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Abstract— An investigation of the eddy and coastal Kelvin 
wave activities in the Bay of Bengal (BoB) is carried out during 
premonsoon season in two years of Indian summer monsoon 
deficit in June (2009 and 2012), occurred in the recent warming 
hiatus period. Using altimeter observations, our study reveals that 
over the northern BoB cyclonic eddy kinetic energy is reduced by 
35% and 50% from the climatology during premonsoon seasons 
in 2009 and 2012, respectively, while the cyclonic eddy area is 
reduced by 18% and 24%, respectively. A concurrent reduction is 
observed in the first upwelling Kelvin wave (uKW) activities in 
the eastern equatorial Indian Ocean as well as  in the coastal  
BoB for these years. The reduction in  the  generation  of  the  
first uKW in the eastern equatorial Indian Ocean  is attributed  
to the westerly wind anomalies in January–March of  these  
years. Additionally, meridional wind stress anomalies during 
March–April in these years are found to be southerly, causing 
anomalous coastal downwelling in the eastern rim of BoB. This 
coastal downwelling blocks the propagation of the first uKW. The 
decrease in the first uKW activities in the coastal waveguide of 
the BoB reduces the radiation of upwelling Rossby waves, thereby 
decreasing the cyclonic eddy activities in the northern BoB. The 
results from this letter could be helpful for further understanding 
of upper ocean mixing processes in the BoB during monsoon 
deficit years. 

Index Terms— Altimetry, Bay of Bengal (BOB), eddy activity, 
Indian summer monsoon (ISM), Kelvin wave. 

 
I. INTRODUCTION 

HE Bay of Bengal (BoB) is a semienclosed bay located 

in the northeastern part of the Indian Ocean. Upper ocean 

processes in the BoB play a vital role in the onset and pro- 

gression of South Asian and Indian summer monsoon (ISM). 

Sea surface warming in the central BoB during premonsoon 

season (March–May) triggers the onset of South Asian mon- 

soon [1]. The frequency and lifetime of low-pressure areas 
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in ISM season (June–September) are positively correlated 

with the premonsoon sea surface temperature (SST) over the 

BoB [2]. However, the BoB  in  general  and  the  northern 

bay, in particular, plays a significant role in the monsoon 

rainfall through the formation of the low-pressure systems [3]. 

Despite the significant control of upper ocean behavior on the 

ISM rainfall, most monsoon prediction models have a poor 

representation of upper ocean mixing [3]. Therefore, the study 

of mesoscale eddies, which control the upper ocean mixing, 

over the BoB is necessary. 

Mesoscale eddies in the ocean are the spatial structures 

similar to coherent vortices of 2-D turbulence [4] and are 

responsible for the vertical mixing, upper surface thermal 

structure, and transport of heat between different parts of the 

ocean. Also, they can locally affect the near-surface wind, 

cloud properties, and rainfall, and thereby the larger low- 

pressure systems [5]. The coastal Kelvin wave in the eastern 

rim of BoB radiates its energy toward the interior bay through 

eddy shedding [6]. Further, using nine years of altimetry data, 

Cheng et al. [7] found that eddy train originated from the 

coastal waveguide of BoB contributes to the intraseasonal vari- 

ability of sea level and thermal properties in the central bay. 

During the recent warming hiatus period (1999–2013) [8], 

the upper ocean heat content in the Indian Ocean showed an 

increase [9]. The increase in heat content is attributed to the 

strengthening of Walker circulation and a subsequent increase 

in heat advection toward the Indian Ocean by Indonesian 

throughflow [9]. An increase in rainfall is noted during the hia- 

tus period compared to prehiatus time over the western Pacific 

and the western Indian Ocean, while a decrease is evident over 

the east Asia [8]. This hiatus period has observed two severe 

June ISM deficit years, in 2009 and 2012, with more than  

20% rainfall deficiency (see Table S1 in the Supplementary 

Material). 

This letter investigates the premonsoon eddy activity in tan- 

dem with Kelvin wave activities using altimetric observations 

over the BoB in two June ISM deficit years (2009 and 2012). 

The possible physical mechanisms behind such anomalous 

eddy and Kelvin wave activities are also explored by analyzing 

the local winds over the BoB and the remote winds over the 

equatorial Indian Ocean (EIO; (5°S–5°N, 40°E–100°E)). 

