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Abstract 

Dietary isothiocyanates (ITCs) from cruciferous vegetables (CVs) have been shown to possess 

chemopreventive and chemotherapeutic effects in many cellular and animal studies but with 

only limited success in humans. The aim of this thesis is to further evaluate the bioactivities 

of ITCs and the mechanisms behind, and the potential of multi-functional nano-conjugates 

to maximize the beneficial effects of ITCs in cancer therapy. 

The effects of sulforaphane (SFN), one of the most studied ITCs, were examined on 

human hepatocytes (HHL5) and hepatocarcinoma (HepG2) cells. Results showed that SFN 

was more toxic towards HHL5 than HepG2, and that the high basal levels of Nrf2/GSH/ROS 

enabled HepG2 cells to benefit from the protective effects of SFN against H2O2-induced cell 

death, apoptosis and DNA damage. Three of the metabolites of SFN were also examined in 

terms of their anticancer activities, and were demonstrated to exhibit similar cytoprotective 

activity, but weaker cytotoxic effects than SFN. Allyl isothiocyanate (AITC), another common 

dietary ITC, showed biphasic effects on cell viability, DNA damage and migration in HepG2 

cells, and on endothelial cell tube formation in a 3D model. siRNA knockdown of Nrf2 and 

GSH inhibition abolished the stimulatory effects of low dose AITC on cell migration as well as 

low dose AITC induced protection against DNA damage. The lack of selectivity and the 

biphasic effects of ITCs could present undesirable risks in the context for cancer prevention 

and treatment. 

The bioactivities of novel AITC-conjugated silicon quantum dots (AITC-SiQDs) were 

compared with AITC, and their cellular uptake was monitored by detecting the intrinsic 

fluorescence of SiQDs. AITC-SiQDs demonstrated similar activity as AITC at high doses whilst 

lacking the low dose stimulatory effects. In addition, AITC-SiQDs induced a long-lasting 

activation of Nrf2 via translocation into the nucleus, which correlated positively with their 

cellular uptake. ROS were involved in the anticancer effects of AITC-SiQDs. Taken together, 

these data provide novel insights into the anticancer properties of ITCs and highlight the 

possibility of application of nanotechnology to optimize their potential in cancer treatment. 
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Chapter 1. Introduction 

1.1 Chemoprevention and phytochemicals 

Cancer is a leading burden on public health around the world and has been a major research 

focus for at least two decades1. The increasing understanding of cancer pathobiology has led 

to a molecular approach to treatment and more important, developing chemopreventive 

strategies. The concept of chemoprevention is defined as the use of non-toxic chemicals to 

prevent or interfere with the development or progression of the neoplastic process that 

leads to cancer2. Clinically, chemoprevention can be categorized as primary, secondary, or 

tertiary. Primary chemoprevention is suited for the general population and for those who 

may be at increased risk of disease. Secondary chemoprevention is intended for patients 

with premalignant lesions that may progress to an invasive disease. Tertiary 

chemoprevention is targeted to prevent disease recurrence or additional disease in those 

individuals who have already received therapy. At the molecular level, cancer 

chemoprevention is characterized by the disruption of, or at least the delay of, multiple 

pathways and processes among the three stages of carcinogenesis: initiation, promotion, 

and progression2,3. Generally accepted examples of these agents include dietary 

phytochemicals and non-steroidal anti-inflammatory drugs (NSAIDs). 

Chemoprevention by dietary phytochemicals, is now considered to be an 

inexpensive, readily applicable, acceptable and accessible approach to cancer control and 

management4–6. Phytochemicals are bioactive non-nutrient chemical compounds found in 

plant foods, e.g. fruits, vegetables, grains, nuts, and seeds. They often are categorized into 

groups based on their chemical structure, such as polyphenols, organosulfur compounds, 

carotenoids, alkaloids, and nitrogen-containing compounds. Several organizations such as 

the World Health Organization, the American Cancer Society, the American Institute of 

Cancer Research and the National Cancer Institute, have established dietary guidelines to 

help people reduce the cancer risk7. It has been estimated that at least 20% of all cancers 

can be prevented by consumption of diets rich in vegetables and fruits (>400 g/day)8. 

Chemopreventive phytochemicals can interfere with different steps of the 

carcinogenesis process. According to the conventional classification originally proposed by 

Lee Wattenberg, chemopreventive agents are subdivided into two main categories: blocking 

agents and suppressing agents9. Some inhibit metabolic activation of the procarcinogens to 

their ultimate electrophilic species, or their subsequent interaction with DNA, or advance the 
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detoxification and elimination of the carcinogens. These agents therefore block tumour 

initiation (blocking agents). Others suppress the later steps (promotion and progression) by 

inducing apoptosis, interfering with cell proliferation, inhibiting angiogenesis and metastasis, 

etc. They are considered as suppressing agents. The understanding of the carcinogenic 

process at the cellular and molecular level has progressed and this blocking and suppressing 

categorization is now considered as an oversimplification. The ability of any single 

chemopreventive phytochemical should be recognized as the outcome of the combination 

of several distinct sets of intracellular effects as it may target numerous cellular molecules 

and events in different situations. 

Although various cellular and animal models have confirmed the benefit derived  

from many phytochemicals against cancer, the clinical utilization of phytochemicals is 

limited6,10,11. The cause can be ascribed to a number of factors: human genetic variation may 

modify the response to phytochemicals in population-based studies; a precise assessment of 

the mechanisms by which the phytochemicals act in different physiological and pathological 

situations is necessary before they can be tested in human intervention trials; and like the 

disposition of drugs and any other xenobiotics, the bioactivity of phytochemicals is largely 

dependent on the absorption, metabolism, distribution and excretion in our body. In 

addition to the low solubility and/or stability of many phytochemicals, achieving sustained 

therapeutic levels at the target site remains a challenge due to the digestive system. Thus, 

further studies are needed to confirm the molecular mechanisms behind the bioactivities of 

phytochemicals and to explore advanced delivery systems for targeted and controlled 

release. 
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Figure 1.1 Representative chemoprevention phytochemicals and their dietary sources7. 
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1.2 Dietary isothiocyanates 

Isothiocyanates (ITCs) have been identified as the chemopreventive phytochemicals from 

cruciferous vegetables (CVs) that belong to the Cruciferae family. Commonly consumed CVs 

include the Brassica genus such as broccoli, brussels sprouts, cabbage, cauliflower, kale, 

mustard, turnips and Chinese cabbage; and others such as horseradish, wasabi and 

watercress. There are many nutrients and phytochemicals that CVs provide, including folate, 

carotenoids, vitamins C, E and K, minerals and fiber. However, a group of sulfur-containing 

chemicals known as glucosinolates (β-thioglucoside N-hydroxysulfate) can only be found in 

CVs.  Glucosinolates remain stable within the cytoplasm until they come into contact with 

the endogenous plant enzyme, β-thioglucoside glucohydrolase (EC 3.2.3.1), also named 

myrosinase, which is expressed on the external surface of the plant cell wall. This could 

happen when plant is ruptured by chewing, cooking or insect attack. The hydrolysis reaction 

leads to a variety of products. At neutral pH (6–7), the major glucosinolate hydrolysis 

products are stable ITCs (Figure 1.2). Alternatively, thioglucosidases in human gut microflora 

can hydrolyse the consumed glucosinolates to ITCs and indoles with lower efficiency12. 

 

Figure 1.2 The general structures of glucosinolates and their degradation products13. 

 

One of the most studied of the ITCs is sulforaphane (1-isothiocyanate-(4R)-

(methylsulfinyl) butane, SFN). First isolated from broccoli in 1992388, SFN is derived from 

glucoraphanin (4-methylsulfinylbutyl glucosinolate) (Figure 1.3). It is abundant in broccoli 

and broccoli sprouts, with reports demonstrating that the SFN concentration in broccoli 
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sprout was about 10 times higher than that of mature broccoli14. The hydrolysis of 

glucoraphanin via myrosinase typically generates SFN as the major product but this is 

dependent on the reaction conditions such as pH, availability of ions (Fe2+), and the presence 

of epithiospecifier protein (ESP)15,16. 

 

Figure 1.3 Structures of glucosinolate precursor glucoraphanin (A) and its isothiocyanate 

hydrolysis product sulforaphane (B). 

 

Another ITCs on which this study focused was allyl isothiocyanate (AITC), also known 

as mustard oil. It is derived from the glucosinolate, sinigrin, which is particularly abundant in 

mustard, horseradish and wasabi17,18(Figure 1.4). AITC is a liquid at ambient temperature and 

is responsible for the pungent taste as it activates the transient receptor potential A1 channel 

in sensory neurons19. Therefore, synthetic AITC is often used as a food additive to enhance 

flavour. 

 

Figure 1.4 Structures of glucosinolate precursor sinigrin (A) and its isothiocyanate hydrolysis 

product allyl isothiocyanate (B). 

 

The average intake of CVs was 11.3 g/day according to data from 40684 Spanish20. 

Higher intake was reported in Asian countries. For example, habitual Brassica consumption 

among healthy Shanghai women was 98 g/day21. The glucosinolate contents of common 

Brassica were summarized by McNaughton and Marks. Broccoli usually contains 19.3–127.5 
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mg glucoraphinin/100 g fresh weight, which is equivalent to 44.2–292.1 µmol SFN/100 g if 

100% converted, however that average losses during cooking are approximately 36%22. Since 

ESP activity is negatively correlated with the formation of SFN in broccoli16, heating of 

broccoli enhances SFN absorption as the ESP denatures; while over-heating broccoli reduced 

SFN bioavailability by deactivating myrosinase23,24. Also, the absorption of ITCs was delayed 

in the case of cooked broccoli compared to raw broccoli25. Apart from cooking conditions, 

the  bioavailability of ITCs also depends on plant myrosinase26 and glucosinolates status, food 

matrix27, intestinal microbiota28 as well as genetic differences in humans. For example, ITCs 

are metabolized by glutathione S-transferases (GSTs). Individuals with a homozygous 

deletion of the GSTM1 or GSTT1 gene cannot produce the corresponding GST enzyme, which 

results in slower elimination of ITCs after CV consumption29. Several epidemiological studies 

have suggested that GST gene polymorphisms interact with the bioavailability and anti-

carcinogenic effects of CVs, examples see section 1.2.4. 

 

1.2.1 Metabolism of ITCs 

ITCs undergo extensive first-pass metabolism in the gut epithelium or liver via the 

mercapturic acid pathway summarized in Figure 1.5. After absorption by passive diffusion 

across the gastrointestinal epithelium and the capillary endothelium, ITCs bind rapidly and 

reversibly to thiols of plasma proteins and cross the membrane into cells when they are first 

conjugated with glutathione (GSH). Although it can occur nonenzymically, this conjugation is 

more likely to occur with the activity of GSTs in vivo30. The peak intracellular accumulation of 

ITCs is reached within 0.5-3 hours of exposure and could be up to several hundred-fold over 

their extracellular concentration (millimolar level), which is critical for their anticarcinogenic 

activity31,32. However this high cellular accumulation followed by a rapid membrane 

transporter-mediated export has also been observed33. The GSH conjugates then undergo 

further enzymatic cleavage sequentially to the cysteinylglycine conjugate and cysteine 

conjugate via γ-glutamyl transferase (γ-GT) and cysteinylglycinase (CG) respectively, both 

enzymes being localized on the extracellular surface of the plasma membrane. The resulting 

cysteine conjugates are transported to the liver where they form N-acetylcysteine 

conjugates by N-acetyl transferase (NAT), and then finally transported to the kidney and 

excreted in urine. 
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Figure 1.5 Metabolism of ITCs by the mercapturic acid pathway. R: is the aliphatic or aromatic 

substituent of the ITC34. 

 

1.2.2 Pharmacokinetics of ITCs 

In 2002, Ye et al reported that after giving four human subjects a single dose of 200 µmol 

broccoli sprous ITCs (largely SFN, with lesser amounts of iberin and erucin), the plasma 

concentrations peaked between 0.943 and 2.27 µM at 1 hour and declined with first-order 

kinetics (half-life times of 1.77 ± 0.13 hours), about half of the dose was excreted (58.3 ± 

2.8%) after 8 hours35. Human perfusion experiments showed that 74 ± 29% of SFN from 

broccoli extracts can be absorbed in the jejunum and a portion of that returns to the lumen 

of the jejunum as GSH conjugates36. Gasper et al reported that plasma SFN level reached 

over 7.3 µM in human subjects eating ‘SuperBroccoli’ soup37. After consuming 180 µmol per 

day ITCs, the plasma concentration of ITC and SFN reached 2.2 µM and 0.32 µM respectively, 

and ITCs were detected in the synovial fluids of the patients (0.5 µM)38. In another study, an 

oral dose of broccoli sprout preparation containing 200 µmol SFN was given to eight healthy 

females. SFN metabolites were readily measurable in breast tissue after 1 hour. The mean 

accumulation was 1.45 ± 1.12 pmol/mg tissue in the right breast and 2.00 ± 1.95 pmol/mg in 

the left breast. This not only confirmed the distribution level of SFN in human body but also 

showed it can accumulate at different levels in different tissues39.  

Using animal models further data on tissue distribution have been reported. ITC 

metabolites are inclined to accumulate at the bladder, followed by liver and kidney. Lower 

concentrations were detected in plasma, skin, and lung tissue in female mice40. In rat, tissue 

uptake of SFN was the greatest in the stomach then bladder and declined rapidly in gastro-

intestinal tract while tissue levels of SFN in the colon, prostate and several other organs were 

very low compared to those in the bladder and stomach41. The tissues containing the highest 

concentration of AITC-derived radioactivity were the intestinal mucosa, liver, kidneys, and 

bladder, followed by the lungs and spleen. The brain and heart exhibited very low 

concentrations of radioactivity42,43. According to Zhang et al, orally administered AITC was 
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selectively delivered to cancer tissue in the bladder through urinary excretion in two rat 

bladder cancer models in vivo (an orthotopic model and a subcutaneous model)44. 

The cumulative renal excretion after 72 hours following a single oral intake of 

broccoli extract containing 111 μmol of ITCs was 80% in human45. In another study, ingestion 

of CVs (51 or 224 μmol of ITCs) led to a urinary excretion of 69 and 75%, respectively within 

48 hours46. The clearance of SFN and its metabolites follows first-order kinetics in humans. 

In urine around 12% is excreted as SFN, less than 1% as SFN-GSH and SFN-CG conjugates, 

around 23% as SFN-Cys and around 68% as SFN-NAC in the 24 hours after consumption37. 

Munday et al reported the recovery of a mean of 76% AITC as NAC conjugate within 24 hours 

in the urine after dosing with 25 or 250 μmol/kg body weight, with an average concentration 

nearly 10 times higher than that in blood47. 

While the effects of long-term, low-level dietary exposure are not as well understood, 

there is evidence from animal models suggesting that SFN may accumulate in tissue after 

repeated feeding41, however one human study indicated the urinary elimination pattern was 

not significantly altered even after repeated dosing (oral broccoli sprout extracts containing 

25 µmol ITC at 8 hours intervals for 7 days)48. Another study concluded 200 μmol/day of SFN-

rich extracts for a maximum period of 20 weeks was safe with no Grade 3 adverse events in 

men with recurrent prostate cancer49. The highest level yet given during a clinical trial was 

reported as around 450 μmol/day (80 mg/day) of SFN in the form of powdered broccoli 

sprout extract for one week to healthy adults, and no severe treatment-related adverse 

events was noted50. 

 

1.2.3 Anticancer mechanisms of ITCs 

The chemical structures of ITCs consist of a functional group - N = C = S with various side 

chains. The central carbon atom of the functional group makes ITCs powerful electrophiles 

which react readily with sulfur-, nitrogen- and oxygen-based biological nucleophiles, in 

particular, amines and thiols51. Thus, directly biological effects may be due to the 

modification of reactive cysteine, selenocysteine or amine residues in various proteins 

(Figure 1.6). Indeed, the cytoprotective effect of ITCs is largely achieved by the binding of 

ITCs to sulfhydryl groups of Kelch-like ECH-associated protein 1 (Keap1) resulting in the 

activation of nuclear factor E2-factor related factor (Nrf2). Lewis et al reported that ITCs are 

time-dependent inactivators of cysteine-dependent protein tyrosine phosphatases52. 
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Tubulin was found to be covalently modified by ITCs at Cys303 and Cys347, leading to cell 

growth arrest and microtubule polymerization disruption53. The activity of MEKK1 and DNA 

topoisomerase IIα were reported to be inhibited by ITCs via modification of their cysteine 

residues54,55. The anti-inflammatory properties of ITCs have also been linked with their ability 

to covalently bind multiple cysteine residues of recognition membrane receptors, which 

blocks downstream nuclear factor-kappa B (NF-kB) activation56. Other protein sulfhydryl 

groups readily interact with ITCs including heat shock protein 90β and glyceraldehyde-3-

phosphate dehydrogenase57. ITCs can also bind to the N-terminal proline residue of 

macrophage migration inhibitory factor58,59 and to the N-terminal amino acids of key 

oncogenic molecules such as transforming growth factor beta (TGF-β) and insulin60. 

 

Figure 1.6 The reactivity from the –N=C=S group in ITCs. Reaction with amines to generate 

stable thiourea derivatives, whereas reaction with thiols generates labile dithiocarbamate 

adducts61. 

 

1.2.3.1 Effect on phase I and phase II enzymes 

The up-regulation of the xenobiotic-detoxifying phase II enzymes and/or the down-

regulation of the xenobiotic-activating phase I enzymes by ITCs is thought to be an important 

step in blocking chemically-induced carcinogenesis. The inhibitory effect of SFN on 

Cytochrome P450 (CYP) 1A1, 2E1, 2B1, 2B2, and 3A4 has been reviewed in rat and human 

hepatocytes, respectively62. AITC reduced the expression and function of CYP3A4 and 

CYP2B6 in HepG2 cells63. Structural influence of ITCs on CYP expression has also been 

reported64. 

ITCs are known as potent naturally occurring inducers of phase II enzymes in both 

animals and humans, including drug-detoxifying enzymes such as GST, NAD(P)H: quinone 
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oxidoreductase-1 (NQO1), UDP-glucuronosyltransferase (UGT); antioxidant defence 

enzymes such as heme oxygenase-1(HO-1), thioredoxin reductase 1 (TrxR1); and enzymes 

for GSH synthesis, such as α-glutamylcysteine synthetase (γ-GCS)65–67. Molecular studies 

have shown that the induction on these phase II enzymes from ITCs depends on the 

antioxidant responsive element (ARE) present in the upstream region of their genes, the 

regulation of which is associated with disruption of Nrf2-Keap1 interactions and mitogen-

activated protein kinase (MAPK) activation68. There are three families in MAPK: extracellular 

signal-related kinase (ERK), c-jun N-terminal kinase (JNK), and p38 MAPK. Activated by 

upstream signalling kinases such as MAPK kinase and MAPKK kinase, MAPK is 

phosphorylated in both threonine (T) and tyrosine in the activation loop and the central 

amino acid defines individual MAPKs: glutamic acid (E) for ERK, proline (P) for JNK and glycine 

(G) for p38 MAPK69. Studies have demonstrated that the upregulation of Nrf2/ARE-

dependent gene expression by ITCs was mediated by MAPK pathway70–72. 

Phosphatidylinositol 3-kinase (PI3K) is another intracellular signalling kinase that is 

implicated in the regulation of Nrf2/ARE-dependent gene expression. The downstream 

Ser/Thr kinase of PI3K is protein kinase B (Akt), which has shown to regulate the activation 

of glycogen synthase kinase-3β (GSK3β). GSK3β can directly phosphorylate and suppress the 

activity of Nrf2 protein by nuclear exclusion73; or contribute to the degradation of Nrf2 in a 

Keap1-independent manner74; or activate tyrosine kinase Fyn which phosphorylate Nrf2 at 

tyrosine 56875. Shang et al reported that SFN ameliorated experimental diabetic 

nephropathy in vitro, at least in part, via the GSK3β/Fyn/Nrf2 signalling pathway76. The 

activation of PI3K/Akt signalling regulated cell survival and Nrf2-driven HO-1 expression in 

SFN-treated human mesothelioma cells77. Others reported that SFN stimulated the 

phosphorylation of PI3K leading Nrf2-mediated HO-1 expression against Hepatitis C virus 

replication in vitro78. It has also been demonstrated in vivo that broccoli sprouts significantly 

retard prostate tumour growth, which is accompanied by the suppression of the Akt-

dependent kinase pathway79. According to Li et al, MAPK (ERK, JNK and p38) and PI3K/Akt 

signalling pathways played no significant role in SFN-induced Nrf2 nuclear translocation in 

human hepatocytes, but blocking ERK and JNK decreased SFN-induced TrxR-1 mRNA by 

about 20%; whereas blocking p38 and PI3K/AKT increased TrxR-1 transcription80. 

ITCs can also disrupt Keap1 and Nrf2 protein interactions. Nrf2 is a member of the 

basic leucine-zipper NF-E2 family, regulating the expression of more than 200 genes. It can 

bind to ARE (5’-(G/A)TGA(G/C)nnnGC(G/A)-3’) sites as a cis-acting element in the 5’-flanking 
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region of the genes. Under basal conditions, Nrf2 is sequestered in the cytoplasm by redox-

sensitive Keap1, which associates with Cul3 and brings Nrf2 in close proximity to Cul3-based 

E3 ligase complex so Nrf2 degrades via ubiquitin-26S proteasomal pathway81. With a half-life 

of around 20 minutes82, Nrf2 is maintained at a low cellular level. However, under redox 

stress, the Keap1-Nrf2-ubiquitin assembly is disturbed and consequently releases Nrf2 which 

then translocates to the nucleus and heterodimerizes with small Mafs, binds to ARE, leading 

to transcription of ARE-dependent genes. Different mechanistic models have been proposed 

for Nrf2 activation: In the ‘hinge and latch’ model, cysteine residues of Keap1 (C273 and C288 

as the most studied ones for the ubiquitination of Nrf2) are covalently modified, which leads 

to the conformational changes that makes the orientation of Nrf2 not suitable for ubiquitin 

ligase activity by Keap1-Cul3 complex83; while other models propose the covalent 

modification of cysteine residue(s) in Cul3 binding Keap1 leads to the dissociation of Keap1-

Cul3 interaction84; alternative mechanisms for Nrf2 stabilization in response to inducers, 

such as nucleocytoplasmic shuttling of Keap1, ubiquitination of Keap1, and Nrf2 as a direct 

sensor, etc., have also been reported85,86. All result in Nrf2 escaping from proteasomal 

degradation, accumulating in the cell along with newly de novo synthesized Nrf2, and 

translocating to the nucleus. 

 

Figure 1.7 Schematic representation of the Keap1-Nrf2-ARE system87. Under basal conditions, 

Nrf2 is sequestered in the cytoplasm by an adaptor subunit of Cullin 3-based E3 ubiquitin 

ligase, Keap1, which promotes its degradation by the ubiquitin proteasome pathway. While 
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under redox stress, the inducer-modified and Nrf2-bound Keap1 is inactivated, which leads 

to the release of Nrf2. Together with the newly synthesized Nrf2 proteins, they translocate 

into the nucleus, bind with small Maf proteins to the ARE in the regulatory regions of target 

genes. 

 

The prevailing molecular mechanism of regulation of Nrf2 signalling by ITCs is 

through their covalent modification of Keap1 on one or more of the 27 cysteine residues on 

Keap188. The loss of intracellular GSH due to ITC metabolism can increase cellular oxidative 

stress at least in the short term, thus promoting release of Nrf2 from Keap1 and triggering 

increased de novo Nrf286. Others reported that SFN suppressed Nrf2 proteasomal 

degradation leading to its prolonged half-life and transcriptional activity89. In vivo studies 

have confirmed the activation of Nrf2 signalling is behind the protective effects of ITCs. Pre-

treatment with SFN before methylmercury exposure resulted in a decrease in mercury 

accumulation in the brain and liver of wild-type but not Nrf2-deficient mice90, topical 

application of 100 nmol of SFN per day for 14 days decreased the incidence of skin tumour 

in the Nrf2(+/+) mice compared with the vehicle-treated group, and no chemoprotective 

effect was observed in the Nrf2(−/−) mice group91. Others reported that SFN up-regulated 

the expression of Nrf2 and its downstream genes in vivo. Nrf2 expression as well as the mRNA 

expression of HO-1 and NQO1 were found to be significantly increased in the heart of SFN-

treated mice both at 3 months (0.5 mg/kg daily in five days of each week) and 6 months (3 

months after 3-month SFN treatment)92. Co-administration of SFN (50 mg/kg, every other 

day for 60 days) rescued rotenone induced inhibition of Nrf2, HO-1 and NQO1 expression in 

the cerebral cortex and striatum93. A 7 day oral application of AITC (15 mg/kg body weight) 

in mice resulted in a significant increase in nuclear Nrf2 and HO-1 expression in the liver94. 

 

1.2.3.2 Other anticarcinogenic properties 

Hanahan and Weinberg have defined six basic common hallmarks underlying cancer 

progression. These are 1) sustaining proliferative signalling; 2) evading growth suppressors; 

3) resisting cell death (apoptosis); 4) enabling replicative immortality; 5) inducing 

angiogenesis; 6) activating invasion and metastasis95. Inhibition of one or more of these 

hallmarks can achieve anticancer therapeutic effects. Accumulating evidence suggests that 

ITCs have a broad spectrum of molecular targets to suppress cancer growth and progression. 

