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Abstract 

  

This thesis presents and critically assesses work undertaken and published between 

2009 and 2018. It evaluates the benefits, limitations and impact of novel approaches 

to next generation sequencing library construction for de novo genome projects 

developed by the author. 

 

Since the first fully sequenced genome was published in 1978, DNA sequencing 

technology has advanced rapidly and costs reduced significantly. Next generation 

sequencers capable of sequencing millions of DNA molecules in parallel revolutionised 

the genomics industry. Today, if the right strategies are adopted, prokaryotic 

genomes can be fully sequenced in a matter of hours for a few hundred pounds and 

a high degree of contiguity achieved in even the most challenging eukaryotic genomes 

within a few weeks for tens of thousands of pounds.  

  

Chapter 2 describes the design and application of a bespoke, high throughput 

bacterial artificial chromosome sequencing pipeline designed to sequence complex 

eukaryotic genomes harbouring a wide variety of repeat structures. Chapter 3 focuses 

on novel approaches to optimise insert size in amplification-free, paired-end library 

construction and Chapter 4 discusses innovative solutions to construct large insert, 

highly complex long mate pair libraries which have much tighter insert size 

distributions than previously published methods. Chapter 5 demonstrates the 

application of the methods discussed in earlier chapters in wheat de novo genome 

projects, highlighting the benefits the author’s approaches bring to sequencing a 

complex polyploid plant genome. 

 

The presented methods establish new ways of thinking about next generation 

sequencing library construction, pushing the boundaries of complexity and 

maximising spatial information.  

 

Keywords: Genome assembly, next generation sequencing, DNA, de novo, 

amplification-free paired-end libraries, long mate pair libraries, bacterial artificial 

chromosomes.  
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1 Introduction 

 

Genome projects aim to provide an accurate sequence against which others can be 

compared. For agronomically important plants such as bread wheat (T. aestivum) 

and barley (H. vulgare), decoding their genomes has the potential to help identify the 

genetic basis of important traits such as yield, nutritional value, disease resistance 

and drought tolerance. In 2016/ 17, global production of wheat was 755 million metric 

tons and 147.9 million metric tons of barley were harvested. For wheat, the 

production in the United States in 2016 was worth $9.1 billion13. With the UN 

predicting the global population to potentially rise to 16 billion by 210014, world food 

production needs to increase significantly. Providing good quality reference genomes 

will hopefully allow breeders to improve their selection programmes and rapidly 

introduce new varieties that will contribute toward global food security. 

 

The first complete DNA sequence of an organism, the 5.4 Kbp bacteriophage PhiX, 

was published in 197815. This was followed by a succession of high profile genome 

projects. H. influenzae was the first fully sequenced prokaryote in 199516, S. 

cerevisiae the first eukaryote in 199617, C. elegans the first animal in 199818, A. 

thaliana the first plant in 200019 and the first drafts of the human genome were 

published in 200120,21 and deemed complete (to 99.99 % accuracy) in 200322. Each 

of these were sequenced using the same dideoxy sequencing chemistry, sequencing 

up to 1 Kbp per read23. For eukaryotic genome projects, Sanger sequencing was both 

expensive and time consuming. The budget for the 3 Gbp Human Genome Project 

(HGP) was >£10 million and it took 13 years to complete. This limited the number of 

genomes that would be sequenced using this technology. 

 

With the introduction of the first commercial Next Generation Sequencing (NGS) 

instrument, the 454 pyrosequencer24-27, closely followed by the Solexa (now Illumina) 

Genetic Analyser28, increased sequence yields transformed genomic research. Due to 

much shorter read lengths of between 25 and 100 bp, and a good refence to compare 

against, many early adopters of NGS technology employed the instruments for 

resequencing of humans as the race toward a $1,000 genome intensified29-31.  
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As read lengths and outputs increased, and costs reduced, numerous opportunities 

were created to optimise and develop NGS library construction protocols to aid de 

novo genome assembly. Novel, laboratory based methods developed by the author 

to help improve assembly accuracy and genome contiguity are presented and 

discussed in this thesis. Many of the protocols appear in the publications listed in 

Appendix 2 so this thesis does not have a dedicated material and methods chapter. 

Where unpublished methods are discussed, details to replicate the studies are written 

within the relevant results chapters. 

 

1.1 Genome complexity 

 

When undertaking a genome project, consideration needs to be given to genome 

complexity. It is the combination of genome size, ploidy and the nature of repetitive 

DNA sequences that dictates the amount of sequence required and helps define the 

strategies needed for genome project success. 

 

1.1.1 Determining genome size 

 

Genome size in base pairs can be determined empirically by measuring the picograms 

of DNA within a single haploid cell, this is known as the C-value32, or by using  

k-mers33.  

 

By comparing the molecular mass of the four component nucleotides of DNA- Adenine 

(A), Thymine (T), Guanine (G) and Cytosine (C), it is possible to calculate the average 

mass of a nucleotide base pair. This can then be used to calculate the number of 

nucleotides in 1 pg as 977.8 Mbp. For the hexaploid bread wheat (Chinese Spring 42, 

(CS42)) a C-value of 17.3334 and for barley of 5.2935 suggests genome sizes of 16.95 

Gbp and 5.16 Gbp respectively. 

 

K-mers represent genomic sequences of length k which can contain all possible 

combinations of nucleotides. For a k length of 17 bp there could potentially be >17 

billion different sequences. K-mers can be used to estimate genome size although 
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technical biases such as those caused by amplification and sequencing errors or for 

biological reasons, such as repetitive sequences, can affect accuracy. Using a k-mer 

that is large enough to map uniquely within the genome, the k-mer frequency is 

determined to calculate the coverage. Genome size can then be calculated by dividing 

the total number of k-mers by the coverage.  

 

1.1.2 Variations in genome size 

 

Genome size varies widely. Viruses are the smallest life forms on earth and can be 

RNA based or DNA based. They range in size from 1.8 Kbp36 to 2.5 Mbp37. Genome 

size ranges of different prokaryotes and eukaryotes are shown in Figure 1.1.  

 

 

 

Figure 1.1: The variation in genome size. Genome sizes 

plotted as log10 Mbp per haploid genome for many different 

taxonomical classes. Average genome size within a class is 

shown by the dot on the line. 

 

Figure adapted from an image by Gregory38. 
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1.1.3 Ploidy 

 

For most of their life cycle, prokaryotes with a single copy of their chromosome per 

cell, are deemed haploid. Eukaryotes are predominantly diploid, having two copies of 

each chromosome per cell. Some species have more than two copies and are termed 

polyploids. This phenomenon occurs due to whole genome duplication events. When 

whole genome duplication is within the same species, which usually occurs in errors 

during meiosis or mitosis causing the fusion of gametes, then these are termed 

autopolyploids. When it is between closely related species, via hybridisation, these 

are known as allopolyploids. Polyploidy is much more common in plants than animals 

with an example of an autotetraploid being the cultivated potato (S. tuberosum)39 

and an allohexaploid being bread wheat7. 

  

Assembling the genome of polyploids can be more difficult than diploids or haploids. 

The presence of significant amounts of homology between the different sets of 

chromosomes can make resolving and orienting these regions more challenging. 

 

1.1.4 Sequencing coverage 

 

Genome size and ploidy dictate how much sequence is required to assemble a 

complete genome. It is generally accepted that for haploids and diploids >30x 

genome coverage of single/ paired-end NGS libraries is sufficient, rising to >60x for 

polyploids. If Long Mate Pair (LMP) libraries are constructed, a total of >30x genome 

coverage is targeted, irrespective of ploidy, and this is usually across libraries with at 

least two different insert sizes40,41. Sequencing to this depth helps identify variants 

such as Single Nucleotide Polymorphisms (SNPs), insertions and deletions and 

ensures that every nucleotide is covered multiple times and at different points within 

different reads. This allows for sequencing errors to be identified and corrected. 
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1.1.5 Repetitive DNA sequences 

 

Generating highly contiguous genome assemblies is dependent upon being able to 

identify the unique sequence flanking any given repeat sequence. The major classes 

of repeat structures and their size ranges in eukaryotes are shown in Figure 1.2.  

 

 

 

Figure 1.2: Classes of DNA sequence repeats. The major 

divisions of repetitive DNA sequence found in eukaryotic 

genomes. Where defined size ranges are known, these are 

shown.  

 

Figure adapted from an image in Biscotti et al.42 and data from 

Treangen and Salzberg43. 

 

Of these, it is the dispersed repeats that are the most difficult to resolve in genome 

assembly projects due to their size and copy number. Short Interspersed Nuclear 
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Elements (SINEs) are present at around 15 % and Long Interspersed Nuclear 

Elements (LINEs) at around 21 % of the human genome42. The collection of Long 

Terminal Repeat (LTR) retrotransposons present in maize account for around 75 % 

of its genome44. 

 

1.2 NGS based genome sequencing 

 

DNA needs to be modified and platform-specific adapters introduced to each end of 

the molecule to enable them to be sequenced on NGS instruments. This process is 

called library construction. Protocols presented in this thesis were developed for the 

construction of NGS compatible paired-end and LMP libraries.  

 

1.2.1 Single and paired-end library construction 

 

Single and paired-end libraries are sometimes referred to as shotgun libraries and 

can be sequenced from one end to generate a single-end read, or from both ends to 

generate a paired-end read. By sequencing from both ends, spatial information 

relating to the distance between the reads can be used to improve contiguity in 

genome assemblies. 

 

Early protocols to manipulate DNA to construct libraries suitable for next generation 

sequencing were based on in vivo cloning technologies. They typically required 

between 1 and 5 µg of DNA >10 Kbp and targeted insert sizes up to 400 bp. DNA is 

first fragmented by physical means using either a nebuliser or by ultrasonication. This 

fragmented DNA can either have a 5’ or a 3’ overhang or be blunt ended. During end 

repair, DNA polymerase I extends 5’ to 3’, like most polymerases, but it also has 3’ 

to 5’ single strand exonuclease activity ensuring that most molecules become blunt 

ended. A Phospho-Nucleotide Kinase (PNK) is also used to phosphorylate the 5’ 

nucleotide to enable adapter ligation. 

 

Blunt end molecules are then subjected to addition of a single adenine to the 3’ end 

of each DNA strand in a process known as A tailing. This uses Klenow Fragment and 
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these A tailed molecules are then subjected to ligation of adapter molecules which 

have a 3’ T overhang using a DNA ligase. Ligation is performed in the presence of 

polyethylene glycol (PEG) which acts as a crowding agent, effectively increasing the 

concentration of the DNA and ligase making the reaction more efficient. Using Y 

shaped adapters, which have the appropriate NGS platform-specific sequences, 

ensures that both strands of ligated molecule have the potential to be sequenced. 

This increases final library yields and by employing dual indices, library multiplexing 

potential is maximised. 

 

If sufficient input material is used, adapter ligated molecules can be sequenced. 

However, for some early applications, it was recommended to amplify and enrich for 

viable library molecules using PCR. Amplification biases have been well reported45,46, 

especially for extremes of GC content, so PCR should be avoided where possible. If 

required, cycle numbers should be minimised and a suitable Taq polymerase such as 

Kapa HiFi47 used to maintain library fidelity and complexity. 

 

Recently, methods harnessing the ability of transposases to randomly insert sequence 

tags into the genome have become popular48. Transposases, both fragment the DNA 

and provide a common sequence to help introduce barcodes in a process called 

tagmentation. Recommended DNA requirements are 50 ng of input DNA >10 Kbp. By 

controlling the ratio of DNA to transposase it is possible to control library insert sizes. 

The more DNA to transposase the larger the insert size. Using the Nextera Tn5 

transposase49, DNA is fragmented by having 43/ 44 bp adapter sequences inserted 

within the DNA molecules. These adapters are not ligated to the molecule on both 

strands so a nick translation step at 70 °C using a non-hot start Taq polymerase is 

introduced ahead of the conventional PCR cycles. Using the inserted sequence as a 

template to prime off and amplify the genome, PCR primers can be designed to 

introduce barcodes and sequences that make the final libraries compatible with NGS 

instruments. A conventional 10 to 16 cycle PCR step provides sufficient library 

molecules for sequencing. 
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1.2.2 LMP library construction 

 

The LMP library construction methods presented in this thesis have been optimised 

using the Illumina Nextera LMP kit. Suggested DNA input requirements range from 1 

to 4 µg depending whether a gel based size selection is used (4 µg input 

recommended) and it is suggested that DNA molecular weight is at least 3x the 

targeted insert size.  

 

The Nextera Tn5 transposase inserts 19 bp biotinylated adapters into the DNA via 

tagmentation, this is followed by a strand displacement step before a suitable size 

selection method is employed to recover fragments of the desired size. A DNA ligase 

circularises molecules overnight before an exonuclease is employed to remove any 

uncircularised or nicked DNA. Circularised DNA is then fragmented using 

ultrasonication before molecules containing the biotin labelled adapter junction are 

enriched for through binding to streptavidin coated magnetic beads. Bound molecules 

are then processed as described for in vivo cloning based paired-end libraries with 

the necessary amplification minimised.  

 

On sequencing, the identification of >25 bp of sequence either side of the 38 bp 

biotinylated adapter junction molecule is required to distinguish the true LMP reads 

apart from paired-end reads. Libraries prepared in this manner can suffer from low 

complexity due to excessive losses during processing, especially in size selection. Low 

yielding samples typically require more PCR cycles which generates more potential 

duplicate library molecules. Determining the number of unique reads, therefore, is an 

important QC step for LMP libraries.  

 

1.2.3 Next generation sequencing 

 

1.2.3.1 454 Pyrosequencing 

 

The principle of 454 pyrosequencing detection is shown in Figure 1.3. If a nucleotide 

is incorporated, or a string of nucleotides, then light is emitted which is proportional 
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to the number of nucleotides added. By flowing nucleotides across in a set order, the 

sequence can be determined by the presence/ absence and intensity of light.  

 

 

 

Figure 1.3: The basis of 454 pyrosequencing. When a 

nucleotide gets incorporated into a sequence, sulfurylase 

converts APS to ATP using the released PPi and then Luciferase 

converts the luciferin and ATP to light and oxy luciferin. 

 

Reproduced from archived 454 promotional material. 

 

Original instruments could sequence up to 100 bp per read and generate up to  

25 Mbp per four-hour run. Later modifications included increasing the average read 

length above 500 bp and generating >500 Mbp per eight-hour run with their FLX 

instruments and they broke through the 1 Gbp per run barrier with the FLX+ 

instrument with reads up to 1 Kbp and run times up to 16 hours. Using single-end 

and LMP reads it was this technology that generated the sequence data for the 

prokaryotic genomes submitted as part of this thesis1-4 and these provided a good 

baseline against which future library construction and genome assembly protocols 

could be judged. However, the cost of this technology was prohibitive and in 2013 

Roche announced that the 454 division would cease trading in 2016. 
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1.2.3.2 Illumina sequencing 

 

The structure of a viable, dual indexed Illumina compatible paired-end library 

molecule is shown in Figure 1.4 and the principle of their sequencing by synthesis 

(SBS) technology is shown in Figure 1.5. 

 

 

 

Figure 1.4: The structure of an Illumina compatible paired-

end library molecule. Viable library molecules have a P5 

adapter sequence at one end and a P7 adapter sequence at 

the other. The 5’ end of each adapter enables them to be 

attached to the oligo lawn of an Illumina flow cell and bridge 

amplification is used to form clusters. Sequences at the 3’ end 

of each adapter allow for sequencing of the inserted DNA and 

barcodes. During sequencing, read 1 is generated first 

followed by index 1, then index 2 and finally read 2. 

 

The technology was initially capable of generating 25 bp of a sequence from a single-

end of millions of reads in parallel within a lane of a flow cell and instruments could 

generate 1 Gbp of sequence data in a week. As read lengths were considerably shorter 

than the 1 Kbp generated by Sanger sequencing, Illumina instruments are often 

referred to as short read sequencers. 

 

Each of the four nucleotides has a different colour fluorophore which acts as a 

reversible chain terminator. Once the nucleotide has been incorporated and the signal 

read, the fluorophore is then removed and washed away, reverting the nucleotide to 
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a conventional deoxynucleotide which is receptive to the addition of the next 

reversible terminator nucleotide.  

 

 

 

Figure 1.5: The basis of Illumina sequencing. Fluorophore 

labelled reversible, dideoxynucleotides are added one at a 

time and the incorporation detected. The fluorophore is then 

cleaved off making the nucleotide available to be extended and 

then the next nucleotide can be added and the whole process 

repeated. 

 

Reproduced from www.illumina.com. 

 

Since its launch, there have been rapid improvements in read lengths from ever 

growing numbers of clusters. Today, sequence reads up to 300 bp can be generated 

from each end of a library molecule and >1 Tbp of sequence data produced from a 

single instrument in 3 days. Although newer instruments recommend library insert 

sizes <400bp, earlier machines had the capability to cluster and sequence libraries 

with inserts up to 1 Kbp.  

 

The Illumina reads generated are currently the most accurate of the NGS platforms, 

with accuracy >99.9 %, and it is the cheapest per base pair, with 1 Gbp of data 
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costing <£50 to generate. As a result, it has quickly become the most widely adopted 

NGS system in the scientific community. 