II. DATA AND METHODOLOGY 

We  used  merged  and  gridded   daily   sea   level   

anomaly (SLA) and the geostrophic current data, from 
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1994 to 2015, available from the archiving, validation, and 

interpretation of satellite oceanographic data (AVISO, 

htttp://www.aviso.oceanobs.com). These products are 

constructed by merging multisatellite (TOPEX/Poseidon, 

European Remote Sensing Satellite 1/2, Jason 1, Jason 2, 

Envisat, etc.) data sets. These data sets are available on a 

Cartesian  grid  of  0.25° 0.25° spatial resolution derived 

from  a  Mercator  grid  through  linear interpolation.  Also, 

we use daily surface wind stress and wind field, from 1994 to 

2015, available from the Modern-Era Retrospective Analysis 

for Research and Applications (MERRA) reanalysis product. 

For eddy detection, we used the Okubo–Weiss method [10] 

that showed potentiality to detect eddies over the Mediter- 

ranean Sea, the Tasman Sea, and the Gulf of Alaska [11]. 

After the identification of cyclonic and anticyclonic eddies, 

their effective area is calculated separately by integrating the 

area of simply connected grid boxes inside a vortex. The area 

of the vortex is given as 
Ngp 

 

 
 

Fig. 1. Black lines represent total cyclonic EKE (in m2s−2) in the northern 
BoB (14°N 23°N 78°E–99°E) for (a) 2009 and (b) 2012, and cyclonic eddy 

area (in the unit of 104 km2) over the same region for (c) 2009 and (d) 2012. 
The green curves represent the climatology considering the period 1994–2015. 

A = An 

n=1 

(1) 
The magenta lines show 95% confidence levels from the average. 

where An is the area of nth grid box, calculated considering the 

earth to be spherical, and Ngp represents the number of simply 

connected grid boxes inside a vortex. Total surface eddy 

kinetic energy of a vortex is calculated using the following 

cyclonic EKE and eddy area during mid-April to the first 

week of June [Fig. 1(b) and (d)]. On average, 50% reduction 

of  cyclonic EKE  and  24% reduction of  cyclonic  eddy  area 
are  noticed  during  15  April–15  May.   On  the  other  hand, 

equation: 

E = 
Σ .

u2 + v2
Σ 

(2) 
 

 

the analysis of anticyclonic eddy activity (see Fig. S1 in the 

Supplementary Material) does not show any systematic signal. 

 
 

where ui and vi are the zonal and meridional components of 

geostrophic velocity, respectively. 

 
III. RESULTS AND DISCUSSIONS 

In this section, we first examine eddy activity over the 

northern BoB in the premonsoon period of 2009 and 2012. 

Then, activities of equatorial Kelvin waves and coastal Kelvin 

waves over the BoB are studied in the context of eddy activity. 

Finally, their dependence on equatorial winds and local winds 

over the BoB is explored. 

 
A. Eddy Activity in the Northern BoB 

Fig. 1 compares the area integrated daily eddy kinetic 

energy  (EKE)  and  eddy  area  (hereafter  represented  as 

eddy area) for the cyclonic eddies in the northern BoB (14°N–

23°N and 78°E–99°E)  for  2009  and  2012  against the 

climatology considering the altimetric era: 1994–2015. 

Generally, both the cyclonic EKE and eddy area peaks  in 

May and then decreases in June. Cyclonic EKE  is  found to 

be significantly reduced (less than the lower bound of 95% 

confidence level) from mid-April to end of May  of  2009 

[Fig. 1(a)]. A similar reduction is noticed in cyclonic eddy area 

from mid-April to the first week of May [Fig. 1(c)]. On an 

average, cyclonic EKE and eddy area are found to decrease by 

35% and 18%, respectively, from their climatological values 

during the span of one month (15 April–15 May) in 2009.  

The year 2012 also experienced a significant reduction in 

to local wind forcing, internal turbulence, and the remote 

forcing from the equator through coastal Kelvin waves and 

subsequently radiated Rossby waves. Due to high Reynold’s 

number (order of 108 [12]), any current in the ocean can 

produce some turbulent eddies [13]. Since  currents  in  the 

bay are weak, the  vortices generated due to  the  turbulence  

of the system are mostly  negligible.  Moreover, these  types 

of eddies always remain  present  in  the  bay  and  do  not  

add extra value to the systematic seasonal or intraseasonal 

variability. Fig. 2 compares the daily wind stress curl aver- 

aged over the north-central bay (14°N–19°N and 87°E–93°E) 

during March–September of 2009 and 2012 against the 

composite of all 22 years. The composite plot shows  that 

wind stress curl does not vary much over the whole period 

(March–September). In 2009, wind stress curl remained within 

one standard deviation limit [Fig. 2(a)] except for some 

special events. Two severe cyclonic storms [Bijli (14–16 April) 

and Aila (23–26 May)] occurred during the premonsoon 

period of this year, which are reflected as peaks in averaged 

wind stress curl over  the  region  [Fig.  2(a)].  Another  peak 

in wind stress curl is observed in the  first  week  of  June. 

