by the concentration gradient. Their model

relies on the physical properties of waxes. The derivative of wax solubility with

respect to temperature is important because it determines the concentration

of dissolved waxes in the radial direction, and the diffusivity of dissolved wax

determines the rate at which waxes are driven towards the wall.

According to the molecular diffusion mechanism, the precipitation of wax

out of solution into a deposit on the cold wall causes a radial concentration

gradient and this precipitation reduces the concentration of wax near the pipe

wall. The concentration gradient leads to a transport of wax molecules in the

oil toward the wall. This concentration gradient is the driving force for wax

deposition [46].

Fasano et al. [33] formulated a mathematical model of heat and mass trans-

fer in non-isothermal solution. They took into account the process of segre-

gation of solid wax and its deposition on the boundary. They considered the

molecular diffusion as the main mechanism of wax deposition on the pipe wall.

They showed that for some waxy crude oils the densities in both dissolved and

segregated phases are equal to that of the solvent. The density of the mixture

is constant in their study. Their model described the diffusive mass flow within
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the solution toward the cold wall, which was induced by the thermal gradient.

Ramirez et al. [65] have developed a wax deposition model in pipelines.

They modelled the heat transfer, and they found that the temperature de-

creases in the direction of the flow along the pipe. They found that the de-

position of wax occurs due to the radial mass diffusion which is driven by

a concentration gradient, induced by the temperature gradient. They found

that the increase in the maximum of deposited layer thickness occurs when the

temperature of the fluid reaches the wax appearance temperature at a specific

axial location. They concluded that the Reynolds numbers and the mass Peclet

number strongly influence the mass deposition rate. They showed a significant

increase in the solid deposition with Reynolds number up to Re ≈ 100, there

is a steep increase in the solid deposition with Re number up to 100, where

a more gradual increase is observed for higher Re number. They also found

a decrease in the mass deposition when Re > 2000. The reason for this phe-

nomenon comes from the fact that the shear forces acting on the deposit layer

become large with high Re number, and at some point the shear force re-

moves the wax deposit on the wall and decreases the rate of wax deposition.

When they estimated the average molecular diffusion coefficient, they found

there is an important connection between the mass Peclet number and the

radial mass flux. They observed a substantial dependence of deposition mass

layer-thickness on the value of average molecular diffusion coefficient.

Bautista et al. [9] studied the wax deposition on the internal surface of oil

production pipelines and the influence of flow rate on the deposit thickness

for a crude oil. They calculated the temperature distribution along the pipe

and they found that the deposit thickness is increased when the wall temper-

ature is decreased and the opposite effect takes place when the temperature
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is increased. When the flow rate is low, they found that the temperature gra-

dient tends to zero very quickly, the wax appearance temperature is reached

faster and then the wax is deposited over a short length. They showed that

increased flow rate reduced the maximum deposit thickness, and the deposited

wax spreads over a long distance in the pipe with constant pipe wall temper-

ature. Also they found that the maximum deposition of wax layer thickness

increases or decreases depending on whether the temperature profile has a

positive or a negative slope along the pipe wall.

Fasano et al. [31] formulated a mathematical model to describe the wax

deposition in pipelines and the mechanisms of mass transport in saturated non-

isothermal solution. They measured the wax solubility and diffusivity using an

experimental device. The thermal gradient in a saturated solution produced

a concentration gradient which forced the solute to diffuse. They modelled a

one-dimensional problem with uniform initial concentration and uniform initial

temperature. They found no mass flux occurs when the temperature of the

solution is greater than the wax appearance temperature and the concentration

is constant. They concluded that a small non-diffusive region starts growing at

the cold wall while the rest of the layer remains unsaturated, and they showed

there is a gel region between the unsaturated region and the deposit region.

Then this gel region undergoes further changes over time, later becoming a

deposit.

1.4 Model assumptions

1. The flow is laminar with the Reynolds number being low enough. Even if

secondary circulation is present we assume that this is small compared with
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velocity component in the direction of pipe axis. The flow is also steady (there

is no time-dependence in the flow velocity) and we neglect pressure oscillations

due to, for example, pumping.

2. Molecular diffusion is the most important mechanism for the growth of

particles in the flow (away from the wall). Molecular diffusion dominates other

mechanisms which might be considered as contributing to a particle’s growth.

3. Brownian motion is the random motion of, for example, a smoke particle

struck by air molecules: the molecular impacts are sometimes greater on one

side than the other and the smoke particle moves in one direction, briefly; a

very short time later the molecular impacts push the particle in another direc-

tion. The smoke particle dances randomly. The some occurs with small wax

particles surrounded by oil molecules. This Brownian motion moves wax parti-

cles separating a set of them or sometimes bringing two wax particles together.

We assume this affect provides a small contribution to particle growth.

4. Shear dispersion, Bern et al. [10] revealed that this is only important in

turbulent flows with high Reynolds number, for a low Reynolds number flow

regime shear dispersion is negligible.

5. Gravity is negligible, see Burger et al. [12].

6. Rotation of a wax particle is negligible, the viscous flow considered exerts

a negligible a torque on a particle. (This changes if the flow field has a very

large shear.)

7. The density of the oil (in liquid state) is assumed to be constant over the

range of temperatures. The density of solid wax is also assumed constant and

independent of temperature.

8. The temperature distribution in the pipe is not uniform. As a wax particle

is advected by the oil along the pipe, the particle experiences a reduction in
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temperature. We assume that the particle has the same temperature as the

oil in its immediate neighbourhood. We expect there to be local changes in

temperature due to the process of wax solidification ( in the associated latent

heat of solidification). But we assume that the heat exchanges are confined to

a neighbourhood of the particle surface and bring about a negligible change in

temperature.

1.5 Thesis goals and outline

Wax deposition is one of the major issues in the oil industry during production

and transportation of crude oil from offshore to onshore through a pipe. The

problems occur because as the oil moves along the pipe, the oil temperature is

decreasing and then the solubility of the wax also decreases. As the tempera-

ture falls below the wax appearance temperature, the wax precipitates out of

solution and forms solid wax particles, and these start to grow inside the pipe.

In this thesis, we study the temperature profile within the pipe. We study an

axisymmetric flow and temperature fields where the temperature is initially

above the wax appearance temperature, and later the oil moves downstream

to surroundings at a temperature lower than the wax appearance temperature,

to induce diffusion of wax molecules onto solid nuclei.

We develop and investigate new mathematical models for spherical wax

particle growth, formulating a corresponding free boundary problem. We solve

the equations of the models both analytically and numerically. In particular,

we compare a self-similar solution which is derived for a special case in terms of

the mass transfer coefficient kr(t) with a numerical solution by our numerical

algorithm. In this work, we use asymptotic analysis with a small parameter.
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At the leading order, we consider a spherical particle and assume the speed of

the wax particle is close to the local speed of the flow. So, the flow relative

to the wax particle is negligible in the leading order problem. In the first-

order correction we assume the wax particle is spherical initially, and that

the correction to the particle shape is caused by a small difference in speed

between the wax particle and the local flow. We formulate and study the

coupled diffusion/ flow problem for a single particle without assuming that

the particle shape is spherical.

To achieve these goals, in the following chapters, we have the following

contents:

In chapter 2 we discuss the flow of the oil in a circular pipe. We study the

temperature distribution with viscous heating, and we find that the viscous

heating term does not significantly affect the temperature distribution. We

conclude that we can evaluate the temperature distribution without the viscous

heating term. The temperature decreases monotonically as a function of radial

coordinate, from the centreline of the pipe toward the wall. We also find how

the centreline temperature decreases along the length of the pipe.

In chapter 3 we study the growth of a spherical wax particle moving to-

gether with the waxy crude oil while it grows in time. We model one spherical

wax particle which is far from other particles. This wax particle is small and

it moves together with the flow, the relative velocity of the wax particle with

respect to the flow is very small. Hence we neglect the convective term rel-

ative to the diffusion term in the convective-diffusion equation. The growth

of the wax particle is due to diffusion of wax molecules towards the surface of

the particle. We derive boundary conditions for the mass flux and the conse-

quent particle growth. We investigate the self-similar solution and we find the
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concentration distribution of a single wax particle.

In chapter 4 we present the numerical part of this thesis. We study the

initial boundary value problem numerically, by developing a time-stepping

numerical algorithm. In order to validate this algorithm, we compare the

numerical results with the self-similar solution of chapter 3, where the mass

transfer coefficient kr(t) is a special function of time. Then the boundary value

problem is formulated for a constant mass transfer coefficient kr. We found

the solution for the leading order spherically symmetric problem with constant

mass transfer coefficient.

In chapter 5 the coupled diffusion/ flow problem of a single wax particle is

formulated. The flow is uniform and the shape of the particle is non-spherical.

However, we assume the wax particle is spherical initially. This coupled prob-

lem is studied in the spherical coordinate system as the three-dimensional

problem of wax particle growth. Then we restrict ourselves to an axisym-

metric case. We use asymptotic analysis to determine the motion of the wax

particle and the growth of the wax particle. The leading order solution corre-

sponds to a spherical wax particle without flow around it. In the first order

correction we find that the particle stays spherical. However, the deposition

at the wax particle is non-uniform.

In chapter 6 we present the conclusions of the study and make suggestions

for future work.
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Chapter 2

Temperature distribution in oil

flow in a pipe

In this chapter, the temperature distribution in a circular pipe is obtained

when a viscous incompressible fluid is flowing through the pipe. In section 2.1,

we find the velocity distribution of the flow, and in section 2.2, we find the

temperature distribution in a production pipe. In 2.2.1, we analyse the energy

equation and show that the viscous heating term does not affect significantly

the temperature distribution. So, we neglect the viscous heating term in the

energy equation and we solve this equation in 2.2.2. Venkatesan et al. [37]

reported on the crude oil transport through subsea pipelines, which is a com-

plex mixture consisting of paraffins, aromatis, etc. The solubility of waxes in

crude oil decreases dramatically with decreasing temperature. At the offshore

reservoir temperature (70− 150◦C ) the solubility of waxes is sufficiently high

to keep the wax fully dissolved in the oil. As the oil leaves the reservoir and

flows through the pipe, its temperature drops due to the cold environment of
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the sea, and the ambient temperature can be about 4◦C. Our analysis is gen-

eral with T1 being the temperature outside the pipe. In our study we choose

the pipe wall temperature T1 to be 10◦C, but this ambient temperature can be

any value in our analysis less than the temperature of the oil at the entrance

and also less than the WAT (T1 < TWAT ). The wax precipitates out due to

the decreased solubility and then wax deposition on the cold pipe wall can

occur. Alyejina et al. [3] show that the radial temperature gradient and wax

crystallisation occur near the cooled walls of the pipe, where the oil tempera-

ture is below the wax appearance temperature. Then, the solid wax appears

in the oil. The solubility of the wax in the oil decreases with the decreasing

temperature. Hence the wax molecules precipitate out of solution, form a solid

and deposit on the cold pipe walls.

x

r

L

T1 = 10◦C

a u(r)Inlet Outlet

P1
T0 = 60◦C P2

Figure 2.0.1: Sketch of a steady viscous flow in a stationary pipe of circular

cross-section. The fluid temperature at the inlet is T0 and the wall temperature

is T1.

Figure 2.0.1 shows the geometry of the flow through a circular pipe in the

positive x direction, where a is the radius of the pipe, L is the length of part
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of the pipe, at the ends of which the pressures are P1 and P2, respectively.

2.1 Velocity distribution of the oil flow in a

circular production pipe

For completeness of the thesis and to make it self-contained we start our anal-

ysis from very basic equations and concepts of hydrodynamics and thermody-

namics. This also helps us to introduce and explain the main quantities and

notations to be used throughout our study.

We consider a laminar steady flow of a viscous fluid of constant density ρ

and dynamic viscosity µ in a circular pipe. The flow is described in a cylindrical

polar coordinate system r, θ and x. The pipe has circular cross-section with

radius a and length L. The pressures at the inlet and outlet are P1 and P2,

respectively. Laminar flow is a flow, in which all the fluid particles move

in layers such as one layer of fluid slides smoothly over an adjacent layer [56].

Fluid flow is said to be steady if at every geometric point of the flow domain, all

the properties (pressure, density, specific heat, velocity, thermal conductivity,

temperature, etc.) do not change with time [52]. Mathematically, we can write

∂(properties of the fluid)

∂t
= 0.

We start from the continuity equation in cylindrical polar coordinates, see

[73],

∂ρ

∂t
+

1

r

∂(ρrur)

∂r
+

1

r

∂(ρuθ)

∂θ
+
∂(ρux)

∂x
= 0. (2.1.1)

As the density ρ is constant for incompressible fluid, the continuity equation

(2.1.1) becomes

1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

+
∂ux
∂x

= 0, (2.1.2)
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where ur, uθ, and ux are the velocity components in the r, θ, and x directions

respectively.

Now, we consider the Navier-Stokes equations of the flow in cylindrical coor-

dinates (r, θ, x), see [49],

ρ

[
∂ur
∂t

+ ur
∂ur
∂r

+
uθ
r

∂ur
∂θ

+ ux
∂ur
∂x
− u2

θ

r

]
=

− ∂P

∂r
+ µ

[
1

r

∂

∂r

(
r∂ur
∂r

)
− ur
r2

+
1

r2

∂2ur
∂θ2

+
∂2ur
∂x2

− 2

r2

∂uθ
∂θ

]
,

ρ

[
∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+ ux
∂uθ
∂x

+
uruθ
r

]
=

− 1

r

∂P

∂θ
+ µ

[
1

r

∂

∂r

(
r∂uθ
∂r

)
− uθ
r2

+
1

r2

∂2uθ
∂θ2

+
∂2uθ
∂x2

+
2

r2

∂ur
∂θ

]
,

ρ

[
∂ux
∂t

+ ur
∂ux
∂r

+
uθ
r

∂ux
∂θ

+ ux
∂ux
∂x

]
=

− ∂P

∂x
+ µ

[
1

r

∂

∂r

(
r∂ux
∂r

)
+

1

r2

∂2ux
∂θ2

+
∂2ux
∂x2

]
,

(2.1.3)

where P = P (r, θ, x) is the hydrodynamic pressure.

In our problem we assume that the flow is in the positive x-direction and also

we consider a steady flow. So, only one component of the flow velocity is non-

zero, ux 6= 0 and ur = uθ = 0. Due to axial symmetry of the flow the axial

velocity ux is independent of θ, so that ux = ux(r, x). The continuity equation

reduces to the following,

∂ux
∂x

= 0. (2.1.4)

Therefore, the continuity equation implies that ux is independent of x. So the
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non-zero velocity component is a function of r only,

ux = u(r).

With ur = 0, uθ = 0 and ux = u(r) the Navier-Stokes equations (2.1.3) reduce

to the following three equations

∂P

∂r
= 0, (2.1.5)

∂P

∂θ
= 0, (2.1.6)

and

∂P

∂x
= µ

1

r

d

dr

(
rdu

dr

)
. (2.1.7)

In equation (2.1.7), the right hand side is a function of r but equations (2.1.5)

and (2.1.6) show that the pressure P is independent of r and θ. Thus P is

function of x only.

This implies that the pressure P (x) changes linearly between the inlet and

outlet (in the direction of the flow), which can be written as

∂P

∂x
=
P2 − P1

L
=

∆P

L
. (2.1.8)

Note that the liquid flow is in the positive x-direction. Hence P2 < P1 and

∆P < 0, and ∆P
L

is the pressure gradient.

Now, using (2.1.8) and (2.1.7) we find

d

dr

(
rdu

dr

)
=
r∆P

µL
. (2.1.9)

Integrating (2.1.9) with respect to r we find

r
du

dr
=

1

µ

∆P

L

r2

2
+ c1, (2.1.10)
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where c1 is a constant of integration.

Next we divide both sides of (2.1.10) by r and integrate the result once again:

u(r) =
1

µ

∆P

L

r2

4
+ c1 log(r) + c2. (2.1.11)

The constants c1 and c2 in (2.1.11) are obtained by using the regularity con-

dition and the wall boundary condition. The first condition requires that the

velocity of the flow, u(r), is finite at every point of the flow. However, the

second term in (2.1.11) predicts unbounded velocity at r = 0 if c1 6= 0. The

velocity of the flow is finite if and only if c1 = 0. Equation (2.1.11) yields

u(r) =
1

µ

∆P

L

r2

4
+ c2. (2.1.12)

The boundary condition on the wall of the pipe, the so-called no-slip boundary

condition, u = 0 where r = a, gives:

c2 =
−1

µ

∆P

L

a2

4
.

By substituting the obtained constant c2 in (2.1.12), we find

u(r) =
1

µ

∆P

L

r2

4
− 1

µ

∆P

L

a2

4

=
1

4µ

∆P

L
(r2 − a2). (2.1.13)

The expression obtained for u can be presented in the form

u(r) =
−a2

4µ

∆P

L

(
1−

(r
a

)2
)
, (2.1.14)

where ∆P < 0. Equation (2.1.14) describes the axial velocity distribution. The

velocity (2.1.14) has a parabolic profile (see figure 2.0.1).

The maximum velocity umax is achieved at r = 0,

umax =
−a2

4µ

∆P

L
. (2.1.15)
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By using (2.1.15), equation (2.1.14) can be presented as

u(r) = umax(1−
r2

a2
). (2.1.16)

The equation (2.1.16) is used in the next section to find the temperature

distribution in an offshore production oil pipeline. Production pipeline has

radius a which is about, say, 25 cm. The maximum velocity umax is in the

range (1 m/s - 6 m/s). The dynamic viscosity µ depends on the temperature

and varies from 3.8 ·10−3 kg ·m−1·s−1 at 12◦C to 1.3 ·10−3 kg ·m−1·s−1 at 60◦C.

The oil density ρ also varies with temperature from 824 kg/m3 at 15◦C to 806

kg/m3 at 40◦C [41]. In the following analysis we take a = 20 cm as a reference

radius. Also, umax = 1 m/s is taken as a reference flow velocity, [75]. We take

µoil = 2 · 10−3 kg · m−1·s−1 and neglect dependence of the dynamic viscosity

on the temperature. We take ρoil = 806 kg/m3. We assume the flow velocity

is independent of temperature and its variation along the pipe.

2.2 Temperature distribution in a production

pipe

Many authors have studied the temperature distribution in a pipe of circular

cross-section, see [7, 29, 48, 51, 53, 58, 61, 62, 69, 78, 79]. The heat transfer in a

duct flow of a Newtonian fluid was first studied by Greatz in 1883 for a slug

flow and later in 1885 for a Poiseuille flow [81].

Min et al [59] presented a solution for Graetz problem with axial diffusion

and flow heating effects in a semi-infinite domain with a given inlet condition.

The solution was presented in terms of eigenfunctions of a spectral problem

by using the separation variables method.
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The temperature distribution in an oil pipeline determines the location

where precipitation of wax particles starts, [63]. If the oil temperature falls

below the wax appearance temperature, the wax may precipitate out of the

solution. Deposition can occur on the walls, or onto dust particles inside the

flow. The second case is the one we focus on in the next chapter.

2.2.1 Problem description

The aim of our analysis is to determine the temperature distribution T (r, x) in

a flow. Consider a laminar steady incompressible flow inside the pipe of radius

a and length L sketched in figure 2.0.1. The fluid properties are assumed

constants. Let T0 be the temperature of the fluid entering the pipe at x = 0

and let T1 be the temperature of the walls [sea water temperature]. In the

cylindrical coordinates system (r, θ, x), the steady thermal transport equation

is, [49]

ρcvu(r)
∂T

∂x
= k

(
∂2T

∂r2
+

1

r

∂T

∂r
+
∂2T

∂x2

)
+ Φ(r, θ, x), (2.2.1)

where cv is the specific heat capacity of the oil, cv = 1950 J/(kg ·K), K stands

for Kelvin as the unit of the temperature, k is the oil thermal conductivity,

k = 0.261 J/(s ·m ·K) [50]. The axial velocity of the flow u(r) is given by

(2.1.16), and T = T (x, r) is the temperature distribution to be determined.

The symbol Φ denotes the viscous heating function, which in terms of the

velocity components is [49]

Φ = 2µ[(
∂ur
∂r

)2 + (
1

r

∂uθ
∂θ

+
ur
r

)2 + (
∂ux
∂x

)2 +
1

2
(
∂uθ
∂r
− uθ

r
+

1

r

∂ur
∂θ

)2

+
1

2
(
1

r

∂ux
∂θ

+
∂uθ
∂x

)2 +
1

2
(
∂ur
∂x

+
∂ux
∂r

)2].

With ur = 0, uθ = 0 and ux independent of θ, ux = u(r), the equation (2.2.1)

without external heat sources reduces to :
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ρcvu(r)
∂T

∂x
= k

(
∂2T

∂r2
+

1

r

∂T

∂r
+
∂2T

∂x2

)
+ µ

(
∂u

∂r

)2

. (2.2.2)

The boundary condition for equation (2.2.2) is T = T1, see (2.2.12)-(2.2.13)

prescribed at the wall of the pipe, r = a. Part of the pipe is beneath the sea

bottom with the inlet oil temperature, say, T0 = 60◦C and the part of the pipe

is surrounded by sea water at temperature, say, T1 = 10◦C. We specify in this

study the wax appearance temperature as, TWAT = 33◦C. The wax appearance

temperature is the temperature at which the first wax particle appears because

the wax begins to precipitate from the oil when the temperature is at or below

the WAT.

To estimate the contribution of the viscous heating term in (2.2.2), we

consider the solution of equation (2.2.2) far from the entrance, where the tem-

perature is independent of x :∂T
∂x

= 0. Then equation (2.2.2) becomes

k

(
∂2T

∂r2
+

1

r

∂T

∂r

)
= −µ

(
∂u

∂r

)2

. (2.2.3)

Using (2.1.16) in (2.2.3) yields

k

(
∂2T

∂r2
+

1

r

∂T

∂r

)
= −4µu2

maxr
2

a4

and

d

dr

(
r
dT

dr

)
=
−4µu2

maxr
3

ka4
. (2.2.4)

Integrating (2.2.4) twice with respect to r gives:

T (r) =
−µu2

maxr
4

4ka4
+ c1 log(r) + c2. (2.2.5)

Now, we need two conditions to determine the constants of integration. They

are
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1) The temperature T is finite in the flow region, 0 ≤ r ≤ a.

2) T = T1 at r = a.

The first condition yields that the temperature (2.2.5) can not contain the log

term because it is singular at r = 0. So we set c1 = 0. Then (2.2.5) becomes

T (r) =
−µu2

maxr
4

4ka4
+ c2. (2.2.6)

Substituting (2.2.6) into the second condition gives

−µu2
max

4k
+ c2 = T1. (2.2.7)

Then

c2 =
µu2

max

4k
+ T1. (2.2.8)

Equations (2.2.6) and (2.2.8) provide

T (r) = T1 +
µu2

max

4k

(
1− r4

a4

)
, (0 ≤ r ≤ a). (2.2.9)

This is the temperature distribution in the Poiseuille flow with constant tem-

perature T1 at the wall, r = a. Note that the temperature T (r) increases with

increasing distance from the wall. Therefore, (2.2.9) shows that the viscous

heating increases the temperature in the flow. The maximum increase of the

temperature is achieved at the axis of the pipe, r = 0, where it takes the value

T1 + µu2
max

4k
. For our reference values, we find that the temperature difference

between the centre and wall is

T (0)− T1 =
µu2

max

4k
=

2× 10−3kg/(m · s)× (1m/s)2

4× 0.261J/(s ·m ·K)
≈ 0.0019K. (2.2.10)
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We have seen that T (0) − T1 in equation (2.2.10) is independent of the pipe

radius a, and is rather small. The temperature profile (2.2.9) is shown in figure

2.2.1. Then T (r)−T1 is small compared with T1 and can be neglected. So, the

calculation of the temperature T (x, r) by (2.2.1) can be achieved with good

accuracy with Φ = 0.

We have found that the maximum temperature difference due to the viscous

heating term is very small compared with the wall temperature. This means

the viscous heating does not affect significantly the temperature distribution

in the pipe.
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Figure 2.2.1: Plot showing the temperature difference, T (r)−T1, as a function

of r: 0 ≤ r ≤ 0.2 for a pipe of radius a = 0.2.
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2.2.2 Temperature distribution without viscous

heating

It was shown in section 2.2.1 that the viscous heating term Φ(x, r) in equation

(2.2.1) does not affect significantly the temperature distribution. So in this

section we neglect Φ in (2.2.2). In this section, the so-called Graetz problem is

formulated and solved using the separation variables method and the Kummer

equation. Here, we consider equation (2.2.2) without the viscous heating term,

but with T dependent on r and x,

ρcvu(r)
∂T

∂x
= k

(
∂2T

∂r2
+

1

r

∂T

∂r
+
∂2T

∂x2

)
. (2.2.11)

The boundary conditions for (2.2.11) are:

T (0, r) = T0, where x = 0, 0 ≤ r ≤ a, (2.2.12)

T (x, a) = T1, where x > 0, r = a. (2.2.13)

To write the energy equation (2.2.11) in a more convenient form, we introduce

the following dimensionless variables,

r̃ =
r

a
, x̃ =

x

X
, θ̃(x̃, r̃) =

T − T1

T0 − T1

, (2.2.14)

where r̃, x̃ and θ̃(x̃, r̃) are dimensionless, and a is the radius of the pipe, X is

the length scale of thermal effects along the pipe to be specified below, T0 is

the temperature of the oil entering the pipe, and T1 is the temperature of the

walls of the pipe. By using the chain rule, we find
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

∂T
∂x

= ∂T
∂x̃

∂x̃
∂x

= (T0 − T1) 1
X
∂θ̃
∂x̃

∂2T
∂x2 = (T0 − T1) 1

X2
∂2θ̃

∂x̃2

∂T
∂r

= (T0 − T1)∂T
∂r̃

∂r̃
∂r

= (T0 − T1) 1
a
∂θ̃
∂r̃

∂2T
∂r2 = (T0 − T1) 1

a2
∂2θ̃

∂r̃2

(2.2.15)

In terms of these variables the equation for the dimensionless temperature

become:

a2

k
ρcvu

1

X

∂θ̃

∂x̃
=
∂2θ̃

∂r̃2
+

1

r̃

∂θ̃

∂r̃
+
a2

X2

∂2θ̃

∂x̃2
, (0 ≤ r̃ ≤ 1, 0 < x̃ <∞), (2.2.16)

where u is the axial velocity of the flow given by (2.1.16). Then equation

(2.2.16) becomes

a2

kX
ρcvumax(1− r̃2)

∂θ̃

∂x̃
=
∂2θ̃

∂r̃2
+

1

r̃

∂θ̃

∂r̃
+
a2

X2

∂2θ̃

∂x̃2
, (0 ≤ r̃ ≤ 1, 0 < x̃ <∞),

(2.2.17)

where the length scale X along the pipe is to be determined in such a way

that all coefficients in the energy equation are less than or equal to one in the

dimensionless variables. We choose X = a2

k
ρcvumax and then equation (2.2.17),

becomes

(1− r̃2)
∂θ̃

∂x̃
=
∂2θ̃

∂r̃2
+

1

r̃

∂θ̃

∂r̃
+
a2

X2

∂2θ̃

∂x̃2
, (0 ≤ r̃ ≤ 1, 0 < x̃ <∞). (2.2.18)

The dimensionless boundary conditions at the inlet x̃ = 0, and at the wall

r̃ = 1, for equation (2.2.18), are:

θ̃(0, r̃) = 1 where x̃ = 0, 0 ≤ r̃ ≤ 1, (2.2.19)
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θ̃(x̃, 1) = 0 where x̃ > 0, r̃ = 1. (2.2.20)

The dimensional temperature is given by

T (x, r) = T1 + (T0 − T1)θ̃ (x̃, r̃) . (2.2.21)

We obtain thermal transport equation in the dimensionless variables (tilde is

dropped below),

(1− r2)θx = θrr +
1

r
θr + ε2θxx, (0 ≤ r ≤ 1, 0 < x <∞) (2.2.22)

where

ε =
a

X
=

a
a2ρcvumax

k

=
k

aρcvumax
=

1

Pe
. (2.2.23)

The Peclet number is defined as Pe = aρcvumax
k

which is the product of the

Reynolds number and Prandtl number, see [27], and Pe >> 1 in our problem.

