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Abstract During plant cell invasion, the oomycete Phytophthora infestans remains enveloped by

host-derived membranes whose functional properties are poorly understood. P. infestans secretes

a myriad of effector proteins through these interfaces for plant colonization. Recently we showed

that the effector protein PexRD54 reprograms host-selective autophagy by antagonising

antimicrobial-autophagy receptor Joka2/NBR1 for ATG8CL binding (Dagdas et al., 2016). Here, we

show that during infection, ATG8CL/Joka2 labelled defense-related autophagosomes are diverted

toward the perimicrobial host membrane to restrict pathogen growth. PexRD54 also localizes to

autophagosomes across the perimicrobial membrane, consistent with the view that the pathogen

remodels host-microbe interface by co-opting the host autophagy machinery. Furthermore, we

show that the host-pathogen interface is a hotspot for autophagosome biogenesis. Notably,

overexpression of the early autophagosome biogenesis protein ATG9 enhances plant immunity.

Our results implicate selective autophagy in polarized immune responses of plants and point to

more complex functions for autophagy than the widely known degradative roles.

DOI: https://doi.org/10.7554/eLife.37476.001

Introduction
Plants intimately interact with a diverse range of pathogens, which typically produce specialized

structures, such as haustoria, to invade the host cell space (Panstruga and Dodds, 2009). These spe-

cialized structures are surrounded by membranes derived from the host endomembrane system

(Bozkurt et al., 2015, 2014; Whisson et al., 2016; Bozkurt et al., 2011), which mediate inter-

organismal communication enabling nutrient and macromolecule trafficking (Wang et al., 2017;

Dagdas et al., 2016; Micali et al., 2011; Koh et al., 2005; Le Fevre et al., 2015; Gutjahr and Par-

niske, 2013; Pumplin et al., 2012). However, our understanding of the origin and biogenesis of

these host-microbe interfaces remains limited. In particular, the extent to which host accommodation

membranes are shaped by the invading microbes is unclear.

Similar to many other filamentous plant pathogens, the potato late blight pathogen Phytophthora

infestans produces haustoria, hyphal extensions that invaginate the host cell membrane

(Whisson et al., 2016). Strikingly, the host accommodation membrane, also known as the
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extrahaustorial membrane (EHM) sharply contrasts with the adjacent plasma membrane in both pro-

tein and lipid composition (Bozkurt et al., 2014; Lu et al., 2012; Schornack et al., 2009). Thus, the

EHM is not uniform, and multiple membrane sources probably contribute to its biogenesis

(Bozkurt et al., 2015). The emerging model is that multiple trafficking pathways are diverted to

haustoria with some degree of specificity.

Macroautophagy (hereafter called autophagy) is an evolutionary conserved membrane trafficking

pathway that mediates removal or relocation of cytoplasmic components (Stolz et al., 2014). Bulk

autophagy, typically activated by starvation, involves non-selective engulfment of cytoplasmic mate-

rials to double membrane vesicles called autophagosomes, which are then carried to the vacuole for

recycling. In contrast, selective-autophagy employs specialized autophagy cargo receptors that bind

ATG8 on autophagosome membranes, and recruit specific cargoes to autophagosomes

(Lamb et al., 2013). For instance, to destroy viral particles and restrict viral infection, the plant

autophagy cargo receptor Joka2/NBR1 activates antimicrobial autophagy, also known as xenophagy

(Hafrén et al., 2017). Similarly, we recently showed that Joka2/NBR1 mediated selective autophagy

pathway contributes to defense against P. infestans. However, the molecular basis of this Joka2/

NBR1 mediated defense-related autophagy remains unknown (Dagdas et al., 2016). To counteract

selective autophagy, P. infestans deploys PexRD54, a secreted protein that belongs to the large

RXLR-WY family of virulence effectors (Dagdas et al., 2016). PexRD54 carries an ATG8 interacting

motif (AIM) and attenuates defense-related autophagy by depleting Joka2 from autophagosomes

(Dagdas et al., 2016). Interestingly, both PexRD54 and Joka2 preferably bind and stimulate forma-

tion of autophagosomes marked by potato ATG8CL over ATG8IL, highlighting the selective nature

of the process (Dagdas et al., 2016). However, the fate of PexRD54 and Joka2 labelled autophago-

somes during pathogen attack remains to be elucidated.

