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Abstract 

MicroRNAs (miRNAs) are a distinct class of short endogenous RNAs with 

central roles in post-transcriptional regulation of gene expression that make them 

essential for the development and normal physiology of several groups of eukaryotes, 

including plants. In the last 15 years, hundreds of miRNA species have been identified 

in plants and great advances have been achieved in the understanding of plant 

miRNA biogenesis and mode of action. However, many miRNAs, generally those with 

less conventional features, still remain to be discovered. Likewise, further layers that 

regulate the pathway from miRNA biogenesis to function and turnover are starting to 

be revealed. 

In the present work we have studied the tomato miRNA “top14”, a miRNA with 

a non-canonical pri-miRNA structure in which an intron is in between miRNA and 

miRNA*. We have found that this miRNA is conserved within the economically 

important Solanaceae family and among other members of the Solanales order also 

agriculturally relevant, like in sweet potato, while its peculiar intron-split pri-miRNA 

structure is exclusively kept in the more closely related genera Solanum, Capsicum 

and Nicotiana. In these three genera, two different pri-miRNA variants were detected; 

one spliced and the other one retaining the intron. After testing the mature miRNA 

production from the wild type tomato MIRtop14, from a version without intron and 

from another version without splicing capability, it was found that the intron influenced 

the accumulation of mature miRNA. Finally, a mRNA cleaved by this miRNA was 

identified; the mRNA coding for LOW PHOSPHATE ROOT (LPR), a protein which in 

Arabidopsis is involved in the arrest of root growth under phosphate starvation 

conditions. Interestingly, although LPR is widely conserved in plants, included in all 

the ones harbouring miRNAtop14, LPR cleavage was found to occur only in the three 

genera where the intron-split pri-miRNA structure is conserved.  

The current study indicates that MIRs encoded by less canonical loci should be 

included in future miRNA searches, since they may be producing mature miRNAs 

with a function, as seen in this investigation. Furthermore, our results suggest that 

this miRNA may be regulated through intron retention. In case of being confirmed, it 

would add to the few recently reported examples of post-transcriptional regulation of 

a miRNA and should encourage the research of less known layers of miRNA 

regulation. Finally, the study of this miRNA sheds light to the crosstalk between 

miRNA biogenesis and splicing and, in a broader context, to the complex interactions 

between the different RNA regulatory networks operating in plants.  
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1.1. RNA biology overview 

The first three species of RNA discovered were ribosomal RNA(rRNA)1, 

transfer RNA (tRNA)2 and messenger RNA(mRNA)3. Since all these RNAs are 

involved in protein synthesis, this led to the idea at the time that the role of RNA was 

basically confined to assist in protein synthesis. 

Over time, the picture of RNA biology became more complex. Other kinds of 

RNAs, called small nuclear RNAs (snRNAs)4, were discovered, along with RNA 

splicing5,6 or RNA catalytic properties7,8. It started to become apparent that RNA was 

playing other important functions in the cell apart from those previously known. 

Through the 80s and 90s, scattered reports of novel RNA species and 

activities added further insight to the field. These include the telomerase RNA 

component (TERC)9, the X inactive specific (XIST) RNA10,11, the first microRNA 

(miRNA) to be identified12 or the small interfering RNAs (siRNAs)13, along with the 

discovery of RNA-directed DNA methylation14 and RNA interference15,16.  

When the 2000s came and with them the “omic” era, the high-throughput 

analysis methods showed the magnitude of what was already being suspected: most 

of the eukaryotic genome is transcribed into many kinds of different RNAs, of which 

protein-coding ones are just a minor fraction in complex organisms17 

The discovery of long non-coding RNAs (lncRNAs)18 as an abundant new 

class of transcriptional regulators was probably one of the biggest surprises, but many 

other species of RNAs have been described in the last 15 years, from Piwi-associated 

RNAs (piRNAs)19–22 in animals to trans-acting siRNAs (tasiRNAs)23,24 in plants, as 

well as the more recently reported promoter-associated RNAs25 (PARs), enhancer 

RNAs (eRNAs)26,27 or circular RNAs (circRNAs)28–30, among others. 

This diversity of RNAs carry out a broad range of functions which could be 

summarised into: 1) protein synthesis31; 2) regulation of gene expression, at different 

levels (chromatin, DNA, transcription, RNA splicing, editing, translation and 

turnover32,33); 3) genome stability, including telomere and centromere integrity and 

silencing of transposons34; 4) defence against viruses35 5) communication between 

cells36,37. 

Of course, all these RNA species and functions are not separate, they overlap 

and interact in multiple ways38, creating an intricate network that underlies countless 

biological processes and that has been proposed to lay behind biological phenomena 

as important as the evolution of eukaryotic complexity39. 



19 
 

1.2. miRNAs in plants 

 

1.2.1. Introduction 

The high degree of overlap in the characteristics of the multiple non-coding 

RNA species has made their classification challenging. However, an arbitrary 

threshold of 200 nucleotides in length has been traditionally used to perform a first 

division between lncRNAs and the rest of shorter non-coding RNAs, generally called 

small RNAs (sRNAs)25.  

Within the sRNA group, miRNA class is probably one of the best characterised 

since it was early discovered. The first report of a miRNA appeared in 1993 (although 

at the time it was called a short temporal RNA), when lin-4 was found in 

Caenorhabditis elegans12. It was observed that this small RNA regulated C. elegans 

developmental timing by annealing with lin-14 mRNA through antisense 

complementarity, which repressed lin-14 translation12,40.  

Seven years later, let-7, a second small RNA also repressing the translation 

of a mRNA, was again reported in C. elegans41. That same year, let-7 was found to 

be conserved in bilaterian animals, including humans42  

It only took one more year for the explosion of discoveries on the miRNA field, 

with three different publications claiming the existence of multiple miRNAs conserved 

across animals43–45. One year later, the presence and conservation of miRNAs in the 

plant kingdom was shown in multiple reports46–49 and virus-encoded miRNAs were 

added to the list shortly after50. 

From then until now, great advances have been achieved in the understanding 

of miRNAs, their biogenesis, functions and mode of action, while other facets of 

miRNAs are still being discovered or require further research. 

 

1.2.2. What is a miRNA? 

Conventionally, miRNAs are defined as small RNAs of 20-25 nucleotides in 

length which are produced through the precise cleavage by RNase III enzymes of 

hairpin structures folded within longer, single-stranded  transcripts called primary 

miRNAs (pri-miRNA)51,52. 
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As commented above, they have been found in animals, plants and viruses. 

However, as they present substantial differences, we are going to focus on the 

knowledge gathered about plant miRNAs in the following sections. 

 

1.2.3. miRNA life cycle 

 

1.2.3.1. Transcription 

Most plant pri-miRNAs are synthesised from independent transcriptional units 

which give rise to a single mature miRNA each53, although cases of intronic or poly-

cistronic pri-miRNAs have also been reported54–59. 

Similarly to protein-coding transcripts, pri-miRNAs are usually transcribed by 

RNA polymerase II (Pol II) and therefore capped, polyadenylated and sometimes 

spliced60–62. Again similarly to other Pol II transcripts, the process is regulated by the 

Mediator complex, which recruits Pol II to miRNA gene (MIR) promoters63, and by 

post-transcriptional modifications of the C-terminal domain of Pol II, which in plants 

have been reported to influence the capping of pri-miRNAs64. 

Transcription factors are also known to influence MIR expression. MIR 

promoters have been shown to contain the TATA box sequence62 as well as other 

cis-regulatory motifs65,66. Specific transcription factors are reported to positively or 

negatively regulate the expression of individual MIRs in response to certain stresses 

or developmental stages67–71. In some cases, they create feedback loops in which a 

transcription factor regulated by a miRNA controls in turn the expression of its 

regulatory miRNA72. Besides, some transcription factors influence the expression of 

MIRs in general. This is the case of Negative on TATA less 2 (NOT2)73 and Cell 

division cycle 5 (CDC5)74, which interact with Pol II and enhance the transcription of 

pri-miRNAs broadly. 

Finally, at least two more mechanisms of pri-miRNA transcription regulation 

should be added to the ones discussed above. One of them is the recently described 

existence of small peptides encoded by pri-miRNAs, which increase the transcription 

of their own encoding transcripts75. The second one is epigenetic regulation, with the 

examples of a histone acetyl transferase and a chromatin remodelling complex being 

required for the activation of some MIR promoters in Arabidopsis76,77 
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1.2.3.2. Processing 

 

1.2.3.2.1. Processing machinery 

pri-miRNAs fold creating one or more local stem-loop structures with the 

miRNA sequence located in one of the arms of the stem78. In plants, these hairpins 

are processed at a specific type of nuclear bodies called dicing bodies (D-bodies), 

which contain the complex of proteins that orchestrates the cleavage of the pri-miRNA 

into a miRNA/ miRNA* duplex, the processing complex79–81. 

The core protein of the processing complex and the one performing the 

cleavage is in most cases the Dicer-like 1 (DCL1) RNAse III endonuclease47,49. 

However, there are a few miRNAs known to be processed by DCL454 or by DCL382,83. 

Other well stablished components of the complex are the proteins 

HYPONASTIC LEAVES1 (HYL1)84,85 and SERRATE (SE)86,87, which are necessary 

for the efficient and accurate cleavage of pri-miRNAs by DCL188,89. Associated with 

them, with DCL1 and with the pri-miRNA, is TOUGH (TGH), another RNA binding 

protein also necessary for the efficient cleavage of pri-miRNAs, although not for the 

accuracy of the cleavage90. 

NOT2 and CDC5, two proteins already named because of their involvement 

in pri-miRNA transcription, are as well interacting with DCL1 and SE (but not HYL1) 

during pri-miRNA processing, promoting pri-miRNA processing possibly by recruiting 

these two processing factors to the nascent pri-miRNAs73,74. 

Likewise, proteins involved in pri-miRNA stabilization are also known to form 

part of the processing complex. This is the case of the nuclear cap-binding complex 

(CBC), which binds to the 5’ cap structure of pri-miRNAs and to SE and NOT273,91–94, 

and of the proteins PLEIOTROPIC REGULATORY LOCUS 1 (PRL1)95 and DAWDLE 

(DDL)96, which are reported to interact with DCL1. 

Interestingly, there have been recently discovered several processing factors 

which seem to affect miRNA accumulation, at least partially, by regulating pri-miRNA 

splicing. These include REGULATOR OF CBF GENE EXPRESSION 3 (RCF3, also 

known as HOS5)97, RS40/RS4197, STABILIZED 1 (STA1)98 and GLYCINE-RICH 

RNA-BINDING PROTEIN 7 (GRP7)99. 

Other components of the DCL complex include: C-TERMINAL DOMAIN 

PHOSPHATASE-LIKE 1 (CPL1)100, which regulates HYL1; MODIFIER OF SNC1, 2 

(MOS2)101 and THO/TREX complex core protein THO2102, which seem to be involved 
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in the recruitment of pri-miRNAs to D-bodies; RECEPTOR FOR ACTIVATED C 

KINASE 1 (RACK1)103 and SICKLE (SIC)104, which also localize to D-bodies and 

influence pri-miRNA processing. 

Finally, it has been recently reported that the protein DOUBLE-STRANDED 

RNA BINDING 2 (DRB2), a member of the DRB family as HYL1 (DRB1), is in some 

cases the one partnering with DCL1 instead of HYL1 during pri-miRNA processing105. 

This seems to define the later mode of action of the miRNA, which would direct 

cleavage of its target when processed by DCL1-HYL1 and translational repression 

when processed by DCL1-DRB2105. 

 

1.2.3.2.2. Processing patterns 

Once the processing complex is assembled, the cleavage of the pri-miRNAs 

stem-loops takes place. This can happen following at least four different patterns of 

cleavage106. 

1) Short base-to-loop pattern, in which a first cleavage occurs ~15 nt up the stem 

from an internal bulge, and a second cleavage ~21 nt up the stem from the first 

cut, releasing the miRNA duplex107–109. 

2) Long base-to-loop pattern, which differs from the short base-to-loop pathway in 

the fact that after the second cleavage, a third cut, also ~21 nt up the stem, is 

necessary to release the miRNA duplex106. 

3) Short loop to base pattern, in which the first cut is determined by a final ~42 nt 

segment above the miRNA duplex that is cleaved out, followed by a second cut 

~21 nt down the stem which releases the miRNA duplex106. 

4) Long loop-to-base pattern, with four sequential cleavages of the stem starting 

from the loop, until releasing the miRNA duplex110,111. 

It may be worth mentioning that bidirectional processing has been reported in 

miRNAs with a multi-branched loop112. However, only the short base-to-loop pattern 

was producing miRNA duplexes, with a non-canonical loop-to-base mechanism 

leading to an abortive pri-miRNA processing. See figure 1.1 for different processing 

patterns. 
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1.2.3.3. Methylation and nuclear export 

The final product of the pri-miRNA processing is a miRNA/ miRNA* duplex, a 

small double stranded RNA with two nucleotide 3’ overhangs formed of the miRNA 

(guide strand) and its complementary miRNA* (passenger strand)47.  

Once this duplex is released, the 3’ terminal nucleotides of both strands are 

2’-O-methylated by the protein HUA ENHANCER1 (HEN1)113,114, which interacts with 

DCL1 and HYL1, possibly displacing SE115. However, HEN1 localizes to both nucleus 

and cytoplasm79, so it is not clear where methylation occurs. Nevertheless, it has been 

demonstrated that this modification is essential to protect the duplex 3’ termini from 

uridylation113 and subsequent associated degradation116,117. 

In any case, the mature miRNA/miRNA* duplex is supposed to be transported 

to the cytoplasm, where the assembly of the RISC complex happens most probably, 

although the possibility of RISC assembling in the nucleus cannot be ruled out118. 

This nuclear export has been proposed to be carried out by the protein HASTY (HST), 

since it is the homologous to exportin 5, the protein in charge of the transport of pre-

miRNAs out of the nucleus in animals119. However, although it has been shown that 

hst mutants are deficient in miRNA accumulation, no relative increase of miRNAs in 

Figure 1.1 . Processing patterns of pri-miRNAs depending on their structure. A) Short 

base-to loop. One cut 15 nt up the stem before releasing the miRNA duplex. B) Long base-

to loop. Two cleavages, at 15 and 21 nt up the stem, before releasing the miRNA duplex. 

C) Short loop-to-base. First, ~42 nt loop is cut out before a second cut releases the miRNA 

duplex. D) Long loop-to-base. Four sequential cleavages of the stem starting from the 

loop, until releasing the miRNA duplex. E) Bidirectional processing, seen in some pri-

miRNAs with multibranched loops, although some processing patterns are not productive. 

Figure from390. 
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the nucleus was detected, which indicates that other or additional mechanisms of 

export still uncharacterised must exist in plants119. 

In an alternative model, it has been proposed that the RNA-induced silencing 

complex (RISC) is assembled in the nucleus, and the mature miRNA containing 

complex is then transported to the cytoplasm120. See figure 1.2 for plant miRNA life 

cycle. 

 

1.2.3.4. RISC assembly 

RISC is a ribonucleoprotein (RNP) complex which has an Argonaute (AGO) 

protein bounded to an sRNA121 as the core component. In the plant miRNA pathway, 

the sRNA is a mature miRNA and the AGO protein is AGO1 in most of the cases122–

124. AGO proteins harbour four characteristic domains: N-terminal (N)125, Piwi 

Argonaute Zwille (PAZ)126,127 and middle (MID)128,129 domains, which bind the 3’ and 

the 5’ end of sRNAs respectively, and C-terminal PIWI domain125,130,131, which has the 

slicer endonuclease activity. 

Figure 1.2. Plant miRNAs life cycle. After transcription of the pri-miRNA by Pol II, many 
protein factors are recruited to the transcript to form the processor complex. The core 
protein of the processor complex, DCL1, cleaves the pri-miRNA until releasing the miRNA 
duplex. miRNA/ miRNA* are then methylated by HEN1 and transported from the nucleus 
to the cytoplasm.  miRNAs are finally loaded into an AGO protein, although it is not clear 
if this takes places in the nucleus or the cytoplasm. AGO is the main component of the 
riboprotein RISC complex, which directs either mRNA cleavage or translational 
repression, the last mechanism possibly occurring in the ER. Figure from438. 
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In the most broadly accepted model of RISC assembly, the whole 

miRNA/miRNA* duplex is loaded onto the AGO protein with the help of HEAT SHOCK 

PROTEIN 90 (HSP90), to subsequently be dissociated and the guide strand (miRNA) 

retained while the passenger strand (miRNA*) discarded132. However, examples in 

which the miRNA* is retained and leading RISC action have been reported133,134. 

The selection of the strand to be retained in the complex is determined by its 

lower 5’ end thermostability120,135,136. This selection is assisted, at least in AGO1-

RISC, by the protein HYL1, which has been shown to dictate which strand is 

incorporated onto the complex, allegedly by loading directionally the miRNA/miRNA* 

duplex onto RISC120. The HYL1 regulator CPL1, has been shown to regulate this 

process as well100. 

Additionally, the identity of the nucleotide at the 5’ end of the sRNA strand 

strongly influences its sorting into one or another member of the AGO family137–139. 

AGO1 preferentially recruits sRNAs starting with a uridine (U) while AGO2 and AGO4 

bind sRNAs with adenine (A) at the 5’ end and AGO5 sRNAs with a 5’ terminal 

cytosine (C)137–139. Plant miRNAs usually have a 5’ U, which is in accordance with 

AGO1 being the main AGO involved in the plant miRNA pathway140 

 

1.2.3.5. Mechanism of action 

In plants, RISC recognizes its mRNA target (or targets) through base pairing 

between miRNA and a sequence on the target mRNA, and directs posttranscriptional 

gene silencing (PTGS) by two mechanisms: mRNA cleavage and mRNA translational 

inhibition141. In most cases, complementarity between miRNA and target mRNA is 

nearly perfect142,143. This high degree of complementarity is a requirement for 

cleavage144, while repression of translation can occur at a lower degree of 

complementarity as well145, although high complementarity between miRNA and 

target is generally a requirement in plants whatever the mechanism of action146. 