 

1.3 Genome assembly 

 

Genome assembly is the process of integrating sequence reads to faithfully 

reconstruct the genome of the sequenced organism. This is usually a two-step 

process. First paired-end reads are aligned to form contigs, a term first coined by 

Staden to represent a contiguous stretch of DNA sequence50, and then the paired or 

LMP reads can be used for scaffolding to determine the order of contigs relative to 

each other.  

 

1.3.1 Assembly algorithms 

 

With Sanger sequencing reads approaching 1 Kbp in length, assembly programs such 

as the TIGR51 and Celera52 assemblers used algorithms based on consensus overlap 

to identify reads with shared content. With NGS platforms producing vast quantities 

of much shorter reads, contigging programs such as ABySS53 and Velvet54, and 

scaffolding programs such as SOAPdenovo55, introduced de Bruijn graphs (DBG)56,57 

due to the vast amounts of data produced and the reduced computing requirements. 

Today, so called third generation sequencing platforms, such as the Pacific 

Biosciences (PacBio) RSII and Oxford Nanopore Technology (ONT) MinION, are 

consistently generating reads >1 Kbp and genome assembly is increasingly returning 

to the consensus overlaps based on variations of the Celera Assembler58 with 

packages such as CANU59.  

 

1.3.2 Assembling contigs using DBGs 

 

Assemblies based on data generated using protocols presented in this thesis 

employed DBG assemblers due to the relatively short sequence reads generated on 

the Illumina platform. DBG assemblers work by slicing reads into all the possible  
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k-mers of length k and then uses these to build a DBG. The principle of producing a 

DBG using k-mers is shown in Figure 1.6. By overlapping the k-mers for the last k-1 

nucleotides, the path can be determined. Where k is greater than the size of a repeat 

then it should be resolved, but if k is smaller than the size of a repeat, there can be 

multiple paths in and out of the repeat.  

 

 

 

Figure 1.6: Using k-mers to build a de Bruijn graph. A 

sequence is sliced into all possible 7 mers which are then used 

to create a directed graph to represent the sequence.  

 

Increasing the length k can improve specificity and lead to better assemblies. 

Therefore, Illumina based de novo genome assembly projects tend to use longer 

sequence reads (2x 250 bp) than resequencing projects (2x 150 bp). Paired-end 

library insert size can also be a factor for improved contiguity and this will be 

discussed in more detail in Chapter 3.  
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1.3.3 Scaffolding contigs 

 

The principle of scaffolding with LMP reads is shown in Figure 1.7. Using LMP libraries 

with insert sizes greater than the size of repetitive DNA sequences, it is possible to 

identify unique sequences a known distance apart and order contigs accordingly. 

Scaffolding algorithms determine the estimated insert size of the LMP library by 

identifying paired reads that both map within a single contig. This information is then 

used to identify paired reads which map across two contigs, and determine the 

distance between them. It is the presence of multiple LMP reads that connect the 

same contigs that confirms the spatial relationship.  

 

Scaffolds can consist of any number of contigs and it is the presence of repetitive 

DNA sequences within the genome which are longer than the insert size of the LMP 

that prevents further contigs being linked. 

 

 

 

Figure 1.7: The principle of scaffolding contigs. When LMP 

libraries are sequenced, reads a defined distance apart can be 

determined. These are then used to orientate and position 

contigs relative to each other. Multiple reads mapping helps 

confirm the link between the contigs. 
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1.4 Genome project quality control 

 

Tools available to assess genome assembly accuracy and contiguity include contig 

and scaffold N50 (CN50 and SN50), the K-mer Analysis Tool (KAT) plots60 and 

Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis61,62. Together they 

help validate assemblies and determine genome accuracy and completeness.  

 

1.4.1 CN50 and SN50 

 

N50 is commonly used to identify the size of the contig/ scaffold above which more 

than half the genome is assembled. As a measure of contiguity, larger numbers are 

indicative of better assemblies. However, some scientists disagree as to whether N 

should be used63. 

 

For those that use N50 to describe a length of sequence, they go on to use L50 to 

describe the number of sequences that it takes for the cumulative length of either 

contigs or scaffolds to be >50 % of the assembled content. In this scheme N is used 

to define a length and L a number. This has resulted in several scientists preferring 

to use L50 for the size, rather than N50, leading to considerable confusion. In this 

thesis, if L is used in a publication and is given a length in base pairs it will treated 

as N and the number will be in bold italics to reflect this. 

 

1.4.2 KAT plots 

 

KAT plots are an efficient way to determine how accurate an assembly is and can help 

identify sequence biases and contaminants. Using the k-mer content of the paired-

end reads they can be searched for within the assembly. Reads absent from the 

assembly are characterised by black sections below the main red peak and 

sequencing errors by a black peak along the y-axis of the graph. Red peaks along the 

y-axis represent k-mers in the assembly but not in the reads and the main red peak, 

the paired-end k-mer content that appears once within the assembly. Peaks that are 

neither red or black represent duplications which are either true, to the right of the 
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main peak at twice or greater the multiplicity of the main peak, or down to 

duplications in the assembly, above the main red peak. A KAT plot for a paired-end 

only assembly of the S. coelicolor M145 genome using data from an amplification-

free paired-end library sequenced with 2 x250 bp read and using a k value of 200 

with 37x coverage is shown in Figure 1.8. This assembly had a CN50 of 288kb in 70 

contigs >500 bp. 

 

 

 

Figure 1.8: A KAT plot of a S. coelicolor assembly. The graph 

shows a single red peak with no black underneath it. There is 

also no red to the left of the black peak on the y-axis. These 

are key indicators of a good assembly. 

 

1.4.3 BUSCO analysis 

 

BUSCO analysis measures the completeness of genome assembly based on the 

expected gene content. Single copy orthologs present in at least 90 % of the species 

are searched for within an assembly. Assembly accuracy is determined based on 

which genes are reported to be complete, duplicated, fragmented or missing and can 

be used to make informed decisions about potential sequencing or assembly errors. 

Characteristics of a good assembly include >90 % of the genes being complete and 

<1 % of the genes being fragmented. For polyploid genomes such as wheat, the 

presence of many homeologous genes will mean that a high proportion of the single 

copy orthologs will appear duplicated. 

 



   

31 

1.5 Genome project strategies 

 

Several strategies can be adopted to improve contiguity for repeat rich genomes. 

Reducing genome complexity can be achieved through partitioning of the genome 

into smaller chunks by flow sorting chromosomes or utilising Bacterial Artificial 

Chromosome (BAC) libraries and these strategies are discussed in Chapters 2, 5 and 

6. Maintaining library complexity and controlling the size distribution of molecules 

within a library can be achieved by minimising the need to amplify material and 

optimising fragmentation and size selection, these attributes are discussed in 

Chapters 2 through 6.  

 

These approaches have the potential to make assembly a much simpler task. They 

reduce variability in what is being assembled and controlling this spatial information 

is a great asset to genome assemblers. It helps hone algorithms and makes 

mathematical modelling more straightforward. Knowing the potential insert size 

distribution between two reads can help reduce the number of undetermined bases 

in an assembly and helps connect sequences more accurately thus providing greater 

contiguity. 

 

1.6 Summary  

 

From humble beginnings, when it required several individual reactions and multiple 

sequencing runs to complete even the simplest genome, we are at a point when even 

the most complex genomes can be sequenced and assembled to high degree of 

contiguity within a matter of weeks. The current rate of advancement promises much 

and positions science to enter the pangenomic era for even the most challenging of 

genome projects. 
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2 Increasing sequence contiguity in barley by 

decomplexing the genome 

 

During 2017 there were several high-profile publications of highly repetitive, grass 

genomes each showing ever increasing contiguity. These include publication of the 

most contiguous barley genome presented to date8 and its sister publication detailing 

the methods employed9. Both are submitted as part of this thesis. My role was to 

develop a custom, low cost, high-throughput BAC sequencing pipeline: to culture, 

extract DNA and construct NGS compatible paired-end libraries from individual BACs 

and LMP libraries from pools of 384 BACs.  

 

In this chapter I outline some of the challenges associated with sequencing BACs and 

highly repetitive genomes, describing how my approach overcame these. By 

comparing it against other laboratory based strategies, I highlight the benefits and 

limitations these strategies bring to genome projects. 

 

The sequence assemblies discussed in this chapter were generated at EI by Dharanya 

Sampath (barley BACs) and Jon Wright (wheat BACs and barley Whole Genome 

Sequencing (WGS)) and the 434 unique 9 mer barcodes designed by Matt Clark. 

 

2.1 Bacterial Artificial Chromosomes (BACs) 

 

BAC clones were developed to amplify up to 300 Kbp of DNA allowing scientists to 

work on specific chromosomal regions of interest64. Starting with high molecular 

weight DNA >400 Kbp, partial digests using restriction enzymes increases the 

chances that inserts within a given BAC would overlap with inserts of other clones. 

These restriction digested fragments were separated on an agarose gel and bands 

cut out targeting molecules >100 Kbp and the DNA recovered.  

 

Fragmented, size selected DNA molecules were cloned into a vector which consists of 

i) the sequence necessary for replication within a host bacterial cell, usually E. coli, 

ii) an antibiotic resistance gene, usually chloramphenicol, allowing for this to be used 
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as a selectable marker and iii) the F factor sequence from E. coli which ensured that 

they appeared as single copy within the host cell. BAC clones were then electro or 

chemically introduced into a competent host cell, usually E. coli DH10B. A suitable 

titre was used to generate sufficient single, discernible clones which were then picked 

into glycerol stocks. Based on average insert sizes of 130 Kbp, 12x coverage of the 

genome is targeted, and theoretically, this would result in >99 % of the genome 

being present within the library. 

 

BAC DNA can be digested with a suitable restriction enzyme to produce a fingerprint 

of the clone insert consisting of different size DNA fragments which can be separated 

by agarose gel electrophoresis65. By comparing the fragment patterns BACs sharing 

common, multiple different sized bands are deemed to contain overlapping inserts. 

This information can then be used to produce a Minimal Tile Path (MTP) which would 

contain the fewest number of BACs to cover the whole genome. This approach was 

used for the publicly funded HGP, using primer walking to sequence chromosome 

anchored BACs in their entirety.  

 

2.2 Barley 

 

Barley has an estimated genome size of 5.1 Gbp and like many grass species has a 

high proportion of dispersed repeats with an estimated 75.33 % of its genome being 

Class I retrotransposons and 5.6 % Class II DNA transposons. In 2012 the 

International Barley Sequencing Consortium (IBSC) generated 55x coverage of a PCR 

amplified, 500 bp average insert paired-end library adding 2.5 Kbp insert LMP data. 

They reported a SN50 of 1.4 Kbp66. A CN50 of 1.5 Kbp was later achieved by Sanchez-

Martin et al. when using flow sorting to isolate and then sequence chromosome 2H 

of the barley cultivar Forma. They generated 10x coverage using an amplification-

free paired-end library with an average insert size of 500 bp67. Both studies 

highlighted the lack of contiguity in WGS approaches to sequencing barley. 

 

With the level of repetitive DNA and lack of contiguity from WGS projects, BACs were 

considered the ideal vehicle to deconvolute and sequence the barley genome. 

Increasing outputs and improved barcoding capabilities created new opportunities for 

whole BAC sequencing on NGS instruments.  
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2.3 Alternative strategies to sequence barley BACs 

 

2.3.1 Different pooling strategies for sequencing barley BACs 

 

In 2006, an early NGS based study reporting the 454 pyrosequencing of barley BACs 

was published68. Using 100 bp single-end reads, and comparing the outputs against 

Sanger sequencing, they highlighted the benefit of NGS approaches in assembling 

the gene space but the presence of repetitive DNA sequences hindered contiguity. Of 

the four BACs sequenced, the best assembly required >50x coverage and contained 

65 contigs. 

 

As 454 read length increased, strategies to individually barcode BACs were developed 

which showed improved contiguity69. Pooling 48 non-overlapping BAC clones and 

generating 200 bp+ reads to an average of 26x coverage, Steuernagel et al. achieved 

an average CN50 of 48 Kbp with fewer than 10 contigs per BAC. Although the 

assembly metrics were impressive, library construction and sequencing costs >£250 

per BAC made this approach unviable for screening the 85,000+ BACs in the Barley 

MTP. 

 

BAC pooling strategies were developed further by Lonardi et al. to increase 

throughput and decrease costs70. They used a shifted transversal design71 to pool 

BACs that formed contigs in the physical map for barley and sequenced them on the 

higher throughput Illumina instruments. Targeting an average 150x coverage to 

ensure each of the BACs within the pool had at least 50x coverage, they sequenced 

with 2x 100 bp reads. By deconvoluting the pooling, they could achieve single BAC 

resolution and obtained CN50s between 5.8 and 8.1 Kbp depending on coverage. 

With no deconvolution, they achieved a CN50 of 4.2 Kbp for 169 BACs and 3.8 Kbp 

for 2,197 BACs. They also attempted WGS of barley with paired-end and 2, 3 and 5 

Kbp insert LMPs, improving the SN50 to 2.8 Kbp.  
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2.3.2 Targeted approaches to sequencing barley BACs 

 

The IBSC used 454FLX reads and 2x 100 bp Illumina reads to sequence 5,341 gene 

rich BACs to supplement their physical map and 937 random clones using the 

454FLX66. Starting with 1ml cultures and using conventional in vivo cloning 

techniques to construct paired-end libraries, up to 67 BACs were pooled and size 

selected by cutting bands out of agarose gels and viable library molecules enriched 

for by performing 10 cycles of PCR ahead of sequencing.  

 

Munoz-Amatriain et al. sequenced 15,711 gene bearing BACs from the barley library 

and adopted the shifted transverse design, generating assemblies for 15,622 BACs72. 

Taking 2,197 BACs at a time they generated 169 BAC pools with 13 pools per layer 

and 7 layers. This reduced the number of libraries constructed down to 637. 

Traditional alkali lysis based DNA extractions were employed with DNA pools created 

by hand. Illumina library construction methods were used and on sequencing, >40 

% of the data was shown to be contaminating host E. coli DNA which was filtered out 

ahead of assembly.  

 

The Leibniz Institute on Aging—Fritz Lipmann Institute (FLI) and Leibniz Institute of 

Plant Genetics and Crop Plant Research (IPK) sequenced MTPs of barley chromosomes 

1H, 3H and 4H and Beijing Genomics Institute (BGI) sequenced chromosomes 5H, 

6H and 7H. Some BACs had been previously sequenced using a combination of 

different 454 and Illumina library construction protocols, and many of these were not 

repeated. For the remaining BACs they adopted the BAC culturing and Illumina library 

construction strategy from the 2012 IBSC paper adding LMP data with 10 and 20 Kbp 

inserts.  

 

Assembly metrics for these targeted approaches to sequencing barley BACs are 

shown in Table 2.1.  
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Publication 
Number 

of BACs 

Sequencing 

Strategy 

Average 

Contigs per 

BAC 

CN50 

(Kbp) 

SN50 

(Kbp) 

IBSC 201266 

3,158  454 single-end  21 30.9 - 

937  454 single-end  20 43.0 - 

2,183  
Illumina paired-

end 
31 6.8 - 

Munoz-

Amatriain72 
15,622 

Illumina paired-

end 
20 23.9 - 

IBSC 20178 69,761 
Illumina paired-

end + LMP 
n/a n/a 82.3 

EI 20178 17,317 
Illumina paired-

end + LMP 
24 16.9 95.3 

 

Table 2.1: Assembly metrics for targeted approaches to 

sequencing barley BACs. 

 

2.4 Development of a novel BAC sequencing pipeline 

 

Working on the principle that 1 ng of BAC DNA with a 135 Kbp inserts equates >6.5 

million copies, I developed a novel BAC sequencing pipeline focussing on low input 

library construction to reduce costs and increase throughputs. 

 

2.4.1 DNA extraction 

 

Traditional methods to optimise BAC DNA extraction involve measuring turbidity at 

600 nm over time to identify when cells enter the lag phase of growth. This 

information is then used to harvest cells when they are still in the exponential phase 

of growth to improve yield and DNA quality. When processing thousands of BACs 

simultaneously with different size inserts, this is not feasible. 

 

Working in 384 well format, I grew clones on LB agar supplemented with 

chloramphenicol to confirm clone viability. I then optimised culture volumes, 
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incubation times and DNA extraction protocols based on the alkali-lysis method of 

Beckman Coulter's CosMC beads73 and wrote bespoke programs on a 96-tip head 

Beckman Coulter FXp liquid handling instrument. My initial experiments involved 

evaluating incubation times between 15 and 24 hours, miniaturising reaction 

volumes, switching between 96 and 384 well cultures and reusing tips by employing 

hydrogen peroxide and water washes to denature and remove any DNA which could 

potentially cross-contaminate other samples.  

 

Using quantitative PCR74-76 (qPCR), I developed bespoke assays to determine copy 

number of the pIndigo-BAC5 vector and DH10B E. coli in extracted DNA. QPCR works 

by detecting the synthesis of DNA using double strand specific intercalating dyes such 

as SYBR Green. By measuring the background fluorescence over the first five PCR 

cycles, a threshold value is determined. The point at which fluorescence is detected 

above this threshold value is calculated and is known as the Ct value. With each cycle 

theoretically doubling the amount of double stranded DNA product, a difference in Ct 

value of 1 represents a copy number difference of two. For a tenfold difference in 

copy number the difference in Ct value would be 3.3. 

