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Abstract— Human action recognition is crucial to many prac-
tical applications, ranging from human-computer interaction to
video surveillance. Most approaches either recognize the human
action from a fixed view or require the knowledge of view
angle, which is usually not available in practical applications.
In this paper, we propose a novel end-to-end framework to jointly
learn a view-invariance transfer dictionary and a view-invariant
classifier. The result of the process is a dictionary that can project
real-world 2D video into a view-invariant sparse representation,
and a classifier to recognize actions with an arbitrary view. The
main feature of our algorithm is the use of synthetic data to
extract view-invariance between 3D and 2D videos during the
pre-training phase. This guarantees the availability of training
data, and removes the hassle of obtaining real-world videos in
specific viewing angles. Additionally, for better describing the
actions in 3D videos, we introduce a new feature set called the
3D dense trajectories to effectively encode extracted trajectory
information on 3D videos. Experimental results on the IXMAS,
N-UCLA, i3DPost and UWA3DII data sets show improvements
over existing algorithms.

Index Terms— Action recognition, 3D dense trajectories, view-
invariance, transfer dictionary learning.

I. INTRODUCTION

2D VIDEO based human action recognition has attracted
a lot of attention in security surveillance and human-

computer interaction. Various spatio-temporal appearances
generated from the movements can be considered as the
feature descriptors for action recognition. These include
spatio-temporal pattern template [1], spatio-temporal interest
points [2]–[5], shape matching [6], [7] and motion trajec-
tories based descriptors [8]–[11]. Among them, dense tra-
jectories based methods have achieved state-of-the-art results
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Fig. 1. Leveraging view-invariance from 3D model is a popular idea to tackle
arbitrary-view and cross-view action recognition. (a) Existing works [16], [17]
project a simplified 3D cylindrical model into as many viewpoints as possible
to produce 2D training videos and extract 2D dense trajectories from these
projections. However, some human appearance information could be lost due
to the unrealistic 3D reconstruction and the simplified cylindrical model. The
discrete projection angles also inevitably result in the loss of 3D geometric
information. (b) The proposed 3D dense trajectories are extracted directly
from high-quality 3D human surface model without any projection.

by extracting densely sampled trajectories-aligned descriptors
in the optical flow fields. Deep learning networks have also
achieved significant success in the 2D action recognition
area [12]–[15]. These methods can automatically learn spatial-
temporal feature representations and identify different action
categories. However, [12]–[15] are only effective for sin-
gle view action recognition and the recognition performance
degrades significantly when the viewpoint is changed. The
reason behind is that the appearances of a particular action
from different viewpoints vary dramatically, which results in
dissimilar trajectories.

As a result, cross-view action recognition is proposed for
bridging the appearance differences between different view-
points. The main idea is to transfer the knowledge from
the source view to the target view, allowing the system
to recognize actions from a view that is not included in
the training set. Blank et al. [1] presented a dynamics-based
feature called hankelet that can capture the invariant prop-
erty in viewpoint change using short tracklets for cross-view
recognition. Kovashka and Grauman [18] used an AND-OR
graph representation to compactly express the appearance and
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motion variance during viewpoint changes. Lin et al. [6] and
Lv and Nevatia [7] constructed a continuous path between the
target view and the source view to facilitate cross-view action
recognition. Farhadi and Tabrizi [19] generated the same split-
based features for correspondence video frames from both
training and testing views. Such systems are computationally
expensive as they not only require feature-to-feature corre-
spondence, but also require mapping between the split-based
and the original feature. Liu et al. [20] used a bipartite graph
to model the relationship between the two codebooks from
the source view and target view. Wang et al. [21] proposed
a Statistical Translation Framework (STF) to estimate the
transfer probabilities of the visual words from the source to
target views. Huang et al. [22] built a correlation subspace
to produce joint representation from different views by using
canonical correlation analysis. In spite of discovering the cor-
respondence between codebooks from two or more different
views, the above approaches cannot guarantee that videos
captured from different views share similar features. Also, all
these methods require viewpoint information for both source
view and target view, which is usually not available in practical
applications.

As a solution, arbitrary-view action recognition is proposed,
in which viewpoint information is not required during test-
ing and action from unseen views can be recognized. The
main idea is to remove view-dependent information from the
feature representation. Previous attempts to realize arbitrary-
view action recognition have met with varying levels of
success. Lv and Nevatia [7] use a graphical model to calibrate
2D key poses of actors to represent 3D surface models
for arbitrary view action recognition. However, the motion
information for recognizing actions may not be well captured.
Weinland et al. [23] propose to recognize human actions by
estimating 3D exemplars from a single 2D view angle using
the hidden Markov model. However, reconstructing these 3D
exemplars from a single view is unreliable. Also, detailed
action information may be lost as only discrete samples of
silhouette information are used. Yan et al. [24] present a 4D
(i.e., 3D spatial and 1D temporal dimensions) action feature
using the time-ordered 3D reconstruction of the actors from
multi-view video data. The recognition accuracy depends
heavily on the performance of the 3D reconstruction, and
the framework requires training data to be captured from
carefully designed viewpoints. Gupta et al. [16] propose to
project the 3D motion capture sequence in the 2D space and
explore the best match of each training video using non-
linear circular temporary encoding. However, since discrete 2D
projection, instead of full 3D information, is used for training,
the accuracy depends on the number of projected views.
Rahmani et al. [25] propose R-NKTM to transfer knowledge
of human actions from any unknown view to a shared high-
level virtual view by finding a non-linear virtual path that con-
nects the views. They generate the training data by projecting
the 3D exemplar to 108 virtual views. The use of so many
projected views results in enhanced system performance, but
result in a computationally expensive training process. Ideally,
we would like to have a framework that relies on easy-to-
obtain training data and performs robustly in runtime.

Most of the existing works leverage view-invariance pro-
vided by 3D models to realize cross-view or arbitrary-view
action recognition. Traditionally, simplified cylindrical mod-
els are used [16], [17], which does not generate realistic
movement appearance. High-quality reconstruction models are
proposed by calculating them from multi-view 2D videos [24].
In order to increase the system robustness to viewpoint
changes, training data is forced to cover as much 2D data
projected along as many viewpoints as possible. All these
approaches suffer from the following problems: (1) The recog-
nition accuracy is highly related to the quality of 3D models.
Some human appearance information could be lost due to
the unrealistic 3D reconstruction and the simplified cylindrical
model; (2) Despite the effort to project the 3D model into as
many viewpoints as possible, these discrete projection angles
will inevitably result in the loss of 3D geometric information.
A large amount of 2D projections also requires larger system
capacity and training cost.