In both mechanism, AGO1 seems to be the main enzyme performing the 

action123,145. As already explained above, whether a miRNA performs one or the other 

mechanism is determined by the protein partnering with DCL1 during its processing: 

if it is HYL1, it will carry out cleavage; if it is DRB2, it will direct translational 

repression105. This explains the observation that the levels of a particular target can 

be regulated by both mechanisms at the same time, both carried out by the same 

miRNA145,147 
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In the cleavage pathway, AGO1, through the slicer activity of its PIWI 

domain123,125, performs a cut in the mRNA between the nucleotides complementary 

to the 10th and 11th nucleotide of the miRNA148–150. The 3’ fragment with an 

unprotected 5’ P end is subsequently 5’ to 3’ degraded by the EXORIBONUCLEASE4 

(XRN4)149,151, while the 5’ fragment, which harbours an unprotected 3’ OH end, is 

proposed to be degraded 3’ to 5’ by the exosome151, a process facilitated by the 3’ 

uridylation of the fragment152 by the AGO1 interacting enzyme HEN1 suppressor 1 

(HESO1)153. Interestingly, besides undergoing degradation, some fragments 

generated from miRNA cleavage of coding and non-coding transcripts act as 

precursors of secondary, RDR-dependent sRNAs called phasiRNAs (including 

tasiRNAs), which seem to be involved in reducing target transcript levels like miRNAs 

do (Reviewed in154). 

While endonucleolytic cleavage has been widely studied, the translational 

repression pathway is less well known. Besides the involvement of DRB2105, other 

proteins such as VARICOSE (VCS)145, KATANIN1 (KTN1)145, SUO155, ALTERED 

MERISTEM PROGRAM1 (AMP1)156 and AMP1 homologue, LIKE AMP1 (LAM1)156 

have been reported to take part specifically in this second pathway, but their exact 

role is still not clear.  

The involvement of AMP1, an integral endoplasmic reticulum (ER) membrane 

protein, and its ability to prevent the association of miRNA target transcripts with the 

membrane-bound polysomes, suggest that miRNAs may act by impeding the 

initiation of translation of their targets in the ER156. On the other hand, another study 

showing the association of AGO1 and a portion of mature miRNAs with polysomes 

may indicate that repression of translation can occur also at a post-initiation stage157. 

In fact, a later study shows that RISC can block the recruitment of ribosomes or stop 

their movement once they have bound the 5’ untranslated region (UTR), being able 

to inhibit translation at both the initiation or elongation steps158. miRNA directed 

mRNA translational inhibition has been suggested to take place at the mRNA-

processing bodies (P-bodies) as well as in the ER, since both VCS and SUO localize 

to these cytoplasmic foci145,155,159. Finally, the discovery of KTN1, a microtubule-

severing enzyme, in the miRNA translational inhibition pathway suggests that the 

microtubule network plays a role in this mechanism as well145, which is consistent with 

the previous observations, given that microtubules are associated to both ER and P-

bodies160. 
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Although miRNA mediated repression of protein synthesis can lead to 

subsequent mRNA degradation in animals161, in plants it seems that miRNA directed 

mRNA degradation is widely triggered by endonucleolytic cleavage: although the 

involvement of VCS, a decapping activator, in plant miRNA translational inhibition 

raised the possibility that plant miRNA targets could subsequently undergo decay 

through deadenylation and decapping like is usual in animals145, further research 

showed no evidence of degradation of miRNA targets triggered by translational 

repression or any other slicer independent mechanism158,162. 

Initially, target mRNA cleavage was thought to be the hugely predominant 

mode of plant miRNAs action, an idea probably supported by the wrong supposition 

that high complementary between miRNA and target had to lead to cleavage142, and 

by the existence of only two examples on mRNA translation inhibition163–165 compared 

with the many reports on cleavage (see166 for a compilation), a bias possibly promoted 

by the easier way to study cleavage just by sequencing the 5’ cleaved fragments150. 

However, in light of later publications, repression of translation may be less rare than 

previously considered, although the exact contribution of each pathway to the 

regulation of gene expression is still difficult to estimate141. Nevertheless, the 

importance of the cleavage pathway is clear from the fact that slicer-defective AGO1 

is not able to complement the ago1 mutant167, while mutations in the repression of 

translation pathway seem to cause less ubiquitous effects155. A recent study suggests 

that each mechanism may contribute to the regulation of plant homeostasis in a 

different way: miRNA directed cleavage by regulating a wide range of processes like 

development, metabolism or environment adaptation and miRNA directed repression 

of protein synthesis by more specifically regulating the response to environmental 

factors168. In another study, it has been proposed that translational repression could 

have evolutionary preceded cleavage in plant miRNAs105. In any case, further 

research in this area would be needed to clarify the part played by each mechanism. 

Besides these two mechanisms of posttranscriptional gene regulation, a few 

studies showing gene regulation at the transcriptional level by miRNA directed DNA 

methylation in a moss, rice and Arabidopsis have been published83,169–171. In two of 

these studies, it was shown how DCL3 processed, AGO4 loaded, 24 nt long miRNAs 

(lmiRNAs) were directing cytosine methylation, both at the MIR and miRNA target 

loci83,171. Interestingly, a previous study already suggesting DNA methylation of their 

target loci by miRNAs 165 and 166 matches these later discoveries169, since ago1 

mutants didn’t show altered methylation169 and MIR165 and MIR166 were later found 
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to produce 24nt variants82. However, the knowledge in this particular pathway in 

plants is still at an early stage and the mechanism of action are still widely unknown. 

 

1.2.3.6. Turnover 

To maintain a correct function, it is inferred that the accumulation of miRNAs 

must be controlled not only at their biogenesis, as we have already seen, but also by 

a mechanism of degradation when their action is no longer desirable as a result of 

internal or external changes172. However, the mechanisms of miRNA turnover are 

only starting to be deciphered. 

It is known that the methylation of the miRNA duplex 3’ ends by HEN1114,173 is 

necessary to avoid their uridylation and subsequent triggering of miRNA 

degradation174. The nucleotidyl transferase HESO1 has been reported to be the main 

enzyme adding 3’-oligouridylate tails to unmethylated miRNAs116,117, with another 

nucleotidyl transferase, UTP:RNA URIDYLYLTRANSFERASE (URT1)175–177, 

supposed to be collaborating in the uridylation of miRNAs as well. Nevertheless, the 

identity of the enzyme carrying out the degradation of uridylated miRNAs remains 

unknown, although ribosomal RNA-processing protein 6 (RRP6), an exosome 

component that degrades uridylated small RNAs in the green algae 

Chlamydomonas178, has been proposed as a plausible candidate118,179. 

By studying hen1 maize, rice and Arabidopsis mutants, it has been discovered 

that miRNAs 3’ trimming is common before uridylation, and that both truncation and 

tailing of miRNAs are AGO1 dependent180. This observation, together with the fact 

that  HESO1 and URT1 interact with AGO1153,176, suggest that trimming and 

uridylation occur on AGO loaded miRNAs180. As already explained earlier, it has been 

proposed that HESO1 is recruited to RISC to uridylate cleaved mRNAs, and that 

miRNAs are protected from this uridylation thanks to their 2’-O-methyl 3’ ends153. 

However, how this mechanism also ensures the elimination of impaired or no longer 

needed miRNAs is not clear.  

A family of 3’–5’ exoribonuclease called SMALL RNA DEGRADING 

NUCLEASES (SDN) has been reported to be involved in miRNA degradation as well, 

since simultaneous knock down of SDN1, 2 and 3 in Arabidopsis resulted in elevated 

miRNAs levels and developmental defects181. Moreover, SDN1 was found to 

specifically process small ssRNA molecules, even if they were 2’-O-methylated181. 

Although SDN1 inability to degrade uridylated substrates rules out the possibility of it 
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being the enzyme carrying out uridylation triggered miRNA degradation181, it is 

possible that SDN1 works in a previous step to HESO1 action, truncating the 3’ end 

of the miRNA and leaving an unmethylated end free to be urydilated118,179. However, 

this is only a possible scenario that would still need to be confirmed. 

 

1.2.4. miRNA genes, origin and evolution 

 

1.2.4.1. miRNA genes ( MIR) and genomic organization 

As mentioned previously, plant miRNA genes are usually independent 

intergenic transcriptional units53,54. However, a small percentage of plant MIR locate 

within transcription units of other protein-coding or non-coding genes, generally in 

intronic regions but at UTRs or exons as well53,54,182. Nevertheless, intronic miRNAs 

generated in a way similar to animal mirtrons, that is, by a spliced intron giving raise 

directly to the small pre-miRNA hairpin183,184, have only three validated examples in 

plants54,185,186. Finally, some miRNAs deriving from plant transposable elements have 

also been identified187. 

Most times, plant MIRs appear scattered in the genome and produce a single 

mature miRNA each53. However, a portion of MIR are grouped in genomic clusters, 

which are generally composed of tandem miRNA paralogues58,188,189. In some cases, 

there are pri-miRNA transcripts which produce more than one miRNA each (poly-

cistronic MIR)190,191, and although these poly-cistronic MIR usually comprise miRNAs 

which belong to the same family58,188,189, there are also examples of poly-cystronic 

MIR harbouring non-homologous miRNAs57,59.  

Unlike their animal counterparts, plant MIRs show a great variability in length 

and structure, with sizes from slightly over 300bp to almost 5kb reported58,192,193. 

Besides, they usually contain introns, with 67% of independently transcribed MIRs 

estimated to carry at least one intron in Arabidopsis193, and intron lengths varying 

from less than 100bp to over 3000bp58,192,193. In the majority of cases of independent 

intron-containing MIR, miRNA stem-loops locate to the first exon193,194,  although  

there are examples of hairpins locating to other exons193 as well as to regions that 

can be either intronic or exonic depending on alternative splicing56,59. Furthermore, 

there has been discovered a whole class of miRNAs in rice, called natural antisense 

miRNAs (nat-miRNAs) because they are transcribed from the antisense strand of 

their target protein-coding genes, which have an intron in between their miRNA* and 

miRNA195.  
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Alternative transcription start sites, alternative polyadenylation sites and 

alternative splicing have been observed in many independent plant MIRs59,62,80,192,196–

200 as well as in protein coding genes which host a miRNA hairpin in an intron56,201. 

As also referred to earlier, the TATA box sequence characteristic of Pol II transcribed 

genes and several cis-regulatory elements have been found at MIR promoters62,65,66. 

trans-acting factors interacting with these motifs have been found to regulate MIR 

expression in response to different conditions or developmental states67–71, 

determining different miRNA expression patterns even between MIR family 

members67,69,71. 

Finally, MIR can be present in a genome as single-copy genes or they may 

have one to several homologues, forming part of a MIR multigene family which would 

produce slight variations of the same mature miRNA189, as will be further seen in the 

following sections. Besides, a single MIR locus can also produce multiple miRNA 

variants with small differences in their size or sequence, the so-called isomiRs202–204. 

isomiRs are produced by differential Dicer cleavage, trimming or addition of 

nucleotides at the miRNAs ends, which gives place to 5’ or 3’ isoforms, or, in rare 

cases, by RNA editing of internal nucleotides, which originate polymorphic 

isoforms204. In plants, a recent study shows how different isomiRs can regulate their 

targets distinctly205, another report which supports the already suggested biological 

importance of isomiRs204,206,207. 

 

1.2.4.2. MIR origin 

New MIR genes have been proposed to originate from three different sources: 

1) Inverted duplication of their target loci 

A first model to explain MIR emergence in the genome came from the 

observation that some young MIR show complementarity with their target genes not 

only at the miRNA sequence, but through all the hairpin arm. Thus, a plausible 

scenario is that such MIR would have arisen from the inverted duplication of such 

loci208. 

According to this model, the inverted duplication of a loci would be able to 

create a near perfect hairpin, which thereby would be processed by DCL enzymes 

other than DCL1, which is known to favour imperfect hairpins. Such a way of 

processing would produce a heterogeneous population of siRNAs which, if the 

parental locus was a coding gene, would target its mRNA with different levels of 



31 
 

complementarity. If any of these interactions happened to be advantageous and 

specific, the beneficial siRNA sequence would be evolutionarily selected unlike the 

rest of the hairpin, which would accumulate random mutations. This process would 

eventually lead to the production of a specific miRNA, thanks to miRNA and target 

site evolutionary selection and to a shift to processing by DCL1 due to a now imperfect 

stem-loop. Over time, old MIR would appear unrelated to their originating locus 

besides their miRNA/ miRNA* sequence208,209. 

Supporting this model, several examples of MIR showing similarity to other 

loci in the genome have been reported since the model was first proposed54,209–212. 

Besides, non-conserved miRNAs have been seen to generally show higher hairpin 

complementarity213 and to be more frequently processed by DCL2, 3 or 4 over DCL1 

compared with conserved miRNAs54,82. Furthermore, the fact that the expression 

levels of conserved miRNAs is generally higher than that of young miRNAs54,209 

agrees with this model as well, as that could limit initial off target effects of the siRNA 

population210,214. Likewise,  the fact that plant miRNAs and their targets align through 

their whole length would also be in agreement215. 

Variations of this model have been observed as well, with cases in which both 

arms of the pri-miRNA hairpin show complementarity with the originating locus, 

suggesting that a intralocus inverted duplication event preceded the subsequent 

duplication which would originate the MIR54,210. In addition, it has been noted that 

many miRNA genes show homology with loci which are not predicted to target, some 

showing targets different than the parental locus and others being proposed to lack 

targets altogether209,210. 

2) Random genomic sequences  

Although the origination of MIR from inverted duplications of other loci is the 

model which has accumulated the most supporting evidence, this model cannot 

explain the origin of all MIR, since a portion of young MIR show no homology with 

other genomic loci216.  

Plant genomes are predicted to harbour a high abundance of fold-back 

sequences143, which in some cases could gain transcriptional regulatory elements 

and produce RNAs with stem-loops that could be recognised by the miRNA 

machinery, giving rise to a new miRNA gene216. According to this model, a subset of 

MIR would arise from spontaneous evolution of genomic regions which are either 

highly degenerated inverted duplications or just self-complementary by chance216. 



32 
 

This model would imply that new MIR would initially lack targets and thus 

would be quickly lost through mutational drift in most of the cases, especially 

considering the low probability of finding a target by chance in plants, where whole 

length complementarity between miRNA and target is necessary for interaction215.  

This difference in the requirement of miRNA-target complementarity between plants 

and animals has been argued to explain why this mechanism of MIR creation seems 

to be so common in animals while little relevant in plants217. In any case, a small 

percentage of these spontaneously evolved miRNAs could happen to complement an 

existing transcript, and if the interaction had any advantage for the plant such miRNA 

could be fixed and become eventually conserved216. 

In support of this model, MIRs which target genes other than their identified 

parental sequence have been reported209, which would demonstrate that the random 

acquisition of a target is a plausible scenario215. Besides, this model would fit the 

observation that, when comparing A. thaliana and A. lyrata, several miRNA genes 

present in one of the Arabidopsis species have only non-miRNA homologous loci in 

the other one210,216,218. This indicates sequence change in one linage, either new 

miRNA gain or old miRNA degeneration, and since most of these genes are not found 

in related species210,216 the first option seems to be more probable213,216. 

3) Transposable elements 

Growing evidence points towards transposable elements (TEs), and in 

particular miniature inverted-repeat transposable elements (MITEs), as a main source 

of new MIR formation in both plants and animals219.  

MITEs are non-autonomous DNA-type TEs which derivate from full length 

ones: like them they are flanked by inverted repeats, but instead of a long transposase 

open reading frame (ORF) they just contain a short DNA sequence220,221. When 

transcribed, they have the ability to fold into hairpins and according to this model 

some of these hairpins can be recognized by the miRNA machinery and processed 

into miRNAs187,222. In a similar way than the spontaneous evolution model, a few of 

these miRNAs could find a complementary mRNA by chance, and consequently be 

either positively or negatively selected depending on whether the resulting regulation 

was advantageous or detrimental for the plant223. 

Since the first observations of MITE derived miRNAs in plants187,222, several 

more examples have been reported223–229. However, this model presents the 

challenge that miRNA and siRNA pathways seem to intertwine in the processing of 

MITE; both cis-acting TE-repressing siRNAs and miRNAs tend to be produced, 
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Figure 1.3. Three possible origins of new plant MIR genes. A) From inverted duplications 
of genes that will become the miRNA target. First, perfect hairpins are formed that will be 
processed by DCL different than DCL1 into siRNAs (proto MIRs). Then, mutations (red 
dots) accumulate in the hairpin and the hairpins start being processing by DCL1 into 
miRNAs. Several examples of miRNAs targeting their founder genes have been observed, 
although there are also cases in which a MIR originated from one gene target a different 
one. B) From random hairpin-forming transcribed genomic sequences. C) From MITE 

transposable elements that get recognised by the miRNA machinery. Figure from250. 

making it difficult to differentiate bona fide miRNAs230. While some scientists consider 

this model controversial for this reason, the authors propose that full-length TE 

generating siRNAs could have transition through evolution to miRNA producing MITE, 

and thus the existence of MITE giving birth to both siRNAs and miRNAs would 

represent an intermediary state which supports the siRNA to miRNA evolutionary 

transition187. See figure 1.3 for plant MIR possible origins.  
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1.2.4.3. MIR evolution 

Once MIRs arise de novo, local tandem duplications, chromosome segment 

duplications and whole genome duplications are responsible for the emergence of 

MIR gene paralogues which create multigene families231. These gene copies can 

keep on producing the same mature miRNA and thus increase the miRNA dosage, 

as seems to be the case in many plant gene clusters57,225 or they can diverge and 

acquire new targets232, different expression patterns231 or just lose function233. 