 

Using the primers shown in Table 2.2, I generated amplicon specific standards 

ranging from 2e3 and 2e8 molecules/ µl for each assay.  

 

Primer Sequence 

E. coli Forward CTGAACTGTGGCTCAGCAAA 

E. coli Reverse CGCTCAAGGGGAAAGGTTAT 

pIndigo-BAC 5 Forward TAGAAACTGCCGGAAATCGT 

pIndigo-BAC 5 Reverse TCCGGCCTTTATTCACATTC 

 

Table 2.2: Primer sequences for qPCR assays for pIndigo-

BAC5 and E. coli DH10B.  

 

For the qPCR assay, I combined 10 µl of the Kapa Biosystems 2x qPCR master mix 

with 1 µl of 10 µM forward primer, 1 µl of 10 µM reverse primer, 1 µl of standard or 
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BAC extracted DNA and 7 µl of water. The reactions were incubated for 5 minutes at 

95 ˚C followed by 40 cycles of 45 seconds at 95 ˚C and 30 seconds at 60 ˚C on an 

Applied Biosystems Step One qPCR instrument. The Ct values for the known copy 

number samples were used to generate the standard curves and then the copy 

number for the unknown samples calculated by comparing their Ct values against 

these.  

 

This revealed over 50 % of DNA was E. coli in some extractions and highlighted the 

needed to employ an ATP dependent DNase to remove the contaminating host DNA. 

To check for host contamination, FastQC77 was adapted to screen for E. coli DH10B 

during post-Illumina run output analysis. The percentage of E. coli in 48 BAC DNA 

extractions, as measured by qPCR before DNase treatment, and, as measured by 

FastQC after treatment and sequencing, is shown in Figure 2.1. For these BACs the 

average contamination before DNase treatment was 31 % and after treatment 5%. 

This confirmed the benefit of the DNase treatment in reducing the E. coli levels which 

would help maximise sequence coverage of the target BACs. 

 

 

 

Figure 2.1: The percentage of contaminating host E. coli DNA 

present in 48 BAC DNA extractions before DNase treatment, 

as determined by qPCR (orange) and after DNase treatment, 

as determined by FastQC (blue). 
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An overview of the BAC DNA extraction pipeline is shown in Figure 2.2. 

 

 

 

Figure 2.2: An overview of the high-throughput BAC DNA 

extraction pipeline. 

 

CosMC prep figure reproduced from www.beckmancoulter.com 

 

By the end of development, I could extract DNA from >4,000 BAC clones using a 

standard 384 CosMC prep reaction kit. I used individual tips for each clone, 384 well 

plates as solution reservoirs and I could complete BAC replication, culture and DNA 

extraction for a full economic cost (FEC) <50p per BAC when processing 2,304 clones 

per day. Over 85 % of the BACs tested had DNA yields between 0.5 and 2 ng/ µl in 

20 µl and based on fingerprint data, the estimated insert sizes for the BACs in the 

barley MTP ranged from 80 to >200 Kbp. Obtaining consistent yields across hundreds 

of BACs confirmed that my DNA extraction pipeline was robust and reproducible and 

that my optimised conditions could be used independent of insert size.  
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2.4.2 BAC paired-end library construction  

 

To overcome the need to measure and normalise DNA concentrations, I needed a 

library construction protocol which could tolerate varying input amounts and produce 

similar library profiles. I chose Epicentres’ transposase based Nextera library 

construction kit for its simple workflow and ease of automation. The library 

Bioanalyzer electropherograms when using the manufacturer supplied buffer systems 

are shown in Figure 2.3. Library profiles were biased towards fragments <300 bp with 

very few molecules >400 bp limiting the spatial potential of the libraries.  

 

 

 

Figure 2.3: Bioanalyzer electropherograms of Nextera 

libraries using the manufacturer provided buffers. Agilent 

Bioanalyzer traces of Nextera libraries constructed with the 

supplied HMW (A) and LMW (B) buffers.  

 

Reproduced from the archived Epicentre User Guide. 

 

I reworked and optimised the reaction buffers and volumes and titrated the DNA to 

enzyme ratios and generated the library electropherograms shown in Figure 2.4. This 

showed that consistent library profiles could be achieved with a range of DNA inputs 

from 0.25 to 2 ng. These libraries, with molecules spanning 200 bp to 1 Kbp, helped 

future proof the method allowing for larger molecules to be isolated as sequence read 

lengths increased. To maximise the multiplexing capability of the pipeline, 434 unique 

9 mer barcodes were designed with a Hamming distance of 4 bp. 
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Figure 2.4: The effect of varying DNA input on library size 

profiles in the optimised Nextera based library construction 

protocol. Libraries had consistent wide insert size distributions 

from 200 bp to 1 Kbp when inputting 0.25 ng (red), 0.5 ng 

(blue), 1 ng (green), 1.5 ng (turquoise), 2 ng (pink) and 2.5 

ng (orange).  

 

Post tagmentation, QIAGEN buffer PB was used to inactivate any remaining 

transposases and a bead based purification step employed ahead of library 

construction. Using the Epicentre Nextera kit, 384 libraries with different P7 barcodes 

could be multiplexed on a single HiSeq2500 lane and when Illumina acquired 

Epicentre, and brought out their own version of the Nextera kit, it facilitated dual 

indexing. Using 48 barcoded P5 adapters and 48 barcoded P7 adapters, 2,304 paired-

end libraries could be pooled per lane. I normalised libraries using MagQuant beads, 

then pooled and concentrated them. I then size selected them on the BluePippin to 

recover molecules between 400 and 600 bp. 

 

After sequencing, cross contamination was determined by looking for the presence of 

sequence from more than one BAC for a given barcode combination. If >10 % of the 

reads indicated the presence of a neighbouring clone, I cherry picked the BAC from 

its original plate and re-arrayed it into a new plate creating a new glycerol stock. I 

then repeated culturing, DNA extraction and constructed a new paired-end library. 

Overall <15 % of clones failed first round library construction of which >90 % was 

due to insufficient sequence data. Of these, >90 % passed QC, generated enough 
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data and could be assembled when repeated.  

 

When the library construction pipeline was fully optimised, I could construct >1,000 

libraries from a standard 24 reaction Nextera kit and an Illumina compatible paired-

end library could be constructed and sequenced for <£3 FEC per BAC.  

 

An overview of the BAC paired-end library construction, normalisation, pooling and 

sequencing pipeline is shown in Figure 2.5.  

 

 

 

Figure 2.5: Overview of the BAC paired-end library 

construction and sequencing pipeline.  

 

2.4.3 BAC LMP library construction 

 

To help resolve larger repetitive DNA sequences, I constructed LMP libraries using the 

BluePippin to target insert sizes between 6 and 8 Kbp. These had the potential to 

resolve most LINEs and some smaller LTRs and DNA transposons.  

 

I constructed LMP libraries from pools of 384 BACs and I optimised culturing to ensure 

that BACs were present at as even a concentration as possible. I performed higher 

quality DNA extractions using QIAGEN’s large construct kit to try and maximise DNA 

quality and improve LMP library complexity. I achieved cost savings by constructing 

eight LMP libraries over two days, reducing DNA inputs and reaction volumes, and 
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the eight pools of 384 BAC LMP libraries were multiplexed and sequenced with 2x  

150 bp reads on a HiSeq2500. Paired-end data was used to confirm which reads came 

from which BAC and this information used for scaffolding the appropriate BAC. Using 

my optimised protocol, I could culture, extract DNA and construction and sequence 

the BAC pool LMP libraries for <£2 FEC per BAC. 

 

2.4.4 Additional developments to the BAC sequencing pipeline 

 

Following completion of the barley BAC project, further modifications were made to 

improve the published paired-end library construction aspect of the pipeline. Up to 

20 % of the paired-end reads generated for barley BACs were PCR duplicates. DNA 

losses associated with buffer PB treatment and bead-based purification meant 21 

cycles of PCR were required to obtain sufficient library molecules for sequencing. This 

contributed toward the high duplication rate observed. I discovered that Robust 2G 

Taq polymerase tolerated the transposase buffer system and the heat denaturation 

at the beginning of the PCR inactivated any remaining transposase. This meant I 

could bypass the buffer PB treatment and the bead-based purification. I then reduced 

the PCR to 14 cycles and generated comparable library yields. The increased library 

complexity meant that I could also omit the normalisation step and although coverage 

was more variable, this was offset by <5 % duplication rates. Using this revised 

method, I could construct paired-end libraries for <£2.50 FEC per BAC. 

 

For the revised paired-end library construction method, I combined 1 µl of BAC DNA 

to 0.9 µl of Nextera reaction buffer, 0.1 µl of Nextera enzyme and 2 µl of water and 

incubated this at 55 °C for 10 minutes. I added 2 µl of 2.5 µM forward and reverse 

primers followed by a master mix containing 5 µl of 5x Kapa Biosystems Robust 2g 

reaction buffer, 0.5 µl 10mM dNTPs, 0.125 µl Kapa Biosystems Robust 2g Taq 

Polymerase and 10.375 µl of water per reaction. This was then incubated at 72°C for 

3 minutes follow by 95 °C for 3 minutes and then 14 cycles of 95 °C for 10 seconds, 

62 °C for 20 seconds and 72 °C for 2 minutes 30 seconds. I pooled libraries by 

spinning the contents of the 384 well PCR plate in to a 96-pipette box tip lid in a plate 

centrifuge at 1,000 rpm and then pooled, concentrated and size selected the libraries 

as outlined in the barley genome paper. 
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Using both these improvements, I constructed paired-end libraries for a MTP for the 

long arm of CS42 chromosome 3D (3DL) consisting of 6,144 clones. This resulted in 

a CN50 of 13.5 Kbp, SN50 of 90 Kbp with an average of 19 contigs per BAC and first 

round failure rates were reduced to <5 %.  

 

2.4.5 Outputs from the BAC sequencing pipeline 

 

Using my paired-end and LMP approaches, a total of 17,317 barley BACs from the 

MTP for 2H and 0H were sequenced and assembly metrics are shown in Table 2.1. 

Single scaffolds were achieved for >25 % of the BACs and >75 % contained <4 

scaffolds.  

 

2.5 Comparing the different barley BAC sequencing 

strategies 

 

2.5.1 Gene bearing versus WGS barley BACs 

 

Comparing the barley 2H assemblies against those generated for the barley BACs 

sequenced in the IBSC 2012 publication highlights the benefit of 500 bp versus  

300 bp inserts for Illumina libraries. The improved physical coverage and ability to 

resolve more repeats provided by the larger insert libraries resulted in a near 2.5-

fold improvement in CN50 and a third less contigs per BAC. I discuss the benefit of 

maximising paired-end library insert size in more detail in Chapter 3.  

 

As gene rich BACs contain more unique sequence, and longer 454 reads are usually 

easier to assemble than shorter Illumina reads, you would expect higher CN50s for 

gene rich BACs sequenced on the 454. Interestingly, it is the random BACs sequenced 

by 454 that have the highest CN50. This helped confirm that sequencing barley BAC 

by BAC was a sensible decision. It suggested that many individual barley BACs were 

unlikely to contain multiple copies of the same repeat, so a suitable BAC by BAC 

strategy should significantly improve genome contiguity.  
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Although the pooling strategy adopted by Munoz-Amatriain et al. was innovative and 

produced a 7 Kbp improvement in CN50 over the 2H assembly, the FEC for EI to have 

replicated this paired-end only study would be £3.26 per BAC for library construction 

and £1.02 for sequencing. Significant additional costs would have been required for 

DNA extraction and pooling. By contrast, the ability to dual index and streamline the 

process using my approaches, DNA extraction, paired-end and LMP library 

construction, pooling and sequencing could be achieved for <£5 FEC. Including LMP 

data resulted in a greater than threefold increase in contiguity highlighting the benefit 

of my approach over the paired-end only shifted transverse design. 

 

2.5.2 Comparison of the 2017 approaches 

 

Of the 9,061 BACs for chromosome 2H and 8,256 for 0H, useable sequence was 

generated for 8,969 (99 %) and 8,031 (97.3 %) respectively with 8,195 (91.4 %) 

and 6,714 (83.6 %) anchored within the POPSEQ map78. For the remaining barley 

chromosome BACs, 97.8 % produced useable sequence and 90.4 % could be 

anchored.  

 

The 2H and 0H assemblies had a 15 % improvement in SN50 over the other barley 

chromosomes with the main difference between the two LMP strategies being the use 

of smaller library inserts for my approach. Although my LMP strategy would not 

resolve repeats >8 Kbp, it did ensure that inserts were smaller than the size of the 

pIndigo-BAC5 backbone so that no LMP reads spanned the vector and suggested 

inappropriate linkage. It is also likely that the smaller inserts were more complex, 

containing less duplicated reads, and would therefore be more informative. LMP 

library complexity is discussed in more detail in Chapter 4. 

2.6 Summary 

 

As a protocol my high throughput, low cost, scalable BAC sequencing pipeline 

delivered. It is testament to the pipeline that after sequencing the MTPs assigned to 

each of the seven barley chromosomes, the IBSC chose my methods to sequence the 

clones that formed contigs in the physical map but couldn’t be assigned to a 
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chromosome (0H) over the other approaches. Combined with data generated by other 

institutes, and using the physical map to underpin optical mapping, this led to a super 

scaffold N50 of 1.9 Mbp being achieved with 80.8 % of the transposable elements 

being resolved, the most contiguous barley genome sequenced to date. At the end of 

its development, my pipeline had a throughput of 9,216 BACs per day for DNA 

extraction and paired-end library construction and 1,536 BACs per day for LMP library 

construction. With sequencing to a combined average of 200x coverage, FEC was <£5 

per BAC. None of the other strategies discussed in this chapter could compete in 

terms of throughput, cost or contiguity. 

 

The protocol went on to successfully sequence 100,000 random wheat clones and 

40,000 rye grass (L. perenne) clones showing that it was robust across different grass 

species. It was also used to generate sequence data from 96 wheat7 and 96 potato10 

clones to help validate sequence assemblies. 

 

Since completing the barley BACs project, I have sequenced a barley cultivar using 

the whole genome, amplification-free, paired-end and LMP protocols presented in 

Chapters 3 and 4 which resulted in a CN50 >22 Kbp and SN50 >86 Kbp. This data 

was generated for a cost of <£40,000 whereas sequencing the entire barley MTP 

using my BAC pipeline would cost >£430,000. The difference in costs whilst achieving 

comparable contiguity has effectively ended the need to sequence BACs as part of a 

genome project. 

 

Although the DNA extraction element of the pipeline may be confined to the history 

books, I later refined the library construction aspect to produce Low Input, 

Transposase Enabled (LITE) libraries which have shown great promise for low cost 

resequencing projects for a variety of different size genomes and amplicons. It is 

tuneable to genome size and can construct an Illumina compatible library for <£5 

FEC. It has supported successful GCRF grant applications helping generate sequence 

data for large collections of wheat, salmonella, sugar cane, red clover, tilapia and rye 

grass and publications on Pseudomonas79 and yeast have recently been submitted 

with many more expected.  
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3 Optimising NGS paired-end library insert 

sizes. 

 

In this chapter, I outline how NGS shotgun library construction has evolved over the 

last 9 years and describe some of the unique modifications I have made. In 

establishing a 454 pyrosequencing pipeline at EI, I demonstrated the benefit of size 

selected libraries on sequence outputs. Combining this knowledge with the benefit of 

paired-end libraries and the advantage of amplification-free libraries led to the 

development of several improvements in optimising NGS paired-end library insert 

sizes. 

 

To increase the insert size and robustness of NGS paired-end libraries I developed a 

novel Illumina compatible, amplification-free paired-end library construction protocol, 

Tight, Amplification-free, Large-insert Libraries (TALL). As Illumina read length 

increased, I adopted the wider insert spanning, amplification-free libraries developed 

at the Broad Institute which fed into their DISCOVAR assembler. I later modified 

these to improve library characteristics and used these to sequence the European 

polecat (M. putorius). Finally, I created a hybrid of the TALL and improved DISCOVAR 

libraries, Size Exclusion-Amplification-free, Paired-end (SE-APE) libraries, designed 

to maximise spatial potential and improve the resultant de novo genome assemblies. 

Each of these paired-end libraries has underpinned development of the W2RAP de 

novo genome assembler. 

 

By comparing my protocols against other library construction strategies, I highlight 

the benefits and limitations they offer. This work is supported by publications on the 

critical comparison of technologies in sequencing S. verrucosum10 and the W2RAP 

assembler6 which are both submitted as part of this thesis.  

 

The genome assemblies and KAT plots discussed in this chapter were generated at EI 

by Bernardo Clavijo (diatom), Pirita Paajanen and George Kettleborough (potato) and 

Graham Etherington (polecat). The development of the W2RAP algorithms at EI was 

undertaken by Bernardo Clavijo, Gonza Garcia-Accinelli and Jon Wright. 
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3.1 NGS shotgun library construction 

 

3.1.1 The benefits of controlling NGS library insert sizes 

 

The 454FLX instrument could generate up to 500 Mbp from a single run and although 

achieving >1 million single-end reads was relatively straightforward, short read 

lengths often resulted in reduced yields. To investigate the effect of insert size on 

sequence outputs I constructed two libraries, one with molecules size selected at  

600 bp +/-10 % on a Perkin Elmer LabChipXT and a second using the standard Solid 

Phase Reversible Immobilisation80,81 (SPRI) bead based size selection recommended 

by 454. I sequenced these on the 454FLX and sequence outputs for these are shown 

in Table 3.1 and Figure 3.1. 