So, 1
Pe
<< 1 and ε is a small parameter of the problem.

In our reference case we find :

X =
a2

k
ρcvumax ≈

(0.2m)2 × 806(kg/m3)× 1950(J/(kg ·K))× 1(m/s)

0.261(J/s ·m ·K)

≈ 2× 105m,

(2.2.24)

and then we find

ε =
a

X
=

0.2m

2× 105m
= 10−6. (2.2.25)

From the calculation above we find the length scale of the thermal effects is

about 200 km. The value of ε in equation (2.2.25) is very small. Thus, the

axial diffusion term in equation (2.2.22), ε2θxx, can be neglected relative to the

radial diffusion. So, we obtain the following approximate equation at leading

order as ε −→ 0,
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(1− r2)θx = θrr +
1

r
θr, (0 ≤ r ≤ 1, 0 < x <∞). (2.2.26)

Equation (2.2.26) is of parabolic type with x being a time-like variable. For the

parabolic equation (2.2.26), the solution θ(x, r) at x = x∗ depends on θ(x, r),

where x < x∗, but is independent of the temperature downstream, x > x∗,

where x∗ stand for the downstream axis.

The dimensionless boundary conditions (2.2.19) and (2.2.20) provide (tildes

are dropped)

θ(0, r) = 1 where x = 0, 0 < r < 1, (2.2.27)

θ(x, 1) = 0 where x > 0, r = 1. (2.2.28)

We consider the solution of equation (2.2.26) when the wall of the pipe is

kept at a constant temperature, see (2.2.28). The boundary condition (2.2.27)

provides the initial condition for the parabolic equation (2.2.26).

Equation (2.2.26) is a linear equation where x and r are independent vari-

ables. We use the method of separation of variables by assuming the solution

in the form

θ(x, r) = g(x)f(r). (2.2.29)

Substituting (2.2.29) into (2.2.26) and separating the variables yields

g′(x)

g(x)
=

1

r(1− r2)

[
r
f ′′(r)

f(r)
+
f ′(r)

f(r)

]
= −β2, (2.2.30)

where β is a positive real constant to guarantee that T (x, r) decays as x −→

+∞. Then we have two separate equations:

dg

dx
+ β2g(x) = 0, (x > 0) (2.2.31)
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and

f ′′(r) +
1

r
f ′(r) + β2(1− r2)f(r) = 0 (0 < r < 1). (2.2.32)

The boundary condition (2.2.28) gives the condition

f(1) = 0, (2.2.33)

for equation (2.2.32). The nontrivial, f(r) 6≡ 0, and regular solution of spec-

tral problem (2.2.32) and (2.2.33) exist only for some values of the spectral

parameter β = βm, where we choose βm to be real and positive numbers with

βm+1 > βm and m ≥ 0. Equation (2.2.32) is a linear ordinary differential

equation for f(r). In order to solve it, we introduce a new unknown function

W (Z) and a new independent variable Z by, see [81],

Z = βr2, W (Z) = e
Z
2 f(r). (2.2.34)

Then equation (2.2.32) is transformed to

Z
d2W

dZ2
+ (1− Z)

dW

dZ
−
(

1

2
− β

4

)
W = 0. (2.2.35)

Equation (2.2.35) is known as Kummer’s equation. It has two linearly inde-

pendent solutions, one of them is singular at Z = 0. The regular solution of

equation (2.2.35) is

W (Z) = CM

(
1

2
− β

4
, 1, Z

)
,

where C is an arbitrary constant and the function M(a, b, z) is introduced

in [1] as the following series,

M(a, b, Z) =1 +
a

b
Z +

a(a+ 1)Z2

b(b+ 1)n!
+ · · ·+ a(a+ 1) · · · (a+ n+ 1)Zn

b(b+ 1) · · · (b+ n− 1)n!
+ . . .

=1 +
∞∑
k=1

(a)k
(k! )2

Zk,

(2.2.36)
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where

a =
1

2
− β

4
, b = 1, (a)k = a(a+ 1)(a+ 2) · · · (a+ k− 1), (a)0 = 1,

k ≥ 1.

The boundary condition (2.2.33) leads to the following equation for the spectral

parameter β,

M

(
1

2
− β

4
, 1, β

)
= 0, (2.2.37)

where

M

(
1

2
− β

4
, 1, β

)
≈ 1 +

K∑
k=1

(2−β
4

)k

(k! )2
βk. (2.2.38)

The level of truncation K in equation (2.2.38) was determined numerically

in [81], as K = 40, see also [41,68]. Corresponding to each root βm of (2.2.37),

there is the eigenfunction fm(r) given by

fm(r) = e
−βmr2

2 W (βmr
2). (2.2.39)

In the following we use the result from [81], that the eigenfunctions fm(r) are

orthogonal with the weight function r(1 − r2) over the interval r ∈ [0, 1], see

Appendix A for statement about orthogonal. The corresponding solution of

equation (2.2.31) is

g(x) = Ae−β
2
mx. (2.2.40)

The method of separation variables yields an infinite series solution for the

dimensionless temperature

θ(x, r) =
∞∑
m=0

Ame
−β2

mxfm(r). (2.2.41)
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This series satisfies equation (2.2.26), the wall condition (2.2.28), and decays

at x→ +∞.

The inlet condition (2.2.27) provides the equation for the coefficients Am,

1 = θ(0, r) =
∞∑
m=0

Amfm(r), (2.2.42)

which should be satisfied for any r ∈ [0, 1].

To obtain the coefficients Am, we multiply both sides of equation (2.2.42) by

r(1 − r2)fn(r) and integrate in r from 0 to 1, with account for orthogonality

condition, ∫ 1

0

r(1− r2)fn(r)fm(r)dr = 0 (n 6= m). (2.2.43)

We have ∫ 1

0

r(1− r2)fn(r)dr = An

∫ 1

0

r(1− r2)f 2
n(r)dr. (2.2.44)

Then equation (2.2.44) gives the constants Am as

Am =

∫ 1

0
r(1− r2)fm(r)dr∫ 1

0
r(1− r2)f 2

m(r)dr
. (2.2.45)

Substituting equations (2.2.36) and (2.2.39) into (2.2.45), we obtain

Am =

∫ 1

0
r(1− r2)e

−βmr2
2

(
1 +

K∑
k=1

(am)k
(k!)2 β

k
mr

2k

)
dr

∫ 1

0
r(1− r2)e−βmr2

(
1 +

K∑
k=1

(am)k
(k!)2 βkmr

2k

)2

dr

. (2.2.46)

The first ten eigenvalues βn and coefficients An are shown in the Table 2.1,

taken from [81]. However, we checked these roots by equation (2.2.37) using

accurate Matlab computations and we find the first 15 roots of β and the

coefficients A as shown in Table 2.2. As m increases, βm values differ in the

6th significant digit, and Am differ by about one percent, between the two

tables.
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m βm Am

0 2.7043644 +1.476435

1 6.6790315 -0.806124

2 10.6733795 +0.588761

3 14.6710785 -0.475850

4 18.6698719 +0.405019

5 22.6691438 -0.355757

6 26.6686716 +0.319169

7 30.6684241 -0.290745

8 34.6686899 +0.267952

9 38.6704098 -0.249322

Table 2.1: Eigenvalues of Graetz problem, these numerical values are taken

from [81].

Consequently equations (2.2.34), (2.2.36), (2.2.41), yield the dimensionless

temperature in the form

θ(x, r) =
∞∑
m=0

Ame
−βm(βmx+ 1

2
r2)

(
1 +

K∑
k=1

(am)k
(k! )2

βkmr
2k

)
, (2.2.47)

where the values of βm and Am are given in the Table 2.1.

The number of terms m in the series (2.2.47) is limited in calculations here to

the first fifteen terms. The dimensionless temperature (2.2.47) is shown in fig-

ure 2.2.2. From the figure 2.2.2 we see a decreasing temperature for x > 0 and

we arrive at a flat distribution when x is large enough. The surrounding sea

water absorb the thermal energy as the oil moves in the positive x direction.

At the centre of the pipe r = 0 the temperature decreases more slowly toward
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zero as x increases, where the temperature near the wall, r ≈ 1, drops quickly

toward the wall temperature with increasing x. Figure 2.2.3 shows the dimen-

sional temperature distributions as functions of r at several position along the

pipe. We see the temperature is varying along the pipe, and as x increases the

temperature decreases. The temperature decreases monotonically as a function

of the radial coordinate. Finally, the dimensional temperatures everywhere in-

side the pipe decrease towards 10◦C as x increases. For x = 1km, the wax

appearance temperature is achieved only close to the wall. This means that

at the distance 1km from the entrance to the pipe, the wax molecules precipi-

tate out of the solution only close to the wall where the temperature is below

the wax appearance temperature. The dimensionless temperature (2.2.47) at

r = 0, T (x, 0), as a function of the dimensionless distance x from the pipe

entrance is shown in figure 2.2.4. It is seen that the temperature quickly de-

cays as x increases. Figure 2.2.5 shows the dimensionless temperature (2.2.47)

as a function of r when x = 0.01 for different numbers of terms in the series

solution. The figure shows the rapid convergence of the solution as number of

terms increases.

Figure 2.2.6 shows temperature contours, yellow region indicate high tem-

perature and blue region indicate lower temperature. In Figure 2.2.6 we see at

x = 0, r = a, the contours of constant temperature meet at this point. This

occurs because of discontinuity in boundary conditions at this point: T1 on

pipe and T0 at entrance.
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Figure 2.2.2: The dimensionless temperature distributions T (r, x) as functions

of r, 0 ≤ r ≤ 1, for different distances x of the pipe.

38



0 0.05 0.1 0.15 0.2r
10

20

30

40

50

60

T
[
C

◦
] x = 1

0 0.05 0.1 0.15 0.2r

10

20

30

40

50

60

T
[
C

◦
]

x = 10

0 0.05 0.1 0.15 0.2r

10

20

30

40

50

60

T
[
C

◦
]

x = 20

0 0.05 0.1 0.15 0.2r

10

20

30

40

50

60

T
[
C

◦
]

x = 30

0 0.05 0.1 0.15 0.2r

10

20

30

40

50

60

T
[
C

◦
]

x = 40

0 0.05 0.1 0.15 0.2r
10

20

30

40

50

60

T
[
C

◦
]

x = 3

Figure 2.2.3: The dimensional temperature distributions T as functions of r,

0 ≤ r ≤ 0.2 [m], for different distances x[km] from the entrance to the pipe.
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Figure 2.2.4: The dimensionless temperature (2.2.47) at the axis of the pipe,

r = 0, as a function of distance x from the entrance to the oil pipe.
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Figure 2.2.6: Contour temperature, yellow region indicate high temperature

and blue region indicate lower temperature.
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m βm Am

0 2.704364420 1.479465155

1 6.679031449 -0.8097330056

2 10.67337954 0.5924034190

3 14.67107846 -0.4791944207

4 18.66987186 0.4080620926

5 22.66914336 -0.3585345121

6 26.66866200 0.3217268881

7 30.66832334 -0.2931085984

8 34.66807382 0.2701069718

9 38.66788335 -0.2511437176

10 42.66773381 0.2351923287

11 46.66761370 -0.2215539004

12 50.66751540 0.2097347031

13 54.66743365 -0.1993751973

14 58.66736475 0.1902068142

Table 2.2: Numerical values of βm and Am.
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Chapter 3

Spherically symmetric growth of

a single wax particle

Some types of crude oil contain dissolved waxes that can be precipitated out

of solution and become deposited on the internal walls of oil pipes. The wax

begins to precipitate out of solution at or below a so-called wax appearance

temperature (WAT) which is the temperature at which the first solid wax par-

ticle appears in the solution. Many authors have studied the wax deposition

onto the wall of a pipe, see [5, 18, 44, 77]. The deposition causes many prob-

lems for the oil industry, restricting flow and possibly leading to blocking the

pipe. Correa et al. [19] modelled the wax deposition in the turbulent flow of

waxy crude oil in a cylindrical pipeline. They assumed the transport of waxes

towards the wall is essentially due to molecular diffusion. A mathematical

formulation of the spherically symmetric mass transfer problem was presented

in [35]. It focused on the particle growth by precipitation from a solution onto

a solid particle. In the leading order problem, the convective term in the dif-
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fusion equation is neglected and the radius of the particle did not change with

time. The diffusion equation in a time-independent domain with stationary

particle surface is solved.

To our knowledge there are many models focused on the deposition of

wax molecules on the wall of the pipe, but there are very few models focused

on what happens to the wax particles before they are deposited on the pipe

wall. In this chapter, we are interested in knowing what happens before a

wax particle arrives at the wall and sticks to it. We will estimate how a wax

particle grows from a microscopic dust particle in the oil. Many particles stuck

together make a gel. By definition, a gel or (a semi-solid) is a mixture which

has a structure consisting of particles of wax, between which there is a liquid oil

phase. Gelification is a process of gel growth, and this occurs at temperatures

below the wax appearance temperature, which depends on concentration of

wax in the solution [32]. As the wax particles are pressed together in time by

hydrodynamic forces, the gel is transformed into a solid wax phase. In this

chapter, we consider a single wax particle growth. We deal with a self-similar

solution of a single wax particle problem in a viscous flow. The diffusion

equation will give the concentration of wax molecules around the wax particle

as a function of distance and time.

In this chapter we will derive an analytical solution of diffusion equation

for a special dependence of the mass transfer coefficient on time. A reason

for deriving an analytical solution for artificial mass transfer coefficient in the

boundary condition on the wax particle surface is to validate the numerical

algorithm in chapter 4. In section 3.1, we give a description of a single spherical

wax particle problem. In section, 3.2, we introduce the boundary conditions

and finalize the formulation of the dimensional problem. In section 3.3, we
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investigate the self-similar solution for the coupled problem C = C(r, t) and

R = R(t), and we find the distribution of the concentration in the fluid. Finally,

in section 3.4, we compute the speed of the particle growth.

3.1 Growth of a single spherical particle in

an unbounded solution

We consider the motion and growth of a small solid spherical particle in the

oil flowing in the pipe. Hot oil enters the pipe from underground. In offshore

oil fields, it comes from beneath the sea bottom and flows along the pipe.

The pipe is surrounded by seawater, the temperature of which is below the

temperature of the oil at the entrance to the production pipe. A crude oil

is a mixture of oil and wax molecules. We introduce a small impurity (e.g.

dust) of initial radius R0 at the entrance of the pipe at a distance H from the

wall. Initially there is a small particle such as piece of dust that forms the

nucleus of the later growing wax particle. The spherical wax particle moves

with the flowing oil. At the beginning the wax particle does not increase its

radius because the temperature at the entrance of the pipe is too high for

the wax to precipitate out of the oil. At a distance from the entrance, where

the temperature is below the wax appearance temperature, the wax dissolved

in the oil comes to the wax particle and makes it bigger. The wax particle

has radius R(t) at time t ≥ 0. Initially R(0) = R0. The radius of the wax

particle is increasing with time, hence, dR(t)
dt

is positive. The mass flux of wax

molecules in the oil away from the surface of the wax particle is given by Fick’s

first law which relates the diffusive mass flux ~J to the concentration gradient,
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see [14, 21]

~J = −ρwlD∇C, (3.1.1)

where ∇C is the gradient of the wax concentration C(x, y, z, t), D ≥ 0 is the

diffusivity of wax, D is assumed constant, and ρwl is the density of solid wax.

The definition of concentration C is C = Vwax
Vwax+Voil

where Vwax is the volume

of wax and Vwax + Voil is the total volume of an infinitesimal portion of the oil

and wax mixture. So, the concentration is the volume concentration, which

is non-dimensional and 0 ≤ C ≤ 1. The mass concentration of the wax is

ρwsVwax
ρwsVwax+ρoilVoil

. Equation (3.1.1) describes the fact that the diffusion of wax

particles occurs from regions of higher concentration towards regions of lower

concentration.

The conservation of wax mass in every region of the fluid domain, along

with the divergence theorem for mass flux (3.1.1) imply that, see [57],

ρwl
DC

Dt
= −∇ · ~J. (3.1.2)

Here the operator D()
Dt

is called the material derivative,

D()

Dt
=
∂()

∂t
+ (~u · ∇) (), (3.1.3)

where ~u is the fluid velocity relative to the wax particle.

Combining Fick’s first law (3.1.1) with the mass conservation law (3.1.2) we

arrive at the equation which describes how wax molecules diffuse in the fluid

domain outside the wax particle surface,

ρws
DC

Dt
= −∇(−ρwsD∇C).

For constant diffusivity D, the convective-diffusion equation reads,

DC

Dt
= D∇2C. (3.1.4)
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If the wax particle is spherical or almost spherical, it is convenient to use the

spherical coordinate system. The diffusion equation (3.1.4) in the spherical

coordinate system (r, θ, φ) , see figure 3.1.1, with the origin at the centre of

the spherical wax particle, has the form

DC

Dt
= D

[
1

r2

∂

∂r

(
r2∂C

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂C

∂θ

)
+

1

r2 sin2 θ

∂2C

∂φ2

]
, (3.1.5)

where C = C(r, θ, φ, t) is the volume concentration of wax in the oil, t is time. If

the wax particle is small, the relative velocity of the wax particle with respect to

the flow is negligibly small. So, we can neglect the convective terms, (~u · ∇)C,

with respect to the diffusion term in (3.1.3). Hence the material derivative

(3.1.3) becomes DC
Dt
≈ ∂C

∂t
, at the leading order for small wax particles.
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R = Point on c

j = Segment Q, R

S = Point on f

Figure 3.1.1: Spherical coordinate system.
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3.2 Modelling of the growth of a spherical

wax particle

Here, we model the growth of a single spherical wax particle. The radius of the

wax particle is increasing due to a flux of wax molecules moving towards the

wax particle, and sticking to its surface. Let a wax particle which is introduced

at the entrance to the pipe, be placed at a certain distance from the wall. Its

radius is small and there is negligible motion of fluid relative to it. The wax

particle maintains its distance from the wall because of laminar flow. The wax

particle follows a straight path along one of the straight streamlines of the oil

flow. Dawson et al. [24] introduced the boundary condition at the surface of

a salt crystal, which relates the mass flux towards the crystal surface to the

value of the salt concentration on the surface,

−D∂C
∂n

= kr(C − C∗), (3.2.1)

where ~n is the unit normal directed into the salt crystal from its surface, kr is

the mass transfer coefficient, which has dimension of velocity m/s, and C∗ is the

solubility of the salt in water. We use this boundary condition to describe the

growth of the wax particle. In [24], the authors assumed the coefficient kr to

be constant, but in our case we generalize the boundary condition by assuming

kr to be a function of temperature. We also assume that the wax particle is

spherical. Hence, on the surface of the growing wax particle, condition (3.2.1)

gives

D
∂C

∂r
= kr{TWAT − T}(C − C∗), (3.2.2)

where the local radial coordinate r increases out of the particle into the fluid, C
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is the concentration at the particle surface boundary, r = R(t), kr{TWAT−T} is

a function of temperature and T = T (x(t), rp) is the temperature distribution

in the pipe, where (x(t), rp) is the location of the particle in the pipe, x(t) is

the distance the wax particle travelled from the entrance to the pipe and rp is

the distance of the particle trajectory for the pipe axis, as discussed in chapter

2. Here rp= constant and x(t) ≈ u(rp)t, where u(rp) is the flow velocity and

t is time. So overall, T = T (t). The coefficient kr is assumed to be a positive

function of temperature, kr{TWAT − T}. We expect the temperature T to

decrease in time, because the particle travels from a hot part towards a cold

part of the pipe. Hence, following the wax particle along the pipe, we may

assume the temperature to be a given function of time. So, kr{TWAT − T} =

kr(t) and kr ≥ 0. Note that kr = 0 where T > TWAT , and kr > 0 where

T < TWAT .

For a spherical particle the concentration gradient on its surface is,

(
∂C

∂r

)
r=R(t)

=


kr(t)
D

(C − C∗) if C(R, t) > C∗,

0 if C(R, t) < C∗,

(3.2.3)

as it follows from (3.2.2).

Summarizing the condition above, we conclude that a wax particle begins to

grow if the temperature around the wax particle is below the wax appearance

temperature, and also if the concentration on the surface exceeds the solubility

concentration C∗. We assume in the following that C0 > C∗, where C0 is the

wax concentration far from the wax particle, r −→∞. The rate of increase of

the particle mass, m = m(t), is equal to the inward-direction radial mass flux

at the surface of the wax particle multiplied by the surface area of the particle

and the wax density. All together this gives
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dm

dt
= 4πR2ρwsD

(
∂C

∂r

)
r=R(t)

, (3.2.4)

where dm
dt

(kg
s

) is the mass rate of wax transfer from the oil, ρws ( kg
m3 ) is the

constant density of solid wax, and the diffusivity D has dimension (m2

s
).

The mass of a spherical wax particle of radius R and constant density ρws is

m =
4

3
πR3ρws. (3.2.5)

Differentiating (3.2.5) with respect to time,

dm

dt
= 4πR2ρws

dR

dt
, (3.2.6)

and combining (3.2.4) and (3.2.6), we obtain the final form of the boundary

condition on the surface of the wax particle:

dR

dt
= D

(
∂C

∂r

)
r=R(t)

. (3.2.7)

The time-dependent, spherically symmetric problem can be summarize as fol-

lows:

Field equation for the wax concentration in the oil, C = C(r, t),

∂C

∂t
=
D

r2

∂

∂r

(
r2∂C

∂r

)
, r > R(t), t > 0. (3.2.8)

Initial conditions in the oil

C(r, 0) = C0, r > R(0). (3.2.9)

and for the wax particle

R(0) = R0.

The concentration at infinity is C0 and the concentration around the particle

is different from C0 because the particle accumulates wax molecules from the
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solution. If we integrate the −(C − C0) outside the particle, it should be

directly proportional to the finite mass of the wax which joins the particle,

I =

∫ 2π

0

∫ π

0

∫ ∞
R0

(C0 − C)r2 sin θdrdθdφ. (3.2.10)

The integral is finite if (C − C0)r2 decays quicker than 1
r

as r −→ ∞. This

gives that

(C(r, t)− C0) r3 −→ 0 as r −→∞

Boundary and far-field conditions:
D ∂C

∂r
= kr(t)(C − C∗), r = R(t), t > 0

(C(r, t)− C0) r3 −→ 0 as r −→∞, t > 0

(3.2.11)

The mass balance:

dR

dt
= D

∂C

∂r
, r = R(t), t > 0. (3.2.12)

We assume in the following that kr(t) = Dk1ζ(t), where k1 is a given coefficient

and ζ(t) is a known function of time.

3.3 Self-similar solution of the problem

We look for a self-similar solution of the coupled problem (3.2.8)-(3.2.12) with

respect to C = C(r, t) and R = R(t). The spherically symmetric diffusion

equation (3.2.8) admits a self-similar solution in the form C = f(ξ), where

ξ = r√
Dt

is a dimensionless similarity variable. We assume the radius of the

wax particle growing as R(t) = λ
√
Dt, where λ is a positive constant coefficient

to be determined. On the wax particle surface, r = R(t), we have

ξ =
R(t)√
Dt

=
λ
√
Dt√
Dt

= λ.
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So the moving boundary of the growing wax particle in (r, t) space is now a

fixed boundary in ξ space. The dimensions in this problem are:

The concentration [C] = 1, the radial coordinate [r] = m, the time [t] = s and

the diffusion coefficient [D] = m2/s. Therefore, ξ is non-dimensional and the

function f(ξ) satisfies the following equation obtained from (3.2.8)

f ′′(ξ) +

(
2

ξ
+
ξ

2

)
f ′(ξ) = 0, ξ > λ. (3.3.1)

By substituting C = f( r√
Dt

) into (3.2.11) we obtain

f ′(λ)√
Dt

= k1ζ(t)(f(λ)− C∗) (3.3.2)

Equation (3.3.2) gives that a self-similar solution exists only if ζ(t) = 1√
t

for

t > 0. With such a function ζ(t), equation (3.3.2) becomes

f ′(λ) = k1

√
D (f(λ)− C∗) . (3.3.3)

Then the condition (3.2.12) gives

f ′(λ) =
1

2
λ. (3.3.4)

The problem with respect to f(ξ) and λ is formulated as:

f ′′(ξ) +
(

2
ξ

+ ξ
2

)
f ′(ξ) = 0, ξ > λ,

f ′(λ) = k1

√
D (f(λ)− C∗) ,

f ′(λ) = 1
2
λ,

f(ξ) −→ C0 as ξ −→∞.

(3.3.5)
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Now we want to figure out what is the dimension of the coefficient k1. We

have that kr(t) = Dk1ζ(t) and ζ(t) = 1√
t
, where the mass transfer coefficient

kr has the unit [m
s
] see (3.2.1), the diffusion coefficient has a unit [m2

s
], and the

function ζ(t) has the unit [ 1√
s
]. So, k1 is a coefficient has a unit [

√
s

m
]. Therefore,

in equation (3.3.5)2, k1

√
D is nondimensional. We denote k1

√
D = ε, where ε

is a non-dimensional parameter.