ITCs act on certain molecular targets like survivin and NF-kB that are vital for cancer cell 
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proliferation and survival94,96. Specific activation of MAP kinases such as ERK, JNK and p38 in 

response to ITC treatment was shown to be involved in inducing cell cycle arrest and cell 

death97. Other studies suggested that ITCs have a role in cancer epigenetics98,99, 

inflammation94,100, and metabolism66,101, etc. A number of studies have indicated that ITCs 

may target cancer stem cells in different types of cancer102–104. Discussion below focuses on 

the effect of ITCs on apoptosis, DNA damage, cell migration and angiogenesis. 

 

 

Figure 1.8 Chemotherapeutic targets of ITCs. 

 

Effect on apoptosis 

Apoptosis, or programmed cell death, is a physiologic process for removal unwanted cells to 

maintain tissue homeostasis, which is characterized by several morphologic changes 

including condensation of the cytoplasm and nucleus, DNA fragmentation and plasma 

membrane blebbing105. Reduced apoptosis or its resistance plays a vital role in 

carcinogenesis. There are three pathways by which apoptosis can be activated: the intrinsic 

mitochondrial, intrinsic endoplasmic reticulum, and extrinsic (or death receptor) pathways. 

Malignant cells can have a disrupted balance of pro-apoptotic and anti-apoptotic proteins, 

reduced caspase function and impaired death receptor signalling, which facilitates tumour 

development and metastasis106. Treatments that can restore the apoptotic pathways 
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towards normality therefore have the potential to eliminate cancer cells, or to sensitize 

resistant cancer cells to conventional treatments107. 

ITCs induce apoptosis in cancer cells by activating both extrinsic and intrinsic 

pathways108. SFN was found to induce endoplasmic reticulum109 and mitochondrial110 stress 

related apoptosis. It also inactivated the inhibitors of apoptosis proteins111. SFN also 

sensitizes human cholangiocarcinoma to cisplatin via the downregulation of anti-apoptotic 

proteins such as Bcl-2 and XIAP112. AITC induced mitochondrion-mediated apoptosis in 

human bladder cancer cells, which depended entirely on mitotic arrest which caused by AITC 

direct binding to cysteine residues of tubulins; and was mediated via Bcl-2 phosphorylation 

at Ser70 which caused by AITC induced activation of JNK113. According to Li et al, the 

apoptosis induced by AITC stems primarily from ROCK1/PTEN/PI3K signalling, resulting in 

dephosphorylation of cofilin, which binds to G-actin and translocates to mitochondria, 

culminating in the dysfunction of mitochondria114. 

 

Effect on DNA damage 

The genome DNA is constantly exposed to various insults, which can cause DNA damage. 

DNA damage is then recognized and repaired by the intrinsic DNA damage response 

machinery. DNA repair, if unsuccessful, may cause cellular senescence, oncogenesis, or 

apoptosis. Multiple types of DNA damage as well as the corresponding repair mechanisms in 

humans have been reviewed by Curtin et al115, including base modification (repaired by direct 

repair and base excision repair), base mismatch (repaired by mismatch repair), intrastrand 

crosslinks (ICL), and DNA–protein crosslinks [repaired by ICL repair and nucleotide excision 

repair (NER)], stalled replication forks [repaired by homologous recombination (HR), NER, 

and the Fanconi Anemia pathway], single-strand breaks (SSB; repaired by BER and HR) and 

double strand breaks [DSB; repaired by HR and non-homologous end-joining (NHEJ)]. The 

most deleterious DNA damage is DSBs, while the most common one is SSBs. They both can 

be caused by endogenous reactive oxygen species (ROS) as well as exogenous insults such as 

ionizing radiation and chemotherapeutic agents116. Interestingly, DSB repair depends on the 

phase of the cell cycle. HR is an error free pathway but is most predominant during late S 

and G2 phase, factors involved in HR include the MRN complex, CtIP, BRCA1, BRCA2, RAD51, 

etc. While NHEJ is active during all phases of the cell cycle but is error-prone, factors involved 

in NHEJ include the Ku complex (a heterodimer of Ku70/Ku80), DNA-PK catalytic subunits, 
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DNA ligase IV, etc. NHEJ is thought to be the primary means of repair for therapeutically 

induced DSBs resulting from irradiation, radiomimetics, topoisomerase poisons, and ROS-

inducing treatments115. In addition, an alternative form of NHEJ, namely, alt-NHEJ, is also 

involved in DSB repaire117. 

The DNA damage caused by ITCs has been reported to involve the production of 

ROS118,119 and cause cell growth arrest, autophagy and apoptosis120,121. On the other hand, 

ITCs enhance the acetylation and subsequent degradation of critical DNA repair proteins, 

such as CtIP122. Piberger et al reported that SFN inhibited the repair against (+)-anti-BPDE-

induced DNA damage in vitro within the first 12 hours but not the later repair period up to 

24 hours, and this may due to SFN impairing the xeroderma pigmentosum A protein, which 

is essential for NER123. SFN also induced a loss of DNA repair proteins Ku70, Ku80 and XRCC4 

in human pancreatic cancer cells and enhanced irradiation effects124. Charron et al reported 

DNA strand breaks after 3 hours AITC consumption in human but this effect dissipated by 6 

hours125. In vitro, AITC caused Cu(II)-mediated and oxidative DNA damage in HL60 cells126. It 

also induced replication-associated DNA damage response and exhibited synergistic effect 

with radiation in non-small cell lung cancer cells127. Interestingly, lower concentrations of 

AITC were able to induce genotoxicity in the mutant cells for the TP53 gene compared to 

wild-type bladder cancer cells121. 

 

Effect on cell migration 

Cell migration is a fundamental step for embryonic development, wound repair, immune 

responses, and tumor invasion and metastasis. The dissemination of tumor cells from the 

primary site is the leading cause of death for solid tumors (carcinomas, sarcomas, and central 

nervous system tumors)128. Tumor metastasis consists of several steps, starting with cancer 

cells detaching from the primary tumor, to invade the basement membranes and local 

mesenchymal tissues, to undergo transendothelial migration into blood or lymphatic vessels 

(intravasation), to attach to the vessel wall in the distant organ and migrate out of the vessel 

(extravasation), and finally colonize and proliferate at the secondary sites. There are two 

properties common to invasion and metastasis, one is the epithelial to mesenchymal 

transition (EMT) that loosens the primary tumor cell mass, the other is growth factor-induced 

cell motility128,129. 
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ITCs have also been reported to reduce the invasive potential of cancer cells. The 

anti-cell migratory effect of SFN was associated with matrix metalloproteinase (MMP) 

suppression130,131 and epidermal growth factor receptor (EGFR) down-regulation132. It 

inhibited the migration and invasion of triple-negative SUM159 human breast cancer cells 

through suppressing the Hedgehog pathway133, and hypoxia-induced migration of human 

cancer cells134. It also suppressed EMT in various cancer cells135–137. Combination of lapatinib, 

a commonly used drug that interrupts signalling from EGFR and HER2/neu, with SFN 

overcomes drug resistance and inhibits migration of HER2 positive breast cancer cells138. AITC 

influenced cell adhesion, migration and metalloproteinase gene expression in SK-Hep1 

cells139, and suppressed the epidermal growth factor (EGF) induced invasion and migration 

in HT29 cells via the suppression of MAPK pathway140. A low oral dose of AITC (1 mg/kg) 

significantly inhibited the development and muscle invasion of the orthotopic bladder 

cancers but was ineffective against the subcutaneous xenografts of the same cancer cells in 

the same animals, which may due to the higher level of AITC in urinary compared to that in 

plasma44. 

 

Effect on angiogenesis 

Angiogenesis is defined as the formation of blood vessels from pre-existing vasculature. Most 

blood vessels are quiescent in the adult. However, physiological angiogenesis is active in the 

uterus and ovary during the menstrual cycle, placenta during pregnancy, skeletal muscle 

after exercise, and regenerating tissues following injury141. When dysregulated, angiogenesis 

can contribute to a range of pathological conditions, including cancer. It is a complicated 

process with many stages and molecular interaction between different cell types. Generally 

speaking, angiogenesis initiates when hypoxic, inflammatory or tumour cells release a 

plethora of pro-angiogenic growth factors, such as vascular endothelial growth factors 

(VEGFs), angiopoietin 2, platelet-derived growth factor (PDGF) or fibroblast growth factors 

(FGFs), and lead to the angiogenic phenotype, triggering the removal of pericytes from 

nearby capillaries and the degradation of the extracellular matrix (ECM) by proteases like 

MMPs. Endothelial cells (ECs) then loosen their intercellular junctions, proliferate, and 

migrate onto newly forming and remodelling ECM. Finally, ECs re-establish their junctions 

and are covered by new mural cells (pericytes in medium-sized and smooth muscle cells in 

large vessels) and ECM to form tube-like structures141. 
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As early as 1971, J. Folkman proposed that inhibiting tumour angiogenesis might be 

a valuable therapy against cancer as angiogenesis is critical for tumour growth and 

metastasis95. When a tumour exceeds a few millimetres in diameter, hypoxia and nutrient-

deprivation trigger and/or sustain the persistent release of pro-angiogenic growth factors in 

the tumour microenvironment. Due to the dysregulation of the angiogenic signalling, the 

arising tumour vasculature is continuously remodelled, and is therefore leaky, tortuous and 

fragile142. The tumour microenvironment, including ECs, mural cells, tumour associated 

fibroblasts, tumour-associated macrophages, lymphatic ECs, etc., is now considered as 

important as the tumour cells for tumour progression and angiogenesis. 

ECs have been reported as a novel target of ITC action both in vitro and in vivo. SFN 

showed time- and concentration-dependent inhibitory effects on hypoxia-induced mRNA 

expression of VEGF and its receptor VEGFR2, as well as two angiogenesis-associated 

transcription factors, hypoxia inducible factor-1alpha (HIF-1α) and c-Myc, in an immortalized 

human microvascular endothelial cell line143. It also inhibited VEGF expression in pericytes144. 

Another study showed the inhibition of forkhead box-O (FOXO)/AKT pathway as one of the 

molecular mechanisms by which SFN inhibits angiogenesis145. 15 µM SFN clearly induced 

G2/M arrest and disrupted mitotic progression in bovine aortic endothelial cells. In addition, 

daily intravenous administration of SFN (100 nmol/day, for 7 days) significantly suppressed 

angiogenesis progression in female mice bearing VEGF-impregnated Matrigel plugs146. The 

combination of SFN and tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) 

was more effective in inhibiting markers of angiogenesis in prostate cancer orthotopic 

model147. AITC not only significantly inhibited endothelial cell migration, invasion, and tube 

formation in vitro, but also downregulated the pro-angiogenic factors such as VEGF, 

interleukin (IL)-1β , IL-6, granulocyte macrophage colony-stimulating factor, tumour necrosis 

factor alpha (TNF-alpha)148 and nitric oxide149 in the serum cytokine profiles of angiogenesis-

induced mice. It also showed significant inhibition of in vivo angiogenesis in the peritoneum 

of Ehrlich ascites tumour cells-bearing mice, associated with a reduced VEGF production150. 

 

1.2.4 Epidemiological studies of ITCs 

The epidemiological evidence regarding the consumption of dietary ITCs as chemopreventive 

agents has been inconsistent. Summarized below are findings for lung, colorectal, breast, 

prostate, pancreatic and liver cancer.  
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High CV intake was significantly associated with improved lung cancer-specific 

survival among Chinese women151; and reduced the lung cancer risk among Japanese male 

nonsmokers152. While in a Caucasian population, high intakes of CVs reduced lung cancer risk 

among GSTM1 positive individuals but not among GSTM1 null individuals153. 

Broccoli, in particular, exhibited protective benefits against colorectal neoplasms 

according to a meta-analysis of 33 articles154. However, no association was found between 

urinary ITC concentration and colorectal cancer risk among Chinese women who carried 

either the GSTM1 or GSTT1 gene155 and among Chinese men with GST gene variants156. 

In the case of breast cancer, intake of CVs showed a statistically significant 

association with a decreased risk of breast cancer among premenopausal Japanese 

women157, and African-American women158. However, no association with recurrence or 

mortality were found using data from the After Breast Cancer Pooling Project, which includes 

prospective data from US and Chinese breast cancer survivors159.  

A significantly decreased prostate cancer risk was observed overall in the CV intake 

group in a meta-analysis of 7 cohort and 6 population-based case-control studies160. Others 

also reported that after diagnosis CV consumption may reduce risk of prostate cancer 

progression161. However, treatment with 200 µM/day of SFN-rich extracts lead to more than 

50% prostate specific antigen (PAS) declines only in 1 out of 20 patients who had recurrent 

prostate cancer in a phase II study49. No recommendation can be made for the use of ITCs in 

managing prostate cancer morbidity and mortality162. 

A significantly decreased risk of pancreatic cancer was reported to be associated 

with the high intake of CV163, though cohort studies on this relationship are limited. For 

example, a nonsignificant inverse association was observed with CV consumption among 

81,922 women and men in the Swedish Mammography Cohort and the Cohort of Swedish 

Men164; and no association was found in the Hawaii-Los Angeles Multiethnic Cohort165. 

In a randomized, placebo-controlled trial in Qidong, intake of 400 µM glucoraphanin 

nightly for 2 weeks altered the disposition of aflatoxin and phenanthrene in 200 healthy 

participants, both of which contribute to the high risk of HCC in that region166. On the other 

hand, no association between urinary ITC exposure and liver cancer risk was found in a 

nested case-control study including Chinese men and women167. Consumption of CVs 

(around 125 g) at least once a week also showed no significant association with liver cancer 

risk reduction in data from case-control studies conducted in Italy and Switzerland168.  
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For rectal cancer, the consumption of CVs even showed a positive association in a 

prospective study of Dutch women169. 17 human intervention studies with broccoli or 

glucoraphanin or SFN were found on PubMed with consistent results in blood glucose and 

lipid profile and for molecular parameters of oxidative stress, while less solid evidence was 

found with regard to protection against cancer170. 

 

1.2.5 Hormetic effect of ITCs 

Hormesis is generally defined as a biphasic dose response to an exogenous or endogeneous 

factor (chemical agents exercise, dietary restriction, oxidative stress, temperature, etc.) 

characterized by low dose stimulation or beneficial effects, and high dose inhibition or 

adverse effects. From an evolutionary perspective, hormesis may be viewed as an adaptive 

response to homeostasis disruption within complex biological systems171. The highly 

consistent quantitative features of the hormetic dose responses at the cell, organ, and 

organismic level has important implications in drug discovery, clinical trials and toxicological 

risk assessment for pharmaceutical agents172. 

Some phytochemicals, including ITCs, have been reported to exhibit biphasic dose 

responses in vitro with low doses activating adaptive cellular stress response pathways that 

increase the expression of cytoprotective proteins including antioxidant enzymes, protein 

chaperones, growth factors and mitochondrial proteins. Examples of such pathways include 

the MAPK, Nrf2/ARE, sirtuin/FOXO and NF-κB pathways173,174. Indeed, the hormetic effect of 

ITCs have been observed as cytotoxic effects at higher doses (see previous sections), and 

cytoprotective effects at lower doses. Low concentrations of ITCs promoted cell proliferation 

and provided protection against oxidative injuries in human mesenchymal stem cells; while 

high concentrations exacerbated DNA damage, induced cell cycle arrest and cell death175,176. 

2 µM SFN showed no toxicity in wild-type mouse embryonic fibroblasts yet provided 

protection against a spectrum of xenobiotics177. With an IC50 of 25 μM in immortalised human 

hepatocytes, SFN (≤5 µM) showed protective effect against H2O2 and CdSe quantum dot 

induced cytotoxicity80,178. 

However, the hormetic dose response from endogenous or exogenous agents can 

contribute to the development of cancer, through low doses having a stimulatory effect on 

cancer cell proliferation, transformation, and resistance179. A few investigations have shown 

that at low concentration (1-5 μM) ITCs promoted cancer cell proliferation and migration, 

stimulated angiogenesis, and offered protection against free-radical mediated cell 
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death180,181. These results suggest that ITCs may either prevent or promote tumour 

development depending on the dose and the nature of the target cells. 

The amounts of ITCs normally consumed by humans from diet or concentrated 

supplements could be within the low dose stimulatory range (see section 1.2.2), and cause 

adverse health consequences. A schematic concept for the benefits and risks of dietary ITCs 

is proposed in Figure 1.9. It is therefore crucial to understand the mechanisms of action of 

the hormetic effects of ITCs and evaluate detailed dose-response studies for their safety and 

effectiveness regarding cancer management. 

 

Figure 1.9 A schematic concept on the hormetic effect of ITCs adapted from180. NOEL, No 

Observed Effect Level.   
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1.3 Nanotechnology against cancer 

Nanotechnology has been widely used in the development of new strategies for drug 

delivery and cancer therapy. Generally, nanotechnology refers to application of an incredibly 

small scale between 1 and 100 nm. The National Cancer Institute currently recommends that 

the size of the nanoparticles (NPs) used in biomedicine should be 10-100 nm, the upper limit 

of NP size is not strictly defined but the lower limit is fixed based on the threshold for first-

pass elimination by the kidney182. Nanotechnology is playing a role in providing both 

diagnostics and therapeutics for cancer, with the potential to provide novel nanodevices for 

in vitro molecular measurements of pathophysiology, targeted therapies with optimized 

therapeutic index and in vivo molecular monitors as a diagnostic of drug efficacy183,184, etc. 

Albumin-bound paclitaxel nanospheres (Abraxane®) and liposome-encapsulated 

daunorubicin (DaunoXome®) are two of successful examples of natural product formulations 

based on nanotechnological approaches. 

 

1.3.1 Delivery of phytochemicals by nanoparticles 

Nano formulations of phytochemicals essentially follow the general principles of 

nanotechnology. Many successful examples of nanoformulations with enhanced cellular 

bioavailability and anticancer activities have been reported in vitro185. In animal studies, 

curcumin loaded NPs exhibited superior tumor regression compared to free curcumin 

against prostate186, pancreatic187, cervical188 and glioma189 cancer. Quercetin-loaded NPs had 

more than 1.5-fold higher tumor growth inhibition in human A549 lung tumor xenograft mice 

model190. Resveratrol-loaded NPs suppressed glucose metabolism and tumor growth in CT26 

tumor-bearing mice191. Siddiqui et al reported that the encapsulation of epigallocatechin-3-

gallate (EGCG) achieved over 10-fold dose advantage for its proapoptotic and angiogenesis 

inhibitory effects192. More recently, the same group reported an oral formulation of EGCG 

NPs for the treatment of prostate cancer in a preclinical setting193. Hsieh et al coated gold 

NPs with EGCG, which exhibited improved anticancer efficacy against bladder194 and 

melanoma195 cancer in mouse models. 

Targeted delivery of phytochemicals can be enhanced by incorporating target 

ligands, such as folic acid, antibodies and aptamers, on the surface of NPs196–198. Furthermore, 

new classes of stimuli-responsive multifunctional NPs have been developed. For example, Ji 

et al reported curcumin-loaded nanodroplets achieved controlled release into targeted 
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tumor under ultrasound-mediated vaporization199. Other studies applied pH- and/or 

thermos-responsive NPs to improve the bioavailability of phytochemicals in the targeted 

tissue200,201. 

The use of nanotechnology for the delivery of combined chemotherapeutics has also 

been explored. A docetaxel-curcumin nanoformulation showed a synergistic effect on tumor 

growth inhibition in vivo without any obvious side effects202. An intravenous injection of a 

lactoferrin-tethered magnetic nanocapsule co-delivering doxorubicin and curcumin followed 

by magnetic targeting in brain tumor-bearing mice not only achieved high accumulation at 

the targeted site but also more efficiently suppressed cancer growth in vivo than the delivery 

of either drug alone203. Another combinatorial nanomedicine based on 5-fluorouracil and 

curcumin enhanced the anticancer effects in colon cancer cells and prolonged plasma 

concentration in a pharmacokinetic study204. Following systemic administration of quercetin 

phosphate NPs, a significant downregulation in Wnt16 expression was observed and further 

yielded a synergistic antitumor effect with cisplatin in a stroma-rich bladder carcinoma 

model205. Other phytochemicals such as polyphenols EGCG and resveratrol have also been 

reported to sensitize cancer cells to different chemotherapeutics via nanoparticulate 

delivery system206,207. Combined co-delivery of curcumin and resveratrol reduced prostate 

cancer incidence in PTEN knockout mice208. 

Several studies have reported the advantages of NPs as delivery system for ITCs. 

Hossein et al reported that SFN-loaded monomethoxypoly (ethylene glycol)–poly (e-

caprolactone) (mPEG–PCL) micelles with encapsulation efficiency of 86% and sustained 

release of SFN, caused increased cytotoxicity and apoptosis in the MCF-7 cell line compared 

to SFN209. From the same lab, a SFN-loaded PCL-PEG-PCL was also reported. The 

encapsulation efficiency was only 19% but the SFN loaded micelles increased the circulation 

period and the therapeutic efficacy of SFN in vivo210. A SFN-loaded gold-coated iron oxide NP 

(Fe3O4@Au) was studied as a potential delivery system to improve the efficiency and 

stability of SFN. FITC via thiolated polyethylene glycol was coated on the surface of the NPs 

to enable the evaluation of cellular delivery with fluorescence microscopy, in addition, folic 

acid was conjugated with the NPs to enhance the targeted delivery. An average of 2.8 

mmol/g of SFN was loaded onto the surface of NPs. Compared to free SFN, these NPs 

increased apoptosis in the MCF-7 cells211. AITC-loaded poly-lactic-co-glycolic acid (PLGA) NPs 

provided protection against degradation and exhibited sustained release of AITC, leading to 

stronger toxicity in cancerous HeLa and MDA-MB-231 cells212. Another AITC nanoemulsion 
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was prepared by Li et al, yielding satisfactory aqueous solubility and chemical stability213. 

Lipid NPs were used as carriers for phenethyl isothiocyanate (PEITC) which enhanced the 

protection against cigarette smoke condensate induced DNA damage and the ability to 

activate protective apoptosis in bronchial epithelial cells both in vitro and ex vivo214. The 

liposomal formulation of cisplatin and PEITC showed enhanced toxicity toward human non-

small cell lung cancer cells compared to when administered together free215. Overall, these 

studies indicate that nanotechnology has great potential for delivering phytochemicals such 

as ITCs as chemopreventive reagents. 

 

1.3.2 Silicon quantum dots 

Amongst the various types of nanomaterials, semiconductor NPs, also referred to as 

quantum dots (QDs), exhibit unique electronic and optical properties and can be developed 

as novel intravascular or cellular probes for both bio-imaging and therapeutic purposes. 

QDs have optical properties such as tunable light emission wavelengths, intense 

fluorescence, resistance against photobleaching and simultaneous excitation of multiple 

colours, all of which give the advantages of QDs as luminescent labels in cell biology. 

Compared with conventional dyes the advantages of QDs include 1) narrow emission 

spectrum and broad excitation spectrum with the Stokes’ shift effect providing more 

sensitivity and multiplicity of detection; 2) increased brightness, i.e. similar emission 

saturation and quantum yield with less variation of self-quenching; 3) increased 

photostability for 3D optical imaging216,217. Furthermore, QDs are considered to be energy 

donors, and the possibility for energy transfer between quantum dot particles and cell 

molecules has the potential to induce the generation of ROS and/or free radicals and to 

provoke apoptosis of the cells218. It has been speculated that the energy donor capacity of 

QDs could be utilized as novel photosensitizers or at least as potentiators of conventional 

photosensitizing drugs in photodynamic therapy of cancer219,220. Last but not least, QDs can 

provide novel functionality as a traceable and targeted drug delivery system by conjugation 

with drug molecules221. The size of such carriers (~10-20 nm in diameter) diminishes their 

renal clearance and uptake by the reticulo-endothelial system prolonging their blood 

circulation; The QD core can provide as a structural scaffold for loading of various types of 

drug molecules; by tuning their size and surface properties. Suitable pharmacokinetics can 

be achieved from either systemic administration or a targeted delivery; and the entirety can 
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be checked through the process of biodistribution and intracellular uptake via 

fluorescence222. 

Within the family of QDs, silicon QDs (SiQDs) have been preferred in biomedicine 

application because of their low inherent toxicity in comparison to all II-VI types of QDs which 

are heavy metal based (e.g., cadmium, lead, arsenic, etc.). The photoluminescence (PL) 

mechanism in SiQDs can be explained by quantum confinement effects223 while their 

physiochemical properties largely depend on the surface reconstruction and termination224. 

Adding protecting groups onto the particle surface can not only prevent agglomeration, but 

also protect the particle from its surrounding environment, and provides multiple 

functionalization. The highest surface coverage can be achieved with hydrogen-capping 

(producing H-terminated SiQDs), however H-terminated SiQDs are photochemically unstable 

and prone to oxidation. Further functionalization usually involves the formation of stable 

covalent bonds between surface silicon atoms and carbon, nitrogen or oxygen species 

(Figure 1.10). For example, carbon-bonded species can be attached via hydrosilylation by 

exposing H-terminated SiQDs to terminal alkenes or alkynes (alkylation), long organic ligands 

such as 1-octene, 1-undecene and 1, 9-decadiene. This was reported to prevent aggregation 

of SiQDs and improve their stability leading to an enhanced PL efficiency225. Other water 

dispersible SiQDs have been produced by modifying the surface with amines, the resultant 

SiQDs exhibited strong blue PL with quantum yield about 22% and pH stability over a wide 

range (pH 4-14)226. 

 

Figure 1.10 Schematic strategies of surface modification of SiQDs by forming covalent 

linkages227. 