To solve the problems, we proposed to synthesize training
data using high-quality human models with captured 3D
motion data. We employ primary deformation [26] to drive
the movement of the models, and motion retargeting [27]
to adjust the movement based on the body sizes of the
models. We further propose a new 3D feature set called the
3D dense trajectories including 3D trajectories, 3DHOF and
3DMBH. This allows us to extract the feature directly from 3D
videos and avoid geometric information loss due to discrete
projection. Finally, we propose a new view-invariant trans-
fer dictionary learning framework, which extracts the view-
invariance between 3D and 2D video, to perform arbitrary
view action recognition. We pre-train the system with a large
number of automatically synthesized 3D and 2D videos. This
allows us to train a view-invariant action classifier using
only a small number of real-world 2D videos, in which
the view information is not annotated. Experimental results
show that our system achieves better accuracy when compared
with previous work in arbitrary-view and cross-view action
recognition.

This paper has three main contributions:

• We propose a new transfer dictionary learning framework
that utilizes synthetic 2D and 3D training videos gener-
ated from realistic human models to learn a dictionary
that can project a real world 2D video into a view-
invariant sparse representation, which allows us to train
an action classifier that works in an arbitrary view.

• We release our synthetic 2D and 3D dataset for public
usage. This is the first structured action dataset built with
realistic human models for high-quality action classifica-
tion.

• We propose a new 3D feature set called the 3D dense
trajectories consisting of 3D trajectories, 3DHOF and
3DMBH for a better description of motion in 3D. This
can be considered as a 3D counterpart of the popular 2D
feature dense trajectories [21].

This paper is based on our previous work presented in [28],
but it substantially extends the work in four aspects, which
are: (1) We replace the cylinder-based 3D model with several
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more realistic 3D human models. The motion is retargeted
according to the bone dimensions [27] and skinned to the
realistic models [26]. (2) We propose the 3D dense trajectories
including 3D trajectories, 3DHOF and 3DMBH to better
describe the motion in 3D videos. (3) By jointly training the
transfer dictionary pair and the classifier, we build an end-to-
end framework with an updated objective function to improve
the efficiency and performance of the system. (4) We perform
more detailed system evaluation with two more datasets:
i3DPost and UWA3DII.

The rest of this paper is organized as follows. In Section II,
we introduce some related applications and approaches for
the view-invariant action recognition. In Section III, we give
an overview of our view-invariant human action recognition
frame. In Section IV, we present the synthesis and feature
extraction process on our 2D and 3D video data. Section V
provides the details of our view-invariant dictionary learning
algorithm. Section VI presents the experimental results, and
Section VII concludes the paper.

II. RELATED WORK

The general process for view-invariant action recognition
can be divided into three major parts. (1) Synthesized 3D
exemplars are used for producing the 2D videos covering as
many viewpoints as possible. (2) Then, the feature extraction
methods, especially some interest points and trajectory-based
feature extraction methods, are developed for describing the
action on the 2D videos. (3) At last, transfer learning algo-
rithms are used to transfer the action information across differ-
ent views in order to realize view-invariant action recognition.
Therefore, in this part, some previous works related to these
three major processes will be introduced respectively.

A. 3D Exemplar-Based Methods

One popular idea is to utilize 3D exemplars for view-
invariant feature extraction and description. Some researchers
are only using the static 3D exemplars. For exam-
ple, Ankerst et al. [29] propose the histogram of shape
which is very similar to the 3D shape context proposed
by Korgen et al. [30]. Subsequently, Huang and Hilton [31]
combine the histogram of shape with color information. All
these methods are mainly based on static descriptors such as
poses and shape while the state-of-the-art descriptors integrate
static descriptors with motion information.

Instead of relying on the static feature only, some
researchers utilize the changing of static descriptors over
time in order to capture the temporal information by sim-
ply accumulating static descriptors, applying sliding win-
dows, or tracking human pose information [23], [32]–[34].
Cohen and Li [35] present a 3D human shape model for view-
invariant human identification. Later, this 3D human shape
model was developed by Pierobon et al. [34] for human action
recognition. Weinland et al. [33] propose the Motion History
Volume (MVH) as a 3D extension of Motion Histogram
Images (MHIs). MHV is calculated by accumulating human
postures over time in cylindrical coordinates. A different
strategy is proposed by Yan et al. [24], where they develop

a 4D action feature model (4D-AFM) for arbitrary view
action recognition based on spatio-temporal volumes (STVs).
However, the performance of the above 3D exemplars-based
systems is strictly limited to the result of 3D reconstruc-
tion. Normally, the reconstructed 3D exemplars are not very
realistic.

Some other researchers construct the 3D exemplar with
the aid of depth sensors. Zhang et al. [36] present a low-
cost descriptor called 3D histogram of textures (3DHoTs)
to extract discriminative features from a sequence of depth
maps. They combine depth maps and texture description
by projecting depth frames onto three orthogonal Cartesian
planes to describe the salient information of a specific action.
Liu et al. [37] presents a multi-scale energy-based Global
Ternary Image (GTI) representation, which efficiently encodes
both the spatial and temporal information of 3D actions. Skele-
ton information can be easily collected from the depth map.
Liu et al. [38] propose a sequence-based transform method,
which maps skeleton joints into a view-invariant high dimen-
sional space. Then, they use color images to visualize this
space and adopt CNN to extract deep features from these
enhanced color images. Wang et al. [39] realize non-rigid
reconstruction and motion tracking without any template using
a single RGB-D camera. Jia and Fu [40] present a tensor sub-
space, whose dimension is learned automatically by low-rank
learning for RGB-D action recognition. Kong and Fu [41]
propose a discriminative relational feature learning method
for fusing heterogeneous RGB with depth modalities and
classifying the actions in RGB-D sequences. Even though
the depth information has a superior descriptive ability on
3D exemplars, most videos in the real world are captured
without depth information. Therefore, we focus on techniques
for extracting 3D information from RGB only videos, which
have more prospective applied areas.

B. Interest Points and Trajectory-Based Methods

To better describe the spatio-temporal interest points,
Dollar et al. [2] build the descriptors upon brightness, optical
flow and gradient information. The SIFT descriptor is extended
to the spatio-temporal interest points by Scovanner et al. [42].
Willems et al. [43] extend the SURF descriptor to the video
domain by computing weighted sums of response of Haar
wavelets.