A general solution of the second order ordinary differential equation (3.3.5)1 is

f(ξ) = A+Bf2(ξ), (3.3.6)

where A and B are arbitrary constants. Putting f ′2(ξ) = u(ξ), we find that

u(ξ) must satisfy the first-order ordinary differential equation

u′(ξ) +

(
2

ξ
+
ξ

2

)
u(ξ) = 0. (3.3.7)

This equation is solved by separating the variables ξ and u:

du

u
+

(
2

ξ
+
ξ

2

)
dξ = 0. (3.3.8)

Integrating both sides of (3.3.8) yields

lnu+ 2 ln ξ +
ξ2

4
= c, (3.3.9)

where c is a constant of integration. We obtain

lnuξ2 +
ξ2

4
= c,

and

uξ2 = ec−
ξ2

4 . (3.3.10)

Dividing both sides of equation (3.3.10) by ξ2, we have
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u(ξ) =
c2

ξ2
e−

ξ2

4 . (3.3.11)

We see that u(ξ) −→ 0 as ξ −→ ∞. The constant c2 is set to 1 because f2(ξ)

is a particular solution of the ODE (3.3.5)1. Then we integrate both sides of

f ′2(ξ) = u(ξ) to find f2(ξ), where we require that f2(ξ)→ 0 as ξ →∞,

f2(ξ) = −
∫ ∞
ξ

u(ξ0)dξ0. (3.3.12)

Equations (3.3.11) and (3.3.12), give

f2(ξ) = −
∫ ∞
ξ

ξ−2
0 e−

ξ20
4 dξ0. (3.3.13)

Substituting (3.3.13) into equation (3.3.6), we find a general solution of the

second order ODE (3.3.5)1:

f(ξ) = A−B
∫ ∞
ξ

ξ−2
0 e−

ξ20
4 dξ0. (3.3.14)

The far-field condition (3.3.5)4, f(ξ) −→ C0, as ξ −→∞, gives A = C0.

Then equation (3.3.14) becomes

f(ξ) = C0 −B
∫ ∞
ξ

ξ−2
0 e−

ξ20
4 dξ0. (3.3.15)

The constant B is determined by the boundary condition (3.3.5)2. Differenti-

ating (3.3.6) with respect ξ, and setting ξ = λ, we find

f ′(λ) = Bu(λ). (3.3.16)

Substituting (3.3.16) into equation (3.3.5)2, we have

Bu(λ) = ε(f(λ)− C∗). (3.3.17)

Substituting f(λ) from equation (3.3.15) and u(λ) from equation (3.3.11) into

equation (3.3.17), we have

54



B
1

λ2
e−

λ2

4 = ε

(
C0 −B

∫ ∞
λ

ξ−2
0 e−

ξ20
4 dξ0 − C∗

)
. (3.3.18)

Simplifying (3.3.18) we obtain

B

(
1

λ2
e−

λ2

4 + ε

∫ ∞
λ

ξ−2
0 e−

ξ20
4 dξ0

)
= ε(C0 − C∗). (3.3.19)

We substitute f ′(λ) from equation (3.3.16) into the boundary condition (3.3.5)3,

λ = 2B
1

λ2
e−

λ2

4 , (3.3.20)

where B is defined by equation (3.3.19),

B =
ε(C0 − C∗)

1
λ2 e
−λ2

4 + ε
∫∞
λ
ξ−2

0 e−
ξ20
4 dξ0

. (3.3.21)

Then (3.3.20) provides the equation with respect to the coefficient λ,

λ =
2ε(C0 − C∗)

1 + ελ2e
λ2

4

∫∞
λ
ξ−2

0 e−
ξ20
4 dξ0

. (3.3.22)

Equation (3.3.22) can be written in term of ε(λ):

ε

(
λ3e

λ2

4

∫ ∞
λ

ξ−2
0 e−

ξ20
4 dξ0 − 2(C0 − C∗)

)
= −λ, (3.3.23)

where λ > 0, ε > 0, and C0 > C∗. Then

ε =
λ

2(C0 − C∗)− λ3e
λ2

4

∫∞
λ
ξ−2

0 e−
ξ20
4 dξ0

(3.3.24)

and

λ = 2ε(C0 − C∗)− λ3εe
λ2

4

∫ ∞
λ

ξ−2
0 e−

ξ20
4 dξ0. (3.3.25)

Integrating by parts the integral in the right-hand side of (3.3.25), we find

λ = 2ε(C0 − C∗)− λ3εe
λ2

4

[
e
−λ2

4

λ
− 1

2

∫ ∞
λ

e
−ξ20

4 dξ0

]
. (3.3.26)

Using the substitution u = ξ0
2
⇒ dξ0 = 2du into (3.3.26), we obtain
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λ = 2ε(C0 − C∗)− λ3εe
λ2

4

[
e
−λ2

4

λ
−
√
π

2

(
1− erf

(
λ

2

))]
, (3.3.27)

where erfc(λ
2
) = 1− erf(λ

2
).

Rearranging this equation, we finally obtain the following equation for λ

λ = 2ε(C0 − C∗)− λ2ε+

√
π

2
ελ3e

λ2

4 erfc

(
λ

2

)
, (3.3.28)

where erfc(λ
2
) is the complementary error function defined by erfc(λ

2
) = 2√

π

∫∞
λ
2
e−ξ

2
dξ

and erf(λ
2
) = 2√

π

∫ λ
2

0
e−ξ

2
dξ, see [83].

Equation (3.3.20), provides the coefficient B as a function of λ,

B =
1

2
λ3e

λ2

4 . (3.3.29)

Substituting equation (3.3.29) into (3.3.15), we obtain the solution f(ξ)

f(ξ) = C0 −
λ3e

λ2

4

2

∫ ∞
ξ

ξ−2
0 e−

ξ20
4 dξ0 ξ > λ. (3.3.30)

Then, we find the concentration distribution for self-similar solution, where

C = f(ξ),

C = C0 −
λ3e

λ2

4

2

∫ ∞
ξ

ξ−2
0 e−

ξ20
4 dξ0 ξ > λ. (3.3.31)

Integrating by parts, we obtain

C(ξ) = C0 −
λ3e−

ξ2

4 e
λ2

4

2ξ
+
λ3
√
πe

λ2

4

4
erfc

(
ξ

2

)
, (3.3.32)

where ξ = r√
Dt

and R(t) = λ
√
Dt. Substituting ξ into (3.3.32), we find the

concentration as a function of r and t,

C(r, t) = C0 −
λ3e−

r2

4Dt e
λ2

4

√
Dt

2r
+
λ3
√
πe

λ2

4

4
erfc

(
r

2
√
Dt

)
. (3.3.33)

Equation (3.3.33) describes the concentration distribution in the fluid outside

the surface of the wax particle.
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The concentration on the surface of the wax particle, r = R(t) = λ
√
Dt, is

C(λ) = C0 −
λ2

2
+
λ3
√
πe

λ2

4

4
erfc

(
λ

2

)
. (3.3.34)

3.4 Computing the root λ of equation

(3.3.28)

Equation (3.3.28) can be written as

− ε
√
π

2
λ3e

λ2

4 erfc

(
λ

2

)
+ λ+ ελ2 = 2ε(C0 − C∗). (3.4.1)

Equation (3.4.1) cannot be solved analytically, so we approach the problem

by using a graphical method. We seek a solution λ > 0. The first term in

the left-hand side of this equation is negative, the second and third terms are

positive, and the right-hand side is positive. We investigate two possibilities

asymptotically, assuming only that 2ε(C0 − C∗) > 0.

(i) If λ is large then we can approximate the left-hand side in (3.4.1) by using

the asymptotic expansion of the complementary error function erfc(x) = 1 −

erf(x), as x −→∞, see [1]. The complementary error function is defined by

erfc(x) =
2√
π

∫ ∞
x

e−ξ
2

dξ.

The asymptotic expansion of the complementary error function as x −→ ∞

can be written as

erfc(x) ≈ e−x
2

√
πx

(
1− 1

2x2
+

1 · 3
(2x2)2

− 1 · 3 · 5
(2x2)3

− 1 · 3 · 5 · 7
(2x2)6

− 1 · 3 · 5 · 7 · 9
(2x2)5

+
1 · 3 · 5 · 7 · 9 · 11

(2x2)6
+ · · ·+ (−1)n(2n− 1)! !

(2x2)n
+ · · ·

)
,

(3.4.2)
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where (2n − 1)! ! is a double factorial: the product of all odd numbers up to

2n− 1.

For large λ, we have

erfc

(
λ

2

)
≈ e

−λ2

4

√
π λ

2

(
1− 2

λ2
+

12

λ4
− 120

λ6
+

1680

λ8
− 30240

λ10
+O

(
1

λ12

))
.

(3.4.3)

Inserting (3.4.3) into (3.4.1), we obtain

2ε− 12ε

λ2
+

120ε

λ4
− 1680ε

λ6
+

30240ε

λ8
+ λ+O

(
1

λ10

)
= 2ε(C0 − C∗). (3.4.4)

Divided both sides of (3.4.4) by ε, then we have

2− 12

λ2
+O

(
1

λ4

)
+
λ

ε
= 2(C0 − C∗), (3.4.5)

For λ >> 1, both the second and third terms in the left-hand side of (3.4.5)

are very small and can be neglected,

λ ≈ ε (−2 + 2(C0 − C∗)) . (3.4.6)

Here C0 is the wax concentration far from the wax particle, C∗ is the solubility

of the wax, 0 < C∗ < C0 < 1. In (3.4.6), C0 − C∗ − 1 < 0 because C0 < 1 <

1 + C∗. Therefore the right-hand side in (3.4.6) is negative for any positive ε.

But we assumed that λ is positive and large and we arrived at a contradiction

because the left-hand side and the right-hand side have opposite sign. This

means that there is no solution of (3.4.1), which is large and tends to infinity as

ε −→ ∞. However we can conclude that the left-hand side of (3.4.1) behaves

as λ+ 2ε+O( 1
λ2 ), see (3.4.4) as λ −→∞. So, we consider another possibility

with λ being small.

(ii) If λ is small, λ << 1, then we can approximate the left-hand side in (3.4.1)

by using the following inequalities from Abramowitz and Stegun, see [1] for

x ≥ 0:
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1

x+
√
x2 + 2

< ex
2

∫ ∞
x

e−t
2

dt ≤ 1

x+
√
x2 + 4

π

, x ≥ 0. (3.4.7)

Multipling (3.4.7) by 2√
π

and dividing by ex
2
, we find

2√
π

e−x
2

x+
√
x2 + 2

< erfc(x) ≤ 2√
π

e−x
2

x+
√
x2 + 4

π

. (3.4.8)

For x = λ
2
, the inequalities above give tight bounds,

2√
π

e−
λ2

4

λ
2

+
√

λ2

4
+ 2

< erfc

(
λ

2

)
≤ 2√

π

e−
λ2

4

λ
2

+
√

λ2

4
+ 4

π

, (3.4.9)

To obtain the same expression as in the left-hand side of (3.4.1), we multiply

the inequality (3.4.9) by −ε
√
π

2
λ3e

λ2

4 and add λ + ελ2. We obtain bounds on

the left-hand side of (3.4.1)

− λ3ε

λ
2

+
√

λ2

4
+ 2

+ λ+ λ2ε > −
√
πε

2
λ3e

λ2

4 erfc

(
λ

2

)
+ λ+ λ2ε

≥ − λ3ε

λ
2

+
√

λ2

4
+ 4

π

+ λ+ λ2ε,
λ

2
≥ 0.

(3.4.10)

Inequality (3.4.10) shows the left-hand side of (3.4.1) is bounded and these

bounds are very tight for small λ, later we will show it in Figure 3.4.2. Also

(3.4.10) is valid for positive ε. Using these inequalities we estimate the value

of λ.

The asymptotic behaviour of λ defined by equation (3.3.28) for small C0 −C∗

has the form

λ = (C0 − C∗)λ0 + (C0 − C∗)2λ1 +O
(
(C0 − C∗)3

)
, (3.4.11)

where λ0 and λ1 are to be determined. Substituting (3.4.11) into (3.3.28) and

equating the terms of the same order in (C0 − C∗), we find

λ0 = 2ε, λ1 = −ελ2
0 ⇒ λ1 = −4ε3. (3.4.12)
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Then the asymptotic behaviour of λ for fixed ε and small C0 − C∗ becomes

λ = 2ε(C0 − C∗)− 4ε3(C0 − C∗)2 +O
(
(C0 − C∗)3

)
. (3.4.13)

Figure 3.4.1 illustrates the left-hand side of equation (3.4.1) which was

computed by MATLAB for different values for ε. We can see the left-hand

side of equation (3.4.1) is positive for λ > 0 and any value of positive ε. The

function on the left-hand side of (3.4.1) is a monotonically increasing function

of λ for the conditions of the figure. This means that the coefficient λ, as a

solution of (3.4.1), is positive and, therefore, the radius of the wax particle

is always increasing with time. In the following calculations, the value of

C0 is taken from [66] and C∗ is chosen such that 0 < C∗ < C0 < 1 so we

choose C∗ = 0.01, see Table 3.1. Also we estimated the value of dimensionless

parameter ε = k1

√
D, we know the value of the diffusion coefficient D but we

choose the value of k1. Figure 3.4.2 illustrates the inequalities (3.4.10) and

shows both left-hand side and right-hand side of (3.4.1). We can see that the

bounds in (3.4.10) are tight for small λ, and that the left-hand side in (3.4.1)

increasing monotonically. We see in figure 3.4.3 that the root λ is very small,

λ = 0.01438, for ε = 0.08 and C0 − C∗ = 0.09. Figure 3.4.4 illustrates the

asymptotic behaviour of λ given by equation (3.4.13) as a function of C0−C∗

for fixed values of ε = 0.08. We can see that the two-term asymptotic formula

(3.4.13) gives λ = 0.014 for (C0 − C∗) = 0.09 and ε = 0.08. In figure 3.4.5 we

find λ = 0.15996 for ε = 0.8 and (C0 − C∗) = 0.09. In figure 3.4.6 we plot the

concentration as a function of the distance from the surface of the wax particle,

see equation (3.3.33). We see that the concentration outside the wax particle

is lower than C = 0.1 where r ≥ R(t) and the concentration at the surface of
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the wax particle is lower than the concentration at infinity. We see in figure

3.4.6 a positive gradient ∂C
∂r
> 0, this means that diffusion transports wax from

the surroundings toward the wax particle. The wax molecules are transported

from a higher concentration to lower concentration. We see that in 3.4.6 the

concentration increases in the far field. Also, we can see the radius of the wax

particle is growing with time, as time increases the radius increases. Figure

3.4.7 shows that the concentration on the surface of the wax particle decreases

with the increase of the growth speed λ. If the wax particle is growing faster,

then it is accumulated more wax molecules from the solution reducing C(λ).

The values of the parameters used in the calculations are given in Table 3.1.

Param. Description Value Reference

C0 initial concentration 0.1 [66]

C∗ solubility concentration 0.01 chosen

kr the mass transfer coefficient 4.5·10−6(m
s

) [24]

ε k1

√
D 0.08 chosen

D diffusion coefficient 10−6 [20]

Table 3.1: Estimates of values of the model’s parameters
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Figure 3.4.1: The left hand side of equation (3.4.1) for different values of ε.
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Figure 3.4.2: Plot of the left-hand side (3.4.1), right-hand side (3.4.1), and the

two bounds described in the inequalities (3.4.10), where ε = 0.9 and C0−C∗ =

0.09.
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Figure 3.4.3: Plot of the two sides of equation (3.4.1) to determine graphically

the root λ, (ε = 0.08 and C0−C∗ = 0.09). The left-hand side is shown by blue

and the right-hand side by red lines.
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Figure 3.4.4: The asymptotic behaviour of λ as a function of C0 − C∗.
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Figure 3.4.5: Plot of the two sides of equation (3.4.1) to determine graphically

the root λ, (ε = 0.8 and C0 −C∗ = 0.09). The left-hand side is shown by blue

and the right-hand side by red lines.
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Figure 3.4.6: The concentration C(r, t) as a function of distance from the

surface of the wax particle, where r > R(t) and λ = 0.01. Each curve is

plotted for a given value of t.
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Figure 3.4.7: The concentration on the surface of the wax particle given by

(3.3.34).
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Chapter 4

Numerical investigation of

spherical wax particle

In this chapter, we study numerically the initial boundary value problem

(3.2.8)-(3.2.12) formulated in chapter 3 for spherical growth of a wax par-

ticle. The problem is summarized in section 4.1. In section 4.2, we introduce

the non-dimensional variables and simplify the problem by introducing a new

unknown function. In section 4.3, we find an integral representation of the so-

lution of this problem through the initial and boundary values of the unknown

concentration by using a Green’s function. The boundary condition on the

surface of the growing spherical wax particle provides an integral equation for

the wax concentration on the particle surface. This integral equation should

be solved together with the differential equation for the radius of the growing

wax particle. In section 4.4, we discretise the integral boundary equation by

developing a time stepping numerical algorithm. Piecewise linear functions are

used to approximate the nonlinear solution [39]. In section 4.5, we explain how
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the ordinary differential equation for the radius of the wax particle is solved

by using a Modified Euler Method. In section 4.6, we compare the self-similar

solution from chapter 3, with the numerical results of this chapter in order

to validate the numerical algorithm. In section 4.7, we study the boundary

value problem of one wax particle with constant mass transfer coefficient. The

results of this chapter are obtained using analytical and numerical methods.

These results help us to gain a better understanding of the growth of one

spherical wax particle.

4.1 Problem description

In this section, we summarize the initial boundary value problem (3.2.8)-

(3.2.12) derived in chapter 3, where it was solved analytically for particu-

lar mass transfer coefficient as a function of time. In the present chapter,

we develop a numerical method for any mass transfer coefficient that change

with temperature and validate it by comparing the numerical results with our

self-similar solution from chapter 3. Also we develop a numerical method for

constant mass transfer coefficient kr as shown in section 4.8.

The spherically symmetric dimensional problem of a wax particle growth

is formulated as
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

∂C
∂t

= D
r2

∂
∂r

(
r2 ∂C

∂r

)
(r ≥ R(t), t > 0),

C(r, 0) = Cs(r) (r ≥ R(0)),

(C(r, t)− C0) r3 −→ 0 (as r −→∞),

∂C
∂r

= k1ζ(t)(C − C∗) (r = R(t)),

dR
dt

= D ∂C
∂r

(r = R(t)),

R(0) = R0 (t = 0).

(4.1.1)

where C(r, t) is the concentration of the wax in the oil, t is the time, r is

the radial distance from the centre of the wax particle, and k1 is a constant

coefficient in the formula for the mass transfer coefficient kr(t) = Dk1ζ(t).

The initial concentration, Cs(r), satisfies the far-field condition, Cs(r) −→ C0

as r −→ ∞, and it is not necessarily uniform. The solubility C∗ is assumed

constant in this study.

4.2 Non-dimensional variables

In order to reduce the number of parameters and to make the formulation of

the problem simpler, we introduce dimensionless variables. Let us introduce

a characteristic length and time to be
√
Dt0 and t0, respectively, where t0

is a timescale which will be specified later. The dimensionless variables and

functions (denoted by over bars) are introduced by
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r̄ =
r√
Dt0

, t̄ =
t

t0
, R̄(t̄) =

R(t)√
Dt0

, C̄(r̄, t̄) =
C(r, t)− C0

(C0 − C∗)
,

ζ̄ (̄t) =
√
t0ζ(t),

where ζ̄(t̄) which defined in chapter 3, is a non-dimensional function of the

dimensionless time t̄. We use these non-dimensional variables to obtain:

∂C̄
∂t̄

= 1
r̄2

∂
∂r̄

(
r̄2 ∂C̄

∂r̄

)
(r̄ ≥ R̄(t̄)t̄ > 0),

C̄(r̄, 0) = Cs(r̄)−C0

C0−C∗ (r̄ ≥ R̄(0)),

r̄3C̄(r̄, t̄) −→ 0 (as r̄ −→∞),

∂C̄
∂r̄

= εζ̄(t̄)(C̄ + 1) (r̄ = R̄(t̄)),

dR̄
dt̄

= (C0 − C∗)∂C̄∂r̄ (r̄ = R̄(t̄)),

R̄(0) = R0√
Dt0

.

(4.2.1)

where ε = k1

√
D, see chapter 3. The equation for C̄(r̄, t̄) in the problem (4.2.1)

can be simplify by introducing new unknown function u(r̄, t̄) = r̄C̄(r̄, t̄). Then

the problem becomes (over bars are dropped below)
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

ut = urr (r ≥ R(t), t ≥ 0),

u(r, 0) = u0(r),

r2u(r, t) −→ 0 (as r −→∞),

ur = u
R(t)

[1 + εζ(t)R(t)] + εζ(t)R(t) (r = R(t)),

dR
dt

= ε(C0 − C∗)ζ(t)
(

u
R(t)

+ 1
)

(r = R(t)),

R(0) = R0√
Dt0

.

(4.2.2)

where u0(r) = r(Cs(r)−C0)
C0−C∗ . The dimensionless parameters in this set of equa-

tions are ε, C0−C∗, and the non-dimensional initial radius of the wax particle,

R0√
Dt0

; the dimensionless function to be specified are ζ(t) and u0(r). The equa-

tion governing the new unknown function u(r, t) in the flow domain is the

one-dimensional diffusion equation. The boundary, r = R(t), of the flow re-

gion is unknown in advance and should be determined as part of the solution.

Equation (4.2.2)3 implies that u(r, t) tends to zero faster than 1
r2 as r −→∞,

which follows from equation (3.2.10).
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r = R(t)

R(0) R(t)

t

A B C

r

t

Figure 4.2.1: The horizontal line t=constant, contains segment AB which

corresponds to the solid wax (inside wax particle), B which is on the boundary

of the wax particle, and BC which is the instantaneous fluid domain.

4.3 Integral equation on the particle

boundary

In this section we reduce the problem (4.2.2) to a boundary integral equation

using a Green’s function of the one-dimensional diffusion equation. The Green

function G(r, t; r′, t′), where r′ and t′ are parameters, is defined as the solution

of the following initial problem, [17]
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

Gt = Grr, (−∞ < r < +∞, t > t′),

G(r, t′; r′, t′) = δ(r − r′), (−∞ < r < +∞, t = t′),

G −→ 0, (r −→∞).

(4.3.1)

Here δ(r) is the Dirac delta function. The Green function is the solution of

the problem (4.3.1) for 0 ≤ t′ < t, see [8]. This solution has the form,

G(r, t; r′, t′) =
1

2
√
π(t− t′)

e
− (r−r′)2

4(t−t′) . (4.3.2)

Note that r > R(t) > R(0) ≥ 0 in equation (4.2.2), see figure 4.2.1, but

r varies from −∞ to +∞ in (4.3.1). The variable r in (4.2.2) is the radial

coordinate which should be positive. However, the field equation (4.2.2)1 is

the one-dimensional diffusion equation in contrast to equation (4.2.1)1 which

is for spherically symmetric diffusion.

We shall solve the dimensionless problem for u = u(r, t) and R = R(t)

with two given dimensionless constants ε and ε(C0 − C∗), and the given non-

dimensional function ζ(t) in the boundary conditions. We write equation

(4.2.2)1 in the variables r′, t′. Now u = u(r′, t′) where r′ > R(t′), t′ > 0,

and

∂u

∂t′
=
∂2u

∂r′2
. (4.3.3)

We multiply both sides of (4.3.3) by G(r, t; r′, t′) and integrate both sides of

the result over the region indicated in Figure 4.3.1. To do this we integrate

with respect to r′ from the surface r′ = R(t′) to infinity, and then we integrate

both sides with respect to t′ from the initial instant t′ = 0 to t′ = t,
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∫ t

0

∫ ∞
R(t′)

ut′(r,
′ t′)G(r, t; r′, t′)dr′dt′ =

∫ t

0

∫ ∞
R(t′)

ur′r′(r
′, t′)G(r, t; r′, t′)dr′dt′.

(4.3.4)

The radius R(t) is assumed monotonically increasing, R′(t) > 0. Then the

order of integration in the double integral on the left hand side of equation

(4.3.4) can be changed by considering the diagram in Figure 4.3.1,

0

t

R(0) R(t0) R(t)

t0

r0

A B C

t0

r0 = R(t0)

Figure 4.3.1: The curve r′ = R(t′) separates solid wax, to the left, from the

fluid domain to the right. The region of integration in equation (4.3.4) is shown

in grey.

which gives∫ t

0

∫ ∞
R(t′)

ut′(r
′, t′)G(r, t; r′, t′)dr′dt′ =

∫ R(t)

R(0)

dr′
∫ t(r′)

0

ut′(r
′, t′)G(r, t; r′, t′)dt′

+

∫ ∞
R(t)

dr′
∫ t

0

ut′(r
′, t′)G(r, t; r′, t′)dt′,

(4.3.5)
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where t(r′) is a monotone increasing function defined by the equationR(t(r′)) ≡

r′. The inner integrals in (4.3.5) are integrated by parts, giving∫ t

0

∫ ∞
R(t′)

ut′(r
′, t′)G(r, t; r′, t′)dr′dt′

=

∫ R(t)

R(0)

[
u(r′, t′)G(r, t; r′, t′) |t(r

′)
0 −

∫ t(r′)

0

u(r′, t′)Gt′(r, t; r
′, t′)dt′

]
dr′

+

∫ ∞
R(t)

[
u(r′, t′)G(r, t; r′, t′) |t0 −

∫ t

0

u(r′, t′)Gt′(r, t; r
′, t′)dt′

]
dr′

=

∫ R(t)

R(0)

[
u(r′, t(r′))G(r, t; r′, t(r′))− u(r′, 0)G(r, t; r′, 0)

−
∫ t(r′)

0

u(r′, t′)Gt′(r, t; r
′, t′)dt′

]
dr′ +

∫ ∞
R(t)

[
u(r′, t)G(r, t; r′, t)− u(r′, 0)G(r, t; r′, 0)

−
∫ t

0

u(r′, t′)Gt′(r, t; r
′, t′)dt′

]
dr′.

(4.3.6)

To continue transformation of the integrals above, we should calculateGt′(r, t; r
′, t′)

by using (4.3.1). It is convenient to introduce new variables ξ = r − r′ and

τ = t− t′. Then G(r, t; r′, t′) = GO(ξ, τ), where
GOτ = GOξξ, (−∞ < ξ < +∞),

G(ξ, 0) = δ(ξ) (τ = 0).