Bio-application of SiQDs is a dynamically evolving field, various kinds of SiQDs have 

been used as optical labels for imaging and in drug delivery systems. Alkyl-capped SiQDs 

enhanced intracellular accumulation in malignant cells via cholesterol-dependent 

endocytosis228. Carbohydrate-capped SiQDs were reported with a selective internalization by 
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cancer cells than noncancerous cells229. Thiourea-capped SiQDs exhibited EGFR mediated 

targeting in cancer cells230. Wang et al reported a co-encapsulation system of quercetin and 

SiQDs in polymer NPs that achieved simultaneous in vitro imaging and improved the 

biocompatibility of quercetin231. However, SiQDs are much less well understood in terms of 

their fundamental photophysics than the particles made from direct gap semiconductors 

such as CdSe. Furthermore, the complete characterization of the surface remains a challenge, 

particularly when considering the incomplete coverage on silicon surfaces. For these reasons, 

there are few applications of SiQDs in biology at present, thus development of this 

technology is actively needed. 
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1.4 Aims of the study 

SFN has been shown to possess chemopreventive activity against different cancers in vitro 

and in vivo. 15 clinical studies have been registered to investigate its anticancer effect 

(www.clinicaltrials.gov, accessed at 19/07/2017). The development of rational 

chemoprevention strategies requires deep understanding of the mechanisms of the agent. 

There is still on-going research regarding to the multimodal actions of SFN but based on the 

reviewed literature, little work has been done focusing on: 1) the selectivity of SFN between 

normal and cancer cells; 2) bioactivities of its metabolites; and 3) its role in tumour 

angiogenesis. The bioactivity of ITCs (and any other phytochemicals) can also be influenced 

by diverse pharmacokinetic parameters which leads to additional logistical problems 

regarding the application of an optimized delivery system. 

To further study these research topics, the objectives of this research are twofold. 

Firstly, the bioactivity of SFN (and its metabolites) will be investigated in two liver cell lines: 

HHL5 and HepG2 representing human liver normal and cancer cells respectively. The effects 

of SFN on cell viability, DNA damage, apoptosis, intracellular ROS and GSH, cell motility and 

Nrf2 signalling will be determined as well as the protective effect of SFN against oxidative 

stress. The role of Nrf2 in SFN’s bioactivities will be examined by siRNA silencing. In vitro cell 

models using human endothelial cells HUVECs as well as ex vivo and in vivo models will be 

used to investigate the anti-tumour and anti-angiogenic effect of SFN. Secondly, SiQDs will 

be explored as a delivery system for AITC. The biological activity of novel AITC-conjugated 

SiQDs (AITC-SiQDs) will be investigated in terms of their effects on cancer cell viability, DNA 

damage, migration and angiogenesis in comparison to AITC; and the cellular uptake will be 

monitored via the intrinsic fluorescence of SiQDs. 

  



39 
 

Chapter 2. Materials and Methods 

2.1 Materials 

2.1.1 Cell lines 

The liver is responsible for major metabolic process within the human body, and remains a 

poorly characterised organ in cancer research despite of the fact that the hepatocellular 

carcinoma is the sixth most common malignancy and the third most common cause of 

mortality worldwide232. Relatively low therapeutic selectivity and high drug resistance are 

two major issues in liver cancer chemotherapy. It is also reported that liver is one of the 

target organs for NPs after they gain entry into the body through any of the possible 

routes233,234. Here two liver cell lines have been used: HHL5 and HepG2. HHL5, the 

immortalized human hepatocyte-derived line 5, was provided by Professor Arvind Patel, 

Medical Research Council Virology Unit, UK235. HepG2 cell line, human Caucasian hepatocyte 

carcinoma cells taken from a primary hepatoblastoma, was obtained from American Type 

Culture (ATCC, Manassas, USA). 

 

Other cell lines used include human umbilical vein endothelial cells (HUVECs) and 

murine MII perivascular cells (M2) which were obtained from TCS Cellworks and provided by 

Dr Zhigang Zhou236 respectively. The Caco-2 cell line was established from a moderately well-

differentiated colorectal adenocarcinoma obtained from a 72-year-old patient237. It could 

differentiate spontaneously when reaching confluence and express enterocyte-like 

phenotype and enzyme activities238. Here studies were carried out in the undifferentiated 

cancer colonic phenotype of Caco-2 cells only. 
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2.1.2 Reagents 

SFN was purchased from Toronto Research Chemicals. AITC, 3-(4,5-Dimethyilthiazol-2-yl)-

2,5-diphenyltetrayolium bromide (MTT), dimethyl sulfoxide (DMSO), DL-Buthionine 

sulfoximine (BSO), N-acetyl-L-cysteine (NAC) and Bradford reagent were all purchased from 

Sigma-Aldrich. Complete protease inhibitors were obtained from Roche Applied Science. All 

other reagents used see Method section 2.2. 

SiQDs were provide by Dr Chao’s lab. AITC-SiQDs were synthesized and characterized 

as reported in Mehrnaz Behray’s PhD Thesis (100025408). Thermal Gravimetric Analysis 

estimated the quantity of ligands on the surface of SiQDs as 60% (w/w). Hence, in average 

5.88 mmol/g of AITC was loaded onto the surface of SiQDs. Based on this, working 

concentration of AITC-SiQDs was calculated as below to compare with AITC. 

Table 1. Concentrations of NPs compared to AITC 

AITC (µM) 2.5 5 10 20 40 80 160 320 

AITC-SiQDs (µg/ml) 0.41 0.83 1.7 3.3 6.6 13.2 26.4 52.8 
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2.2 Methods 

2.2.1 Cell culture 

HHL5, HepG2, Caco-2 and M2 cells were cultured in Dulbecco’s Modified Eagle’s Medium 

(DMEM, Gibco) containing 4.5 g/L D-glucose and Non-Essential Amino Acids, supplemented 

with 10% heat-inactivated foetal bovine serum (FBS, Invitrogen), 1% L-glutamine (200 mM, 

Gibco), penicillin (100 U/ml) and streptomycin (100 mg/ml) at 37°C, 5% (v/v) CO2. HUVECs 

were cultured in Endothelial Cell Growth Medium 2 (EGM-2, PromoCell) supplemented with 

penicillin (100 U/ml) and streptomycin (100 mg/ml) at 37°C, 5% (v/v) CO2. 

HUVECs were used between the fifth and ninth passages and M2 were used between 

passages 35 and 40 for all experiments. For these two cell lines, cells were grown in flasks 

coated with 10 µg/ml type-I collagen. 

For subculture, cells were usually grown in T75 flasks (10 ml medium) incubated at 

37°C, 5% CO2 and cell culture medium were changed every 2-3 days. Subculture was carried 

out according to the standard operating procedures (SOPs) in a Class II Biological Safety 

Cabinet when cells reached 80% confluence. Prior to subculture, cells were checked for ideal 

confluency, morphology and any signs of contamination. Medium was aspirated from the 

tissue culture flasks and the cell layer was washed with phosphate buffered saline (PBS) twice. 

Then 1 ml of trypsin-EDTA (0.05%) was added for 5-10 mins at 37°C, 5% CO2 until the cells 

were detached from the base of the flask. Trypsin was neutralized with 9 ml of culture 

medium and a cell suspension formed through several pipetting cycles. Cells were counted 

using a hemocytometer. The cell suspension was centrifuged for 5 mins at 200 g to form a 

cell-pellet, which was then re-suspended in an appropriate volume of culture medium and 

either transferred to a new flask (passaged) or seeded on desired plates for experiments. 

For cryopreservation, cells were freeze at as low as a passage number as possible, 

with cell viability ≥ 90%. Cells were harvested, spin down and resuspended in freezing 

medium (10% DMSO in FBS) at a concentration of 1 x 10⁶ to 5 × 10⁶ viable cells/ml. Cells were 

then transferred to cryopreservation vials in 1-1.5 mL aliquots, labelled with cell line name, 

passage number, number of cells, user name and date. Vials were then put into a controlled-

rate freezing chambers (Nalgene® Mr. Frosty, Sigma-Aldrich) at -80°C for at least 24 hours 

and kept in liquid nitrogen for long term storage. 
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2.2.2 Cytotoxicity and cell survival assays 

2.2.2.1 MTT assay 

The viability of cells was evaluated by MTT assay. In most viable cells, the mitochondrial 

activity is constant and thereby an increase or decrease in the number of viable cells is 

linearly related to mitochondrial activity, this is the principle behind the MTT assay. This 

colorimetric assay based on the conversion of MTT, a water-soluble tetrazolium salt to an 

insoluble purple formazan by cleavage of the tetrazolium ring by succinate dehydrogenase 

within the mitochondria. After solubilisation with an organic solvent such as DMSO, the 

formazan is measured spectrophotometrically.  As the reduction of MTT can only happen in 

the metabolically active cells, this assay is an indicator of the viability of the cells under 

certain treatments. 

For this assay, 5 mg/ml MTT is dissolved in sterile PBS, filtered with 0.22 µm single 

used filter unit and stored at 4°C avoiding light up to 3 months. Cells were seeded into 96-

well plates and allowed to grow to approximately 70% confluency. The outer wells were 

susceptible to evaporation so filled with PBS only. Different treatments were then added to 

the cells, minimum 4 replications applied to each treatment with medium only as the blank 

and negative/vehicle/ positive control if applied. After treatment, media were removed, 100 

µl of 0.5 mg/ml MTT solution in medium was added to each well and incubated in the dark 

at 37°C for 1 hour. Then 100 μl DMSO was added to each well and mixed thoroughly by 

pipetting. The absorbance was determined using the OMEG plate reader using 570 nm as the 

test wavelength and 670 nm as the background. Cell viability (%) was determined as 

[A570nm-A670nm (test)] / [A570nm-A670nm (control)] × 100%; the half-maximal inhibitory 

concentration (IC50) were calculated with CalcuSyn software Version 2.0 (Biosoft, Cambridge, 

UK). 

 

2.2.2.2 Alkaline comet assay 

The comet assay or single cell gel electrophoresis assay is a rapid, sensitive and relatively 

simple method for detecting DNA strand breaks in eukaryotic cells. It is based on the ability 

of negatively charged loops/fragments of DNA to be drawn through an agarose gel in 

response to an electric field. The extent of DNA migration depends directly on the DNA 

damage present in the cells. 
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Cells were seeded on 24-well plates and allowed to grow to approximately 70% 

confluency, then placed in experimental conditions. Cells were then harvested and 

resuspended in PBS containing 10% DMSO and frozen at -80°C until the alkaline comet assay 

was performed. Samples were defrosted and 20-25,000 cells per sample were centrifuged at 

108 g for 5 mins at 4°C. Pellets were resuspended in 0.6% low melting point agarose, 

dispensed in duplicate onto glass microscope slides (precoated in 1% normal melting point 

agarose), and allowed to set on ice under a glass coverslip. Once set, the coverslips were 

removed, and slides transferred into ice-cold lysis buffer (100 mM disodium EDTA 2.5 M NaCl, 

10 mM Tris-HCl pH 10.0 with 1% Triton X-100 added immediately before use) for 1 hour. 

Slides were washed twice with ice-cold dH2O for 10 mins, transferred to a flatbed 

electrophoresis tank, and incubated in freshly prepared ice-cold electrophoresis buffer (300 

mM NaOH 1 mM disodium EDTA, pH 13) for 30 mins, followed by electrophoresis in the same 

buffer at 21 V (1 V/cm) for 30 mins. Procedures were performed protected from direct light. 

Slides were drained of electrophoresis buffer and flooded with neutralization buffer (0.4 M 

Tris-HCl, pH 7.5) for 30 mins, washed twice in dH2O for 10 mins, and dried at 37°C. Slides 

were stained with SYBR Green I nucleic acid stain diluted from a 10,000 X stock with 1X TE 

buffer (10 mM Tris-HCl, 1 mM EDTA) for 5 mins protected from light and dried at room 

temperature (RT) before visualization. For each sample, 100-200 comets were randomly 

analysed with images captured by fluorescence microscopy (Axioplan 2; Zeiss, Cambridge, 

UK) and scored using Comet Assay IV Lite analysis software (Perceptive Instruments, Bury St 

Edmunds, UK). DNA damage was expressed as tail intensity (% DNA in the comet tail) for 

statistical analysis because it has a linear relationship to DNA break frequency, is relatively 

unaffected by threshold settings and yields the widest possible range (i.e., 0%–100%)239. 

 

2.2.2.3 Annexin V/PI apoptosis assay 

Annexin V/ propidium iodide (PI) double staining is a commonly used tool for studying 

apoptotic cells. During initiation of apoptosis, cells translocate the membrane 

phosphatidylserine (PS) from the inner side of the plasma membrane to the cell surface, 

which can be easily stained by a fluorescein isothiocyanate (FITC) conjugated Annexin V, a 

Ca2+-dependent phospholipid-binding protein that has a high affinity for PS. PI does not stain 

live or early apoptotic cells due to the presence of an intact plasma membrane, while in late 

apoptotic and necrotic cells, PI passes through plasma and nucleus membrane and display 

red fluorescence. Therefore, cells that are considered viable are both Annexin V and PI 
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negative, while cells that are in early apoptosis are Annexin V positive and PI negative, and 

cells that are in late apoptosis or already dead are both Annexin V and PI positive. 

HepG2 cells were seeded on 12-well plates at a density of 5×104 cells per well and 

incubated at 37°C for 48 hours. After treatment with 0, 1.25, 2.5, 5, 10, 20 μM SFN for 24 

hours, cells were exposed to 700 μM hydrogen peroxide (H2O2) for another 24 hours. 

Medium and PBS used to wash the cell layer were then collected, cells were trypsinased and 

added to the collection. After centrifugation at 200 g for 5 min at 4°C, the formed pellets 

were washed with cold PBS before being re-suspended in 800 μl 1x binding buffer at a density 

of 1x105/ml. 1x binding buffer was diluted from 10x binding buffer [0.1 M HEPES/NaOH (pH 

7.4), 1.4 M NaCl, 25 mM CaCl2] with MillQ-water (MQW). 5 μl Annexin V-FITC was used to 

label the apoptotic cells and 5 μl PI used to stain the necrotic cells. All reagent used were 

provided from AnnexinV-FITC Apoptosis Detection Kit (eBioscience). After incubation at RT 

for 20 mins in the dark, samples were run on a flow cytometer (Cube 6, Sysmex Partec, 

Germany). For each sample 10,000 events were collected, and the data were analysed using 

FlowJo software (Treestar Inc., USA). The gated cells were then filtered by FL1 on the X-axis 

and FL3 on the Y-axis on a new scatter plot, which then be divided into 4 squares showing 

the different stages between healthy (AnnexinV-/PI-), early apoptotic (AV+/PI-), late 

apoptotic (AV+/PI+), and necrotic (AV-/PI+) cells. Results were expressed as % of cells. 

 

2.2.2.4 Colony formation assay 

Clonogenic cell survival was first described in 1950s for the study of radiation effects. a cell 

that capable to divide and proliferate to produce a colony of cells is referred to as 

‘clonogenic’240. The loss of this ability is a basic function of radiation or chemotherapy agents. 

Therefore, this method has been used to examine the effects of various agents with potential 

applications in cancer treatment. 

HepG2 cells were seeded in 6-well plates at a density of 2 X 105 cell/ml and incubated 

for 24 hours. Then cells were treated with 0, 1.25, 5, 20 µM SFN for another 24 hours with 

DMSO (0.1%) as control. After that, cells were typsinized to make single-cell suspensions 

from the treated monolayer cultures, and seeded in new 6-well plates at 2000 cell/well in 

triplicate for each treatment group. Cells were maintained for at least 14 days to form 

colonies. The media were replaced every 3 days. Then colonies were fixed with ice-cold 

methanol and stained with 0.1% crystal violet for 30 mins. For quantitative analysis, 1 ml 33% 
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acetic acid were added to each well, then the plates were shaken for 1 hour. The absorbance 

at 560 nm of each well was measured in the microplate reader (BMG Labtech Ltd, UK). Colony 

formation % = (A560 test / A560 control) x100%. Results are given as means and standard 

deviations of three independent experiments with triplicate samples for every treatment 

condition. 

 

2.2.3 Measurement of intracellular ROS 

The production of intracellular ROS was measured using the chloromethyl derivative of the 

fluorescent probe 2′,7′-dichlorodihydrofluorescein diacetate (CM-H2DCFDA) (Invitrogen). 

H2DCFDA diffuses through the cell membrane and is enzymatically hydrolysed by 

intracellular esterases to form the non-fluorescent compound 2′,7′-dichlorofluorescein 

(DCFH), which is then rapidly oxidized to form the highly fluorescent 2′,7′-dichlorofluorescin 

(DCF) in the presence of ROS. The DCF fluorescence intensity is believed to be parallel to the 

extent of ROS formed intracellularly. CM-H2DCFDA provides much better retention in live 

cells than H2DCFDA. 

To evaluate SFN induced ROS changes, cells (2 × 104/well) were seeded on 96-well 

plates and left attached overnight. Different doses of SFN treatment were then added for 24 

hours. Cells were then washed with PBS and incubated with 5 μM DCFH-DA for 30 mins at 

37°C. Fluorescence was measured on the Omega microplate reader (BMG Labtech) with 

excitation/emission wavelengths as 485 nm/520 nm. 

To evaluate AITC-SiQDs induced ROS changes, cells were seeded in 6-well plates and 

treated when they reached 70% confluence with 20 μM AITC or AITC-SiQDs for 1, 3, 6, 12 

and 24 hours. The wells were then washed with PBS and incubated with 5 μM CM-H2DCFDA 

for 30 mins at 37°C. Subsequently, the cells were collected, centrifuged and re-suspended in 

0.8 ml PBS. The fluorescent intensity of the oxidized product DCF was detected in the FL1-A 

channel with a flow cytometer (Cube 6, Sysmex Partec, Germany). 

 

2.2.4 HPLC analysis of intracellular GSH 

GSH is the most abundant non-enzymatic antioxidant molecule in the cell and is essential for 

redox regulation241. It maintains predominantly in its reduced form by the cytosolic enzyme, 

glutathione reductase, and can be rapid oxidized to glutathione disulfide (GSSG). In order to 

obtain a true measurement of the amount of reduced GSH in living cells, GSH was derivatized 
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using monobromobimane (mBBr)242, weakly fluorescent reagent that can freely cross the cell 

membrane (Figure 2.1). The procedure was performed as described178. 

 

Figure 2.1 Reaction of mBBr with GSH242. 

Approximately 1×106 cells were collected from 6-well plates, washed twice in PBS 

and suspended in 75 μl PBS containing 5 mM diethylenetriaminepentaacetic acid. The 

suspensions were acidified by addition of 300 μl 50 mM methanesulfonic acid (MSA), and 

then subjected to three freeze-thaw cycles alternating between dry ices and a 37°C heat 

block for 6 mins each time and vortex 10 seconds at the highest setting. GSH-containing 

supernatants were obtained after centrifugation at 12,000 g for 10 mins and maintained in 

ice for protein quantifications by Bradford assay. GSH standards (0, 1.25, 5, 10, 20 μg/ml) 

were prepared from 1 mg/ml GSH stocking solution. All samples except the blank were 

prepared in triplicates. 

For GSH derivatization, a 25 μl premix buffer (10 μl 0.5 M HEPES, pH 8.0, 1 μl 0.5 M 

EDTA, 1.5 μl 1M NaOH, 2 μl 0.1M mBBr and 10.5 μl 100% acetonitrile) was added to 75 μl 

cell extracts. The reaction was immediately vortexed and incubated for 15 mins in the dark 

at RT. After acidification with 1 μl 5 M MSA, the samples were vortexed and centrifuged at 

12,000 g for 5 mins. The supernatants were diluted in 10 mM MSA if necessary and analysed 

by HPLC. 

The GSH-mBBr adduct was then measured by high-performance liquid 

chromatography (HPLC) with a fluorescence detection. HPLC was run on a HiChrom ACE-AR 

C18 4.6 × 250 mm, 5 μm column (Phenomenex) with Solvent A (0.25%, v/v acetic acid and 

10% methanol, pH 4). Samples were eluted with a gradient of Solvent B (90% methanol) at 

1.0 ml/min flow rate as follow: 0-10 mins 0% Solvent B; 10-11 mins 50 % Solvent B; 11-15 

mins 100% Solvent B; 16-20 mins 0% Solvent B. Detection was carried out with a Jasco 

fluorescence detector with excitation at 385 nm and emission at 460 nm. The gain of GSH-
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mBBr adduct eluted at 8.9 mins and was quantified by the standard curve. The level of GSH 

was expressed as nmol/mg of cellular soluble protein. 

 

Figure 2.2 Chromatogram of the standards used for the determination of the standard curve. 

 

 

Figure 2.3 Standard curve of GSH. 
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2.2.5 Cell migration and adhesion assays 

2.2.5.1 Wound assay 

The wound assay, or gap closure migration assay, is an easy, low-cost and well-developed 

method to measure cell migration in vitro. The basic steps involve creating a wound/gap in a 

cell monolayer and capturing the images of the wound closure to provide migration 

characteristics of the cultured cells. 

HepG2/Caco-2 cells were seeded in 24-well plates at 2 × 105 cells/ml. After cells 

reached 100% confluence, scratches were made with a 1 ml pipette tip across the center of 

the wells in a long-axial line to create a gap, without changing the medium. Detached cells 

were removed by gently washing twice with medium. The wells were then filled with fresh 

medium containing different treatments and vehicle control. Each treatment was performed 

at least in triplicate. Cells were grown for a further 48 hours, then washed twice with PBS, 

fixed with ice-cold methanol for 10 mins, and stained with 1% crystal violet for 30 mins. At 

least 3 pictures were taken within each well of the stained monolayer on an inverted 

microscope at 5x magnification. The wound area was quantitatively evaluated using 

ImageJ243, at least 10 pictures were used in each treatment. Cell migration was calculated as 

follows: Migration % = 1- (Area W-Area C)/Area C %, where Area W is the wound area from 

treated wells and Area C is the wound area from the control wells. 

For HUVECs, wound was created as above. The wells were then filled with fresh 

medium with different dose of SFN or conditioned medium (CM) from HepG2. Cells were 

grown for a further 12 hours as HUVECs under vehicle control (0.1% DMSO) reformed a 

confluent monolayer within 24 hours. Cells were then fixed and stained as above. CM was 

prepared by seeding HepG2 cells into 10 cm dishes with 10 ml complete culture medium and 

when at 80% confluence cells were washed with PBS and incubated with serum-free medium 

and SFN (0-20 µM) for another 24 hours. CM was collected from each dish and filter sterilized 

(0.2 µm, Minisart), then stored at −80°C for further experiments where serum-free medium 

was used as a negative control. 

 

2.2.5.2 Cell adhesion assay 

Cell adhesion, the ability of a cell to stick to another cell or ECM, plays an important role in 

cell communication and regulation including cell differentiation, migration and survival. It is 

mediated by adhesion molecules such as cadherins, integrins, selectins, immunoglobulins, 

glycoproteins and proteoglycans244. Tumor cells, especially the highly metastatic types, 
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usually obtain enhanced adhesion ability to facilitate the migration and adhesion to a new 

site to establish new tumors. Therefore, cell adhesion assay is used to evaluate the 

metastatic ability of cancer cells under certain treatment. 

For cell-matrix adhesion assay, 96-well plate was coated with 50 μL of 10 ug/ml 

fibronectin (R&D Systems, MN, USA) or rat tail collagen I (Merck KGaA, Germany) or poly-l-

lysine (PLL, Sigma) overnight at 4°C, and blocking with 1% bovine serum albumin (BSA; 

Thermo Scientific) for 1 hour at RT. HepG2 cells were seeded on the coated plate at a density 

of 5×104 cells/well in serum-free medium with treatment (12 replicates for each treatment) 

and incubated under normal growth condition for 1.5 hours. Unattached cells were removed 

by three times PBS washes. 50 μL of 4% paraformaldehyde (PFA) was added to each well for 

10 mins at RT to fix the adherent cells. Plate was then washed with PBS again and stained 

with methylene blue immediately for 30 mins. The wells were then washed with dH2O to 

remove excess stain. To quantify the amount of adherent cells, 100 μL de-staining buffer (50% 

ethanol in 0.1 M HCl) were added to each well for 10 mins, and the absorbance was 

measured at 630 nm. Cell adhesion (%) was determined as [A630nm (test)] / [A630nm 

(control)] × 100%. Three independent assays were conducted per experimental design. 

Adhesion between tumour cells and ECs was measured as described with 

modifications245. HepG2 were seeded in 96-well plates to 100% confluence then treated with 

0-20 µM SFN for 24 hours. HUVECs was seeded on the HepG2-coated plate at a density of 

5×104 cells/well in serum-free medium (12 replicates for each treatment). The plate was then 

incubated under normal growth condition for 1.5 hours, after which unattached cells were 

washed three times with PBS. 50 μl of 4% PFA was added to each well for 10 mins to fix the 

adherent cells. An in cell Western blotting for CD31 was then performed to measure the 

amount of adherent ECs. Briefly, cells were permeabilised by 0.5% Nonidet P40 lysis buffer 

(NP40) in PBS for 10 mins at RT, followed by PBS wash. Wells were blocked with Odyssey® 

blocking buffer for 10 mins at RT then 1:500 primary antibody CD31 in blocking buffer was 

added to each well (50 μl) for 1 hour at RT in humidified chamber, after PBST (0.1% Tween 

20 in PBS) wash, 1:800 secondary antibody goat anti-mouse (IRDye® 800CW, LI-COR) in 

blocking buffer was added to each well (50 μl) for another 1 hour at RT in humidified chamber. 

Plates were protected from light from this point. After washing with PBST, plates were turn 

upside down to remove traces of wash buffer and scanned immediately using Odyssey® 

infrared imaging system (169 μm resolution, 3.0 mm focus offset). Background wells were 

incubated with secondary antibody but no primary antibody. Results were expressed as CD31 
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signal intensity (% of control). Three independent assays were conducted per experimental 

design. 