MIR genes derived from a common ancestor form a family, a set of homologs 

which produce very similar mature miRNA sequences and generally show high 

similarity through their whole gene sequence as well189. At one extreme, there are 

MIRs belonging to multigene families conserved across all land plants230,234, and a 

recent study suggests that some of them even between land plants and green algae 

as well235. On the other extreme, some MIRs appear as single copy species-specific 

genes230,234. All degrees of conservation appear in between, from MIR families 

present in all vascular plants, to those conserved in angiosperms or within a specific 

family only230.  

Most MIRs seem to be non-conserved, which implies that they are 

evolutionarily young MIRs and rapidly born and lost54,209,234,236. It has been suggested 

that, unlike highly conserved miRNAs that play fundamental roles and are not likely 

to be lost because they are positively selected, most of these young MIRs lack any 

relevant function; they are evolving neutrally and that is why they tend to be quickly 

lost by genetic drift217,230,237. This agrees with the observation that young MIRs tend 

to present low levels of expression54, imprecise processing218 and that the 

accumulation of their targets seems to be mostly unchanged in miRNA biogenesis 

mutants209 or many just do not have identifiable targets at all54,209,210. Nonetheless, 

there are other possibilities rather than an absence of miRNA function that could 

explain the difficulty to predict and validate targets of non-conserved miRNAs. Such 

possibilities are that young miRNAs are interacting with their targets through different 

pairing rules than the ones used for the prediction218,237, that they interact in a 

restricted spatiotemporal manner, like in a specific tissue or in response to certain 

stress230, or that they are regulating they targets through translational inhibition230. 

Despite of the general support, the hypothesis of most MIRs being not 

conserved has been challenged based on two alleged pitfalls in the analyses leading 

to such affirmation. The first problem pointed out is that species-specific MIRs show 

a high percentage of annotated members which are not bona fide. The second 
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objection made is that MIR phylogenetics studies have been mainly performed using 

relatively distant plant species, so although the supposedly species-specific miRNA 

may not be conserved across all the evolutionary distance between the species 

analysed, it may be conserved among some other closer species238. 

In any case, once a miRNA has a target and this regulation is beneficial for 

the plant, selection will work to conserve this miRNA and to retain the regulatory 

interaction with the mRNA while the advantage lasts. Indeed, it has been confirmed 

that conserved miRNAs are under strong purifying selection, as well as their target 

sites and to a lesser extent their star miRNAs, with all of them showing lower 

evolutionary rates than their flanking regions217,239–241. Consistent with the hypothesis 

that most non-conserved miRNAs may lack targets and are consequently evolving 

neutrally while conserved miRNAs are playing important roles and as a result are 

under high selective constraint217,230,237, conserved miRNAs show slower nucleotide 

variation rates than non-conserved ones242,243.  

Besides miRNA conservation, miRNAs and their targets have to coevolve to 

maintain their interaction, and in accordance to this there are several studies reporting 

how MIR evolutionary patterns are associated with the evolutionary patterns of their 

targets243–246. Nevertheless, conserved miRNA-target pairs can also be lost 

occasionally throughout evolution, as have been seen in certain phylogenetic 

linages236. 

Finally, the origin of the miRNA pathway in eukaryotes is still a matter of 

debate. Since no miRNAs conserved between animals and plants have been 

discovered and pathways in one and the other kingdom differ in their characteristics, 

the most supported hypothesis is that the miRNA system raised independently and 

converged in both linages230,247–250. Nonetheless, some authors argue otherwise 

based on the high MIR turnover observed in plants, that may have erased the tracks 

of common MIR sequences251. Further evidences would be needed thus to draw a 

conclusion. 
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1.3. Splicing in plants 

 

1.3.1. Introduction 

It was in 1977 that interrupted genes and splicing of mRNA were first discovered 

in adenovirus5,6. The phenomenon was confirmed in eukaryotes that very same 

year252–254 and only one year later, the possibility that alternative splicing of introns 

and exons could create different mRNA variants of the same gene was proposed255, 

to be observed experimentally shortly after256,257. 

Over the following years, great effort was made to discover the mechanisms and 

apparatus governing mRNA splicing. The chemical reactions necessary for splicing 

to occur were elucidated258, as well as the machinery involved in the process259–261. 

When the study of alternative splicing at genomic and transcriptomic level became 

possible, the prevalence of the phenomenon in plants262,263 and its key role in 

development and environmental response264,265 was uncovered.  

The differences between mRNA variants created by alternative splicing not only 

generate protein isoforms that may have different characteristics, but also can 

influence the transport, localization, stability and translation of the transcript265–267. 

Furthermore, the association of the splicing mechanism with other RNA processes 

such as nonsense-mediated decay and miRNA regulatory pathways are as well 

contributory to the whole regulation of gene expression that can be carried out 

through alternative splicing265–267. 

The importance of interrupted genes and splicing for eukaryotic evolution is 

becoming clear. It makes possible exon shuffling, a mechanism by which new genes 

are created by the rearrangement of exons268,269. It can also lead to alternative 

splicing, a phenomenon that expands proteome diversity and gene regulation, 

increasing coding capacity and evolutionary flexibility of genomes267,270. In agreement 

with this, it has been observed that alternative splicing contributes to organogenesis 

and speciation by creating different patterns of gene expression271,272.  Furthermore, 

it has been speculated that alternative splicing may be a key contributor in the 

evolution of complexity266,270,273, although publications claiming otherwise do also 

exist274,275. 
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1.3.2. What is splicing? 

Primary RNA transcripts undergo processing to become mature functional 

transcripts. Such processing includes 5’ capping and 3’ polyadenylation, and in intron-

containing transcripts, also splicing. Splicing is the process by which introns are 

removed and exons are ligated together266. 

 

1.3.3. Types of Introns 

There are four main types of introns: 1) tRNA or archaeal introns, which appear 

in archaea and tRNA genes in eukaryotes. They are removed by a cut and ligate 

enzymatic mechanism that makes them differ from all the other types of introns276–278. 

2) Group I introns, which are present in bacteria and in eukaryotic organelles, as well 

as in nuclear rRNA genes in fungi and protists. They catalyse their own splicing 

through two transesterification reactions278,279. 3) Group II introns, which have been 

found in bacteria and in the organelles of plants, fungi and protists. They self-splice 

through two transesterifications as group I introns, but the mechanism is different 

between both278,280,281. 4) Spliceosomal introns, which are the introns present in 

eukaryotes nuclear genomes. Unlike all the other types of introns, they are spliced by 

the spliceosome complex, but the splicing mechanism is the same as for group II 

introns278,282. This type of introns can be further subdivided into U2-type and U12-type 

introns283. U2-type introns harbour the canonical GU and AG dinucleotides at the 5’ 

and 3’ end splicing sites respectively284 and account for around 90% of introns in 

Arabidopsis285 while U12-type introns present non-canonical splicing sites286–288. 

From now on we will focus on spliceosomal introns splicing. 

 

1.3.4. The splicing process 

 

1.3.4.1. Splicing machinery 

Splicing is catalysed by the spliceosome259–261, a RNP complex composed of 

five snRNAs that assemble with several proteins to create small nuclear 

ribonucleoproteins (snRNPs) plus up to hundreds of non-snRNP assisting 

proteins289,290. 

There are two types of spliceosomes: the so-called major or U2-dependant 

spliceosome, present in all eukaryotes, and the minor or U12-dependant 
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spliceosome, which coexist with the first one only in higher eukaryotes (including 

plants). Introns harbouring the canonical GT-AG splice sites (U2-type introns) are 

processed by the major spliceosome, with constituent RNPs U1, U2, U5 and U4/U6. 

In addition, the small subset of introns with non-canonical splicing sites (U12-type 

introns) are processed by the minor spliceosome, composed by the snRNPs U11, 

U12, U5 and U4atac/U6atac289–291. 

 

1.3.4.2. Splicing mechanism 

The mechanism of splicing has been elucidated by studies in yeast and 

animals mainly, although later studies suggest that the process is very similar in 

plants, since core proteins and snRNAs involved are conserved across kingdoms292, 

as also are conserved splicing consensus sequences293,294. 

The positions at which introns are excised and exons joined together are 

marked by consensus sequences called splice sites. The canonical 5’ splice site 

(donor site) has a conserved GU while the canonical 3’ splice site (acceptor site) is 

defined by an AG. Besides, introns present a polypyrimidine tract towards the 3’ end 

and the so-called branch point 17-40 nt upstream of the acceptor site, the five 

nucleotide conserved sequence CURAY (R=purine and Y=pyrimidine)295.  

Splicing happens in two steps: In the first step, the 5’ exon-intron junction is 

cleaved by the nucleophilic attack of the 2’ OH group of a key adenosine at the intron 

branch site. A RNA intermediate called intron lariat is formed as a result. 

Subsequently, another nucleophilic attack takes place, this time from the newly 

created free 3’ OH group at the upstream exon to the 3’ intron-exon junction, which 

excise the lariat intron and ligate both exons296. See figure 1.4 for splicing mechanism.  
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Figure 1.4. Splicing mechanism. The positions at which introns are excised and exons 
joined together are marked by consensus sequences called splicing sites (SS). The 
canonical 5’ SS is GU and the canonical 3’ SS is AG. Besides, introns present a 
polypyrimidine tract towards the 3’ end and a conserved CURAY (plants)/ YNYURAY 
(mammals) sequence called branch point 17-40 nt upstream of the acceptor site. These 
sites are recognized in the pre-mRNA by the snRNPs U1, U2, U4, U5 and U6 and auxiliary 
factors (U2AF65, U2AF35 and BBP). Together, these factors form the spliceosome RNP 
complex, which catalyse splicing through two consecutive transesterifications. In the first 
one, the 5’ exon-intron junction is cleaved by the nucleophilic attack of the 2’ OH group of 
the key adenosine at the intron branch site. The so-called intron lariat, an RNA 
intermediate, is formed as a result. In the second transesterification, the newly created 
free 3’ OH group at the upstream exon attacks the 3’ intron-exon junction, excising the 
intron lariat and ligating both exons into the spliced mRNA form. Image from266. 
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1.3.4.3. Splicing models 

Splicing can be constitutive, in which case a single transcript variant is 

produced from a multi-exonic gene by always using the same set of splicing sites in 

each transcription267. 

In contrast, when splicing sites are sometimes not used or different ones are 

selected in different occasions, these leads to alternative splicing, where different 

transcripts are produced from a single gene267. 

Alternative splicing can be further divided into four different models: 1) Intron 

retention, in which splicing sites are sometimes not used and as a consequence an 

intron becomes an exon in a different transcript variant. This is the most common 

form of alternative splicing in plants, accounting for 40% of alternative splicing events 

in Arabidopsis. 2) Exon skipping, in which an exon may or may not be included in the 

mature transcript depending on which splicing sites are used. 3) Alternative 5’ splice 

site, in which two 5’ splice sites coexist and one or the other may be selected, creating 

a shorter or longer version of an exon. 4) Alternative 3’ splice site, in which two 

alternative 3’ splice sites are present and one or the other may be chosen in the same 

way that for the alternative 5’ splice site model267,285,297. See figure 1.5 for different 

forms of alternative splicing and their frequency.  

Frequently, splicing of a transcript involves the combination of several of these 

alternative splicing models, sometimes in the same splicing event. In fact, it is 

estimated that around 42% of splicing events are complex in Arabidopsis267,285,297. 
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Figure 1.5. Types of alternative splicing and their frequency in humans and Arabidopsis. 
Exon skipping, in which an exon may or may not be included in the mature transcript 
depending on which SS are used. This is the most common form of alternative splicing in 
humans. Alternative 3’ SS and alternative 5’ SS, in which two 3’ SS or 5’ SS coexist and 
one or the other may be used, creating a shorter or longer version of an exon. Intron 
retention, in which SS are sometimes not used and as a consequence an intron becomes 
an exon in a different transcript variant. This is the most common form of alternative 
splicing in Arabidopsis. Figure from267. 
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1.3.4.4. Splicing regulation and consequences 

Despite initially thought to occur after transcription, there is now ample 

evidence showing that splicing takes place mainly co-transcriptionally, certainly in the 

case of constitutive splicing and usually for alternative splicing as well298–300, although 

the removal of some alternatively spliced introns has been seen to happen post-

transcriptionally301,302. This fact agrees with the current observations of splicing, 

transcription and chromatin structure influencing each other. Transcription is 

proposed to affect splicing through its involvement in the recruitment of splicing 

factors and through kinetic coupling, where the pace of elongation influences the 

splicing outcome303. In addition, chromatin can also influence splicing since certain 

histone modifications are associated with the recruitment of certain splicing factors 

and the positioning of nucleosomes seem to influence transcription kinetics too304,305 

Apart from the influence of transcription and chromatin marks, the choice of 

whether a splicing site is used or not is mainly regulated by the interplay between cis-

regulatory sequences and trans-acting splicing factors. There are four classes of cis-

regulatory sequences: exon splicing enhancers, exon splicing silencers, intron 

splicing enhancers and intron splicing silencers. The trans-acting splicing factors are 

RNA binding proteins that join to these cis-regulatory elements and activate or inhibit 

the use of splicing sites by, for example, helping to recruit or to stabilise the 

spliceosome machinery267,306,307. The main families of splicing factors are the 

heterogeneous nuclear ribonucleoproteins (hnRNPs)308 and Ser/Arg-rich (SR) 

proteins309, that are involved in both constitutive and alternative splicing regulation; 

hnRNPs generally repressing and SR proteins generally activating splicing, although 

sometimes they may act otherwise depending on the context306,307. 

The finding of SR proteins being expressed differentially during development 

was probably one of the first lines of evidence of tissue-specific regulation of splicing 

in plants310 while subsequent studies showing alternative splicing of SR transcripts 

themselves in response to development, hormones or abiotic stresses confirmed the 

correlation of splicing factors with biotic and abiotic cues311–313. 

Further studies have revealed that alternatively spliced transcripts can be 

related to cell type, developmental stage, circadian rhythm, pathogen infections or 

external conditions such as temperature, light or soil composition264,265. 

Besides, it is known that splicing interferes with post-transcriptional pathways. 

Alternative splicing has been reported to introduce premature termination codons in 

some transcripts, which usually determine their degradation through the nonsense-
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mediated decay pathway and this cross-talk is thereby a way of regulating the levels 

functional transcripts314,315. Alternative splicing can also have an influence in the 

levels of mature miRNA, not only for intronic miRNAs196,316, but as well for other intron-

containing pri-miRNAs harbouring the miRNA sequence in an exon197,198, as has been 

reported several times and we will further explore in section 4 of this chapter. 

All these different facets of splicing form a picture of this process far more 

complex than originally thought. Splicing does not only produce different protein 

variants but also influences the abundance and fate of the transcripts by interacting 

with other cellular mechanisms and signals, and all of this under a strict regulation 

directed by both biotic and abiotic factors264,265,267. 

 

1.3.5. Origin and evolution of introns and splicing  

The origin of introns remains a mystery to this day. However, several conflicting 

theories about their origin have been proposed: 1) “Introns-early” theory, which 

postulates that introns were already present in the ancestor of prokaryotes and 

eukaryotes and played a key role in the creation of the first genes by exon 

shuffling255,268,317. 2) “Introns-late” theory, which holds that spliceosomal introns 

emerged in eukaryotes through insertion into already functional genes of group II self-

splicing introns from proto-mitochondria318,319. 3) “Introns-first” theory, which is a 

version of the “introns early” theory and sustains that introns are a vestige from the 

RNA world, in which exons would have raised from non-coding regions present 

between functional RNA genes320,321. 4) Finally, there are also publications 

suggesting a mixed model between the first two theories, supporting the existence of 

old and new introns that could have been originated through each one of the two 

mechanisms322–324. 

Although the primary origin of introns remains controversial, what is clear now is 

that at least some introns are recently acquired, since the recent gain of an intron has 

been reported in several occasions in both plants and animals325–330. In fact, it is 

probable that the mechanisms by which new introns proliferate are different from the 

ones by which they were first integrated in the eukaryotic genomes331,332.  

Among the proposed mechanisms for new intron gain are: 1) Group II intron 

insertion from an organelle into the nuclear genome, and subsequent processing 

through the spliceosome and thereby conversion into a spliceosomal intron333,334. As 

we have already seen, this mechanism is also proposed to explain the primary origin 
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of introns in eukaryotic genomes, but has also been suggested to account for recent 

gain of introns335. 2) Spliceosomal intron transfer between paralogous through 

homologous recombination, possibly using a reverse-transcribed non-spliced mRNA 

as substrate327. 3) Spliceosomal intron transposition, in which a spliced out intron is 

reverse spliced into the same or another transcript, and this transcript is subsequently 

reverse-transcribed into a cDNA that could recombine with the genome inserting the 

intron336. 4) Transposon insertion into a gene, which would be later removed by the 

spliceosome creating a new spliceosomal intron337,338 5) Tandem duplication of a 

exonic region harbouring an AGGT sequence that, after being duplicated, could be 

identified by the spliceosome as the 5’ and 3’ splicing sites of an intron, while the 

coding region would remain intact335. 6) Intronization, or the creation of an intron in a 

previously exonic region due to the generation of newly recognised splicing sites 

through point mutations339. 