(4.3.7)

Differentiating G(r, t; r′, t′) = GO(ξ, τ) with respect to t′, we have

∂G

∂t′
=
∂GO

∂τ

∂τ

∂t′
= −∂GO

∂τ
, (4.3.8)

and differentiating G(r, t; r′, t′) = GO(ξ, τ) twice with respect to r′, gives

∂2G

∂r′2
=
∂2GO

∂ξ2
. (4.3.9)

By using the equation GOτ = GOξξ, we find
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∂G

∂t′
= −∂GO

∂τ
= −∂

2GO

∂ξ2
= −∂

2G

∂r′2
. (4.3.10)

By using equation (4.3.10) we can calculate the following integrals,∫ t(r′)

0

u(r′, t′)Gt′(r, t; r
′, t′)dt′ = −

∫ t(r′)

0

u(r′, t′)Gr′r′(r, t; r
′, t′)dt′. (4.3.11)

and ∫ t

0

u(r′, t′)Gt′(r, t; r
′, t′)dt′ = −

∫ t

0

u(r′, t′)Gr′r′(r, t; r
′, t′)dt′. (4.3.12)

Substituting equations (4.3.11) and (4.3.12) into (4.3.6), we obtain∫ t

0

∫ ∞
R(t′)

ut′(r
′, t′)G(r, t; r′, t′)dr′dt′ =

∫ R(t)

R(0)

u(r′, t(r′))G(r, t; r′, t(r′))dr′

−
∫ ∞
R(0)

u(r′, 0)G(r, t; r′, 0)dr′ +

∫ ∞
R(t)

u(r′, t)δ(r − r′)dr′

+

(∫ R(t)

R(0)

∫ t(r′)

0

+

∫ ∞
R(t)

∫ t

0

)
u(r′, t′)Gr′r′(r, t; r

′, t′)dt′dr′.

(4.3.13)

In the first integral on the right hand side of equation (4.3.13), we make the

substitution r′ = R(t′) and use dr′ = dR
dt

(t′)dt′, t(R(t′)) ≡ t′, then∫ R(t)

R(0)

u(r′, t(r′))G(r, t; r′, t(r′))dr′ =

∫ t

0

u(R(t′), t′)G(r, t;R(t′), t′)
dR

dt
(t′)dt′,

(4.3.14)

which is the integral along the trajectory of the particle’s radius in the (r, t)

plane. In the second integral on the right hand side of equation (4.3.13), u(r′, 0)

is given by the initial data as u0(r′), then this integral reads∫ ∞
R(0)

u(r′, 0)G(r, t; r′, 0)dr′ =

∫ ∞
R(0)

u0(r′)G(r, t; r′, 0)dr′. (4.3.15)

By the property of the delta function, the third integral in (4.3.13) reads as,

see [8],
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∫ ∞
R(t)

u(r′, t)δ(r − r′)dr′ =


u(r, t) where r > R(t),

1
2
u(R(t), t) where r = R(t).

(4.3.16)

The integral above is equal to u(r, t) in the fluid region, where r > R(t), and

equal to 1
2
u(R(t), t) on the surface of the wax particle where r = R(t). The

value of the integral can be written as ωu(r, t), where ω = 1 for r > R(t) and

ω = 1
2
, where r = R(t). To show (4.3.16), we consider the function δn(x) which

approximates the delta function δ(x) as n→∞. The function δn(x) is defined

by

δn(x) =



0 |x|> 1
n
,

n
2

|x|< 1
n
.

(4.3.17)

The function δn(x) is such that∫ ∞
−∞

δn(x)dx = 1

and δn(x) → 0 for any |x|> 0 and n → ∞. For any function f(x) continuous

in a neighbourhood of the origin, see [43, 45], we have

lim
n→∞

∫ +∞

−∞
f(x)δn(x)dx = lim

n→∞

∫ + 1
n

− 1
n

n

2
f(x)dx =

n

2
lim
n→∞

∫ 1

−1

f

(
ξ

n

)
d

(
ξ

n

)
=

1

2
lim
n→∞

∫ 1

−1

f

(
ξ

n

)
dξ =

1

2
lim
n→∞

∫ 1

−1

[
f(0) + f ′(0)

ξ

n
+O

((
ξ

n

)2
)]

dξ = f(0).

(4.3.18)

Correspondingly,
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lim
n→∞

∫ +∞

0

f(x)δn(x)dx = lim
n→∞

∫ + 1
n

0

n

2
f(x)dx =

1

2
lim
n→∞

∫ 1

0

f

(
ξ

n

)
dξ

=
1

2
lim
n→∞

∫ 1

0

[
f(0) + f ′(0)

ξ

n
+O

((
ξ

n

)2
)]

dξ =
1

2
f(0).

(4.3.19)

The double integral in equation (4.3.13), (see the diagram 4.3.1) can be written

as ∫ t

0

[∫ ∞
R(t′)

u(r′, t′)Gr′r′(r, t; r
′, t′)dr′

]
dt′.

Integrating the inner integral twice by parts yields∫ t

0

[∫ ∞
R(t′)

u(r′, t′)Gr′r′(r, t; r
′, t′)dr′

]
dt′

=

∫ t

0

[
u(r′, t′)Gr′(r, t; r

′, t′) |r′=∞r′=R(t′) −
∫ ∞
R(t′)

ur′(r
′, t′)Gr′(r, t; r

′, t′)dr′
]
dt′

=

∫ t

0

[
−u(R(t′), t′)Gr′(r, t;R(t′), t′)− ur′(r′, t′)G(r, t; r′, t′) |r′=∞r′=R(t′)

+

∫ ∞
R(t′)

ur′r′(r
′, t′)G(r, t; r′, t′)dr′

]
dt′.

(4.3.20)

Therefore,∫ t

0

∫ ∞
R(t′)

u(r′, t′)Gr′r′(r, t; r
′, t′)dr′dt′

=−
∫ t

0

u(R(t′), t′)Gr′(r, t;R(t′), t′)dt′ +

∫ t

0

ur′(R(t′), t′)G(r, t;R(t′), t′)dt′

+

∫ t

0

∫ ∞
R(t′)

ur′r′(r
′, t′)G(r, t; r′, t′)dr′dt′.

(4.3.21)

Substituting (4.3.21) and (4.3.14)-(4.3.16) into (4.3.13), we obtain
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∫ t

0

∫ ∞
R(t′)

ut′(r
′, t′)G(r, t; r′, t′)dr′dt′

=

∫ t

0

u(R(t′), t′)G(r, t;R(t′), t′)
dR

dt
(t′)dt′ −

∫ ∞
R(0)

u0(r′)G(r, t; r′, 0)dr′

+ ωu(r, t)−
∫ t

0

u(R(t′), t′)Gr′(r, t;R(t′), t′)dt′

+

∫ t

0

ur′(R(t′), t′)G(r, t;R(t′), t′)dt′

+

∫ t

0

∫ ∞
R(t′)

ur′r′(r
′, t′)G(r, t; r′, t′)dr′dt′.

(4.3.22)

Now we substitute (4.3.22) into (4.3.4), and notice that the double integrals

with ur′r′ in the equation cancel each other and the result is:∫ t

0

u(R(t′), t′)G(R(t′), t)
dR

dt
(t′)dt′ −

∫ ∞
R(0)

u0(r′)G(r, t; r′, 0)dr′ + ωu(r, t)

−
∫ t

0

u(R(t′), t′)Gr′(r, t;R(t′), t′)dt′ +

∫ t

0

ur′(R(t′), t′)G(r, t;R(t′), t′)dt′ = 0.

(4.3.23)

We can view the result as a representation of the solution u(r, t) in the fluid,

where r > R(t), and on the boundary, where r = R(t), through the boundary

values of the solution u(R(t), t), its normal derivative, ur(R(t), t) and its initial

value, u0(r):

ωu(r, t) =

∫ ∞
R(0)

u0(r′)G(r, t; r′, 0)dr′

+

∫ t

0

u(R(t′), t′)

[
Gr′(r, t;R(t′), t′)− dR

dt
(t′)G(r, t;R(t′), t)

]
dt′

−
∫ t

0

ur′(R(t′), t′)G(r, t;R(t′), t′)dt′.

(4.3.24)

The Green function and its r′-derivative in the integrals with respect to t′ are

regular and bounded if r > R(t). The derived representation (4.3.24) of u(r, t)
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provides the solution in the fluid region, r > R(t), t > 0 in terms of given initial

data u(r, 0) and boundary data u(R(t), t) and ur(R(t), t). On the boundary,

r = R(t), and t > 0, where ω = 1
2
, (4.3.24) gives an integral equation for

u(R(t), t)

1

2
u(R(t), t) =

∫ ∞
R(0)

u0(r′)G(R(t), t; r′, 0)dr′

+

∫ t

0

u(R(t′), t′)

[
Gr′(R(t), t;R(t′), t′)− dR

dt
(t′)G(R(t), t;R(t′), t)

]
dt′

−
∫ t

0

ur′(R(t′), t′)G(R(t), t;R(t′), t′)dt′.

(4.3.25)

Rearranging the integrals

u(R(t), t) = 2

∫ ∞
R(0)

u0(r′)G(R(t), t; r′, 0)dr′

+ 2

∫ t

0

[
u(R(t′), t′)Gr′(R(t), t;R(t′), t′)− ur′(R(t′), t′)G(R(t), t;R(t′), t′)

− u(R(t′), t′)G(R(t), t;R(t′), t′)
dR

dt
(t′)

]
dt′.

(4.3.26)

Now we will find the derivative of the Green function with respect to r′ which

appear in (4.3.26).

The r′-derivative of the Green function (4.3.2) is:

Gr′(r, t; r
′, t′) =

r − r′

4
√
π(t− t′) 3

2

e
− (r−r′)2

4(t−t′) . (4.3.27)

We can rewrite Gr′(r, t; r
′, t′) by using (4.3.2) as:

Gr′(r, t; r
′, t′) =

1

2
G(r, t; r′, t′)

r − r′

t− t′
. (4.3.28)

The Green function and its derivative on the boundary, r = R(t), are:

G(R(t), t;R(t′), t′) =
1

2
√
π(t− t′)

e
− (R(t)−R(t′))2

4(t−t′) . (4.3.29)
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and

Gr′(R(t), t;R(t′), t′) =
1

2
G (R(t), t;R(t′), t′)

R(t)−R(t′)

t− t′
. (4.3.30)

The function (4.3.29) is singular as t′ −→ t. To find the behaviour of the

Green function as t′ −→ t, we use the Taylor expansion, [76]

R(t′) = R(t) +
dR

dt
(t)(t′ − t) +O[(t′ − t)2].

Then the exponential in (4.3.29) becomes

exp

[
−(R(t)−R(t′))2

4(t− t′)

]
= exp

[
−
(
dR

dt

)2
1

4
(t− t′) +O(t− t′)2

]
.

As t′ −→ t, we find

exp

[
−(R(t)−R(t′))2

4(t− t′)

]
= 1 +O(t− t′). (4.3.31)

Therefore, when t′ −→ t, the Green function (4.3.29) behaves as

G(R(t), t;R(t′), t′) ∼ 1

2
√
π(t− t′)

. (4.3.32)

However, this singularity is integrable. Substituting equations (4.3.29) and

(4.3.30) into (4.3.26), we find the boundary integral equation:

1

2
u(R(t), t) =

∫ ∞
R(0)

u0(r′)
1

2
√
πt
e−

(R(t)−r′)2
4t dr′

+
1√
π

∫ t

0

[
u(R(t′), t′)

R(t)−R(t′)

2(t− t′)
− ur′ (R(t′), t′)

− u(R(t′), t′)
dR

dt
(t′)

]
1

2
√
t− t′

e
− (R(t)−R(t′))2

4(t−t′) dt′.

(4.3.33)

The integral above can be written as

1

2
u(R(t), t) =

∫ ∞
R(0)

u0(r′)G(R(t), t; r′, 0)dr′

+
1√
π

∫ t

0

[
u(R(t′), t′)

R(t)−R(t′)

2(t− t′)
− ur′ (R(t′), t′)

− u(R(t′), t′)
dR

dt
(t′)

]
1

2
√
t− t′

e
− (R(t)−R(t′))2

4(t−t′) dt′.

(4.3.34)
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The second integral is singular as t′ → t, so we use (4.3.31) to avoid the

singularity in the exponential. If we use L’Hopital’s Rule to calculate the ratio

R(t′)−R(t)
t′−t as t′ → t,

lim
(t′→t)

R(t′)−R(t)

t′ − t
=
dR

dt
(t),

then the integrand in the second integral when t′ → t behaves as[
−1

2
u(R(t), t)

dR

dt
(t)− ur (R(t), t)

]
1

2
√
t− t′

, (4.3.35)

where 1
2
√
t−t′ is integrable and therefore, the integral tends to zero as t→ 0.

Let us show that the limits of left-hand side, which is equal to the boundary

value of the function u(r, t), and right-hand side, which is equal to the initial

value of u(r, t) calculated on the boundary, in (4.3.34) as t→ 0 are equal. We

find

1

2
u(R0, 0) =

∫ ∞
R(0)

u0(r′)G(R0, 0; r′, 0)dr′ + 0, (4.3.36)

where G(R0, 0; r′, 0) = δ(R0 − r′) from (4.3.1)2. Hence (4.3.36) provides

1

2
u(R0, 0) =

∫ ∞
R(0)

u0(r′)δ(R0 − r′)dr′. (4.3.37)

Substituting (4.3.16) into (4.3.37) where r = R0 is the lower limit of integra-

tion, we obtain

1

2
u(R0, 0) =

1

2
u0(R0). (4.3.38)

We conclude that the boundary value of the solution at t = 0, u(R0, 0), and

the initial value at the surface of the wax particle, u0(R0), are equal to each

other.

In the fluid, r > R(t) and t > 0, we have ω = 1. Then (4.3.24) gives the

solution of the diffusion equation by using the Green function
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u(r, t) =
1

2
√
π

∫ ∞
R(0)

u0(r′)
1√
t
e−

(r−r′)2
4t dr′ +

1

2
√
π

∫ t

0

[
u(R(t′), t′)

r −R(t′)

2(t− t′)

− ur′(R(t′), t′)− u(R(t′), t′)
dR

dt
(t′)

]
1√
t− t′

e
− (r−R(t′))2

4(t−t′) dt′.

(4.3.39)

Substituting the boundary conditions (4.2.2)4 and (4.2.2)5 into the integrals

of (4.3.39), we find

u(r, t) =

∫ ∞
R(0)

u0(r′)
1

2
√
πt
e−

(r−r′)2
4t dr′ +

1

2
√
π

∫ t

0

[
u(R(t′), t′)

r −R(t′)

2(t− t′)

−
(
εζ(t′) +

1

R(t′)

)
u(R(t′), t′)− εζ(t′)R(t′)− gζ(t′)

(
u(R(t′), t′)

R(t′)
+ 1

)
u(R(t′), t′)

]
1√
t− t′

e
− (r−R(t′))2

4(t−t′) dt′,

(4.3.40)

where the constant g = ε(C0 − C∗).

The boundary integral equation (4.3.33) can be written in terms of three

unknown functions, U(t) = u(R(t), t), S(t) = ur(R(t), t) and the radius R(t) :

U(t) =
1√
πt

∫ ∞
R(0)

u0(r′)e−
(R(t)−r′)2

4t dr′

+
1√
π

∫ t

0

[
U(t′)

R(t)−R(t′)

2(t− t′)
− S(t′)− U(t′)

dR

dt
(t′)

]
1√
t− t′

e
− (R(t)−R(t′))2

4(t−t′) dt′,

(4.3.41)

where S(t) is related to U(t) and R(t) by (4.2.2)4.

We derived the formula (4.3.40) for u(r, t) in the fluid, where r > R(t), and

the integral equation (4.3.41) for U(t) at the boundary of the fluid region,

where r = R(t). In the next section 4.4, we solve the integral equation (4.3.41)

numerically.
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4.4 Discretization

The original problem has been reduced to the integral equation (4.3.41) and the

differential equation (4.2.2)5 for the two unknown functions, u(r, t) and R(t).

These equations should be solved simultaneously. We solve equation (4.3.41)

for U(t) numerically by developing a time-stepping numerical method. First,

we discretize t into equal increments of size 4t > 0,

t = 0, 4t, 24 t, 34 t, . . . , (n− 1)4 t. (4.4.1)

The discretisation of the time starts from the initial time instant, t = 0. The

time steps are numbered by index j, where j = 1 for t1 = 0,

t2 = 4t, t3 = 24 t, . . . , tn = (n− 1)4 t. (4.4.2)

The discretized instants in time are defined as tj = (j − 1)4 t for 1 ≤ j ≤ n,

and the time step size 4t is related to n by 4t = tn−t1
n−1

, where n is the number

of discrete instants in the closed time-interval [t1, tn], t1 = 0.

The equation (4.3.41) is written then at t = tn,

Un =
1√
πtn

∫ ∞
R(0)

u0(r′)e−
(Rn−r′)2

4tn dr′

+
1√
π

∫ tn

0

[
U(t′)

Rn −R(t′)

2(tn − t′)
− S(t′)− U(t′)

dR

dt
(t′)

]
1√

tn − t′
e
− (Rn−R(t′))2

4(tn−t′) dt′,

(4.4.3)

where Un = U (tn) and Rn = R (tn) .

In the second integral on the right hand side of equation (4.4.3), we observe

that when t′ −→ tn, the ratio R(t)−R(t′)
t−t′ should be calculated by L’Hopital’s

Rule:

lim
(t′→t)

R(t′)−R(t)

t′ − t
=
dR

dt
(t). (4.4.4)
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Then the expression in (4.4.3) in the square brackets is equal to

− 1

2
U(tn)

dR

dt
(tn)− S(tn) as t′ → tn. (4.4.5)

Also, we should use (4.3.31) to avoid singularity in the exponential when t′ −→

tn.

Substituting the boundary conditions (4.2.2)4 and (4.2.2)5 into the boundary

integral equation (4.4.3), we have

Un =
1√
πtn

∫ ∞
R(0)

u0(r′)e−
(Rn−r′)2

4tn dr′

+
1√
π

∫ tn

0

[
U(t′)

Rn −R(t′)

2(tn − t′)
− gζ(t′)

(
U(t′)

R(t′)
+ 1

)
U(t′)−

(
1

R(t′)
+ εζ(t′)

)
U(t′)

− εζ(t′)R(t′)

]
e
− (Rn−R(t′))2

4(tn−t′)
dt′√
tn − t′

,

(4.4.6)

where g = ε(C0 − C∗).

We use the following piecewise linear approximations to U(t′), R(t′), δ(t′),

and e
− (Rn−R(t′))2

4(tn−t′) inside an integral, tj < t′ < tj+1:

U(t′) = U(tj) + [U(tj+1)− U(tj)]
t′ − tj
tj+1 − tj

, (4.4.7)

R(t′) = R(tj) + [R(tj+1)−R(tj)]
t′ − tj
tj+1 − tj

, (4.4.8)

ζ(t′) = δ(tj) + [ζ(tj+1)− ζ(tj)]
t′ − tj
tj+1 − tj

, (4.4.9)

and

e
− (Rn−R(t′))2

4(tn−t′) = e
−

(Rn−R(tj))2

4(tn−tj) +

[
e
−

(Rn−R(tj+1))2

4(tn−tj+1) − e−
(Rn−R(j))2

4(tn−tj)

]
t′ − tj
tj+1 − tj

, (4.4.10)

where 1 ≤ j ≤ n− 1, t1 = 0 and

t′ = tj + ξ(tj+1 − tj), 0 ≤ ξ ≤ 1.
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We substitute equations (4.4.7)-(4.4.10) into equation (4.4.6) and represent the

interval (0, tn) as the sum of intervals over j from 1 to n− 1,∫ tn

0

=

∫ tn

tn−1

+
n−2∑
j=1

∫ tj+1

tj

.

We use (4.4.5) and (4.3.31) at the last panel for t′ = tn to avoid the singularity.

Then the discretized equation (4.4.6) can be approximated by

Un = F (tn) +
1√
π

∫ 1

0

[
−g

2
[ζn−1 + ξ(ζn − ζn−1)]

[Un−1 + ξ(Un − Un−1)]2

[Rn−1 + ξ(Rn −Rn−1)]

− g

2
[ζn−1 + ξ(ζn − ζn−1)][Un + ξ(Un − Un−1)]− [Un−1 + ξ(Un − Un−1)]

[Rn−1 + ξ(Rn −Rn−1)]

− ε[ζn−1 + ξ(ζn − ζn−1)][Un−1 + ξ(Un − Un−1)]− ε[ζn−1 + ξ(ζn − ζn−1)]

[Rn−1 + ξ(Rn −Rn−1)]

]
(tn − tn−1)

1
2dξ√

1− ξ

+
1√
π

n−2∑
j=1

∫ 1

0

[
[Uj + ξ(Uj+1 − Uj)]

Rn −
[
Rj + ξ(Rj+1 −Rj)

]
2(tn − tj − ξ(tj+1 − tj)

− g[δj + ξ(ζj+1 − ζj)]
[Uj + ξ(Uj+1 − Uj)]2

[Rj + ξ(Rj+1 −Rj)]

− g[ζj + ξ(ζj+1 − ζj)][Uj + ξ(Uj+1 − Uj)]−
[Uj + ξ(Uj+1 − Uj)]
[Rj + ξ(Rj+1 −Rj)]

− ε[ζj + ξ(ζj+1 − ζj)][Uj + ξ(Uj+1 − Uj)]− ε[ζj + ξ(ζj+1 − ζj)]

[Rj + ξ(Rj+1 −Rj)]

](
e
−

(Rn−Rj)2

4(tn−tj) + ξ

[
e
−

(Rn−Rj+1)2

4(tn−tj+1) − e−
(Rn−Rj)2

4(tn−tj)

])
tj+1 − tj√

tn − tj − ξ(tj+1 − tj)
dξ,

(4.4.11)

F (tn) =
1√
πt

∫ ∞
R(0)

u0(r′)e−
(Rn−r′)2

4t dr′.

In equation (4.4.11) we have Un in both the left and right hand sides. We

move all terms to the left-hand side and collect terms with Un and U2
n, then

we have
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Un

(
1− (tn − tn−1)

1
2

√
π

∫ 1

0

[(
−g

2
− ε
)
ξ[ζn−1 + ξ(ζn − ζn−1)]

− ξ

[Rn−1 + ξ(Rn −Rn−1)]
− g

2

(
2ξUn−1 − 2ξ2Un−1

)
[ζn−1 + ξ(ζn − ζn−1)]

[Rn−1 + ξ(Rn −Rn−1)]

]
dξ√

(1− ξ)

)
+U2

n

[
g

2
√
π

(tn − tn−1)
1
2

∫ 1

0

ξ2 [ζn−1 + ξ(ζn − ζn−1)]

[Rn−1 + ξ(Rn −Rn−1)]

dξ√
(1− ξ)

]
−Un−1

[
(tn − tn−1)

1
2

√
π

∫ 1

0

[(
−g

2
− ε
)

(1− ξ)[ζn−1 + ξ(ζn − ζn−1)]− (1− ξ)
[Rn−1 + ξ(Rn −Rn−1)]

dξ√
(1− ξ)

]]
+ U2

n−1

[
g

2
√
π

(tn − tn−1)
1
2

∫ 1

0

(
1− 2ξ + ξ2

)
[ζn−1 + ξ(ζn − ζn−1)]

[Rn−1 + ξ(Rn −Rn−1)]

dξ√
(1− ξ)

]
+

ε√
π

(tn − tn−1)
1
2

∫ 1

0

[
[ζn−1 + ξ(ζn − ζn−1)][Rn−1 + ξ(Rn −Rn−1)]

dξ√
(1− ξ)

]
− 1√

π

n−2∑
j=1

∫ 1

0

(all terms)

(
e
−

(Rn−Rj)2

4(tn−tj) + ξ

[
e
−

(Rn−Rj+1)2

4(tn−tj+1) − e−
(Rn−Rj)2

4(tn−tj)

])
tj+1 − tj√

tn − tj − ξ(tj+1 − tj)
dξ − F (tn) = 0,

(4.4.12)

where ” all terms” means all of the preceding terms
∑n−2

j=1 in (4.4.11).

Equation (4.4.12) is a quadratic equation for Un. If we consider this as

aU2
n + bUn + c = 0

Then the value for a, b, and c are:

a =
g

2
√
π

(tn − tn−1)
1
2

∫ 1

0

ξ2 [ζn−1 + ξ(ζn − ζn−1)]

[Rn−1 + ξ(Rn −Rn−1)]

dξ√
(1− ξ)

,

b =1− (tn − tn−1)
1
2

√
π

∫ 1

0

[(
−g

2
− ε
)
ξ[ζn−1 + ξ(ζn − ζn−1)]

− ξ

[Rn−1 + ξ(Rn −Rn−1)]
− gUn−1ξ

(
1− ξ

)
[ζn−1 + ξ(ζn − ζn−1)]

[Rn−1 + ξ(Rn −Rn−1)]

]
dξ√

(1− ξ)
,

(4.4.13)
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c =
(tn − tn−1)

1
2

√
π

∫ 1

0

[
Un−1

(g
2

+ ε
)

(1− ξ)[ζn−1 + ξ(ζn − ζn−1)]

+ Un−1
(1− ξ)

[Rn−1 + ξ(Rn −Rn−1)]
+ U2

n−1

g

2

(
1− 2ξ + ξ2

)
[ζn−1 + ξ(ζn − ζn−1)]

[Rn−1 + ξ(Rn −Rn−1)]
+ ε[ζn−1 + ξ(ζn − ζn−1)][Rn−1 + ξ(Rn −Rn−1)]

]
dξ√

(1− ξ)

− 1√
π

n−2∑
j=1

∫ 1

0

(all terms)

(
e
−

(Rn−Rj)2

4(tn−tj) + ξ

[
e
−

(Rn−Rj+1)2

4(tn−tj+1) − e−
(Rn−Rj)2

4(tn−tj)

])
(tj+1 − tj) dξ√

tn − tj − ξ(tj+1 − tj)
− F (tn).

(4.4.14)

The integrands in a, b, and the first term of c are singular as ξ → 1. Note

that the integrands in the series for c from j = 1 to j = n− 2 are not singular.