 

2.2.6 Nrf2 siRNA knockdown 

Nrf2 siRNA was obtained from Applied Biosystems (Sense strand: 5’-

CCUUAUAUCUCGAAGUUUUtt-3’; antisense strand: 5’-AAAACUUCGAGAUAAGGtg-3’). 

AllStars negative control siRNA (Qiagen) has no homology to any known mammalian gene 

and was used to confirm the changes in phenotype or gene expression are non-specific. 

Transfection of siRNA was performed using HiPerFect transfection reagent (Qiagen) 

according to manufacturer’s protocol. 

For comet assay and wound assay, fast-forward transfection of adherent cells in 24-

well plates was used. HepG2 cells were seeded at 0.5-1.5 x 105 cells/well of a 24-well plate 

in 0.5 ml of complete medium, and incubated under normal growth conditions shortly before 

transfection. 30 nM siRNA and 3 μl of HiPerFect transfection reagent were added to 100 μl 

culture medium without serum or antibiotics, mixed and incubated for 5-10 mins at RT to 

allow the formation of transfection complexes. The complexes were then added drop-wise 

to each well to give a final siRNA concentration of 5 nM. Plate were gently swirled to ensure 

uniform distribution of the transfection complexes. Cell were cultured under normal growth 

conditions for additional 24 hours. The comet assay/ wound assays were then performed as 

described. 

For MTT assay, reverse transfection of adherent cells in 96-well plates was used as it 

is quicker, requires less pipetting and fewer materials. 12.5 ng siRNA was spotted in 25 μl of 

RNase-free water into each well (40 nM) of a 96-well plate. A mix of 0.75 μl of HiPerFect 

transfection reagent and 24.25 μl of culture medium without serum or antibiotics was then 

added to each well. The plate was incubated for 5-10 mins at RT to allow the formation of 

transfection complexes. HepG2 cells were then seeded at a density of 1 x 104 cells/well in 

150 μl of culture medium on top of the transfection complexes. In each well, the final siRNA 

concentration was 5 nM. Cell were cultured under normal growth conditions for additional 

24 hours. The MTT assay were then performed as described. 
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2.2.7 Western blotting 

2.2.7.1 Protein extraction and quantification 

For whole protein extraction, cell monolayers were washed twice with ice-cold PBS and lysed 

with a 6:1 mixture of NP40: proteinase inhibitor for 30 mins incubation at 4°C under gently 

agitation. NP40 lysis buffer, a non-denaturing detergent, was made as Tris-EDTA pH8 (2mM), 

NaCl (150mM), Glycerol (10% v/v) and NP40 (1% v/v); protease inhibitor solution was 

prepared by dissolving one complete protease inhibitor mini tablet [EDTA-free] in 1.5 ml of 

MQW. Cell lysates were further dislocated from the plates using sterile rubber cell scrapers 

followed by centrifugation at 13 600 g at 4°C for 15 min. Protein-containing supernatants 

were then transferred to pre-cold fresh tubes and stored at -80°C until used. 

The Nuclear Extract Kit (Active Motif) was used to isolates nuclear and cytoplasmic 

extract from cell samples according to manufacturer’s instructions. Briefly, cells were 

washed with ice-cold PBS with phosphatase inhibitors prior incubated with 1x hypotonic 

buffer at 4°C for 30 mins under gently agitation, to swell the cell membrane. Then cells were 

dislocated from the plates using cell scrapers and transferred to pre-cold Eppendorf tubes. 

Detergent was added to each tube to causes a leakage of the cytoplasmatic proteins into the 

supernatant. After vortexed for 10 seconds and centrifuged at 4°C, 14,000 g for 1.5 mins, the 

supernatant was collected as cytoplasmic fraction. The pellet was resuspended in complete 

lysis buffer, vortex and incubated at 4°C for another 30 mins. After vortexed for 10 seconds 

and centrifuged at 4°C, 14,000 g for 10 mins, the supernatant was collected as nuclear 

fraction. Samples were stored at -80°C until used. 

The Bradford assay was used to determine concentrations of protein based on the 

colorimetric convert from the binding of Coomassie Brilliant Blue G-250 dye to protein. A 

range of protein standards (0, 0.25, 0.5, 1, 1.4 and 2 mg/ml) was obtained by dilution of BSA 

in MQW. A constant volume (5 μl) of protein standard or cell lysate samples was introduced 

into separate wells of a 96 well plate. If necessary, lysate samples could be diluted with MQW. 

All samples were tested in triplicates. Each well received 250 μl of Bradford reagents (50:1 

v/v Bradford reagent: protein samples). The optical densities were measured at 595 nm using 

the Omega microplate reader (BMG Labtech). Using the standard curve and the linear 

regression formula, the protein concentrations from the samples could be calculated by the 

Omega Analysis Data Software. Proteins concentration in each sample was expressed in 

mg/ml of total solution and average protein concentration was used to calculate the loading 

volume for Western blot. 
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2.2.7.2 SDS-PAGE 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to separate 

protein samples based on their electrophoretic mobility. SDS, an anionic detergent, binds to 

protein in a set ratio, approximately one molecule of SDS for every 2 amino acids. By doing 

so, SDS denatured protein, turning them into negatively charged linear poly peptide chains. 

Under the electric field, those negatively charged proteins migrated across the gel towards 

the positive electrode, and separated based on the difference of their mobility, which based 

on the difference of their molecular weight. 

Loading samples were prepared with 4x loading buffer (NuPage LDS sample buffer; 

Invitrogen), 1M dithiothreitol (DTT, Sigma Aldrich) and known concentration of protein 

sample, to obtain final volume of 25% loading buffer, 5% DTT and 70% protein. After 

denatured at 98°C for 5 mins, the loading sample were loading in equivalent amounts of 

protein (20-40 µg) to the gel together with a molecular weight marker. 10-12% acrylamide 

gel were used as the resolving gel and 4% as the stocking gel. The gels were placed in a MINI 

Protean Tank (Bio Rad) according to manufacturer’s instructions. The electrophoresis was 

run at 4°C, 200 V in 1x running buffer which diluted down from 10x running buffer (Bio Rad). 

 

2.2.7.3 Protein transfer, immunoblotting and detection 

The semi-dry transfer was applied using the Trans-Blot SD Semi-Dry Transfer Cell (Bio Rad) 

with the transfer buffer made up of 10% 10 x transfer buffer (Bio Rad), 20% methanol (Sigma 

Aldrich) and 70% MQW. 15-25 voltage was applied between 30 mins to 90 mins for different 

targets. Polyvinylidene fluoride membrane (PVDF, Millipore) was activated in methanol for 

10 seconds before use. Two types of PVDF were used: Immobilon®-P membrane (0.45 µm) 

for chemiluminescent detection, and Immobilon®-FL membrane (0.45 µm) for fluorescence-

based immunodetection by Odyssey® Infrared Imaging System (Li-COR, Cambridge UK). 

For chemiluminescent detection, the membrane was blocked for 1 hour at RT with 

5% w/v non-fat milk in 0.1% PBST, followed by incubation with diluted primary antibody (see 

Table 2) in blocking solution at 4°C overnight. Membrane was then washed 3 times with 0.1% 

PBST at 5-10 mins intervals with fast agitation and incubated with 1:10000 dilution of 

horseradish peroxidase (HRP)-conjugated secondary antibody with blocking solution for 1 

hour at RT. After further washing, the membrane was developed with Amersham ECL Prime 

Detection kit (GE health) and visualised using a Fluor Chem Imager (Alpha Innotech). Band 
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intensity was determined with ImageJ. Results were normalised against loading control (β-

actin for whole lysate protein and SAM68 for nuclear protein), and the protein expression 

from the different treatments was calculated relative to the control. 

For fluorescent detection, the membrane was blocked for 1 hour at RT with the 

commercially supplied Odyssey® blocking buffer. The primary antibodies were prepared in 

recommended dilutions (Table 2) in the blocking buffer. IR-labelled secondary antibodies 

were used for detection: 800 nm channel with IRDye® 800CW and 700 nm channel with 

IRDye® 680LT, SDS was added to reach a final concentration of 0.02% to reduce the 

background of 700 nm channel. After washes, the imaging was proceed using LI-COR Odyssey 

Infrared Imaging System and analysed using the Odyssey® software, the intensity measured 

for each band should be within 10-200. 

If stripping was required, blots were incubated with stripping buffer (Themo) for 15 

mins at RT, then washed with 0.1% PBST and imaged to check any left signals. Then the 

membrane was re-blocked as before, prior to primary antibody probing. 

Table 2. Primary antibodies used for Western blot. 

Target/Antigen Host Dilution Size Supplier Catalog No. 

β-actin Goat 1:5000 42 KDa Santa Cruz Sc-1615 

HIF-1α Rabbit 1:1000 120 KDa Abcam Ab2185 

HO-1 Mouse 1:2000 30 KDa Abcam Ab13248 

Ku70 Goat 1:5000 70 KDa Santa Cruz Sc-1486 

Nrf2 Rabbit 1:2000 100 KDa Santa Cruz Sc-13032 

SAM68 Rabbit 1:10000 68 KDa Santa Cruz Sc-333 

STAT3 Mouse 1:2000 91/86 KDa Santa Cruz Sc-8019 

p-STAT3 Mouse 1: 2000 91/86 KDa Santa Cruz Sc-8059 

TrxR-1 Rabbit 1:2000 55 KDa Abcam Ab16840 

VEGFA Rabbit 1: 2000 15-40 KDa Abcam Ab46154 
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2.2.8 3D co-culture of HUVEC with pericytes/HepG2 

Pericytes, defined by their close contacts with ECs, contribute to the stability of the 

endothelial tube, regulate hemodynamic processes and promote the survival of ECs. The 

three-dimensional co-culture of ECs and isolated murine pericyte-like cells offers a platform 

to study angiogenic processes not only the activation of ECs but also the recruitment of mural 

cells236,246, which is essential for the formation and function of mature vascular network. 

To expand beyond the limits of the pre-existing vascular supply, tumours recruit new 

blood vessels from surrounding vessels, an event known as the ‘switch’ to the angiogenic 

phenotype247. Numerous studies hypothesize that in vivo tumour-associated ECs receive 

biological signals from tumour cells, and subsequently induce tumour angiogenesis. Thus, 

co-culture HUVECs with HepG2 was used to study the effect of HepG2 cells on HUVECs 

behaviour. 

 

2.2.8.1 3D culture in collagen I gels 

Cells were trypsinized, washed with PBS, counted, and desired cell numbers were collected 

by centrifugation (2.5 x 105 HUVECs, 5 x 105 M2 or HepG2 cells per well). Collagen type I gels 

(2 mg/ml) were prepared in 1 × DMEM medium from concentrated rat tail type I collagen 

solution (>8 mg/ml in 0.02 N acetic acid; BD Bioscience) at 4°C, supplemented with final 

concentrations of 2% FBS, 22.5 mM NaHCO3, 1 mM sodium pyruvate, 10 ng/ml VEGF and 

PDGF, 250 μg/ml ascorbic acid phosphate (ASAP) and neutralized by 0.1 M NaOH. Cells were 

suspended in the collagen I gel solution at 4°C and added into 24-well plates at 400 μl per 

well. After initial incubation in 37°C for 20 min, 400 μl EGM-2 culture medium was added to 

solidified collagen I gels with supplements of final concentrations of VEGF, PDGF, and ASAP 

as above, with treatment as experiment design. Medium was changed every 48 hours, and 

cultures were maintained for 4–6 days. 

 

2.2.8.2 Whole-Mount Immunohistochemistry 

3D collagen culture gels were washed in PBS, fixed with 20% DMSO in methanol overnight at 

4°C, rehydrated in 50% methanol in PBS, 20% methanol in PBS and PBST for 1 hour each at 

RT. Gels were then incubated with blocking solution (10% FBS in PBS) overnight at 4°C. 

Primary antibody anti-human CD31 (Catalog No. 555444, BD Biosciences) were diluted in 

blocking buffer as 1:400 and incubated on top of the gels overnight at 4°C. After 5 times PBST 
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washes (1 hour each at RT), fluorescently labelled secondary antibody donkey anti-mouse 

conjugated with Cy3 (Jackson Immuno Research, 1: 500) were incubated in blocking buffer 

overnight at 4°C. After 3 times PBST washes (1 hour each at RT), gels were stained with DAPI 

(1:500) for 0.5 hour at RT, washed again and mounted in Gelvatol. Samples were examined 

by fluorescence microscopy (Axioplan2, Carl Zeiss). In five random fields from each sample, 

the total lengths of CD31-positive tube-like structures were measured by Volocity 4.0 

(Improvision). Cumulative tube lengths per area are expressed as mm/mm2. 

 

2.2.9 Aortic ring assay 

The quantitative three-dimensional ex vivo mouse aortic ring angiogenesis assays provides a 

more physiologically relevant in vitro model for angiogenesis study, in which developing 

microvessels undergo many key features of angiogenesis over a timescale similar to that 

observed in vivo. 

This assay was performed per Baker and Robinson protocol248. Thoracic aortae are 

dissected from mixed background mice of 8–12 weeks of age, then cleaned and cut into rings 

with approximately 0.5 mm width. At least 20 rings from more than three separate aortae 

should be used per condition. Rings are starved in serum-free media (Opti-MEM®) at 37°C 

overnight to equilibrate their growth factor responses, effectively creating a uniform 

baseline state. Each ring was then embedded in separate wells of a 96 well plate containing 

1.2 mg/ml of collagen I (50 µl/well, Millipore), which was polymerised by 5 N NaOH and 

leaving the plate at 37°C for 30 mins. Each ring was fed with 150 µl of fresh Opti-MEM 

supplemented with 2.5% FBS, 30 ng/ml VEGF and different concentration of SFN at 37°C 

every 3 days. 

After 6 days, rings were fixed with 4% (v/v) formalin for 30 mins at RT, and the 

microvessel growth of each ring were counted by live phase-contrast microscopy. 

Immunofluorescence staining was then performed for a more informative view of 

microvessel sprouting, including the identification of supporting cells. Rings were 

permeabilised with 0.25% (v/v) Triton X-100 in PBS for 15 mins at RT twice, and blocked with 

2% (v/v) BSA in PBLEC for 30 min at 37°C. 0.1 mg/ml FITC-conjugated BS-1 lectin (L2895, 

Sigma) were used to stain ECs and 1:1000 anti-actin α-smooth muscle Cy3 (Catalog No. 53142, 

Santa Cruz) were used to stain the supporting cells. 1 µg/ml DAPI were used to stain the 

nuclei. Images were taken by Axiovert 40 CFL inverted microscope (Carl Zeiss). 
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2.2.10 HepG2-bearing CAM assay 

The chick embryo chorioallantoic membrane (CAM) has been used to study tumour 

angiogenesis and metastasis in human tumors249. Since the lymphoid system is not fully 

developed until late stages of incubation, the chick embryo serves as a naturally 

immunodeficient host capable of sustaining grafted tissues or cells. In addition, the highly-

vascularized CAM promotes the efficiency of the grafting and provides a closed tumour 

growth system that mimics the physiological cancer cell microenvironment with low cost. 

Thus, it is a useful model to rapid assessment of tumour inhibition efficacy of potential 

candidates. 

The growth and angiogenic characteristics of HepG2 cells were tested in vivo using a 

modified CAM assay as previously described250. Gallus gallus White leghorn fertilized eggs 

were obtained from a commercial breeder, Henry Stuart (Lincolnshire, UK). Eggs were stored 

at 16°C (up to one week) then incubated at 37°C for 9 days. A small window was made in the 

shell overlying the most vascularized area of each viable embryo and HepG2 cells (1x106) 

mixed with growth factor reduced matrigel (8.9 mg/mL, BD Biosciences) in a total volume of 

25 μL with DMSO (0.05%) or SFN 20 µM was loaded on the top of the CAM (n ≥ 6 CAMs per 

treatment). The window was resealed with adhesive tape and eggs were returned to the 

incubator for 3 days. Tumour samples were cut out from the membrane and their sizes were 

monitored with callipers, the tumour volume (V, mm3) was calculated as L x W x D, where L 

= length (mm), W = width (mm) and D = depth (mm). 

 

2.2.10.1 Hematoxylin and eosin (H&E) staining 

Histological assessment was made to assess the development of the implanted tumour. 

Tumour samples from the modified CAM assay were fixed with 4% PFA overnight at 4°C then 

changed to cryopreservative medium (15% sucrose in PBS) overnight at 4°C. Tumours were 

then embedded in 8% gelatin (15% sucrose in PBS) and snap-frozen for -80°C storage. Serial 

sections (10 μm) were stained with hematoxylin and eosin. Sections were imaged under light 

microscope at magnification 5x. 

 

2.2.10.2 Immunohistochemical staining 

Briefly, section slides were blocked with 5% goat serum in PBS for 0.5 hour for nonspecific 

binding, and then incubated with a rabbit monoclonal antibody against human HIF-1α or a 
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mouse monoclonal antibody against human VEGF-A overnight at 4°C (each at 1:100 dilution 

in PBS). Slides were washed with PBS 3 times each for 5 mins, and incubated with the goat 

derived second antibody [AlexaFluo488 goat anti-rabbit for HIF-1α or AlexaFluo546 goat 

anti-mouse for VEGF-A (Invitrogen)] for 0.5 hours RT in a moist atmosphere, both were used 

at 1:500 dilution in PBS. Then sections were mounted with fluoromount G with DAPI (Thermo 

Fisher), and examined by fluorescence microscopy (Axioplan 2; Zeiss, Cambridge). The 

expression levels of HIF-1α and VEGF-A were assessed by measuring average pixel intensity 

per unit area of tumour in 5 random microscopic (400x) field in each slice using image J 

software. 

 

2.2.11 Confocal laser scanning microscopy (CLSM) 

HepG2 were plated onto sterile 10 mm glass coverslips in 24-well plates at a concentration 

of 2 × 105 cells/ml and incubated for 48 hours at 37°C, 5% CO2. Cells were then treated with 

50 µM AITC-SiQDs (excitation/emission: 350/440), or 0.1% DMSO as control for 1, 3, 6, 12, 

24 hours. For lysosome staining, during the last 10 mins of AITC-SiQDs treatment, cells were 

exposed to 1 µM LysoTracker® Red DND-99 (excitation/emission: 577/590, ThermoFisher), 

then washed with fresh medium for 10 mins at 37°C, 5% CO2. All cover slips were washed 

twice with PBS and fixed with 4% PFA for 10 mins. Cover slips with cells were inverted and 

mounted on a microscope slide. CLSM was performed on a Zeiss LSM510 META confocal 

microscope using a 10 × objective lens for imaging. Laser beams with 364, 488 and 543 nm 

excitation wavelengths were used to image AITC-SiQDs, bright field and lysosome 

respectively. 

 

 

2.3 Statistics 

Data are represented as the mean ± SD or mean ± SEM. Student’s t-test was performed to 

determine any statistical difference between two groups; one-way analysis of variance 

(ANOVA) test was used to compare the means of serval different groups. A p value <0.05 was 

considered statistically significant. Unless otherwise indicated, these methods were done 

using GraphPad Prism software (GraphPad Software, La Jolla California USA, 

www.graphpad.com.) and used for all statistic comparisons presents. 
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Chapter 3. Antioxidant activities of SFN in HepG2 and HHL5 cells 

3.1 Introduction 

The cytoprotective effect of SFN largely comes from the activation of Nrf2 transcription 

factor, a master transcription factor involved in cell redox homeostasis and stress 

adaptation86. The interaction of SFN with Keap1 disrupts this function and allows nuclear 

accumulation of Nrf2. Although there are conflicting in vitro and in vivo data regarding which 

cysteine residues react with SFN, most biological data indicate that modification of C151 is 

essential for its action251. Nrf2 then binds to the ARE and enhances the transcription of more 

than 200 target genes, many of which provoke strong cytoprotective responses. Of 

significance is that Nrf2 controls the production, utilization and regeneration of GSH, the 

most abundant antioxidant cofactor within cells252, by regulating γ-GCS, the rate-limiting 

enzyme for GSH synthesis253, ROS-detoxifying enzymes such as GST254, and NADPH-

generating enzymes255. 

Apart from the cytoprotective effect, SFN has also been shown to exhibit cytotoxic 

effects including decreasing cell viability and proliferation256–258; disrupting mitochondria259, 

tubulin and microtubule function146,260,261; inducing DNA damage118, apoptosis and cell cycle 

arrest262–265; inhibiting telomerase activity256,266; and disrupting protein-protein interaction in 

Hsp90 complex267. The complex bioactivities of SFN could lead to different cell response upon 

SFN treatment which could depend on the cell type and dose/duration of the treatment. 

Therefore, increasing the understanding of the different effect of SFN in non-cancerous and 

cancerous cells has great importance in cancer management. 

Selectivity towards cancer cells is the central requirement of any cancer therapy. 

However, compared results of SFN bioactivities on normal and cancerous cells have been 

inconsistent. Several normal epithelial cell lines are relatively resistant to apoptosis induction 

by SFN at concentrations which are lethal to cancer cells268,269. Zeng et al reported SFN 

activated survival signalling in non-tumorigenic NCM460 colon cells but apoptotic signalling 

in tumorigenic HCT116 colon cells and that may play a critical role in SFN’s higher potential 

to inhibit cell proliferation in colon cancer cells than in normal colon cells270. While on the 

other hand, SFN has been reported as more cytotoxic for lymphoblastoid than for leukaemia 

cells271. The effects of SFN on non-transformed T-lymphocytes were similar to those recorded 

on Jurkat T-leukaemia cells272. According to Gamet-Payrastre et al, SFN affected the cell 

viability very effectively on undifferentiated intestinal HT29 cells but not differentiated CaCo-
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2 cells273. SFN showed broad and complex effects on DNA methylation profiles in both normal 

and cancerous prostate epithelial cells274 and regulated the Nrf2/ARE signalling pathway 

differently in human untransformed epithelial colon CRL-1790 cells and in HT-29 and Caco-2 

colorectal cancer cells275. Negrette-Guzman et al demonstrated SFN modulates 

mitochondrial dynamics differentially in normal and cancer cells276. The transcriptional 

response to SFN on cell cycle related genes was dependent on the cell line and presumably 

the state of cancer progression277,278. However, to date, the understanding of why SFN has 

any specificity is far from conclusive. 

The aim of this study was to compare the effect of the SFN in human hepatoma cell 

line HepG2 and immortalised human hepatocyte-derived cell line HHL5235 in terms of its 

cytotoxic and cytoprotective effects, thereby shedding new light on the possible dual role of 

SFN in cancer management. 
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3.2 Results 

3.2.1 Effect of SFN on cell viability and DNA damage 

The cytotoxicity of SFN was measured by MTT assay (Figure 3.1) so that the appropriate 

experimental concentrations for further investigation can be established. Both HHL5 and 

HepG2 cells were cultured in 96-well plates to reach 70 to 80% confluency and then treated 

with SFN (1.25 to 160 μM) for 24 hours. Results indicated that SFN (≥20 μM) decreased the 

metabolic activities in both cell lines in a dose-dependent manner. With increasing SFN doses, 

a decrease of cell confluence and an increase of detached cells and cell debris were observed. 

The IC50 values of SFN were 30.2 and 54.9 μM in HHL5 and HepG2 cells respectively, which 

indicated that the normal cells were much more susceptible to cytotoxicity from SFN than 

the cancer cells. In addition, 1.25 μM SFN treatment increased cell viability in HepG2 cells 

significantly but not in HHL5 (p < 0.05). 

The genotoxicity of SFN was also measured in both cell lines using comet assay 

(Figure 3.2A), doses tested were 1.25 to 20 µM to avoid strong cytotoxicity. Baseline DNA 

damage, represented as tail intensity percentage, in HHL5 and in HepG2 was 7.58 and 15.94% 

respectively. This difference may be caused the genomic instability of the cancer cells 

compared to the normal cells. After 24 hours, there was a significant increase of DNA damage 

from 20 μM SFN treatment in both cell lines, 21.15 and 24.57% in HHL5 and HepG2 

respectively, i.e. 20 μM SFN induced a 2.8-fold increase in DNA damage in HHL5 compared 

to control but only 1.5-fold in HepG2. Furthermore, at 1.25 to 10 µM SFN decreased DNA 

damage in HepG2 cells but not in HHL5 cells. 

To avoid activating the DNA repair process, which usually happens after 30 mins of 

genotoxic insults, the comet assay was performed with 20, 40, 80 μM SFN treatment for 30 

min in both cell lines (Figure 3.2B). Results showed SFN caused DNA damage in a dose-

dependent manner in both cell lines, with a 2.8-fold increase at 80 μM SFN treatment in 

HHL5 and 1.8-fold in HepG2 compared to their corresponding control. These data are 

consistent with the cytotoxicity observed between HHL5 and HepG2 cells, that SFN is more 

toxic to HHL5 than to HepG2 cells. 
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Figure 3.1 Effect of SFN on cell viability in HHL5 and HepG2 cells. Cells were treated with 

different doses of SFN with DMSO (0.1%) as control for 24 hours, then cell viability was 

determined by MTT assay. Result represents the mean ± SD (n ≥ 5). Statistical significance 

from the control, *p < 0.05, **p < 0.01. Lines drawn on the graph indicates that all the bars 

included are significantly different from their corresponding control group. 
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Figure 3.2 Effect of SFN on DNA damage in HHL5 and HepG2 cells. Cells were treated with 

different doses of SFN with DMSO (0.1%) as control for 24 hours (A) or 30 min (B), then DNA 

damage was determined by comet assay. Result represents the mean ± SD (n ≥ 3). Statistical 

significance from the control, *p < 0.05, **p < 0.01. 
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3.2.2 Effect of H2O2 on cell viability and DNA damage 

The cytotoxicity of 24 hours’ treatment of H2O2 was measured by MTT assay in both HHL5 

and HepG2 cells (Figure 3.3A). The IC50 values were 374.3 and 667.4 μM in HHL5 and HepG2 

cells respectively. Interestingly, low doses of H2O2 (31.25 to 125 μM) significantly increased 

cell viability in HepG2 cells. 