Intron loss does contributes to the evolution of eukaryotic genes through 

mechanisms such as 1) Homologous recombination of the cDNA from an intronless 

transcript with its genomic locus340 2) genomic deletion, that can be of individual 

introns341. 

Besides, since it became apparent that homologous genes do not always 

harbour their introns in homologous position, the hypothesis of intron sliding was 

proposed, by which an intron would be able to relocate over short distances342. This 

hypothesis gained support as the  phenomenon of alternative splicing became better 

understood, since the process could be driven by the shifting between alternative 

splicing sites in a given sequence, given that the emergence of new splicing sites by 

point mutations seems to be fairly common343. See figure 1.6 for examples of intron 

gain, loss and sliding. 

The evolution of splicing is as controversial as that of introns. Besides group I 

and II self-splicing introns, the introns present in eukaryotic nuclear genomes need a 

spliceosome to be processed. Both spliceosomal components and introns have been 

identified in ancient eukaryotic linages, suggesting that at least a proto-spliceosome 

was present in the last eukaryotic common ancestor (LECA)344–346. According to the 

“introns-late” theory, the invasion of group II introns into the eukaryotic genome 

created the pressure to evolve a machinery to remove these introns, the spliceosome 

complex, at the same time that these group II introns gradually lost their capacity to 

self-splice346,347. However, the “introns-first” theory sustains that the first spliceosome-

like machinery long predated the origin of eukaryotes and was an integral part of the  
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  A)                                                          B) 

Figure 1.6. Models of intron gain, loss and sliding. A) Intron gain through spliceosomal 
intron transposition. An intronic RNA lariat is reverse spliced into a novel site of the same 
or another transcript. This transcript is then reverse transcribed into a cDNA that 
undergoes recombination with the genome, generating an intron gain allele. B) Intron loss 
through homologous recombination of the cDNA from a spliced transcript with its genomic 
locus, yielding an intron loss allele. C) Intron sliding from one position to a nearby one via 
AS. Divergence of two genes from a common ancestor after duplication, speciation, etc. 
D=donor site (5’SS). A=acceptor site (3’SS). Relative strength of the alternative SS is 
indicated by arrowheads of different sizes. While upper MIR remains unchanged, in the 
lower MIR point mutations can lead to the change of a SS from weak to strong (see D1 
and D2) or to the emergence of a new SS (see A2), drifting the intron from D1-A1 to A2-
D2 position. Figure A and B from439. Figure C from343.  

C) 
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ribo-organisms living in the RNA word, to which the modern spliceosome is a 

remnant320,321. Great advance in the knowledge about the first stages of life would be 

needed to reach a conclusion.  

Finally, how and when alternative splicing evolved is not straightforward 

either. Originally, it was suggested that it could have evolved from constitutive splicing 

through mutations at splicing sites that weakened them and/or through the evolution 

of splicing regulatory factors348. However, later research showing that the splicing 

sites of first eukaryotes were degenerate rather conserved has made more plausible 

an scenario in which alternative splicing was present, together with splicing itself, at 

least from the beginning of eukaryote evolution349–351. What seems to be clear is that 

alternative splicing has been favoured in complex multicellular organisms, which 

show much higher rates of alternative splicing than lower multicellular organisms, and 

of course than unicellular organisms, where alternative splicing is almost 

negligible266,267. 
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1.4. Aims and objectives 

The discovery of a miRNA with an unconventional intron-split pri-miRNA structure 

in tomato opened the possibility to a broader study. Its special feature made this 

miRNA a perfect candidate to be studied, since any findings could shed light in some 

of the less known aspects of miRNA biology, such as the regulation of miRNA 

biogenesis and of the levels of mature miRNA. With this aim, we have conducted the 

present multi-perspective study of this miRNA, called miRNAtop14. 

First, we tried to determine the phylogenetic distribution of miRNAtop14. In this 

analysis we assessed not only the presence of the mature miRNA sequence in a 

species, but also the conservation of its pri-miRNA intron-exon structure and of its 

resulting secondary structure. Besides delimiting in which species this miRNA is 

present, the conservation of the intron and its position could be indicative of its 

importance in regulating the miRNA. 

Subsequently, we tried to find out how the presence of the intron in between 

miRNA and miRNA* could affect the levels of mature miRNAtop14 and thereby be a 

potential step of post transcriptional regulation. With this aim we tested different 

tomato pri-miRNAtop14 splicing variants to evaluate their different outcomes. 

Finally, we aimed to find out the targets of miRNAtop14. Such discovery would, 

in first place, indicate the function of miRNAtop14 and its importance for the plants 

containing it, which could be relevant from an applied point of view. Besides, this 

information could be joined with the data extracted from the previous investigations 

in order to design a study to determine whether the intron is ultimately influencing the 

biological role of miRNAtop14. 

In conclusion, this study is an effort to broaden the knowledge in the field of 

miRNA biology and more specifically in the areas of miRNA evolution and biogenesis. 

More broadly, the current thesis tries to be a modest contribution towards the 

understanding of cell RNA biology itself, specifically in the overlapping area between 

miRNAs and splicing in plants. 
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Chapter 2 

Material and Methods 
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2.1. General material and methods 

 

2.1.1. Plant materials and growth conditions 

All plants were grown at 22°C and 16h light/ 8h dark in a growth room. 

The species and cultivars/ ecotypes used in this study were: Solanum 

lycopersicum cv. Ailsa Craig, Solanum lycopersicum cv. MicroTom, Nicotiana 

benthamiana, Petunia axillaris line S26, Ipomoea nil cv. Kikyo-zaki, Arabidopsis 

thaliana ecotype Columbia (Col-0) and Oryza sativa ssp. Japonica cv. Nipponbare. 

 

2.1.2. Total RNA extraction 

RNA extraction was performed with Tri-reagent following the manufacturer’s 

protocol (Ambion). The only differences were that after phenol-chloroform separation, 

3 volumes of 100% ethanol instead of 1 volume of isopropanol were added to the 

recovered aqueous phase, followed by 10 minutes centrifugation and two washes 

with 75% ethanol instead of only one. In brief, tissue is frozen and grinded in liquid 

nitrogen and 1-2 mL of Tri-reagent are added to each 100 mg of tissue and incubated 

to dissociate nucleoprotein complexes. Then, RNA is isolated from DNA and proteins 

through the addition of chloroform and subsequent phase separation. Finally, the 

upper aqueous phase containing the RNA is recovered, and the RNA is precipitated 

through addition of 100% ethanol, washed two times with 75% ethanol and air dried 

before being dissolved in distilled water. The concentration and quality was measured 

using a NanoDrop spectrophotometer (Thermo Fisher scientific) at an absorbance 

ratio of A260/280 and A260/230 nm. 

 

2.1.3. pGEM-t easy cloning method 

After electrophoresis, bands to be cloned were cut from the gel and DNA was 

recovered using the Zymoclean Gel DNA Recovery Kit, following manufacturer’s 

protocol (Zymo research). The concentration of the DNA was afterwards measured 

using a NanoDrop spectrophotometer (Thermo Fisher scientific). 

Subsequently, if PCR amplification was carried out using a proofreading 

polymerase like Phusion (New England Biolabs), that do not leave overhangs, A tails 

were added to the amplicon molecules by incubating the PCR product at 70°C for 30 
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min. with 1µl GoTaq Flexi DNA polymerase (5 U/ µL, Promega), 1µl 2mM dATP, 1µl 

25mM MgCl2, 2µl 5X GoTaq Flexi buffer and water up to a total volume of 10µl. 

Then, the tailed PCR amplicons were ligated into pGEM-T Easy vectors 

according to the ligation protocol provided by the pGEM-T Easy Vector Systems 

manufacturer. 

Afterwards, Escherichia coli DH5α super-competent bacteria were 

transformed with this plasmids through a heat-shock method which consisted in 

mixing 20 µL of competent bacteria and ~1 µL of plasmid (20-200ng/µL), incubating 

them for 20 min. on ice, heat-shocking the cells for 45-50 seconds at 42°C and 

returning them to ice again for another 2 min. before adding 500µL of room-

temperature LB medium. 

The LB suspension was then incubated for 1-1.5 hours at 37°C with shaking 

and subsequently 100-200 µL of each transformation culture was plated onto 

duplicate LB/ampicillin/IPTG/X-Gal Petri dishes. Plates were incubated at 37°C for 

16-24 hours. After this time, colonies were visible and those carrying an insert could 

be identified through blue/white screening. 

Finally, to test whether a white colony was carrying the right insert, colony 

PCR, sequencing or both procedures were carried out. Colony PCR was performed 

as explained below (2.1.4) and sequencing was performed by Eurofins MWG Operon 

(Germany). For sequencing, plasmid DNA was isolated through miniprep using the 

QIAprep Spin Miniprep Kit. Apart from the first centrifugation step, in which overnight 

cell culture was pelleted by centrifuging at 4000g for 5 min. at 4°C, manufacturer’s 

instructions (Qiagen) were followed. 

 

2.1.4. Colony PCR 

To perform colony PCR, a sterile tip was used to pick up individual colonies and dip 

into each PCR reaction tube. 

Each reaction made a total volume of 10 µL and contained 5.95 µL H2O, 2 µL 

5X Green GoTaq flexi reaction buffer, 0.8 µL MgCl2, 0.2 µL dNTPs (10 mM each), 0.5 

µL of each primer (10 µM) and 0.2 µL GoTaq G2 DNA Polymerase (5 U/ µl, Promega). 

The PCR program consisted in a first cycle of 95°C for 2 min, followed by 30 cycles 

of 95°C for 30 sec, 50°C for 30 sec and 72°C for 1 min/ kb, followed by a final cycle 

of 72°C for 5 min. 
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2.1.5. sRNA Northern blot 

Total RNA samples were run in a 15% polyacrylamide-urea gel prepared by 

mixing 3.15 g urea, 1.875 ml water and 0.75 ml 5X TBE, briefly heating to mix, and 

then adding 2.75 ml of 40% acrilamide/ bis solution 19:1 followed by 3.75 µl of TEMED 

and 75 µl of 10% Ammonium Persulfate (APS) just before pouring the mixture into a 

gel cast (Biorad). 

Each sample was mixed with equal volume of gel loading buffer II (Ambion) 

and heated 2 min at 70°C to denature any secondary structures before loading. 

After running (~100V, 2 hours approx.), the gel was stained with Ethidium 

bromide and a picture was taken with Typhoon FLA 9500 scanner (GE Healthcare 

Life Sciences) to record the quality and equal loading of the RNA samples. 

Subsequently, RNA was transferred to a same size Hybond-NX nylon 

membrane through semi-dry blotting in a V20-SDB semi-dry blotter apparatus 

(Thermo Fisher scientific). Gel and membrane were stacked in between 0.5X TBE 

soaked Whatman filter paper. Transfer time was usually 35 min at 190 mA for one 

~60 cm2 gel. 

Once transfer was finished, RNA was attached to the membrane through 

chemical cross-linking. With this aim, the membrane was placed on top of a Whatman 

filter paper with the RNA side facing up and then soaked with 5 ml of cross-linking 

solution, wrapped with Saran cling film and baked at 60°C for 1.5-2 hours. The cross-

linking solution consisted in 61.25 µl of 12.5 M 1-methylimidazole, 5 µl 12M 

hydrochloric acid (HCl) and 0.186 g of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

hydrochloride (EDC) dissolved in water to make a final volume of 6 ml. 

The membrane was then hybridized with a 32P end labelled DNA probe. For 

probe labelling, 2 µl of the probe (10µM, without 5’P) was mixed with 10 µl of water, 

4µl of 5X forward buffer, 3µl of [γ-32P]ATP (≥ 3,000 Ci/mmol) and 1µl T4 

polynucleotide kinase (Life Technologies) and incubated at 37°C for 1 hour. After that, 

30 µl of water were added to the mixture and all resulting 50 µl solution were 

transferred to the tube containing 5 ml of PerfectHyb Plus Hybridization Buffer 

(Sigma) where the membrane had been pre-hybridizing at 37°C with rotation for 1-2 

hours. Subsequently, the hybridization tube was sent back to the hybridization oven 

at 37°C and with rotation, to let the hybridization proceed overnight. 

The day after, the hybridization solution was washed away with 0.2x SSC, 

0.1% SDS water solution. After a first rinse, the tube was washed twice for 20 min at 
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37°C in the hybridization oven and then with a final quick wash again. The membrane 

was then wrapped in Saran film and placed in a cassette facing a phosphor screen. 

After 6 or more hours of exposure, the film was scanned using the Typhoon FLA 9500 

scanner (GE Healthcare Life Sciences). 

If the same membrane was used for a subsequent hybridization with another probe, 

the first probe was stripped from the membrane by incubating it in 0.1% SDS at 80-

90°C with rotation for ~1h or until no signal of radiation was detected with a Geiger 

counter. 
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2.2. Material and methods chapter 3 

 

2.2.1. PCR analysis of MIRtop14 genomic locus (fig. 3.2.) 

Genomic DNA was extracted from 6 leaf-discs (~60mg tissue) of Solanum 

lycopersicum cv. MicroTom, Nicotiana benthamiana, Petunia axillaris and Ipomoea 

nil grown in the conditions specified before (2.1.1). gDNA was extracted following 

Amani et al. protocol352, after freezing and grinding the tissue in liquid nitrogen first. 

The concentration and quality of the DNA was measured using a NanoDrop 

spectrophotometer (Thermo Fisher scientific) at an absorbance ratio of A260/280 nm 

and A260/230 nm. 

Each 20 µL PCR reaction contained 12.4 µL H2O, 4 µL 5X Phusion GC buffer, 

0.4 µL dNTPs (10 mM each), 1 µL of each primer (10 µM), 1 µL cDNA (10 ng/ µL), 

0.2 µL Phusion DNA Polymerase (2.5 U/ µL, New England Biolabs). The PCR profile 

was as follows: 98°C for 30 sec, followed by 35 cycles of 98°C for 10 sec, 61°C for 

20 sec and 72°C for 30 sec, followed by a final cycle of 72°C for 5 min. 

PCR products were run in a 1.5% Agarose 0.5X TBE gel and a picture was 

taken with Typhoon FLA 9500 scanner (GE Healthcare Life Sciences) after EtBr 

staining. Bands were cut and cloned into pGEM-t easy vector according to protocol 

described in section 2.3.1. Finally, positive clones were sent for sequencing to 

Eurofins MWG Operon (Germany) and identity of the sequences was confirmed 

through BLAST alignment. 

MIRtop14 sequences and primers are shown in appendix. 

 

2.2.2. Northern blot detection of miRNAtop14 in dif ferent species (fig. 

3.5.A) 

For Northern blot analysis of the four Solanales species and Arabidopsis 

thaliana (fig. 3.5.A), seeds of Solanum lycopersicum cv. Ailsa Craig, Nicotiana 

benthamiana, Petunia axillaris, Ipomoea nil and Arabidopsis thaliana were sown in 

soil and grown at the temperature and light conditions indicated earlier (2.1.1). S. 

lycopersicum plants were grown for 24 days, N. benthamiana for 32 days, P. axillaris 

for 28 days, I. nil for 19 days and A. thaliana for 20 days. The aerial parts of three 

plantlets per species were used for RNA extraction. 
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Total RNA was extracted from each sample following the protocol in section 2.1.2 and 

subsequently, 10µg were analysed by sRNA Northern blot (section 2.1.5). The probe 

used was complementary to miRNAtop14 last 20 nucleotides, which are predicted to 

be the same in all four Solanales species analysed (only the first miRNAtop14 5’ end 

nucleotide changes between species). The film was scanned using the Typhoon FLA 

9500 scanner (GE Healthcare Life Sciences) 

 

2.2.3. RT-PCR analysis of pri-miRNAtop14 (fig. 3.5. B) 

The same total RNA samples used for S. lycopersicum, N. benthamiana and 

P. axillaris miRNAtop14 northern blot detection (2.2.2) were used for reverse-

transcription and PCR analysis of pri-miRNAtop14. 

For N. benthamiana, mRNA isolation from total RNA was carried out previous 

to reverse transcription using the Dynabeads mRNA purification kit, following the 

manufacturer’s instructions (Life Technologies). Then, mRNA was reverse 

transcribed using SuperScript II reverse transcriptase following manufacturer’s 

protocol (Invitrogen), with a few differences: the total volume after mixing 

resuspended RNA, oligo dT and dNTPs was adjusted to 13µL instead of to 12 µL with 

water, and only 1 µL of DTT instead of 2 µL was later added to the reaction. Besides, 

incubation at 42°C was carried out for 60 min. 1 µL of Generacer oligo dT primer (50 

µM, 5’-GCTGTCAACGATACGCTACGTAACGGCATGACAGTGT24-3’) was used for 

the reverse transcription. 

After reverse transcription, 1 µL RNase H (2 U/ µL, Invitrogen) was added to 

each reaction and the mixture was incubated at 37°C for 20 min. 

cDNA was then PCR amplified in a 50 µL reaction containing 32 µL H2O, 10 

µL 5X Phusion GC buffer, 1 µL dNTPs (10 mM each), 2.5 µL of each primer (10 µM), 

1.5 µL cDNA and 0.5 µL Phusion DNA Polymerase (2.5 U/ µL, New England Biolabs). 

The PCR program consisted of: 98°C for 30 sec, followed by 30 cycles of 98°C for 10 

sec, 66°C for 10 sec and 72°C for 10 sec, followed by a final cycle of 72°C for 5 min. 

PCR products were run in a 2% Agarose 0.5X TBE gel and a picture was taken 

with Typhoon FLA 9500 scanner (GE Healthcare Life Sciences) after EtBr staining. 