 

Library 

Average 

Read 

Length (bp) 

Median 

Read 

Length (bp) 

Average 

Quality 

Standard 259 +/-100 268 30 

Size 

Selected 
415 +/-116 461 32 

 

Table 3.1: 454 Pyrosequencing sequence outputs. Read 

length and quality statistics for the size selected and standard 

libraries. 

 

Targeting 600 bp fragments for library construction resulted in a 60 % increase in 

average read length, a 72 % increase in median read length and an improvement in 

average quality over non-size selected libraries. This highlighted the benefits of 

controlling insert sizes and laid the foundation for the size selection strategies 

discussed later in this chapter. 
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Figure 3.1: 454 Pyrosequencing read length distribution 

plots. The effect of isolating molecules using the Perkin Elmer 

LabChipXT targeting 600 bp +/-10 % (A) molecules and using 

the standard size selection method (B) ahead of library 

construction. These were then sequenced on the same 454FLX 

run and read lengths determined and plotted. 

 

3.1.2 The benefits of read length and paired-end sequencing 

 

While industry standard approaches to paired-end libraries target insert sizes  

<500 bp, these do not make full use of spatial potential of the Illumina instruments. 

A single-end 18 bp read can resolve 97 % of the E.coli genome and increasing this to 

475 bp read resolves 99 %82. In contrast, when using the spatial information provided 

by a 300 bp fragment, 97.4 % of E. coli is resolved by an 8 bp paired-end read, an 

effective 11 % decrease in the information required83. Optimising paired-end library 

insert size and maximising the spatial information they provide has the potential to 
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resolve all SINEs, more LINEs and more LTRs which can result in significant 

improvements in contiguity. The non-overlapping reads would also reduce coverage 

requirements and lower costs. 

 

3.1.3 The benefit of amplification-free, paired-end libraries 

 

PCR was first described in 1986 to clonally amplify beta albumin and HLA-DQ alpha 

DNA and it went on to revolutionise the field of molecular biology84-86. When applied 

to whole genome shotgun libraries to enrich for viable library molecules within 

Illumina library construction protocols, it became apparent that not all areas of the 

genome were covered to the same extent.  

 

Studies using different amplicon combinations to represent GC contents ranging from 

6 to 90 % showed that there was a distinct drop in representation of molecules >50 

% GC after amplification87. Reports also acknowledged the effect of amplification 

biases in Illumina library construction, highlighting the benefit of constructing 

amplification-free libraries45,46,88,89. 

 

I also observed how amplification combined with size selection using E-gels 

compromised paired-end libraries. Working on the diatom E. Huxleyi, my EI colleague 

Meena Assini constructed a standard PCR amplified Illumina paired-end library, with 

E-gel size selection, and I constructed an amplification-free paired-end library, using 

the LabChipXT.  

 

We both targeted a 600 bp insert and when the libraries were sequenced the reads 

were mapped back to the assembly using BWA90. The actual library insert sizes were 

calculated, then plotted and these are shown in Figure 3.2 
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Figure 3.2: The consequences of E-gel size selection and 

amplification in paired-end library construction. The difference 

in BWA mapped library insert sizes for amplified, E-gel size 

selected (green) and unamplified, LabChipXT size selected 

(blue) paired-end libraries. 

 

When size selecting using E-gels, some smaller DNA molecules are either retained in 

the collection well, or trapped amongst larger fragments. PCR preferentially amplifies 

smaller molecules and this phenomenon can be seen with E-gel size selected and 

amplified library. Figure 3.2 shows the presence of molecules with inserts <200 bp in 

this diatom library. By contrast, the amplification-free library has very few sequenced 

molecules with inserts <500 bp. 

 

However, it is worth noting that amplification cannot be escaped completely on 

second generation NGS instruments. Illumina instruments require bridge 

amplification to generate clusters containing sufficient library molecules for 

fluorescent detection and 454 pyrosequencing uses emulsion PCR to coat beads with 

enough library molecules for signal detection. Amplification biases because of high 

GC content in any of these steps could result in some regions of the genome being 

under represented in the sequence outputs.  
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3.2 Evolution of paired-end library construction 

 

3.2.1 Development of TALL libraries 

 

Hypothesising that robust, amplification-free, large insert, narrow insert size 

distribution libraries would aid assembly, by providing proportionally more reads 

spanning larger repeats, I developed TALL libraries. I fragmented 3 µg of DNA and 

molecules 800 bp +/-10 % were isolated on the BluePippin ahead of library 

construction. These were sequenced with 2x 150 bp reads and library insert size 

determined by mapping reads back to the genome assembly using BWA. A typical 

TALL library Bioanalyzer electropherogram shown in Figure 3.3 and insert size 

distribution in Figure 3.4. 

 

 

 

Figure 3.3: Paired-end library Bioanalyzer 

electropherograms. Bioanalyzer electropherograms for TALL 

(red), DISCOVAR (turquoise) Improved DISCOVAR (green) 

and SE-APE (blue) libraries. 
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Figure 3.4: TALL, DISCOVAR and Improved DISCOVAR library 

insert size distribution plots.  

 

With a mean insert size of 690 bp, TALL libraries were significantly shorter than the 

800 bp targeted. This, in part, was due to slight inaccuracies with the size selection 

on the BluePippin and the fact that the DNA polymerase I used for end repair has 3’ 

to 5’ exonuclease activity. As size selection was performed ahead of library 

construction, it would be expected that a number of molecules would have a 3’ 

overhang which would be removed by this activity shortening some of the DNA 

molecules.  

 

Although TALL libraries had a very tight insert size distribution, with >95 % of 

molecules in the 600-800 bp size range, they lacked molecules >800 bp limiting the 

spatial information the libraries could provide. These TALL libraries were used in a 

CS42 wheat genome project and will be discussed in Chapter 5.  

 

TALL libraries lent themselves to investigation of the effect of wide spanning insert 

sizes on sequence outputs. I constructed libraries with tight insert size distributions 

centred on 400 bp, 600 bp and 800 bp and pooled then sequenced these on a MiSeq 

with 2x 250 bp reads. The number of reads, and the base pair to which at least 75 % 

of the reads have an expected error rate of <1 in 1,000 (Q30), are shown in Table 

3.2. 
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Library 
Number of 

Reads 
Q30 (bp) 

TALL_400 bp_Read 1 5,377,064 219 

TALL_400 bp_Read 2 5,377,064 159 

TALL_600 bp_Read 1 7,787,062 179 

TALL_600 bp_Read 2 7,787,062 79 

TALL_800 bp_Read 1 3,922,822 149 

TALL_800 bp_Read 2 3,922,822 0 

 

Table 3.2: The effect on Q30 of simultaneously sequencing 

libraries with different insert sizes.  

 

Although the 800 bp insert size libraries could be clustered successfully, the reduction 

in quality especially for read 2 was alarming. This phenomenon is down to the Illumina 

software which sets quality thresholds based on the most intense fluorescence. It 

favours tighter clusters generated from smaller library molecules and it assigns them 

a higher quality score compared with larger molecules with more diffuse clusters. This 

indicates that in libraries that have broad insert size distributions, larger insert library 

molecules are less likely to pass filtering compared with smaller insert library 

molecules.  

 

Illumina recommends that you spike in a PhiX control library into every sequencing 

lane as this helps set the quality metrics for the run. The error rates for the known 

sequence of the control library, along with the intensity of the signal, is assessed by 

the software and this helps set the Q30 threshold. As this control library has an 

average size of 451 bp, this data suggests that spiking this in alongside a library with 

a >200 bp larger insert could compromise the quality outputs for that library. For the 

larger insert libraries discussed later in this chapter, we did not spike in the PhiX 

control library so that it did not influence the Q30 scores. 
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3.2.2 Evaluation of DISCOVAR libraries 

 

As read lengths on the Illumina HiSeq2500 increased to 2x 250 bp, scientists at the 

Broad Institute developed a bead based size selection, amplification-free, paired-end 

library construction protocol and an accompanying assembly algorithm, 

DISCOVAR91,92. Fragmenting 500 ng of material and targeting a 500 bp molecule, a 

0.6x SPRI bead based clean-up was used to remove many of the DNA fragments 

<400 bp. A typical DISCOVAR library Bioanalyzer electropherogram is shown in Figure 

3.3 and library insert size distribution shown in Figure 3.4. 

 

Compared with TALL libraries, the DISCOVAR libraries had a much lower mean insert 

size of 570 bp. They had the advantage of larger molecules with library insert sizes 

ranging from 300 bp to >1.1 Kbp but <15 % of reads had inserts >800 bp, limiting 

the spatial information they provided. Up to 15 % of reads were <500 bp and as they 

would overlap on sequencing, they reduced effective coverage. This highlighted the 

limitations of bead based size selection to effectively remove smaller molecules during 

paired-end library construction. 

 

For S. verrucosum, I constructed both a DISCOVAR library (2x 250 bp sequence 

reads) and TALL library (2x 150 bp sequence reads). For further comparison a draft 

genome of S. tuberosum had been published by the Potato Genome Sequencing 

Consortium (PGSC)39. They generated 16 different Illumina libraries with inserts 

ranging between 200 and 811 bp, sequenced with 2x 100 bp reads and combined this 

with single-end 454 data. Metrics for these different assemblies are shown in Table 

3.3. 
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Genome Coverage CN50 (Kbp) Contigs 

Total 

Length 

(Mbp) 

S. verrucosum 

(TALL)10 
135x 75 33,146 702 

S. verrucosum 

(DISCOVAR)10 
120x 77 25,216 646 

S. tuberosum39 n/a 22.4 na na 

 

Table 3.3: Assembly metrics for S. verrucosum and S. 

tuberosum. 

 

When assembling genome data, the more reads that span a repeat, the more 

confident an assembler can be in producing a contig that includes it. Although a library 

can contain some large insert library molecules, it may not generate uniform coverage 

across the entire genome and have sufficient reads in a given region to resolve a 

repeat. TALL and DISCOVAR assemblies for S. verrucosum had very similar CN50s, 

75 versus 77 Kbp, which were >3x better than the published S. tuberosum assembly. 

However, while the DISCOVAR assembly had 30 % fewer contigs, the TALL assembly 

had 8.5 % more content, which is closer to the estimated genome size of 720 Mbp. 

This indicated that the increased average insert size TALL library (mean 650 bp versus 

570 bp) allowed more repeats to be resolved and more content to be assembled for 

S. verrucosum.  

 

This suggested the DISCOVAR assembly is collapsing content where it can’t resolve 

some repeats. The KAT plot for the S. verrucosum DISCOVAR plus LMP assembly is 

shown in Figure 3.5. There is a second peak at 150x coverage, the green portion of 

the plot at twice the k-mer multiplicity of the main red peak, confirming that the 

assembled sequence in this region of the graph has twice as many reads. This 

indicates that S. verrucosum has a class/ classes of repetitive DNA sequence that 

only the TALL library can resolve and suggests that a larger insert, broader spanning 

library might have resulted in an even more contiguous assembly. 
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Figure 3.5: KAT plot of the S. verrucosum DISCOVAR 

assembly. The presence of the green peak at twice the k-mer 

multiplicity of the red peak is indicative of the DISCOVAR 

assembly unable to resolve repeats. 

 

Reproduced from Paajanen et al.10 

 

3.2.3 Improving DISCOVAR libraries 

 

To improve the insert size distribution, enabling a greater proportion of longer 

molecules to be sequenced, I reworked the DISCOVAR protocol performing a less 

aggressive fragmentation and a more stringent bead based clean-up.  

 

The Covaris S2 ultrasonication instrument was used to fragment the DNA. By 

controlling the intensity and frequency of the soundwaves the instrument produces, 

DNA can be fragmented between 100 and 5,000 bp. Using a duty cycle of 5 %, 

intensity of 3 and cycles/ burst of 200 for 40 seconds, I fragmented DNA molecules 

targeting an average size of 1 Kbp.  

 

Maintaining DNA input at 500 ng, I switched to a 0.58x bead based clean-up to 

increase the proportion of molecules >500 bp. The yield recovered after size selection 

was 10 % greater than for the standard DISCOVAR size selection due to the increase 

in average molecule length and this indicated that sufficient material was present to 

construct a library suitable for sequencing. 
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A typical Bioanalyzer electropherogram for an improved DISCOVAR library is shown 

in Figure 3.3 and insert size distribution shown in Figure 3.4. Figure 3.3 confirms the 

increase in larger molecules over both the TALL and DISCOVAR libraries but closer 

inspection also reveals the presence of smaller molecules in the library providing 

further confirmation of the inability of bead based size selection protocols to efficiently 

remove smaller molecules. 

 

I used this protocol to construct libraries for an as yet unpublished polecat de novo 

genome project. Average inserts for these improved DISCOVAR libraries was 700 bp 

which was larger than both TALL and standard DISCOVAR libraries. They had <6 % 

of reads <500 bp, reducing the number of reads that would overlap on sequencing 

compared with the standard DISCOVAR libraries, and >20 % were >800 bp improving 

the spatial information they provided. 

 

For polecat, using the single-end reads from >50x coverage of the improved 

DISCOVAR library and assembling the data with the W2RAP assembler produced a 

CN50 of 155 Kbp. When this was scaffolded using the paired read this increased to a 

CN50 of 255 Kbp. Contiguity was 10-fold greater than that observed by Peng et al. 

when sequencing the ferret (M. putorius furo)93, a close relative of the polecat, for 

which they achieved a CN50 of 22 Kbp with 45x coverage. For the ferret, the use of 

180 bp average insert sized paired-end libraries would have resulted in very few of 

the SINEs being resolved. As these are a major repetitive element in mammals, this 

would have contributed to the reduced contiguity. In contrast, the 700 bp average 

insert of the improved DISCOVAR library used in the polecat assembly would have 

resolved many of the SINEs, some LINEs and some smaller LTRs and this will account 

for much of the increase in contiguity. 

 

Although these improved DISCOVAR libraries generated a highly contiguous polecat 

assembly, the continued presence of the smaller library molecules was a concern. In 

my experience, these often cluster preferentially over larger molecules so would 

continue to limit the spatial potential of a library. This led to my development of a 

method to maximise the spatial information provided by a paired-end library.  
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3.2.4 Maximising spatial information in paired-end libraries 

 

Huptas et al. claim to be the first to look at the effect of insert size in genome 

assembly in prokaryotes45. Using a double SPRI based size selection they compared 

different GC content and investigated a range of insert sizes. They achieved their best 

assemblies with average library inserts of 990 bp and 1.2 Kbp and determined 

sequence depths between 50 to 80x coverage proved optimal.  

 

As the improved DISCOVAR libraries still produced many overlapping reads and fewer 

reads >800 bp than I had hoped for, I developed a hybrid of the TALL and improved 

DISCOVAR methods, SE-APE libraries. I expected that these libraries would have 

fewer library molecules producing overlapping sequence reads, reduced chimeric 

molecules, as these would be >1.1 Kbp and unlikely to be sequenced, and an 

increased proportion of molecules with inserts >800 bp. 

 

I fragmented 1 µg aliquots of DNA, targeting a 1 Kbp fragmentation and then used 

the high pass settings on the BluePippin to exclude molecules below sizes ranging 

from 575 to 675 bp. I then constructed five amplification-free, paired-end libraries 

using this size selected material. A typical SE-APE library Bioanalyzer 

electropherogram with molecules <600 bp removed is shown in Figure 3.3. The BWA 

mapped insert size distributions for libraries with different size exclusion settings are 

shown in Figure 3.6.  

  



   

60 

 

 

Figure 3.6: The effect of different size exclusion parameters 

on library insert size distribution. The insert size distribution 

of library molecules binned into 100 bp size ranges when 

molecules less than the desired size are removed using the 

high pass setting on a BluePippin. 

 

SE-APE libraries with molecules <600 bp removed had an average insert size of  

780 bp which was significantly greater than TALL, DISCOVAR and improved 

DISCOVAR libraries. They spanned 600 bp to 1.2 Kbp with >40 % of reads >800 bp 

and <1 % of the library inserts were <500 bp, confirming they had minimal overlap 

between reads and maximised the spatial information they provided and coverage 

generated. 

 

In broad spanning libraries, molecules with larger inserts can be compromised. While 

Huptas et al. found that insert sizes up to 1.2 Kbp are optimal for assemblies, their 

data shows these libraries spanned 350 bp to 1.7 Kbp. They reported that many of 

the reads with inserts >1.2 Kbp were lost on filtering (Phred score <20) suggesting 

that these molecules are too long relative to the smaller molecules present. By 

contrast, when not spiking the PhiX control library when sequencing SE-APE libraries 

with molecules <600 bp removed, it is not uncommon to achieve Q30 scores of  

250 bp on read 1 and 229 bp on read 2 on sequencing.  
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It is possible that targeting libraries with increased size exclusion settings would be 

beneficial and could improve contiguity further. However, from the data used to 

generate Figure 3.5 and Figure 3.6, when excluding molecules <625 bp DNA was  

80 %, for the <650 bp 65 % and for the <675 bp 50 % of that recovered for the 

<600 bp SE-APE libraries. This suggested that input amounts would need to be 

considerably higher to ensure sufficient library molecules for sequencing and it may 

be prohibitory for some samples. To investigate this further would require the 

fragmentation and DNA input amounts to be re-optimised. An additional consideration 

is that, in my experience, larger molecules are notoriously more difficult to accurately 

quantify and cluster, adding further complications. 