To establish the base line using H2O2 as an oxidative stress to induce DNA damage, 

cells were treated with different concentrations of H2O2 for 30 mins and the DNA damage 

was measured by comet assay. As shown in Figure 3.3B, H2O2 induced DNA damage in both 

cell lines in a dose-dependent manner at 30 mins. Also, the increased magnitude of DNA 

damage in HHL5 cells was higher in comparison to that of HepG2 cells at all the doses with 

greater significant differences at higher doses (90 and 120 μM). Taken together, these data 

indicated that HepG2 cells were much more resistant to H2O2 oxidative stress compared to 

HHL5 cells. 
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Figure 3.3 Effect of H2O2 on cell viability and DNA damage in HHL5 and HepG2 cells. (A) Cells 

viability was determined after 24 hours by MTT assay, result represents the mean ± SD (n ≥ 

5). (B) DNA damage was measured after 30 mins by comet assay. Tail intensity were 

measured for at least 100 comets per sample. Statistical significance from the control, *p < 

0.05, **p < 0.01. Lines drawn on the graph indicates that all the bars included are significantly 

different from their corresponding control group. 
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3.2.3 Protective effect of SFN against H2O2-induced cell injury 

The protective effect of SFN against H2O2-induced cell death in both cell lines was determined 

by MTT assay (Figure 3.4A). Cells were pre-treated with SFN (1.25 to 20 µM) for 24 hours 

then treated with H2O2 for another 24 hours. The dose of H2O2 treatment followed the IC50 

value in each cell lines, i.e. 400 µM and 700 µM in HHL5 and HepG2 respectively. In HHL5, 

when the cells were pre-treated with 1.25 to 5 µM SFN, cell death induced by H2O2 was 

alleviated, however pre-treatment with 10 and 20 µM SFN lead to more cell death compared 

to H2O2 treatment (pre-treated with control). However, in HepG2, the protective effect was 

observed from 1.25 to 20 µM SFN pre-treatments in the MTT assay, which was further 

confirmed using an Annexin V/PI double staining. As shown in Figure 3.4B, H2O2 caused 

significant apoptotic cell death: 5.63% necrotic cells (PI positive) and 30.23% apoptotic cells 

(Annexin V positive). Pre-treatment with SFN (1.25 to 20 µM) significantly reduced the 

cytotoxicity induced by H2O2 with an observable increase in the viable cell percentage 

(double negative) relative to the non-pre-treated cells. 

Next, whether SFN could protect against H2O2-induced DNA damage was tested by 

comet assay (Figure 3.5A). Cells were pre-treated with SFN (2.5, 5, 10 µM) for 24 hours then 

followed by 60 µM H2O2 treatment for 30 mins. Results showed that in HHL5, only SFN 5 µM 

pre-treatment provided significant protection against H2O2-induced DNA damage; while in 

HepG2, there was a dose-dependent protective effect from SFN pre-treatment. This result 

agreed with the changes of p-Chk2 (Thr68) at the protein level observed from Western 

blotting (Figure 3.5B). The phosphorylation of checkpoint kinase 2 (Chk2) indicates its 

activation, which is well documented as a cellular response to DNA damage279. H2O2 markedly 

increased the level of p-Chk2 whereas with SFN pre-treatment, p-Chk2 protein decreased in 

a dose-dependent manner in HepG2 but not in HHL5. These results indicated that SFN 

substantially reduced the DNA damage caused by H2O2 in HepG2 but not in HHL5 cells. 

Together, these results suggested that HepG2 cells utilized the protective effect of 

SFN better than HHL5 against the cytotoxic effect of H2O2. 
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Figure 3.4 Protective effect of SFN against H2O2-induced cell injury. (A) Cells were pre-treated 

with different doses of SFN for 24 hours and then incubated with H2O2 (60 µM) for another 

24 hours. Cell viability was measured by MTT assay, result represents the mean ± SD (n ≥ 5). 

Statistical significance from H2O2 control, *p < 0.05, **p < 0.01. (B) HepG2 cells were pre-

treated with SFN for 24 hours before exposure to H2O2 (700 µM) for 24 hours, followed by 

Annexin V/PI staining detected by a flow cytometer. Result represents apoptotic and necrotic 

cells percentage as mean ± SD (n = 3). 

  



67 
 

 

Figure 3.5 Protective effect of SFN against H2O2-induced DNA damage. Cells were pre-treated 

with different doses of SFN for 24 hours and then incubated with H2O2 for another 30 mins. 

DNA damage was measured by comet assay. (A) Tail intensity were measured for at least 100 

comets per sample. Statistical significance from H2O2 control, *p < 0.05, **p < 0.01. (B) The 

protein level of p-Chk2 in whole cell lysates was detected by Western blot and normalized 

against β–actin. 
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3.2.4 Effect of SFN on intracellular ROS and GSH 

The redox statues in HHL5 and HepG2 cells was investigated by examining the ROS and GSH 

levels under the basal and SFN treated conditions. HepG2 cells, which were observed to be 

less sensitive towards SFN and H2O2 treatment, had higher basal levels of ROS than HHL5 

cells by approximately 1.5-fold (Figure 3.6A). The basal level of intracellular GSH was 43.9 ± 

6.1 nmol/mg in HHL-5 and 60.7 ± 8.5 nmol/mg protein in HepG2. As shown in Figure 3.6B, 24 

hours of SFN treatment dose-dependently increased the levels of ROS compared to control 

cells in HHL5 cells but decreased in HepG2 cells. On the other hand, in both cell lines SFN 

increased GSH levels compared to control after 24 hours in a dose-dependent manner. 

However, there was a drop of GSH level between 10 and 20 µM SFN treatment in HHL5 but 

not in HepG2 cells. In HHL5, GSH level was 2.2-fold increased with 10 µM SFN but only 1.8-

fold increased with 20 µM SFN compared to control at 24 hours; while in HepG2, GSH level 

was 2.2-fold and 2.4-fold increased with 10 and 20 µM SFN treatment, respectively. 

Further time courses of the GSH levels upon 10 µM SFN treatments in both cell lines 

were studied (Figure 3.6C). Result indicated SFN caused a biphasic depletion and restoration 

of GSH in both cell lines. The depletion happened in HHL5 cells at 3 and 6 hours after SFN 

exposure, the GSH level decreased to 60 and 72% of control levels respectively. In HepG2 

cells, GSH level decreased to 51% at 3 hours of SFN treatment but back to control levels at 6 

hours. At 24 hours, the GSH level increased around 2-fold of control in both cell lines. These 

results were in accordance with that demonstrated by Kim and coworkers280 who showed 

the early down regulation between 0 and 4 hours and up regulation between 4 and 24 hours 

on HepG2-C8 cells. 

Taken together, these data indicated that ROS and GSH levels in cancerous cells are 

higher than those in non-cancer cells, and different patterns of ROS and GSH changes caused 

by SFN treatment may link to the cytotoxic effect of itself and the protective effect of SFN 

against H2O2 insult. 
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Figure 3.6 Effect of SFN on intracellular ROS and GSH levels in HHL5 and HepG2 cells. Cells 

were treated with different doses of SFN with DMSO (0.1%) as control for 24 hours. (A) The 

intracellular ROS was determined by measuring the fluorescent intensity of oxidized DCF, 

result represents the mean ± SD (n ≥ 5). Statistical significance from control, *p < 0.05, **p < 

0.01. (B) The intracellular GSH level was measured by HPLC, result represents the mean ± SD 

(n = 3). Statistical significance from control, *p < 0.05, **p < 0.01. (C) Cells were treated with 

10 µM SFN for 0, 3, 6, 12, 24 hours, the intracellular GSH level was measured by HPLC. Result 

represents the mean ± SD (n=3). Statistical significance from control, *p < 0.05, **p < 0.01. 

  



70 
 

3.2.5 Effect of SFN on nuclear Nrf2 accumulation 

Since Nrf2 translocation to the nucleus is one of the key events required in the regulation of 

the Nrf2-Keap1-ARE signalling pathway, it is important to determine the time- and dose- 

response of SFN on this translocation in our cell lines. Here the time and dose courses of 

activation Nrf2 by SFN were tested in both cell lines. As shown in Figure 3.7, untreated HHL5 

and HepG2 cells had low Nrf2 levels in the nucleus consistent with the continuous 

degradation of Nrf2 under homeostasis. Upon SFN treatment, a prompt increase of Nrf2 

appeared after 1 hour in both cell lines, suggesting the liberation of Nrf2 from Keap1 

suppression and subsequent Nrf2 nuclear translocation. The nuclear accumulation of Nrf2 

plateaued after 2 hours and remained steady for 24 hours. The dose response from 4 hours 

SFN treatment in HHL5 cells agreed with previous studies80. In HepG2, SFN at 2.5 to 20 µM 

also induced significant and dose-dependent translocation of Nrf2 into the nucleus. 

Comparing the basal and induced level of nuclear Nrf2 in these two cell lines, HepG2 showed 

3.3-fold higher basal level than HHL5. In addition, 5 µM SFN induced 2.9- and 6.2-fold 

increase of Nrf2 protein level in HHL5 and HepG2 cells respectively at 4 hours. 

Taken together, there is time- and dose- dependent induction of nuclear Nrf2 level 

by SFN in both cell lines; HepG2 cells showed significantly higher basal level than HHL5 and 

SFN induced a higher level of Nrf2 translocation to the nucleus compared to control in HepG2 

cells than that in HHL5 cells. 
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Figure 3.7 Effect of SFN on Nrf2 nuclear translocation. (A) Cells were treated with 10 µM SFN 

for 0, 1, 2, 4, 10, 24 hours. (B) Cells were treated with SFN 0, 2.5, 5, 10, 20 µM for 4 hours. 

(C) Cells were treated with SFN 5 µM or DMSO 0.1% for 4 hours. Nuclear protein was 

extracted and Nrf2 was detected by Western blotting. RNA-binding protein SAM was used as 

a loading control. 
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3.2.6 The role of Nrf2 and GSH in cytotoxic and cytoprotective effects of SFN 

Since higher basal levels of Nrf2 and GSH were observed in HepG2 cells compared to that in 

HHL5 cells, their role in the cytotoxic effect of SFN was investigated further. BSO, a specific 

inhibitor of γ-GCS, was used to decrease the GSH level. The inhibition efficiency of BSO on 

the intracellular GSH level was characterized using HPLC (Appendix Figure 1). 50 µM BSO was 

chosen to be the co-treatment dose with SFN as it showed 60-80% reduction in the GSH level 

and abolished the SFN-induced GSH rise. Nrf2 knockdown was achieved by siRNA 

transfection. The siRNA knockdown efficiency of Nrf2 was measured using Western blot 

analysis (Appendix Figure 2). 

As shown in Figure 3.8, at 24 hours, 50 µM BSO only reduced cell viability of HepG2 

cells to 97.9%. 60 µM SFN decreased HepG2 cell viability to 47.6% which agreed with 

previous data; while co-treatment with BSO reduced the cell viability further to 25.7%. 

Furthermore, in Allstar transfected cells, SFN 60 µM decreased cell viability to 49.5% of 

DMSO control; while in siNrf2 transfected cells, SFN decreased cell viability to 15.3% of 

DMSO control. These data clearly indicated that by reducing Nrf2 and GSH level in HepG2 

cells, SFN became more toxic. 

Next, to investigate whether Nrf2 is the main gene responsible for the cytoprotective 

effect of SFN against H2O2-induced cell death in HepG2 cells, cells were transfected with 

siNrf2 (and Allstar as negative control), pre-treated with 5 µM SFN for 24 hours followed by 

H2O2 insult for another 24 hours. As shown in Figure 3.9, Nrf2 knockdown enhanced the 

cytotoxicity of H2O2, i.e. cell viability was 47.6, 40.0 and 24.6% in the non-transfected, Allstar 

transfected and siNrf2 transfected cells respectively. 5 µM SFN decreased the cytotoxicity of 

H2O2 in non-transfected and Allstar negative control cells, while the protective effect from 

SFN was abolished upon Nrf2 knockdown. The involvement of GSH in the SFN cytoprotective 

effect was also studied. Co-treatment with BSO and 5 µM SFN showed no protective effect 

against H2O2. Therefore, it can be concluded that the Nrf2/GSH signalling pathway plays an 

essential role in the protective effect of SFN against H2O2. 
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Figure 3.8 Effect of GSH inhibition and Nrf2 knockdown on cytotoxicity in HepG2 cells 

exposed to SFN. Nrf2 was knocked down using siRNA as described in Methods. Allstars (AS) 

was used as a negative control. Cells were incubated with 60 μM SFN or DMSO (0.1%) with 

or without 50 μM BSO for 24 hours. Cell viability was measured by MTT assay, result 

represents the mean ± SD (n ≥ 5). Within indicated two columns, SFN treated groups were 

normalized against the mean of corresponding control groups. A student’s t-test was then 

performed to determine any statistical difference between two groups. **p < 0.01 between 

the indicated groups. 
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Figure 3.9 Effect of Nrf2 knockdown and GSH inhibition on the protective effect of SFN 

against H2O2 in HepG2 cells. Nrf2 was knocked down using siRNA as described in Methods. 

Allstars (AS) was used as a negative control. Cells were incubated with 5 μM SFN or DMSO 

(0.1%) with or without 50 μM BSO for 24 hours, then exposure to 800 μM H2O2 for another 

24 hours. Cell viability was measured by MTT assay, result represents the mean ± SD (n ≥ 5). 

Within indicated two columns, SFN treated groups were normalized against the mean of 

corresponding control groups. A student’s t-test was then performed to determine any 

statistical difference between two groups.  **p < 0.01 between the indicated groups. 
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3.3 Discussion 

A successful chemopreventive agent should have a minimal effect on normal cells but a 

strong inhibitory effect on cell proliferation and carcinogenic pathways in cancer cells. While 

there are many studies on both protective and cytotoxic effects of SFN, there is little on 

comparing its effect on normal cells with cancer cells. The presented study is the first to 

compare the effects of SFN on the immortalised hepatocytes HHL5 versus the tumorigenic 

liver cell line HepG2. 

SFN showed stronger cytotoxicity and genotoxicity in HHL5 than in HepG2. At 24 

hours, 10 µM SFN started to inhibit cell viability and induce DNA damage in HHL5 while in 

HepG2 only 20 µM SFN started to have significant cytotoxic and genotoxic effect. HHL5 cells 

were also more susceptive to H2O2-induced cell death and DNA damage compare to HepG2 

cells. H2O2 is continuously generated in living cells through metabolic pathways and serves 

as a source of ROS. The intracellular concentration of H2O2 is tightly controlled within 1 to 

700 nM while above 1 µM is considered to cause oxidative stress inducing growth arrest and 

cell death281. The half-life of H2O2 is longer than that of other ROS and it has often been used 

in the oxidative stress injury model with hepatocytes as well as other cell types282. Therefore, 

H2O2 was chosen to induce oxidative stress in this study. Since the cytotoxic effects of SFN 

and H2O2 have been linked to the disruption of the redox status of the cells283,284, the different 

sensitivities towards oxidative stress between these two cell lines observed is likely due to 

their differences in the basal redox status. 

Indeed, results showed that HepG2 cells had higher basal levels of intracellular ROS, 

GSH and nuclear Nrf2 than HHL5. ROS such as hydroxyl radical (•OH), superoxide anion (O2
•-) 

and H2O2 are of importance in physiological functions such as second messengers282. A high 

ROS level is a common feature of cancer cells, which contributes to intracellular signalling 

cascades necessary for the tumour initiation, promotion and progression, as well as, tumour 

resistance to chemotherapy285. Elevated ROS in cancer cells could enhance cell proliferation 

and survival, increase genomic instability, thereby sustaining the oncogenic phenotype282. 

On the other hand, excessive ROS could also trigger redox imbalance which leads to 

apoptotic cell death285. In this study, the higher ROS level in HepG2 cells observed agreed 

with the higher basal level of DNA damage showed in comet assays compared with HHL5 

cells; the higher basal level of GSH and Nrf2 in HepG2 cells could indicate an enhanced 

defence system against ROS compared to that in HHL5 cells. 
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More interestingly, SFN decreased the ROS level in HepG2 cells (1.25-20 µM) while 

increasing ROS in HHL5 cells (2-20 µM). SFN also increased nuclear Nrf2 levels and 

intracellular GSH levels in both cell lines but with slightly different patterns. Short term SFN 

exposure (3-6 hours) had a longer depletion effect on intracellular GSH and lower induction 

of Nrf2 nuclear accumulation in HHL5 cells compared to in HepG2 cells. These findings 

indicated SFN may exhibit strong pro-survival effects in HepG2 cells which is in line with the 

results demonstrated in 3.2.3. 24 hours pre-treatment of SFN provided protection against 

H2O2-induced cell injury in both cell lines. However, in HHL5 cells, SFN at high doses (10-20 

µM) failed to show protective effect against H2O2-induced cell death and DNA damage. 

Nrf2 is generally considered as the main defence mechanism of the cell and a major 

regulator of cell survival. Nrf2 deficient mice are more susceptive to carcinogenesis286,287. 

Many have reported the chemopreventive effect of Nrf2 in cancer288. The simultaneous 

induction of both Nrf2 and GSH from SFN is beneficial in healthy tissue. In mouse embryonic 

fibroblasts, the Nrf2-dependent up-regulation of GSH was found to be the principal 

mechanism by which SFN pre-treatment induced resistance to unsaturated carbonyl 

compounds, hydroperoxides and genotoxic electrophiles177. Li et al reported SFN protected 

human vascular endothelial cells against lysophosphatidylcholine-induced injury by the 

activation of Nrf2 and its downstream targets such as endogenous antioxidants GSH and 

phase II enzymes289. SFN also exerted neuroprotective effects with increased levels of Nrf2 

expression and total GSH in the brain within an in vivo Parkinson's disease model93. In rat, 

SFN increased the level of Nrf2 and GSH and attenuated hepatic ischemia reperfusion 

injury290. During chemotherapy, such SFN activity might provide protection in normal cells 

against the effects of cytostatics. For example, the cytotoxicity of 5-fluorouracil and SFN 

mixture was lower than the sum of the effects of the single compounds in V-79 Chinese 

hamster lung fibroblasts291. 

However, the results of the presented study indicated that in HepG2, both Nrf2 and 

GSH substantially contributed to the preservation of cell integrity under conditions of SFN 

and H2O2 treatment, i.e., inhibition of Nrf2/GSH increased SFN cytotoxicity and decreased its 

cytoprotective effect against H2O2 in HepG2. The knockdown of Nrf2 increased the cell death 

even further in both cases compared to GSH inhibition, indicating that more Nrf2 targets 

might be involved. Essentially, Nrf2 protects not only normal cells but also 

transforming/cancer cells. With increasing evidence suggesting that Nrf2 was upregulated in 

cancer cells or resistance strains292,293, and contributed to the aggressive cancer phenotype294, 
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it became more important to rationalise the usage of Nrf2 activators such as SFN. In this 

study, HepG2 cells were more able to take advantage of the SFN-induced beneficial effects, 

and better resist SFN-induced disruptions than HHL5 cells, indicating a potential risk of using 

SFN for chemoprevention. More rigorous dose-response comparisons of efficacy versus 

toxicity need to be performed with consideration of the differences between normal and 

cancer cells. 

In conclusion, HepG2 cells were more resistant to SFN exposure which may be due 

to their intrinsic high levels of Nrf2/GSH. SFN exhibited strong cytoprotective effects due to 

the activation of Nrf2 and the induction of GSH in both cell lines with a wider tested dose 

range observed in HepG2 compared to that in HHL5. Although in vitro studies do not 

necessarily predict in vivo outcomes, these findings raise a question that SFN may induce 

pro-survival effects in cancer cells. 
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Chapter 4. Anticancer activities of SFN compared with its metabolites 

4.1 Introduction 

The absorption, distribution, metabolism, and excretion characteristics of bioactive agents 

influence their ultimate effectiveness. SFN undergoes extensive first-pass metabolism in the 

gut epithelium or liver via the mercapturic acid pathway summarized in Figure 4.1. It has not 

been determined whether the bioactivity of SFN is due to its conjugates themselves or to 

parent SFN released by deconjugation reactions. According to Conaway et al, the half-life of 

decomposition for the Cys conjugates were several fold shorter than that for respective GSH 

conjugates, while the NAC conjugates had the longest at pH 7.4 and 37 °C295. Other studies 

agreed with Conaway et al that the stability of SFN metabolites increased as the pH 

decreased; and that SFN-NAC showed the longest decomposition half-life among all the 

metabolites in human plasma296. It was speculated that conjugates could be regarded as a 

transport form of SFN as they are unstable and readily dissociate to SFN or undergo exchange 

reactions with free thiols297. However, the greater solubility in aqueous media of these 

metabolites plus the different distribution of concentrations observed in the process of 

metabolism, suggests that they would be a preferred form for clinical chemoprevention trials 

in certain cases. 

 

Figure 4.1 The mercapturic acid pathway of SFN. 

Several studies have shown the potency of those metabolites as chemopreventive 

agents. SFN and SFN-GSH concentrations in the small intestine were 3 -13 nmol/g of tissue 

and 14-32 nmol/g of tissue respectively in a mouse feeding model298, and both of them 

increased significantly the mRNA level of UGT1A1 and GSTA1 in HepG2 and HT29 cells299. 

SFN-Cys was reported to induce apoptosis in human non-small lung cancer cells300 and to 
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suppress invasion in human prostate cancer cells301. SFN-NAC has been shown to exhibit 

equally if not more potent chemopreventive activities in comparison with SFN: in human 

prostate cancer LNCaP cell line model they have similar potentials to induce growth arrest 

and apoptosis302; they also inhibited lung adenoma induced by tobacco carcinogens and the 

development of adenomas to adenocarcinomas in mice303. In murine hepatoma cells both 

SFN and SFN-NAC caused dose-related cell growth inhibition and NQO1 induction304. Most 

importantly, as the major excretory product found in the urine with much higher 

concentrations compared to plasma39, SFN-NAC has been studied to target bladder cancer305. 

Recent research has shown that SFN and its metabolites act as histone deacetylase (HDAC) 

inhibitors. Biochemical assays found that SFN metabolites did indeed inhibit HDAC activity in 

vitro, with the greatest inhibition involving SFN-NAC and SFN-Cys. Molecular modelling in the 

active site of an HDAC enzyme provided evidence that SFN-Cys fits within the HDAC pocket 

and had comparable geometry to known pharmacological HDAC inhibitors: trichostatin A 

and suberoylanilide hydroxamic acid in the active site, with the α-carboxyl group of the 

cysteine moiety forming a bidentate ligand with the buried zinc atom306. On the other hand, 

SFN is known to inhibit the activities of CYPs, namely CYP3A4 and CYP2D6, while these 

metabolites only showed inhibition on CYP2D6 in human liver microsomes307. Others 

reported that SFN-NAC were inactive as anti-initiators against azoxymethane induced colonic 

aberrant crypt foci compared with SFN in F344 rats feeding308, and the induction of ARE by 

SFN was 8.6-fold higher than that by SFN-NAC in HepG2-C8 cells280. 

The cytotoxic and cytoprotective effect of SFN on HHL5 and HepG2 cells was 

demonstrated in the previous Chapter. Since there are very few studies that focused on the 

bioactivity of SFN metabolites, this study aims to compare the anticancer activity of SFN with 

its metabolites: SFN-GSH, SFN-Cys, and SFN-NAC. 
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4.2 Results 

4.2.1 Cytotoxicity, genotoxicity and tumorigenicity of SFN vs its metabolites 

The cytotoxic potential of SFN and its metabolites SFN-GSH, SFN-Cys and SFN-NAC were 

determined in HHL5 and HepG2 cells by MTT assay. As shown in Figure 4.2, all these 

compounds induced cytotoxicity in a dose-dependent manner in both cell lines. At the 

highest concentrations tested, SFN showed stronger cytotoxicity than three of its 

metabolites in both cell lines (p < 0.01). In HHL5, SFN-Cys exhibited less cytotoxicity than 

other metabolites; while in HepG2, there was no significant differences between the 

cytotoxicity from metabolites. 

The genotoxicity of SFN was examined previously in Chapter 3, results showed that 

at 20 µM, SFN caused significant DNA damage in both cell lines after 24 hours. To test 

whether there was a significant difference between the genotoxicity of SFN and its 

metabolites, cells were treated with 20 µM SFN or its metabolites for 24 hours and the DNA 

damage was measured by comet assay. As shown in Figure 4.3, data from the SFN group 

agreed with previous data and there was no significant difference between SFN and these 

three metabolites. 

To further evaluate the effects of SFN and its metabolites on cancer cell growth, a 

colony formation assay was conducted with HepG2 cells. Figure 4.4A showed colonies 

formed following SFN treatment compared to controls, quantitative results indicated that 

SFN suppressed the formation of colonies in a dose-dependent manner (Figure 4.4B). 10 µM 

was chosen when comparing SFN with its metabolites, as shown in Figure 4.4C, there was no 

significant difference between the inhibitory effect of SFN and its metabolites on HepG2 

colony formation. 
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Figure 4.2 Effect of SFN and its metabolites on cell viability in HHL5 and HepG2 cells. (A) HHL5 

and (B) HepG2 cells were treated with different doses of SFN or its metabolites for 24 hours, 

then cell viability was determined by MTT assay with DMSO (0.1%) as control. Result 

represents the mean ± SD (n ≥ 5). Statistical significance within groups treated with the same 

dose, *p < 0.05, **p < 0.01. 