Results

ATG8CL-autophagosomes localise to haustoria in infected plant cells
To investigate subcellular dynamics of autophagy during infection, we first visualized transiently

expressed GFP:ATG8CL in N. benthamiana leaf epidermal cells during P. infestans infection. GFP:

ATG8CL labelled autophagosomes frequently accumulated around the haustoria (73% of observa-

tions, N = 60) labelled by the EHM marker REM1.3 (Figure 1A), whereas in uninfected cells ATG8CL

labelled randomly distributed puncta and the central vacuole (Figure 1—figure supplement 1A–B).

We previously showed that the EHM could be discriminated from the cytosol and adjacent vacuolar

membrane (tonoplast) (Bozkurt et al., 2015). Time-lapse microscopy imaging of haustoriated cells

in which the tonoplast and EHM are slightly parted away from each other revealed that perihausto-

rial ATG8CL-autophagosomes with varying size and shape remain tightly associated with the EHM

(Figure 1—figure supplement 2A–C and Video 1). Unlike GFP:ATG8CL, autophagy deficient GFP:

ATG8CLD mutant failed to accumulate around the haustoria (Figure 1B). GFP:ATG8CLD appeared

randomly distributed as puncta that occurred around haustoria in only 14% of the observations

(N = 51) and did not associate with the EHM (Figure 1B, Figure 1—figure supplement 1C). The

GFP control construct showed only diffuse cytoplasmic signal and did not label any perihaustorial

puncta (0% N = 20) (Figure 1C). To test whether other autophagosomes are targeted toward the

haustoria, we investigated subcellular localisation of ATG8IL labelled autophagosomes. Unlike fre-

quently observed GFP:ATG8CL puncta (73% of observations, N = 60) that is abundantly present

around the haustoria (Figure 1A), GFP:ATG8IL appeared in only 28% the imaged haustoria (N = 65),

typically with no more than a few puncta (Figure 1D). Taken together, these results demonstrate

that during pathogen infection ATG8CL-autophagosomes are selectively directed toward the patho-

gen interface.

Accumulation of perihaustorial ATG8CL-autophagosomes is dependent
on the core autophagy machinery
To determine the extent to which the core autophagy machinery contributes to the formation of

perihaustorial ATG8CL-puncta, we employed RNA interference (RNAi) to knockdown gene
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Figure 1. ATG8CL-autophagosomes accumulate around the haustoria. GFP:ATG8CL, GFP:ATG8CLD, GFP:EV

(empty vector) or GFP:ATG8IL are co-expressed with the EHM marker RFP:REM1.3 via agroinfiltration in N.

benthamiana leaves infected with P. infestans. Confocal laser scanning microscopy (CLSM) was used to monitor

the autophagosomes in haustoriated cells 3–4 days post infection (dpi). (A) GFP:ATG8CL frequently showed

perihaustorial puncta whereas (B) autophagy deficient GFP:ATG8CLD appeared as randomly distributed puncta,

which failed to accumulate around haustoria (C) GFP:EV did not show any punctate localisation and only labelled

perihaustorial cytoplasm (D) GFP:ATG8IL, a divergent member of the ATG8 family, remained mostly cytoplasmic

and rarely labelled perihaustorial puncta. Multiple optical sections that fully cover the haustoria are obtained to

monitor perihaustorial puncta. Images shown are maximal projections of 16, 10, 15, and 11 frames with 1 mm steps

for the top, upper middle, lower middle and bottom rows, respectively. Arrowheads point to haustoria. Scale bars,

10 mm.

DOI: https://doi.org/10.7554/eLife.37476.002

The following figure supplements are available for figure 1:

Figure supplement 1. ATG8CL traffics vacuole in uninfected cells.

Figure 1 continued on next page
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expression of the core ATG components ATG4 or ATG9 (Lamb et al., 2013). We quantified hausto-

ria associated with GFP:ATG8CL puncta upon silencing of ATG4 or ATG9, both of which mediate

autophagosome biogenesis and maturation. We observed a notable reduction in frequency of peri-

haustorial ATG8CL-autophagosomes when ATG4 (31.6% ± 6.2) or ATG9 (39.3 ± 5.2%) is silenced

compared to negative control (GUS gene silencing, 63 ± 1.5%) (Figure 2, Figure 2—figure supple-

ment 1). These results indicate that the core autophagy machinery is required for perihaustorial

accumulation of ATG8CL labelled autophagosomes.