Bands were cut and cloned into pGEM-t easy vector according to protocol described 

in section 2.3.1. Finally, positive clones were send for sequencing to Eurofins MWG 

Operon (Germany) and identity of the sequences was confirmed through BLAST 

alignment. 
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For S. lycopersicum and P. axillaris, total RNA was used directly for PCR, but 

it was previously subjected to DNase treatment using the TURBO DNA-free Kit and 

following the manufacturers’ instructions (Ambion). 6 µg of total RNA were DNase 

treated in a 10 µL reaction, after which DNAse was inactivated and RNA recovered 

as explained in the manufacturers’ protocol. 

Reverse transcription was then performed using SuperScript II reverse 

transcriptase following manufacturer’s protocol (Invitrogen), with the only difference 

that the incubation at 42°C was carried out for 60 min. 2 µl of DNase treated total 

RNA (~ 1 µg) were used in the reverse transcription reaction in both species. For S. 

lycopersicum, 1 µl of 2 µM Sly-MIRtop14 reverse primer (same used for gDNA and 

following cDNA PCR) was used for the reverse transcription. For P. axillaris, 1µl of 

dT15 primer (487µg/ µL) was used for the reverse transcription. Similar reactions but 

without reverse transcriptase added were also performed for both species, to have a 

control for any DNA contamination after PCR. 

PCR reaction was subsequently carried out using both the reaction with and 

the reaction without reverse transcriptase in the two species. PCR conditions for each 

species were as follows. 

S. lycopersicum 15 µL PCR reaction contained 9.3 µL H2O, 3 µL 5X Phusion 

GC buffer, 0.3 µL dNTPs (10 mM each), 0.75 µL of each primer (10 µM), 0.75 µL 

cDNA and 0.15 µL Phusion DNA Polymerase (2.5 U/ µL, New England Biolabs). The 

PCR profile was as follows: 98°C for 30 sec, followed by 30 cycles of 98°C for 10 sec, 

60°C for 20 sec and 72°C for 30 sec, followed by a final cycle of 72°C for 5 min. 

P. axillaris 20 µL PCR reaction contained 12.4 µL H2O, 4 µL 5X Phusion GC 

buffer, 0.4 µL dNTPs (10 mM each), 1 µL of each primer (10 µM), 0.6 µL DMSO, 0.4 

µL cDNA and 0.2 µL Phusion DNA Polymerase (2.5 U/ µL, New England Biolabs). 

The PCR program was as follows: 98°C for 30 sec, followed by 35 cycles of 98°C for 

10 sec, 62°C for 30 sec and 72°C for 30 sec, followed by a final cycle of 72°C for 5 

min. 

PCR products were run in a 1.5% Agarose gel and a picture was taken with 

Typhoon FLA 9500 scanner (GE Healthcare Life Sciences) after EtBr staining. Bands 

were cut and cloned into pGEM-t easy vector according to protocol described in 

section 2.3.1. Finally, positive clones were send for sequencing to Eurofins MWG 

Operon (Germany) and identity of the sequences was confirmed through BLAST 

alignment. 
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MIRtop14 sequences and primers are shown in appendix. 

 

2.2.4. Northern blot detection of miRNAtop14 in dif ferent tissues (fig. 

3.6) 

For Northern blot detection of miRNAtop14 levels in tomato root, stem, leaves 

and leaflets (fig. 3.6), S. lycopersicum cv. Microtom was used. Root, stem, leaves and 

leaflets were collected from plants grown on soil for ~5 weeks. 

Total RNA was then extracted from each tissue following the protocol in 

section 2.1.2.  

2µg of total RNA from each sample were analysed by sRNA Northern blot 

(section 2.1.5). The probe used was the full 21 nucleotides complementary to Sly-

miRNAtop14 and, after stripping, an oligonucleotide complementary to U6 RNA (5’-

AGGGGCCATGCTAATCTTCTC-3’). The film was scanned using the Typhoon FLA 

9500 scanner (GE Healthcare Life Sciences). 
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2.3. Material and methods chapter 4 

 

2.3.1. Cloning of Sly-pri-miRNAtop14 sequences 

Solanum lycopersicum L. cv. MicroTom seeds were sowed in soil and grown 

9 weeks. The three youngest but completely open leaves were collected for RNA 

extraction, each one from a different tomato plant.  Total RNA was extracted from 

each sample following the protocol in section 2.1.2 and subsequently, mRNA isolation 

was carried out using the Dynabeads mRNA purification kit, following the 

manufacturer’s instructions (Life Technologies).  

Then, mRNA was reverse transcribed using SuperScript II reverse 

transcriptase following manufacturer’s protocol (Invitrogen), with a few differences: 

the total volume after mixing resuspended RNA, oligo dT and dNTPs was adjusted to 

13µL instead of to 12 µL with water, and only 1 µL of DTT instead of 2 µL was later 

added to the reaction. Besides, incubation at 42°C was carried out for 60 min. 1µl of 

dT20 primer (50 µM) was used for the reverse transcription. 

After reverse transcription, PCR was carried out directly to amplify Sly-

MIRtop14 two transcript variants. The 50 µL PCR reaction contained 32 µL H2O, 10 

µL 5X Phusion HF buffer, 1 µL dNTPs (10 mM each), 2.5 µL of each primer (10 µM), 

1.5 µL cDNA and 0.5 µL Phusion DNA Polymerase (2.5 U/ µL, New England Biolabs). 

The PCR program was as follows: 98°C for 1 min, followed by 40 cycles of 98°C for 

10 sec, 64°C for 15 sec and 72°C for 20 sec, followed by a final cycle of 72°C for 5 

min. 

PCR products were run in a 1.5% Agarose 0.5X TBE gel and a picture was 

taken with Typhoon FLA 9500 scanner (GE Healthcare Life Sciences) after EtBr 

staining. Bands were cut and cloned into pGEM-t easy vector according to protocol 

described in section 2.3.1. Finally, positive clones were send for sequencing to 

Eurofins MWG Operon (Germany) and identity of the sequences was confirmed 

through BLAST alignment. 

MIRtop14 sequences and primers are shown in appendix. 

For golden gate cloning, both pri-miRNAtop14 sequences (with and without 

intron) were amplified from pGEM-t easy carrying plasmid. Miniprep was performed 

using the QIAprep Spin Miniprep Kit and 1 µL of 10 ng/ µL isolated plasmid were used 

as PCR template. Apart from that, the reaction mixture was the same as in the 

previous PCR which product was cloned in pGEM-t easy. The primers used had the 
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same MIRtop14 matching sequence as the ones used in the previous PCR and 

shown in the appendix, but these ones had tails for golden gate cloning. The PCR 

program used this time was as follows: 98°C for 2 min, followed by 35 cycles of 98°C 

for 10 sec, 63°C for 30 sec and 72°C for 30 sec, followed by a final cycle of 72°C for 

10 min. 

 

2.3.2. Cloning of Osa-MIR528 gDNA sequence 

Oryza sativa was germinated in petri dishes over Whatman filter paper soaked 

in distilled water. After 12 days, sprouts were used for genomic DNA extraction 

according to Amani et al. protocol352, after freezing and grinding the tissue in liquid 

nitrogen first. The concentration and quality of the DNA was measured using a 

NanoDrop spectrophotometer (Thermo Fisher scientific) at an absorbance ratio of 

A260/280 nm and A260/230 nm. 

Subsequent PCR amplification of Osa-MIR528 genomic sequence was 

carried out in a 20 µL PCR reaction containing 12.3 µL H2O, 4 µL 5X Phusion GC 

buffer, 0.4 µL dNTPs (10 mM each), 1 µL of each primer (10 µM), 0.5 µL gDNA 

(100ng/ µl), 0.6 µL DMSO and 0.2 µL Phusion DNA Polymerase (2.5 U/ µL, New 

England Biolabs). The PCR program was as follows: 98°C for 30 sec, followed by 35 

cycles of 98°C for 10 sec, 56-65°C for 15 sec and 72°C for 90 sec, followed by a final 

cycle of 72°C for 5 min. 

PCR products were run in a 1.5% Agarose 0.5X TBE gel and a picture was 

taken with Typhoon FLA 9500 scanner (GE Healthcare Life Sciences) after EtBr 

staining. Bands were cut from the gel and DNA was recovered using the Zymoclean 

Gel DNA Recovery Kit, following manufacturer’s protocol (Zymo research). 

Subsequently, the recovered PCR product were assembled into a level 0 Golden 

Gate cloning vector and cloned according to the protocol described in next section 

(2.3.3). Positive clones were send for sequencing to Eurofins MWG Operon 

(Germany) and identity of the sequences was confirmed through BLAST alignment. 

The sequences of the primers used for the amplification can be seen hereafter, 

with the nucleotides annealing to O. sativa gDNA in capital letters and the tails needed 

for golden gate cloning in lower case letters. 

Forward primer: 5’-tgaagacggaatgCCAGTGCACCATGGCCGG-3’ 

Reverse primer: 5’-tgaagacggaagcTTGTCGTTGACAATACTACTCTTCT-3’ 
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2.3.3. Golden gate cloning 

The golden gate cloning method followed in this study was based in the golden 

gate system published by Weber et al.353. This system allows the assembly of multiple 

DNA fragments into a single insert piece thanks to several hierarchical assemblies 

facilitated by the cleavage by type II restriction enzymes, which cleave outside their 

recognition sites. This way, recognition sites can be cleaved out of the constructs 

after each assembly reaction. 

Besides, the enzymatic restriction will produce specific four nucleotide 

overhangs that will pair only with other complementary overhangs, allowing the 

assembly of multiple fragments simultaneously in a fixed order.  

In brief, simple modules (such as promoter, terminator, coding sequences, 

etc.) have to be first amplified with primers carrying a tail with an enzyme II recognition 

site followed by the distinct nucleotide sequence that will give place to the different 

overhangs in each case. This way, through restriction-ligation assembly reaction 

described hereunder, simple modules are cloned into level 0 vectors. Several of these 

simple modules harboured in level 0 vectors are then cut and assembled into a level 

1 vector to create a full transcriptional unit. Finally, in the same way, several 

transcriptional units contained in a level 1 vector each can be cut and assembled 

together in a multigene piece into a level 2 vector. 

Each assembly mixture contained 1 µL of vector backbone (100 ng), 1 µL of 

each additional assembly plasmid (100ng), 1.5 µL of 10x T4 ligase buffer, 0.15 µL 

100X BSA, 1 µL T4 Ligase (400,000 cohesive end units/ ml, New England Biolabs), 

1 µL type II restriction enzyme (Bpi I for level 0 and level 2 assembly, Bsa I for level 

1 assembly) and water up to 15 µL. 

The reaction consisted in 25 cycles of 3 min at 37°C (restriction) followed by 

4 min at 16°C (ligation) and a final cycle of 5 min at 50°C and 5 min at 80°C. 

The products of each reaction were then cloned into E. coli DH5α by the same 

heat-shock method used for pGEM-t easy cloning (described in section 2.1.3). For 

level 0 and level 1 constructs, positive colonies were recognized through blue-white 

screening. For level 2, red-white screening was used. 

Finally, to test whether a white colony was carrying the right insert, colony 

PCR, sequencing or both procedures were carried out to test level 0 and level 1 

constructs. Besides, level 2 constructs were checked by restriction digest additionally 

to specific modules sequencing, in order to confirm that the whole assembly was 
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correct given the impossibility to amplify the large multi-gene fragment. Colony PCR 

was performed as previously explained (2.1.4) and sequencing was performed by 

Eurofins MWG Operon (Germany). For sequencing and restriction digest, plasmid 

DNA was isolated through miniprep using the QIAprep Spin Miniprep Kit. Apart from 

the first centrifugation step, in which overnight cell culture was pelleted by centrifuging 

at 4000g for 5 min. at 4°C, manufacturer’s instructions (Qiagen) were followed. 

 

2.3.4. Site-directed mutagenesis 

To create a non-spliceable intron containing MIRtop14 construct, the 5’SS of 

the gene was mutated from G/GT to C/CC through site directed mutagenesis from 

the level 0 golden gate construct harbouring the WT MIRtop14. 

First, primers were design to amplify the whole level 0 construct, but 

incorporating a mutation at the MIRtop14 5’SS: 

Forward primer: 5’-GTTTAATTTATTACCCCATGTTATTTGTC-3’ (it 

comprehends the 5’ splicing site sequence, but harbours a CCC sequence at this 

position instead of the original GGT) 

Reverse primer: 5’-AAACAATATTGATAAGCACTCTTT-3’ (it is adjacent to the 

forward primer, immediately upstream, but oriented towards the opposite direction) 

These primers had to be phosphorylated to allow the subsequent self-ligation 

of the amplicon. 

PCR 25 µL reaction was as follows: 13 µL H2O, 5 µL 5X Phusion HF buffer, 

0.5 µL dNTPs (10 mM each), 1.25 µL of each primer (10 µM), 0.75 µL DMSO, 0.5 µL  

plasmid DNA (10 ng/ µL) and 0.25 µL Phusion DNA Polymerase (2.5 U/ µL, New 

England Biolabs). The PCR program consisted on: 98°C for 30 sec, followed by 25 

cycles of 98°C for 10 sec, 60°C for 30 sec and 72°C for 90 sec, followed by a final 

cycle of 72°C for 5 min. 

3 µL PCR product was used for self-ligation in a mixture with 14 µL H2O, 2 µL 

10X T4 buffer and 1 µL T4 DNA ligase (New England Biolabs). After incubation at RT 

for 4 hours, 1.5 µL of ligation reaction were used to transform 20 µL E. coli DH5α 

following the heat sock protocol previously described. 

Since all resulted colonies were white as expected, and the plasmids were all 

the same size, miniprep and sequencing of three colonies was carried out as specified 
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before. After sequence analysis it was found out that one of the colonies carried the 

CCC mutated 5’ splicing site. 

 

2.3.5. Arabidopsis transformation (“floral dip” method) 

The Arabidopsis thaliana floral dip transformation method was carried out 

following the protocol by Andrew Bent354 with small modifications. 

Arabidopsis thaliana Col0 wild type seeds were sowed in soil, stratified in the 

dark at 4°C for 48-72h and then placed in a growth room at the conditions already 

stated. 

Besides, the three level 2 constructs carried by E. coli DH5α bacteria were 

transferred into Agrobacterium tumefaciens GV3101 (pMP90) by electroporation 

using a MicroPulser Electroporation apparatus (Bio-Rad), following the instructions 

given by the manufacturer for the electroporation of A. tumefaciens. 

Once Arabidopsis plants started showing many young unopened flower buds 

but before they produced mature flowers, around 5 weeks after planting, the floral 

dipping process was performed. 

First, a single colony of each Agrobacterium strain carrying one level 2 vector 

of interest was inoculated in liquid LB media with the corresponding antibiotics to 

select for both the plasmid (Kan) and the bacteria strain (rifampicin and gentamicin), 

and grown at 28°C with shacking until reaching at least midlogarithmic or even 

approaching stationary phase. Then, the cells were pelleted by centrifugation and 

resuspend in an equal volume of 5% sucrose solution, and the suspension was 

subsequently diluted to an OD600=0.8. 

Above-ground parts of Arabidopsis were then dipped in the Agrobacterium 

solution for 2 to 3 seconds, with gentle agitation. Several plants were dipped per 

construct. Dipped plants were placed under a dome for ~24 hours to maintain high 

humidity and then returned to their previous growing conditions. Once plants were 

dry, seeds were collected (T1 transformed seeds). 

Arabidopsis thaliana T1 transformed seeds were surface sterilised through 

exposure for 6h to chlorine fumes produced by mixing 100 ml bleach (NaClO 6.15%) 

with 3 ml 12 M HCl into a desiccator jar. Sterile seeds were sowed into sterile petri 

plates with 50 mg/L kanamycin, 0.5X MS and 0.8% agar. Plates were stratified in the 

dark at 4°C for 48-72h and then placed in a growth room. After ~15 days, T1 seeds 
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which were growing healthy in media with Kan and showed dsRED fluorescence were 

transplanted to soil. We kept them growing under the same 22°C temperature and 

16h light conditions until senescence. Once plants were dry, T2 seeds were collected 

independently from each plant, and each plant offspring was considered a transgenic 

line. 

Arabidopsis thaliana T2 transformed and WT Col0 seeds were surface 

sterilised as described above and then sowed in petri plates with 0.5X MS, 0.8% agar 

and with or without 50 mg/ L Kan, respectively. Several transgenic lines were sowed 

per construct. Plates were stratified in the dark at 4°C for 48-72h and then placed in 

a growth room. Seedlings were collected after 15 days for RNA extraction. 

 

2.3.6. Northern blot detection of miRNAtop14 in the  three constructs 

(fig 4.4.A) 

For Northern blot detection of miRNAtop14 levels in the different constructs, 

20 healthy growing seedlings per transgenic line/ WT were pooled together for RNA 

extraction. Three transgenic lines per each one of the three constructs were analysed, 

together with the WT, making a total of ten samples. RNA extraction was performed 

as described before in section 2.1.2. 10µg of total RNA from each sample were 

analysed by sRNA Northern blot (section 2.1.5). The probes used were the full 21 

nucleotides complementary to Sly-miRNAtop14, an oligonucleotide complementary 

to Osa-miRNA528 (5’-CTCCTCTGCATGCCCCTTCCA-3’) and an oligonucleotide 

complementary to U6 RNA (5’-AGGGGCCATGCTAATCTTCTC-3’). The film was 

scanned using the Typhoon FLA 9500 scanner (GE Healthcare Life Sciences). 

 

2.3.7. RT-PCR analysis of pri-miRNAtop14 in the thr ee constructs (fig 

4.4.B) 

The same total RNA samples used for northern blot (2.3.6) were used for 

reverse-transcription and PCR analysis of pri-miRNAtop14.  