Due to the fact that spatio-temporal interest points are at
fixed location in the video, only interest points based descriptor
cannot capture motion information in the video. In contrast,
trajectory tracks the given interest point over time so that it can
capture the motion information. Messing et al. [44] extract
trajectories by tracking Harris3D interest points with a KLT
tracker. They use a sequence of log-polar quantized velocities
to represent trajectories. Matikainen et al. [45] extract trajec-
tories with a standard KLT tracker, then they cluster these
trajectories for the action classfication. Sun et al. [46] match
SIFT descriptor between two frames to compute trajectories.
Later, they combine both SIFT matching and KLT tracker to
extract long-duration trajectories [47]. Wang et al. [9] com-
pute trajectories by tracking the interest points in the optical
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Fig. 2. The overview of our view-invariant transfer dictionary learning system. (Left) In the pre-training phase, we learn the dictionaries D3D , D2D and
a linear classifier W simultaneously from the synthetic 3D videos and the synthetic 2D videos. (Middle) In the training phase, we replace the synthetic 2D
videos with 2D real training videos for adapting the dictionaries D′

3D , D′
2D and the classifier W ′. The 2D dictionary and the classifier are denormalized

into ̂D′
2D and ̂W ′ respectively. (Right) In the testing phase, given any real 2D video, we apply ̂D′

2D to encode the features into a view-invariant sparse
representation X , and use ̂W ′ for classification.

flow field, then they compute Histogram of Gradient (HOG),
Histogram of Optical Flow (HOF) and Motion Boundary
Histogram (MBH) to model the action in the video. However,
the optical flow field is just a 2D approximation of the 3D
motion field and cannot accurately describe the 3D motion
information.

C. Transfer Learning and Dictionary Learning

Transfer learning has been widely used in cross-domain
action recognition problems to store knowledge learnt from
one dataset and apply it to a different but related one.
Liu et al. [48] present a simple-to-complex action transfer
learning model (SCA-TLM) for complex human action recog-
nition. It improves the performance of complex action recog-
nition by leveraging the abundant labeled simple actions.
In particular, it optimizes the weight parameters, enabling
the complex actions to be learned and to be reconstructed
by simple actions. Xu et al. [49] propose a novel dual many-
to-one encoder architecture to extract generalized features by
mapping raw features from source and target datasets to the
same feature space. Rahmani et al. [25] propose R-NKTM to
transfer knowledge of human actions from any unknown view
to a shared high-level virtual view by finding a non-linear
virtual path that connects the views.

Recently, dictionary learning for sparse representation has
been successfully applied in many computer vision appli-
cations, such as image de-noising [50] and face recogni-
tion [51]. With an over-complete dictionary, input signal can
be approximately represented by a sparse linear combination
of items in the dictionary. Previously, many methods [52] have
been presented to learn such a dictionary based on different
criteria. Among them, the K-Singular Value Decomposition
(K-SVD) [53] is a typical dictionary learning method that
uses the K-means clustering algorithm for optimizing dictio-
nary items to learn an over-complete dictionary. Even though
the K-SVD method has the re-constructive ability, due to
the unsupervised learning process, the discriminative ability
has not been considered. Later, [54] proposed a dictionary
transformation method to transform the dictionary from one
domain to another. It can handle the problem that the testing

instances are different from the training instances. In addition,
they use correspondences between the source view and the
target view to construct pairwise dictionaries for the cross-
view action recognition problem. Zheng et al. represents the
videos in each view using a view-specific dictionary and the
common dictionary. More importantly, it encourages the set of
videos taken from different views of the same action to have
the similar sparse representations [55].

Unlike the above approaches, our approach simultaneously
learns pairwise dictionaries and a classifier while consider-
ing re-constructive ability, discriminative ability and domain
adaptability during the dictionary learning process. The data
in 3D source domain and 2D target domain are with com-
pletely different formats. View-invariance from 3D data can
be smoothly transferred to 2D data with jointly optimizing
the pairwise dictionaries.

III. SYSTEM OVERVIEW

As illustrated in Fig. 2 Left, in the pre-training phase,
we synthesize 3D video sequences using motion capture data.
We propose a new 3D dense trajectories feature extracted from
a source 3D synthetic video, and Y3D = [ y3D

1, . . . , y3D
K ] ∈

RS×K denotes the K S-dimensional features. The synthetic 3D
video is projected into different viewpoints to create multiple
synthetic 2D videos. Y2D = [ y2 D

1, . . . , y2 D
K ] ∈ RT ×K

denotes the K T -dimensional features extracted from a target
synthetic 2D video. We build 3D videos and 2D videos
pairwisely in order to train the correspondence between them.
We use K to denote both the numbers of 2D videos and 3D
videos used in the pre-training phase.

We then train the 3D and 2D dictionaries simultaneously
from the synthetic 3D and 2D videos respectively, which
projects the respective video data into a common view-
invariant sparse feature space. They are represented as D3D =
[d3D

1, . . . , d3D
N ] ∈ RS×N and D2D = [d2 D

1, . . . , d2 D
N ] ∈

RT ×N , where N is the dimension of the sparse feature space.
Records belonging to the same action class in both 3D and 2D
data are constrained to share the same sparse representation.
We construct the action classifier W in an end-to-end manner
for better accuracy, by jointly minimizing the classification
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Fig. 3. (a) Some example frames from the synthetic 3D video. Using motion
retargeting techniques, we can retarget the captured motion to 3D models of
different body sizes to increase the database diversity. (b) The interest points
obtained according to the vertices of the 3D models.

error rate and the dictionary quantization error. This improves
training efficiency and system accuracy.

Then, as illustrated in Fig. 2 Middle, in the training phase,
we replace the synthetic 2D videos with the 2D real training
videos and perform system fine-tuning. This allows us to adapt
the dictionaries (D′

3D, D′
2D) and the classifier (W ′) originally

trained from synthetic data into real-world data. Because of
the pre-training phase, only a small amount of real training
videos are needed. We finally denormalize the 2D dictionary
and the classifier into ̂D′

2D and ̂W ′ respectively.
In the testing phase illustrated in Fig. 2 Right, given any real

2D video, we apply ̂D′
2D to encode the features into a view-

invariant sparse representation X = [x1, . . . , x K ] ∈ RN×K .
We then apply ̂W ′ to identify the class label of the video.
Due to the use of the view transfer dictionary, our system can
identify actions from an arbitrary 2D view.

IV. VIDEO SYNTHESIS AND FEATURE EXTRACTION

In this section, we explain how we synthesize 3D videos
and project them to generate synthetic 2D videos. We then
explain how we extract a corresponding set of 3D and 2D
features.

A. Synthesizing 3D and 2D Videos

Here, we explain the process of synthesizing 3D and 2D
video data.