Defense-related selective autophagy mediated by Joka2 is diverted
towards haustoria
To investigate focal accumulation of defense-related autophagy components at the pathogen/host

interface, we investigated subcellular localisation of Joka2-autophagosomes in haustoriated cells.

Joka2 is a modular protein with multiple domains including an N-terminal Phox and Bem1 (PB1)

domain, central zinc finger (ZZ) and NBR1 domains followed by two C-terminal ubiquitin-associated

domains (UBA) that flank an AIM (Zientara-Rytter and Sirko, 2014). PB1 and ZZ domains are impli-

cated in self-oligomerisation and protein-protein interactions, whereas UBA domains and the AIM

bridge Joka2 to the autophagic machinery and the ubiquitinated cargo (Figure 3A). Autophago-

somes labelled by the full length Joka2 fused to BFP (Joka2:BFP) accumulated around the haustoria

at high frequency (92%, N = 50) and localised to the EHM, unlike the BFP vector control (Figure 3B

and Figure 3—figure supplement 1A–B). Intriguingly, Joka2AIM:BFP mutant also labelled perihaus-

torial puncta, although at lower frequency (74%,

N = 42) compared to Joka2:BFP (Figure 3C).

Furthermore, a Joka2 truncate lacking the PB1

and ZZ domains, but retaining the ubiquitin

binding and ATG8 interacting motifs (Joka2D1-

487) showed distribution similar to the BFP vector

control and failed to accumulate at the pathogen

interface (1%, N = 72) (Figure 3D,E). This was

not due to reduced protein stability as Joka2:

BFPD1-487 accumulated at similar protein levels

compared to Joka2:BFP (Figure 3—figure sup-

plement 2). These findings suggest that Joka2-

ATG8 interaction is not sufficient for Joka2’s

recruitment to the perihaustorial puncta and

Joka2’s oligomerisation and/or association with

other proteins mediated by PB1 and ZZ domains

are critical for its haustorial accumulation.

To validate that Joka2 localizes to perihausto-

rial ATG8CL autophagosomes, we co-expressed

Joka2:BFP, Joka2AIM:BFP or BFP:EV with GFP:

ATG8CL in haustoriated N. benthamiana cells

marked by RFP:REM1.3. Joka2:BFP fluorescent

signal fully overlapped with GFP:ATG8CL

labelled perihaustorial autophagosomes (100%,

N = 140) unlike the BFP:EV (0%, N = 20) indicat-

ing Joka2 localizes to perihaustorial ATG8CL

autophagosomes (Figure 3—figure supplement

3A–C). Surprisingly, Joka2:BFP also labelled

puncta that did not show any GFP:ATG8CL

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.37476.003

Figure supplement 2. ATG8CL-autophagosomes associate with the EHM.

DOI: https://doi.org/10.7554/eLife.37476.004

Video 1. ATG8CL-autophagosomes accumulate

around the haustoria and remain associated with the

EHM. GFP:ATG8CL is co-expressed with the EHM

marker RFP:REM1.3 via agroinfiltration in N.

benthamiana leaves infected with P. infestans. Confocal

laser scanning microscopy was used to monitor the

autophagosomes in haustoriated cells three dpi (days

post infection). The movie represents time-lapse of

maximal projections of 9 frames with 1.5 mm steps

acquired during 15 min (Frame interval: 27 s).

DOI: https://doi.org/10.7554/eLife.37476.005
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fluorescence suggesting that Joka2 also labels compartments that are not ATG8CL-autophago-

somes (Figure 3—figure supplement 3A). Consistent with this, Joka2AIM:BFP produced fluores-

cence signal at discrete puncta that rarely coincided with perihaustorial ATG8CL-autophagosomes

(19%, N = 37) (Figure 3—figure supplement 3B). Like mammalian autophagy cargo receptors,

Joka2 forms oligomers (Zientara-Rytter and Sirko, 2014), and this most likely accounts for recruit-

ment of Joka2AIM:BFP to ATG8CL-autophagosomes.