Before reverse transcription, the RNA was DNase treated using the TURBO 

DNA-free Kit and following the manufacturers’ instructions (Ambion). 4 µg of total 

RNA were DNase treated in a 10 µL reaction, after which DNAse was inactivated and 

RNA recovered as explained in the manufacturers’ protocol. 
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Reverse transcription was then performed using SuperScript II reverse 

transcriptase following manufacturer’s protocol (Invitrogen), with the only difference 

that the incubation at 42°C was carried out for 60 min. 1 µl of DNase treated total 

RNA (~ 0.6 µg) and 1µl of dT15 primer (487µg/ µL) were used for the reverse 

transcription reaction. 

20 µL PCR reaction per transgenic line/ WT was subsequently carried out. 

The mixture consisted in 10.9 µL H2O, 4 µL 5X Green GoTaq reaction buffer, 0.4 µL 

dNTPs (10 mM each), 1 µL of each primer (10 µM), 1 µL cDNA, 1.6 µL MgCl2 and 0.2 

µL GoTaq G2 DNA Polymerase (5 U/ µl, Promega). The PCR program was as follows: 

95°C for 2 min, followed by 30 cycles of 95°C for 30 sec, 50°C for 30 sec and 72°C 

for 1 min, followed by a final cycle of 72°C for 5 min. 

PCR products were run in a 1.5% Agarose 0.5X TBE gel and a picture was 

taken with Typhoon FLA 9500 scanner (GE Healthcare Life Sciences) after EtBr 

staining. 

The sequences of the primers used for this PCR were: 

Forward primer: 5’-TGGTGACTTTGATCTCAAAAGAGTGC-3’ 

Reverse primer: 5’-GAGAATTCTGGCTCCGTCGCTGT-3’ 
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2.4. Material and methods chapter 5 

 

2.4.1. RNA ligase-mediated rapid amplification of c DNA ends 

The same total RNA samples used for S. lycopersicum, N. benthamiana and 

P. axillaris miRNAtop14 northern blot detection (2.2.2) and RT-PCR analysis of pri-

miRNAtop14 (2.2.3) were used for RNA ligase-mediated rapid amplification of cDNA 

ends (RLM-RACE). This way, it was confirmed that the mature miRNAtop14 was 

present in the sample, and an absence of cleaved target could not be attributed, a 

priori, to lack of miRNA. 

First, mRNA was isolated from total RNA using the Dynabeads mRNA 

purification kit, following the manufacturer’s instructions (Life Technologies). 

Subsequently, ligation to GeneRacer RNA Oligo (see table 2.1 for sequence) 

was performed. 0.5 µg mRNA were mixed with 0.5 µg GeneRacer RNA Oligo in a 

total volume of 14µl. After 5 min incubation at 65°C to relax RNA secondary structures 

and a quick chill on ice, 2 µl RNaseOut (40 U/ µl, Invitrogen), 2 µl 10X Ligase Buffer 

and 2 µl T4 RNA ligase (5 U/ µl, Ambion) were added. The mixture was then incubated 

at 37°C for 1 hour. 

After that, mRNA was cleaned using the Dynabeads mRNA purification kit 

again, according to the manufacturer’s instructions (Life Technologies). However, the 

20 µl ligation reaction was first adjusted to a total of 100 µl volume with water before 

performing the cleaning. Afterwards, the RNA with the beads was resuspended in 12 

µl of the Tris-HCl buffer provided by the kit, and 11 µl of clean ligated mRNA were 

recovered. 

Subsequently, to the 11 µl suspension of ligated mRNA, 1 µl dNTPs (10 mM 

each) and 1 µl of 50 mM Generacer oligo dT (see table 2.1 for sequence) were added 

in the first step of the reverse transcription reaction. The rest of the reverse 

transcription was performed according to the SuperScript II reverse transcriptase 

manufacturer’s protocol (Invitrogen), with minor changes. In brief, the ligated mRNA, 

dNTPs and Generacer oligo dT mixture was incubated at 65°C for 5 min and then 4 

µl 5X First-Strand Buffer, 1 µl 0.1 M DTT and 1 µL RNaseOUT (40 units/ µL) were 

added. After a short 2 min incubation at 42°C, 1 µL (200 units) of SuperScript II RT 

(Invitrogen) was incorporated to the reaction, which was then incubated for another 

60 min at 42°C before inactivating the reaction by heating at 70°C for 15 min. 
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Next, the cDNA was subjected to 7 cycles of PCR amplification. The full length 

of all ligated transcripts was amplified from the 5’ ligated oligo to the tail included in 

the poly dT primer. The 50 µL PCR reaction included the whole 20 µL of first strand 

cDNA reaction plus 12.25 µL H2O, 10 µL 5X Phusion GC buffer, 1.25 µL dNTPs (10 

mM each), 2 µL of Generacer 5’ primer (10µM), 2 µL of Generacer 3’ primer (10µM) 

and 1 µL Phusion DNA Polymerase (2.5 U/ µL, New England Biolabs). The PCR 

program was as follows: 98°C for 1 min, followed by 7 cycles of 98°C for 30 sec, 68°C 

for 30 sec and 72°C for 5 min, followed by a final cycle of 72°C for 7 min. 

Afterwards, the 7 cycle PCR products were cleaned using the Agencourt 

AMPure XP system (Beckman Coulter). 90 µl AMPure beads were added to the 50 

µl PCR mixture in an Eppendorf tube. After 5 min incubation at RT, the tube was place 

in a magnetic stand. Once all beads had migrated to the wall, supernatant was 

discarded and two washes with 200 µl of 70% ethanol were performed. Without 

moving the tube from the stand, the pellet was dried for 5-7 min. After this, the tube 

was finally removed from the stand and the beads were resuspended in 16 µl H2O. 

The bead suspension was then returned to the stand to separate beads from clean 

PCR product in solution, which was recovered. 

For Petunia axillaris RLM-RACE results showed in figure 5.8, this last cleaning 

step was skipped. However, in other P. axillaris RLM-RACE reactions that showed 

the same negative outcome than the one shown in figure 5.8, this cleaning step had 

been performed (data not shown). 

The 7 cycle PCR product was subsequently used to perform a first PCR and 

a consecutive nested PCR. These PCRs were specific to each transcript putatively 

cleaved by miRNAtop14 or to the control transcripts, known to be cleaved by a 

miRNA. 

After PCR and electrophoresis, the bands of interest were cut from the gel, 

cloned and analysed following the pGEM-t easy cloning method described above 

(1.1.3) 

 

2.4.2. Solanum lycopersicum RLM-RACE PCR (fig. 5.4) 

Solanum lycopersicum first RLM-RACE PCR reaction contained 4 µL 5X 

Phusion GC buffer, 0.6 µL dNTPs (10 mM each), 0.6 µL DMSO, 0.4 µL cDNA, 1.8 µL 

of Generacer 5’ primer (10 µM), 0.6 µL of gene-specific reverse primer (10 µM) and 

0.2 µL Phusion DNA Polymerase (2.5 U/ µL, New England Biolabs) and water up to 
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20 µL. The first PCR program was a touchdown PCR as follows: 98°C for 30 sec, 

followed by 5 cycles of 98°C for 15 sec, 72°C for 60 sec, followed by another 5 cycles 

of 98°C for 15 sec, 70°C for 30 sec and 72°C for 30 sec, followed by 30 cycles of 

98°C for 15 sec, 68°C for 30 sec and 72°C for 30 sec and a final 10 min at 72°C. 

The PCR reaction to check for the presence of the non-cleaved transcripts 

was the same as this first PCR reaction, but instead of 1.8 µL of Generacer 5’ primer 

(10 µM), 0.6 µL of gene specific forward primer (10 µM) were used. 

After the PCR, 10 µL of the reaction were run in an agarose gel and the 

remaining 10 µL were cleaned by the Agencourt AMPure XP system (Beckman 

Coulter) as explained above. The clean PCR product was resuspended in 10 µL of 

water again and then used as template for nested PCR. 

The nested RLM-RACE PCR reaction had a total volume of 15 µL in which 

0.3 µL of the primary PCR product were added together with 3 µL 5X Phusion GC 

buffer, 0.45 µL dNTPs (10 mM each), 0.45 µL DMSO, 0.45 µL of Generacer Nested 

5’ primer (10 µM), 0.45 µL of gene-specific nested reverse primer (10 µM) and 0.15 

µL Phusion DNA Polymerase (2.5 U/ µL, New England Biolabs). The PCR profile 

consisted in 98°C for 2 min, followed by 30 cycles of 98°C for 15 sec, 60-72°C for 30 

sec and 72°C for 30 sec and a final 10 min at 72°C. The annealing temperatures 

specific for each primer were 65°C for target 2 and 6, 66°C for target 7, 67°C for target 

3, 68°C for target 1, 8 and 9, 69°C for target 4 and 71°C for target 5 (LPR) and both 

controls (see table 5.1 for details of the targets). Primer sequences are compiled in 

table 2.1. 

 

2.4.3. Nicotiana benthamiana RLM-RACE PCR (fig 5.6) 

Nicotiana benthamiana RLM-RACE first PCR reaction and program were the 

same as for Solanum lycopersicum, but components were adjusted to perform a 50 

µL reaction instead of a 20 µL reaction. 

The PCR reaction to check for the presence of the non-cleaved transcripts 

was as well similar to the first PCR. 

Nicotiana benthamiana nested PCR was exactly the same mixture and 

program as the one performed in tomato. It was performed using first PCR product 

either directly or cleaned by the Agencourt AMPure XP system (Beckman Coulter), 

obtaining the same results in both cases. The annealing temperatures, specific for 
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each primer, were 71°C for target 1, target 2 and two control transcripts and 60-64-

68°C were used with similar results for LPR1 and LPR2 (see table 5.1 for details of 

the targets). Primer sequences are gathered in table 2.1. 

 

2.4.4. Petunia axillaris RLM-RACE PCR (fig. 5.8) 

Several different PCR mixtures and programs were used for Petunia axillaris 

RLM-RACE trying to optimize the conditions to detect any miRNAtop14 directed 

cleavage of LPR mRNA without success. The conditions used to produce figure 5.8 

were the following ones. 

The first PCR reaction was similar to the one carried out in Solanum 

lycopersicum and Nicotiana benthamiana, but with the components adjusted to make 

a total of 30 µL reaction. However, four slightly different reactions were performed 

changing the forward primer and its amount.  This way, there were two reactions using 

the Generacer 5’ primer (10 µM), one containing 2.7 µL of this primer and the other 

one containing 0.9 µL, and another two reactions using instead the Generacer Nested 

5’ primer (10 µM), again one containing 2.7 µL of this primer and the other one 

containing 0.9 µL. The program used consisted in 98°C for 2 min, followed by 35 

cycles of 98°C for 15 sec and 72°C for 30 sec, followed by another 5 min at 72°C. 

The PCR reaction to check for the presence of the non-cleaved transcripts 

was the same to the first PCR reaction. 

Petunia axillaris nested PCR was also the identical mixture and program as 

the one performed in tomato and Nicotiana, but with the volumes adjusted to a 20 µL 

reaction. It was performed using first PCR product directly and the annealing 

temperatures of each primer were in all cases 62°C, and the primer sequences can 

be seen in table 2.1. 
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Table 2.1.  Oligo and primers sequences used for RLM-RACE analyses. 

Primer  Sequence  5’- 3’ 
Generacer RNA oligo CGACUGGAGCACGAGGACACUGACAUGGACUGAAGGAGUAGAAA 
Generacer oligo dT GCTGTCAACGATACGCTACGTAACGGCATGACAGTG(T)24 
Generacer 5’ primer CGACTGGAGCACGAGGACACTGA 
Generacer 5’ nested  GGACACTGACATGGACTGAAGGAGTA 
Generacer 3’ primer GCTGTCAACGATACGCTACGTAACG 
Sly T1 Rv ATCCACAAGCGCAATCTCCACACAT 
Sly T2 Rv CGCAGTTAGCAGCAACAGGAGCAAG 
Sly T3 Rv GAATATTCAAGAAGCCCCGGCAACA 
Sly T4 Rv GGCCACAATATCCACGGCTTCCTTA 
Sly T5 (LPR) Rv ACTGTTGCTGTGTGCCGCGATGTAC 
Sly T6 Rv GCCCGCTTGACTGAGCTACCTGACT 
Sly T8-9 Rv GGACTGGAGGACACGGATGCTTCGA 
Sly LA Rv GCATTCAAGTAGAGCATATCCCTGTCAGGG  
Sly SCW RV GGCCCATTGCCCGCCATAACCGAT  
Sly T1 Fw ACACAAGTTCAGTTCCACCAGCAAGC 
Sly T2 Fw TGAGGGGTTGATGAATTTGGTCTCAAG 
Sly T3 Fw CGGGCTGCCGATAGTGCATTGTCTG 
Sly T4 Fw GTTTCCTTGGTGATGCAGGGCCAGG 
Sly T5 (LPR) Fw CCCCCACCCCACCCCTTTCTTCTTA 
Sly T6 Fw CTGATCCTGCAGCTCAGCTTGTGGC 
Sly T8-9 Fw CTCTTGCAAGCTGAACAGGCTGCCA 
Sly T1 Rv nested CTCCACACATCCAATGGCGA 
Sly T2 Rv nested GGAGCAAGTCCAGTAGTAAGTCC 
Sly T3 Rv nested GGCAACAATTTCGTGCGACT 
Sly T4 Rv nested ATTAGAAAGTACATCCCAAACCCCA 
Sly T5 (LPR) Rv nested TGGCATGTCTTGGAGTTCATCA 
Sly T6 Rv nested GAGATCAGTGCTGCCAGGAG 
Sly T7 Rv nested GCCGCAATTGACTGTACGAA 
Sly T8-9 Rv nested CCTTCGAAGCCCACTGGAAA 
Sly C1 Rv GCATTCAAGTAGAGCATATCCCTGTCAGGG  
Sly C2 Rv GGCCCATTGCCCGCCATAACCGAT  
Nb T1 Rv CGCCACCAATCGACGACCCT 
Nb T2 Rv GTGCAGTTGAAAGGCACTCAGCT 
Nb LPR 1&2 Rv TGGTACATGCCAATCTTGAGTGAC 
Nb TCP4 Rv TTCTGCATTACGTCGGTCCACTC 
Nb SCW-6 Rv TGCCTGCCATAGCCGATATCAAA 
Nb T1 Fw ACGAGACTGTGATTTCGCCGA 
Nb T2 Fw TTGGTGATGCAGGGCCAGGATAT 
Nb LPR1 Fw AGAGTGTTGGTGACTTTGTTCCT 
Nb LPR2 Fw AAGGGTATTGGTGACTTTGGTCC 
Nb TCP4 Fw GAATGGGAATGTTGCCAGTTCAA 
Nb Scarecrow-6 Fw CTCCAGCTGCTTCCCCATTTT 
Nb T1 Rv nested GGTTCCATTCTTCCCATCCCTCC 
Nb T2 Rv nested TCAGTCTCCAAGCTCTTGTCGCA 
Nb LPR1 Rv nested GTTTATCTTCTGCCATTGAAGCCAT 
Nb LPR2 Rv nested TGGGCATGTCTGGAAGTTTGT 
Nb C1 Rv nested CGTGGGTCAAAGAGCAGAAAATG 
Nb C2 Rv nested TGGCAAATTGTGCAACTGGTG 
Pa LPR Rv GGCCTCGATTGTAGGTCCAGGGACTGT 
Pa TCP4 Rv TGCAGAAGGGAAGTTGCATTGGC 
Pa SCW Rv AGCCCATTGCCCGCCATAACCGA 
Pa LPR Fw AGGGTGTTTGTGACTTTGTCCTGCA 
Pa TCP4 Fw ACTCAGAAAGCAAAAGCCAAGCCCA 
Pa SCW Fw CAGAGCTGGTCCAGACGGGGAAT 
Pa LPR Rv nested CGAGTGACTTAGGGACATGAGCACCA 
Pa C1 Rv nested CCTGCCCCTCATCTGCACCTTCA 
Pa C2 Rv nested ACTGTGCAACTGGTGAGATCTCAGAGA 
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3.1.  Introduction 

 

3.1.1. Identification and characterization of miRNA s 

In recent years, there has been a substantial progress in the identification of 

new miRNAs thanks to the development and improvement of next generation 

sequencing (NGS) technologies355. Development of miRNA prediction bioinformatics 

algorithms was also crucial to allow the recognition of candidate miRNAs among the 

huge amount of sRNA reads in a library. Prediction of miRNAs is based on 

parameters such as their length, phylogenetic conservation, pre-miRNA secondary 

structure and distribution of reads on the predicted pre-miRNAs356–358.  

In addition to de-novo discovery of miRNAs, the bioinformatics tools have to 

recognise the miRNAs that are homologous to already discovered ones either in the 

same or in other species. This has been traditionally achieved through the search of 

different nucleotide databases with previously identified miRNAs188,359,360.  

As a result of all these efforts to identify miRNAs, currently there are 

thousands of miRNAs annotated in over hundred different species361. However, 

concerns about the authenticity of some of these miRNAs have been raised362. In 

particular, it remains difficult to differentiate between miRNAs and endogenous 

siRNAs, given that the main difference between them is their biogenesis method52,214. 

However, sRNA NGS has the advantage of showing the distribution of reads across 

the genomic locus, allowing the distinction between single precisely diced miRNA-

miRNA* pairs and the populations of randomly distributed reads characteristic of 

sRNAs213. 