To synthesize the 3D motion models, we utilize the motion
capture data from the Carnegie-Mellon Graphics Lab [56] and
the Truebones dataset [57]. The motions are represented with
3D joint angles in a skeletal body hierarchy at 25 frames
per second (FPS). Instead of using simplified cylindrical model
to represent surface information as in past research [16], [28],
we use different high-resolution 3D human models instead.
This requires a process known as primary deformation [26]
to deform the human models based on the skeletal movement
over time. The advantage of using 3D motion data is that
we can apply motion retargeting techniques to synthesize the

Fig. 4. (a) Example frames of synthetic 2D videos obtained by projecting
a 3D video into different viewpoints. (b) Virtual cameras are placed on the
hemisphere looking towards the center of the sphere to generate different
viewpoints.

Fig. 5. (a) Synthesized 2D video (b) Extracted dense trajectories (red points
are interest points, green curves are trajectories).

motion performed by human models of different body sizes,
as shown in Fig. 3a. Such an automatic process enhances the
diversity of the database by adjusting the movement according
to the bone length.

In order to produce synthetic 2D video, we project the
synthesized 3D videos uniformly in a set of pre-defined view-
points. Fig. 4 shows example frames of 2D videos projected
from various viewpoints. Notice that in our system, we do
not require any information about the viewpoints to perform
classification.

B. 2D Dense Trajectories

For both 2D synthetic videos and 2D real videos, we employ
dense trajectories [10], a powerful action representation, for
feature extraction. It considers both holistic and local infor-
mation of 2D motion by combining dense sampling and
trajectory tracking. Specifically, it consists of a set of low-
level descriptors, including trajectory descriptor, Histogram of
Oriented Gradients (HOG), Histogram of Optical Flow (HOF)
and Motion Boundary Histogram (MBH). Among them, HOG
can extract the static appearance of the videos while HOF and
MBH can extract the motion information. Fig. 5 shows an
example of dense trajectories extracted from a synthetic 2D
video.

C. Proposed 3D Dense Trajectories

Our transfer learning involves transferring 3D and 2D
features into a common sparse feature space, and hence it
is preferable that both of them have similar logical meanings.
Therefore, we propose a 3D version of dense trajectories that
corresponds to the 2D one. The proposed feature consists
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Fig. 6. The 14 3D velocity bins visualized with a 3D cube. 6 directions point
towards the faces of the cube, and 8 directions point towards the corners of
the cube.

of three components: 3D trajectories, 3DHOF and 3DMBH.
Notice that HOG is not included here, as the surface texture
of a 3D model remains unchanged over time.

An advantage of synthetic 3D videos is that both the vertices
geometry on the human model surface and the vertices corre-
spondence across frames are available. We first obtain a set of
interest points over time according to the surface vertices of the
3D models, as shown in Fig. 3b. For each point, we extract the
motion trajectory across frames (Pt , Pt+1, Pt+2, . . .), where
Pt is the 3D Cartesian coordinate of the vertex at frame t ,
as shown in Fig. 1b.

The 3D trajectory is defined as:

T r ′ = (�Pt , . . . ,�Pt+L−1)
∑t+L−1

j=t ‖�Pj ‖
(1)

where L is a user-defined value that represents the number of
frames to be considered in a trajectory, and �Pt = (Pt+1− Pt )
indicates the displacement across two frames. The denomi-
nator is the total length of the trajectory, which is used for
normalization.

2D HOF is the pattern of apparent motion of objects and
surface in a visual scene caused by the relative motion between
an observer and a scene. A logically similar representation
in 3D, which we named the 3D Histogram of Optical Flow
(3DHOF), is the velocity field of the surface vertices. We first
define the velocity of a vertex as:

Vt = �Pt

1/F PS
(2)

where F PS is the frame rate of the 3D video, and is set to
25 in our experiments. We then quantize the 3D velocity ori-
entations into 14 bins H (h1, h2, . . . , h14) as shown in Fig. 6.
3DHOF is defined as the binned histogram along each vertex
trajectory:

hi =
∑

t∈Ti
‖Vt‖

∑t+L−1
j=t ‖Vt‖

(3)

where Ti is a set that contains the frame’s number in which
the velocity direction of the interest point belongs to i on a
L-frame trajectory. ‖Vt‖ is the magnitude of the velocity,
which is used for weighting.

The 2D MBH (motion boundary histogram) is the derivative
of the optical flow field computed separately for the horizontal
and vertical components to encode the relative motion between
pixels. This is to compensate the HOF descriptor, which can
only compute absolute motion information. Inspired by this,
we proposed the 3DMBH that encodes the relative motion
between neighbor interest points on our 3D model. Similar

Fig. 7. The 3DMBH components in X, Y and Z directions are quantized
into 8 bins each. The 3DMBH is defined as the concatenation of 3DMBHx,
3DMBHy and 3DMBHz along each vertex trajectory.

Fig. 8. (a) The Y component of 3D velocity field for the example frame.
(b) 3DMBHy is obtained by computing the gradient of Y component of
3D velocity field.

to the 2D MBH implementation, we compute the deriva-
tives separately along the X, Y, Z axes in the 3D velocity
field. We quantize each 3DMBH component into 8 bins and
the 3DMBH is defined as the concatenation of 3DMBHx,
3DMBHy and 3DMBHz along each vertex trajectory. The
process is visualized as in Fig. 7. For example, the Y com-
ponent of 3D velocity field is shown in Fig. 8a, and we
compute its gradient to describe the relative motion between
neighboring interest points of that frame as shown in Fig. 8b.

V. VIEW-INVARIANT ACTION CLASSIFICATION

In this section, we explain how we train the view-invariant
dictionaries and the classifier from synthetic 3D and 2D video
data using dictionary learning. The processes are summarized
as the algorithm shown in Fig. 9.

A. The Pre-Training Phase

Here, we introduce the basic theory of dictionary learn-
ing [58], and explain how we learn the view-invariant transfer
dictionary for the 3D and 2D synthetic videos.

Dictionary learning generates a sparse representation for
a high dimensional signal using linear projection with a
projection dictionary. Let y ∈ R P denote a P-dimensional
input signal that can be reconstructed by the Q-dimensional
projection coefficient x ∈ RQ via a linear projection dictionary
D = [d1, . . . , d Q] ∈ R P×Q . To obtain an over-completed
dictionary, P should be much larger than Q. Assuming the
reconstruction error to be E(x), the projection process is
formulated as:

y = Dx + E(x) (4)

The objective function is defined as:

argminx,D‖y − Dx‖2
2 s.t . ‖x‖0 ≤ M (5)
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Fig. 9. The algorithm for transferring view-invariance from 3D video to
2D video by transfer dictionary learning.

where ‖y − Dx‖2
2 denotes the reconstruction error.

s.t .‖x‖0 ≤ M denotes the sparsity constraint. M is the
L0-norm sparsity constraint factor that limits the number of
non-zero elements in the sparse codes.