 

It could be argued that sequence read length increases from 25 to 300 bp have made 

as big a contribution as insert size optimisation to improved contiguity in the genomes 

discussed in this thesis. Longer reads allow longer k-mers to be used which in turn 

can lead to more repeats being resolved. This would result in fewer edges in the DBG 

and longer contigs but this can be read depth dependent. However, Huptas et al. 

noted there was no benefit in sequencing beyond 189 bp, as Illumina instruments 

introduced too many errors after this point, and it has been empirically calculated 

that increasing the insert size increases the physical coverage and reduces the length 

of read required. With a 5 Kbp insert, an 18 bp paired read can be used to 

unambiguously map the E. coli genome. Minimal improvement is also observed in 

assembly contiguity when increasing paired-end read length from 35 bp for E. coli 

and 60 bp for S. cerevisiae with a 300 bp insert library94.  

 

3.3 Summary  

 

Amplification-free, paired-end libraries will continue to be constructed and sequenced 

as the Illumina instruments are the most accessible of the current NGS platforms. As 

the technology has improved and read lengths increased, I have evolved and 

improved paired-end library construction to maximise the quality and quantity of the 

data generated.  

 

With the minimum requirement of 1 µg of DNA >10 Kbp, I have shown that the  

SE-APE protocol provides an innovative library construction solution for de novo 
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genome projects. It overcomes problems associated with targeting specific insert 

libraries seen in TALL libraries, reduces the number of reads that overlap increasing 

the effective and physical coverage and reduces the cost of sequencing. It maximises 

the spatial potential of Illumina sequencers and reduces the number of chimeric 

molecules that will be sequenced.  

 

Reads generated using this protocol provide a great resource for validating 

assemblies using KAT plots and the libraries have underpinned the development of 

the W2RAP genome assembler. The application of SE-APE libraries in de novo genome 

projects will be discussed in more detail in Chapter 5. 
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4 Enhancing LMP library characteristics 

 

In recent years there have been numerous publications of genome assembly projects 

and of new software algorithms aimed at improving contiguity using NGS sequence 

data, yet there have been surprisingly few looking to optimise library construction, 

especially for LMPs. As sequencing accessibility for many laboratories is limited to 

short read sequencers and many genomes assembly projects require greater 

contiguity than can be achieved by paired-end reads alone, this created an 

opportunity to optimise LMP library construction and develop a more robust method. 

 

My LMP library construction publication5 describes a novel, robust approach to 

constructing LMP libraries and is submitted as part of this thesis. In this chapter I 

discuss the benefits of my innovative approach in constructing large insert size and 

highly complex LMP libraries with reduced input requirements and tight insert size 

distributions. I introduce further improvements to the protocol and highlight the 

advantages and limitations compared with previously published LMP library 

construction methods.  

 

The LMP insert size distribution and duplication statistics discussed in this chapter 

were calculated at EI by Gonza Garcia-Accinelli and Jon Wright. 

 

4.1 Established LMP library construction strategies 

 

4.1.1 Different approaches to constructing LMP libraries 

 

Ditags, or LMPs as we now refer to them, were first described in 200695,96 and NGS 

equipment manufacturers soon released their own library construction protocols. 

Methods were based on cre-lox (454) and intramolecular ligation (ABI SOLiD and 

Illumina) and more recently transposase methods (Illumina) have been released, 

which remove the need for physical fragmentation, simplifying the LMP library 

construction process. 
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Targeting 3 Kbp inserts, Park et al. compared each LMP approach, including their own 

homebrew method, based on a hybrid of the ABI and Illumina methods, and targeted 

1.5 million reads per library97. The Illumina intramolecular ligation protocol produced 

the highest proportion of unique, true LMP reads (85 %) and 454 the least (45 %) 

with their homebrew protocol averaging 80 % and the Nextera protocol  

75 %. 

 

They went on to construct LMP libraries for seven mice strains targeting 3 and 6kb 

inserts using their own homebrew method, inputting 10 and 20 µg of DNA 

respectively. Size selection was performed using a BluePippin and recoveries 

averaged 11.4 % and 13.6 % of starting material and averages of 80.2 % and  

81.7 % of reads were determined unique, true LMPs. Mean insert sizes were 3.7 and 

6.6 kbp and these spanned 2 to 5 Kbp and 4 to 8 Kbp respectively. Library 

characteristics for these are shown in Table 4.1. 

 

Although DNA inputs were high, considering the insert sizes they were targeting, the 

percentage of unique true LMP reads was impressive. The nick translation method 

they adopted is technically the best LMP library construction method. By ligating 

biotinylated adapters which are then used to walk out from via a nick translation step 

after circularisation, it ensures that the junction molecule sits in the middle of the 

final library molecule, so every read has the potential to be a true LMP. By 

comparison, as Nextera utilises random fragmentation after circularisation, the 

junction molecule can be at any point in the final library molecule. When targeting 

final libraries with average 400 bp inserts and needing a minimum of 25 bp either 

side of the junction molecule for the read to be informative, theoretically only 87.5 

% of all reads can be true LMPs. 
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Genome 

project 

Insert Size 

(Kbp) 
PCR Cycles 

Number of 

Reads 

(million) 

% Unique, 

True LMPs 

Mouse 

Strains97 

3 10 12.3-22.9 71.1-88.1 

6 10 12.7-20.7 69.7-91.4 

Rat98 

3 14 17.7 85.8 

5 18/ 13 11.9/ 16.7 40.2/ 83.8 

8 14/ 13 20.8/ 11.8 37.5/ 89.8 

15 21/ 21 31.2/ 11.6 3.2/ 10.3 

20 14 13.3 44.3 

25 17 56.9 1.9 

P. Picta99 
1-6 10/ 10 15/ 15 59.9/ 65.4 

11-18 10 15 68.1 

Wheat-

CS427 

9 10 432 48.5 

11.3 12 404 44.9 

WLA 

9.5 10 165 69.2 

11.5 10 365 62.5 

14.6 10 354 57.4 

 

Table 4.1: LMP library characteristics for different genome 

projects. 

 

4.1.2 Investigating the benefit of multiple insert size LMPs 

 

In optimising the scaffolding of the rat genome, van Heesch et al. used the ABI SOLiD 

LMP construction protocol with 100 µg of input material and cut bands out of agarose 

gels to construct LMP libraries with inserts ranging from 3 to 25 Kbp98. Characteristics 

for the LMP libraries constructed in this study are shown in Table 4.1. Their libraries 

suffered from inaccurate insert sizes and wide size distributions. The target 10 to  

14 Kbp insert library was shown to be 8 Kbp and spanned 4 to 12 Kbp when mapped 

back to the assembly. They also needed to perform up to 21 PCR cycles to get 
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sufficient library molecules for some insert sizes which resulted in some very low 

complexity libraries.  

 

Sequencing and integrating multiple different insert size LMP libraries benefited the 

rat genome assembly. Scaffolding with a 15 Kbp insert library achieved a SN50 of 

163 Kbp. This was improved to 522 Kbp by using a combination of 5 and 25 Kbp 

insert libraries and in incorporating data from all the LMPs, this rose to 1.28 Mbp.  

 

An improvement in contiguity by adding multiple different insert LMP library data was 

also observed in assembling the S. tuberosum genome43. Adding successive insert 

size LMP library data up to 10 Kbp effectively doubled SN50 at each step and in adding 

a 20 Kbp insert LMP the SN50 more than trebled to 1.30 Mbp.  

 

4.1.3 Reducing costs and improving Nextera LMP outputs 

 

In sequencing the P. picta genome, Tatsumi et al. reported an optimised method to 

reduce costs and improve outputs. They prepared their own reaction buffer and by 

switching the strand displacement and size selection steps, increased the capacity of 

the standard Nextera LMP library kit threefold to 36 reactions99. They also used four 

50 cycle TruSeq Rapid SBS v1 kits allowing them to sequence 2x 171 bp reads to 

further to reduce costs. 

 

They constructed LMPs with insert sizes ranging from 1 to 6 Kbp and 11 to 18 Kbp 

and library characteristics for these are shown in Table 4.1. Assembling the genome 

with the higher complexity 1 to 6 Kbp insert library, compared with the lower 

complexity library, increased SN50 by 20 %. Adding the 11 to 18 Kbp insert library 

increased it 36-fold to 1.81 Mbp. 

 

They highlighted the benefit of increasing the read length from 100 bp to 171 bp, and 

achieved an improvement in the percentage of true LMPs from 59 % to 65 % when 

they reduced the insert size of their final library to between 400 and 700 bp. As the 

Illumina adapters account for 130 bp of this, their library insert sizes ranged between 

270 and 570 bp. Therefore, not all reads would overlap when using 2x 171 bp reads 
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and they may not have identified an adapter junction in every library molecule they 

sequenced.  

4.2 Development of a unique LMP library construction 

protocol 

 

My LMP paper describes a new way to think about library construction with the ability 

to construct up to twelve different insert size libraries at the same time using the 

SageELF. Many of the genome assembly projects discussed in this thesis used 

multiple LMP libraries, with different insert sizes, and my method streamlines the 

process, saving both time and money and requires proportionally less input material.  

 

4.2.1 The benefit of controlling LMP insert size and distribution 

 

LMPs provide the spatial information to be able to scaffold across repeat sequences 

smaller than the library insert size. Accurately controlling the span and insert size of 

LMP libraries has multiple benefits. It simplifies scaffolding reducing the number of 

non-determined bases helping improve contiguity and minimises redundancy when 

producing different insert size libraries.  

 

Using wheat CS42 DNA, I optimised the ratio of DNA to transposase enzyme to 

increase the insert size of the tagmented DNA so that more molecules were in the 

desired 8 to 12 Kbp target insert size range. I performed two tagmentation reactions, 

one with 6 µg and the second with 3 µg and the effect on fragmentation is shown in 

Figure 4.1. The amount of DNA I retrieved after SageELF based size selection for each 

of the twelve fractions is shown in Table 4.2. A total of 22.2 % of starting material 

was recovered across all the fractions. For wheat, 100 ng of material represents 

>5,000 copies of the genome. This yield has the potential to generate highly complex 

LMP libraries and was recovered for all but the smallest and largest fraction 

highlighting the accuracy of the tagmentation optimisation. Because of this improved 

recovery post-size selection, I reduced the number of PCR cycles from the 

recommended 10-15 down to 8-12. 
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Figure 4.1: The effect of increasing DNA concentration on 

transposase mediated fragmentation. Fragmentation patterns 

for tagmented samples with 3 µg (green) and 6 µg (red) DNA 

added and then when pooled ahead of size selection (blue). 

 

Reproduced from Heavens et al.5 

 

Average insert size and insert size distributions for all twelve fraction LMP libraries 

calculated using BWA, are shown in Table 4.2. My LMP libraries centred on inserts of 

9 Kbp and 11.3 Kbp were sequenced to a greater depth as part of our CS42 genome 

project and will be discussed further in Chapter 5.  

 

Since publication of my protocol, I have constructed LMPs for a further eleven wheat 

lines and in targeting insert sizes of 9.5 and 12 Kbp, average insert sizes have been 

9.4 and 11.9 Kbp. Four of these wheat lines had an additional LMP library sequenced 

targeting 15 Kbp inserts and these were shown to be an average of 14.9 Kbp. 
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   Size Span (Kbp) 

ELF 

Fraction 

Average 

Insert Size 

(Kbp) 

Recovery 

Post Size 

Selection 

(ng) 

smallest largest 

1 
(insufficient 

data) 
53.4 - - 

2 14.8 169.2 12.750 17.749 

3 11.3 245.4 9.966 13.327 

4 9.0 261 7.988 10.021 

5 7.3 181 6.459 8.356 

6 5.9 248.4 5.148 6.716 

7 4.8 153 4.107 5.551 

8 3.8 204 3.261 4.445 

9 3.2 184.8 2.601 3.618 

10 2.4 120 1.972 2.854 

11 1.9 109.2 1.520 2.290 

12 1.4 75 1.110 1.780 

 

Table 4.2: DNA recovered post size selection and library 

characteristics for ELF based CS42 LMP libraries. 

 

Reproduced from Heavens et al.5 

 

Of the methods discussed in this chapter, automated size selection outperformed 

manual size selection with the SageELF being the most reliable at targeting insert 

sizes and it also had the benefit of producing narrower spanning libraries. The average 

insert size span across the twelve fractions was -15 to +17 % of the targeted size 

and it was tightest in the 9 Kbp insert library spanning +/-11 %. By contrast, the 8 

Kbp rat library spanned +/-50 %, the 6 Kbp insert mouse LMPs spanned +/-33 % 

and the 14.5 Kbp P. picta LMP library spanned +/-25 % of the average insert. Tightly 

distributed libraries should make assembly more straightforward, and improve 
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contiguity, highlighting a benefit of my approach over the other protocols discussed 

in this chapter. 

 

4.2.2 Improving LMP library complexity 

 

Maintaining library complexity is an important attribute of a robust LMP library 

construction protocol. Highly complex LMP libraries have more unique molecules 

providing more information and require less sequencing reducing the need to 

construct multiple libraries with the same insert size.  

 

To determine complexity of the libraries constructed using my approach, sequence 

reads were first processed through FLASH100 to determine the numbers of reads that 

overlap and provide contiguous sequence of the final library insert. My LMP libraries 

are typically in the 85 to 90 % range, maximising the chances of finding the junction 

adapter molecule. Reads were then deduplicated to remove any identical reads and 

then processed using NextClip101 which categorises them to determine the proportion 

of reads that are informative and true LMPs. Complexity and other library 

characteristics for the CS42 LMP libraries constructed using my approach and 

sequenced as part of the CS42 de novo genome assembly project, presented in 

Chapter 5, are shown in Table 4.1 

 

Comparing the proportion of unique, true LMPs for the libraries discussed in this 

chapter, they range from 1.9 to 91 % although these values can be misleading as the 

number of reads for each of the libraries range from 11.6 to 432 million. The more a 

LMP library is sequenced, the more chance there is of sequencing a duplicate read. 

Therefore, to provide a more direct comparison of complexity with other studies, the 

percentage of unique, true LMPs in subsampled reads from sequencing runs for the 

CS42 9 Kbp insert LMP library were calculated. Results for this are shown in  

Table 4.3. 
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  % Unique True LMPs 

Number of 

reads (million) 

CS42 9 Kbp 

insert library 

WLA 9.5 Kbp 

insert library 

10 65.2 74.5 

15 65.8 73.4 

20 65.9 72.6 

25 66.9 72.9 

50 63.1 70.5 

100 60.5 67.2 

 

Table 4.3: The proportion of unique, true LMPs in subsampled 

CS42 and WLA LMP reads. 

 

Subsampling the CS42 9 Kbp LMP libraries clearly shows how complex libraries can 

be made to look if they are only sequenced to a few million reads. From the 48.5 % 

being true LMPs in the 432 million reads reported in Table 4.1, the value is 65 % 

when subsampling down to 15 million reads which is close to the values seen by 

Tatsumi et al. for their proportionally broader and smaller 6 Kbp insert library when 

sequenced with the same number of reads.  

 

4.2.3 Further improvements to my LMP protocol 

 

Changes to my protocol were made after the presence of a small proportion of reads 

with shorter inserts than those targeted were observed in some libraries. BWA 

mapped LMP insert sizes exhibiting this phenomenon are shown in Figure 4.2. These 

were also observed by Park et al. in their LMP libraries and suggested that some 

smaller DNA molecules were making it through the size selection. Contaminating 

shorter insert reads complicates genome assembly. These make the assembly 

algorithms think they should be further apart than they are. To overcome this, some 

bioinformaticians have chosen to build algorithms to take this into account102. 
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Figure 4.2: The presence of smaller than target insert size 

molecules in LMP libraries. LMP libraries with target insert sizes 

of 10 Kbp (green), 8 Kbp (red) and 6 Kbp (blue) showing some 

library molecules with insert sizes between 0 bp and 4 Kbp. 

 

Working with a new wheat sample-Wheat Line A (WLA), I extracted DNA using a CTAB 

protocol103, as outlined for S. verrucosum10, and immediately ahead of LMP library 

construction. The Agilent TapeStation (Agilent, Stockport, UK) genomic tape 

electropherogram for this DNA is shown in Figure 4.3 and revealed the DNA to be 

>60 Kbp and suitable for LMP library construction. 

 

 

 

Figure 4.3: Agilent TapeStation genomic tape 

electropherogram of freshly extracted WLA DNA. 
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I constructed LMP libraries targeting 15, 12 and 10 Kbp inserts and BWA mapped 

reads for these LMP libraries are shown in Figure 4.4. No smaller insert library 

molecules were observed. A possible explanation for the improved size selection could 

be due to lack of smaller fragments in the freshly extracted DNA which may get 

caught behind or trapped within the larger DNA molecules during electrophoresis. 

This is a similar phenomenon to that seen in the diatom work presented in Chapter 

3, albeit with smaller fragments.  