An additional proof of miRNA authenticity and a first step in studying its 

function is the identification of targets213. Fortunately, computational miRNA target 

prediction in plants can be done relatively easily thanks to their high complementarity 

to the target site142,143. Furthermore, given that their mode of action is frequently 

cleavage215, experimental validation of a target can be achieved directly by detecting 

the cleaved transcript through techniques such as 5’ RACE150 or its high throughput 

version, parallel analysis of RNA ends (PARE) libraries, also called degradome 

libraries148,363. 

Besides the chance of false positives, there is also a risk of false negatives in 

the bioinformatic search for miRNAs213. As an example, it has been claimed that non-

conserved miRNAs are often not identified with some bioinformatics tools that rely on 

phylogenetic conservation356,364. In addition to this, different NGS technologies are 
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known to be biased towards or against certain sequences, artificially increasing or 

decreasing the abundance of some miRNAs, or even not detecting them at all365. 

These technical constraints may be delaying the discovery of certain miRNAs, 

especially if their features diverge from the most canonical ones. 

 

3.1.2. Intron-split miRNAs 

Plant MIRs usually contain introns, with a 67% of Arabidopsis pri-miRNAs 

estimated to have at least one intron193. Both plant pri-miRNAs and their introns show 

a great variability in length, with sizes reported from 300bp to 5000bp for pri-miRNAs, 

and from 100bp to 3000bp for their introns58,192,193. miRNA hairpins are located in the 

first exon in most cases193,194, although they may appear in other exons as well as in 

alternatively spliced regions that may be either intronic or exonic56,59. 

Another interesting possibility reported is the one in which an intron appears 

in between the miRNA and the miRNA* sequence, dividing the miRNA stem-

loop195,366. This exon-intron structure was first observed in a member of the 

miRNA444 family in rice, where the pri-miRNA fold-back structure could only be 

predicted from the processed transcript but not from the genomic locus, suggesting 

the presence of an intron366. In a later study, also in rice, it was found that most 

members of the miRNA444 family had a characteristic not observed previously in any 

miRNA: they were transcribed from the antisense strand of their own target, for which 

they were called natural antisense miRNAs (nat-miRNAs)195. Interestingly, all 

miRNA444 family members were found to have an intron in between their miRNA and 

miRNA*, even the two of them (miRNA444e and miRNA444f) which were not 

transcribed from the antisense strand of their target gene195. 

This peculiar exon-intron arrangement was subsequently reported also in 

miRNA444 members of maize and sorghum58,367,368. Furthermore, a bioinformatic tool 

(SplamiR) was developed to identify this particular kind of pri-miRNAs with an intron 

in the middle of the miRNA hairpin, since they were not predicted by existing 

bioinformatic tools, unless spliced368. In a recent review paper they have been called 

intron-split miRNAs369. However, to our knowledge, up to date no intron-split miRNAs 

have been found outside the miRNA444 family. 
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3.1.3. Study of miRNAtop14 

In 2008, Moxon et al.370 performed high-throughput sequencing of sRNAs 

from tomato leaf, bud and different stages of fruit development. After filtering out 

matches to tRNA and rRNA sequences, the remaining 18 to 30 nucleotide reads were 

mapped to SOL Genomics Network (SGN) tomato “bacterial artificial chromosome” 

(BAC) sequences, since the whole tomato genome sequence was not available at 

that time. Those reads aligning to the BAC sequences were subsequently analysed 

by checking whether there was also a plausible miRNA* sequence among the BAC 

sequences, and by testing whether the predicted genomic MIR could fold into a 

miRNA-like hairpin using RNAfold. As a result, several known and putative new 

miRNAs were identified. One of the predicted miRNAs was the 14th most abundant 

read from the combination of the libraries, and was therefore called “top14” in this 

publication.  

Once the whole tomato genome was sequenced, it was noticed that 

miRNAtop14 and its putative miRNA* sequence were more distant from one another 

than what was usually observed in other miRNA/ miRNA* pairs. In fact, they were 

almost 700 nt apart although 98% of plant miRNA hairpins have a length of less than 

336 nucleotides371. Therefore, a reverse transcription PCR (RT-PCR) was carried out 

from tomato total RNA with the aim of gathering more information about miRNAtop14 

primary transcript. Surprisingly, when the PCR product was resolved in an agarose 

gel, two bands came out; one of the expected genomic size between the primers but 

another one around half the size of the upper band. When the two bands were 

sequenced, it was discovered that both amplified transcripts were indeed produced 

from MIRtop14, but the shorter one had an excised stretch in the middle with the GT-

AG canonical intron splicing sites at the 5’-3’ end, respectively, indicating that the pri-

miRNA contained an intron in between miRNA and miRNA* sequences. With this 

information, I proceeded to further characterise this miRNA. 

Besides other analyses, miRNAtop14 presence was predicted in several 

species within the Solanales order, including Nicotiana benthamiana. While this 

research was in progress, Baksa et al.372 published a study where they had 

sequenced sRNAs libraries from several Nicotiana benthamiana tissues, detecting 

mature miRNAtop14 in all of them, which they named Nb_miRC16_3p. 
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3.2. Results 

 

3.2.1. Identification of miRNAtop14 in Solanales 

Both mature miRNAtop14 and genomic locus sequences have been identified 

in Solanum lycopersicum. With this information, a BLAST search was performed in 

different databases in order to determine whether this miRNA was also present in 

other related species.  

First, Solanum species were examined, and after the miRNA had been 

detected in several species within the Solanum genus, the whole Solanaceae family 

was included in the search. Newly identified MIRtop14 sequences were in turn used 

for BLAST searches against the next related species according to the Solanaceae 

phylogeny, which facilitated the identification of MIRtop14 in up to four genera of the 

Solanaceae family, the four genera with higher amount of genomic sequences 

available (Solanum, Capsicum, Nicotiana and Petunia). We subsequently expanded 

the search to look for the miRNA within the whole Solanales order. Apart from 

Solanaceae, the only two species with sequenced genomes belonged to the 

Convolvulaceae family (Ipomoea trifida and Ipomoea nil), and miRNAtop14 was 

identified in both of them as well as in sweet potato (Ipomoea batatas). Finally, we 

tried to search for MIRtop14 within the three closer orders to Solanales: Gentianales, 

Lamiales and Boraginales373. However, we couldn’t identify the miRNA in either of 

these orders, despite of the fact that Coffea canephora and Mimulus guttatus, which 

belong to the Gentianales and Lamiales order, respectively, both have high quality 

draft genomes available374,375. 

All species in which miRNAtop14 has been identified and their phylogenetic 

relationships are shown in figure 3.1, while in table 3.1 the mature miRNAtop14 and 

miRNAtop14* sequence in each species are compiled. 

 

 

 

 

 

 



74 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.  Cladogram depicting the evolutionary relationship among all species in which 
MIRtop14 has been identified. All of them belong to the Solanales order. Data extracted 
from several studies of the phylogeny of these species440–447. 
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Table 3.1.  miRNAtop14 and miRNAtop14* sequences in all the species in which the 
miRNA has been identified. miRNAtop14 is located on the 3’ arm (3p) and miRNAtop14* 
is on the 5’ arm (5p) of the miRNA hairpin. In red, nucleotides mismatching with Solanum 
lycopersicum sequence. National Center for Biotechnology Information (NCBI), SGN and 
Sweetpotato GARDEN databases were used to obtain these sequences422,448,449. 

Species miRNA sequence (3p) miRNA* sequence (5p) 

Solanum lycopersicum CUUGGGACCAAAGUCACCAAC UGGUGACUUUGAUCUCAAAAG 

Solanum pimpinellifolium CUUGGGACCAAAGUCACCAAC UGGUGACUUUGAUCUCAAAAG 

Solanum arcanum CUUGGGACCAAAGUCACCAAC UGGUGAUUUUGGUCUCAAAAG 

Solanum habrochaites CUUGGGACCAAAGUCACCAAC UGGUGUCUUUGGUCUCAAAAG 

Solanum pennellii CUUGGGACCAAAGUCACCAAC UGGUGACUUUGGUCUCAAAAG 

Solanum commersonii CUUGGGACCAAAGUCACCAAC UGGUGACUUUGGUCUCAAAAG 

Solanum tuberosum CUUGGGACCAAAGUCACCAAC UGGUGACUUUGGUCUCAAAAG 

Solanum melongena UUUGGGACCAAAGUCACCAAC UGGUGCCUUUGGUCUCUAAAG 

Capsicum annuum CUUGGGACCAAAGUCACCAAC UGGUGAUUUUGGUCUCAAAAG 

Nicotiana tabacum UUUGGGACCAAAGUCACCAAC UGGUGACUUUGGUCUCGAAAG 

Nicotiana sylvestris UUUGGGACCAAAGUCACCAAC UGGUGACUUUGGUCUCGAAAG 

Nicotiana benthamiana UUUGGGACCAAAGUCACCAAC UGGUGACUUUGGUCCCGAAAG 

Nicotiana attenuata UUUGGGACCAAAGUCACCAAC UGGUGACUUAUGGUCUCGAAAG 

Nicotiana otophora UUUGGAACCAAAGUCACCAAC UGGUGACUUUGGUCUCGAAAG 

Nicotiana tomentosiformis UUUGGAACCAAAGUCACCAAC UGGUGACUUUGGUCUCAAAAG 

Petunia axillaris UUUGGGACCAAAGUCACCAAC UGGUGACUUUGGUCUCGAAAG 

Petunia integrifolia UUUGGGACCAAAGUCACCAAC UGGUGACUUUGGUCUCGAAAG 

Ipomoea batatas UUUGGGACCAAAGUCACCAAC UGGUGACUUUGUACCCAAAGG 

Ipomoea trifida UUUGGGACCAAAGUCACCAAC UGGUGACUUUGUACCCAAAAC 

Ipomoea nil UUUGGGACCAAAGUCACCAAC UGGUGACUUUGUAUCCAAAAC 
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3.2.2. MIRtop14 genomic sequence and predicted pri-miRNA 

MIRtop14 genomic sequences could be gathered in all species in which the 

mature miRNA sequence was identified. Presence of the putative pri-miRNAtop14 

sequence in the genome was verified by PCR in four Solanales species, each one 

belonging to a different genus: Solanum lycopersicum, Nicotiana benthamiana, 

Petunia axillaris and Ipomoea nil. Capsicum was the only genus known to harbour 

miRNAtop14 which was not analysed. Subsequent cloning and sequencing confirmed 

the identity of these sequences, with the exception of I. nil, in which sequencing was 

not performed. The products of these amplifications can be seen in figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

A ncRNA is predicted to be transcribed from this genomic locus in Solanum 

lycopersicum, several Nicotiana species and Ipomoea nil according to the NCBI 

database based on expressed sequence tags (EST) evidence. Besides, if looking 

directly at the EST or transcriptome shotgun assembly (TSA) collections also at NCBI, 

two more Solanum members as well as Petunia axillaris, Petunia integrifolia and 

Ipomoea batatas are predicted to transcribe this locus (see table 3.2).  

Interestingly, in Solanum and Nicotiana species an intron is predicted to be 

excised from the region between miRNA and miRNA*, while in Petunia axillaris there 

is no intron predicted (see figure 3.3). In fact, when checking the genomic sequence 

Figure 3.2.  PCR from genomic DNA amplifying putative pri-miRNAtop14 sequence in the 
species Solanum lycopersicum (Sly), Nicotiana benthamiana (Nbe), Petunia axillaris (Pax) 
and Ipomoea nil (Ini). Expected product length from each species in nucleotides: 
Sly=1071, Nbe=1237, Pax=760, Ini=1247. M, 100bp marker. MIRtop14 sequences and 
primers can be seen in appendix. 
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of Petunia axillaris and Petunia inflata, both have a very short stretch of DNA between 

miRNA and miRNA* compared with the long distance among them in the rest of the 

Solanaceae species studied (see table 3.2). However, even more surprisingly, in 

Ipomoea nil, one of the members of the Convolvulaceae family and therefore a 

species that has diverged earlier from all the rest of the Solanaceae family, the 

predicted ncRNA harbours an intron again, but this time the intron includes the 

miRNAtop14 sequence while miRNAtop14* lies within the upstream exon (see figure 

3.3). 

Besides, it may be interesting to note that among the EST reads curated at 

NCBI, there is evidence for transcripts both with and without intron in some species 

such as Solanum lycopersicum and Nicotiana tabacum, which would be an indicative 

of alternative splicing rather than constitutive splicing.  

Finally, it is worth mentioning that in Solanum lycopersicum, Solanum 

tuberosum and Solanum pimpinellifolium a protein is predicted to be encoded from a 

160-170 nucleotide sequence which expands across the mature miRNAtop14 site, 

according to ENSEMBL and SGN databases. In SGN, the protein predicted for 

Solanum lycopersicum is cycling DOF factor 2. Although such predictions cannot be 

considered very reliable because they are only based on in silico data, they cannot 

be discarded either. 
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Species 

A) 
Distance miRNA-miRNA* 

B) 
MIR transcript predicted? 

Solanum lycopersicum 652 nt yes, ncRNA 

Solanum pimpinellifolium 660 nt no 

Solanum arcanum 619 nt no 

Solanum habrochaites 640 nt no 

Solanum pennellii 660 nt no 

Solanum commersonii 669 nt No 

Solanum tuberosum 668 nt yes, EST 

Solanum melongena 872 nt yes, EST 

Capsicum annuum 835 nt No 

Nicotiana tabacum 932 nt yes, ncRNA 

Nicotiana sylvestris 933 nt yes, ncRNA 

Nicotiana benthamiana 899 nt no 

Nicotiana attenuata 884 nt yes, ncRNA 

Nicotiana otophora 1159 nt yes, ncRNA 

Nicotiana tomentosiformis 1179 nt no 

Petunia axillaris 48 nt yes, TSA 

Petunia integrifolia 62 nt yes, TSA 

Ipomoea batatas 491 nt yes, TSA 

Ipomoea trifida 431 nt no 

Ipomoea nil 441 nt yes, ncRNA 

 

 

 

Table 3.2.  miRNAtop14-miRNAtop14* distance and MIRtop14 transcript prediction. A) 
Distance in nucleotides between miRNAtop14 and miRNAtop14* in the genome of the 
species predicted to harbour MIRtop14 (miRNA and miRNA* sequences not included). B) 
Species in which MIRtop14 has been predicted to be transcribed according to NCBI 
database. ncRNA=non-coding RNA predicted, nucleotide collection. EST=transcript only 
detected in the EST collection. TSA=transcript only detected in the TSA collection 
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3.2.3. miRNAtop14 primary transcript secondary stru ctures 

The same putative pri-miRNAtop14 sequences that were amplified from 

genomic DNA in four species of four different genus (S. lycopersicum, N. 

benthamiana, P. axillaris and I nil, see figure 3.2), were used for prediction of pri-

miRNA secondary structures. 

Once again, Capsicum annum was left out of the analysis because its pri-

miRNAtop14 3’ and 5’ ends and intron boundaries were completely unknown. 

However, based on its genomic sequence, which shows an 840 nucleotide stretch 

between miRNA and miRNA*, and its phylogenetic position, which lays between 

Solanum and Nicotiana genera, Capsicum annum is expected to have roughly the 

same kind of structure as Solanum and Nicotiana do, with the intron in between the 

two miRNA stem arms, as seen in figures 3.4.A and 3.4.B. 

Solanum lycopersicum and Ipomoea nil sequences chosen for the analysis of 

secondary structure were the ones corresponding to the NCBI predicted ncRNAs.  

Nicotiana benthamiana pri-miRNA 5’ and 3’ ends were unknown, as were the 

splice sites of its intron. However, by alignment to Nicotiana tabacum NCBI predicted 

ncRNA it was possible to infer the intron beginning and end, which were later 

confirmed by RT-PCR (see next section). The alignment had a 91% identity from the 

very first nucleotide predicted to be transcribed in Nicotiana tabacum until position 

1273 of the transcript, while from nucleotide 1273 to the 3’ end of the transcript at 

position 1477 no homology was observed. Therefore, for secondary structure 

analysis the Nicotiana benthamiana sequence homologous to the first 1273 

Figure 3.3.  Exon-intron structure predicted for the different genera found harbouring 
miRNAtop14. A) Structure predicted for Solanum, Capsicum and Nicotiana. B) Structure 
predicted for Petunia. C) Structure predicted for Ipomoea. 
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nucleotides of N. tabacum ncRNA was selected, in which both miRNAtop14 and 

miRNAtop14* sequences were included. 

Finally, the Petunia axillaris pri-miRNAtop14 sequence chosen for secondary 

structure analysis was based on the transcript from this locus according to NCBI 

“transcriptome shotgun assembly”. When aligning the NCBI predicted transcript to the 

Petunia axillaris genomic locus, which sequence had been validated by PCR and 

sequencing (see figure 3.2.), there were 26 mismatching nucleotides at the 5’ end of 

the transcript sequence. We thus wondered whether the NCBI prediction of the 

Petunia axilaris transcript 5’ end was correct, so decided to compare its genomic 

locus with Solanum lycopersicum and Nicotiana benthamiana putative transcripts. 

Both alignments expanded 49 nucleotides at the 5’ end from the initially predicted 

transcript start site (once removed the 26 mismatching nucleotides). We therefore 

decided to include these 49 nucleotides as part of the Petunia axilaris pri-miRNAtop14 

and used it to predict its secondary structure (the results of the RT-PCR analysis, 

shown in the next section 3.2.4., confirmed the presence of this 49 nucleotides at the 

beginning of the transcript). 

Optimal secondary structure of the four sequences described above was 

calculated as the one with minimum free energy using RNAfold376. For the species 

harbouring an intron, which are all of them apart from Petunia axillaris, both versions 

of the sequence, with and without intron, were analysed. 