 

  



82 
 

 

Figure 4.3 Effect of SFN and its metabolites on DNA damage in HHL5 and HepG2 cells. Cells 

were treated with 10 µM SFN or metabolites with DMSO (0.1%) as control for 24 hours, then 

DNA damage was determined by comet assay. Tail intensity was measured for at least 100 

comets per sample. 
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Figure 4.4 Effect of SFN and its metabolites on HepG2 colony formation. Cells were treated 

with 1.25, 5 and 20 µM SFN with DMSO (0.1%) as control for 24 hours, then seeded into 6-

well plates at a density of 2 × 103 cells/well in triplicate per treatment. After 14 days of 

incubation, formed colonies were stained for photograph (A) and quantified (B). Statistical 

significance from the control, *p < 0.05, **p < 0.01. (C) HepG2 cells were treated with 10 µM 

SFN or metabolites with DMSO (0.1%) as control, followed by colony formation as above. 

Formed colonies were stained for photograph (C) and quantified (D). Result represents the 

mean ± SD (n = 3). 
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4.2.2 Effect of SFN vs its metabolites on cancer cell migration 

Given that migration of cancer cells is an essential step for tumour metastasis and cell 

adhesion ability could help tumour cells colonize at new sites during metastasis309, further 

investigation to whether SFN and its metabolites affect cell migration and adhesion was 

conducted. 

Wound assays were performed to measure HepG2 cell migration after 48 hours 

under different doses of SFN treatment. As shown in Figure 4.5, SFN potently inhibited cell 

migration of HepG2 cells in a dose-dependent manner. At 20 µM, SFN reduced cell migration 

to 70.8% compared to control (0.1% DMSO). However, there was no significant difference 

between SFN and its metabolites in terms of their ability to inhibit cell migration. 

The effect of SFN and its metabolites on cell-ECM interactions were measured by 

adhesion assay (Figure 4.6). 96-well plates were coated with two major kinds of ECM proteins: 

type I collagen and fibronectin, and PLL as a negative control for integrin-based cell adhesion. 

After a 1.5 hours incubation, HepG2 cell adhesion ability under different doses of SFN 

treatment was quantified. Results showed that SFN suppressed adhesion of HepG2 cells to 

all three coatings of ECM, with the strongest influence on collagen and weakest on PLL. 20 

µM SFN significantly inhibited cell adhesion on both collagen and fibronectin but not PLL, 

further comparison studies with 20 µM SFN or its three metabolites in adhesion assays 

showed that the metabolites did not change the selectivity towards ECM and their inhibitory 

effects were not as strong as the effect of SFN. 
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Figure 4.5 Effect of SFN and its metabolites on HepG2 cell migration. Cells were treated with 

1.25 to 20 µM SFN (A) or 20 µM SFN or metabolites (B) for 48 hours with DMSO (0.1%) as 

control, cell migration was then measured by wound assay. Data are presented as mean ± 

SD (n ≥ 5), *p < 0.05, ** p< 0.01 compared to control. 
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Figure 4.6 Effect of SFN and its metabolites on HepG2 cell adhesion. Cells were treated with 

1.25 to 20 µM SFN (A) or 20 µM SFN or metabolites (B) for 1.5 hours with DMSO (0.1%) as 

control was measured by adhesion assay. Data are presented as mean ± SD (n ≥ 6), *p < 0.05, 

** p< 0.01 compared to control. 
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4.2.3 Effect of SFN vs its metabolites on angiogenesis 

Angiogenesis, a process leading to the formation of new blood vessels, is required for both 

cancer progression and metastasis247. HUVEC populations are very responsive to compounds 

that modulate angiogenic responses, so HUVECs were used to examine the anti-angiogenic 

effects of SFN compared with its metabolites. Firstly, their effects on cell viability was tested 

by MTT assay after 24h treatment. As shown in Figure 4.7A, a dose-dependent inhibition in 

cell viability was observed from both SFN and its metabolites compared to DMSO control. 

SFN showed the highest cytotoxicity compared with SFN-Cys, SFN-NAC and SFN-GSH. 

Secondly, the effect on HUVEC migration was measured using a wound assay (Figure 

4.7B). At 12 hours, 20 µM SFN significantly reduced HUVEC migration to the wound area 

indicated by a nearly 2-fold increase of the wound area compared to control, while SFN-Cys 

and SFN-NAC exhibited inhibitory effects similar to that of SFN, but SFN-GSH significantly less 

effective in inhibiting HUVEC cell migration (p < 0.01). 

Finally, the effect of SFN and its metabolites on tube formation was examined in the 

3D co-culture HUVEC with pericytes model (Figure 4.8). 10 µM SFN significantly inhibited 

tube formation of HUVECs, the average total tube length was 3.37 and 0.99 mm/mm2 in the 

control and SFN treated groups. At the same dose, there was no significant difference 

between this inhibitory effect using SFN, SFN-Cys or SFN-NAC; SFN-GSH however, showed a 

modestly weaker inhibition (1.46 mm/mm2 total tube length). 

In conclusion, SFN remain the strongest inhibitor to HUVEC cell viability, migration 

and tube formation, followed by SFN-Cys and SFN-NAC, SFN-GSH showed the weakest 

inhibitory effect among all the metabolites. 
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Figure 4.7 Effect of SFN and its metabolites on HUVEC cell viability and migration. (A) Cells 

were treated with 1.25 to 40 µM SFN or its metabolites for 24 hours with DMSO (0.1%) as 

control, cell viability was then determined by MTT assay. Result represents the mean ± SD (n 

≥ 5). Statistical significance within groups treated with the same dose, *p < 0.05. (B) Cell 

migration at 12 hours 20 µM SFN or its metabolites with DMSO (0.1%) as control was 

measured by wound assay. Data are presented as mean ± SD (n ≥ 5), *p < 0.05 compared to 

SFN treated group. 
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Figure 4.8 Effect of SFN and its metabolites on HUVEC tube formation in the 3D co-culture 

with pericytes. (A) The total lengths of CD31 positive tubes formed in treated groups (10 µM 

SFN or its metabolites) with DMSO (0.1%) as control were measured and expressed as mean 

± SD (n≥3), *p < 0.05 compared to SFN treated group. (B) Representative pictures from 3D 

co-culture. HUVEC were identified by immunodetection of CD31 (red), nuclei were stained 

(blue) and merged pictures are shown. Scale bar = 500 µm. 
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4.2.4 Protective effect of SFN vs its metabolites against H2O2 

Based on the results of the protective effect of SFN against H2O2-induced cell death in HHL5 

and HepG2 (Figure 3.4A), 2.5 and 10 µM were chosen to be the tested concentrations for 

SFN and its metabolites. Cells were pre-treated with SFN or metabolites for 24 hours 

followed by H2O2 treatment for another 24 hours, cell viability was measured by MTT assay. 

Results indicated that in HHL5, pre-treatment of 2.5 µM but not 10 µM of SFN or its 

metabolites reduced H2O2-induced cell death; while in HepG2, both 2.5 and 10 µM pre-

treatment showed a protective effect. In general, all three of the metabolites exhibited 

similar protective effects against H2O2 compared to SFN in both cell lines (Figure 4.9A); 

According to previous data (Figure 3.5A), 24 hours pre-treatment with 5 µM SFN 

significantly inhibited H2O2-induced DNA damage in HHL5 and HepG2 cells. Here, the 

protective effect of 5 µM SFN and its metabolites in both cell lines was measured by comet 

assay as previously. As shown in Figure 4.9B, SFN pre-treatment agreed with previous data, 

and there was no significant difference between the protective effect of SFN and its 

metabolites in both cell lines. 
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Figure 4.9. Protective effect of SFN and its metabolites against H2O2-induced cell injury. SG: 

SFN-GSH, SC: SFN-Cys, SN: SFN-NAC. (A) Cells were pre-treated with 2.5 or 10 µM SFN or 

metabolites for 24 hours and then incubated with H2O2 for another 24 hours. Cell viability 

was measured by MTT assay, result represents the mean ± SD (n ≥ 5). (B) Cells were pre-

treated with 5 µM SFN or metabolites for 24 hours and then incubated with H2O2 for another 

30 mins. DNA damage was measured by comet assay. Tail intensity were measured for at 

least 100 comets per sample. Statistical significance from H2O2 control, *p < 0.05, **p < 0.01. 
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4.2.5 Effect of SFN vs its metabolites on Nrf2 and GSH 

Since SFN can induce the translocation of Nrf2 to the nucleus in both cell lines in a time- and 

dose- dependent manner as shown in Figure 3.7, the same method was used to examine the 

function of its metabolites in terms of Nrf2 translocation and downstream phase II enzyme 

expression: TrxR1, NQO1 and HO-1. 

As illustrated in Figure 4.10A, 10 µM SFN and its metabolites induced a clear increase 

of nuclear Nrf2 protein levels in both cell lines at 4 hours and 18 hours, and no significant 

difference was observed between SFN and its metabolites in activation of Nrf2 translocation 

into the nucleus. To determine whether the nuclear accumulation of Nrf2 by SFN and its 

metabolites resulted in the up-regulation of Nrf2 target genes, the expression of TrxR1, 

NQO1 and HO-1 was measured after 24 hours by Western blotting. Results showed 

remarkable increases of the target protein levels trigged by SFN and its metabolites, which 

suggested that the nuclear translocation of Nrf2 had a functional downstream effect. Again, 

the metabolites showed similar induction of TrxR1, NQO1 and HO-1 compared to SFN in both 

cell lines (Figure 4.10B). 

The intracellular GSH changes at 24 hours in both cell lines were also measured using 

HPLC with DMSO (0.1%) as control. Both SFN and three of its metabolites induced at least a 

2-fold increase of GSH level in HHL5 and HepG2 cells, and there was no significant difference 

between SFN and its metabolites (Figure 4.10C). 
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Figure 4.10 Effect of SFN and its metabolites on Nrf2 signalling activation and GSH induction. 

(A) Cells were treated with 10 µM SFN or its metabolites for 4 or 18 hours with DMSO (0.1%) 

as control. Nuclear protein was extracted and Nrf2 was detected by Western blotting. SAM 

was used as a loading control. (B) Cells were treated with 10 µM SFN or its metabolites for 

24 hours with DMSO (0.1%) as control. Whole cell lysates were collected and TrxR1, NQO1, 

HO-1 were detected by Western blot. β-actin was used as a loading control. SG: SFN-GSH, SC: 

SFN-Cys, SN: SFN-NAC. (C) Cells were treated with 10 µM SFN or its metabolites for 24 hours 

with DMSO (0.1%) as control. The intracellular GSH level was measured by HPLC, results 

represented as the mean ± SD (n = 3). 
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4.3 Discussion 

In mice, immediate increases in the levels of SFN and its metabolites in plasma have been 

shown after oral administration310. The metabolites were produced within minutes after 

cellular uptake of SFN, and some showed longer decomposition time than SFN in the plasma, 

and also a different tissue distribution profile298,311,312. These observations point to the 

potential relevance for cancer protection of greater knowledge about the biological activity 

of these metabolites. 

SFN suppresses cancer development through various molecular targets that are 

involved in controlling cell proliferation, differentiation, apoptosis/autophagy, or cell 

cycle67,313. More recently, SFN has been found to induce DNA single118 or double-strand314 

breaks and inhibit nucleotide-excision repair123; suppress cancer stemness315; metastatic and 

angiogenic potentials67,316. Here, three major metabolites of SFN: SFN-GSH, SFN-Cys and SFN-

NAC were examined in terms of their cytotoxicity and genotoxicity in HHL5 and HepG2 cell 

lines, in comparison to SFN. The metabolites inhibited cell viability in a dose-dependent way 

without changing the selectivity of SFN, i.e. like SFN, all metabolites were more toxic towards 

HHL5 than HepG2. In addition, metabolites were less toxic compared to SFN especially in 

high doses (> 40 µM) in both cell lines. Both SFN and the metabolites induced significant DNA 

damage evidenced in comet assay, and no significant difference was found between the DNA 

damage caused by SFN or any of the metabolites in both cell lines. 

To further compare the anticancer activities of the metabolites with SFN, their 

effects on colony formation, cell migration and adhesion were studied in HepG2 cells. SFN 

suppressed the formation of colonies and cell motility in HepG2 cells in a dose-dependent 

manner. Using the same dose, its metabolites showed similar or slight weaker inhibitory 

effects. Notably, SFN selectively inhibited HepG2 cell adhesion on collagen compared to that 

on fibronectin and poly-l-lysine; and its metabolites showed the same selectivity. This 

indicated SFN and its metabolites influenced collagen-mediated cell adhesion which could 

be associated with the integrins alpha 1,2,10,11 in a heterodimer with beta1317,318. The 

effects of SFN on cancer cell motility has been reported. It inhibited cell migration in human 

gastric cancer cells132, bladder cancer cells180, prostate cancer cells319, oral carcinoma cells130, 

and in human glioblastoma cells320. SFN also supressed cancer cell migration by supressing 

EMT137,321. It also inhibited hypoxia-induced migration of human colon cancer cells134 and 

ovarian carcinoma cells322; and 12-O-tetradecanoyl phorbol-13-acetate induced cell invasion 

by suppressing NF-κB pathway in breast cancer cells323. Here SFN decreased HepG2 cell 
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migration which agreed with a previous study136, and the inhibitory effect of SFN metabolites: 

SFN-GSH, SFN-Cys, and SFN-NAC was also confirmed consistent with SFN itself. 

Angiogenesis is a prerequisite for tumour growth and metastasis95. The effects of 

SFN and its metabolites on HUVECs viability, migration and tube formation were compared 

for the first time. Results showed that SFN-Cys and SFN-NAC exhibited similar inhibition 

effects compared with SFN on HUVEC cell viability, migration and tube formation, while SFN-

GSH showed significant weaker inhibition of HUVEC cell migration. ECs have been reported 

as a novel target of SFN action both in vitro and in vivo145,146,324, further investigation was 

conducted in Chapter 5. 

The nuclear accumulation of Nrf2 in both HHL5 and HepG2 cells was induced by SFN 

as well as three of its metabolites. Previous studies have demonstrated that SFN induced 

TrxR-1 expression in dose- and time-dependent manners in HHL-5 and HepG280,325. Here the 

induction of TrxR1, NQO1 and HO-1 protein levels from 24 hours treatment of SFN or its 

metabolites in both cell lines were confirmed. No significant difference was observed 

between SFN and its metabolites in terms of their ability to activate Nrf2 translocation or to 

induce phase II enzymes. Further investigation of their effects on intracellular GSH also 

showed that SFN and its metabolites induced at least 2-fold increase of GSH after 24 hours 

in both cell lines. These data indicated the potential chemopreventive effect of SFN 

metabolites. Indeed, these metabolites showed similar protective effects against H2O2-

induced cell death and DNA damage in HHL5 and HepG2 cells compared to SFN. 

In summary, this study confirmed three of the major metabolites of SFN: SFN-GSH, 

SFN-Cys and SFN-NAC could decrease cell viability, induce DNA damage at high doses (>20 

µM) whilst protecting against H2O2-induced cell damage at lower doses (2.5-10 µM). There 

was no significant difference between SFN and its metabolites in activation of Nrf2 and 

downstream gene expression, as well as to increase intracellular GSH. In HepG2 cells, they 

showed similar inhibitory effects on colony formation, cell migration and adhesion. 

Furthermore, both SFN and its metabolites inhibited angiogenic processes such as EC 

proliferation, migration and tube formation. These results provide compelling evidence that 

the principal metabolites of SFN retain the anticancer activity of the parent molecule, and 

that it is necessary to study SFN metabolites using in vivo models. 
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Chapter 5. Anti-angiogenic effects of SFN in HCC 

5.1 Introduction 

Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide, and one of the 

most common causes of cancer death232. High mortality rates were reported in Asia and 

Africa, especially in less-developed regions326. Surgical resection or transplantation of liver 

offers the best prognosis among other limited treatments, but only 15% of HCC patients are 

suitable for surgical intervention after initial diagnosis. Non-surgical treatment is still in 

demand; however, most forms of HCC are highly radio- and chemo-resistant and desirable 

therapeutic outcome is often elusive in clinical cases327. Therefore, the development of new 

therapeutic agents for HCC patients is a priority. 

Angiogenesis is believed to play a central role in the development and progression 

of HCC which is one of the most vascularized solid tumours possessing high micro-vessel 

density328. Angiogenesis is a complex process consisting of the release of angiogenic factors, 

binding of angiogenic factors to receptors on ECs, EC activation, migration and proliferation, 

remodelling of the ECM and tube formation141. Recent evidence suggests that tumour 

angiogenesis, including HCC, involves cascades of signalling between tumour cells and the 

host stroma microenvironment and leads to the formation of structurally and functionally 

abnormal vessels which contribute to tumour growth and metastasis329. All these steps 

provide opportunities to halt tumour growth and even promote tumour regression, thus 

angiogenesis pathways represent an attractive therapeutic target for HCC. Sorafenib, a multi-

kinase inhibitor targeting amongst others VEGFR1, VEGFR2, and VEGFR3, was approved in 

2008 for patients with advanced HCC. Many more antiangiogenic agents have reached 

advanced phases of development for the treatment of HCC330. However, the therapeutic 

efficacy of these agents proved to be limited because of acquired drug resistance, serious 

toxic side effects and high cost327,329,331. Therefore, the identification of alternative agents 

targeting angiogenesis is considered an important strategy both for HCC prevention and 

treatment. 

In the case of HCC, SFN has shown chemopreventive332–334 and chemotherapeutic 

effects. It was found to decrease cell viability, telomerase activity256, and to induce apoptosis 

in hepatocellular carcinoma cells335,336 as well as in an orthotopic xenograft tumour model of 

HCC266. SFN also amplified TRAIL induced apoptotic signalling in TRAIL-resistant hepatoma 

cells337 and sensitized the radiosensitivity of HCC cells by blocking the NF-kB pathway338. 
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According to Wu et al, SFN also inhibits TGF-β-induced epithelial-mesenchymal transition of 

hepatocellular carcinoma cells via the ROS-dependent pathway136. A randomized, placebo-

controlled trial showed that the disposition of aflatoxin and phenanthrene, both of which 

could lead to high risk of HCC, was altered by the administration of glucosinolate-rich broccoli 

sprout preparations166. 

More recently, the effects of SFN on endothelial cell functions have been reported 

in vitro339,340 as well as in vivo146. SFN has been reported to inhibit NF-κB-regulated VEGF 

expression in human prostate cancer cells341; and hypoxia-induced HIF-1α and VEGF 

expression in human colon cancer cells134. It can also reduce the production of several pro-

inflammatory cytokines and pro-angiogenic growth factors in human breast cancer cells342; 

and enhance the therapeutic efficacy of TRAIL in a prostate cancer orthotopic model through 

regulation of apoptosis, metastasis, and angiogenesis147. 

Significantly, the effect of SFN on HCC angiogenesis has not been reported. To test 

the hypothesis that SFN would not only affect EC function but also the interaction between 

HCC cells and ECs, which would result in the suppression of tumour growth, HUVEC and 

HepG2 cells were employed to investigate the anti-angiogenic potential of SFN in vitro. Ex 

vivo aortic ring and in vivo tumour-bearing CAM models were also used to confirm the 

anticancer properties of SFN. Our findings indicated that SFN inhibited HepG2-induced 

angiogenesis and that this was associated with the inhibition of STAT3/ HIF-1α /VEGF 

signalling. Thus, the use of SFN could present a strategy for prevention and treatment of HCC. 
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5.2 Results 

5.2.1 Effect of SFN on HUVEC cell viability and migration 

Proliferation and migration are essential characteristics of ECs for the generation of new 

blood vessels. The MTT assay was employed to evaluate the toxicity of SFN to HUVEC cells. 

Cells were incubated with different doses of SFN for 24 hours. Results showed SFN inhibited 

cell viability in a dose-dependent manner (Figure 5.1A). As determined with logarithmic 

regression analyses, the IC50 of 24 hour SFN treatment was approximately 39.1 µM against 

HUVEC. In further experiments, 0 - 20 µM SFN dose was used to avoid a strong toxicity effect. 

To analyse the effect of SFN on HUVEC cell migration, a wound assay was performed 

on confluent monolayers of HUVEC cells. Vehicle control (0.1% DMSO) reformed a confluent 

monolayer within 24 hours so a 12-hour time point was chosen. SFN was tested across a 

concentration range of 1.25-20 µM. As showed in Figure 5.1B, SFN treatment inhibited 

HUVEC migration into the wound in a dose-dependent manner shown as the increased 

wound area compared to control. 
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Figure 5.1 Effect of SFN on cell viability and migration of HUVECs. (A) Cell viability at 24 hours 

SFN treatment was determined by MTT assay. (B) Cell migration at 12 hours SFN treatment 

was measured by wound assay. Data are presented as mean ± SD (n ≥ 5), **p < 0.01 

compared to control. 
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5.2.2 Effect of SFN on tube formation and microvessel sprouting 

It has become evident that the establishment of functional capillary networks by ECs, a 

crucial step for angiogenesis, depends heavily on the interactions and communications 

between ECs and the surrounding cells. A 3D co-culture model of HUVEC and pericytes M2 

was used to study the effect of SFN on HUVEC tube formation (Figure 5.2A and B). When 

cultured in collagen with pericytes, HUVECs form three-dimensional, capillary-like tubular 

structures. SFN at 10 µM reduced tube formation by 46% compared to control. The 

destructive effect suggested that SFN could disrupt the formation of enclosed capillary 

networks of HUVECs. 

The effect of SFN on angiogenesis was further explored in a 3D ex vivo mouse aortic 

ring assay (Figure 5.3A and B). This model approximates the complexities of angiogenesis in 

vivo, from endothelial cell activation to pericyte acquisition and remodelling. The 

microvessels sprouting from aortic rings embedded in collagen formed a network of vessels 

after around 5 days, while 5 µM SFN notably inhibited sprouting of microvessels. Together, 

these data demonstrated that SFN could inhibit angiogenesis. 
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Figure 5.2 Effect of SFN on tube formation of HUVECs in the 3D co-culture with pericytes 

model. (A) Representative pictures from 3D co-culture of HUVECs and pericytes M2 at day 4 

with SFN 0, 2.5, 10 µM. HUVEC were identified by immunodetection of CD31 (red), nuclei 

were stained (blue) and merged pictures are shown. Scale bar = 500 µm. (B) Total lengths of 

CD31 positive tubes were measured and expressed as mean ± SD (n≥5), *p < 0.05, ** p< 0.01 

compared to control. 
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Figure 5.3 Effect of SFN on microvessel sprouting in mouse aortic rings. (A) Dose response of 

SFN on microvessel sprouting from aortic rings embedded in collagen with DMSO (0.1%) as 

control. Data are presented as mean ± SD (n ≥ 5), **p < 0.01 compared to control. (B) 

Representative pictures from the immunofluorescent staining of aortic rings. Endothelial 

sprouts were stained with BS1-lectin-FITC (green), supporting cells were stained for α-

smooth muscle actin (red), nuclei were stained with DAPI (blue) and merged pictures are 

shown. Scale bar = 100 µm. 
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5.2.3 Effect of SFN on HepG2 stimulated migration, adhesion and tube formation of 

HUVECs 

Interaction between cancer cells and ECs is implicated in tumour angiogenesis and 

metastasis343. Therefore, the effect of HepG2 cells on HUVEC cell migration, adhesion and 

tube formation, in addition to the role of SFN in the interaction between HepG2 and HUVEC 

cells was examined. The cytotoxicity of SFN on HepG2 was assessed (Figure 3.1) and doses 

without a significant cytotoxic effect (≤ 20 µM) were used in all experiments. 

Firstly, the effect of SFN on the potential of HepG2 cells to promote migration of the 

HUVECs was investigated. HepG2 cells were treated with SFN at different doses for 24 hours, 

conditioned medium (CM) was then collected from DMSO treated groups (control CM) and 

from SFN (1.25-20 µM) treated groups. These CM were then used in the HUVEC wound assay 

to determine their effect on HUVEC migration (Figure 5.4A). Compared with serum-free 

controls, the gap area in control CM group was significantly smaller (p<0.05), indicating that 

CM from HepG2 cells stimulated HUVEC migration. In addition, this stimulation was 

suppressed by SFN treatment in a dose-dependent manner, which indicated that SFN 

treatment could inhibit the pro-migration effect of HepG2 cells on HUVECs. 

The ability of HepG2 to recruit ECs was then tested using the cell adhesion assay. 

Adhesion of HUVECs was tested on the monolayer of HepG2 cells pre-treated with different 

doses of SFN for 24 hours; CD31 was used for in-well immunoblotting to measure the number 

of HUVECs. Results showed a dose-dependent decrease of HUVEC cell numbers adhered to 

SFN pre-treated HepG2 cells (Figure 5.4B), which indicated the potential of HepG2 cells to 

attract HUVEC was significantly compromised by SFN treatment. 

Finally, the 3D co-culture tube formation model was modified, using HUVEC and 

HepG2 cells to investigate the effect of SFN on the formation of vascularization induced by 

HepG2. Co-culture of HUVECs with pericytes was used as positive control and HUVECs alone 

as negative control. As shown in Figure 5.5, HUVECs alone did not show any tubular 

structures after 3 days while HUVECs co-cultured with pericytes did. More interestingly, 

HUVEC co-cultured with HepG2 displayed scattered distribution of tubular structures 

indicating HepG2 could induce tube formation of HUVECs but the formed tubes were less 

mature compared to those induced by pericytes. This might because vessels induced by 

cancer cells either via angiogenesis or vasculogenesis are usually structurally and functionally 

abnormal344. Treatment with SFN inhibited the formation of the cellular network induced by 

HepG2, with almost no capillary tubes visible upon 20 µM treatment. Overall, these results 
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showed that SFN treatment inhibited the HepG2-induced chemotactic motility and tube 

formation of ECs. 