Due to the different number of trajectories across action
videos, we use a bag-of-words descriptor to ensure that the
features extracted from the action videos share the same
dimension, following [8]–[11]. Specifically, we use K-means
to cluster the trajectory-based descriptors in each action video
into a fixed number of visual words. This allows us to represent
the action videos with histograms of the same dimension.

We design a transfer dictionary learning system to transfer
the view-invariance of the synthetic 3D videos to the synthetic
2D videos. We train two dictionaries simultaneously, with one
for 3D (i.e. source - D3D) and one for 2D (i.e. target - D2D).
The main idea is to optimize the dictionaries such that the
same action in both 3D and 2D videos has the same sparse
representations, as visualized in Fig. 10. Upon successful
training, D2D is able to project the feature vector of a 2D
video into a sparse representation that is similar to that of
a 3D video. In other words, such a sparse representation is
view-invariant.

We divide the dictionary into a number of disjoint subsets,
and each of these is used exclusively for one action category.
3D and 2D videos with the same action category are therefore
represented by the same subset of the dictionary. Those with
different action categories are represented with disjoint subsets
of the dictionary. This design enables the 3D and 2D videos
with the same action category to share the same sparse
representation pattern. Conversely, those with different action
categories tend to have different representations.

Fig. 10. Optimizing the 3D (source) and 2D (target) dictionaries to constraint
that the same action in synthetic 3D and 2D videos has the same sparse
representations.

Specifically, the dictionary optimization function is designed
as:

argminX,D3D,D2D,A α‖Y3D − D3D X‖2
2 + ‖Y2D − D2D X‖2

2

+ β‖Q − AX‖2
2

s.t ∀i, ‖x i‖0 ≤ M (6)

where α and β are trade-off parameters, ‖Y3D − D3D X‖2
2 and

‖Y2D −D2D X‖2
2 are two terms to minimize the error of the 3D

and 2D dictionaries respectively, and ‖Q − AX‖2
2 is a label

consistent regularization term to minimize the difference in
sparse representation for the same class of action as introduced
in [59] and [60]. A is a linear transformation matrix that
maps the original sparse codes X to be consistent with the
discriminative sparse codes Q = [q1, . . . , q K ] ∈ RN×K of
input signal (y3D

j , y2 D
j ), in which the index j indicates the

index of 2D and 3D action video pairs. Specifically, each
vector q j = [q j

1, . . . , q j
N ] = [0 . . . 1, 1 . . . 0] ∈ RN , and

the non-zero occurs at those indices where the input signal
(y3D

j , y2 D
j ) and the dictionary items (d3D

n, d2 D
n) share the

same label. In our dictionary design, dictionary item d3D
n and

d3D
n always have the same label. For example, assuming the

Y2D = [ y2 D
1, . . . , y2 D

6] and D2D = [d2 D
1, . . . , d2 D

6], where
y2 D

1, y2 D
2 and d2 D

1, d2 D
2 are from class 1, y2 D

3, y2 D
4 and

d2 D
3, d2 D

4 are from class 2, y2 D
5, y2 D

6 and d2 D
5, d2 D

6 are
from class 3, then Q can be defined as:

Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7)

Inspired by [60], we propose to include the action classi-
fication error of a linear prediction classifier into the object
function to build an end-to-end system. This enhances the
system training efficiency and results in better classification
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accuracy. The new objective function is therefore updated as

argminX,D3D,D2D,A,W α‖Y3D − D3D X‖2
2 + ‖Y2D

− D2D X‖2
2 + β‖Q − AX‖2

2 + γ ‖H − W X‖2
2

s.t . ∀i, ‖x i‖0 ≤ M (8)

where ‖H − W X‖2
2 is the proposed action classification error

term, W ∈ RC×N denotes the classifier parameters and H =
[h1, . . . , hK ] ∈ RC×K are the class label of input signals Y2D .
h j = [0 . . . 1 . . . 0]T ∈ RC is a label vector corresponding to
an input signal y2 D

j , where the nonzero position indicates the
class of y2 D

j .

B. Optimization

Here, we explain how we obtain the solution for Eq. 8.
Since the three terms on the right hand side of Eq. 8 have the
same format, we first rewrite Eq. 8 as follows:

argminX,D0‖Y0 − D0 X‖2
2 s.t . ∀i, ‖x i‖0 ≤ M (9)

where

Y0 =
⎛

⎝

√
αY3D
Y2D√
βQ√
γ H

⎞

⎠ , D0 =
⎛

⎝

√
αD3D
D2D√
β A√
γ W

⎞

⎠ .

Such an objective function shares the same form as Eq. 5,
which can be optimized using the K-SVD algorithm [53].
Specifically, Eq. 9 is solved through both dictionary atom
updating and sparse representing.

For the dictionary atom updating stage, each dictionary atom
is updated sequentially to better represent both 3D videos and
2D videos. When pursing the better dictionary D0, the sparse
representation X is fixed, and each dictionary atom is updated
by tracking down a rank-one approximation to the matrix of
residuals.

Following K-SVD, the kth atom of dictionary D0 and its
corresponding coefficients are denoted as dk and xk respec-
tively. Let Ek = Y0 − ∑

j �=k d j x j and we further denote x̃k

and ˜E as the result obtained when all zero entries in xk and
Ek are discarded respectively. Each dictionary atom dk and its
corresponding non-zero coefficients x̃k can be computed by:

argmindk,x̃k
‖˜Ek − dk x̃k‖2

2 (10)

The approximation in Eq. 10 is achieved through Singular
Value Decomposition (SVD) on ˜Ek :

SV D(˜Ek) = U
∑

V T

dk = U(:, 1)

x̃k =
∑

(1, 1)V (1, :) (11)

where U(:, 1) indicates the first column of U while V (1, :)
indicates the first row of V .

At the sparse representation stage, we compute the best
matching projection X of the multidimensional training data
for the updated dictionary D0 using Orthogonal Matching
Pursuit (OMP) algorithm.