 

 

 

Figure 4.4: The absence of smaller than target insert size 

molecules in LMP libraries. Three LMP libraries constructed 

showing the absence of smaller than target molecules present 

when the final libraries are mapped back to the genome 

assembly using BWA. 

 

I recovered 12 ng less, 8 ng more and 1 ng less for ELF fractions 2, 3 and 4 when 

using freshly extracted DNA than for the corresponding CS42 LMPs suggesting that 

freshly extracted DNA did not impact size selection yields. I was able reduce the PCR 

cycle number down from 12 to 10 cycles for fractions 2 and 3 and the yields obtained 

were within 5 % of that achieved for the CS42 libraries. With two fewer PCR cycles, 

if the amount of starting material was the same, you would expect four times less 

product. Achieving these final library yields suggests that there is a higher proportion 

of size selected material in the freshly extracted DNA fractions that goes on to 

circularise and provide template for the remaining LMP library construction steps. 

Freshly extracted DNA will have longer molecules present and this increases the 
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chances of adapters being inserted the correct distance apart by the transposase for 

the insert sizes I was targeting and this could account for the observed increase in 

final library yield.  

 

The characteristics for these WLA LMP libraries is shown in Table 4.1 and for 

comparison purposes the percentage of unique, true LMPs from subsampled reads for 

the 9.5 Kbp library shown in Table 4.3. When used for scaffolding, these libraries 

resulted in our best hexaploid wheat assembly to date achieving a SN50 >120 Kbp 

with only 80x genome coverage. 

 

Subsampling the WLA 9.5 Kbp insert LMP reads shows the library is more complex 

than the comparable CS42 library at each subsampling point. The 72 % unique, true 

LMP reads of the 9.5 Kbp insert WLA library when subsampling down to 20 million 

reads is less than the average 81.7 % true LMPs seen in the 6 Kbp insert mouse LMP 

libraries. However, you would only expect a maximum of 87.5 % of library molecules 

to be deemed true LMPs in a Nextera library and this represents 82 % of them. 

Additional advantages of the WLA 9.5 Kbp insert LMP library is the benefit of having 

a 50 % increase in insert size, which provides more physical coverage, and a much 

tighter insert size distribution which aids scaffolding and should improve contiguity. 

It also only requires 9 µg of input material compared with 20 µg for the mouse 6 Kbp 

insert LMP library. 

 

Since observing the improvement in complexity and absence of smaller insert 

libraries, this has been replicated in a further four wheat LMP libraries confirming that 

the modifications to my protocol are both robust and reproducible. 

 

4.3 Summary 

 

Ultimately it is a combination of input requirements, library characteristics and cost 

that will determine which LMP library protocols are widely adopted. An ideal LMP 

library would be highly complex, have the desired insert size with a tight insert size 

distribution, not require prohibitively high DNA input or be prohibitively expensive.  

 



   

75 

For large complex genomes, my published LMP library construction protocol combined 

with the subsequent improvements discussed here provides a cost effective and time 

efficient means to aid de novo genome assembly. LMP libraries prepared this way 

have the ideal combination of larger inserts, which provide more physical coverage, 

are more complex and enable more control over insert size and distribution over 

established protocols coupled with reduced input requirements. They also have the 

added benefit of constructing twelve libraries simultaneously, all of which can be 

sequenced if desired.  

 

Constructing the twelve libraries using my approach can be achieved for twice the 

cost of a single LMP and I have shown it to be more robust than other approaches 

discussed in this chapter. To date, it has been used in more than twelve wheat 

genome assembly projects, some of which will be discussed in Chapter 5.  
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5 Improving wheat de novo genome assemblies 

 

For higher eukaryotes, the prevalence and nature of repetitive DNA sequences, 

polyploidy and large genome sizes makes de novo genome assembly more 

challenging. In this chapter I discuss the application of my novel library construction 

protocols, presented earlier in this thesis, in wheat de novo genome assembly 

projects. I constructed multiple amplification-free, paired-end and LMP libraries for 

CS42 and this provided an opportunity to determine if my optimised methods helped 

improve contiguity in a repeat rich, polyploid plant species. This is supported by 

publication of the CS42 genome7 which is submitted as part of this thesis.  

 

I went on to construct paired-end and LMP libraries for a further five wheat lines, one 

tetraploid and four hexaploids, and assemblies for these have been made available 

through EI’s Grassroots Genomics Portal104,105. These helped test the robustness of 

my protocols. In addition, many alternative strategies have been published in 

attempting to decode wheat and by comparing assembly outputs, I highlight the 

advantages and disadvantages of my approaches over these. 

 

The wheat genome assemblies and KAT plots discussed in this chapter were 

generated at EI by Bernardo Clavijo, Gonza Garcia-Accinelli and Jon Wright. 

 

5.1 Wheat 

 

Bread wheat is an allohexaploid with an estimated genome size of 17 Gbp. It has 21 

chromosomes and, because of two independent hybridisation events, it has two 

copies of three genomes- known as the A, B and D genomes. Over 90 % of the 

genome is thought to be dispersed repeats containing at least 6.5 million LTRs and 1 

million DNA transposons. Strategies to sequence wheat have included decomplexing 

the genome by sequencing BACs, flow sorting chromosomes and sequencing the 

diploid ancestral progenitors. Prior to the publication of our CS42 assembly, there 

were at least two attempts at whole genome shotgun sequencing and recently there 

has been more contiguous hexaploid wheat and A. tauschii assemblies published.  
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Assembly metrics for the wheat genomes discussed in this chapter are shown in  

Table 5.1.  

 

Publication Strategy Genome CN50 (Kbp) SN50 (Kbp) 

Visendi106 BACs CS42 80 106 

Chromosome 

3B107 
BACs + FSC CS42 - 892.4 

Flow Sorted108 FSC CS42 1.7-8.9 - 

Belova109 FSC 7DS/ 7DL 2.4/0 .5 14.4/ 11.1 

Helgeura110 FSC 4DS/ 4DL 1.1/ 0.8 5.5/ 3.9 

Brenchley111 WGS CS42 0.884 - 

Chapman112 WGS 
Synthetic 

Line W7984 
6.7 25 

Ling113 Progenitor 

WGS 
T. uratu 3.42 63.6 

Jia114 Progenitor 

WGS 
A. tauschii 4.51 58.0 

Zhao115 Progenitor 

WGS 
A. tauschii 50.3 6,830 

Zimin116 WGS CS42 232.6 - 

Clavijo7 WGS CS42 16.5 83.9 

Grassroots 

Genomics104,105 

WGS Cadenza 16.0 103.8 

WGS Paragon 16.5 84.4 

WGS Kronos 20.0 155.8 

WGS Robigus 16.8 86.4 

WGS Claire 17.0 72.1 

 

Table 5.1: Assembly metrics for different wheat based 

genome assemblies. 
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5.2 Decomplexing the wheat genome 

 

5.2.1 Sequencing wheat BACs  

 

Visendi et al. published a strategy to sequence pools of wheat BACs targeting 300 bp 

insert paired-end libraries and 6-10 Kbp insert LMPs106. They determined the optimal 

paired-end coverage to be between 450 and 900x and they equimolar pooled four 

non-overlapping BACs prior to library construction. They sequenced 96 pools at a 

time and used BAC End Sequencing (BES) to attribute contigs to BACs and achieved 

a SN50 >17 % larger than we achieved for the CS42 3DL MTP using the BAC 

sequencing pipeline discussed in Chapter 2. 

 

Scientists in the International Wheat Genome Sequencing Consortium (IWGSC) took 

this a stage further and sequenced a MTP of BACs of wheat chromosome 3B107. 

Creating 922 pools from 8,453 clones from the wheat MTP they sequenced 8 Kbp 

insert LMP libraries to an average of 36x coverage on 454 pyrosequencing 

instruments. Augmenting the data with BES, they filled gaps and error corrected using 

Illumina reads from chromosome 3B flow sorted material and integrated the size 

information from BAC fingerprint data. 

 

These approaches to sequence BACs are not cheap. If a wheat MTP BAC library was 

available, it would cost >£1 million to extract DNA, construct paired-end and LMP 

libraries and generate sequence data for all these wheat BACs using the pipeline 

presented in Chapter 2. It would cost significantly more for the extra 2.5 to 4.5x 

sequence coverage required by Visendi et al. The effort by the IWGSC in achieving 

what is considered a gold standard assembly for wheat chromosome 3B was 

admirable, especially for a repeat rich, polyploid plant. However, the library 

construction consumable cost for 922 LMP libraries would be >£100,000 and take 

over 100-person days to complete and that does not include sequencing or DNA 

extraction. There would also be additional costs for the BES and individual 

chromosome isolation and library construction and sequencing of the flow sorted 

material. Based on these figures, BAC approaches to sequence the wheat genome 

are simply not viable. 
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5.2.2 Sequencing flow sorted wheat chromosomes 

 

Attention turned to flow sorting and isolating individual chromosome arms and 

sequencing these using NGS technology. The IWGSC isolated the long and short arms 

of all 21 wheat chromosomes108 and set about sequencing them. CN50s above  

10 Kbp proved elusive so in an attempt to improve contiguity, construction of LMPs 

was attempted by Belova et al. for chromosome 7BS and 7BL109 and Helguera et al. 

for 4DS and 4DL110. The need to MDA treat sorted material to provide sufficient DNA 

for processing resulted in maximum LMP insert sizes <5 Kbp. 

 

This strategy offered the potential to resolve homeologous genes but in failing to 

achieve CN50s >9 Kbp and SN50s >15 Kbp, it did not help improve contiguity 

significantly. BUSCO v2 analysis for this assembly is shown in Table 5.2.  

 

 
BUSCO v2 BUSCO v3.0.2 

Gene Status 
Chromosome 

Survey 
EI NRgene EI 

Zimin et 

al. 

Complete 828 914 921 1,411 1,415 

Duplicated 628 873 899 1,285 1,254 

Fragmented 56 22 15 8 4 

Missing 72 20 20 21 21 

 

Table 5.2: BUSCO analysis for five different CS42 wheat 

genome projects. 

 

Although the chromosome survey assembly lacked contiguity, with a CN50 <9 Kbp 

and 128 single copy ortholog genes either fragmented or missing, the data generated 

proved useful. It allowed much more contiguous wheat assemblies, including our own, 

to have their scaffolds chromosomal location confirmed. 
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5.2.3 Sequencing wheat progenitors 

 

Prior to the release of our wheat assembly, two of the three progenitors of wheat had 

been sequenced using Illumina only approaches- T. urartu113, the A genome 

progenitor, and A. tauschii114, the D genome progenitor. As both are diploids, their 

genomes are less complex and theoretically easier to assemble. The strategies 

adopted included targeting multiple libraries with inserts ranging from 200 to 700 bp 

by cutting bands out of agarose gels and libraries were sequenced on HiSeq2000s 

with 2x 114 bp reads. LMPs with 2, 5, 10 and 20 Kbp inserts were added and 454 

pyrosequencing reads used for error correcting to further improve the assembly. 

Although both assemblies achieved SN50s >50 Kbp, they constructed >20 paired-

end libraries and >15 LMP libraries for each genome indicating they had problems 

with library complexity.  

 

In 2017, a more contiguous A. tauschii assembly was published115. Zhao et al. 

targeted amplification-free, paired-end libraries with a 400 bp insert to generate 76x 

coverage using 2x 250 bp Illumina reads and then stitched these together to form 

continuous sequence reads before assembly. They constructed five different LMP 

libraries with insert sizes ranging from 2 to 40 Kbp, generating a combined 110x 

coverage and then added 11x coverage of 20 Kbp insert PacBio libraries. 

 

5.3 WGS wheat genome project strategies 

 

Brenchley et al. reported a WGS assembly for a hexaploid wheat using a combination 

of single-end 454FLX and FLX+ reads111. Chapman et al. improved contiguity in wheat 

when sequencing a synthetic wheat line, rather than CS42, and targeted paired-end 

libraries with inserts of 250, 500 and 800 bp sequenced on the Illumina HiSeq2500 

with 2x 150 bp (250 and 500 bp inserts) and 2x 250 bp reads (800 bp inserts)112. 

They added sequence data from two LMPs with 1.5 Kbp and 4 Kbp inserts but these 

assemblies suffered from the inability to generate spatial information >5 Kbp 

resulting in SN50s <25 Kbp. With wheat LTRs >7 Kbp being the major repetitive 

sequence, any strategy which cannot resolve these would not achieve highly 

contiguous assemblies.  
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At the Plant and Animal Genome conference in 2015, NRgene presented their 

DeNovoMagic assembly pipeline117. Although little is known about the algorithms used 

to generate assemblies, or whether they used any additional data, they constructed 

two amplification-free paired-end libraries (460 and 800 bp inserts) and three LMP 

(3.5, 6 and 9 Kbp insert) libraries for CS42. They sequenced these to a total of 230x 

coverage and achieved a SN50 of 28.9 Mbp. BUSCO v2 analysis for this assembly is 

shown in Table 5.2. 

 

Since publication of the TGAC CS42 assembly, Zimin et al. have produced an even 

more contiguous assembly116. They used a combination of 65x coverage of PCR 

amplified, 400 bp average insert paired-end library with 2x 150 bp reads combined 

with 36x coverage of 10 Kbp average insert PacBio libraries run on 1,100 SMRT cells 

to generate their assembly. Interestingly, they used my CS42 libraries to confirm the 

absence of 31 mers in their different assemblies as a QC measure to verify and 

validate assembly completeness. This revealed that the PacBio only assembly to be 

the worst and that the Illumina reads were needed to error correct to achieve the 

best assembly. BUSCO v3.0.2 analysis for this assembly is shown in Table 5.2. 

 

5.4 TGAC wheat genome assemblies 

 

5.4.1 CS42 assembly 

 

We sequenced a combination of different amplification-free paired-end and LMP 

libraries to generate our CS42 assembly. I constructed standard DISCOVAR paired-

end libraries to generate >60x coverage and these were used for the initial contigging 

with the W2RAP assembler. I also constructed TALL libraries which were used to 

generate >30x coverage and these were used to scaffold the DISCOVAR assembly. 

My EI colleagues constructed four LMPs following a standard Nextera LMP library 

construction protocol, with size selection on a BluePippin, and I constructed two 

libraries with inserts of 9 and 11.3 Kbp using the published LMP protocol discussed in 

Chapter 4. In total the LMP libraries generated >53x coverage and these were used 
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in a final scaffolding step to produce the published assembly. BUSCO v2 and v3.0.2 

analysis for this assembly is shown in Table 5.2. 

 

The KAT plots for the TGAC and the IWSGC chromosome survey assemblies are 

shown in Figure 5.1. For the chromosome survey assembly, the KAT plot reveals that 

there were a significant number of reads not in the assembly, as shown by the black 

peak under the main red peak. It also has multiple duplications within the assembly 

as shown by the differently coloured peaks above the main peak and has some  

k-mers in the assembly but not in the reads, as characterised by the red portion of 

the plot along the y-axis. The TGAC KAT plot has fewer reads absent in the assembly 

and looks much cleaner. There are no misassembled sequences or duplications within 

the assembly but there is some evidence of true duplications that have not been 

resolved, as judged by the green region of the plot to the right of the main red peak.  

 

 

 

Figure 5.1: KAT plots for the TGAC (A) and the IWGSC 

chromosome survey (B) CS42 wheat assemblies. 

 

Reproduced from Clavijo et al.7 
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Each of three sets of chromosomes in wheat should have their own copy of a majority 

of the SCOs and therefore many of the orthologs will appear duplicated. BUSCO 

analysis reveals that the chromosome survey assembly failed to identify many of the 

homeologs that it was designed to resolve. Of the 828 SCOs that were deemed 

complete, it only identified 75 % of them as duplicated. It also failed to assemble 

>7.5 % SCOs and >5 % of them were fragmented. By comparison, 95 % of the 914 

genes identified in our CS42 assembly had duplicates, and <3 % were fragmented 

with 2 % missing. The number of missing genes in our assembly was consistent with 

both the NRgene assembly when using BUSCO v2 and with the Zimin et al. assembly 

when using BUSCI v3.0.2, suggesting that these orthologs are not present in wheat. 

  

The Zimin et al. assembly had 10 % more content and more than double the 

contiguity than our CS42 assembly. To generate the 1,110 SMRT cells of data would 

take >6 months if capturing continuous 4-hour movies. When adding in the Illumina 

data, the total sequencing cost for this assembly would be >£500k. BUSCO analysis 

reveals it only identifies four more complete SCOs but it had thirty-one less duplicated 

genes suggesting that it was unable to resolve as many of the homeologs as our 

assembly. For many, the extra cost and time will fail to justify the improved contiguity 

achieved by this approach. 

 

The contiguity in terms of CN50 achieved by the NRgene assembly, by comparison to 

our CS42 assembly, is also very impressive. It would cost more than twice that of our 

approach to generate the sequence data and reports suggest that their assembly 

costs are considerable. It only identifies seven more complete and twenty-six more 

duplicated genes, but as the assembly algorithms aren’t available for scrutiny, it is 

difficult at present to recommend this as the best approach for de novo genome 

assembly projects. 