Owing to the presence of singularities
√

1− ξ in the integrands of (4.4.12), we

approximate the integrals in a, b and c by using the substitution τ =
√

1− ξ,

then ξ = 1− τ 2, and

1

[Rn−1 + ξ(Rn −Rn−1)]
=

1

[Rn − τ 2(Rn −Rn−1)]
=

1

Rn[1− βτ 2]
, (4.4.15)

where β = Rn−Rn−1

Rn
. Next we expand equation (4.4.15) for small β,

1

[Rn−1 + ξ(Rn −Rn−1)]
=

1

Rn

[1 + βτ 2 +O(β2)]. (4.4.16)

We rewrite a, b, and part of c after using the substitution ξ = 1 − τ 2 and

(4.4.16) as

a =

√
tn − tn−1√

π

∫ 1

0

g(1− τ 2)2 [ζn − τ 2(ζn − ζn−1)]

Rn

[1 + βτ 2]dτ, (4.4.17)

b =1 +
2
√
tn − tn−1√

π

∫ 1

0

[(g
2

+ ε
)

(1− τ 2)[ζn − τ 2(ζn − ζn−1)]

+
1

Rn

(1− τ 2)[1 + βτ 2] + gUn−1τ
2(1− τ 2)

[ζn − τ 2(ζn − ζn−1)]

Rn−1

(1 + βτ 2)

]
dτ,

(4.4.18)
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c =
2
√
tn − tn−1√

π

∫ 1

0

[
Un−1u

2

(
(
g

2
+ ε)[ζn − τ 2(ζn − ζn−1)]

+
1

Rn

[1 + βτ 2]

)
+
g

2
U2
n−1τ

4 [ζn − τ 2(ζn − ζn−1)]

Rn

[1 + βτ 2]

+ ε[ζn − τ 2(ζn − ζn−1)][Rn − τ 2(Rn −Rn−1)]

]
dτ

− 1√
π

n−2∑
j=1

∫ 1

0

[all terms]

(
e
−

(Rn−Rj)2

4(tn−tj) + ξ

[
e
−

(Rn−Rj+1)2

4(tn−tj+1) − e−
(Rn−Rj)2

4(tn−tj)

])
(tj+1 − tj) dξ√

tn − tj − ξ(tj+1 − tj)
− F (tn).

(4.4.19)

Now the integrals (4.4.17)-(4.4.19) are non-singular and they can be evaluated

by Matlab. The values of Un, which are related to the wax concentration on

the particle surface at t = tn, are given by:

Un =
−b±

√
b2 − 4ac

2a
, (4.4.20)

where a, b, and c are given in (4.4.17)-(4.4.19). We have two solutions for

Un in (4.4.20). We start with certain value of U1 and for small ∆t we select

the solution, which is closer to the solution Un−1 at the previous time step,

the solution is U+
n = −b+

√
b2−4ac

2a
. Also, by looking for the coefficient a, b,

and c which are given in (4.4.17)-(4.4.19), we find that a, b, and c behave as

a ∼ O(
√

∆t), b ∼ 1 +O(
√

∆t), and c ∼ O(1), then using the formula

U−n =
−b−

√
b2 − 4ac

2a
= O

(
(∆t)−

1
2

)
,

which is not good because if we decrease ∆t, then U−n → ∞. The step of

integration has to be small to approaching the exact solution. So the other

root U+
n = −b+

√
b2−4ac

2a
is the relevant solution.

The concentration in the fluid is given by equation (4.3.40). We find that

the integrand in the second integral is not singular, when t′ −→ t, because the
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power of the exponential function tends to −∞ for r > R(t′). Then e−∞ = 0

and the integrand tends to zero as t′ → t.

The integral
∫ tn

0
in (4.3.40) is evaluated by using the trapezidal rule. The

trapezoidal rule is a numerical method that approximates the value of a definite

integral. We consider our definite integral (4.3.40) as∫ tn

0

f(t′)dt′ =
∆t

2

[
f1 + 2f2 + · · ·+ 2fn−1 + fn

]
,∫ tn

0

f(t′)dt′ = ∆t

[
1

2
(fn + f1) +

n−1∑
j=2

fj

]
,

(4.4.21)

where fn = 0 for the last panel as we discussed above and then (4.3.40) can

be written as

u(rm, tn) =

∫ ∞
R(0)

u0(r′)
1

2
√
πtn

e−
(rm−r′)2

4t dr′ + ∆t

{
1

2
√
π

[
u1

rm −R1

2(tn − t1)

− u1

(
1

R1

+ εζ1

)
− εζ1R1 − gu1ζ1

(
u1

R1

+ 1

)]
1√

tn − t1
e
− (r−R1)2

4(tn−t1)

+
n−1∑
j=2

1

2
√
π

[
uj

r −Rj

2(tn − tj)
− uj

(
1

Rj

+ εζj

)
− εζjRj

− gujζj
(
uj
Rj

+ 1

)]
1

√
tn − tj

e
−

(r−Rj)2

4(tn−tj)

}
,

(4.4.22)

where t1 = 0.

4.5 Numerical Solution of Ordinary

Differential Equation (4.2.2)5

To solve numerically the ordinary differential equation (4.2.2)5,

dR

dt
= F (R, t),
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where the right-hand side is a function of both R and t, we use the Modified

Euler Method,

Rj+1 = Rj +
4t
2

[
F (Rj, tj) + F (R̃j, tj)

]
, (4.5.1)

where j = 1, 2, . . . , n− 1 and R̃j is obtained by using the Euler method, [4],

R̃j = Rj +4tF (Rj, tj).

Then equation (4.2.2)5 becomes

Rj+1 =Rj +
4t
2

[
ε(C0 − C∗)ζj

(
Uj
Rj

+ 1

)
+ ε(C0 − C∗)ζj

(
Uj

Rj +4tε(C0 − C∗)ζj
(
Uj
Rj

+ 1

) + 1

)]
.

(4.5.2)

By taking the last time step when j = n− 1, equation (4.5.2) becomes

Rn =Rn−1 +
4t
2

[
ε(C0 − C∗)ζn−1

(
Un−1

Rn−1

+ 1

)
+ ε(C0 − C∗)ζn−1

(
Un−1

Rn−1 +4tε(C0 − C∗)ζn−1

(
Un−1

Rn−1
+ 1

) + 1

)]
,

(4.5.3)

where Rn−1, ζn−1, and Un−1 are known from the previous time step.

4.6 Comparison between the self-similar

solution and the numerical solution

Next we validate the numerical algorithm of the initial boundary value problem

for C(r, t) and R(t). We return to the original notations in the dimensional

variables. We consider the problem with ζ(t) = 1√
t

and we use the self-similar

solution as discussed in chapter 3, where 0 < t < t0, where t0 is arbitrary. For
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t > t0 the problem is solved numerically with corresponding initial condition

at t = t0. We introduce a new variable t̃ = t− t0, see Figure 4.6.1, where the

constant t0 > 0 is the duration of the initial stage during which we use the self-

similar solution, t0 is considered as the time scale of the problem. The function

ζ(t) can be written in term of the new variable t̃ as ζ(t̃ + t0) = 1√
t̃+t0

= a(t̃),

where t̃ ≥ 0 is the numerical time and a(t̃) is a given function. The self-similar

solution is also valid for t > t0. In order to validate the numerical algorithm,

we solve the problem (4.1.1) with t changed to t̃ and ζ(t) changed to a(t̃)

numerically for t̃ > 0 with an appropriate matching conditions at t̃ = 0. This

numerical solution should be close to the self-similar solution of chapter 3 with

the difference between the numerical and self-similar solution being a measure

of accuracy of the numerical algorithm.

time for the numerical

algorithm

t = 0

t̃ = 0

t0

time for the self-similar

solution

t

t̃

Figure 4.6.1: The self-similar solution time and the numerical time.

The dimensional problem for t̃ > 0 is:
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

∂C
∂t̃

= D
r2

∂
∂r

(
r2 ∂C

∂r

)
r ≥ R(t̃), t̃ > 0,

C(r, 0) = f( r√
Dt0

) r ≥ R(0),

C(r, t̃) −→ C0 as r −→∞,

∂C
∂r

= k1a(t̃)(C − C∗) on r = R(t̃),

dR
dt̃

= D ∂C
∂r

on r = R(t̃),

R(t̃ = 0) = λ
√
Dt0,

(4.6.1)

where C(r, t̃) denotes the wax concentration in the oil, the time t̃ = t − t0,

r is the radial distance from the centre of the wax particle, and k1, C0 are

constant coefficients, the function f(ξ) in the initial condition (4.6.1)2 is given

by the self-similar solution (3.3.30). We use here the non-dimensional variables

introduce in section 4.2 to obtain:
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

∂C̄
∂t̄

= 1
r̄2

∂
∂r̄

(
r̄2 ∂C̄

∂r̄

)
r̄ ≥ R̄(t̄), t̄ > 0,

C̄(r̄, 0) = f(r̄) r̄ ≥ R̄(0),

C̄(r̄, t̄) −→ 0 as r̄ −→∞,

∂C̄
∂r̄

= εā(t̄)(C̄ + 1) on r̄ = R̄(t̄),

dR̄
dt̄

= (C0 − C∗)∂C̄∂r̄ on r̄ = R̄(t̄),

R̄(0) = λ,

(4.6.2)

where ε = k1

√
D. The self-similar solution of (4.6.2) was obtained in chapter

3. This solution is given by equation (3.3.32), which is the concentration as

a function of distance from the surface of the wax particle, C = f(ξ), where

ξ = r√
Dt

. By using the non-dimensional variables of section 4.2 and changing

the time t to the non-dimensional numerical time t = t0 + t0t̄, we find

C̄ = f̄(ξ) = f̄

(
r√
Dt

)
= f̄

(
r̄
√
Dt0√

D(t0 + t0t̄)

)
= f̄

(
r̄√
t̄+ 1

)
(4.6.3)

From chapter 3, we have:

f̄

(
r̄√
t̄+ 1

)
=
−λ3e

λ2

4

2(C0 − C∗)

e− r̄2

4(t̄+1)
√
t̄+ 1

r̄
−
√
π

2
erfc

(
r̄

2
√
t̄+ 1

) .
Initially t̄ = 0 and then equation (4.6.3) leads to the initial condition for the

numerical solution,

C̄(r̄, 0) = f̄(r̄), (4.6.5)

where
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f̄(r̄) =
−λ3e

λ2

4

2(C0 − C∗)

[
e−

r2

4

r
−
√
π

2
erfc

(r
2

)]

The functions ā(t̄) and R̄(t̄) have the following non-dimensional forms,

ā(t̄) =
1√
t̄+ 1

, and R̄(t̄) = λ
√
t̄+ 1.

We simplify the problem (4.6.2) by letting u(r̄, t̄) = r̄C̄(r̄, t̄) and substituting

it into equation (4.6.2)1 − (4.6.2)5, then the problem becomes (drop the bars)

ut = urr r ≥ R(t), t ≥ 0,

u(r, 0) = rf(r) = u0(r),

u(r, t) −→ 0 as r −→∞,

ur = u
R(t)

[1 + εa(t)R(t)] + εa(t)R(t) on r = R(t),

dR
dt

= ε(C0 − C∗)a(t)
(

u
R(t)

+ 1
)

on r = R(t),

R(0) = λ,

(4.6.6)

where u0(r) comes from the self-similar solution. In this section we compare

the self-similar solution (3.3.30) with the numerical solution of the problem

(4.6.6) by the method of section 4.4 and 4.5.

Now we rewrite the boundary integral equation (4.4.6) after substituting a(t)

as:

Un =F (tn) +
1

2
√
π

∫ tn

0

[
U(t′)

Rn −R(t′)

2(tn − t′)
− ga(t′)

(
U(t′)

R(t′)
+ 1

)
U(t′)

−
(

1

R(t′)
+ εa(t′)

)
U(t′)− εa(t′)R(t′)

]
e
− (Rn−R(t′))2

4(tn−t′)
dt′√
tn − t′

,

(4.6.7)

where
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F (tn) =
−λ3e

λ2

4

2
√
πt(C0 − C∗)

∫ ∞
R(0)

[
e−

r′2
4 − r′

√
π

2
erfc

(
r′

2

)]
e−

(Rn−r′)2
4tn dr′. (4.6.8)

The integral above cannot be evaluated in terms of elementary functions. We

approximate the integrand using a piecewise linear approximation. By making

a piecewise linear approximation to e−
r′2
4 , erfc

(
r′

2

)
, and e−

(Rn−r′)2
4tn inside the

integral, rj < r′ < rj+1:

e−
r′2
4 = e−

r2j
4 +

[
e−

r2j+1
4 − e−

r2j
4

]
r′ − rj
rj+1 − rj

, (4.6.9)

erfc

(
r′

2

)
= erfc

(rj
2

)
+
[
erfc

(rj+1

2

)
− erfc

(rj
2

)] r′ − rj
rj+1 − rj

, (4.6.10)

e−
(Rn−r′)2

4tn = e−
(Rn−rj)2

4tn +

[
e−

(Rn−rj+1)2

4tn − e−
(Rn−rj)2

4tn

]
r′ − rj
rj+1 − rj

, (4.6.11)

where r′ defined as

r′ = rj + ξ(rj+1 − rj), 0 ≤ ξ ≤ 1.

We substitute equations (4.6.9)-(4.6.11) into (4.6.8) and we sum up the inter-

vals over j from 1 until the result does not change any more, see Figure 4.6.2.

Then equation (4.6.8) written as

F (tn) =
−λ3e

λ2

4

2
√
πt(C0 − C∗)

m∑
j=1

∫ 1

0

[
e−

r2j
4 + ξ

(
e−

r2j+1
4 − e−

r2j
4

)
−
√
π

2
[rj + ξ(rj+1 − rj)]

(
erfc

(rj
2

)
+ ξ

[
erfc

(rj+1

2

)
− erfc

(rj
2

)])
(
e−

(Rn−rj)2

4tn + ξ

[
e−

(Rn−rj+1)2

4tn − e−
(Rn−rj)2

4tn

])]
(rj+1 − rj)dξ.

(4.6.12)

The boundary integral equation (4.6.7) is solved numerically by the method

of section 4.4.

The concentration on the boundary U(t) at r = R(t) = λ
√
t+ 1, from the

self-similar solution is:

U(t) =
−λ3e

λ2

4

2(C0 − C∗)

[
e−

λ2

4

√
t+ 1− λ

√
π

2
erfc

(
λ

2

)]
. (4.6.13)
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Also, we rewrite equation (4.3.40) in the fluid after substituting u0(r) from the

self-similar solution as

u(r, t) =
−λ3e

λ2

4

4(C0 − C∗)
√
πt

∫ ∞
R(0)

[
e−

r′2
4 − r′

√
π

2
erfc

(
r′

2

)]
e−

(r−r′)2
4t dr′

+
1

2
√
π

∫ t

0

[
U(t′)

r −R(t′)

2(t− t′)
− U(t′)

R(t′)

[
1 + εa(t′)R(t′)

]
−εa(t′)R(t′)

− gU(t′)a(t′)

(
U(t′)

R(t′)
+ 1

)]
1√
t− t′

e
− (r−R(t′))2

4(t−t′) dt′.

(4.6.14)

The first integral in (4.6.14) is evaluated numerically. The function in the

square brackets,

M(r′) = e−
r′2
4 − r′

√
π

2
erfc

(
r′

2

)
, (4.6.15)

is plotted in Figure 4.6.2. We can see that the function quickly decreases from

1 to O(10−4) as r′ increases from 0 to 4.

0 1 2 3 4 5

r
′

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e

−
r
′2
4

−
r
′√

π 2
e
r
fc

(

r
′ 2

)

Figure 4.6.2: The function M(r′) given by (4.6.15).
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We write the first term in (4.6.14) as

F (r, t) =
−λ3e

λ2

4

4(C0 − C∗)
√
πt

∫ ∞
R(0)

[
e−

r′2
4 − r′

√
π

2
erfc

(
r′

2

)]
e−

(r−r′)2
4t dr′.

(4.6.16)

We use a substitution to avoid the numerically extreme behaviour of the expo-

nential in the integrand, as r′ increases. We introduce a new variable of integra-

tion σ which is related to r′ by the equation σ = − (r−r′)
2
√
t

. Then r′ = r+ 2
√
tσ

and dr′ = 2
√
tdσ. The function M(r′) decreases as shown in Figure 4.6.2, so

we truncate the upper limit in (4.6.16) of its argument to 5. Then the function

F (r, t) in (4.6.16) after truncating the upper limit in r′ to 5 and using σ, reads

F (r, t) =
−λ3e

λ2

4

2(C0 − C∗)
√
π

∫ 5−r
2
√
t

R(0)−r
2
√
t

M(r + 2
√
tσ)e−σ

2

dσ. (4.6.17)

The integral in (4.6.17) has no closed form expression and it is evaluated by

using the trapezoidal rule.

We have equation (4.4.22) which is for the concentration as a function of

time and the distance from the surface of the wax particle. We know that

u(r, t) = rC̄(r, t) and then the concentration in the fluid is

C(r, t) = C0 + (C0 − C∗)C̄(r̄, t̄),

where C̄ = u(r,t)
r

, then we can write

C(r, t) = C0 + (C0 − C∗)
u(r, t)

r
. (4.6.18)

Substituting equation (4.4.22) into (4.6.18), where δ(t) = a(t), we obtain the

concentration in the fluid as discussed in (4.4.22)
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C(rm, tn) = C0 + (C0 − C∗)
F (rm, tn)

rm
+ ∆t

(C0 − C∗)
rm

{
1

2
√
π

[
U1

rm −R1

2(tn − t1)

− U1

(
1

R1

+ εa1

)
− εa1R1 − gU1a1

(
U1

R1

+ 1

)]
1√

tn − t1
e
− (rm−R1)2

4(tn−t1)

+
n−1∑
j=2

1

2
√
π

[
Uj

rm −Rj

2(tn − tj)
− Uj

(
1

Rj

+ εaj

)
− εajRj

− gUjaj
(
Uj
Rj

+ 1

)]
1

√
tn − tj

e
−

(rm−Rj)2

4(tn−tj)

}
(4.6.19)

where Un is computed from equation (4.6.7).

In chapter 3 we derived the concentration in the fluid,

C(r, t) = C0 −
λ3e

− r2

4
√
t+1 e

λ2

4

√
t+ 1

2r
+
λ3
√
πe

λ2

4

4
erfc

(
r

2
√
t+ 1

)
. (4.6.20)

To validate the numerical algorithm for the concentration C(r, t), we com-

pare (4.6.19) with the analytical expression for the concentration from the

self-similar solution (4.6.20).
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4.7 Numerical results

In this section we compute numerically the wax concentration on the boundary

of the wax particle, r = R(t), the concentration in the fluid, r > R(t), and the

wax particle radius. We compare these numerical results with the analytical

results from the previous chapter. The initial conditions of the numerical

solution come from the self-similar solution of the previous chapter. In this

computation, the values of C0, C∗, and k1 are taken from Table 3.1. The main

steps of the numerical algorithm for predicting the growth of spherical wax

particle, concentration on the boundary, and the concentration on the oil are

the following:

1- Specify the initial data of the problem;

2- Select time step of integration ∆t;

3- By using the values of U(t) and R(t) at previous time steps, calculate

simultaneously the concentration on the boundary, U(t+ ∆t), and the growth

of the wax particle radius, R(t+ ∆t), at current time step;

4- Calculate the concentration in the fluid at discrete values of the radial

coordinate, r, for the current time step.

5- Return to 3 for next time step.

Computations are performed by our own code as it is explained above.

Here we summarise the numerical algorithm in brief. We use a Green function

to obtain the boundary integral equation (4.4.6). The boundary integral equa-

tion on the moving surface of the wax particle, r = R(t), is solved numerically

by a time-stepping numerical method. First we discretize the time into equal

steps, ∆t > 0. We have a singularity in (4.4.6) when t′ → tn, we use equa-
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tions (4.4.5) and (4.3.31) to avoid this singularity. The forcing term in (4.4.6)

is evaluated numerically by approximating the integrand by piecewise linear

functions. Equation (4.4.6) is reduced to a quadratic equation with coefficients

a, b, and c, the solution of which is computed by Matlab. The ordinary differ-

ential equation for the radius R(t) is solved using modified Euler method as

discussed in section 4.5 and equation (4.5.3) is solved using Matlab. Figures

4.7.1 and 4.7.2 show the comparison between the numerical solution of equa-

tion (4.6.7) and the exact solution (4.6.13) for U(t) as a function of time. The

time step in computation is chosen as ∆t = 10−4. It is seen that the numerical

solution and the exact solution are indistinguishable. In Figure 4.7.2 the time

interval is longer.

Figures 4.7.3 and 4.7.4 show the comparison between the numerical solution

(4.5.3) and the exact solution for the radius R(t) = λ
√
t+ 1. We see in Figures

4.7.3 and 4.7.4 that the wax particle absorbs particles from the solution and

then the radius of the wax particle grows as the time increases. In Figure

4.7.3 the time interval is [0, 0.1] and in Figure 4.7.4 the time interval is longer,

0 < t < 10.

The wax concentration in the fluid, where r > R(t), is given by equation

(4.3.40). We evaluate this equation by using the trapezoidal rule as shown

in equation (4.4.22). Figures 4.7.5, 4.7.6, and 4.7.7, show the comparison

between the numerical, equation (4.6.19), and exact, equation (4.6.20), wax

concentrations C(r, t) as functions of the distance from the surface of the wax

particle. We can see that the concentration at the surface of the wax particle

is lower than the concentration at infinity. The wax molecules are absorbed by

the surface of the wax particle. This leads to a reduced concentration of the

wax molecules near the surface of the wax particle. The reduced concentration
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gives rise to the mass flux of wax molecules towards the growing wax particle.

Figure 4.7.8 shows the comparison between the numerical result for equation

(4.6.19), and the exact result from equation (4.6.20), wax concentrations C(r, t)

as functions of the distance from the surface of the wax particle when t = 5.

Figures 4.7.9 and 4.7.10 show the difference in the numerical and analyt-

ical results for larger time step. Our numerical solution is an approximate

solution and it becomes closer to the analytical solution with decrease of the

time step. But we can not expect that our piecewise linear approximations of

unknown functions and the trapezoidal rule provide a good approximation to

the analytical solution if we take a longer time step as shown in Figures 4.7.9

and 4.7.10. So, our approximation is accurate for small enough time step and

is rough for relatively large time step.
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Figure 4.7.1: Comparison between the exact solution (4.6.13) and the nu-

merical solution (4.4.12) for the function U(t), where λ = 0.01. For this

computation ∆t = 10−4.
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Figure 4.7.2: Comparison between the exact solution (4.6.13) and the numer-

ical solution (4.4.20) for the function U(t), where λ = 0.1.
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Figure 4.7.3: Comparison between the exact solution R(t) = λ
√
t+ 1 and

the numerical solution (4.5.3) for the wax particle radius as a function of

dimensionless time. For this computation ∆t = 10−4.
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Figure 4.7.4: Comparison between the exact solution R(t) = λ
√
t+ 1 (dashed

curve) and the numerical solution (4.5.3) (solid curve) for the wax particle

radius as a function of dimensionless time.
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Figure 4.7.5: Comparison between the exact solution (4.6.20) for the concen-

tration in the fluid C(r, t) and the numerical solution (4.6.19) at t = 0.1. In

this computation the time step is ∆t = 10−4.
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Figure 4.7.6: The same as in Figure 4.7.5 but for t = 0.2.
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Figure 4.7.7: The same as in Figure 4.7.5 but for t = 0.7.
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Figure 4.7.8: Comparison between the exact solution (4.6.20) for the concen-

tration in the fluid C(r, t) and the numerical solution (4.6.19) at t = 5.
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Figure 4.7.9: The same as in Figure 4.7.5 but for t = 0.17 and ∆t = 0.2.
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Figure 4.7.10: The same as in Figure 4.7.5 but for t = 0.21 and ∆t = 0.2.
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4.8 Problem for a single spherical wax

particle with constant mass transfer

coefficient

In this section we consider the initial boundary value problem of a wax particle

(3.2.8)-(3.2.12), see chapter 3, with constant mass transfer coefficient kr. The

problem in chapter 3 was considered for a special dependence with respect

to time of the mass transfer coefficient, kr(t) = Dk1ζ(t). In this section,

we consider the problem with constant mass transfer coefficient by using new

scaled variables. The dimensional problem is:

∂C
∂t

= D
r2

∂
∂r

(
r2 ∂C

∂r

)
r ≥ R(t), t > 0,

C(r, 0) = C0 r ≥ R(0),

C(r, t) −→ C0 as r −→∞,

D ∂C
∂r

= kr(C − C∗) on r = R(t),

dR
dt

= D ∂C
∂r

on r = R(t),

R(t = 0) = R0.

(4.8.1)

We write the problem (4.8.1) using the following non-dimensional variables:

r̂ =
r

R0

, t̂ =
t

T
, R̂(t̂) =

R(t)

R0

, Ĉ(r̂, t̂) =
C(r, t)− C0

(C0 − C∗)
,

where T =
R2

0

D
is the timescale. Note that the dimensionless variables in this
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section are different from the dimensionless variables in section 4.2 because

section 4.2 was intended to compare the numerical solution with the self-similar

solution of chapter 3. Now we consider another case. In this section, the mass

transfer coefficient kr is constant. Using the non-dimensional variables above,

we can write the problem (after dropping hats) as:

∂C
∂t

= 1
r2

∂
∂r

(
r2 ∂C

∂r

)
r ≥ R(t), t > 0

C(r, 0) = 0 r ≥ R(0),

C(r, t) −→ 0 as r −→∞,

∂C
∂r

= kr [C + 1] on r = R(t),

dR
dt

= (C0 − C∗)∂C∂r on r = R(t),

R(0) = 1 when t = 0,

(4.8.2)

where k̂r = krR0

D
. We simplify the problem (4.8.2) by using u(r, t) = rC(r, t)
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

ut = urr r ≥ R(t), t ≥ 0,

u(r, 0) = 0,

u(r, t) −→ 0 as r −→∞,

ur = u
R(t)

[1 + krR(t)] + krR(t) on r = R(t),

dR
dt

= kr(C0 − C∗)
(

u
R(t)

+ 1
)

on r = R(t),

R(0) = 1.

(4.8.3)

The same numerical algorithm as that described in section 4.4 is used. We use

equation (4.4.3) with u0(r) = 0, then we have the following boundary-integral

equation

Un =
1√
π

∫ tn

0

[
U(t′)

Rn −R(t′)

2(tn − t′)
− S(t′)− U(t′)

dR

dt
(t′)

]
1√

tn − t′
e
− (Rn−R(t′))2

4(tn−t′) dt′,

(4.8.4)

where S(t′) = ur(R(t′), t′) and U(t′) = u(R(t′), t′).