This represents the presence of deep depression  over  the  

bay. During 2012, no signature of such weather systems is 

seen over the region in the premonsoon period and in the 

month of June. Frequent fluctuations in wind stress curl are 

observed during monsoon time, but most of  the  time  they 

are within the error limits,  i.e.,  one-sigma  levels  and  last 

for very short period. This suggests that wind stress curl is 

Naturally, the question arises, what causes the cyclonic eddy 

activities to reduce? Eddies in this region may occur due i=1 
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Fig. 2.  Averaged  wind stress curl (in 10−6  Nm−3) over the north-central  
BoB (14°N–19°N, 87°E–93°E) for the June ISM deficit years (a) 2009 and 

(b) 2012 (black curves). The red curves represent the composite value of the 
same. The gray shades indicate one standard deviation limit. 

 

 
not a significant source of eddy activity  over the  region in  

the study period considered; however, the remote equatorial 

forcing plays a major role in controlling the eddy activity over 

the area. 

 
B. Equatorial and Coastal Kelvin Wave 

The BoB experiences two  pairs  of  alternate  upwelling 

and downwelling Kelvin waves (uKW and dKW, respec- 

tively) [14]. The first uKW occurs during January–April, and 

the second during August–September. The first dKW occurs 

during May-July, and the second during October–December. 

These uKWs and dKWs are generated in the EIO depending 

on the zonal wind over the region and propagate eastward. 

After reaching the eastern boundary of the Indian Ocean, some 

energy reflect as Rossby waves and the remaining propagate 

poleward as coastal Kelvin waves. In the BoB, these coastally 

trapped Kelvin waves of a given period radiate offshore 

Rossby waves at critical latitudes [15]. These radiated Rossby 

waves in the BoB manifest themselves as mesoscale eddies  

on the ocean surface. Among all the four types of Kelvin 

waves, the first uKW occurs during premonsoon [14] and has 

the ability to affect the premonsoon eddy activity. Hence, only 

the first uKW is analyzed in this letter. 

To investigate the activity of the  first  uKW,  68  boxes, 

each with a dimension of 1° 1°, are considered along the 

equator (starting from 80°E) and the boundary of the BoB up 

to the northern tip of Sri Lanka [Fig. 3(a)]. Fig. 3(b) shows 

time-box number plot of climatological SLA. It clearly shows 

the propagation of the first uKW  during  January–April  in 

the eastern EIO and the coastal BoB.  The first  dKW  starts  

in the month of May. Figs. 3(c) and (d) show the similar time-

box number plots for premonsoon period of 2009 and 2012, 

respectively. It can be clearly discerned that in the first week 

of March 2009, the  first  dKW  arises  and  extends up to 

Irrawaddy delta (box number 45), which inhibits the first 

uKW in the region. Though a signal of the first uKW is still 

there in the month of April, it is much weaker than that of 

February. In the case of 2012, the first uKW lasts only for a 

few days, during the month of February [Fig. 3(d)]. Hence, 

 

 

 

 
Fig. 3. (a) Distribution of 1° 1° boxes along the equatorial (starting from 
80°E) and coastal waveguides in the BoB. Time-box number plots  of SLA 
for (b) climatology and the years (c) 2009 and (d) 2012. Thick lines represent 
the zero contour. The red vertical rectangles show the discontinuities in the 
SLA signal (refer to text for details). 

 

 
both the years 2009 and 2012 experience reduction in the first 

uKW activities in the EIO and the coastal BoB as well. 