 

5.4.2 Additional wheat line genome projects 

 

For the five subsequent wheat genome projects presented in this thesis, I constructed 

only one SE-APE library and two LMP libraries with 9.5 and 12 Kbp inserts. For the 

paired-end assembly, the sequence coverage requirements for the hexaploids was 

reduced to 55x, and for the combined LMPs 27.5x. This approach achieved similar 
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contiguity to that seen in CS42 and sequencing costs for the paired-end library were 

60 % and LMP library 50 % of that to achieve the CS42 assembly. The further 

advances that I made, in improving the complexity of larger insert LMP discussed in 

Chapter 4, have resulted in a revised optimal strategy for sequencing wheat at EI. 

Our preferred wheat genome project recipe currently includes sequencing three LMP 

libraries with 9.5, 12 and 15 Kbp inserts each to 8.5x coverage. Using this approach, 

paired-end and LMP library construction and sequencing can be completed for wheat 

in under two weeks on a single HiSeq2500 for <£70k and can achieve SN50s  

>100 Kbp. 

 

The assembled content for the TGAC CS42 genome and the four hexaploid wheat 

lines sequenced using my SE-APE plus two LMP library strategy are shown in Table 

5.3. On average, my improved library construction protocols helped increase the 

assembled content for a wheat line by almost 1 Gbp (>7 % of the genome) over that 

achieved for CS42 confirming the benefit of the extra spatial information my methods 

provided. With both Cadenza and Paragon having >15 Gbp of assembled content, 

this is nearly 90 % of the estimated genome size and close to the 15.3 Gbp Zimin et 

al. achieved with a five times more expensive strategy which takes over twelve times 

longer to generate the data.  

 

Wheat 

line 

Number of contigs 

>1 Kbp (million) 

Number of 

scaffolds >1 Kbp 

(million) 

Assembled 

content (Gbp) 

CS42 17.59 15.51 13.94 

Cadenza 19.66 17.93 15.01 

Paragon 20.21 18.31 15.11 

Robigus 20.95 19.11 14.88 

Claire 19.53 17.87 14.60 

 

Table 5.3: Assembled content and contig/ scaffold number for 

five hexaploid wheat lines sequenced at EI. 

 

The increase in assembled content in the four new wheat assemblies corresponds 

with an increase in number of contigs with no significant increase in CN50 (<3 % 

higher for the four new wheat line assemblies). The four additional wheat lines have 

an average of 14 % more contigs and 18 % more scaffolds than for CS42. We also 
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saw this effect in the S. verrucosum assembly discussed in Chapter 3. Both projects 

used different genome assemblers suggesting the improved spatial information 

provided by the paired-end libraries is making a significant contribution to the 

increase in assembled content. 

 

The KAT plots for the four new hexaploid wheat line assemblies are shown in Figure 

5.2. They confirm that the genomes are more complete than for CS42, with fewer 

reads missing from the assemblies. There still are some duplicated sequences to the 

right of the main red peak for each of the wheat lines and these will be repeats that 

cannot be resolved due to the limitations of the insert sizes of the SE-APE and LMP 

libraries I constructed. It will be some of these repeats that Zimin et al. were able to 

resolve using the longer, more continuous PacBio reads that led to them generating 

279,430 contigs and a CN50 over twice that we achieved using an Illumina only 

approach. 

 

 

 

Figure 5.2: KAT plots for the four new hexaploid wheat lines 

assembled at EI. KAT plots for Cadenza (A), Paragon (B), 

Robigus (C) and Claire (D). 
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With similar levels of paired-end coverage, the tetraploid wheat Kronos CN50 was up 

to 25 % bigger than the hexaploid wheat lines and in producing nearly twice the LMP 

coverage, the SN50 was up to 115 % greater. Total assembled content was 10.73 

Gbp which is nearly 95 % of the estimated 11.33 Gbp genome size. Analysing the 

assembly, it was possible to investigate the benefit of additional LMP library data in 

improving genome contiguity. Both the 9.2 and 11.3 Kbp insert Kronos LMP libraries 

had >480,000 sequence reads generated and a total of 57.3 % and 52.9 % of the 

reads respectively were unique, true LMPs showing they were both highly complex 

libraries. When subsampling the data down to the comparable 27.5x coverage across 

both LMP libraries generated for the hexaploid lines, the SN50 was only 88.50 Kbp. 

This clearly highlights the benefit of additional LMP reads in improving genome 

contiguity if the library is complex enough. This suggested that we could obtain even 

more contiguous wheat assemblies if we sequenced LMPs to greater depth. However, 

careful consideration needs to be given to the cost of this relative to the number of 

unique reads that will be generated. 

 

5.4 Summary 

 

Illumina sequencers continue to generate the bulk of the sequence data in many de 

novo eukaryotic genome projects. In producing highly contiguous assemblies for 

multiple wheat lines, my paired-end and LMP library construction protocols have been 

shown to provide a robust, streamlined and versatile two-step library construction 

solution and they remove the need to decomplex genomes. BUSCO analysis suggests 

that the assemblies generated using these protocols identify and resolve much of the 

gene space and with total library construction costs <£2k and DNA requirement of  

10 µg of DNA molecules >45 Kbp, these values are within the capabilities of most 

scientists, making the protocols accessible to all.  

 

As of 24th January 2018, the TGAC CS42 assembly had been accessed >9,500 times 

and had >4,500 BLAST searches on the EI server and in 2016 alone, the EBI hosted 

assembly had >55,000 BLAST searches, highlighting the importance and value of this 

assembly as a resource to the scientific community. If we are truly to enter the 

pangenomic era for complex genomes such as wheat, then low cost, rapid turnaround 
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protocols such as those presented in this thesis will be required and the data made 

available to the widest possible audience.  

 

The protocols I developed have gone on to underpin a successful million-pound grant 

application to generate reference genomes for the wheat MAGIC population which are 

the founder wheat lines responsible for >80 % of genetics in modern British farmed 

wheat varieties. Once completed, these will provide a useful resource for wheat 

breeders. Highly contiguous assemblies have also been achieved for a variety of other 

species ranging from fish to butterflies and mammals to trees, pointing to the global 

suitability of these methods. As more genomes using these protocols get published, 

they will gain wider appeal in the scientific community. For some, alternative or 

complementary strategies such as those discussed in Paajanen et al10. will dictate 

how future genome projects will be completed. This will be discussed in more detail 

in Chapter 6.   
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6 Discussion 

 

Genome projects have made significant advances since publication of the completed 

PhiX genome sequence in 1978. In 2009, when TGAC was established, draft 

prokaryotic genomes could be published in the Journal of Bacteriology with a CN50 

>10 Kbp. Today, while it is straightforward to achieve single contig assemblies for 

prokaryotes using the long-read, single molecule sequencers discussed later in this 

chapter59,118-121, such have been the technological advances many scientists can be 

seen proclaiming on social media when they achieve genome assemblies with CN50s 

>1 Mbp.  

 

One of the biggest challenges currently facing genomic scientists today is what 

constitutes a finished genome. This leads onto the question, do they need to be 

finished? First published in 2001, it took a further two years before scientists claimed 

that the human genome was 99.9 % complete and even today new regions are being 

resolved and errors in the original sequence corrected. By contrast, some scientists 

were happy to publish based on resolving 21 %, 48 %, 78 % and then 90 % of the 

17 Gbp wheat genome.  

 

In a 2015 meeting at the Smithsonian Institute, a group of eminent scientists 

proposed that all known plants and animal species should be sequenced under the 

banner of the Earth BioGenome Project (EBP)122. They suggested a hierarchical 

strategy whereby a single member of the 9,000+ eukaryotic families would be 

sequenced to the highest possible standard. This would be followed by generating a 

less contiguous genome for a single species from the 150,000+ eukaryotic genera 

and then a less detailed sequence of the remaining species. They argued, that as the 

technology currently exists to complete genomes, then this should be the target for 

the eukaryotic family genome projects. This would then save having to re-sequence 

as new, more advanced technologies emerged. Whether this approach will be 

practical and cost effective remains to be seen and this might not be their biggest 

challenge. Identifying and collecting samples for DNA extraction will take considerable 

time, effort and cost. 
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Ultimately, it will be dependent upon what biological questions are being asked that 

will dictate what strategy is adopted. For some this will mean just identifying the gene 

space, for others it will be gene order and for some it will be a handful of genes that 

may be responsible for the production of a secondary metabolite that may be a useful 

antibiotic or antifungal. There is also a growing trend not to sequence individual 

reference genomes but to produce genomes for multiple lines which can then be 

compared and probed with different biological questions.  

 

This then leads on to what is science prepared to pay? The EBP proposed a budget of 

$500 million for the eukaryotic family genome projects suggesting they think it is 

possible to sequence a complete genome for $50,000. Some of the sequencing 

strategies discussed in this thesis cost significantly more than this and the resultant 

genomes are far from complete. Sequencing the barley genome BAC by BAC at 

£400,000+ would cost >10x more than SE-APE plus ELF LMP based strategies with 

very similar contiguity. For wheat, the SE-APE plus ELF LMP at £75,000 is 6.5-fold 

cheaper and can be completed on one HiSeq2500 inside two weeks rather than the 6 

months using the Zimin et al. approach needing both a HiSeq2500 and PacBio 

instrument. With sequencing costs continuing to drop and sequence outputs 

increasing, genome project strategies will continually evolve and so will the cost to 

complete them. 

 

6.1 Short read sequencing 

 

At the heart of this thesis is the development of novel, robust protocols to resolve 

genomic repeat structures and improve contiguity within the limits of a short-read 

Illumina sequencer. These protocols can deliver highly contiguous de novo assemblies 

within a reasonable budget and time frame. 

 

Although BAC by BAC sequencing was appropriate for Barley in 2012, the 

development of methods discussed in Chapters 3 and 4 have made this WGS pipeline 

redundant. BACs will continue to be sequenced as they can help validate assemblies. 

For both the S. verrucosum and wheat CS42 papers, fully sequenced BACs were used 

to validate the assemblies suggesting they may still have a role in genome assembly. 
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As most scientific communities have access to BAC libraries, it is possible that they 

could be used to help resolve difficult to assemble regions in finishing genomes. 

 

Other vector based sequencing methods such as Fosill11,123 and ShARC93, can be used 

to provide spatial information if the insert size of the clone is known, and they may 

help provide long range sequence information in genome assembly projects in the 

same way that the BES was used by the IWGSC with wheat chromosome 3B. For 

ferret, it was the addition of ShARC data that helped achieve a SN50 of 9.3 Mbp (an 

increase of 200 % over the CN50) highlighting its potential.  

 

With Illumina stating that the HiSeq2500 instrument will no longer be developed, 

read lengths will not increase on these platforms, and the SE-APE protocol is unlikely 

to be improved upon as a global, single library solution to generate paired-end 

sequence data for de novo genome projects. It could be argued that if many closely 

related genomes were to be sequenced, then deconstructing a SE-APE library by using 

the SageELF to isolate different fractions and then optimising the ratio of these to 

match the repeat content of the genome could be beneficial, but this could take 

considerable time so may not be cost effective. SE-APE libraries maximise the length 

of molecule that can reliably be clustered on a flow cell and with its broad and 

controllable insert size distribution, allows repeat structures <1 Kbp to be resolved. 

The ability to use this amplification-free data to assess the quality of assemblies 

through KAT plots will ensure that this method remains popular. 

 

Of the novel protocols presented in this thesis, ELF based LMPs offer the best potential 

for further optimisation although ultimately these may give way to alternative long-

range and linked-read technologies discussed later in this chapter. Cassette run times 

have been increased from 4 hours to 8 hours, allowing fragments up to 50 Kbp to be 

recovered. This should make it relatively straightforward to rework the protocol 

targeting larger insert LMP libraries. These would provide more physical coverage 

than those constructed to date and would not need to be highly complex. Only 2 % 

of the 56.9 million 25 Kbp insert LMP reads used in the rat genome assembly were 

unique, true LMPs, yet they were integral to them achieving their best SN50s. 

 

Another advantage of well characterised LMP insert sizes is that they can be useful 

for validating an assembly. In producing an A. alpina genome, the insert sizes of LMP 
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libraries were used as a QC measure to confirm the accuracy of a PacBio plus Bionano 

assembly124. Misassembled regions were detected when only one read from multiple 

LMPs mapped within a contig or when discrepancies occurred between the insert size 

and mapping distance of the reads. They can also be useful to identify structural 

variants125-127 such as large deletions and chromosomal rearrangements. However, 

reviewers on the wheat CS42 genome publication thought it necessary to confirm 

translocations using PCR of nullisomics, rather than trust the hundreds of different 

LMP reads from two independent LMP libraries confirming the chromosomal break 

points. 

 

6.2 Long range spatial information 

 

It is unlikely that scientists will settle on one single sequencing strategy to give 

optimal contiguity in de novo genome projects and in many cases hybrid approaches 

involving multiple technologies will be employed. Several complementary strategies 

are currently available to scientists which generate long range spatial information to 

help genome scaffolding. 

 

6.2.1 Optical mapping 

 

Systems such as the Bionano Saphyr were developed to create optical maps to aid 

genome assembly and have been used to good effect in aiding plant genome 

assembly8,9,124,128,129. They work on a similar principle to restriction maps and produce 

optical maps for molecules up to 500 Kbp in length. DNA is nicked using a restriction 

endonuclease chosen to target cuts on average 12 Kbp apart. Powerful microscopes 

are then used to determine the size in base pairs between the nicks. Molecules are 

then merged based on similarity of restriction patterns in the same way that a MTP 

of BACs would be after fingerprinting and this information used to order contigs in 

silico. 
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6.2.2 Hi-C 

 

Hi-C is based on chromosome conformation capture and involves in situ crosslinking 

DNA based on proximity and has been used to enhance many genome projects8,9,130-

133. Ligation, following restriction digest and enrichment, creates chimeric molecules 

that reveal sequences that were close together in their natural conformation. With 

sequences closer together more likely to come from the same chromosomal location 

rather than other chromosomes, this information can be used to guide the assembly.  

 

Dovetail Genomics took this a stage further and developed an in vivo method which 

was used to good effect in the S. verrucosum assembly10. Costing £20,000+ to 

construct a library, this is not a cheap protocol but recently they announced the 

launch of a commercially available kit so it will be interesting to see how much this 

will cost and the uptake within the scientific community. 

 

6.2.3 Single molecule sequencers 

 

Increasing read length is the simplest means of resolving repeats and if a read can 

be of sufficient length that it identifies unique sequence flanking a repeat, then that 

repeat can be resolved. Third generation, single-molecule sequencers offer great 

potential in this sphere. They sequence native DNA so do not require any amplification 

steps and with the potential to sequence molecules >25 Kbp they could hold the key 

to completing genome assembly projects. 

 

Launched in 2011, PacBio technology uses hairpin adapters ligated to DNA fragments 

in its real-time sequencing by synthesis method to sequence single molecules in zero 

mode waveguides (ZMW)134. RSII instruments can sequence molecules >20 Kbp and 

generate >600 Mbp per SMRT cell whilst the newer Sequel instrument can sequence 

molecules >10 Kbp generating >2 Gbp per SMRT cell. Recent studies producing 

polymerase read lengths >90 Kbp highlight the potential of these instruments121.  

 

In 2014, ONT introduced their USB driven, handheld MinION device. Based on 

nanopores through which single stranded molecules of DNA can pass, the change in 

current detected passing through the pores can be related to the composition of the 
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nucleotides residing within the pore. The standard flow cells have 512 pores through 

which DNA molecules could pass and this technology has great potential for 

scalability. The company have subsequently launched a GridION capable of housing 

5 standard flow cells and a PromethION which can run 48 much larger flow cells, each 

with >3,000 pores. Despite early issues with flow cell stability, the portable nature of 

this device coupled with claims that as much 10 Gbp of data can be generated on a 

standard flow cell and with recent claims of a 1.5 Mbp read mapping back with  

90 %+ accuracy to the human genome135, this is a technology that promises much.  

 

When launched both the PacBio and MinION had high error rates, with accuracy 

around 80%, leading to some scientists generating complimentary Illumina data in 

addition to the long-range sequence. Some used this to error correct the reads ahead 

of assembly while others used it in KAT plots to validate the assemblies. 

 

These single molecule, long-read technologies have the capability to sequence 

prokaryotes and assemble them into a single contig for <£500 and these are routinely 

used for such genome projects. Zimin et al. used PacBio to aid assembly of wheat but 

they needed to run 1,000+ SMRT cells and add Illumina sequence data to achieve 

their most contiguous assembly. This will make this approach prohibitively expensive 

and time consuming for most large, complex, eukaryotic de novo genome projects.  

 

Recent publication of an Arabidopsis assembly based on data from a single nanopore 

flow cell achieved a CN50 of 12.3 Mbp with only 62 contigs136. By comparison, we 

achieved an assembly with a CN50 of 8.6 Mbp with 54 contigs for the A. columbia 

ecotype when using CANU and Nanopolish59 to assemble MinION data. Both these 

assemblies were achieved for a FEC <£1,000 and with the manufacturers making 

ambitious claims about the future potential of these instruments, their ability to 

generate low cost, highly contiguous assemblies could revolutionise future genome 

projects. 

 

An additional advantage of single molecule sequencers is their ability to detect 

nucleotide modifications such as base methylation without the need to manipulate 

the DNA using methods such as bisulphite treatment137-140. In the case of PacBio, the 

modified bases alter the time in which the fluorophore can be detected in the ZMW 

compared with unmodified bases. For MinION, the modified bases have a slightly 
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different structure so they subtly alter the current passing through the nanopore. 