Based on these observations, we hypothesized that diversion of Joka2 mediated autophagy

towards haustoria would lead to a decrease in vacuolar degradation of Joka2. To test this, we mea-

sured autophagic flux in infected leaves. We observed that, similar to ATG8CL, Joka2 protein levels

were higher in infected leaves compared to the mock infected leaves (Figure 3—figure supplement

4). These results further illustrate that ATG8CL/Joka2 mediated antimicrobial autophagy is targeted

to the haustorial interface.

Previously we have shown that overexpression of Joka2 restricts pathogen colonisation

(Dagdas et al., 2016). To test if focal accumulation of Joka2 is important for its antimicrobial
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Figure 2. ATG4 and ATG9 are required for perihaustorial accumulation of ATG8CL autophagosomes. (A–D) In infected leaf patches, GFP:ATG8CL is

co-expressed with RFP:REM1.3 in the presence of hairpin RNAi constructs targeting ATG4, ATG9 or control GUS. CSLM analyses of three independent

experiments revealed that perihaustorial accumulation of autophagosomes are significantly reduced when ATG9 (A) or ATG4 (B) is silenced compared

to GUS (C) silencing. Images shown are maximal projections of 12, 10 and 9 frames with 1 mm steps from top to bottom rows, respectively. Arrowheads

point to haustoria. Scale bars, 10 mm. Images were obtained 3–4 dpi. (D) Quantification of perihaustorial ATG8CL-puncta upon ATG9, ATG4 or GUS

silencing.

DOI: https://doi.org/10.7554/eLife.37476.006

The following figure supplement is available for figure 2:

Figure supplement 1. Validation of ATG4 and ATG9 knockdowns.

DOI: https://doi.org/10.7554/eLife.37476.007
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Figure 3. Joka2-mediated antimicrobial autophagy is directed toward the haustoria. (A) Joka2 domain

architecture (B–E) Confocal microscopy of P. infestans infected N. benthamiana leaf epidermal cells expressing

Joka2:BFP, Joka2AIM:BFP mutant, Joka2D1-487:BFP or BFP:EV control. Both Joka2:BFP (top panel) and Joka2AIM:BFP

(mid panel) displayed perihaustorial puncta although the frequency of the later was much lower. Consistently,

Figure 3 continued on next page
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function, we infected Joka2 and Joka2:BFPD1-487 overexpressing leaves with P. infestans. In contrast

to leaf patches expressing the full length Joka2, which can accumulate at the perihaustorial autopha-

gosomes (Figure 3B), leaves expressing Joka2D1-487 conferred only mild resistance (Figure 3F–G).

Considered together with the cell biological analyses of Joka2 in haustoriated cells, infection assays

suggest that diversion of plant antimicrobial autophagy towards pathogen interface is critical to limit

P. infestans infection. Thus, the pathogen needs to subvert the biogenesis of antimicrobial Joka2/

ATG8CL compartments and/or neutralize their defense related function at the host-pathogen

interface.

Phytophthora infestans effector PexRD54 accumulates at Haustoria
To explore focal subversion of autophagic defense responses during infection, we set out to deter-

mine the subcellular localisation of the P. infestans effector PexRD54 in infected cells. In haustoriated

cells, GFP:PexRD54 frequently labelled perihaustorial puncta (70%, N = 36) (Figure 4A). However,

similar to the GFP control (0%, N = 22), we rarely detected any puncta around the haustoria labelled

by GFP:PexRD54AIM2 (4%, N = 71, Figure 4B–C). This suggests that ATG8CL binding is critical for

recruitment of PexRD54 to the perihaustorial autophagosomes. To determine whether PexRD54

labelled vesicles are ATG8CL-autophagosomes, we co-expressed BFP:PexRD54 with GFP:ATG8CL

in haustoriated N. benthamiana cells. We observed a full overlap between the two punctate fluores-

cent signals across the EHM, in contrast to BFP:PexRD54AIM2 and BFP:EV negative controls (100%,

N = 73 for PexRD54, 14%, N = 35 for PexRD54AIM2 and 0%, N = 29 for EV control) (Figure 4D–G).

Although hardly observed (5/35, 14%), detection of perihaustorial PexRD54AIM2 labelled autophago-

somes suggests that this mutant can still weakly associate with ATG8CL in vivo or forms higher order

molecular complexes with the host autophagy machinery. Altogether, these findings demonstrate

that the ATG8CL selective autophagy pathway that is targeted by P. infestans is diverted to the

haustorial interface.