Moreover, it is noted that in all the three time-box number 

plots, the first discontinuity (patches of abrupt high/low SLA 

inside the negative SLA signal of the first uKW) is seen at  

box numbers 19–23, located at the Sumatra coast. This is due 

to the effect of boundary reflected Rossby waves, which are 

present there [16]. The second discontinuity is noticed at box 

numbers 29–34, which are located at the tip of Sumatra and 

the opening of the Malakka Strait. The possible reason for 

such discontinuities could be the effect of shallow bathymetry 

and boundary reflected Rossby waves. And the last and the 

third discontinuities are observed at box numbers 41–45, at the 

Irrawaddy delta. This may be due to bathymetry and westward 

radiation of Rossby waves [7]. It is interesting to note that 

strong radiation of Rossby waves was prominent from the 

Irrawaddy delta in years 2009 and 2012. 

Furthermore, 2012 was a short-lived positive Indian Ocean 

Dipole (IOD) year [17]. Here, we  examine  whether  this  

IOD has any effect on the  first  uKW  in  2012  by  ana- 

lyzing zonal wind stress and SLA along the  equator  and  

SLA along the 5°S latitude. The time series plot of Dipole 

Mode Index (calculated using weekly TRMM Microwave 

Imager SST) shows that IOD starts developing toward the end 

of July, peaks during September and dissipates in  October 

(see Fig. S2 in the Supplementary Material). During early 

August, strong easterly wind anomalies are observed in the 

EIO [see Fig. S3(a) in the Supplementary Material]. These 

winds force the uKW in the equator and produce upwelling   

at the eastern EIO (see Fig. S3(b) in the Supplementary 

Material). Meanwhile, a positive IOD  pattern  is  developed 

in the EIO and negative (positive) SLA in the east  (west) 

EIO. But, from the second half of August, the easterlies are 

replaced by the westerlies in the western EIO and sometimes 

in the central EIO [see Fig. S3(a) in the Supplementary 

Material]. These winds force dKW (positive SLA) in the EIO. 



 

 

 
 

Fig. 4. Monthly anomaly of 10 m wind for January to April of two June ISM 
deficit years. (a)–(d) 2009. (e)–(h) 2012. 

 
However, the easterlies in the eastern  EIO  force  uKW  in  

the EIO and downwelling Rossby wave (positive SLA)  off  

the equator (see Fig. S3(c) in the  Supplementary Material). 

By the beginning of November, westerlies are seen in both  

the eastern and western EIO, and the IOD signal completely 

disappears. During premonsoon period and the first half of 

June, strong westerlies are predominant in the EIO, though 

weak easterlies are present for some period in April. Due to the 

presence of strong westerlies, the dKW persists in the equa- 

torial waveguide see Fig. S3(b) and (c) in the Supplementary 

(Material). No impact of positive IOD is seen on the first uKW 

of 2012. 

 
C. Equatorial and Local Winds Over the BoB 

The Kelvin waves in the EIO are mainly driven by the 

equatorial winds, and in the coastal waveguide of BoB, they 

get modified by the local winds.  To  examine the  cause of  

the reduction in the first uKW,  both  the  equatorial  winds 

and local winds over the BoB are analyzed in detail. The 

easterly winds in the EIO force the uKWs, while the westerly 

wind bursts occurring during monsoon transition times force 

the dKWs [14]. Fig. 4 shows monthly wind anomalies for 

2009 and 2012 from January to April. The wind anomalies 

during February are westerly in the EIO [Fig. 4(b)]. During 

April, they become westerly up  to  87°E  in  the  EIO  and  

are southerly at the eastern boundary of EIO [Fig. 4(d)]. 

However, during March, wind anomalies are westerly in the 

longitude band of 70°E–84°E in the EIO; and southeasterly   

at the east of 84°E  [Fig.  4(c)].  Hence,  most  of  the  time, 

the eastern EIO is dominated by westerly wind anomalies 

during the premonsoon period. These westerly wind anomalies 

produce anomalous coastal downwelling, which suppresses 

the first equatorial uKW. The signature of the first dKW 

appears in the eastern EIO during  March  2009  [Fig.  3(c)]. 

In the case of 2012, the wind anomalies are mostly westerly 

during January, March, and April in most of the EIO and 

eastern EIO [Fig. 4 (right)]. The anomalies are very small 

during the month of February. These westerly wind anomalies 

produce anomalous equatorial downwelling and suppress the 

Fig. 5. Fortnightly meridional wind stress anomaly (in Nm−2) for February– 
April of (a)–(f) 2009 and (g)–(l) 2012. FEB1 and FEB2 represent the first   
and second halves of February and likewise for the other months. 

 
generation of the  first  equatorial  uKW.  As  a  consequence, 

a weak first equatorial uKW developed in the year 2012 and 

the first equatorial dKW appeared early [Fig. 3(d)]. 