1) Initialization: D3D , D2D , A and W are required to be
initialized before pre-training. In our system, for D3D and
D2D , we run a few iterations of K-SVD within each action
class and initialize the label of the dictionary items based on
the corresponding action labels. To initialize A and W , we use
the multivariate ridge regression model [61] with the L2-norm:

A = argmin A‖Q − AX‖2
2 + ϕ1‖A‖2

2

W = argminW‖H − W X‖2
2 + ϕ2‖W‖2

2 (12)

where ϕ1 and ϕ2 are manually defined constants and are
empirically set as 0.5 in our system. The equation yields the
following solutions:

A = (X Xt + ϕ1 I )−1

W = (X Xt + ϕ2 I )−1 (13)

where X is calculated with the initialized D3D or D2D .
2) Convergence Analysis: The convergence proof of the

proposed method is similar with the K-SVD algorithm. In the
dictionary updating stage, each atom dk and its corresponding
coefficients x̃k minimize the objective function, while the
rest of dictionary atoms are updated iteration by iteration.
Therefore, the Mean Squared Error (MSE) of the recon-
struction error should be monotonically decreasing. At the
sparse representation stage, the MSE is also reduced due
to the computation of the best matched coefficients under
the L0-norm constraint of the OMP algorithm. In addition,
since MSE is non-negative, the optimization process should
be monotonically reducing and bounded by zero. Therefore,
the convergence of the proposed transfer dictionary learning
method is guaranteed.

C. The Training Phase

Here, we explain how to adapt the pre-trained dictionaries
and classifier into real video.

We fine-tune the dictionaries and the classifier pre-trained
by the synthetic data in order to adapt them into real-world
data. Specifically, we use D3D , D2D , A, W in the pre-training
phase to initialize the training phase. We also replace the 2D
synthetic videos with 2D real training videos. Then, we follow
the same optimization strategy in Section V-B and apply the
same number of iterations as the pre-training phase. After the
optimization, we denote the trained dictionaries and classifiers
as (D3D

′, D2D
′) and W ′ respectively.

Since D3D
′, D2D

′, W ′ are jointly L2-normalized during
the optimization process, we need a step of de-normalization
before they can be used for classification. Following [60],
the denormalized 2D dictionary ̂D′

2D and the classification
parameter ̂W ′ are calculated as:

̂D′
2D =

(

d2 D_1
′

‖d2 D_1
′‖2

,
d2 D_2

′

‖d2 D_2
′‖2

, . . . ,
d2 D_N

′

‖d2 D_N
′‖2

)

̂W ′ =
(

w1
′

‖w1′‖2
,

w2
′

‖w2′‖2
, . . . ,

wN
′

‖wN
′‖2

)

(14)

where d2 D_n
′ denotes the nth atom of the dictionary D′

2D , wN
′

denotes the nth atom of W ′. Notice that we do not denormalize
D3D

′ as it is no longer needed in the next phase.
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TABLE I

CROSS-VIEW RECOGNITION ACCURACY OF ALL POSSIBLE VIEWPOINT COMBINATIONS ON IXMAS DATABASE.
THE HORIZONTAL AXIS LABELS ARE FORMATTED AS “SOURCE VIEW|TARGET VIEW”

D. The Testing Phase

Here, we explain how we apply our trained dictionary to
perform view-invariant action classification.

Given a real 2D video query sample y2 D
′, its sparse

representation x ′ can be computed with ̂D2D
′. With the linear

classification parameter ̂W ′, the label l can be predicted as:

l = ̂W ′x ′ (15)

The label of y2 D
′ is the index corresponding to the largest

element of l .

VI. EXPERIMENTAL RESULTS

In this section, we first provide experiment setup details.
We then evaluate the performance of our method with four
public multi-view datasets including the IXMAS, N-UCLA,
UWA3DII and i3DPost datasets.

The synthetic 3D and 2D datasets we used for transfer
dictionary learning are open to the public. They can be found
at our project website. All experiments were performed on
a desktop computer with an Intel i7-4790k CPU, a NVIDIA
Quadro K2200 graphics card and 16GB RAM.

A. Implementation Details

We used the software package Poser 2014 to retarget
3D motion capture data files in BVH format, animate 3D
human models, and project the 3D scenes into 2D videos.
We employed 5 high-quality 3D characters to synthesize
the 3D video. For each action class, we synthesized 18
3D videos per character with 18 randomly selected motion
files within the class. For each action class, we synthe-
sized the 2D videos per character by projecting a randomly
selected 3D video into 18 uniformly sampled viewpoints. The
azimuthal angle of the projection was uniformly sampled as
{0◦, 60◦, 120◦, 180◦, 240◦, 300◦} and the polar angle of
the projection was sampled as {0◦, −30◦, −60◦}. This setup
allowed us to generate the same number of 3D and 2D videos
(number of characters × number of views × number of action
classes)as required by K-SVD for transfer dictionary learning.

During pre-training, for the experiments on the IXMAS
dataset (11 action classes), the N-UCLA dataset (10 action
classes), the i3DPost dataset (10 action classes) and the
UWA3DII dataset (30 action classes), we synthesized 990,
900, 900, 2700 pairwise 3D and 2D videos, respectively. From
our experience, a larger synthetic dataset resulted in better
accuracy. The size used was chosen considering the trade-off
between system accuracy and training complexity.

Fig. 11. Sampled frames from the IXMAS dataset.

We extracted dense trajectories from 2D synthetic videos,
as well as 2D real videos from the IXMAS, N-UCLA,
UWA3DII and i3DPost datasets. Afterwards, we constructed
a codebook for each of the four descriptors in the dense
trajectories separately. For each 2D descriptor, we applied
k-means to cluster a subset of 100,000 dense trajectory fea-
tures into 375 visual words. This resulted in a 2D feature
Y2D of 1,500 dimensions. For 3D synthetic videos, similar
to [23], we set the trajectory sample step to 5 frames, and the
trajectory length to 15 frames. We constructed codebooks for
3D trajectories, 3DHOF and 3DMBH descriptors respectively.
For each 3D descriptor, we applied k-means to cluster a subset
of 100,000 3D dense trajectories into 500 visual words. This
resulted in a 3D feature Y3D of 1,500 dimensions.

When training the transfer dictionaries, to initialize the dic-
tionary pair D3D and D2D , we employed k-means 5 times on
the features Y3D and Y2D respectively. For IXMAS, N-UCLA,
UWA3DII and i3DPost datasets, we set the dictionary sizes
N to 1180, 1150, 2500 and 1150 respectively, for both D3D

and D2D . The 3D dictionary trade-off parameter α was set
to 1.5. The label consistent trade-off parameter β was set to
be 2.0. The classification error trader-off parameter γ was set
to be 4.0. Finally, the numbers of iterations for the K-SVD
algorithm in both pre-training and training phases were set
to 60, 65, 100 and 65 for IXMAS, N-UCLA, UWA3DII and
i3DPost datasets respectively.