Host-microbe interface is a hotspot for autophagosome biogenesis
We next investigated the origin of perihaustorial autophagosomes by testing whether they are syn-

thesized at the host-pathogen interface or traffic to these sites following their biogenesis in other

subcellular regions. A recent study has shown that the plant ATG9 homolog, the only transmem-

brane domain containing ATG protein, localises to autophagosome biogenesis sites and remains in

mobile puncta adjacent to mature autophagosomes (Zhuang et al., 2017). Hence, we used ATG9:

GFP as a marker for phagophore assembly sites (PAS) and monitored its localisation during infection.

Figure 3 continued

Joka2D1-487:BFP mainly showed cytoplasmic distribution similar to BFP:EV control and rarely marked perihaustorial

puncta (1.3% of imaged haustoria). Images shown are maximal projections of 10, 14, 10 and 7 frames with 1 mm

steps from top to bottom rows, respectively. Arrowheads point to haustoria. Scale bars, 10 mm. Images were

obtained 3–4 dpi. (F–G) Full length Joka2 enhances disease resistance against P. infestans, whereas Joka2D1-487,

which does not accumulate around haustoria (D), only provides partial resistance. (F) N. benthamiana leaves

expressing Joka2, Joka2D1-487 and empty vector (EV) control were infected with P. infestans and pathogen growth

was determined by measuring infection lesion size eight days post-inoculation. (G) Categorical scatter plots

illustrate infection lesion size of 8–10 infections sites from six independent biological replicates pointed out by six

different colours. Welch Two Sample t-test revealed a significant difference (***p=0.0126) in disease resistance

conferred by Joka2 compared to Joka2D1-487.

DOI: https://doi.org/10.7554/eLife.37476.008

The following figure supplements are available for figure 3:

Figure supplement 1. Joka2/ATG8CL-autophagosomes associate with the EHM.

DOI: https://doi.org/10.7554/eLife.37476.009

Figure supplement 2. Joka2D1-487 is stably expressed.

DOI: https://doi.org/10.7554/eLife.37476.010

Figure supplement 3. Joka2 localizes to ATG8CL-autophagosomes around the haustoria.

DOI: https://doi.org/10.7554/eLife.37476.011

Figure supplement 4. Joka2 degradation slows down during P. infestans infection.

DOI: https://doi.org/10.7554/eLife.37476.012
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Figure 4. PexRD54 accumulates at perihaustorial autophagosomes. (A–C) Confocal images of haustoriated plant cells marked by REM1.3. GFP:
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puncta and showed cytoplasmic distribution similar to GFP:EV (C). (D–F) In haustoriated cells marked by RFP:REM1.3, GFP:ATG8CL labelled

autophagosomes fully overlapped with perihaustorial BFP:PexRD54 puncta (D). In contrast, BFP:PexRD54AIM2 mainly remained cytoplasmic and mostly

Figure 4 continued on next page
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Transient expression of ATG9:GFP in haustoriated cells revealed that ATG9 is ubiquitously found at

the perihaustorial puncta (in >92% of imaged haustoria) neighbouring ATG8CL and Joka2 labelled

perihaustorial autophagosomes with a partial yet clear overlap (Figure 5A–C). This finding suggests

that in addition to accommodating mature ATG8CL autophagosomes, perihaustorial compartments

are hotspots for autophagosome biogenesis. Besides, we noted a substantial increase in the fre-

quency of haustoria that associate with ATG8CL autophagosomes in infected plant cells overex-

pressing ATG9:GFP (90%, N = 120) compared to cells expressing GFP as a control (67%, N = 105)

(Figure 5—figure supplement 1). Accumulation of ATG9 around the haustoria and its boosting

effect on the perihaustorial autophagosomes prompted us to test its role in immunity. For this, we

infected ATG9:GFP and GFP:EV expressing leaves with P. infestans (Figure 5D). Strikingly, we

repeatedly observed that increasing ATG9 protein levels led to a significant drop in P. infestans

infection (p=0.0035, six biological replicates). Overall these results suggest selective autophagy func-

tions as a focal immune response against P. infestans. (Figure 5D–E).