We substitute the boundary conditions (4.8.3)4 and (4.8.3)5 into the integral

equation (4.8.4), to obtain

Un =
1√
π

∫ tn

0

[
U(t′)

Rn −R(t′)

2(tn − t′)
− g

(
U(t′)

R(t′)
+ 1

)
U(t′)−

(
1

R(t′)
+ kr

)
U(t′)

− krR(t′)

]
1√

tn − t′
e
− (Rn−R(t′))2

4(tn−t′) dt′,

(4.8.5)

where g = kr(C0 − C∗).

Also, we can apply the same numerical treatment as above for the radius R(t).

We use the discretized evolution equation (4.5.3) with constant coefficients kr,
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C0, and C∗:

Rn =Rn−1 +
4t
2

[
kr(C0 − C∗)

(
Un−1

Rn−1

+ 1

)
+ kr(C0 − C∗)

(
Un−1

Rn−1 +4tkr(C0 − C∗)
(
Un−1

Rn−1
+ 1

) + 1

)]
.

(4.8.6)

We apply the same numerical treatment as before for the concentration C(r, t)

in the fluid

C(r, t) = C0 + (C0 − C∗)
u(r, t)

r
. (4.8.7)

We plot below several quantities: the function U(t) from equation (4.8.5), the

concentration C(r, t) from equation (4.8.7), and the radius R(t) from equation

(4.8.6) for constant values of kr, C0, and C∗ as indicated in the figure captions.
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Figure 4.8.1: The function U(t) for kr = 4.5× 10−4, C0 = 0.1, and C∗ = 0.01

as a function of the non-dimensional time t.
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Figure 4.8.2: The wax concentrations C(r, t) in the fluid domain as functions

of the non-dimensional radial coordinate r calculated for kr = 4.5 × 10−4,

C0 = 0.1, and C∗ = 0.01 at different time instants.
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Figure 4.8.3: The wax concentrations C(r, t) in the fluid domain as functions

of the dimensional radial coordinate calculated for dimensional mass transfer,

kr = 4.5× 10−6m/s, C0 = 0.1, and C∗ = 0.01 at different time instants.
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Figure 4.8.4: The wax concentrations C(r, t) in the fluid domain as functions

of the dimensional radial coordinate calculated for dimensional mass transfer,

kr = 4.5× 10−6m/s, C0 = 0.1, and C∗ = 0.01 at different time instants.

116



0 5 10 15 20

t

0.099982

0.099984

0.099986

0.099988

0.09999

0.099992

0.099994

0.099996

0.099998

0.1

C
(R

(t
),
t)

Figure 4.8.5: The concentration on the surface of the wax particle as a function

of the non-dimensional time for kr = 4.5× 10−4.
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Figure 4.8.6: The radius R(t) of the growing wax particle for kr = 4.5× 10−4,

C0 = 0.1, and C∗ = 0.01.
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Figure 4.8.7: The radius R(t) of the growing wax particle for kr = 0.9, C0 =

0.1, and C∗ = 0.01.
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Figure 4.8.8: The radius R(t) of the growing wax particle for kr = 2, C0 = 0.1,

and C∗ = 0.01.
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Figure 4.8.9: The radius R(t) as a function of time for different values of the

dimensionless mass transfer coefficient kr.
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Figure 4.8.10: The average rate of change of R(t).
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Figure 4.8.11: The dimensionless rate of change of R(t) as a function of time,

where kr = 4.5× 10−2.
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Figure 4.8.12: The dimensional radius R(t) as a function of dimensional time,

where kr = 10−4 [m/s].
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Figure 4.8.1 shows that the function U(t) for the constant coefficients, kr,

C0, and C∗ decreases in time in order for the wax particle to grow. Figure

4.8.2 illustrates the concentration distribution C(r, t) as a function of distance

from the surface of the wax particle with constant mass transfer coefficient.

Each curve in Figure 4.8.2 is plotted for a given value of time. As time passes,

the concentration at the surface of the particle decreases. Also, C(r, t) departs

from its far-field value more and more over a wider range of distance, as t

increases. In Figure 4.8.3 the concentration around the particle is shown in

the dimensional variables and for smaller value of kr. It is seen that at t = 0.3

s the concentration is visibly decreased on the surface of the wax particle. The

radius of the wax particle increased three times by t = 0.3 s. At this time the

particle radius is 0.3 mm. We can see at t = 0.3 s the concentration is visibly

decreased over a distance of about 6 particle radii from the particle surface.

It is over this distance that the neighbouring particles start to disturb each

other from this time onward. Also, we can see that the difference between the

concentration at r = 1.8 mm and the far-field concentration is of order 10−7.

Figure 4.8.5 illustrates the concentration on the surface of the wax particle as

a function of time. The concentration decreases in time, which means that

the concentration on the surface of the wax particle is lower than the far-field

concentration.

Figure 4.8.6 shows the wax particle radius for kr = 4.5×10−4. We see that

R(t) increases by only 0.04% per unit time, which is explained by small value

of kr. Figure 4.8.7 shows the growth of the wax particle radius by 6% per unit

time when the mass transfer coefficient is kr = 0.9. Figure 4.8.8 shows the

radius of the wax particle increases as a function of longer time. We can see

that the wax particle radius R(t) is growing faster with larger value of the mass
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transfer coefficient. This means the wax molecules close to the wax particle

surface are quickly stuck to the surface of the wax particle if the mass transfer

coefficient is large. Since the value of mass transfer coefficient could not be

approximated from literature, in the following we investigate the dependence

of the radius R(t) on the value of the mass transfer coefficient kr. Figure 4.8.9

shows the radius R(t) as a function of time for different values of kr. We see the

radius of the wax particle grows more quickly with increase of kr and that R(t)

is close to a linear increase as t increases. Also, in Figure 4.8.10 we calculate

average speed of the radius growth, the slope of R(t), R(1)−R(0)
1−0

, as a function

of kr. We can see that the rate of increase of R(t) is directly proportional to

the mass transfer coefficient kr. Figure 4.8.11 shows the dimensionless rate

of increase of the radius R(t) as a function of time for kr = 4.5 × 10−2. We

can see it starts from 4 × 10−3 and it changes just slightly with time. Figure

4.8.12 shows that for larger time, the rate of change of radius does not change

significantly. Figure 4.8.12 illustrates the dimensional radius R(t) for a wax

particle which starts to grow from 0.5 mm initial radius.

The mass transfer coefficient kr is assumed to be a positive function of

temperature kr{TWAT − T}. If the temperature drops, more wax molecules

appear in the solution, and the mass transfer coefficient increases monoton-

ically, if we decrease the temperature. We assume that kr increases linear

with decreasing temperature as shown in figure 4.8.13. The particle moves to-

gether with the flow but the temperature around the particle changes in time,

T = T (x(t), rp) is the temperature distribution in the pipe, where (x(t), rp) is

the location of the particle in the pipe, x(t) is the distance the wax particle

travelled from the entrance to the pipe and rp is the distance of the parti-

cle trajectory form the pipe axis. Here rp= constant and x(t) ≈ u(rp)t, where
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u(rp) = umax(1−r2
p/a

2) is the flow velocity and t is time as discussed in chapter

2. So overall, T = T (t). The coefficient kr is assumed to be a positive function

of temperature, kr{TWAT −T}. We expect the temperature T (t) to decrease in

time, because the particle travels from a hot entrance towards a colder part of

the pipe. Hence, following the wax particle along the pipe, we may assume the

temperature to be a given function of time. So, kr{TWAT −T} = kr(t). Figure

4.8.14 shows the temperature at the location of the particle which enters the

pipe at distance 5cm from the wall as a function of time. We can see at t = 0

the temperature is very high and as the time goes on the temperature drops.

Figure 4.8.15 shows the corresponding mass transfer coefficient as a function

of time. Figure 4.8.16 shows the radius of the wax particle R(t) where the

mass transfer coefficient kr(t) is from figure 4.8.15. Figure 4.8.17 shows the

concentration in the fluid C(r, t) where the mass transfer depend on time.
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Figure 4.8.13: The mass transfer as a function of temperature.
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Figure 4.8.14: Temperature at the place of the particle as a function of time .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

k
r

Figure 4.8.15: The mass transfer kr(t) as a function of time.
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Figure 4.8.16: The function R(t) as a function of the non-dimensional time t,

when the mass transfer kr(t) depend on time.
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Figure 4.8.17: The wax concentrations C(r, t) in the fluid domain as func-

tions of the dimensional radial coordinate calculated for mass transfer kr(t) is

function of time.
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Chapter 5

Growth of wax particles in a

laminar flow

5.1 Introduction

In this chapter, we consider wax particles moving together with the oil in a

pipe. The wax particles are changing their size and shapes due to diffusion of

wax molecules from the oil towards the particles and interaction between the

particles. The motions of small particles, including wax particles, in oil pipe

lines is a fundamental industrial problem. The motions of the wax particles

and their evolutions in time depend on the ambient flow, temperature and

characteristics of the particles, as well as their interaction between each other.

In section 5.2, we formulate the coupled diffusion/flow problem for a single

particle in a uniform flow without assuming that the shape of the particle

is spherical. However, we assume that the particle is spherical initially. For

a small wax particle moving far from the pipe wall, the flow shear can be
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neglected at the scale of the particle size. We can assume that the speed of the

wax particle is close to the local speed of the flow. That is the flow relative to

the wax particle can be neglected at the leading order. Then the wax particle

remains spherical at leading order and its radius can be calculated by using the

technique developed in chapter 4. We are concerned here with the first-order

correction of the particle shape caused by a small difference between the wax

particle speed and speed of the local flow. On the other hand, the motion of the

wax particle can be affected by this shape correction. This coupled problem

is formulated and studied in the spherical coordinates. The coordinate system

moves together with the wax particle.

21/10/2017 spherical coordinate system - GeoGebra

https://www.geogebra.org/geometry/GX7fGhS4 1/1

GeoGebra Geometry Home  Download

Figure 5.1.1: Spherical coordinates system. The ranges of the variables are

0 6 r, 0 6 θ 6 π, and 0 6 φ < 2π, where U is the velocity of the flow.

In the coordinate system moving together with the particle, the diffusion

of wax molecules toward the surface of the wax particle is described by the

convective diffusion equation [64]:
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DC

Dt
= D∇2C, (5.1.1)

where C = C(r, θ, φ, t) is the volume concentration of dissolved wax in the

oil, 0 ≤ C ≤ 1, t is time, D is the diffusivity of wax in oil, r, θ, φ are the

polar coordinates with the origin at the centre of mass of the wax particle, see

Figure 5.1.1, and DC/Dt is the material derivative. Equation (5.1.1) should

be solved in the unbounded region of the fluid around the wax particle subject

to the appropriate initial and boundary conditions. We consider a single wax

particle assuming that other wax particles and the pipe wall are far away and

do not affect the flow and the concentration of wax in the fluid around the wax

particle of interest. If the wax particle is initially spherical and it moves at the

speed of the flow, then the wax particle stays spherical for all times with its

radius R(t) governed by the radial diffusion and the mass transfer coefficient

kr, see equation (3.2.1). Indeed, without a relative flow and without other wax

molecules nearby, which change the concentration field, there is no reason for

non-spherical growth of the particle. The wax particle growth departs from

spherically symmetric expansion if any one of the following occurs:

1- Initial velocity of a spherical wax particle inserted in the flow is different

from the local velocity of the flow.

2- The initial shape of the particle is not spherical.

3- There are several particles close to each other.

For example, if we have two wax particles and the distance between them

is relatively large then these particles do not feel each other because the con-

centration approaches the far-field value at short distances from the surfaces of

each particle. We need to estimate the distance starting from which interaction

between particles can be neglected with a good accuracy. If the wax particles
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are close to each other, then the wax concentration around each particle is

three-dimensional, in general, and convective terms in the diffusion equation

(5.1.1) could be important.

In this chapter we restrict ourselves to axisymmetric problems in which the

particle shapes only slightly deviate from spherical ones. Then the axisymmet-

ric flow around the wax particle only slightly deviates from the uniform flow,

which is due to a relative motion of the wax particle, its shape or the presence

of other particles. The equations describing the motion and growth of the

wax particle are solved by asymptotic methods with the leading-order solution

corresponding to the spherical particle without a relative flow around it.

5.2 Formulation of the three-dimensional

problem of a wax particle growth in the

spherical local coordinates

Consider a wax particle moving through a viscous incompressible fluid. The

spherical coordinates r, θ, φ, moving together with the centre of mass of the

wax particle are convenient in problems with dominant variation of the con-

centration field in the radial direction, where r is the radial distance from the

origin, θ is the polar angle from the axis of symmetry and φ is the azimuthal

angle, see Figure 5.1.1, 0 6 θ 6 π and 0 6 φ < 2π. The wax particle is grow-

ing with time. In the three-dimensional formulation, the surface of the wax

particle is described by the equation

S(r, θ, φ, t) = r −R(θ, φ, t) = 0, (5.2.1)
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where R(θ, φ, t) is the distance of a point on the wax particle surface from the

centre of mass of the wax particle. The function R(θ, φ, t) is to be determined

as part of the solution. Note that motions of molecules along the wax particle

surface are not allowed in our analysis. The particle surface is displaced only

in the normal direction due to the particle growth. The initial shape of the

wax particle is given,

R(θ, φ, 0) = R0(θ, φ), (5.2.2)

where R0(θ, φ) is a given function.

The unit outer normal vector ~n to the wax particle surface is given by,

see [82],

~n =
∇S
|∇S|

, (5.2.3)

where S(r, θ, φ, t) is defined by (5.2.1) and the normal is directed outwards the

particle.

Equations (5.2.1) and (5.2.3) provide

~n =

~ir − 1
R(θ,φ,t)

(
∂R
∂θ

)
~iθ − 1

R(θ,φ,t) sin θ

(
∂R
∂φ

)
~iφ√

1 + 1
R2(θ,φ,t)

(
∂R
∂θ

)2
+ 1

R2(θ,φ,t) sin2 θ

(
∂R
∂φ

)2
, (5.2.4)

where (~ir, ~iθ, ~iφ) are the unit vectors, see Figure 5.1.1.

The speed of the surface S(r, θ, φ, t) = 0 in the direction of outer normal ~n

is equal to

Vr = −
∂S
∂t

|∇S|
. (5.2.5)

The normal component of the velocity of the flow, ~u · ~n, on the deformable

surface (5.2.1) is obtained by using the mass conservation law, see [38], where
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~u is the fluid velocity in the moving coordinate system, see section 5.1. As

in [38], we consider a general case where the wax density of the solid particle,

ρws, can be different from the wax density in the oil, ρwl. Then the mass flux

from the oil to the surface of the wax particle is −ρwl(~u−Vr~n) ·~n, and the mass

flux from the surface to the solid wax is ρwsVr. The fluxes are calculated with

respect to the moving surface of the wax particle, see Figure 5.2.1, ~u ·~n−Vr is

the normal component of the flow velocity with respect to the moving surface,

in the direction of the outer normal ~n. So, − (~u · ~n− Vr) ρwl is the mass flux

towards the surface of the wax particle and the mass flux from the surface of

the wax particle towards the inner part of the wax particle is ρwsVr.

14/11/2017 boundary2 - GeoGebra
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Figure 5.2.1: The moving surface of the wax particle.

The mass conservation law provides that the mass fluxes are equal,

−ρwl(~u− Vr~n) · ~n = ρwsVr,

and we obtain

~u · ~n =

(
1− ρws

ρwl

)
Vr. (5.2.6)
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In present analysis, we assume ρws = ρwl. Then equation (5.2.6) leads to the

boundary condition for the flow around a wax particle,

~u · ~n = 0 (r = R(θ, φ, t)) , (5.2.7)

which is the boundary condition for the normal velocity of the fluid on the

wax particle surface. The no-slip condition is written as, see [54]

~u− (~u · ~n)~n = 0. (5.2.8)

This condition implies that the tangential velocity of the flow is zero on the

wax particle surface.

To determine the velocity field of the flow around the particle we use the

Navier-Stokes equations of the motion for an incompressible viscous fluid, see

[2],

ρ

(
∂~u

∂t
+ (~u · ∇)~u

)
= −∇P + µ∇2~u− ρ∂~up

∂t
, (5.2.9)

together with the continuity equation,

∇ · ~u = 0, (5.2.10)

where ~u is the fluid velocity with respect to the wax particle, ρ is the con-

stant oil density, P is the hydrodynamic pressure, µ is the constant dynamic

viscosity, and ~up(t) is the velocity of the wax particle in the global coordinate

system. The velocity of the flow in the global coordinate system, where the

pipe is at rest, is ~u(~x, t) + ~up(t). Far from the wax particle, r −→∞, the flow

is uniform,

~u(~x, t) −→ (U, 0, 0)− ~up(t), (5.2.11)
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where U is the flow velocity in the pipe at the level of the wax particle motion

along the pipe. In the following, we restrict ourselves to the motion of the wax

particle only along the pipe, ~up(t) = (up(t), 0, 0), assuming the flow velocity U

constant. Here ~up(t) only slightly deviates from U .

02/01/2018 local coordinate system - GeoGebra
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Figure 5.2.2: The global coordinate system for the pipe and local coordinate

system for the particle, where ~up(t) is the absolute velocity for the particle in

the global coordinate system and ~u is the velocity of the flow in the moving

coordinate system.

The speed of the wax particle, up(t), is governed by Newton’s second law:

d

dt
[m(t)up(t)] = Fx(t), up(0) = up0, (5.2.12)

where Fx(t) is the x-component of the hydrodynamic force acting on the wax

particle and m(t) is the time-dependent mass of the wax particle. The total

force ~F (t) acting on the wax particle in the flow is given by

~F (t) =

∫ 2π

0

dφ

∫ π

0

(T · ~n) |r=R(θ,φ,t)R
2(θ, φ, t) sin θ|∇ (r −R(θ, φ, t)) |dθ,

(5.2.13)
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where T is the stress tensor, see [2],

T = −PI + 2µE, E =
1

2

(
∇~u+∇~uT

)
, (5.2.14)

I is the unit matrix and E is the rate-of-strain tensor.

In summary, the flow around the wax particle, r > R(θ, φ, t), is governed

by equations (5.2.9) and (5.2.10) in the moving coordinate system subject to

the boundary conditions (5.2.7) and (5.2.8) and the far-field condition (5.2.11).

The particle speed up(t) is governed by equation (5.2.12), where the hydrody-

namic force is given by (5.2.13) and (5.2.14). In this formulation, we assume

that the shape function R(θ, φ, t) and the mass of the particle m(t) are given.

The concentration of wax, C = C(r, θ, φ, t), in the flow around the particle,

r > R(θ, φ, t), is governed by the convective diffusion equation (5.1.1), see [14],

which has the form

DC

Dt
= D

[
1

r2

∂

∂r

(
r2∂C

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂C

∂θ

)
+

1

r2 sin2 θ

∂2C

∂φ2

]
,

(5.2.15)

in the spherical coordinates, where

DC

Dt
=
∂C

∂t
+ ur

∂C

∂r
+
uθ
r

∂C

∂θ
+

uφ
r sin θ

∂C

∂φ
, (5.2.16)

and ur, uθ and uφ are the fluid velocity components in r, θ and φ directions,

respectively, ~u = ur~ir + uθ~iθ + uφ~iφ in the spherical coordinates, see (5.2.9).

Initially, before the particle has been inserted in the flow, t < 0, the wax

concentration in the flow is assumed uniform,

C(r, θ, φ, 0) = C0. (5.2.17)

The concentration remains uniform far from the particle,
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C(r, θ, φ, t) −→ C0, (r −→∞, t > 0), (5.2.18)

for all times. The boundary condition for the concentration on the time-

dependent surface of the particle was formulated in terms of the mass flux

by Dawson et al. [24], we discussed this condition in chapter 3 for spherical

case. To derive this condition in 3D case, we recall that the diffusive mass flux

~J(r, θ, φ, t) of wax molecules within a medium is given by Fick’s first law [21]

through the concentration gradient,

~J(r, θ, φ, t) = −ρwlD∇C, (5.2.19)

where ρwl is the density of the solid wax in the oil. The gradient of the

concentration, ∇C, is given by

∇C =
∂C

∂r
~ir +

1

r

∂C

∂θ
~iθ +

1

r sin θ

∂C

∂φ
~iφ. (5.2.20)

The mass flux into the particle, evaluated on the surface of the particle, is

− ~J · ~n where ~n is the unit outward normal vector. The mass flux, − ~J · ~n, is

equal to the mass of wax deposited to unit surface area per unit time. The

dimension of mass flux is [kg/(m2s)]. The boundary condition on the surface

of the growing particle relates the mass flux in the direction along the outward

normal to the surface, − ~J · ~n, to the level of supersaturation on the particle

surface, C(R(r, θ, φ, t), θ, φ, t)−C∗(T ), where C∗(T ) is the solubility of the wax

in oil at temperature T . This boundary condition on the wax particle surface

for the mass flux was suggested in [24] and [25], in the form

ρwlD∇C · ~n = ρwlkr(C − C∗).

Here the left hand side is the mass flux towards the surface and the coefficient

of proportionality in the right hand side is made of two parts: the density of

wax which is diffused, ρwl, and mass transfer coefficient, kr. Then we obtain
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D∇C · ~n = kr(C − C∗) (r = R(θ, φ, t)). (5.2.21)

The mass transfer coefficient kr, see [24], has dimension of velocity, m/s. The

scalar product on the left hand side of equation (5.2.21) is evaluated by using

equations (5.2.20) and (5.2.4).

The equation describing the dynamics of the particle growth is obtained by

equating the mass dm deposited on an element dA of the particle surface per

time ∆t, dm = −( ~J · ~n)dAdt, to the increase of the local mass of the particle,

ρwlVrdAdt. By using equations (5.2.19) and (5.2.5), we obtain the deposited

mass onto the element dA of the particle surface during the time interval dt,

dm = ρwlD
∂C

∂n
dAdt = ρwl ·

−∂S
∂t

|∇S|
dAdt. (5.2.22)

Equation (5.2.22) provides

D∇C · ~n =
−∂S

∂t

|∇S|
, (5.2.23)

where |∇S|·~n = ∇S, see equation (5.2.3), and ∂S
∂t

= −∂R
∂t
, see equation (5.2.1).

Then equation (5.2.23) leads to the following equation for the dynamics of the

wax particle surface,

∂R

∂t
= D(∇C · ∇S). (5.2.24)

The mass of the wax particle, m(t), in equation (5.2.12) is equal to the wax

density, ρws, multiplied by the particle volume. For a known function R(θ, φ, t)

in (5.2.1), we have

m(t) =
1

3
ρws

∫ 2π

0

dφ

∫ π

0

R3(θ, φ, t) sin θdθ, (5.2.25)

see [36].
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The three-dimensional coupled problem of a growing particle moving to-

gether with a uniform flow has been formulated above. Next we restrict our-

selves to axisymmetric deformations of the particle, where the concentration

C, the velocity field ~u, the pressure P and the shape function R do not depend

on the azimuthal coordinate φ.

5.3 Axisymmetric problem of a wax particle

growth

The particle moves together with the flow from the entrance to the pipe along

one stream line. At arbitrary fixed distance from the wall, we study the growth

of an axisymmetric particle along the pipe. In this section, the problem is for-

mulated for the axisymmetric case. For incompressible axisymmetric flow in

spherical coordinate system (r, θ, φ) the solution is independent of φ. Con-

sequently we write the surface of the particle (5.2.1) in axisymmetric form,

independent of φ as:

S(r, θ, t) = r −R(θ, t) = 0. (5.3.1)

The initial shape of the particle is spherical,

R(θ, 0) = R0. (5.3.2)

The unit outward normal vector to the surface (5.3.1) is

~n =
~ir − 1

R(θ,t)

(
∂R
∂θ

)
~iθ√

1 + 1
R2(θ,t)

(
∂R
∂θ

)2
. (5.3.3)

The normal component of velocity of the fluid on the wax particle surface is

zero
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~u · ~n = 0, (5.3.4)

where ~u = ur~ir + uθ~iθ, see (5.2.6).

The no-slip condition (5.2.8) reads

~u · ~τ = 0, (5.3.5)

on the particle surface, where

~τ =

1
R(θ,t)

(
∂R
∂θ

)
~ir + ~iθ√

1 + 1
R2(θ,t)

(
∂R
∂θ

)2

is the tangent vector to the surface (5.3.1). It is clear that ~n · ~τ = 0. Then

(5.3.5) yields

ur ·
∂R

∂θ
+ uθ ·R = 0 (r = R(θ, t)). (5.3.6)

An axisymmetric flow of an incompressible fluid is described by a stream func-

tion ψ(r, θ, t) which gives the flow velocity components, see [2],

ur =
1

r2 sin θ

∂ψ(r, θ, t)

∂θ
, uθ = − 1

r sin θ

∂ψ(r, θ, t)

∂r
. (5.3.7)

The components (5.3.7) satisfy the continuity equation (5.2.10) written in the

spherical coordinates,

∇ · ~u =
1

r2

∂

∂r
(r2ur) +

1

r sin θ

∂

∂θ
(uθ sin θ) = 0, (5.3.8)

for any function ψ(r, θ, t). The vorticity, ~ω(r, θ, t) = ∇×~u, of an axisymmetric

flow is ~ω(r, θ, t) = ω(r, θ, t)~iφ, where, see [2],

ω =
1

r

[
∂(ruθ)

∂r
− ∂ur

∂θ

]
= − 1

r sin θ

(
∂2ψ

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂ψ

∂θ

))
. (5.3.9)

The Navier-Stokes equation (5.2.9) provides the following equation for vorticity

~ω, see [2],
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∂~ω

∂t
+ (~u · ∇)~ω = (~ω · ∇)~u+ ν∇2~ω. (5.3.10)

For axisymmetric flow the first term on the right-hand side of equation (5.3.10)

is

(~ω · ∇)~u =

(
ωr

∂

∂r
+
ωθ
r

∂

∂θ
+

ωφ
r sin θ

∂

∂φ

)(
ur~ir + uθ~iθ

)
, (5.3.11)

where ωr = ωθ ≡ 0 and (~ω · ∇)~u =
ωφ

r sin θ
(ur sin θ~iφ + uθ cos θ~iφ).

Equation (5.3.10) leads to equation

∂ω

∂t
+ ur

∂

∂r
+
uθ
r

∂ω

∂θ
−
(
ur
r

+
uθ cos θ

r sin θ

)
ω =

ν

[
1

r2

∂

∂r

(
r2∂ω

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ω

∂θ

)
− ω

r2

1

sin2 θ

]
,

(5.3.12)

for the scalar function ω(r, θ, t).