Being able to identify modified bases can play an important part in genome assembly. 

In polyploid species where many homeologous genes are present, these may have 

different modification patterns and identifying these could be a means of 

distinguishing them and help resolve different paths within a DBG. 

 

6.2.4 Improving assemblies through analysis of the gene space 

 

In early NGS based prokaryotic genome projects, identifying open reading frames 

(ORFs) could be used to help improve assemblies. With very little non-coding 

sequence, up to 85 % of a prokaryotic genome is unique. Searching for the ends of 

contigs for partial ORFs can result in the ability to order contigs without the need to 

construct a LMP library. Gaps can be closed using PCR followed by Sanger sequencing 

and this strategy was used to sequence the C. botulinum strain submitted as part of 

this thesis. Today, annotation of genomes and some biology can be required to 

publish a genome so scientists have returned to RNA data to complement genome 

assemblies.  

 

In eukaryotes, exons are interspersed by introns in the DNA sequence but spliced out 

in mRNA and the order of exons in the transcripts can help validate assemblies. 

Traditional methods such as RNAseq141 have been replaced by IsoSeq142,143 to 

catalogue all transcript isoforms. RNA is isolated from a variety of different tissues 

and full length cDNAs synthesised which are then converted into PacBio or MinION 

compatible libraries and sequenced. The reads have the potential to help with 

annotation and, as the exons must appear in the correct order within the genome, 

they can help verify the assembly and in polyploid species this can help guide the 

correct path in DBGs.  
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6.3 Linked Reads 

 

Assembly of haploid organisms is straightforward but as ploidy increases, the 

presence of SNPs can cause problems. When SNPs are detected they create bubbles 

in DBGs. When they are further apart than the spatial information provided by the 

sequence data, it becomes impossible to phase them. Being able to phase SNPs helps 

resolve paths within a DBG and improves contiguity. 

6.3.1 Using standard paired-end and LMP libraries 

 

Sequence data from each of the NGS library types constructed using the methods 

presented in this thesis can phase SNPs but each has its limitations. BACs being 

haploid provide the ability to phase SNPs across the entirety of their insert. In some 

cases, this can be >200 Kbp. Theoretically, it should be possible to pool non-

overlapping BACs from a MTP and sequence them to phase all the SNPs. The downside 

of this would be the difficulty in ensuring that all the BACs were equimolar pooled. 

 

Both SE-APE and ELF LMPs are limited by the read and insert length. Delaneau et al. 

reported that using a mixture of 300 bp, 500 bp and 1 Kbp inserts sequenced with 

2x 100 bp reads, 70 % of known heterozygous SNPs <1 Kbp apart could be phased144. 

As expected, most of the SNPs that couldn’t be phased fell between 600 and 800 bp 

apart. This was the region that their strategy didn’t cover. With SE-APE libraries 

sequenced with 2x 250 bp reads and spanning 600 bp to 1.2 Kbp, it is theoretically 

possible to phase SNPs up to 1 Kbp apart if sufficient coverage is generated. For ELF 

LMPs the overlap between libraries from each fraction and the linked nature of the 

reads would suggest that by sequencing all twelve fractions with sufficient coverage 

would phase SNPs between the smallest and largest inserts.  

 

As not all communities have access to BAC libraries and the cost to sequence all 12 

fractions from the ELF based LMP library construction protocol are considerable, these 

methods are unlikely to be adopted.  
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6.3.2 Introducing the 10x Genomics Chromium 

 

Long reads such as those generated by the single molecule sequencers have the 

potential to resolve SNPs in the same way they resolve large repeats, but the most 

interesting development in this field is 10x Genomics Chromium. It partitions DNA 

molecules into thousands of micelles containing individually barcoded gel beads and 

resultant libraries can be sequenced on an Illumina sequencer.  

 

Sequence reads sharing the same barcode can be grouped together as coming from 

the same micelle, and potentially from the same molecule, and this information used 

to phase SNPs and can be used to improve genome contiguity. Using this technology 

to generate sequence for S. verrucosum to complement the DISCOVAR plus LMP 

assembly increased the SN50 >5-fold to 4.7 Mbp.  

 

The principle of the technology is very similar to that when sequencing individual 

BACs. The chances of two molecules entering the same micelle with the same repeat 

is low, so the technology should simplify de novo genome assembly for complex 

genomes. Input requirements are low at 1 ng for a 3 Gbp genome, but optimal 

conditions require DNA molecules >50 Kbp and the presence of any small molecules 

can reduce efficiency. These smaller molecules tend to occur at a much greater copy 

number than larger molecules and can occupy a large proportion of micelles 

complicating assembly.  

 

The size distribution of molecules can hinder trying to optimise algorithms to 

assemble 10x data. In some cases, molecules can be as short as 10 Kbp and in others 

>150 Kbp. As molecules entering the micelles are not sequenced in their entirety, 

determining the spatial information the data provides can be problematic. Libraries 

also require an amplification step and this can introduce biases so these need to be 

considered when assembling the data. Work is currently underway for wheat and it 

will be interesting to see what results it achieves and how many libraries need to be 

constructed to achieve optimal contiguity. 
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6.4 DNA integrity 

 

As sequence read lengths increase, there is an ever-growing demand for longer and 

longer DNA molecules. Accurately determining DNA molecule length can be 

problematic as devices such as the Agilent TapeStation can be affected by the amount 

of DNA loaded and the most reliable method, Pulse Field Gel Electrophoresis145 (PFGE) 

is cumbersome, time consuming taking up to 16 hours to run and requires >200 ng 

DNA. The newer Advanced Analytical Femto Pulse146 shows promise with sub ng input 

requirements and the ability to determine molecular weight up to 200 Kbp. Run times 

are only 70 minutes for up to 11 samples, but it will take time to see how robust the 

system is. 

 

For Arabidopsis, our best MinION results were achieved after growing seedlings for 

10 days post germination, followed by 48 hours in the dark to deplete starch levels 

and then constructing libraries immediately after DNA extraction. Our best LMP 

outputs were also achieved when using freshly extracted DNA. Whether this is 

practical or not remains to be seen, but must be a consideration for all de novo 

genome assembly projects. 

 

To maximise outputs and make the best use of technologies available, improving 

extraction protocols to increase DNA molecule length is an area of science that will 

require significant investment in the coming months and years. 

 

6.5 Future strategies for de novo genome projects 

 

With the cost of assembling a genome continuing to drop, we are entering the 

pangenomic era for even complex genomes such as wheat147. The library construction 

costs and DNA requirements for those protocols discussed in this chapter and 

undertaken at EI are shown in Table 6.1. These are going to be pivotal in deciding 

which strategies get adopted by the wider scientific community. 
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Library Type 
Cost of Library 

Construction (£) 
DNA requirements 

SE-APE 250 1 µg >10 Kbp 

LMP 1,500 9 µg >45 Kbp 

PacBio 345 10 µg >60 Kbp 

10x Chromium 900 1 ng >50 Kbp 

 

Table 6.1: The current cost and DNA requirements for 

different NGS library construction methods at EI.  

 

For many, it will be cost that dictates which approach to use and for others the 

inability to extract HMW DNA that will prove problematic. Decisions also need to be 

made about how many libraries need to be constructed and sometimes technologies 

are not suitable. Many are optimised for human genomes and it is not always 

straightforward to construct libraries and then interrogate the data for alternative 

genome sizes and different levels of complexity. A good example is the 10X Genomics 

Chromium platform. It was designed as part of a pipeline to construct Illumina ready 

libraries for 3 Gbp genomes. Some early adopters struggled extracting DNA >50 Kbp 

and protocols have been reworked to allow genomes <3 Gbp to be processed. For 

genomes >3 Gbp, multiple libraries need to be constructed and we are currently 

evaluating using up to six libraries for wheat. This starts to add significant costs to a 

project and any increases in contiguity will need to help justify this expense. 

 

For those wanting to produce multiple highly contiguous de novo genome assemblies, 

the methods presented in this thesis provide a good starting point in terms of cost 

and contiguity, especially to those with NGS access limited to Illumina instruments. 

For a 3 Gbp diploid, mammalian genome using the library construction approaches 

presented in this thesis, and sequencing to a combined 50x coverage across paired-

end and LMP libraries, would cost <£10,000 and the data could be generated inside 

a week. While this may sound expensive, for orphan genomes where there is not a 

reference or closely related species to compare the outputs against, the necessity to 

generate amplification free data and maximise the spatial information as provided by 

these libraries supports this approach. The comparable cost to sequence using PacBio 

with 30x genome coverage, with average 10 Kbp reads, would be >£65,000 and take 
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two weeks. I expect that both would produce SN50s >1 Mbp and identify >90 % of 

the single copy orthologs complete with <1 % fragmented upon BUSCO analysis. 

Whether either of these strategies will be chosen for any aspect of the EBP is open to 

debate. 

 

Many scientists, however, will want to add complementary technologies to improve 

contiguity further and each will have their own strategy based on the repeat content 

of their genome of interest. In sequencing potato, there was not one single approach 

resulting in the best contiguity, indicating that a combination of different techniques 

would be required for optimal assembly. In the future, if PacBio and MinION deliver 

on their projections, these platforms will be popular. The MinION has the capacity for 

very long reads. It has the potential to sequence an entire chromosome from start to 

finish if one can be isolated from a cell intact and remain suitable for sequencing. It 

is an exciting thought that we may be able to achieve this. 

 

6.6 Summary 

 

This thesis represents a knowledge and understanding of molecular biology that 

theoretically dates back 40 years and practically nearly 30 years. I have described 

my work on the development of several novel library construction protocols 

associated with improving de novo genome assembly using Illumina sequencing 

technology. I have established that these innovative protocols are relatively cheap, 

more robust, help generate more contiguous and accurate assemblies and assemble 

more content, outperforming comparable published strategies. They have evolved as 

technology has improved and combined, they have made a significant impact on 

genome contiguity in the wheat and barley genome projects presented. Over the next 

couple of years, I am optimistic that these protocols will continue to contribute toward 

numerous high-profile genome project publications.  

 

The genomes discussed in this thesis have been made publicly available so are free 

to use for academic and commercial plant scientists alike and I truly hope that this 

will lead to new varieties of both barley and wheat being bred that will improve food 

security. Like all contemporary methods, the protocols will have a finite life span and 

already newer technologies are coming to the fore that have the potential to 



   

100 

supersede them, but that is the excitement of science. It is heartening to think that 

tasks that took years when I first started working in a genomics laboratory can now 

be completed in days. With the same rate of progression, the future promises much 

and I am proud of having played my part, however small, in the genomics revolution. 
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Definitions 

 

BAC:  Bacterial Artificial Chromosome 

 

BES:  BAC End Sequencing 

 

BUSCO: Benchmarking Universal Single Copy Orthologs 

 

BWA:  Burrows-Wheeler Alignment 

 

CN50:  Contig N50 

 

CS42:  Chinese Spring 42 

 

CTAB:  Cetyltrimethyl ammonium bromide 

 

DBG:  de Bruijn Graph 

 

DNA:  Deoxyribonucleic Acid 

 

EBP:  Earth BioGenome Project 

 

EI:  Earlham Institute 

 

ELF:  Electrophoretic Lateral Fractionator 

 

FEC:  Full Economic Cost 

 

FosIll:  Fosmid Library by Illumina 

 

FPC:  Fingerprint Contigs 

 

FSC:  Flow Sorted Chromosome 

 

FUs:  Fluorescent Units 

 

HGP:  Human Genome Project 

 

HMW:  High Molecular Weight 

 

IBSC:  International Barley Sequencing Consortium 

 

IWGSC: International Wheat Genome Sequencing Consortium 

 

KAT:  K-mer Analysis Tool 

 

LB:  Luria Broth 

 

LINE:  Long Interspersed Nuclear Element 

 

LITE:  Low Input, Transposase Enabled 
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LMP:  Long Mate Pair 

 

LMW:  Low Molecular Weight. 

 

LTR:  Long Terminal Repeat 

 

MDA:  Multiple, Displacement Amplification 

 

MTP:  Minimal Tile Path 

 

NGS:  Next Generation Sequencing 

 

OLC:  Overlap Consensus 

 

Oligo:  Oligonucleotide 

 

ONT:  Oxford Nanopore Technology 

 

ORF:  Open Reading Frame 

 

PacBio: Pacific Biosciences 

 

PCR:  Polymerase Chain Reaction 

 

PEG:  Poly Ethylene Glycol 

 

PFGE:  Pulse Field Gel Electrophoresis 

 

PGSC:  Potato Genome Sequencing Consortium 

 

PhiX:  PhiX 174 bacteriophage 

 

PNK:  Phospho Nucleotide Kinase 

 

QPCR:  Quantitative Polymerase Chain Reaction 

 

RNA:  Ribonucleic acid 

 

RSII:  Real-time, Sequencer II 

 

SBS:  Sequencing By Synthesis 

 

SCO:  Single Copy Ortholog 

 

SE-APE: Size Exclusion-Amplification-free Paired-end 

 

ShARC Shearing And Recircularisation after Cloning 

 

SINE:  Short Interspersed Nuclear Element 

 

SMRT:  Single Molecule, Real Time 

 

SN50:  Scaffold N50 
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SNP:  Single Nucleotide Polymorphism 

 

SPRI:  Solid Phase, Reversible Immobilisation 

 

TALL:  Tight, Amplification-free, Large-insert Libraries 

 

TGAC:  The Genome Analysis Centre 

 

W2RAP: Wheat/ Whole-genome Robust Assembly Pipeline 

 

WGS:  Whole Genome Sequencing 

 

WLA:  Wheat line A 

 

ZMW:  Zero Mode Wavelength 
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Glossary 

 

3DL: The long arm of wheat chromosome 3D. 

 

Blunt-end: A DNA molecule that doesn’t have a 5’ or 3’ overhang. 

 

Contig: A continuous sequence of overlapping, merged sequence reads.  

 

Ct Value: The cycle threshold during qPCR at which amplification is detected above 

background noise. 

 

FEC: The cost including all overheads such as labour, consumables and depreciation. 

 

FPC: A Fingerprint Contig is the process used to identify common restriction patterns 

within a BAC clone and enables the identification of BACs that share sequence which 

can then be ordered in a minimal tiling path. 

 

GC content: The percentage of nucleotides that are either Guanine or Cytosine within 

a genome or given stretch of DNA. 

 

Genome: All the genetic information for a given organism. 

 

Genome Assembly:  Piecing together genome sequence to faithfully reconstruct the 

genome. 

 

(Whole) Genome Sequencing: The process which reveals all the sequence of a 

given genome. 

 

Genome Size: The total number of base pairs within a genome. 

 

Hamming distance: The number of differences between two strings of the same 

length. For a DNA sequence of 9 bp in length that has a Hamming distance of 4, then 

at least 4 bp will differ between the two strings. 

 

K-mer: A string of nucleotides of length k. 

 

IsoSeq: Next Generation Sequencing typically on the PacBio to identify all RNA 

isoforms. 

 

MTP: A minimal tile path is the fewest number of BAC clones required to fully cover 

every base within a chromosome/ genome. 

 

N: A nucleotide position where it hasn’t been possible to determine whether it is an 

Adenine, Guanine, Thymine or Cytosine. 

 

Next Generation Sequencing: Technologies capable of massively parallel 

sequencing commercialised since 2005. They include the Roche 454 pyrosequencer 

and the Illumina HiSeq. 

 

Nucleotide: The single monomer building block of DNA. 
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Paired-end read: A pair of reads that come from either end of the same DNA 

molecule. 

 

Phasing SNPs: The linking of two SNPs onto the same chromosomal copy. 

 

Polymerase Chain Reaction: An in vivo process to specifically clone target loci of 

interest. 

 

Primer: A stretch of synthetic DNA typically used in PCR to amplify a locus of interest. 

 

Primer walking: The process whereby an unknow DNA molecule is inserted into a 

vector such as a plasmid. Sequence is first generated using a primer anchored within 

the vector to sequence out, into the unknown DNA molecule. This sequence is then 

used to design a new primer and this then used to further sequence into the DNA and 

the whole process repeated until the entire sequence of the original unknown DNA 

molecule is determined. 

 

Q30: A quality score assigned to an Illumina sequencing read. It is equivalent to a 

sequencing error once in one thousand base pairs or 99.9 % accuracy. 

 

Quantitative PCR: The real-time measurement of the products of PCR during 

cycling. 

 

Repetitive DNA: Any DNA sequences that occurs more than once within a genome. 

Can range from simple dinucleotide repeats to tandem duplications of several 

hundred thousand base pairs. 

 

RNASeq: Next Generation Sequencing of RNA.  

 

Sanger sequencing: The method of sequencing DNA using chain terminating 

dideoxynucleotides developed by Fred Sanger. 

 

Scaffold: An ordered sequence of contigs separated by gaps of known length. 

 

Single-end read: A sequence read that is from the single-end of a DNA molecule. 

 

SNP: A Single Nucleotide Polymorphism is the difference in sequence between two 

chromosomal copies at a single nucleotide position within a genome.  

 

Tagmentation: The act of fragmenting DNA molecules using a transposase. 

 

Template: A DNA molecule which is used to prime from to generate a complementary 

sequence. 

 

Third Generation Sequencing: Technologies capable of sequencing single DNA 

molecules without the need for amplification.  
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