Discussion
In this study, we combined high-resolution microscopy with functional genetic analysis to monitor

the course of defense related autophagy in N. benthamiana cells during P. infestans infection. We

show that autophagosomes labelled by the core autophagy protein ATG8CL and the plant autoph-

agy cargo receptor Joka2 are diverted to the EHM, and accumulation of Joka2 at this interface is

critical for its antimicrobial activity (Figures 1–3). Moreover, P. infestans RXLR effector PexRD54,

which functions as a competitive inhibitor of Joka2, also accumulated across the EHM (Figure 4).

These findings suggest that previously discovered antagonistic interaction between PexRD54 and

Joka2 principally takes place across the EHM, where PexRD54 depletes Joka2 from ATG8CL-auto-

phagosomes to undermine antimicrobial autophagy. A similar antagonistic interaction has recently

been reported in plasmodium infected hepatocytes, in which a plasmodium virulence factor counter-

acts functioning of the mammalian xenophagy receptor p62 on the parasitophorous vacuole mem-

brane that accommodates the intracellular plasmodium (Real et al., 2018). These findings highlight

convergent evolution of autophagy related host defenses, guided by autophagy cargo receptors,

targeted towards the invading plant and animal pathogens. Furthermore, our results illustrate that

adapted plant pathogens deploy effector proteins to remodel processes taking place at the perimi-

crobial host membranes and antagonize the focal immune responses deployed by the host to

destroy the invaders.

Recruitment of ATG9 labelled vesicles to perihaustorial region suggests the pathogen interface

serves a scaffold for autophagosome formation and defense related autophagy responses (Figure 5).

This would not only eliminate the unnecessary energy spent to transport these defense-related

spherical bodies towards the EHM, but more importantly, minimize the time required for their effec-

tive deployment at this interface. This is reminiscent of the antibacterial autophagy responses

mounted by mammalian cells against Salmonella Typhimurium (Randow et al., 2013). Future studies

focusing on dissecting the components of the perihaustorial autophagosome biogenesis machinery

should provide insights into how antimicrobial autophagy is accurately guided towards pathogen

invasion sites.

Surprisingly, ATG8 gene family has expanded and diversified to different degrees in plant line-

ages (Kellner et al., 2017). The expansion of plant ATG8s appears to have occurred early in evolu-

tion, and each plant family carries a unique set of ATG8 isoforms that have diversified over millions

of years (Kellner et al., 2017). Thus, it is possible that in different plant families different ATG8

Figure 4 continued

did not show perihaustorial puncta that overlap with ATG8CL autophagosomes (E), similar to BFP:EV control (F). Images shown are maximum

projections of 8, 12, 10, 8, 5, and 9 frames with 1 mm steps from top to bottom rows, respectively. White arrowheads point to haustoria. Scale bars, 10

mm. Images are obtained 3–4 dpi. (G) PexRD54/ATG8CL labelled autophagosomes accumulate across the EHM. Single focal plane CLSM images show

regions where the EHM and the tonoplast (dotted line) are parted away and the cytosol is no longer a thin layer between the two membranes.

Autophagosomes co-labelled by BFP:PexRD54 and GFP:ATG8CL associate with the EHM marked by RFP:REM1.3. Green arrowheads in overlay panel

point to BFP:PexRD54 labelled autophagosomes that associate with the EHM marked by RFP:REM1.3. Scale bar, 10 mm.

DOI: https://doi.org/10.7554/eLife.37476.013
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Figure 5. ATG9 accumulates around the haustoria and contributes to immunity. (A–C) ATG9 localizes to ATG8CL-autophagosomes around the

haustoria. ATG9:GFP labelled puncta frequently observed around the haustoria (>%92 of the imaged haustoria in (A), (B, C) which partially overlapped

with the perihaustorial autophagosomes marked by BFP:ATG8CL and Joka2:BFP (A, B), but not with BFP:EV control (C). Images shown are maximal

projections of 16, 15 and 7, frames with 1 mm steps from top to bottom panels, respectively. Arrowheads point to haustoria. Scale bars, 10 mm. Images

Figure 5 continued on next page
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isoforms are specialized to carry out defense-related tasks. A phylogenetic analysis of solanaceous

plants revealed family-specific groups of ATG8 members that form four distinct clades

(Kellner et al., 2017). Unlike ATG8CL, another solanaceous ATG8 clade member, ATG8IL, does not

accumulate at the haustorial interface during P. infestans infection. Thus, not all autophagic traffick-

ing components are diverted to the haustorial interface. Autophagosomes labelled by ATG8IL do

not respond to pathogen infection and remain cytosolic, further highlighting the specialization of

ATG8 isoforms in plants that was proposed by Kellner et al (Kellner et al., 2017). (Figure 1). These

findings reveal a novel trafficking route from the cytoplasm to the pathogen interface and expands

our understanding of the biogenesis of the EHM (Bozkurt et al., 2015, 2014; Lu et al., 2012). The

emerging view is that the EHM is formed by the redirection of different endomembrane trafficking

pathways, notably the late endocytic pathway and ATG8CL-mediated selective autophagy.