The no-slip condition (5.3.6) and (5.3.7) give

1

sin θ

(
1

R2

∂R

∂θ

∂ψ

∂θ
− ∂ψ

∂r

)
= 0.

On the other hand, the velocity component tangent to the wax particle surface

is

∂ψ

∂n
= ∇ψ · ~n =

(
∂ψ

∂r
~ir +

1

r

∂ψ

∂θ
~iθ

)
·
~ir − 1

R(θ,t)

(
∂R
∂θ

)
~iθ√

1 + 1
R2(θ,t)

(
∂R
∂θ

)2

=

(
∂ψ

∂r
− 1

R2

∂R

∂θ

∂ψ

∂θ

)
1√

1 + 1
R2

(
∂R
∂θ

)2
.

Therefore, because of the no-slip condition, we have

∂ψ

∂n
=

(
∂ψ

∂r
− 1

R2

∂R

∂θ

∂ψ

∂θ

)
1√

1 + 1
R2

(
∂R
∂θ

)2
= 0. (5.3.13)

Condition (5.3.4) gives

ur −
1

R

∂R

∂θ
uθ = 0. (5.3.14)
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Substituting equations (5.3.7) into (5.3.14), we have

1

R2 sin θ

∂ψ

∂θ
+
∂R

∂θ

1

R2 sin θ

∂ψ

∂r
= 0,

and rearrangement gives

∂R

∂θ

∂ψ

∂r
+
∂ψ

∂θ
= 0, (5.3.15)

where

∂R

∂θ

∂ψ

∂r
+
∂ψ

∂θ
=
∂ [ψ(R(θ, t), θ, t)]

∂θ
.

The stream-line θ = 0, where r > R(0, t) is the symmetry line of the flow, which

goes to infinity. We take ψ = 0 on this line. Then the condition (5.3.15) can

be integrated along the boundary and a boundary conditions on the particle

surface read

ψ = 0, (5.3.16)

and

∂ψ

∂n
= 0 (r = R(θ, t), 0 6 θ 6 π) . (5.3.17)

The hydrodynamic part of the axisymmetric coupled problem consists of equa-

tions (5.3.7), (5.3.9) and (5.3.12), boundary conditions (5.3.16)-(5.3.17) and

the far-field condition (5.2.11).

The vector force acting on the wax particle follows from (5.2.13) and for an

axisymmetric flow is given by

~F (t) = 2π

∫ π

0

(T · ~n) |r=R(θ,t)R
2(θ, t) sin θ

√
1 +

1

R2

(
∂R

∂θ

)2

dθ, (5.3.18)

where the stress tensor T of the axisymmetric flow is, see [2],

T =

Trr Trθ

Tθr Tθθ

 , (5.3.19)
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where

Trr = −P + 2µ
∂ur
∂r

, Tθθ = −P + 2µ

(
1

r

∂uθ
∂θ

)
,

Trθ = Tθr = µ

(
r
∂

∂r

(uθ
r

)
+

1

r

∂ur
∂θ

)
.

Then the product T · ~n on the surface of the wax particle, which is needed for

evaluation of the hydrodynamic force (5.3.18), reads

T · ~n =

Trr Trθ

Tθr Tθθ

(~ir − 1

R

∂R

∂θ
~iθ

)
1√

1 + 1
R2 (∂R

∂θ
)2

=

[(
Trr −

1

R

∂R

∂θ
Trθ

)
~ir +

(
Tθr −

1

R

∂R

∂θ
Tθθ

)
~iθ

]
1√

1 + 1
R2 (∂R

∂θ
)2

. (5.3.20)
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Figure 5.3.1: Uniform flow past an axisymmetric wax particle, 0 6 θ 6 π, U

is the velocity of the flow and up(t) is the velocity of the wax particle.

It is clear that only the x-component of the hydrodynamic force, Fx = ~F (t) · ~ix,

is non-zero in an axisymmetric flow. Here, see Figure 5.3.1,

~ir · ~ix = cos θ, ~iθ · ~ix = − sin θ,
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and then

~ix · T · ~n =

[(
Trr −

1

R

∂R

∂θ
Trθ

)
cos θ +

(
1

R

∂R

∂θ
Tθθ − Tθr

)
sin θ

]
1√

1 + 1
R2 (∂R

∂θ
)2

=

[
Trr cos θ − Trθ

(
1

R

∂R

∂θ
cos θ + sin θ

)
+

1

R

∂R

∂θ
Tθθ sin θ

]
1√

1 + 1
R2 (∂R

∂θ
)2

.

(5.3.21)

Equations (5.3.18) and (5.3.21) yield the force in the equation (5.2.12) for the

particle speed up(t).

Diffusion of the wax molecules toward the wax particle is described by the

equations (5.2.15) and (5.2.16), initial (5.2.17) and far-field (5.2.18) conditions

and the condition (5.2.21) on the surface of the particle. These equations have

the following forms in the axisymmetric case:

∂C

∂t
+ ur

∂C

∂r
+
uθ
r

∂C

∂θ
=D

[
1

r2

∂

∂r

(
r2∂C

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂C

∂θ

)]
(r > R(θ, t), t > 0) ,

(5.3.22)

C(r, θ, 0) = C0 at t = 0, (5.3.23)

C(r, θ, t) −→ C0 as r −→∞, t > 0, (5.3.24)

∂C

∂r
− 1

R2

∂R

∂θ

∂C

∂θ
=
kr
D

(C − C∗)

√
1 +

1

R2

(
∂R

∂θ

)2

on r = R(θ, t).

(5.3.25)

Finally, equation (5.2.24), which describes the evolution of the wax particle

shape, takes the form

∂R

∂t
= D

(
∂C

∂r
− 1

R2

∂R

∂θ

∂C

∂θ

)
on r = R(θ, t), t > 0, (5.3.26)

R(θ, 0) = R0 when t = 0. (5.3.27)
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Equation (5.2.25) in the axisymmetric case reads

m(t) =
2π

3
ρws

∫ π

0

R3(θ, t) sin θdθ. (5.3.28)

5.4 Non-Dimensionalized problem

To write the convective diffusion equation (5.3.22), the boundary conditions

(5.3.25) and (5.3.26), Navier-Stokes equation (5.2.9)-(5.2.10), in a more clear

form, we non-dimensionalize the variable of the length dimension with the

initial particle radius R0, velocity of the oil relative to the wax particle with

U∗ = U −up(0), and pressure with ρνU∗
R0

. Diffusion is considered as a dominant

effect in this problem with the time scale
R2

0

D
. Convective is assumed small

compared with the diffusion, U∗R0

D
= ε and ε << 1. Also we assume that the

kinematic viscosity of the oil ν is much bigger than the diffusion coefficient D,

ε1 = D
ν

, ε1 << 1. The dimensionless variables are denoted by hats:

r̂ =
r

R0

, t̂ =
Dt

R2
0

, Ĉ(r̂, θ, t̂) =
C(r, θ, t)− C0

(C0 − C∗)
,

û(t̂) =
u(t)

U∗
, R̂(θ, t̂) =

R(θ, t)

R0

, ∇̂ = R0∇, P̂ =
PR0

ρνU∗
.

Scales of other unknown functions will be introduced later. Hats are dropped

below.

The diffusion part of the problem, which is described by equations (5.3.22)-

(5.3.25), in the dimensionless variables is

∂C

∂t
+ ε

[
ur (r, θ, t)

∂C

∂r
+
uθ (r, θ, t)

r

∂C

∂θ

]
=

1

r2

[
∂

∂r

(
r2∂C

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂C

∂θ

)]
(r > R(θ, t), t > 0),

(5.4.1)
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C(r, θ, 0) = 0 (t = 0), (5.4.2)

C(r, θ, t) −→ 0 (r −→∞), (5.4.3)

∂C

∂r
− 1

R2

∂R

∂θ

∂C

∂θ
= k̂r(C + 1)

√
1 +

1

R2

(
∂R

∂θ

)2

(r = R(θ, t), t ≥ 0),

(5.4.4)

where k̂r = R0kr
D
. We assume that the non-dimensional parameter k̂r is of order

O(1) in the dimensionless variable.

The kinematic condition on the particle surface is given by equations (5.3.26)

and (5.3.27) which read in the dimensionless variables,

∂R

∂t
= (C0 − C∗)

(
∂C

∂r
− 1

R2

∂R

∂θ

∂C

∂θ

)
(r = R(θ, t)), (5.4.5)

R(θ, 0) = 1 (t = 0), (5.4.6)

where C0 − C∗ is assumed to be O(1).

The hydrodynamic part of the problem, equations (5.3.7)-(5.3.12), yields

the scale R2
0U∗ for ψ and the scale U∗

R0
for the vorticity ω. Note that equations

(5.3.7) and (5.3.9) do not change their forms in the dimensionless variables.

Equation (5.3.12) now reads

ε1

(
∂ω

∂t
+ ε

(
ur
∂ω

∂r
+
uθ
r

∂ω

∂θ

))
=

1

r2

∂

∂r

(
r2∂ω

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ω

∂θ

)
.

(5.4.7)

The boundary conditions (5.3.16) and (5.3.17) keep their forms in the di-

mensionless variables. The condition at infinity (5.2.11) suggests the relative

velocity between the flow and the wax particle in the form

U∗ûd(t) = U − U∗ûp(t̂) (5.4.8)

and then
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~̂u→ (ûd(t̂), 0, 0) (r̂ →∞). (5.4.9)

Note that the pressure P (r, θ, t) is needed in the calculations of hydrodynamic

force, see equation (5.3.18) and (5.3.19). The pressure can be obtained from

the equations (5.2.9) and (5.2.10), which have the following forms in the di-

mensionless variables (hats are dropped):

ε1

(
∂~u

∂t
+ ε(~u · ∇)~u

)
= −∇P +∇2~u− ε1

d ~up
dt

(5.4.10)

∇ · ~u = 0 (5.4.11)

Note that ε · ε1 = U∗R0

ν
= Re. Therefore the case under consideration corre-

sponds to the slow motion of the wax particle with respect to the flow.

Equations (5.2.12) and (5.3.18) of the particle motion, equation (5.3.28) for

the mass of the particle and equation (5.4.8) provide

T =
µU∗
R0

T̂ , Fx = µU∗R0F̂x, m = ρwsR
3
0m̂(t̂),

D

R2
0

d

dt̂

[
ρwsR

3
0m̂(t̂)(U − U∗ûd)

]
= ρνU∗R0F̂x(t̂),

and

ρws
ρ

U

U∗
ε1
d

dt̂

[
m̂(t̂)

(
1− U∗

U
ûd

)]
= F̂x(t̂). (5.4.12)

The derived equation is non-trivial as ε1 → 0 only if the velocity scale U∗ is

small compared to the velocity of the fluid flow U ,

U∗ = ε1U
ρws
ρ
· γ, (5.4.13)

where γ = O(1). Then equation of the particle motion (5.4.12) yields (hats

are dropped)

1

γ

dm

dt
− ε1

ρws
ρ

d

dt
(m(t)ud(t)) = Fx(t) (t > 0), (5.4.14)
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ud(0) = 1. (5.4.15)

The hydrodynamic force equation (5.3.18) keeps its form in the dimensionless

variables.

5.5 Asymptotic analysis of the flow around

the growing particle

In order to perform asymptotic analyses of the problem formulated in the

previous section, we assume that the velocity of the flow with respect to the

moving wax particle is much smaller than the velocity of the flow U in the

global coordinate system, see (5.4.13). Then the growth of the wax particle is

governed by the diffusion in the leading order with the convective terms being

responsible for deviation of the wax particle shape from a spherical one. We

are concerned with the leading order of this deviation under the assumption

ε1 = αε, α = O(1). We write the asymptotic expansion for the shape of the

particle surface, r = R(θ, t), in terms of ε as:

R(θ, t) = R(0)(t) + εR(1)(θ, t) +O(ε2), (5.5.1)

where R(0)(t), and R(1)(θ, t) are of order O(1) as ε −→ 0. Here ε is a small

parameter which is responsible for small deviation of the wax particle shape

from spherical. Then, (5.3.1) provides

S = r −R(0)(t)− εR(1)(θ, t) +O(ε2). (5.5.2)

The unit normal vector ~n given by (5.3.3) and appeared in the boundary

condition (5.3.17) can be approximated for small ε as
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~n =
∇S
|∇S|

=~ir − ε

(
~iθ

1

R(0)(1 + εR
(1)

R(0) )

∂R(1)

∂θ

)
+O(ε2) (5.5.3)

=~ir − ε
(
~iθ

1

R(0)

(
1− εR

(1)

R(0)
+ . . .

)
∂R(1)

∂θ

)
+O(ε2) (5.5.4)

where |∇S|=
√

1 +O(ε2) = 1 +O(ε2).

Hence,

~n =~ir − ε
1

R(0)

∂R(1)

∂θ
~iθ +O(ε2). (5.5.5)

The stream function is sought in the form

ψ(r, θ, t) = ψ0(r, θ, t) + εψ1(r, θ, t) +O(ε2). (5.5.6)

The boundary conditions (5.3.16) and (5.3.17) with Taylor expansion at r =

R(0) provide

ψ[R(0)(t) + εR(1)(θ, t) +O(ε2), θ, t]

= ψ(R(0)(t), θ, t) +
∂ψ

∂r
(R(0)(t), θ, t) · εR(1)(θ, t) +O(ε2) = ψ0(R(0)(t), θ, t)

+ ε

[
ψ1(R(0)(t), θ, t) +

∂ψ0

∂r
(R(0)(t), θ, t)R(1)(θ, t)

]
+O(ε2) = 0.

(5.5.7)

and

∂ψ

∂n
[R(0)(t) + εR(1)(θ, t) +O(ε2), θ, t] =

∇ψ · ~n =
∂ψ

∂r
− 1

R2

∂R

∂θ

∂ψ

∂θ
+O(ε2) =

∂ψ

∂r
(R(0)(t), θ, t)

+
∂2ψ

∂r2
(R(0)(t), θ, t)εR(1)(θ, t)− 1

(R(0))2
ε
∂R(1)

∂θ

∂ψ

∂θ
+O(ε2)

=
∂ψ0

∂r
(R(0)(t), θ, t) + ε

[
∂2ψ0

∂r2
(R(0)(t), θ, t)R(1)(θ, t)

− 1

(R(0))2

∂R(1)

∂θ

∂ψ0

∂θ
(R(0)(t), θ, t) +

∂ψ1

∂r
[R(0)(t), θ, t]

]
+O(ε2) = 0.

(5.5.8)
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Equating the terms of the same order in ε in equation (5.5.7) and (5.5.8), we

find

ψ0 = 0,
∂ψ0

∂r
= 0 (r = R(0)(t)), (5.5.9)

ψ1 = 0,
∂ψ1

∂r
= −∂

2ψ0

∂r2
[R(0)(t), θ, t]R(1)(θ, t) (r = R(0)(t)). (5.5.10)

The asymptotic expansion (5.5.6), equations (5.3.7), (5.3.9), (5.4.8), and (5.4.10)

provide

ur(r, θ, t) = u(0)
r (r, θ, t) + εu(1)

r (r, θ, t) +O(ε2),

uθ(r, θ, t) = u
(0)
θ (r, θ, t) + εu

(1)
θ (r, θ, t) +O(ε2),

ω(r, θ, t) = ω(0)(r, θ, t) + εω(1)(r, θ, t) +O(ε2),

P (r, θ, t) = P (0)(r, θ, t) + εP (1)(r, θ, t) +O(ε2),

ud(t) = u
(0)
d (t) + εu

(1)
d (t) +O(ε2).

(5.5.11)

The Navier-Stokes equations (5.4.10) and (5.4.11) give

−∇P (0) +∇2~u(0) = 0, ∇ · ~u(0) = 0, (5.5.12)

−∇P (1) +∇2~u(1) = −αd~up
(0)

dt
+ α

∂~u(0)

∂t
, ∇ · ~u(1) = 0. (5.5.13)

In order to derive the equation for the stream function ψ0(r, θ, t) from the

Navier-Stokes equations (5.5.12), we use the vector identity

∇2~u = ∇(∇ · ~u)−∇× (∇× ~u). Then equation (5.5.12) and the definition

of the vorticity, see section 5.3, provide

∇P (0) = ∇2~u(0) = ∇(∇ · ~u(0))−∇× (∇× ~u(0)) = −∇× ~ω(0),

where ~ω(0) = ω(0)(r, θ, t)~iφ and ω is related to the stream function by equation

(5.3.9) which following [2] is written here in the form
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ω(0) = − 1

r sin θ
E2ψ0, E2ψ0 =

∂2ψ0

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂ψ0

∂θ

)
.

By algebra,

−∇× ~ω(0) = −∇× (ω(0)~iφ) = − 1

r sin θ

∂

∂θ
(sin θω(0))~ir +

1

r

∂

∂r
(rω(0))~iθ

and then

∇P (0) =
1

r2 sin θ

∂

∂θ
(E2ψ0)~ir −

1

r sin θ

∂

∂r
(E2ψ0)~iθ. (5.5.14)

The gradient of the leading-order pressure in (5.5.14) is given by

∇P (0) =
∂P (0)

∂r
~ir +

1

r

∂P (0)

∂θ
~iθ. (5.5.15)

By taking the components in the direction ~ir and ~iθ in equations (5.5.14) and

(5.5.15) and equating them we find

∂P (0)

∂r
=

1

r2 sin θ

∂

∂θ
(E2ψ0),

∂P (0)

∂θ
= − 1

sin θ

∂

∂r
(E2ψ0).

(5.5.16)

Eliminating finally the pressure in (5.5.16) by cross-differentiation, we obtain

E2(E2ψ0) = 0. (5.5.17)

Substituting the definition of the differential operator E2 into (5.5.17), we

arrive at a partial differential equation for the stream function[
∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)]2

ψ0 = 0. (5.5.18)

The boundary conditions (5.5.9) provide the velocity components on the sur-

face of the wax particle at the leading order,
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u(0)
r =0, u

(0)
θ = 0

(
r = R(0)(t)

)
. (5.5.19)

The far-field condition (5.4.9) gives (hats are dropped)

u(0)
r ∼ u

(0)
d (t) cos θ, u

(0)
θ ∼ −u

(0)
d (t) sin θ, (r →∞). (5.5.20)

Conditions (5.5.20) and the formula (5.3.7) for the velocity components in the

far-field provide

1

r2 sin θ

∂ψ0

∂θ
∼ u

(0)
d (t) cos θ ⇒ ψ0 =

1

2
u

(0)
d (t)r2 sin2 θ + f(r),

− 1

r sin θ

∂ψ0

∂r
∼ −u(0)

d (t) sin θ ⇒ ψ0 =
1

2
u

(0)
d (t)r2 sin2 θ + g(θ),

and the far-field condition for stream function reads

ψ0 ∼
1

2
u

(0)
d (t)r2 sin2 θ as r →∞. (5.5.21)

This condition suggests the solution of equation (5.5.18) in the form, see [2],

ψ0 = f(r, t) sin2 θ. (5.5.22)

This gives (
∂2

∂r2
− 2

r2

)2

f(r, t) = 0.

The solution of this equation, which also satisfies the conditions on the surface

of the particle (5.5.9) and the far-field condition (5.5.21), is obtained in [2],

ψ0 =
u

(0)
d (t)

4

[
2r2 +

[R(0)(t)]3

r
− 3rR(0)(t)

]
sin2 θ. (5.5.23)

The flow velocity components are

u(0)
r = u

(0)
d (t)

[
1− 3

2

R(0)(t)

r
+

1

2

(
R(0)(t)

r

)3
]

cos θ,
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u
(0)
θ = −u(0)

d (t)

[
1− 3

4

R(0)(t)

r
− 1

4

(
R(0)(t)

r

)3
]

sin θ.

In order to calculate the hydrodynamic force acting on the wax particle, we

need to determine the pressure. Substituting E2ψ0 =
3u

(0)
d R(0)(t)

2r
sin2 θ into

(5.5.16) we then integrate it with respect to r from r to ∞. We find

P (0) = P∞ −
3

2

u
(0)
d (t)R(0)

r2
cos θ, (5.5.24)

where P∞ is the uniform pressure in the flow far from the wax particle.

The elements of the stress tensor (5.3.19) are estimated on the surface of the

wax particle (5.5.1) in the non-dimensional variables as ε −→ 0 using the

boundary conditions (5.5.9) and (5.5.10), see Appendix B,

∂uθ
∂θ

= O(ε),
∂ur
∂θ

= O(ε2), uθ = O(ε2),

∂ur
∂r

= −ε
∂R(1)

∂θ

(R(0))2 sin θ

∂2ψ0

∂r2
(R(0)(t), θ, t)+O(ε2), T̂θθ = −P (0)(R(0), θ, t)+O(ε),

T̂rr = −P (0)(R(0), θ, t)− ε

[
P (1) +

∂P (0)

∂r
R(1) + 2

∂R(1)

∂θ

(R(0))2 sin θ

∂2ψ0

∂r2

]
+O(ε2),

T̂rθ =
∂uθ
∂r

+O(ε2),

∂uθ
∂r

= − 1

R(0) sin θ

∂2ψ0

∂r2
+ε

[
R(1)

(R(0))2 sin θ

∂2ψ0

∂r2
− 1

R(0) sin θ

[
∂2ψ1

∂r2
+
∂3ψ0

∂r3
R(1)

]]
+O(ε2).

The equation (5.3.21) provides at the leading order

~ix · ~T · ~n = −P (0) cos θ +
1

R(0)

∂2ψ0

∂r2
+O(ε). (5.5.25)

Substituting (5.5.5) and (5.5.24) into (5.5.25), and using (5.3.18) the dimen-

sionless force F
(0)
x reads
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F (0)
x (t) =2π

∫ π

0

(R(0))2

(
1

R(0)

∂2ψ0

∂r2
(R(0), θ, t)− P (0) cos θ

)
sin θdθ

=2π

∫ π

0

(
−P∞ cos θ +

3

2

u
(0)
d (t)

R(0)(t)

[
cos2 θ + sin2 θ

])
R(0)2 sin θdθ

=6πu
(0)
d (t)R(0)(t),

(5.5.26)

which is the force acting on a spherical wax particle of radius R(0)(t) see [42].

Note that F
(0)
x is independent of the speed of the particle growth. The force

F
(0)
x is equal to the force acting on the solid wax particle of radius R(0)(t) in a

viscous fluid with speed u
(0)
d (t).

The velocity of the particle u
(0)
p (t) follows from the equation (5.4.14), which

yields at leading order

1

γ

d

dt

(
4

3
πR(0)3(t)

)
= 6πu

(0)
d (t)R(0)(t),

and then

u
(0)
d (t) =

2

3γ
R(0)(t)

dR(0)

dt
. (5.5.27)

The physical dimensional velocity of the wax particle (5.4.8) is

u
(0)
p (t)

U
= 1− 2

3
ε1
ρws
ρ
R(0)(t)

dR(0)(t)

dt
. (5.5.28)

Therefore the particle velocity u
(0)
p (t) is just slightly different from the velocity

of the flow and decays in time with increasing the radius of the wax particle.

A large growing wax particle moves slower than the flow.
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5.6 The first-order correction to the wax

particle shape

We seek the concentration C(r, θ, t) around a single wax particle moving at

speed (5.5.28) in the form

C(r, θ, t) = C(0)(r, t) + εC(1)(r, θ, t) +O(ε2). (5.6.1)

where ε << 1. Note that the leading order solution C(0)(r, t) was studied in

chapter 4.

The expansions (5.6.1) and (5.5.11) are substituted into (5.4.1) giving

∂C(0)

∂t
+ε
∂C(1)

∂t
+ εu(0)

r (r, θ, t)
∂C(0)

∂r
=

1

r2

∂

∂r

(
r2

[
∂C(0)

∂r
+ ε

∂C(1)

∂r

])
+

1

r2 sin θ

∂

∂θ

(
ε sin θ

∂C(1)

∂θ

)
+O(ε2).

(5.6.2)

At the leading order we have C(0)(r, t) which is the spherically symmetric

solution independent of θ, see chapter 4. At order ε we have:

∂C(1)

∂t
+ u(0)

r (r, θ, t)
∂C(0)

∂r
=

1

r2

∂

∂r

(
r2∂C

(1)

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂C(1)

∂θ

)
,

(5.6.3)

where the second term on the left-hand side of equation (5.6.3) plays a role of

a forcing term.

In the boundary condition (5.4.4) and the equation of the particle’s shape

(5.4.5), and using the asymptotic expansion (5.6.1) and (5.5.1) we find that

1

R2

∂R

∂θ

∂C

∂θ
= − ε2

(R(0))2

∂R(1)

∂θ

∂C(1)

∂θ
+O(ε3), (5.6.4)
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∂C

∂r
(R(t), θ, t) =

∂C

∂r
(R(0)(t), θ, t) +

∂2C

∂r2
(R(0)(t), θ, t)εR(1)(θ, t) +O(ε2)

=
∂C(0)

∂r
+ ε

(
∂C(1)

∂r
+R(1)(θ, t)

∂2C(0)

∂r2

)
+O(ε2).

(5.6.5)

The right-hand side of (5.4.4) reads

k̂r(C (R(t), θ, t) + 1)

√
1 +

1

R2

(
∂R

∂θ

)2

= k̂r(C
(0) + ε(C(1) +

∂C(0)

∂r
R(1)) +O(ε2)

(5.6.6)

Then the boundary condition (5.4.4) has the form at the leading order

∂C(0)

∂r
= k̂r

(
C(0)(r, t) + 1

)
on r = R(0)(t), (5.6.7)

and at the first order,

∂C(1)

∂r
−k̂rC(1)(r, θ, t) = R(1)

(
k̂r
∂C(0)

∂r
− ∂2C(0)

∂r2

)
on r = R(0)(t). (5.6.8)

The boundary condition for the particle shape (5.4.5) becomes

∂R(0)

∂t
+ ε

∂R(1)

∂t
= (C0 − C∗)

[
∂C(0)

∂r
+ ε

∂C(1)

∂r
+ εR(1)∂

2C(0)

∂r2

]
+O(ε2)

on r = R(0)(t).