 

 

 

 

Figure 5.4 Effect of SFN on HepG2-stimulated migration and adhesion of HUVEC. (A) CM were 

collected from SFN treated HepG2 cells then added to HUVECs in the wound assay, with 

serum-free medium as control. Data are presented as mean ± SD (n ≥ 5), **p < 0.01 between 

the indicated groups. (B) Adhesion assay of HUVECs on 24 hours SFN pre-treated HepG2 cells 

was performed. Adherent HUVECs were then stained for CD31. Data are presented as mean 

± SEM (n ≥ 5), **p < 0.01 compared to control. 
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Figure 5.5 Effect of SFN on HepG2-stimulated tube formation of HUVEC. (A) 3D co-culture of 

HUVECs and HepG2 at day 3 treated with different doses of SFN. Total lengths of CD31 

positive tubes were measured and expressed as mean ± SD (n=5), ** p< 0.01 compared to 

control. (B) Representative pictures from 3D co-culture of HUVECs and HepG2, cells were 

then fixed and stained with CD31 (red) and DAPI (blue). Scale bar = 500 µm.  
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5.2.4 Effect of SFN on STAT3, HIF-1a and VEGF in HepG2 cells 

The induction of angiogenesis can be mediated by a variety of molecules released by tumour 

cells. VEGF is considered one of the most important angiogenic stimulators, and was 

identified as a key angiogenic signal in HCC. The expression of VEGF is largely controlled by 

two major transcription activators: signal transducer and activator of transcription 3 (STAT3) 

and HIF-1α. To further investigate the mechanism behind the inhibition effect of SFN on 

tumour angiogenesis, its effect on the STAT3/ HIF-1α /VEGF pathway was investigated in 

HepG2 cells. Immunoblotting revealed that STAT3 signalling is constitutively activated in 

HepG2 cells and SFN suppressed the expression of STAT3 in a dose-dependent manner. The 

effect of SFN on phospho-STAT3 (Tyr-705) was also investigated. However, reduced p-STAT3 

(Tyr705) expression was associated with a reduction of the total STAT3 protein levels as the 

ratio of pSTAT3/STAT3 were close to 1 (Figure 5.6). SFN at 10 and 20 µM significantly down-

regulated the expression of HIF-1α, and also dramatically inhibited cobalt chloride (CoCl2)-

induced accumulation of HIF-1α in a dose-dependent manner, indicating SFN inhibited the 

synthesis of HIF-1α. The protein expression level of VEGF-A was also reduced by SFN with or 

without CoCl2 induction, in accordance with the results of HIF-1α (Figure 5.7). These results 

demonstrated that SFN could down-regulate the STAT3/ HIF-1α /VEGF-A pathway in HepG2 

cells, and this could be the mechanism behind the inhibitory effect of SFN on HepG2-

stimulated migration and tubulogenesis of ECs. 
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Figure 5.6 Dose response of SFN on protein expression in HepG2 cells. Cells were treated 

with 0-20 µM SFN for 24 hours, whole cell lysates were collected as described and subjected 

to Western blotting for STAT3, HIF-1α and VEGF-A. β-actin was used as a loading control (A). 

Band densities were normalized against β-actin, and results were expressed as fold induction 

relative to controls (B). Data are expressed as means ± SD (n = 3). *p < 0.05, ** p< 0.01 

compared to control. 
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Figure 5.7 Dose response of SFN on protein expression in HepG2 cells under hypoxia. Cells 

were treated with 0-20 µM SFN without or with 0.1mM CoCl2 for 24 hours, whole cell lysates 

were collected as described and subjected to Western blotting for HIF-1α and VEGF-A. β-

actin was used as a loading control (A). Band densities were normalized against β-actin, and 

results were expressed as fold induction relative to controls (B). Data are expressed as means 

± SD (n = 3). *p < 0.05, **p < 0.01 compared to control. 
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5.2.5 Effect of SFN on tumour growth and angiogenesis 

A modified CAM assay was used to assess the influence of SFN on tumour growth and 

angiogenic potential of HepG2 cells in vivo. HepG2 cells (1 x 106) were mixed with growth 

factor reduced matrigel containing DMSO (0.1%) or SFN (20 µM), and incubated on top of 

the chicken embryo chorioallantoic membrane for 3 days. The tumours were then harvested 

and measured to calculate their volumes. The tumours treated with SFN had a significantly 

smaller volume compared with the control group (Figure 5.8A and B). H&E staining 

demonstrated massive areas of necrosis within SFN-treated tumours (Figure 5.8C). As HepG2 

cells were resistant to SFN toxicity, the reduction in tumour size by SFN is less likely to result 

from its effect on tumour cell population but to its effects on vasculature formation within 

tumour stroma. The results of IHC analysis showed that SFN reduced the level of HIF-1α and 

VEGF in the tumour tissues (Figure 5.8D and E), which is consistent with the in vitro results. 

Thus, SFN reduced tumour growth and angiogenesis. 
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Figure 5.8 Effect of SFN in the HepG2-bearing CAM model in vivo. (A) Representative photos 

of the tumour samples from control (0.1% DMSO) or SFN (20 µM) treatment. (B) The tumour 

volume was determined by direct measurement with callipers and results expressed as mean 

± SD (n = 5; **p < 0.01). (C) Representative pictures from H&E staining of tumours, scale bar 

= 200 µm. (D) Representative pictures from IHC staining for HIF-1α and VEGF-A of tumours, 

scale bar = 200 µm. (E) HIF-1α and VEGF-A staining intensities (mean ± SD, n ≥ 5) were 

quantified. *p < 0.05 compared to control. 
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5.3 Discussion 

HCC is one of the most common human cancers but is associated with poor prognosis. 

Growth and metastasis of HCC solid tumours depend on angiogenesis, thus preventing or 

inhibiting angiogenesis by non-toxic, affordable, and effective phytochemicals could be a 

useful strategy for better management of HCC. SFN, a predominant dietary phytochemical in 

CVs, has been studied intensively in terms of cancer prevention and treatment. In the present 

work, it is demonstrated that SFN not only interfered with endothelial cell proliferation, 

migration and tube formation, but, for the first time, inhibited the pro-angiogenic effect of 

HepG2 cells both in vitro, ex vivo and in vivo. 

ECs are one of the critical components in the tumour microenvironment and play a 

crucial role in the growth and progression of cancer through angiogenesis345. Thus, the 

inhibition of their function is explored as a potential therapy. In this study, SFN significantly 

inhibited HUVEC viability and migration, in agreement  with previous results145,346. High dose 

of SFN also disrupted the ability of HUVECs to form capillary-like tubular structure in 3D co-

culture with pericytes, and blocked microvessel sprouting from mouse aortic rings ex vivo. 

These two angiogenesis models very closely mimic the physiology of vascular maturation 

because of the involvement of pericytes and smooth muscle cells347. Therefore, the anti-

angiogenic effects of high dose SFN (> 5 µM) has been confirmed. Interestingly, 2.5 µM SFN 

simulated tube formation by 37% in the 3D co-culture model and sprouting by 28% in the 

aortic ring assay. The biphasic response of SFN has also been reported in other studies173,180 

as a potential risk factor in its application for cancer treatment. Further in vivo studies are 

needed to confirm this hormetic effect. As the physiological concentration of SFN by 

consumption of a meal rich in CVs or from supplements is around 1-7 µM in human 

plasma35,37, it is crucial to achieve targeted delivery of high dose of SFN for cancer 

chemoprevention or treatment. Conversely, low dose SFN could be beneficial to patients 

with cardiovascular disease because of its stimulation effect on endothelial cell tube 

formation. 

Intercellular communication and chemotaxis play key roles in the angiogenic process 

of HCC and can occur via direct contact or paracrine signalling between tumour cells and host 

microenvironment such as ECs345. However, the crosstalk between tumour cells and ECs is 

still in need of further investigation. In this study, the influence of HepG2 on HUVEC 

angiogenic behaviour, and the effect of SFN on the interaction between HepG2 and HUVEC 

have been studied. Results showed that HepG2 cells stimulated HUVEC migration and tube 
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formation, and that this stimulation could be inhibited by SFN pre-treatment on HepG2 cells. 

In addition, SFN could interrupt the ability of HepG2 cells to recruit HUVECs, indicating that 

SFN may influence not only paracrine factors but also cell-cell interactions between HepG2 

and HUVEC. 

VEGF-A has been implicated as a major paracrine mediator in the pathogenesis of 

HCC. In clinical trials, targeting VEGF pathways has been effective in treating HCC but is also 

prone to promoting resistance and more aggressive tumours, which could be due to the 

activation of transcriptional factors by anti-angiogenic agents348. Thus, targeting 

transcriptional factors may be more effective than targeting VEGF and its receptors. STAT3 

and HIF-1α, two major transcription factors that regulate VEGF, have been found to be 

consistently upregulated in various cancers including HCC and associated with poor clinical 

outcomes in patients349,350. Suppression of STAT3 and HIF-1α activity was demonstrated to 

inhibit growth in HCC351. Here, the inhibition of STAT3 by SFN treatment was verified, which 

also coincided with reduced HIF-1α and VEGF expression in HepG2. These data were 

consistent with previous findings in other cell lines352–354, indicating the STAT3/ HIF-1α /VEGF 

may be responsible for the anti-angiogenic effects of SFN. 

Under normal conditions, HIF-1α is hydroxylated by prolyl hydroxylases (PHDs) at 

oxygen-dependent degradation domains at proline 402 and 564, and it then interacts with 

the von Hippel-Lindau (VHL)-ubiquitin E3 ligase complex before being degraded by the 

ubiquitin-proteasome system. Under hypoxia or stimulation with certain growth factors or 

cytokines, HIF-1α can escape degradation and bind with HIF-1β. The heterodimeric HIF1 

formed rapidly translocates to the nucleus and activates hypoxia-responsive elements (HREs) 

which regulate many genes involved in cancer biology such as angiogenesis, metabolic 

adaption, cell survival and metastasis349,355. CoCl2, widely used as a hypoxia mimicking agent, 

can stabilize HIF-1α by inhibiting PHD activity356 as well as the binding between pVHL and 

hydroxylated HIF1357. HepG2 cells treated with CoCl2 were shown here to increase expression 

of HIF-1α and VEGF, this increase was blocked by co-treatment of SFN in a dose-dependent 

manner. This indicates SFN could influence the synthesis of HIF-1α. The same result was 

found in MCF7, 4T1 and 293 cells by Zhou J and coworkers358. 

The antitumor efficacy was demonstrated in vivo by a modified CAM assay, which 

has been used previously to study tumour angiogenesis, invasion and metastasis in 

malignancies including HCC359. The highly-vascularized nature of the CAM enables the 

survival of embedded tumour cells and the presence of ECM proteins in CAM mimics the 
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physiological cancer cell environment. Here tumour volume was reduced by SFN treatment, 

which was consistent with the widespread tumour necrosis indicated by H&E staining. The 

expression of angiogenic factors tends to reflect aggressive tumour phenotype329, whilst the 

inhibition of HIF-1α and VEGF expression was confirmed by IHC analysis in the SFN treated 

tumours. These results suggest that the antitumor activity of SFN may be mediated, at least 

in part, by inhibition of HIF-1α and subsequent VEGF expression. 

In summary, the present study confirmed that SFN not only affects EC function but 

also the interaction between HCC cells and ECs by inhibiting STAT3/ HIF-1α /VEGF signalling 

in the cancer cells, which results in the suppression of angiogenesis induced by HCC cells 

leading to an anti-tumour effect. Based on these results, SFN has the potential to be 

considered as an anti-angiogenic agent against HCC and would warrant further in vivo 

investigation. 
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Chapter 6. Anticancer activities of AITC and its conjugated silicon 

quantum dots 

6.1 Introduction 

AITC is produced by the hydrolysis of its glucosinolate precursor, sinigrin, which can be found 

in many commonly consumed CVs and is particularly abundant in mustard, horseradish and 

wasabi where it is responsible for the pungent taste17. Because of the pungent flavour, AITC 

is also used as a food additive known as mustard oil. AITC has been shown to possess a broad 

spectrum of anticancer activities in both cultured cancer cell lines and animal tumour 

models360. The mode of action for the chemopreventive activity of AITC is attributed 

primarily to the detoxification of carcinogens through activation of Nrf2361. Previous studies 

also showed that AITC inhibited the growth of various human cancer cell lines such as 

colorectal carcinoma140,362,363, lung cancer127,364, leukemia365, breast adenocarcinoma366, 

bladder cancer44,305,367, neuroblastoma368, hepatoma139 and prostate cancer cells97,360,369. The 

mechanisms are likely to involve DNA damage127, cell cycle arrest366, apoptosis113 and the 

binding to thiol-reactive groups of several cellular targets such as DNA topoisomerase 2, p53 

and tubulins53,55,361. In addition, AITC has been reported to suppress metastasis via inhibition 

of invasion and migration139,362 in neoplastic cells. Antiangiogenic activity of AITC has also 

reported in in vivo studies148,149. However, findings from epidemiological studies on the 

association between CV intake and cancer risk are generally inconsistent34,370. The hormetic 

effects of ITCs may be the cause of the complex biological impact of a CV diet371. 

In toxicology, hormesis refers to a dose–response relationship with a stimulatory 

response at low doses and an inhibitory response at high doses172. Many drugs have been 

found to demonstrate such contradictory effects at high and low doses in the same individual. 

This reaction, also known as ‘biphasic dose response’, has shown significance in establishing 

the modality of a drug. On the other hand, mild stress stimuli can often trigger an adaptive 

stress response in order to maintain homeostasis, so that while a high dose of an insult brings 

harm, a low dose of the same could promote health171. Dietary phytochemicals have been 

reported to be prominent hormetic stressors that affect various signalling pathways 

associated with the progression of diverse diseases, especially cancer173,174,371,372. ITCs for 

example, have been reported to kill cancer cells at high doses but to promote cancer cell 

proliferation and survival at low doses173,174,371. Therefore, it is crucial to optimize the 

beneficial effects and minimize the potential risks of ITCs in cancer prevention and treatment. 
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The growth of nanotechnology has opened several new vistas in medical sciences, 

especially in the field of cancer treatment. SiQDs have been developed for both bio-imaging 

and therapeutic purposes because of their unique electronic and optical properties. As an 

interesting research area, further exploration of the surface functionalization of SiQDs has 

been shown to facilitate their application as drug carriers for chemotherapeutic agents, 

photosensitizers, siRNA and gene therapeutic agents and can also act as multifunctional 

entities for both imaging and therapy at the same time217,373,374.  Here for the first time, the 

design of a new multifunctional nanoparticle system with SiQDs as carrier and AITC as surface 

ligand is reported. The objectives of the present study were to investigate the differences 

between the bioactivities of AITC and AITC-SiQDs; and the potential mechanisms/application 

of AITC-SiQDs to act as multifunctional vehicle for cancer therapy. 
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6.2 Results 

6.2.1 A biphasic effect of AITC on cell viability, DNA integrity, migration and angiogenesis 

The cytotoxicity of AITC was measured using the MTT assay. Results indicated that AITC 

decreased the metabolic activity of HepG2 cells in a dose-dependent manner after 24 hours. 

When cells were treated with AITC 40-320 µM, cellular viability was significantly inhibited 

(77.1-19.4% compared to control); however, a significant stimulation of cell viability was 

found with 5 µM AITC (Figure 6.1A). 

The genotoxicity of AITC was then measured at non-cytotoxic concentrations (0-20 

µM) using the comet assay. The baseline DNA damage, represented as tail intensity 

percentage, in control cells was 21.57% and there was a significant increase at 10 and 20 μM 

AITC treatment at 24 hours, 36.12 and 47.48% respectively; while at 2.5 µM AITC decreased 

DNA damage to 12.3% (Figure 6.1B-C). The induction of DNA damage with high dose AITC 

was accompanied by downregulation of DNA repair protein Ku70 (Figure 6.1D). 

To assess whether AITC also affects cell migration, a wound assay was performed to 

measure the cell migration under different doses of AITC treatment after 48 hours. Around 

30% inhibition of migration compared to the control was observed with 20 μM AITC exposure. 

This concentration is nontoxic, as is evident from the MTT assay; hence, the inhibitory effect 

could not be attributed to cytotoxic activity. Again, a significant increase in cell migration was 

observed with low dose (2.5 μM) AITC (130% compared to control) (Figure 6.2A-B). 

The effect of AITC on the ability of HUVECs to form capillary-like tubular structures 

was tested in the 3D co-culture model with pericytes. Mature tube formation was clearly 

observed in control but was significantly disrupted with AITC treatment (>5 μM), showing as 

a sharp decrease in formed total tube length. However, at lower doses AITC (1.25 and 2.5 

μM) significantly promoted the formation of capillary tubular structures (Figure 6.3A-B). 

These data suggest that there was a biphasic dose response from AITC treatment in 

all tested endpoints. For cancer treatment, only high doses of AITC should be used, as low 

doses stimulated cancer cell viability and migration, and also restored genomic stability and 

promoted angiogenesis. 
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Figure 6.1 Effect of AITC on HepG2 cell viability and DNA integrity. (A) Cell viability at 24 hours 

AITC treatment was determined by MTT assay. Data are presented as mean ± SD (n ≥ 5), *p 

< 0.05, **p < 0.01 compared to control. (B) DNA damage at 24 hours AITC treatment was 

detected by comet assay. Data are presented as mean ± SD (n ≥ 5), **p < 0.01 compared to 

control. (C) Representative pictures from the comet assay. Scale bar = 500 µm. 
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Figure 6.2 Effect of AITC on HepG2 cell migration. (A) HepG2 cell migration at 48 hours AITC 

treatment was measured by wound assay. Data are presented as mean ± SD (n ≥ 5), **p < 

0.01 compared to control. (B) Representative phase contrast images from the wound assay. 

Scale bar = 1 mm. 
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Figure 6.3 Effect of AITC on tube formation of HUVECs in a 3D co-culture with pericytes model. 

(A) The total lengths of CD31 positive tubes were measured and expressed as mean ± SD 

(n≥5), *p < 0.05, ** p< 0.01 compared to control. (B) Representative pictures from the 

immunostaining of CD31 (red) and DAPI (blue), scale bar = 500 µm. 
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6.2.2 Low dose AITC stimulation effect is mediated by Nrf2/GSH signaling 

A low dose stimulation effect could be a risk factor for the use of AITC in cancer prevention 

and treatment. ITCs have been shown to activate Nrf2 signalling, which is important in stress 

adaptation and cytoprotection375,376. The role of Nrf2 in the low dose stimulation effect of 

AITC on DNA damage and cell migration was investigated using a siRNA knockdown approach. 

As shown in Figure 6.4, Nrf2 knockdown cells showed significantly increased DNA damage 

and reduced cell migration compared to non-transfected control cells. This suggested Nrf2 is 

involved in HepG2 cell genomic stability and migration. AITC at 2.5 µM reduced DNA damage 

and promoted cell migration in HepG2 cells. Cells transfected with Allstar negative control 

showed similar effects with AITC treatment as the non-transfected ones. In contrast, these 

stimulation effects from 2.5 µM AITC were abolished upon Nrf2 knockdown, i.e. DNA damage 

increased from 9.4% to 41.8%; cell migration decreased from 122.7 to 66.1% (p<0.01). These 

data strongly indicated that Nrf2 was involved in the low dose stimulation effect of AITC in 

DNA damage and cell migration. On the other hand, BSO treatment increased DNA damage 

by 1.5-fold and decreased cell migration by approximately 20% compared to control. Co-

treated with BSO, 2.5 µM AITC treatment showed no stimulatory effect on DNA damage or 

cell migration. Therefore, it can be concluded that the Nrf2/GSH signalling pathway plays an 

essential role in low dose AITC inhibition of genomic instability and stimulation of cell 

migration. 
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Figure 6.4 Effect of Nrf2 siRNA and GSH inhibition on HepG2 cell DNA damage and migration 

exposed to AITC. Allstars (AS) was used as a control for knockdown. Cells were incubated 

with 2.5 μM AITC or DMSO (0.1%) control with or without 50 μM BSO co-treatment. (A) After 

24 hours DNA damage was measured by comet assay. (B) After 48 hours cell migration was 

measured by wound assay. Data are presented as mean ± SD (n ≥ 3), **p < 0.01 between the 

indicated groups (t-test). 
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6.2.3 AITC-SiQDs abolished the low dose stimulation effect of AITC 

The effect of AITC-SiQDs on cell viability was initially determined using the MTT assay. Cells 

were incubated with different concentrations of AITC-SiQDs with AITC as the positive control 

for 24 hours. As shown in Figure 6.5A, there was no significant difference between the 

cytotoxicity of AITC-SiQDs and AITC at high dose (nearly 20% decrease from 40 µM 

treatment); but there was a significant difference between low dose AITC-SiQDs and AITC 

treatments on cell viability, i.e., cell viability was approximately 90% compared to control 

with 2.5 and 5 µM of AITC-SiQDs treatment while AITC treatment increased cell viability to 

103-110% of the control. Amine-capped SiQDs (NH2-SiQDs)226 were used as negative control 

to confirm the cytotoxicity of AITC-SiQDs observed came from the surface ligand instead of 

the SiQDs core (Appendix Figure 3). 

The effects of AITC-SiQDs on DNA damage, cell migration and angiogenesis were also 

examined (Figure 6.5B-D). At 20 µM AITC-SiQDs induced DNA damage (2.5-fold increase 

compared to control); inhibited cell migration (60% decrease compared to control); and 

inhibited tube formation in the 3D co-culture model (60% decrease compared to control). 

More importantly, AITC-SiQDs at 2.5 µM showed no stimulation in contrast to AITC. 
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Figure 6.5 Effect of AITC-SiQDs was compared with AITC on HepG2 cell viability (A), DNA 

integrity (B), migration (C) and tube formation in the 3D HUVEC co-culture with pericytes 

model (D). Data are presented as mean ± SD (n ≥ 3), *p < 0.05, **p < 0.01 compared to 

corresponding AITC treatment. 
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6.2.4 Effect of AITC/AITC-SiQDs on the nuclear accumulation of Nrf2 

The involvement of AITC-SiQDs in the activation of Nrf2 compared to AITC in HepG2 cells was 

examined. Nuclear protein was extracted and Nrf2 measured by Western blotting. As shown 

in Figure 6.6, untreated cancer cells had low Nrf2 levels in the nucleus consistent with the 

continuous degradation of Nrf2 under homeostasis. With 20 µM AITC treatment, a significant 

increase of Nrf2 protein in the nucleus was observed after 1 hour but this started to decrease 

after 4 hours, while at the same dose AITC-SiQD treatment caused the nuclear protein level 

of Nrf2 to increase compared to control for at least 24 hours. In addition, AITC treatment 

(1.25, 5, 20 µM) for 4 hours induced a significant and dose-dependent increase of Nrf2 in the 

nucleus, but AITC-SiQD treatment showed a much milder effect in this regard compared to 

the same dose of AITC treatment. These data indicated different dynamics of Nrf2 activation 

between AITC and AITC-SiQDs. 

To check that the observed effect of AITC-SiQDs on abolishing the low dose 

stimulation effect was not specific to HepG2, the effect of AITC-SiQDs on colorectal 

adenocarcinoma cells, Caco-2, was investigated. Caco-2 cells were more sensitive towards 

AITC than HepG2 cells. As expected, results showed 80 µM AITC-SiQDs decreased cell viability 

to 31.77% compared to control in Caco-2 while only 78.19 % in Hepg2 (Figure 6.7A). As shown 

in Figure 6.7B-C, AITC-SiQDs abolished the stimulation effect seen with AITC (2.5 and 5 µM) 

on cell migration; and the prolonged induction of Nrf2 nuclear accumulation by AITC-SiQDs 

compared to the sharp induction by AITC was also observed in Caco-2. These results suggest 

that this effect of AITC-SiQDs is not cell line specific. 
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Figure 6.6 Effect of AITC or AITC-SiQDs on Nrf2 nuclear accumulation in HepG2 cells. Nuclear 

protein fractions were isolated as described in Methods. Nrf2 was detected by Western blot 

and quantified against SAM as a loading control, results were expressed as fold induction 

relative to controls. (A) Time course of the effect of 20 µM AITC or AITC-SiQDs on Nrf2 nuclear 

protein level. (B) Dose response of AITC or AITC-SiQDs at 4 hours on Nrf2 nuclear protein 

level. 
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Figure 6.7. Effect of AITC or AITC-SiQDs on Caco2 cell viability, migration and nuclear Nrf2 

accumulation. (A) Cell viability at 24 hours treatment was determined by MTT assay. (B) Cell 

migration at 48 hours treatment was measured by wound assay. Data are presented as mean 

± SD (n ≥ 5), *p < 0.05 compared to corresponding AITC treatment. (C) Time course of the 

effect of 20 µM AITC or AITC-SiQDs on Nrf2 nuclear protein level. Nuclear protein fractions 

were isolated as described in Methods. Nrf2 was detected by Western blot and quantified 

against SAM as a loading control. 
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6.2.5 Cellular uptake of AITC-SiQDs 

The characterization of the interaction of NPs with cells is a key factor in their bioactivity. To 

investigate the cellular uptake of AITC-SiQDs, HepG2 cells were incubated with fluorescent 

AITC-SiQDs and analysed by CLSM; additional investigation was performed using Lysotracker 

red, a fluorescent cell-permeant acidic organelle-selective marker. The Lysotracker probes, 

which comprise a fluorophore linked with a weak base that is only partially protonated at 

neutral pH, freely penetrate cell membranes and are typically used to mark organelles 

including lysosomes and some late endosome at acidic pH377. The confocal microscopy 

images are shown in Figure 6.8. The control cells (treated with 0.1% DMSO) did not exhibit 

fluorescence. After 1 hour of incubation with AITC-SiQDs, a blue fluorescence signal was 

observed inside the cells, which peaked around 12 hours indicating the internalization of a 

large number of AITC-SiQDs. At 24 hours, there were still signals from internalized AITC-

SiQDs which indicated the excretion of QDs took at least this length of time. Lysosomes were 

identifiable within HepG2 cells, and there was a clear co-localization of AITC-SiQDs within 

lysosomal structures at all time points investigated, which indicated that QDs were taken by 

the cells through endocytosis as is the case for most types of NPs378. 
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Figure 6.8 Confocal imaging of AITC-SiQDs cellular uptake in HepG2. (A) Representative 

images of AITC-SiQDs signalling in HepG2 cells over 24 hours. Scale bar = 50 µm. (B) High 

resolution images from 6 hours of AITC-SiQDs localization into the lysosomes of HepG2 cells, 

area indicated by the black rectangle in the merged images. Scale bar = 10 µm. 
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6.2.6 Anticancer properties of AITC-SiQDs is mediated by ROS 

ROS generation is one of the common mechanisms by which NPs exert toxicity; accordingly, 

the intracellular ROS was measured using a H2DCFDA probe, which is a stable nonpolar dye 

that diffuses readily into cells and yields DCFH. Intracellular ROS, in the presence of 

peroxidase, converts DCFH to fluorescent DCF. As shown in Figure 6.9A, 20 µM AITC or AITC-

SiQD treatment both caused significant increase of ROS at 1 hour in Caco-2 cells, i.e., the DCF 

fluorescence intensity was measured as 124.6% and 149.6% of control from AITC and AITC-

SiQDs respectively. ROS returned to control level after 3 hour in AITC-treated cells, but in 

AITC-SiQDs treated cells DCF intensity was 121.8% and 145.7% of control at 3 and 24 hours. 