We hypothesize that the PexRD54-ATG8CL autophagosomes carry a distinct cargo that substi-

tutes the defense related cargo to redirect molecules towards the pathogen. Such pathogen modi-

fied double-layered autophagosomes could fuse with the EHM discharging single layered vesicles

into the extrahaustorial matrix. Fusion of autophagosomes with the EHM could provide a membrane

source for EHM biogenesis and may account for the extracellular vesicles (EVs) that have been

recently reported in several host-microbe interfaces (Deeks and Sánchez-Rodrı́guez, 2016;

Rutter and Innes, 2017). Thus, PexRD54 may orchestrate the recruitment of host cargo for delivery

as EVs to the host-pathogen interface. Further studies are required to determine the precise mecha-

nisms that govern autophagosome biogenesis at the haustorial interface and its impact in pathoge-

nicity. Moreover, identifying the nature of the autophagosome cargo sequestered by PexRD54 and

Joka2 will further expand our understanding of the role of selective autophagy in host-microbe

interactions.

Materials and methods

Molecular cloning and plasmid constructs
GFP:ATG8CL, GFP:ATG8CLD, GFP:ATG8IL, GFP:PexRD54, GFP:PexRD54AIM, GFP:EV and RFP:

REM1.3 constructs were previously described (Bozkurt et al., 2015). All other blue fluorescent pro-

tein (BFP) fusion constructs were generated in this study. The vector for N-terminal BFP fusion was

derived from pK7WGF2 plasmid (Karimi et al., 2002) by excising a fragment from the backbone

with EcoRV digestion then replacing it with a custom synthesized fragment containing tagBFP

sequence followed by linker sequence (GGATCTGCTGGATCTGCTGCTGGATCTGGAGAATTT) and

EcoRV restriction site (where the gene of interest will be inserted) (Eurofins Genomics). Similarly, the

vector for C-terminal BFP fusion was also derived from pK7WGF2 plasmid but by inserting PCR frag-

ments containing EcoRV restriction site (where the gene of interest will be inserted) followed by

linker sequence (GGATCTGCTGGATCTGCTGCTGGATCTGGAGAATTTGGATCA) and tagBFP

sequence amplified from N-terminal BFP fusion vector using primer pairs GA_35 s_F with

Cterm_BFP_Prom_R and Cterm_BFP_F with Cterm_BFP_R. Then, ATG9:GFP, BFP:PexRD54, BFP:

PexRD54AIM2, Joka2:BFP and Joka2AIM:BFP, Joka2D1-487:BFP constructs were generated by Gibson

assembly of each gene PCR fragment into EcoRV digested GFP/BFP vectors (N-terminal fusion for

PexRD54 and PexRD54AIM, C-terminal fusion for ATG9, Joka2D1-487, Joka2 and Joka2AIM). All genes

except ATG9, which was amplified from N. benthamiana cDNA, were amplified from existing

Figure 5 continued

are obtained three dpi.(d–e) ATG9 overexpression enhances disease resistance against P. infestans. (D) N. benthamiana leaves expressing on each half

either ATG9:GFP or GFP empty vector (GFP:EV) control were infected with P. infestans and pathogen growth was determined by measuring infection

lesion size eight days post-inoculation. (E) Categorical scatter plots illustrate infection lesion size of 6 infections sites (except rep2 with five infection

sites) from six independent biological replicates pointed out by six different colours. ATG9 significantly (***p<0.01) enhanced disease resistance against

P. infestans.

DOI: https://doi.org/10.7554/eLife.37476.014

The following figure supplement is available for figure 5:

Figure supplement 1. ATG9 overexpression enhances the frequency of haustoria that associate with ATG8CL-autophagosomes.