B. Experiments on the IXMAS Dataset

The IXMAS dataset [33] contains 11 daily-life actions
including check watch, cross arms, scratch head, sit down, get
up, turn around, walk, wave, punch, kick, and pick up. Each
action was performed three times by 10 subjects captured from
5 different viewpoints. Fig. 11 shows some examples.

In order to compare with existing works on cross-view
action recognition that utilize view labels including DVV [62],
CVP [63], nCTE [16], Hankelets [64], and our preliminary
work [28], we conducted an experiment considering view
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Fig. 12. Cross-view recognition accuracy per action class in IXMAS.

Fig. 13. Parameter analysis on the cross-view action recognition in
IXMAS dataset. (a) The optimization process of the objective function with
50 iterations. (b) Performance with varying the dictionary size.

labels. Here, we grouped the videos in the IXMAS dataset
into different views and evaluated the accuracy of transferring
one view to another. We followed the leave-one-action-out
cross-validation strategy from [16], [64]. Table I shows that
our algorithm outperforms the state-of-the-art method nCTE
in most cross-view pairs, as well as the average system
accuracy. It also demonstrates that our proposed methodology
enhancements over [28] have resulted in superior accuracy.
We also compare with a baseline setup of our system that does
not include the pre-training phase, which demonstrates the
effectiveness of utilizing synthetic 2D and 3D videos for pre-
training. Fig. 12 shows that our algorithm outperforms nCTE
in most action classes, thereby indicating that our system
can realize cross-view action recognition by transferring the
view-invariance from 3D models. Notice that in our default
setup, the system does not require any view information. This
experiment was designed for the sake of comparison only.

In order to analyze the effect of the hyperparameters (i.e.
α, β and γ ), we experiment with 27 different settings within
the searching range of α in [1, 2] on every 0.5 interval, β in
[1, 2] on every 0.5 interval and γ in [2, 4] on every 1.0 interval.
The result is visualized in Fig. 14.

Since the orientation of the actors is arbitrary in the
IXMAS dataset, we compare with existing works on arbitrary
view action recognition by calculating average accuracy for
each camera. For example, C0 is the average accuracy when
camera0 is used for training or testing. Table II shows that
our algorithm outperforms most of the previous methods in
some viewpoints. It is worth mentioning that NKTM [17] and
R-NKTM [25] are deep learning based methods, at the core
of which is the use of neural networks to transfer videos from
different views to a canonical view. However, their method

Fig. 14. Analysis on hyperparameters in Equation 7.

TABLE II

AVERAGE ACCURACY ON THE IXMAS DATASET FOR EACH CAMERA,
E.G. C0 IS THE AVERAGE ACCURACY WHEN CAMERA 0 IS USED FOR

TRAINING OR TESTING. EACH TIME, ONLY ONE CAMERA

VIEW IS USED FOR TRAINING AND TESTING

Fig. 15. Sampled frames from the N-UCLA dataset.

requires the generation of 2D training video by projecting
the 3D exemplar to 108 virtual views, while ours only needs
18 different views. Due to the lower amount of training
data required, our method can save computation resources
especially when constructing the system.

C. Experiments on the N-UCLA Dataset

The N-UCLA dataset [21] contains 10 action classes cap-
tured from 3 different viewpoints with 10 different actors.
The action categories include pick up with one hand, pick
up with two hands, drop trash, walk around, sit down, stand
up, donning, doffing, throw, and carry. Fig. 15 shows some
sample frames from the N-UCLA dataset.

We evaluated our system accuracy in cross-view action
recognition and in comparison with existing work includ-
ing DVV [62], nCTE [16], CVP [63], and our prelimi-
nary work [28]. We followed the experimental setup in [16]
and [63], which utilizes videos captured from two cameras
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Fig. 16. (a) Cross-view recognition accuracy per action class in N-UCLA. (b) The confusion matrix of N-UCLA.

TABLE III

ACCURACY ON THE N-UCLA DATASET (TWO VIEWS FOR

TRAINING AND ONE FOR TESTING)

for training and the other one for testing. The accuracy
was calculated using leave-one-action-out cross validation.
As shown in Table III, our method outperforms existing
algorithms in most of the cross-view setups and the overall
result. Fig. 16 shows that our algorithm outperforms nCTE
in most action classes. This demonstrates that our system can
realize cross-view action recognition by transferring the view-
invariance from 3D models. Notice that in our default setup,
the system does not require view information. This experiment
was designed for the sake of comparison only.

On the N-UCLA dataset, some actions are quite difficult
to differentiate, such as “Drop Trash” vs. “Throw”, “Carry”
vs. “Walk around”, as they both consist of similar body
movement.

D. Experiments on the UWA3DII Dataset

This dataset [65] consists of a variety of daily-life human
actions performed by 10 subjects with different scales.
It includes 30 action classes: one hand waving, one hand
punching, two hand waving, two hand punching, sitting down,
standing up, vibrating, falling down, holding chest, holding
head, holding back, walking, irregular walking, lying down,
turning around, drinking, phone answering, bending, jumping
jack, running, picking up, putting down, kicking, jumping,
dancing, moping floor, sneezing, sitting down (chair), squat-
ting, and coughing. Each video is captured from one of four
predefined viewpoints. This results in variations in actions
across different viewpoints within the same action class. This
dataset is challenging because of varying actor orientations,
self-occlusion and high similarity among actions. Fig. 17
shows four sample actions from different viewpoints.

As shown in Table IV, our method outperforms existing
algorithms in most of the cross-view setups and the overall

Fig. 17. Sampled frames from the UWA3DII dataset.

result. Fig. 18 shows that our algorithm outperforms our
baseline in most action classes.

E. Experiments on the i3DPost Dataset

The i3DPost dataset consists of 8 actors performing 10 dif-
ferent actions, where 6 are single actions: walk, run, jump,
bend, hand-wave and jump-in-place, and 4 are combined
actions: sit-stand-up, run-fall, walk-sit and run-jump-walk.
The subjects have different body sizes, clothing and are of
different sex and nationalities. The multi-view videos have
been recorded by 8 calibrated and synchronized cameras
in a high definition resolution (1920×1080), resulting in a
total of 640 videos. For each video frames, an actor 3D
mesh model of high detail level (20000-40000 vertices and
40000-80000 triangles) and the associated camera calibration
parameters are available. The mesh models were reconstructed
using a global optimization method proposed by Gkalelis
et al. [65]. Fig. 19 shows multi-view actor/action examples
from the i3DPost dataset.

