"Pusher syndrome" following cortical lesions that spare the thalamus

Johannsen, L. ORCID: https://orcid.org/0000-0002-2441-3163, Broetz, D., Naegele, T. and Karnath, H.-O. (2006) "Pusher syndrome" following cortical lesions that spare the thalamus. Journal of Neurology, 253 (4). pp. 455-463. ISSN 0340-5354

Full text not available from this repository.


Stroke patients with "pusher syndrome" show severe misperception of their own upright body orientation although visualvestibular processing is almost intact. This dissociation argues for a second graviceptive system in humans for the perception of body orientation. Recent studies revealed that the posterior thalamus is an important part of this system. The present investigation aimed to study the cortical representation of this system beyond the thalamus. We evaluated 45 acute patients with and without contraversive pushing following left-or right-sided cortical lesions sparing the thalamus. In both hemispheres, the simple lesion overlap associated with contraversive pushing typically centered on the insular cortex and parts of the postcentral gyrus. The comparison between pusher patients and controls who were matched with respect to age, lesion size, and the frequency of spatial neglect, aphasia and visual field defects revealed only very small regions that were specific for the pusher patients with cortical damage sparing the thalamus. Obviously, the cortical structures representing our control of upright body orientation are in close anatomical proximity to those areas that induce aphasia in the left hemisphere and spatial neglect in the right hemisphere when lesioned. We conclude that in addition to the subcortical area previously identified in the posterior thalamus, parts of the insula and postcentral gyrus appear to contribute at cortical level to the processing of the afferent signals mediating the graviceptive information about upright body orientation.

Item Type: Article
Uncontrolled Keywords: brain-damage,gravity,human,insula,posture,pusher syndrome,somatosensory cortex,thalamus,vestibular,clinical neurology,neurology ,/dk/atira/pure/subjectarea/asjc/2700/2728
Related URLs:
Depositing User: LivePure Connector
Date Deposited: 23 Jul 2018 09:30
Last Modified: 22 Oct 2022 04:00
URI: https://ueaeprints.uea.ac.uk/id/eprint/67763
DOI: 10.1007/s00415-005-0025-7

Actions (login required)

View Item View Item