(5.6.9)

At the leading order we have

∂R(0)

∂t
= (C0 − C∗)

∂C(0)

∂r
on r = R(0)(t). (5.6.10)

At the first order equation (5.6.9) implies

∂R(1)

∂t
= (C0 − C∗)

[
∂C(1)

∂r
+R(1)∂

2C(0)

∂r2

]
on r = R(0)(t). (5.6.11)

The velocity component ur at the leading order which is required for equation

(5.6.3) was obtained in the previous section,
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u(0)
r = u

(0)
d (t)

[
1− 3

2

R(0)(t)

r
+

1

2

(
R(0)(t)

r

)3
]

cos θ. (5.6.12)

Substituting (5.6.12) into (5.6.3) gives

∂C(1)

∂t
+ u

(0)
d (t)

[
1− 3

2

R(0)(t)

r
+

1

2

(
R(0)(t)

r

)3
]

cos θ
∂C(0)

∂r
=

1

r2

∂

∂r

(
r2∂C

(1)

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂C(1)

∂θ

)
.

(5.6.13)

The concentration of the wax molecules around the wax particle is independent

of the angular coordinate θ at the leading order as ε −→ 0 and is described by

the equation

∂C(0)

∂t
=

1

r2

∂

∂r

(
r2∂C

(0)

∂r

)
(r > R(0)(t)) (5.6.14)

with the boundary condition (5.6.7), the far-field condition (5.4.3) and the

initial condition (5.4.2). The radius of the wax particle, R(0)(t), is obtained

by integration of the equation (5.6.10) with the initial condition R(0)(0) = 1.

This problem was solved in chapter 4.

In the following, we assume that the solution of the leading order problem,

C(0)(r, t) and R(0)(t), is known together with the leading order velocity field

of the flow around the particle. To find the correction to the shape of the wax

particle caused by its time-dependent motion with respect to the flow, we need

to find the solution to the non-homogeneous equation (5.6.13), where u
(0)
d (t),

R(0)(t) and C(0)(r, t) are given, subject to the boundary condition (5.6.8), the

far-field condition C(1)(r, θ, t) −→ 0 as r −→ ∞, and the initial condition

C(1)(r, θ, 0) = 0. The equation (5.6.13) is to be solved in the known region,

r > R(0)(t), in contrast to the leading order problem for C(0)(r, t), where the

solution should be determined together with the radius of the wax particle.

The boundary condition (5.6.7) is imposed on the known surface, r = R(0)(t).
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However, this condition should be satisfied together with the equation of the

particle shape (5.6.11). These properties of the first-order problem make it a

non-trivial task for analysis.

The forcing term in equation (5.6.13) suggests the solution in the form

C(1)(r, θ, t) = W (r, t) cos θ, R(1)(θ, t) = H(t) cos θ. (5.6.15)

Substituting (5.6.15) into equations (5.6.13), (5.6.8), and (5.6.11), we arrive at

the following problem for the new unknown functions W (r, t) and H(t):

∂W

∂t
− 1

r2

∂

∂r

(
r2∂W

∂r

)
− 2

r2
W = −u(0)

d (t)

[
1− 3

2

R(0)(t)

r
+

1

2

(
R(0)(t)

r

)3 ]
∂C(0)

∂r

r ≥ R(0),

(5.6.16)

W (r, 0) = 0 (t = 0), (5.6.17)

W (r, t) −→ 0 (r −→∞), (5.6.18)

∂W

∂r
− k̂rW (r, t) = H(t)

(
k̂r
∂C(0)

∂r
− ∂2C(0)

∂r2

)
on r = R(0)(t), (5.6.19)

dH

dt
= (C0 − C∗)

[
∂W

∂r
+H(t)

∂2C(0)

∂r2

]
on r = R(0)(t). (5.6.20)

We simplify the problem above by introducing a new unknown function g(r, t) =

rW (r, t), then the problem becomes

∂g

∂t
− ∂2g

∂r2
+

2

r2
g = −u(0)

d (t)

[
r − 3

2
R(0)(t) +

(
R(0)(t)

)3

2r2

]
∂C(0)

∂r
r ≥ R(0),

(5.6.21)

g(r, 0) = 0 (t = 0), (5.6.22)

g(r, t) −→ 0 (r −→∞), (5.6.23)
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1

r

∂g

∂r
− g(r, t)

r2
− k̂r

g(r, t)

r
= H(t)

(
k̂r
∂C(0)

∂r
− ∂2C(0)

∂r2

)
on r = R(0)(t),

(5.6.24)

dH

dt
= (C0 − C∗)

[
1

r

∂g

∂r
− g(r, t)

r2
+H(t)

∂2C(0)

∂r2

]
on r = R(0)(t). (5.6.25)

The derived problem (5.6.21)-(5.6.25) can be solved numerically together with

the non-linear boundary problem for the leading order solution. However,

even without the solution in the first order, we may conclude that the effect

of particle velocity on its shape is described by the equation (5.5.1),

r = R(0)(t) + εH(t) cos θ +O(ε2). (5.6.26)

Here r is the radial coordinate of the particle surface in the coordinate system

moving together with the wax particle. For the wax particle which changes its

shape in time, the position of its centre of mass and the position of the origin

of moving system do not necessarily coincide one with another. Equation

(5.6.26) approximately describes the sphere of radius R(0)(t) shifted along the

x-axis in the direction of the flow by εH(t). Therefore, within the first order

approximation, where the terms of order O(ε) are taken into account, the wax

particle is still spherical. The first-order correction due to time-dependent

motion of the wax particle affects the particle displacement with respect to

the flow.

Note that equation (5.2.12) of the particle motion is written with respect to

the speed up(t) of the centre of mass of the particle. The equation predicts that

the speed up(t) changes if either the force, Fx(t), or the particle mass, m(t),

change. However if the particle grows differently in different directions without

disturbing the flow around, then the resulting displacement of the centre of

mass is not described by the equation (5.2.12). To explain this drawback of
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our model, let us consider a particle in an initially non-uniform concentration

field C(r, θ, φ, 0) without any flow around the particle, ~u(~x, 0) = 0, up(0) = 0.

Then the growth of particle is described by the three-dimensional diffusion

problem without convection. The boundary conditions (5.2.7) and (5.2.8) on

the surface of the particle assume that a flow is not generated by the growth

of the particle. Under these circumstances the hydrodynamic force Fx(t) in

(5.2.12) is zero for t > 0 and up(t) = 0 as well. However, the centre of the mass

of the particle is displaced in the non-uniform concentration field around the

particle. The model of this chapter should be developed further to account for

the displacement of the particle centre of mass due to diffusion as well.
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Chapter 6

Conclusions and future work

The results and conclusions obtained in this thesis are summarized in this

chapter. Some recommendations for future work are also discussed, in section

6.2.

6.1 Conclusions

In chapter 1 we started with the physical motivation and description of the

problem. We discussed the most relevant observations of wax deposition in

pipes reported in the literature, and discussed the objectives of this study.

Chapter 2 started with a description of the problem. The problem is formu-

lated for a horizontal subsea pipe of circular cross-section. We have a straight

pipe of length L and radius a. Part of the pipe is beneath the sea bottom

with 60◦C oil temperature and part of the pipe is surrounded by sea water at

10◦C. The oil flows in a positive x direction. The radial flow velocity distri-

bution was found, the maximum velocity is achieved at the centreline of the
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pipe. We used the energy equation, with steady constant oil properties, to find

the temperature distribution in the pipe. First, we considered the solution of

the energy equation far from the entrance, with constant wall temperature

along the whole pipe. We neglected the axial diffusion term because it is small

compared with the radial diffusion term. This solution described the temper-

ature distribution in Poiseuille flow with constant temperature maintained at

the wall, where r = a. The obtained temperature increases with increasing

distance from the wall of the pipe and the maximum temperature is achieved

at the centreline axis of the pipe. We found that the viscous heating term

in the energy equation does not affect the temperature distribution and can

be neglected at the leading order. Then, we introduced the non-dimensional

variables for the energy equation without viscous heating term. The axial dif-

fusion term was neglected because the parameter ε = 1
Pe2 is very small, where

Pe is the Peclet number [27]. Thus, the axial diffusion term in the energy

equation can be neglected relative to the radial diffusion. The temperature

distribution satisfies a Graetz problem, which consists of a partial differen-

tial equation solved using the separation of variables method. We found the

temperature variation along the pipe. It was shown that, as x increases, the

temperature decreases, the temperature distribution becomes more uniform,

and the oil cools down toward the temperature of the pipe wall. We found

that for a pipe of length 1km, the wax appearance temperature is observed

close to the wall.

In Chapter 3 we modelled the growth of a single spherical wax particle. We

introduced a small spherical wax particle of initial radius R0 which is moving

together with the flow. At the beginning the wax particle does not increase

its radius because the temperature at the entrance of the pipe is too high
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for the waxes to precipitate out of solution. Thus, the wax particle grows

only if the temperature at the location of the wax particle is below the wax

appearance temperature. The growth of a wax particle is caused by the flux

of wax molecules coming out of solution and changing phase from liquid and

forming a solid state.

The spherical wax particle was assumed to move with the flow and without

any relative motion between the wax particle and the oil. Correspondingly we

neglected the convective terms in the diffusion equation. There are two bound-

ary conditions on the unknown surface of the wax particle, the first condition

is for the mass flux. Dawson et al. [24] introduced a boundary condition on the

surface of a salt crystal in terms of the mass flux of solute out of a salt solution

into the solid crystal, where the mass transfer coefficient kr was constant. In

our model we generalized this condition by assuming that the mass transfer

coefficient is a given function of temperature. The temperature at the location

of the wax particle is a function of time, see chapter 2. We decompose the mass

transfer coefficient as kr(t) = Dk1ζ(t), where k1 is a non-dimensional factor.

The second boundary condition describes the rate of increase of the radius of

the wax particle. The problem derived is a free boundary value problem. We

solved the problem numerically and analytically. The analytical self-similar

solution exists only if ζ(t) = 1√
t
. The radius of the spherical wax particle

grows as R(t) = λ
√
Dt, where λ is an important coefficient which has been

determined. We also found the concentration distribution in the fluid outside

the wax particle. The concentration at the surface of the wax particle is lower

than the concentration in the far-field.

In Chapter 4 we studied the initial boundary value problem numerically.

We studied the problem derived in chapter 3, with the mass transfer coefficient
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kr(t) being a function of time. The problem was written in non-dimensional

variables and solved by using a Green’s function. This helped us to derive a

nonlinear boundary integral equation with respect to the wax concentration on

the surface of the wax particle. We discretized the boundary integral equation

for the wax concentration and the differential equation for the radius of the

wax particle by using a time-stepping numerical method. We found numerical

results for the concentration on the surface of the wax particle, the concentra-

tion distribution in the fluid, and the evolution of the particle radius. These

numerical results were compared with the self-similar solution of chapter 3.

We found the results were indistinguishable when the size of the time step was

made sufficiently small, and there were only small differences in the results

for large time step. Then we investigated the initial-boundary value problem

when the mass transfer coefficient kr is made constant.

In Chapter 5 we formulated the coupled diffusion/ flow problem in the

spherical coordinate system. First, the three-dimensional problem of wax par-

ticle growth in a viscous flow was formulated. Then we restricted ourselves to

the axisymmetric case. We non-dimensionalized the diffusion and flow prob-

lem by using dimensionless variables. We asymptotically expanded the velocity

field and the concentration field around the growing particle with respect to

a small parameter ε. The growth and the concentration at the leading order,

without account for flow around the wax particle was shown in chapter 4.

At the first order correction we assumed the shape of the particle to be non-

spherical. However, the wax particle was spherical initially. We found that at

first-order the correction due to a small difference between the local velocity

of the flow and the velocity of the particle does not change the shape of the

particle but predicts the particle displacement in the direction of the flow.
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6.2 Future work

Many open problems have been identified after the present study on wax de-

position in oil pipelines.

In chapter 2, we studied only the temperature distribution far from the

entrance and also far from the wall of the pipe. So, we neglected the axial

diffusion term and our solution corresponds to the temperature distribution

in the main part of the pipe. For relatively short pipes which are only a few

hundred meters long, it is important to find the temperature distribution near

the entrance to the pipe and close to the wall. For example, if the temperature

at the entrance of the pipe is 60◦C and the temperature at the wall is 10◦C,

then these two conditions do not match each other at the pipe entrance. So

we need to account for both the axial and radial diffusion terms and solve the

corresponding two dimensional problem for temperature.

For particles moving close to the wall of the pipe, the flow velocity is not

uniform due to the viscous shear. It is important to account for the shear of

the flow in places with smaller velocity of the flow and lower temperature near

the wall of the pipe.

The non-dimensional mass transfer coefficient k̂r introduced in chapter 4,

is the ratio between two time scales, Diffusion time scale
Particle growth time scale

, k̂r =
R2

0/D

R0/kr
=

krR0

D
. If k̂r is small, then the diffusion time is much smaller than the growth

time. Then the diffusion quickly makes the concentration uniform and equal to

the concentration in the far field, C0. In chapter 4, we showed that the concen-

tration is different from the far-field concentration only close to the wax particle

surface. This gives us an idea that the method of matched asymptotic expan-
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sions can be used in further studies of the problem with a one-dimensional

inner layer on the surface of the particle. At the leading order we expect that

everything important is happening near the particle surface. For large k̂r, the

particle grows much quicker than the diffusion occurs. Then C = C0 on the

particle surface at leading order as k̂r → ∞, see equation (4.8.2)4. The wax

particle growing so fast that the surface always moves towards fresh material.

The presence of a second wax particle has some influence, to be determined,

on the first wax particle. From the results of chapter 4 we suspect that if the

second particle is closer than 6 radii from the first particle then this influence

on the wax concentration gradient is significant. Then the particles can not be

treated as isolated. It is seen in figure 4.8.3 that at t = 0.3 s the concentration

is visibly decreased on the surface of the wax particle. At this time the particle

radius is 0.3 mm. We can see at t = 0.3 s the concentration is visibly decreased

over a distance of about 6 particle radii from the particle surface. At the

distance r = 1.8 mm any neighbouring particles would start to disturb each

other from this time onward, because the concentration gradient would be

noticeable by a wax particle of similar radius.

The correction to the wax particle shape in chapter 5 could be further

continued to higher order approximations finding the non-spherical correction

to the wax particle shape due to its motion with non-constant speed. In

addition, non-spherical initial data are important to consider when a particle

starts to grow from a non-spherical shape.

Interaction between two identical spherical wax particles can be studied

as explained below. Consider two identical wax particles as shown in figure

6.2.1, of radius R, moving in the same line with the flow. The particles are

small and their velocities are equal to the velocity of the flow. The particles
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are close to each other and each particle is affected by the presence of another

particle. For example, in figure 6.2.1 the first particle, on the left of the image,

is spherically symmetric in the absence of the second particle on the right of

the image. However, this particle will be non spherically symmetric in the

precent of the other particle. We have two coordinate systems, (r, θ) for the

particle on the left and (ρ, ω) for the particle on the right. The interaction

between these two particles is weak if they are not very close to each other.

Then we can take into account the interaction between these two particles by

using perturbation analysis.

y

x

r

θ

y

x

ρ

ω

Figure 6.2.1: Sketch of the two symmetric particles. The ranges of the angles

are 0 6 θ 6 π and 0 6 ω 6 π, and the radial coordinates are such that r > 0,

ρ > 0.

Let C(0)(r, t) be the concentration around the first particle, and let C(1)(ρ, t)

be the concentration around the second particle at the leading order without

account for another particle. The results for the spherical wax particle from

chapter 4 can be used to determine C(0) and C(1). Note that C(1) depends on

the coordinate ρ, and ρ depends on r and θ, see Figure 6.2.1.
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The concentration C(r, θ, t) due to the two wax particles can be expressed

as an asymptotic expansion in powers of a formal small parameter ε. The

parameter ε quantifies that the interaction between the two wax particles is

week. In chapter 4, we found this interaction to be of order 10−7 as shown in

figure 4.8.3. We seek the concentration in the form:

C(r, θ, t) = C(0)(r, t) + C(1)(ρ(r, θ), t)− C0 + εC(2)(r, θ, t) +O(ε2), (6.2.1)

and the radius of the particle as

R(θ, t) = R(0)(t) + εR(1)(θ, t) +O(ε2). (6.2.2)

Note that we must subtract C0 in (6.2.1), which is the concentration in the

far-field to avoid including it twice from the addition of the two concentra-

tion fields C(0) and C(1). The boundary value problem for the corrections to

spherically symmetric solution, C(2)(r, θ, t) and , R(2)(θ, t), is obtained from

equations (5.2.15)-(5.2.18), (5.2.21) and (5.2.24) by using (6.2.1), (6.2.2), and

collecting terms of order ε. The resulting problem is linear but with non-

constant coefficients in the boundary conditions on r = R(0)(t). The region

where C(2)(r, θ, t) should be determined is r > R(0)(t). Note that the sec-

ond particle enters the boundary value problem for C(2)(r, θ, t) and R(2)(θ, t)

only through the small perturbation of the concentration field described by

C(1)(ρ(r, θ), t)− C0 in (6.2.1).

The two bodies problem could be posed in another coordinate system, like

bispherical coordinates, see [60], this is alternative way treating the problem.
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Appendix A

Orthogonality of fn(r)

Consider two solutions of (2.2.32), (2.2.33), fn(r) and fm(r), corresponding to

βn and βm, where βn 6= βm. These two functions satisfy the equations

f
′′

n +
1

r
f ′n + β2

n(1− r2)fn = 0 (A.0.1)

and

f
′′

m +
1

r
f ′m + β2

m(1− r2)fm = 0. (A.0.2)

Multiply (A.0.1) by fm, (A.0.2) by fn, and subtract (A.0.2) from (A.0.1). The

result is

fmf
′′

n − fnf
′′

m +
1

r
(fmf

′
n − fnf ′m) + (β2

n − β2
m)(1− r2)fnfm = 0. (A.0.3)

Multiply (A.0.3) by r and integrate in r from 0 to 1,∫ 1

0

r(fmf
′′

n − fnf
′′

m)dr +

∫ 1

0

(fmf
′
n − fnf ′m)dr

+ (β2
n − β2

m)

∫ 1

0

r(1− r2)fnfmdr = 0

(A.0.4)

Integrate the first term in the left-hand side of equation (A.0.4) by parts,
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∫ 1

0

r(fmf
′′

n − fnf
′′

m)dr = rfmf
′
n|10−

∫ 1

0

fmf
′
ndr −

∫ 1

0

rf ′mf
′
ndr

− rfnf ′m|10+

∫ 1

0

f ′mfndr +

∫ 1

0

rf ′mf
′
ndr,

(A.0.5)

term cancels and using the condition fm(1) = fn(1) = 0, then (A.0.5) becomes

∫ 1

0

r(fmf
′′

n − fnf
′′

m)dr = −
∫ 1

0

(fmf
′
n − f ′mfn)dr. (A.0.6)

Substituting (A.0.6) into (A.0.4), we obtain

(β2
n − β2

m)

∫ 1

0

r(1− r2)fnfmdr = 0. (A.0.7)

So, if βn 6= βm and m 6= n, then fn and fm are orthogonal on [0, 1] with the

wighting r(1− r2), this gives equation (2.2.43).
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Appendix B

Dimensionless stress tensor’s

components

Using the boundary conditions (5.5.9) and (5.5.10), and the velocity compo-

nents (5.3.7) and (5.5.11), we expand the dimensionless stress tensors compo-

nents, T̂rr, T̂rθ, and T̂θθ at r = R(0)(t) + εR(1)(θ, t) +O(ε2) as

T̂rθ(R
(0) + εR(1) +O(ε2), θ, t) =

1

R(0)

(
∂u

(0)
r

∂θ
− u(0)

θ

)
+
∂u

(0)
θ

∂r
+

ε

[
1

R(0)

(
∂u

(1)
r

∂θ
+R(1)∂

2u
(0)
r

∂θ∂r
− u(1)

θ −R
(1)∂u

(0)
θ

∂r
− R(1)

R(0)

[
∂u

(0)
r

∂θ
− u(0)

θ

])

+
∂u

(1)
θ

∂r
+R(1)∂

2u
(0)
θ

∂r2

]
+O(ε2).

(B.0.1)

From equation (5.5.9), we have ψ0|r=R(0)= 0 and ∂ψ0

∂r
|r=R(0)= 0 and then u

(0)
r =

0, and u
(0)
θ = 0.

Equation (5.3.7) gives in the fluid:

∂uθ
∂θ

=
cos θ

r sin2 θ

∂ψ

∂r
− 1

r sin θ

∂2ψ

∂r∂θ
. (B.0.2)
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Expanding equation (B.0.2) at r = R(0) + εR(1) +O(ε2), we have

∂uθ
∂θ

(R(0) + εR(1) +O(ε2), θ, t) =
cos θ

sin2 θ

1

R(0) + εR(1)

(
∂ψ

∂r
+
∂2ψ

∂r2
εR(1)

)
− 1

sin θ

1

R(0) + εR(1)

(
∂2ψ

∂r∂θ
+

∂3ψ

∂r2∂θ
εR(1)

)
+O(ε2)

=
cos θ

sin2 θ

1

R(0)

(
1− εR

(1)

R(0)

)(
∂ψ0

∂r
+ ε

∂ψ1

∂r
+ εR(1)∂

2ψ0

∂r2

)
− 1

sin θ

1

R(0)

(
1− εR

(1)

R(0)

)(
∂2ψ0

∂r∂θ
+ ε

∂2ψ1

∂r∂θ
+ εR(1) ∂

3ψ0

∂r2∂θ

)
+O(ε2),

(B.0.3)

where ∂ψ0

∂r
= 0 and ∂2ψ0

∂r∂θ
= 0, then equation (B.0.3) becomes

∂uθ
∂θ

= O(ε).

Equation (5.3.7) gives

∂uθ
∂r

=
1

r2 sin θ

∂ψ

∂r
− 1

r sin θ

∂2ψ

∂r2
. (B.0.4)

Expanding equation (B.0.4) at r = R(0) + εR(1) +O(ε2), gives

∂uθ
∂r

(R(0) + εR(1) +O(ε2), θ, t) =
1

[R(0)(1 + εR
(1)

R(0) )]2
1

sin θ

(
∂ψ

∂r
+
∂2ψ

∂r2
εR(1)

)
− 1

R(0)(1 + εR
(1)

R(0) ) sin θ

(
∂2ψ

∂r2
+
∂3ψ

∂r3
εR(1)

)
+O(ε2)

=
1

[R(0)]2 sin θ

(
1− 2ε

R(1)

R(0)

)(
∂ψ0

∂r
+
∂ψ1

∂r
ε+

∂2ψ0

∂r2
εR(1)

)
− 1

R(0) sin θ

(
1− εR

(1)

R(0)

)(
∂2ψ0

∂r2
+ ε

∂2ψ1

∂r2
+ εR(1)∂

3ψ0

∂r3

)
+O(ε2),

(B.0.5)

where ∂ψ0

∂r
= 0 and ∂ψ1

∂r
+ ∂2ψ0

∂r2 R
(1) = −∂2ψ0

∂r2 R
(1) + ∂2ψ0

∂r2 R
(1) = 0, then (B.0.5)

becomes
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∂uθ
∂r

(R(0) + εR(1) +O(ε2), θ, t) = − 1

R(0) sin θ

(
1− εR

(1)

R(0)

)(
∂2ψ0

∂r2

+ ε

[
∂2ψ1

∂r2
+R(1)∂

3ψ0

∂r3

])
+O(ε2)

= − 1

R(0) sin θ

∂2ψ0

∂r2
(R(0), θ, t) + ε

[
− 1

R(0) sin θ

(
∂2ψ1

∂r2

+R(1)∂
3ψ0

∂r3

)
+
R(1)(θ, t)

R(0)2 sin θ

∂2ψ0

∂r2

]
+O(ε2).

(B.0.6)

Equation (5.3.7) gives

∂ur
∂θ

= − cos θ

r2 sin2 θ

∂ψ

∂θ
+

1

r2 sin θ

∂2ψ

∂θ2
(B.0.7)

and

∂ur
∂r

= − 2

r3 sin θ

∂ψ

∂θ
+

1

r2 sin θ

∂2ψ

∂r∂θ
. (B.0.8)

Expanding equation (B.0.7) at r = R(0) + εR(1) +O(ε2), gives

∂ur
∂θ

(R(0) + εR(1) +O(ε2), θ, t) = O(ε2) (B.0.9)

and also expanding (B.0.8) gives

∂ur
∂r

(R(0) + εR(1) +O(ε2), θ, t) = − 2

R(0)3 sin3 θ

(
1− 3ε

R(1)

R(0)

)(
∂ψ0

∂θ

+ ε
∂ψ1

∂θ
+ εR(1) ∂

2ψ0

∂r∂θ

)
+

1

R(0)2 sin2 θ

(
1− 2ε

R(1)

R(0)

)
(
∂2ψ0

∂r∂θ
+ ε

∂2ψ1

∂r∂θ
+ εR(1) ∂

3ψ0

∂r2∂θ

)
+O(ε2),

(B.0.10)

where ∂ψ0

∂θ
= 0, ∂ψ1

∂θ
= 0, and ∂

∂θ
(∂ψ1

∂r
) = − ∂3ψ0

∂r2∂θ
R(1) − ∂2ψ0

∂r2
∂R(1)

∂θ
, then (B.0.10)

becomes

∂ur
∂r

(R(0) + εR(1) +O(ε2), θ, t) = −ε
∂R(1)

∂θ

R(0)2 sin θ

∂2ψ0

∂r2
(R(0), θ, t) +O(ε2).

(B.0.11)
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Expanding the velocity component uθ at r = R(0) + εR(1) +O(ε2) gives

uθ(R
(0) + εR(1) +O(ε2), θ, t) =− 1

(R(0) + εR(1)) sin θ

(
∂ψ0

∂r
+ εR(1)∂ψ1

∂r

+ εR(1)∂
2ψ0

∂r2

)
+O(ε2)

= − ε

R(0) sin θ

(
∂ψ1

∂r
+R(1)∂

2ψ0

∂r2

)
+O(ε2),

(B.0.12)

where ∂ψ1

∂r
+R(1) ∂2ψ0

∂r2 = 0, then equation (B.0.12) gives

uθ = O(ε2). (B.0.13)

Finally, the dimensionless stress tensor components can be written as:

T̂rθ(R
(0) + εR(1) +O(ε2), θ, t) =

∂uθ
∂r

+O(ε2). (B.0.14)

T̂θθ(R
(0) + εR(1) +O(ε2), θ, t) = −P − εR(1)∂P

∂r
+O(ε) = −P (0)(R(0), θ, t)

+O(ε).

(B.0.15)

T̂rr(R
(0) + εR(1) +O(ε2), θ, t) = −P (0) − εP (1) − εR(1)∂P

(0)

∂r

− 2ε
∂R(1)

∂θ

R(0)2 sin θ

∂2ψ0

∂r2
+O(ε2).

(B.0.16)
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