DOI: https://doi.org/10.7554/eLife.37476.015
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constructs previously described (Bozkurt et al., 2015), using primer pairs GA_RD54_F with

GA_RD54_R for PexRD54, GA_RD54_F with GA_LIR2_R for PexRD54AIM and GA_Joka2_BFP_F with

GA_Joka2_BFP_R for both Joka2, Joka2AIM, and GA_Joka2D1-487_F, and GA_ATG9_F with

GA_ATG9_R. Silencing constructs for ATG4 and ATG9 were amplified using the primer combina-

tions hpATG4_F/hpATG4_R and hpATG9_F/hpATG9_R and cloned into the pRNAiGG vector, fol-

lowing the protocol from Pu Yan et al. (Yan et al., 2012). All primers used in this study are listed in

Supplementary file 1.

ATG4 and ATG9 silencing assays
A BLASTP search of ATG4 and ATG9 against N. benthamiana proteins in the Sol Genomics database

revealed one coding region for ATG4 (Niben101Scf02450g03007.1) and two homologs of ATG9,

referred to here as ATG9A and ATG9B (Niben101Scf00114g00010.1 and

Niben101Scf08519g00001.1). A hairpin RNAi construct targeting a conserved region in ATG9a/b

was designed to silence both ATG9 homologs. Silencing of ATG4 and ATG9 was verified using RT-

PCR. Total RNA was extracted using GeneJET Plant RNA purification Mini Kit (Thermo Scientific). 2

mg of RNA was used for cDNA synthesis using SuperScript IV Reverse Transcriptase (Invitrogen). RT

was performed with the following conditions: 50 min at 55˚C followed by 20 min at 70˚C. Primers

pairs used for cDNA amplification were RT_ATG4_F/RT_ATG4_R, RT_ATG9A_F/RT_ATG9A_R, and

RT-ATG9B F/RT-ATG9B R. GAPDH was used to normalize transcript abundance. All primers used in

this study are listed in Supplementary file 1.

Confocal microscopy
Imaging was performed using Leica SP5 resonant inverted confocal microscope (Leica Microsystems)

using 63x water immersion objective. All microscopy analyses were carried out on live leaf tissue 3–4

days after agroinfiltration. Leaf discs of N. benthamiana were cut and mounted onto Carolina obser-

vation gel (Carolina Biological Supply Company) to minimize the damage. Specific excitation wave-

lengths and filters for emission spectra were set as described previously (Koh et al., 2005). BFP,

GFP and RFP probes were excited using 405, 488 and 561 nm laser diodes and their fluorescent

emissions detected at 450–480, 495–550 and 570–620 nm, respectively. Sequential scanning

between lines was done to avoid spectral mixing from different fluorophores and images acquired

using multichannel. Maximum intensity projections of Z-stack images were presented in each figure.

Z-stack sections were processed to enhance image clarity, sections that caused blurriness (top and

bottom ones), were removed for generation of maximum intensity projections. Image analysis was

performed using ImageJ (1.50 g) and Adobe Photoshop (CS6).

Transient gene-expression assays in N. benthamiana
Transient gene-expression was performed in planta by infiltration of leaves of 3–4 week old N. ben-

thamiana with cultures of Agrobacterium tumefaciens GV3101 strain carrying T-DNA constructs, as

previously described (Bozkurt et al., 2011). Transient co-expression assays were carried out by mix-

ing equal ratios of A. tumefaciens carrying the plant expression constructs in agroinfiltration medium

[10 mM MgCl2, 5 mM 2-(N-morpholine)-ethanesulfonic acid (MES), pH 5.6] to achieve a final OD600

of 0.2.

Biological material
N. benthamiana plants were grown and maintained in a greenhouse with high light intensity (16 hr

light/8 hr dark photoperiod) at 22–24˚C. P. infestans strain 88069 cultures (van West et al., 1998)

were grown and maintained on rye sucrose agar medium at 18˚C in the dark for 12–14 days, as

described elsewhere (Song et al., 2009) prior to use for infection of N. benthamiana. Zoospores

were released from sporangia by addition of cold water and incubation at 4˚C for 90 min adjusting

dilution to 50,000 spores/ml. Infection of agroinfiltrated leaves was carried out by addition of 10 ml

droplets containing zoospores as described previously (Song et al., 2009; Saunders et al., 2012)

with the exception that infection was carried out on attached leaves, incubating inoculated plants in

humid growth chambers.
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