To examine further whether the AITC-SiQDs induced anti-proliferative response is 

related to ROS, a well-known antioxidant NAC was used to quench ROS production. Results 

from their co-treatment showed that NAC completely blocked the reduction in cell viability 

caused by AITC-SiQDs in Caco-2 (Figure 6.9B). This suggested that ROS generated by AITC-

SiQDs participated in the anti-proliferation effect. Further results indicated that co-

treatment with NAC reduced the DNA damage caused by AITC-SiQDs and impaired the 

inhibitory effect of AITC-SiQDs on cell migration (Figure 6.9C-D). Taken together, these data 

suggest a ROS mediated mechanism behind the bioactivities of AITC-SiQDs. 
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Figure 6.9 Anticancer properties of AITC-SiQDs is mediated by ROS. (A) Caco-2 cells were 

incubated with 20 µM AITC or AITC-SiQDs over 24 hours with DMSO (0.1%) as control, ROS 

was measured at certain time points using flow cytometry. Data are presented as mean ± SD 

(n ≥ 3), **p < 0.01 compared to corresponding AITC treatment. (B) Caco-2 cells were 

incubated with different doses of AITC-SiQDs with or without 2 mM NAC for 24 hours. Cell 

viability was measured by MTT assay. (C) HepG2 cells were incubated with different doses of 

AITC-SiQDs with or without 2 mM NAC for 24 hours. DNA damage was measured by comet 

assay. (D) HepG2 cells were incubated with different doses of AITC-SiQDs with or without 0.5 

mM NAC for 48 hours. Cell migration was measured by wound assay. Data are presented as 

mean ± SD (n ≥ 5), **p < 0.01 between the indicated groups (t-test). 
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6.3 Discussion 

Recent findings suggest that several phytochemicals exhibit biphasic dose responses on cells 

with low doses activating signalling pathways that result in increased expression of genes 

encoding cytoprotective proteins such as antioxidant enzymes, protein chaperones, growth 

factors and mitochondrial proteins173. One example is the ITCs from CVs and their activation 

of Nrf2. 

Nrf2 is receiving considerable attention regarding its dual role in cancer. A common 

mechanism behind the activity of chemopreventive agents is the activation of Nrf2, which 

leads to the induction of iron metabolism proteins, phase II detoxifying enzymes, phase III 

transporters and antioxidant proteins. Among these antioxidants, GSH synthesis and 

utilization are regulated by Nrf2288,379. However recent studies have demonstrated a dark 

side of Nrf2 in cancer. Several genes activated by Nrf2 are associated with cancer progression, 

such as those regulating proliferative signalling and reprograming energy metabolism380,381. 

Nrf2 has also been reported to be a major driver of hepatocarcinogenesis382, and to be 

constitutively activated in many types of cancer cells or tumour samples from patients, which 

contributes to aggressive cancer phenotypes such as increased proliferation, metastasis and 

resistance to chemotherapy. The overexpression of Nrf2 is associated with poor prognosis in 

cancer patients383,384. In addition, recent application of Nrf2 inhibitors and shNrf2 treatment 

have been reported to effectively enhance chemotherapy380,385. Therefore, there is an urgent 

need to define the boundaries between the positive and negative effects of Nrf2 in cancer, 

and to establish a precise rationale for undertaking Nrf2 therapeutic targeting. 

Results from Chapter 6.2.1 showed that AITC exhibited biphasic anticancer 

properties in HepG2 cells: high dose (≥ 20 µM) of AITC decreased cell viability, increased DNA 

damage and inhibited cell migration and angiogenesis; while low dose (1.25-2.5 µM) AITC 

exhibited an opposite effect. One of the main mechanisms behind the low dose stimulation 

effect is linked to the induction of Nrf2 signalling by AITC as siRNA knockdown treatment 

abolished the stimulations. BSO co-treatment also significantly reduced the effects of low 

dose AITC indicating the involvement of GSH in the stimulation effect. It should be noted that 

the physiological concentration of AITC following consumption of a meal rich in CVs or from 

supplements is around 1-5 µM in human plasma101, which means for most people the 

exposure of AITC would be within the subtoxic stimulatory dose range, which could be a risk 

factor for those who have transformed cells in the body. 
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It has been demonstrated here for the first time that by using nanotechnology, the 

biphasic effect of AITC can be avoided. The biological and optical properties of AITC-SiQDs, 

particularly the anticancer activity of AITC as the surface ligand and the PL of the SiQDs core, 

were both exploited in this nanoscale system. Results showed that at high doses AITC-SiQDs 

exhibited similar effects to that of AITC while at low dose free from the adverse effect. The 

accumulation of nuclear Nrf2 induced by AITC-SiQDs was found to be much less and over a 

longer time than that induced by AITC. The cellular uptake studies confirmed that the 

internalization and excretion of AITC-SiQDs took at least 24 hours which was distinctively 

different from the free diffusion of AITC. The role of ROS in the anticancer activities of AITC-

SiQDs was also demonstrated. Although the underlying mechanism is not fully understood, 

the different patterns of Nrf2 activation may be the key of AITC-SiQDs escaping the biphasic 

response shown by AITC. 

One limitation of the current study was the usage of NH2-SiQDs as negative controls 

applied only to the measurement of cytotoxicity, but not to other endpoints of efficacy 

discussed here such as DNA integrity, migration and angiogenesis. Based on the significant 

differences observed from the cytotoxicity experiments and previous studies of the 

bioactivities of NH2-SiQDs, it is safe to assume that NH2-SiQDs do not possess strong toxic 

effect in vitro. Yet it would be interesting to further compare the possible different effects 

between these two SiQDs, as it has been proved that the surface decoration plays a vital role 

in in vivo stability, internalization and functionality of stealth NPs. 

In summary, this nano delivery system presents an encouraging platform to avoid 

the biphasic effect of AITC. Further in vivo studies must be performed to extrapolate the 

dose-effects found in the in vitro experiments. Together with other advantages that could be 

provided by this nanoscale delivery system, such as passive tumour targeting and real time 

monitoring386, AITC-SiQDs have the potential to be used in anticancer drug delivery. 
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Chapter 7. Conclusion and future perspectives 

7.1 Findings and final discussion 

The US National Cancer Institute has identified more than 1,000 different phytochemicals 

that possess cancer-preventive activity, and more than half of the anticancer drugs in clinical 

use are natural products or their derivatives and many are plant-derived phytochemicals387. 

Dietary ITCs from CVs have attracted extensive research interest for cancer management, as 

they are easy accessible and have shown strong evidence of anticancer bioactivities in in vitro 

and animal studies. However, the epidemiological evidence regarding the consumption of 

dietary ITCs as chemopreventive agents has been inconsistent. Further detailed mechanistic 

studies of the bioactivities of ITCs are needed to better harness their potential beneficial 

effects in clinical application. 

SFN has been found to exert a variety of bio-active effects including anti-oxidation, 

anti-inflammation, cytotoxicity and cytoprotection. Furthermore, in vitro and in vivo studies 

have revealed that SFN affects many stages of cancer development: it modulates the 

initiation phase of cancer by inhibiting phase I enzymes and inducing phase II enzymes; the 

promotion phase by inducing apoptosis, autophagy and cell-cycle inhibition; and the 

progression phase by inhibiting EMT, angiogenesis and metastasis66,67. Here, the effect of 

SFN on normal and cancerous liver cells, HHL5 and HepG2 respectively, were compared in 

terms of its cytotoxic and cytoprotective effects in Chapter 3; three of its metabolites (SFN-

GSH, SFN-Cys, and SFN-NAC) were studied in Chapter 4; and the anti-angiogenic effect of SFN 

in HCC was examined in Chapter 5. 

Results from these chapters confirmed the chemopreventive effects of SFN. In 

HepG2 cells, SFN inhibited cell viability, induced DNA damage, inhibited colony formation, 

disrupted cell migration and adhesion at high doses (≥ 20 µM). It also impaired EC function 

and suppressed tumour growth and angiogenesis in the HepG2-bearing CAM model. From 

the cytoprotective point of view, SFN potently induced the activation of Nrf2 and its 

downstream target: TrxR1, NQO1 and HO-1. It also increased the intracellular GSH level at 

24 hours (with a depletion effect around 3 - 6 hours). Low dose SFN (≤ 5 µM) provided 

protection against H2O2-induced apoptosis, DNA damage and cell death. A conclusion which 

can be drawn is that beyond a certain concentration threshold SFN exerts pro-death activities 

and below the threshold it may promote pro-survival signalling. However, SFN (and its 

metabolites) was more toxic towards HHL5 compared to HepG2, which is likely due to the 
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differences in Nrf2/GSH basal level between these two cell lines. BSO inhibition and Nrf2 

knockdown both increased HepG2 cell sensitivity towards SFN toxicity. In addition, HepG2 

cells were able to benefit from the cytoprotective effect of SFN against oxidative stress within 

a wider dose range (1.25 - 20 µM) compared to HHL5, in which the essential role of Nrf2 and 

GSH has also been confirmed. All these results raise important questions about the selectivity 

of SFN towards cancer cells. 

One of the characteristics of cancer cells is to maintain a much higher ROS level than 

normal cells. This enables cancer cells to constitutively activate growth factor pathways, such 

as PI3K/Akt, MARK and STATs, to sustain cellular growth and proliferation95,389. Consequently, 

the hyper-metabolism of cancer cells causes abundant generation of ROS from mitochondria, 

endoplasmic reticulum and NADPH oxidases, which lead to genomic instability to promote 

tumorigenesis, reinforcement of proliferative signals, and activation of NF-kB and EMT to 

support survival and progression of the tumour cells282. The elevated ROS level also activates 

HIFs to adapt to the metabolic stress and to stimulate angiogenesis355. More interesting, the 

high ROS production is counterbalanced by the high antioxidant activity in cancer cells. The 

major mechanism by which cancer cells increased their ROS scavenging potential is through 

activating Nrf2 signalling. Elevated ROS can oxidize redox sensitive cysteine residues on 

Keap1 and even stimulate PI3K, MAPK, etc. signalling to activate Nrf2 translocation to the 

nucleus. In addition, certain tumour cells were found to have Keap1 mutations resulting in 

constitutive activation of Nrf285. Other tumour suppressor genes such as FOXOs and p53 also 

repress tumorigenesis by inducing antioxidants282. 

In summary, tumorigenic cells require high level of ROS to promote proliferation, 

survival and metabolic adaption. At the same time, if cancer cells lose control of their ROS 

levels, they are susceptible to oxidative stress induced cell death. The dual function of ROS 

in cancer biology presents a conundrum for therapeutic use of ITCs. Many chemopreventive 

phytochemicals, including ITCs, are considered as antioxidants. However, no evidence was 

found to support antioxidant supplements for primary or secondary prevention, β-carotene 

and vitamin E even seemed to increase mortality390. The indirect antioxidant capacity of ITCs 

largely involves the activation of Nrf2 and phase II detoxification system, leading to an 

increase the cellular defences against oxidative damage. However, this may be hijacked by 

malignant cells to sustain high ROS levels without oxidative damage, thus promote more 

aggressive phenotypes. 
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Nrf2 has been traditionally deemed to be a tumour suppressor86,288. However, 

increasing evidence has been revealing the dark side of Nrf2 in cancer prevention and 

treatment293,381. It is a fact that Nrf2 exhibits a beneficial effect not only in normal cells but 

also in cancer cells, thus the effect of Nrf2 activation will dependent on cancer types and 

stages. A simple hypothesis is that because oxidative stress is needed to initiate cancer, 

activation of Nrf2 at that time may play a chemopreventive role. While at the later stage, 

Nrf2 hyperactivation favours the survival of the cancer cells by protecting them from 

excessive oxidative stress, triggering malignant progression and even increasing resistances 

against chemotherapeutic agents and radiotherapy383. Satoh et al reported that Nrf2 

prevented initiation but accelerated progression during lung carcinogenesis391. Some studies 

suggest that dietary ITCs exert tumour inhibitory effects especially during earlier stages of 

carcinogenesis392,393. As potent inducers of Nrf2/ARE signalling, the use of ITCs needs to be 

carefully reconsidered when defining the boundaries between the positive and negative 

effects of Nrf2 in individual cases. 

Importantly, there is no significant difference between SFN and three of its 

metabolites in the induction of Nrf2 nuclear translocation and downstream protein 

expression, which further proves the necessity to study the mechanism behind not only SFN 

but also its metabolites. In addition, theses metabolites possess greater solubility in aqueous 

media and different distribution profiles during metabolism (see section 4.1), all of which 

indicate that they would be a preferred form for clinical chemoprevention trials in certain 

cases. 

Apart from the hormetic effect and lack of selectivity of SFN discussed above, there 

are other factors that hinder the clinical use of SFN (and many other ITCs). Many ITCs are 

unstable under normal conditions. Their bioavailability can be influenced by many factors 

(see section 1.2). It is also difficult to reach therapeutically doses of ITCs in the systemic 

circulation due to the rapid clearance and metabolism in the human body. Notably, the 

cytotoxic and anticancer activity of ITCs occur at higher concentrations (> 5 µM), which is 

difficult to achieve and maintain through dietary intake. These limitations could be improved 

by application of nanotechnology to provide protection against degradation and to achieve 

controlled and targeted release. 

In Chapter 6, the biphasic effect of AITC was confirmed on cell viability, DNA damage 

and migration in HepG2 cells; and on tube formation in the 3D co-culture of HUVEC with 

pericytes model. siRNA knockdown of Nrf2 and GSH inhibition abolished the stimulation 
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effect of AITC on cell migration and DNA damage, indicating the role of Nrf2 and GSH in the 

hormetic effect of ITCs. Furthermore, the biological activity of a novel NP delivery system 

with AITC conjugated on the surface of SiQDs (AITC-SiQDs) was investigated. AITC-SiQDs 

showed similar anticancer properties at high doses while avoiding the stimulation effect of 

low doses compared to free AITC. In addition, AITC-SiQDs showed a lower and long-lasting 

activation of Nrf2 translocation into nucleus which correlated with their levels of cellular 

uptake as detected by the intrinsic fluorescence of SiQDs. ROS production could be one of 

the mechanisms behind the anticancer effect of AITC-SiQDs. These data provide novel 

insights into the biphasic effect of AITC and highlight the application of nanotechnology to 

optimize the therapeutic potential of dietary ITCs in cancer treatment. 

 

7.2 Limitations and future research 

Assessing hormesis can be challenging. One crucial component of the hormetic dose 

response is time171, however it requires the response to be evaluated using many doses with 

multiple time points. In the database compiling toxicological studies assessing the 

occurrence of hormetic dose responses built by Calabrease et al, only 20% of the 9000 dose 

responses include a time component394. In addition, the magnitude of the low-dose 

stimulation is mostly (60%) modest with maximum responses typically only 30-60% greater 

than control group394, which makes it difficult to distinguish the stimulatory response from 

the variation between groups. Study designs need to be more rigorous, with at least 3-4 

properly spaced doses below a well-characterized threshold and higher statistical power 

(more animals, more repeats, etc.). The observation and reproducibility of hormesis would 

also be further challenged by the high variability within the control group. To this end, 

besides experiments in vitro, long-term animal model experiments are needed to confirm 

the hormetic window of ITCs in different pathological conditions (either in the process of 

carcinogenesis or aggressive cancer progression). 

On the other hand, in vivo models should be used to explore other advantages that 

could be provided by this nanoscale delivery system, such as passive tumour targeting via 

the enhanced permeability and retention (EPR) effect395 and real time monitoring, as there 

is limited similarity between NP delivery in vitro and in vivo. Further design of NPs could also 

enable active targeting via ligand/receptor mediated, and/or microenvironment-responsive 

cellular uptake. In addition, various physical stimuli, such as electric pulse, ultrasound, 
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magnetic field, radiation, light and so on, have been used to trigger the release of drug and 

improve the efficacy of NPs396. Thus, the application of nano-vectors could enable targeted 

delivery of ITCs with a controlled dose based on the engineering of the NPs to achieve the 

maximum beneficial effects. 

Emerging as a new strategy for cancer chemotherapy, combination therapy (either 

the co-administration of more than two therapeutic agents or the combination of different 

types of therapy) allows targeting of multiple pathways involved in drug resistance or cancer 

cell survival, and are usually more effective than monotherapy due to the heterogeneous 

nature of cancer397. ITCs have multiple targets in the process of cancer development, 

therefore they have been considered as promising candidates for combination therapy. In 

tumour-bearing mice experiments, SFN was found to be able to enhance the therapeutic 

potential of TRAIL through regulation of apoptosis, metastasis and angiogenesis147; 

sensitized non-small cell lung cancer cells to cisplatin by inhibiting c-Myc accumulation398; 

and enhanced the anticancer activity of taxanes against triple negative breast cancer by 

targeting cancer stem cells399. There is also in vivo evidence that supports AITC as a potential 

candidate to overcome platinum resistance400; and to synergistically inhibit bladder cancer 

growth, angiogenesis and invasion with celecoxib401. 

Current combination approaches through cocktail administration face several 

challenges, one of which is to ensure the correct ratio of the combined agents reaches the 

target under dissimilar pharmacokinetics. The application of nanotechnology could be of 

help in this aspect, offering controlled drug delivery and opportunities in novel combination 

strategies397. NPs have been proved to be able to deliver various materials from hydrophobic 

small molecules (e.g. most inhibitors and chemotherapies) to hydrophilic macromolecules 

(e.g. antibodies and nucleic acids). Liposomes, generally considered as amphiphilic lipid 

bilayered spherical vesicles, are one of the most stable platforms for multi-drug delivery. 

Another class of FDA-approved materials for NPs is a variety of biodegradable polymers such 

as polyethylene glycol (PEG), polyvinyl alcohol (PVA), hydrophobic polylactic acid (PLA), 

polyglycolic acid (PGA), etc. Along with other nanoparticulate systems, promising studies of 

their application in combination therapy have been summarized in several reviews402,403. 

There are several successful NP delivery systems for combination therapy using 

phytochemicals as chemosensitizers with various drugs. However, there are very few reports 

on the application of ITCs. One combination regimen of aspirin and curcumin (encapsulated 

with solid lipid NPs) with free SFN has shown 10-fold lower effective dosages against the 

progression of pancreatic intraepithelial neoplasms in comparison with the free form 
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mixtures404; and later been confirmed as safe for acute, subacute, and subchronic oral 

administration in mice405. The same lab has also published another regimen of ibuprofen 

(encapsulated in solid lipid NPs) and SFN, which again provided evidence of a promising 

approach for pancreatic cancer prevention and therapy406. Why do they not encapsulate SFN 

into the NPs is not explained. Hossein et al reported a delivery system of SFN and curcumin 

with PEGylated gold coated Fe3O4 magnetic NPs with a size of 20 nm and enhanced 

therapeutic effects by apoptosis and necrosis induction as well as inhibition of migration in 

human breast adenocarcinoma cells407. With many available formulations of ITCs in 

combination therapies, surely there is space to explore utilizing nano delivery systems to 

achieve maximum therapeutic effect. 

The application of nanotechnology in combination therapy could also play an 

important role in the evolving field of personalized medicine. With the growing knowledge 

of molecular distinct subtypes of various cancers and the fast-developed technology of 

genetic profiling of the patients, it is possible to optimize treatment for each patient. 

Nanomedicine, in addition, could integrate diagnostic and therapeutic function in one 

system, and offer fine-tuning of the pharmacological properties of the treatment with 

specific targeting and controlled release, thus maximising the clinical potency for the benefit 

of patients. Current nanotechnology-based therapeutic systems are not yet sufficient, 

however it is a fast-growing field for future biomedicine, especially in cancer408. 

In conclusion, ITCs show great promise as chemopreventive agents, but there is a 

significant need to understand the dynamic molecular networks that respond to ITCs leading 

to the hormetic effects and any possible selectivity in cancer prevention and treatment. The 

utilization of nanotechnology could increase the therapeutic benefit of ITCs by tailoring 

time/dose according to the specificities of the disease, while minimizing any possible 

detrimental effects at nonspecific targets, thus providing us with an opportunity to use ITCs 

as therapeutic agents for cancer treatment. Further detailed studies are required to establish 

the safety and efficacy profiles of ITCs and their nano-form to pursue their clinical application. 
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Appendices 

Appendix 1. BSO inhibiton of GSH, dose-dependent efficiency 

The dose response from 24 hours treatment of BSO on intracellular GSH level was examined 

in Appendix Figure 1A. 50 µM BSO was chosen to be the co-treatment dose with SFN as it 

showed 60-80% reduction in the GSH level without significant cytotoxicity. Co-treatment 

with BSO (50 µM) abolished SFN (5 µM) induced GSH rise, from 98.7 to 13.8 nmol/mg protein 

(Appendix Figure 1B). 

 

Appendix Figure 1. Effect of BSO on intracellular GSH levels in HepG2 cells. Cells were treated 

with different doses of BSO with water as vehicle control for 24 hours (A) or 5 µM SFN +/- 50 

µM BSO for 24 hours (B). The intracellular GSH level was measured by HPLC, result represents 

the mean ± SD (n = 3). Statistical significance from control, **p < 0.01. 
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Appendix 2. siNrf2 efficiency 

The siRNA knockdown efficiency of Nrf2 was characterized using Western blot analysis. 

Transfection was done following the protocol of large-scale transfection of adherent cells 

from the HiPerFect transfection reagent handbook. HepG2 cells were seeded in 60 mm 

dishes at 1 x 106 cells/dish in 3.5 ml of complete medium, and incubated under normal 

growth conditions for 24 hours.  40 nM siRNA and 20 μl of HiPerFect transfection reagent 

were added to 0.5 ml culture medium without serum or antibiotics, mixed and incubated for 

5-10 mins at RT to allow the formation of transfection complexes. The complexes were then 

added drop-wise to each well to give a final siRNA concentration of 5 nM. Plate were gently 

swirled to ensure uniform distribution of the transfection complexes. Cell were cultured 

under normal growth conditions for additional 48 hours before adding AITC 2.5 µM or DMSO 

(0.1%) for 4 hours. Nuclear protein extraction and Western blotting were then performed as 

described. As shown in Appendix Figure 2, AITC induced nuclear accumulation of Nrf2 in 

control and cells transfected with Allstar, while an 80% inhibition Nrf2 level was observed in 

siNrf2 transfected cells compared to that in Allstar transfected cells under AITC treatment. 

This confirmed the transfection could abolish the induction effect of AITC on nuclear Nrf2 

accumulation. 

 

 

Appendix Figure 2. Effect of Nrf2 siRNA in HepG2 cells. Cells were seeded in 6 cm dishes, 

after 24 hours cells were treated with siNrf2 as per the manufacturer’s instructions. Allstars 

was used as a negative control. After another 48 hours, medium was changed with 2.5 μM 

AITC or DMSO (0.1%) treatment for 4 hours. Nrf2 in nuclear extract was detected using 

Western blot analysis. 
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Appendix 3. SiQDs control for cytotoxicity experiments 

The effect of AITC-SiQDs on the cell viability was initially screened using MTT assay with 

amine-capped SiQDs (NH2-SiQDs)226 as negative control. As the ligand coverage of NH2-SiQDs 

is unknown, the unit μg/mL was used here to compare these two kinds of NPs. Results in 

Appendix Figure 3 confirmed that the cytotoxicity of AITC-SiQDs came from the surface 

ligand instead of the SiQDs core. 

 

Appendix Figure 3. Effects of NH2-SiQDs on cell viability. Cells were treated with different 

dose of AITC-SiQDs or NH2-SiQDs at 70–80% confluence for 24 hours. The control cells were 

treated with DMSO (0.1%), and cell viability was determined by the MTT assay. Results from 

(A) HepG2, (B) Caco-2. Each data point represents the mean ± SD of at least 5 biological 

replicates. 
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