Because of north–south alignment of the shoreline of the 

eastern BoB, the meridional wind stress mainly controls the 

coastal upwelling/downwelling in the eastern BoB, rather  

than its zonal component. Generally, from February to  the 

first half of April, the climatological wind stress is nega- 

tive/northerly (see Fig. S4 in the Supplementary Material). 

This produces coastal upwelling at the eastern rim of BoB, 

which supports the first uKW. However, the fortnightly anom- 

alies of meridional wind stress during the second half of 

February to the end of April in 2009 are positive/southerly 

[Fig. 5(b)–(f)] at the eastern boundary of BoB. This causes 

anomalous coastal downwelling over the region. This coastal 

downwelling tries to nullify the effect of coastal upwelling 

induced by the first uKW, which is normally present during 

that time [Fig. 3(b)]. In other words, the coastal downwelling 

caused by southerly wind stress of 2009 blocks the first uKW 

to propagate northward. In the case of 2012, the meridional 

wind stress anomalies are southerly from March first half to 

end of April [Fig. 5(i)–(l)] resulting in the blocking of the first 

uKW in a similar manner to the year 2009. For this reason, 

termination of the first uKW accorded after the first week of 

March in 2012 over most of the eastern rim of the BoB (up    

to 47–50, the head bay) [Fig. 3(d)]. However,  the signal of  

the first  uKW lasted up to the first  week of April beyond  

box number 50. The southerly wind stress anomaly produces 

anomalous coastal upwelling at the western rim of BoB, which 

favors the existing the first uKW signal beyond box number 50. 

 
IV. CONCLUSION 

This letter examines the premonsoon eddy and Kelvin wave 

activities in the northern BoB during the two June ISM deficit 

years 2009 and 2012, occurred in the recent warming hiatus 

period. This letter reveals that the cyclonic EKE  is reduced  

by 35% and 50% during April–May of 2009 and 2012, 

respectively, whereas the cyclonic eddy area is reduced by 



 

18% and 24%, respectively. Usually, the first uKW prevails  

in the BoB coast during February–April [Fig. 3(b)] [14], and 

radiates offshore upwelling Rossby waves [18]. This upwelling 

Rossby waves produce negative SLA, which are detected as 

cyclonic eddies in the interior of the bay [7]. The first uKW is 

found to be weak in 2009 and 2012. As a result, the cyclonic 

eddy activity is found to be reduced during April–May in the 

northern BoB in these years. The weakening of the first uKW 

in 2009 and 2012 is attributed to winds over both the eastern 

EIO and the eastern rim of BoB. The wind anomalies are 

noticed to be westerlies in the eastern EIO for most of the time 

in January–April of these years. This reduces the  generation 

of the equatorial first uKW. Additionally, the meridional wind 

stress anomaly along the eastern boundary of BoB is found to 

be southerly during most of the time in March and April of 

these two years. This causes anomalous coastal downwelling 

and, hence, blocks the northward propagation of the first uKW 

along the BoB coastal waveguide. As a combined effect of 

these processes, the cyclonic eddy activity in the northern BoB 

is found to be reduced during April and May, which is nearly 

at one-month lag with the reduction of the first uKW in the 

coastal waveguide. Typical speed of the first baroclinic mode 

of Kelvin wave is 2.6–2.8 m/s [19]. It takes nearly 28 days to 

reach up to head bay from the equator. Hence, the one-month 

lag between the reduction of cyclonic eddy activity and the 

first uKW may be justified. 

This letter reports the reduction of cyclonic eddy and the 

first uKW activities in the northern BoB in two June ISM 

deficit years during the warming hiatus period. Since the BoB 

is generally characterized by shallow mixed layer depth (25 m 

of annual average in the northern bay [20]), we believe that 

the reduced cyclonic eddy activity during  premonsoon and 

the month of June of 2009 and 2012 could affect the vertical 

mixing in the upper ocean surface, thus causing redistribution 

of heat in the northern bay. The features of mesoscale eddy 

and Kelvin wave activities in the premonsoon period of ISM 

deficit years could be very useful for investigating upper ocean 

mixing processes in the BoB and supplement our current 

understanding of ISM deficit. A detailed investigation of air– 

sea interaction and heat budget over the region will provide 

valuable insight into the interaction between eddy activities 

over the BoB and June ISM deficit. 
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