We use leave-one-actor out strategy followed by [68]. This
means that we use the 2D videos of one actor for testing, while
using the rest of the dataset for training. Table V shows that
our system achieves better result than previous methods.

F. Evaluation of Our 3D Dense Trajectories

In this section, we evaluate our 3D dense trajectories by
using 3D trajectories, 3DHOF and 3DMBH independently.
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TABLE IV

ACCURACY ON THE UWA3DII DATASET (TWO VIEWS FOR TRAINING AND ONE FOR TESTING)

Fig. 18. Cross-view recognition accuracy per action class in the UWA3DII dataset.

Fig. 19. Sampled frames from the i3DPost dataset.

TABLE V

AVERAGE ACCURACY FOR ARBITRARY VIEW RECOGNITION

ON THE I3DPOST DATASET

Table VI shows the comparison of cross-view action
recognition results on the IXMAS, N-UCLA, UWA3DII
and i3DPost dataset by using each descriptor independently
and combining them together. Among the three descriptors,
3DHOF outperforms the other two in the most of dataset.
However, it is clear that the combined feature produces far
superior results that cannot be achieved by any single feature.
This shows that our proposed features are complementary to
each other.

TABLE VI

COMPARISON OF CROSS-VIEW ACTION RECOGNITION RESULTS
ON THE IXMAS, N-UCLA, UWA3DII AND I3DPOST

DATASET BY USING DIFFERENT FEATURES

Fig. 20 and 21 show the performance of different descriptors
according to different view transfer pairs on the IXMAS
and UWA3DII datasets respectively. In all pairs, combining
all the descriptors achieves better result than using them
independently.

G. Evaluation of 2D Features Used in Our System

While appearance information and movement information
are both very important for describing the 2D action videos,
such appearance information is quite different for 2D action
videos captured from different points. We build a transfer
learning framework to transfer 3D and 2D features into a
common sparse feature space, and hence it is preferable that
both of them have similar logical meanings. Therefore, any
useful information on the 3D and 2D action videos such as
appearance will assist our system. The reason we do not
propose 3DHOG is that the surface texture of a 3D model
remains unchanged over time. We conduct an experiment on
the UWA3DII dataset to show the importance of appearance
feature 2D HOG.

Fig. 22 shows the performance on only, without and with
using 2D HOG respectively. Features combined with 2D
Trajectories, 2D HOF and 2D MBH perform better than
only using 2D HOG in all the view transfer pairs. Because
the movement related descriptors contain more view-invariant
information than appearance related descriptors on the 2D
action videos. Combined features also perform better than
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Fig. 20. Feature evaluation on IXMAS dataset according to different view transfer pairs.

Fig. 21. Feature evaluation on UWA3DII dataset according to different view transfer pairs.

Fig. 22. 2D HOG evaluation of the UWA3DII dataset according to different
view transfer pairs.

features without using 2D HOG, which shows the assistance
of appearance information to our system.

VII. CONCLUSION AND DISCUSSIONS

In this paper, we have proposed a view-invariant human
action recognition framework. Unlike previous work, we con-
struct a synthetic 3D and 2D video database using realistic
human models, which is used to obtain the view-invariance
through transfer dictionary learning. The trained dictionary is
used to project real world 2D video into a view-invariant sparse
representation, facilitating an arbitrary view action classifier.
The use of synthetic data for initial training reduces the
need for carefully captured video with view information. The
synthetic dataset created in this project is open to the public,
it is the first structured action dataset built with realistic
human models for classification purposes. To enhance the
quality of 3D motion description, we propose a new set of
features known as the 3D dense trajectories, which consists
of 3D trajectories, 3DHOF and 3DMBH. These features are
complementary to each other and the combined feature set is
highly effective for action classification. We demonstrate supe-
rior results in comparison to existing works in the IXMAS,
NUCLA, UWA3DII and i3DPOST datasets.

In our system, we project the 3D and 2D videos into
a common view-invariant sparse representation with the 3D
and 2D dictionaries respectively. Theoretically speaking, it is
possible to learn a dictionary that directly projects 2D video
into 3D space, and consider the 3D space to be view-invariant.

However, this is not practically possible. This is because 2D to
3D projection requires information that is not available in the
2D video. Even if a project matrix can be trained, the projected
results will suffer from a large reconstruction error. In this
research, we solve this problem by extracting the common
view-invariant features in the 3D and 2D videos instead.

A main advantage of our framework is that the view-
invariant transfer dictionary is pre-trained with a full synthetic
dataset and fine-tuned with a small amount of real data. It is
possible to include a large number of views in the synthetic
dataset to learn a better view-invariant representation, even if
the real data does not cover all of these views. Also, it is
possible to introduce variations within each action class using
computer graphics techniques such as motion style transfer
to improve the richness of the dataset, which can enhance the
classification accuracy. While existing work requires encoding
and pooling parts to aggregate the local features, we use bag-
of-words to effectively aggregate the local trajectories based
features, motivated by the promising results from [8]–[11].
Specifically, we train a dictionary by using K-means to cluster
the local features (e.g. HOG, HOF) into some visual words and
then encode these local features by counting the occurrence
of different visual words.

During the implementation, we found that the quality of
the synthetic video could affect the classification accuracy of
the system. This was the main motivation for us to utilize
high-quality human models instead of simplified cylinder-
based models as in previous works. In the future, we are
interested to explore if more realistic rendering (such as
photorealistic rendering with global illuminations) and more
realistic character movement (such as introducing secondary
deformation to simulate the involuntary movement of body fat
and clothings) would further improve the system performance.

In many datasets, the facing angles of the actors are not
aligned with that camera viewpoints. As a result, the same
action may appear differently for the same viewpoints depen-
dent on the faced direction. As a future direction, we are
interested in introducing the facing angle into the classification
framework, such that the system can understand how the
action may appear dependent on the orientation of the actor.
Furthermore, when creating synthetic 2D videos, our current
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system samples projection viewpoints uniformly. With the
facing angle, we may explore an optimal way of projection
sampling that can optimize classification accuracy with a
minimal number of synthetic 2D views.

Dictionary learning can be considered as a linear projec-
tion algorithm and can be limited in representing the view-
invariance of 2D and 3D videos. In the future, we are interested
in applying non-linear algorithms such as Neural Networks
with synthetic training data to achieve better results. The
potential challenges in using Neural Networks to learn the
complex view-invariance is the need to tune a large number
of hyper-parameters, as well as the need to design an optimal
network architecture.
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