The predicted secondary structures are shown in figure 3.4. As can be 

observed, in all of them the miRNA and miRNA* pair together creating a hairpin, which 

is in accordance with the structure necessary for a pri-miRNA to be processed into a 

mature miRNA51,52. Interestingly, in both Solanum lycopersicum and Nicotiana 

benthamiana a hairpin with the same stem arms is created independently of whether 

the pri-miRNAs are folded with the intron included or excluded; the only difference is 

the length of the upper loop. Of course, in Ipomea nil spliced primary transcript the 

miRNA-like stem-loop is not created, since in this species the miRNA sequence lays 

within the intron. However, a hairpin with miRNAtop14/miRNAtop14* duplex is formed 

when the intron-containing transcript is folded. 
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D) 

Figure 3.4.  pri-miRNAtop14 secondary structure and schematic representation of the 
resulting miRNA hairpin, spliced (right) and non-spliced (left) variants. Species studied: A) 
Solanum lycopersicum B) Nicotiana benthamiana C) Petunia axillaris D) Ipomoea nil. pri-
miRNAtop14 secondary structure was predicted by RNAfold376 as the one with minimum 
free energy from the putative pri-miRNA sequence and visualizations were created using 
forna tool. miRNAtop14 and miRNAtop14* are indicated in red and green, respectively, in 
both the schemes and the secondary structure representation. In the schemes, exons are 
represented as bold lines, introns as thin lines and SS and exon-exon junctions as grey 
triangles. In the secondary structure representations, nucleotides belonging to an exon 
are dark grey while the ones within the intron are light grey. GU-AC dinucleotides at the 
SS are coloured yellow. First exon 3’ end nucleotide and last exon 5’ end nucleotide are 
coloured orange to mark the exon-exon junction after splicing. The first 5’ residue of each 
transcript is indicated with a black arrow and the structures are always oriented with the 
miRNA stem-loop at the top. 



84 
 

3.2.4. miRNAtop14 mature miRNA and primary transcri pt expression 

detection 

The four species previously studied; S. lycopersicum, N. benthamiana, P. 

axillaris and I. nil, were subsequently analysed by sRNA Northern blot to confirm 

mature miRNAtop14 expression in vivo. Along with them, a sample from A. thaliana 

was also tested as negative control. The samples consisted of total RNA extracted 

from the aerial part of three plantlets per species, all around one month old. The same 

probe was used for the detection of mature miRNAtop14 in the five samples: the 

complementary of the mature miRNAtop14 sequence without the first 5’ nucleotide, 

which is the only nucleotide that varies between these species (see table 3.1). The 

results are shown in figure 3.5.A., where it can be appreciated that miRNAtop14 is 

expressed in all four Solanales species examined but not in Arabidopsis thaliana. 

Total RNA from S. lycopersicum and P. axillaris and total mRNA from N. 

benthamiana was reverse transcribed and tested for pri-miRNAtop14 expression by 

PCR. The products of the amplification were run in an agarose gel and can be seen 

in figure 3.5.B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.  Detection of miRNAtop14 and pri-miRNAtop14 in different plant species. A) 
Detection of mature miRNAtop14 in Arabidopsis thaliana (Ata) and four species of 
Solanales: Solanum lycopersicum (Sly), Nicotiana benthamiana (Nbe), Petunia axillaris 
(Pax) and Ipomoea nil (Ini) by Northern blot. Ethidium bromide stained total RNA is 
included as loading control. B) Detection of pri-miRNAtop14 after total RNA reverse 
transcription in Sly and Pax, and mRNA reverse transcription in Nbe (RT+) by PCR. 
Controls without reverse transcriptase enzyme were included to rule out genomic DNA 
contamination where indicated (RT-). Bands showing the expected length are marked by 
an arrowhead. Expected amplicons length from each species in nucleotides: Sly=1071 & 
503, Nbe=941 & 111, Pax=760. M, 100bp marker. MIRtop14 sequences and primers can 
be seen in appendix. 

A)                                                                    B) 
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Figure 3.6. Detection of mature miRNAtop14 levels in Solanum lycopersicum root, stem, 
leaves and leaflets. A) Detection of mature miRNAtop14 levels in Solanum lycopersicum 
root, stem and leaves by Northern blot. Different leaves from the same plant were named 
L1 to L5, from the oldest to the youngest. B) Detection of mature miRNAtop14 levels in 
Solanum lycopersicum leaflets by Northern blot. Different leaflets from the same leaf were 
name l1 to l5, from the bottom left to the bottom right of the leaf, in clockwise order. U6 
detection is included as loading control. 

Both spliced and non-spliced S. lycopersicum and N. benthamiana MIRtop14 

transcripts, as well as a single transcript in P. axillaris, were amplified and sequenced. 

Although the full length of these transcripts cannot be determined in the absence of 

RACE analysis, the expression of a transcript which spans at least from miRNAtop14* 

to miRNAtop14 sequence, encompassing both, was confirmed in all three species, 

as well as the position of an intron in between miRNAtop14 and miRNAtop14* in S. 

lycopersicum and N. benthamiana. 

Finally, in Solanum lycopersicum, different levels of miRNAtop14 have been 

detected between different parts of the plant (leaf, root and stem), between different 

leaves and even between different leaflets of the same leaf (see figure 3.6.). 

Furthermore, when trying to replicate these experiments it has been found that these 

levels are highly fluctuating (see figure 3.6.). This may be an indicative of induced 

expression of miRNAtop14, possibly under specific stimulus. However, further 

research would be needed to determine the precise pattern of miRNAtop14 

expression. 
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3.3. Discussion 

 

3.3.1. Discovery of miRNAtop14 

miRNAtop14 has been identified in a couple of independent studies, the first 

one in S. lycopersicum and a second one in N. benthamiana370,372. However, the 

connection between the two orthologous miRNAs was not noted, neither was 

published the existence of an intron in the middle of both miRNA hairpins. In this 

study, these findings have been connected and the phylogenetic conservation of 

miRNA top14 within the Solanales order has been determined. 

It is nevertheless surprising that a miRNA present in a plant family as studied 

as Solanaceae, and which has been so easily detected by Northern blot in all four 

species tested (see figure 3.5), had not been identified earlier. In fact, although levels 

of mature miRNAtop14 were highly variable, miRNAtop14 presence was detected in 

all Northern blot experiments performed (data not shown), which indicates that 

constitutive level of miRNAtop14 is high enough to be routinely detected. 

Two main reasons can probably explain why miRNAtop14 has not been 

characterised earlier. First, the sequence bias inherent to small RNA NGS 

platforms365. Indeed, when miRNAtop14 was first identified in the Dalmay lab the 

sRNA libraries were sequenced by 454 Life Sciences using pyrosequencing 

technology370. Subsequent tomato sRNA libraries prepared in the same laboratory, 

but sequenced by Genome Analyser II (Illumina) yielded very small number of reads 

from this miRNA377. In agreement with this, Baksa et al.372 sRNA libraries were 

sequenced by HiSeq 2000 (Illumina), a third different sRNA NGS system that may 

show differences in miRNA detection compared with Genome Analyser II. The second 

reason is the presence of the intron in between miRNA and miRNA*, which makes 

the identification of this miRNA impossible by the existent bioinformatic tools when 

the reads are mapped to the genome, since the miRNA and miRNA* reads map too 

far from each other. Since there is no genome sequence available for N. 

benthamiana, Baksa et al.372 used EST sequences to map sequence reads and this 

allowed them to identify miRNAtop14, as the intron sequence was absent from the 

ESTs analysed. This difficulty has already been observed for nat-miRNA, which also 

have these characteristic exon-intron structure, and therefore are not detected by 

usual miRNA prediction tools368. Therefore, future work involving high-throughput 

miRNA identification could benefit from including analysis tools that enable of the 

search for miRNAs with less conventional exon-intron structures.  
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3.3.2. MIRtop14 phylogenetic study 

MIRtop14 has been identified in two main Solanales families: Solanaceae and 

Convolvulaceae. However, this order includes three more smaller families: 

Montiniaceae, Hydroleaceae, and Sphenocleaceae373. These three families are 

considered to form a sister clade to the main clade formed by Solanaceae and 

Convolvulaceae, two large families which have a well stablished close relationship373. 

According to our analysis, MIRtop14 is confined to the Solanales order, since we 

could not identify it in any of the orders closer to it: Gentianales, Lamiales and 

Boraginales373.  It must therefore have emerged at some point at the beginning of 

Solanales divergence, either at the origin of Solanales (82-86 millon years ago378) or 

just after the separation between the two clades (Solanaceae-Convolvulaceae and 

Montiniaceae-Hydroleaceae-Sphenocleaceae). It is therefore a linage-specific, 

relatively young miRNA, and as such it appears in a single copy in each genome, 

unlike the highly conserved miRNAs that tend to form multicopy gene families234. 

From the phylogenetic analysis of MIRtop14, the high heterogeneity of its 

primary transcript between different genera stands out. While in Solanum and 

Nicotiana (and putatively in Capsicum), there is an intron in the middle of the miRNA 

stem loop, the closest studied genus to have diverged from these three genera, 

Petunia, doesn’t have any intron in its whole pri-miRNAtop14 transcript. Surprisingly, 

Ipomoea, the first of all of these genera to have diverged from the rest, is predicted 

to have an intron again, although in a different position relative to the miRNA hairpin. 

The most probable explanation for this phylogenetic pattern is that an intron was 

already present in the common ancestor of all MIRtop14 studied, and that it was 

probably lost in Petunia genus a posteriori. In fact, in the recent evolution of plants, 

intron losses have outnumbered intron gains379. Besides, changes in intron position 

between homologous genes, like the one seen here between I. nil and N. 

benthamiana/ S. lycopersicum MIRtop14, are a commonly observed phenomenon 

which has been explained by the so-called process of intron sliding343. 

Despite their heterogeneity, all the pri-miRNAs from the different species 

tested produced mature miRNAtop14 at highly detectable levels (see figure 3.5). 

Furthermore, the mature miRNA sequence is very conserved among all species 

harbouring this MIR, with only one nucleotide difference between Capsicum and most 

Solanum species when compared to Nicotiana, Petunia and Ipomoea species (see 

table 3.1).  The only two exceptions to this are N. otophora and N. tomentosiformis, 

where there is a second nucleotide change between their miRNAtop14 and the one 
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in the rest of Nicotiana species. This low variation among miRNAtop14 sequences 

suggest that they are under purifying selection, an evolutionary mechanism that 

eliminates deleterious variations and which is the predominant force maintaining the 

sequence of those miRNAs that have a function217,240. However, to confirm this 

hypothesis it would be necessary to do a bioinformatic analysis of all MIR sequences 

comparing the rate of evolutionary change between miRNA and flanking 

regions210,240. This would indirectly suggest that MIRtop14 has a biological role that 

makes it being conserved. 

Besides, it is interesting to point out that the nucleotide change between 

miRNAtop14 in different species is a substitution at the 5’ end position from a U to a 

C, since it has been reported that sRNAs starting with U preferentially bind AGO1, 

while the ones starting with C predominantly bind AGO5137,380. However, a later study 

looking specifically at miRNAs shows that, although to a lesser extent, AGO1 also 

accepts miRNAs with a 5’C and AGO5 accepts miRNAs with a 5’U381. In this same 

study, it was found that miRNAs with a C in the 5’ position will be sorted to AGO1 if 

they harbour a G or a U at position 9 and to AGO5 if they have a C or an A at position 

9 instead381. According to this report, miRNAtop14 would be bound to an AGO5 

complex in all studied species, since it starts either by C or by U, but always harbour 

a C at the 9th position. Thereby, it could be speculated that the change from 5’U to 

5’C would just better fit the sorting into AGO5. However, this hypothesis would 

contradict the finding of AGO5 expression being restricted to somatic cells flanking 

megaspore cells and mother cells in A. thaliana382, if this was confirmed to be also 

the AGO5 expression pattern in tomato, as it is likely to be the case383. Regardless, 

an experimental approach such as AGO complex immunoprecipitation124,137 would be 

necessary to determine the AGO protein into which miRNAtop14 is loaded. 

Finding the origin of MIRtop14 was not among the main aims of our study, so 

we did not carry out any in depth analysis on this topic. However, a preliminary 

analysis using NCBI nucleotide BLAST did not identify any high homology between 

MIRtop14 sequence and a protein-coding gene, including its known target (see 

chapter 5), neither to a transposable element. By ruling out that MIR14 originated 

from an inverted gene duplication208 or from a transposon219, the spontaneous 

evolution model would be the one left to explain MIRtop14 origin216, and according to 

it MIRtop14 could have arisen from a randomly transcribed genomic sequence with a 

hairpin216. Nevertheless, a more systematic analysis would be necessary to reach any 

conclusion on the origin of MIRtop14 with some confidence. 
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It is striking from the pri-miRNA secondary structure analysis that the miRNA 

and miRNA* sequences are predicted to pair in all secondary structures of all species 

studied, with the putative exception of spliced Ipomoea transcript, where the miRNA 

arm is predicted to locate within the intron. The conservation of this pairing is likely 

another indicative of miRNAtop14 playing a biological role. While low divergence in 

the miRNA sequence probably reflects purifying selection to maintain base pairing 

with its targets, low divergence in the miRNA* region suggests purifying selection to 

keep the complementarity between miRNA and miRNA*230. 

Finally, the secondary structure of S. lycopersicum, N. benthamiana (both 

transcripts) and I. nil (non-spliced transcript) pri-miRNA agrees with a short base-to-

loop pattern of processing: they all show long unstructured loops incompatible with a 

loop-to-base mechanism of processing and a stem at the base of about 15 

nucleotides in length, which matches the short base-to-loop processing pathway but 

would be too short for the long base-to-loop mechanism to take place106. Intriguingly, 

the secondary structure of pri-miRNA from P. axillaris would better agree with a short 

loop-to-base processing pattern, since it has a very structured loop of less than 50 

nucleotides in total while its lower stem is only about 8 nucleotides long, which would 

be usually considered too short for a base-to-loop mode of processing106. 

Nevertheless, to experimentally confirm the way of processing of each transcript it 

would be necessary to detect their processing intermediates, which could be carried 

out through methods such as specific parallel amplification of RNA ends 

(SPARE)106,384. 

 

3.3.3. pri-miRNA and miRNAtop14 expression 

From the pri-miRNA expression analysis we could establish the presence and 

position of an intron in N. benthamiana and S. lycopersicum and the lack of introns in 

P. axillaris. Likewise, the transcription of the whole DNA stretch including both 

miRNAtop14 and star was as well validated (see appendix for MIRtop14 sequences 

and primers). However, although there are predictions based on EST reads, pri-

miRNA transcription start sites and polyA sites could not be confirmed in the absence 

of 5’ and 3’ RACE analysis, respectively. Nevertheless, it could be noted that when 

performing reverse transcription PCR of S. lycopersicum and P. axillaris pri-miRNAs, 

levels of product were much lower when using the most 5’ primer than when using an 

overlapping (Solanum) or contiguous (Petunia) primer immediately downstream. On 

the other hand, the levels of amplification of these immediately downstream primers 
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were relatively similar to other further downstream primers (data not shown). This 

observation could be due to a difference in efficiency between primer pairs, but it 

could as well be an indication that the 5’ transcription start site lays within the 

sequence of the most upstream primer in these two species, or that there are 

alternative transcription start sites. RACE analysis of pri-miRNAtop14 would be 

appropriate to answer this question.  

Pri-miRNA transcription analysis also showed that MIRtop14 is subjected to 

alternative splicing in Solanum and Nicotiana, since both transcript variants, with and 

without intron, could be detected after reverse transcription from mRNA or DNAse 

treated total RNA amplified with a polyT primer. Otherwise, if MIRtop14 was 

constitutively spliced, only the intronless transcript would have been amplified. This 

form of alternative splicing, called intron retention, in which introns are retained in a 

fully processed, mature mRNA, is indeed the most common mode of alternative 

splicing in plants285,385,386. These results agree with the finding that among the ESTs 

curated at NCBI, there are some with and some without intron in Solanum and 

Nicotiana species. Although intron retention prediction through EST data has been 

widely used297,387, it has been argued that it may not always be reliable, since some 

ESTs may come from partially processed mRNAs or genomic DNA 

contamination285,297. In any case, RT-PCR is usually considered a confirmation of 

alternative splicing taking place267,285,386. 

miRNA expression analysis in different species indicated that mature 

miRNAtop14 is produced in all four Solanales species studied, three belonging to the 

Solanaceae family and one to the Convolvulaceae family, but not in Arabidopsis. To 

better define the species to which miRNAtop14 expression is confined to and at which 

point did this miRNA appeared, additional Northern analyses could be carried out 

including samples from other Convolvulaceae members as well as from members of 

other families within Solanales. Besides, members from other orders close to 

Solanales, such as Gentianales and Lamiales, could also be tested. Despite that 

MIRtop14 genomic sequence has not been identified in these families, if it was 

present in them it is probable it could be detected with the same probe used in the 

already performed Northerns, given the high conservation shown by miRNAtop14 

sequence among species. 

Finally, miRNAtop14 Northern analysis from different parts of tomato plant 

was not suggestive of any specific spatial pattern of expression. It could be noted, 

however, that levels seemed to be lowest in root and highest in shoot. Besides, when 
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looking at different leaflets within a leaf, miRNAtop14 accumulation appeared to be 

growing from the base to the tip. However, an overall pattern of expression could not 

be elucidated and the highly changing miRNA levels observed between leaves led us 

to think that some kind of stimulus-induced expression on top of constitutive or 

developmentally regulated expression is most likely. 

The transformation of tomato, Nicotiana or another miRNAtop14 producing 

plant with a construct harbouring a reporter gene (e.g. GUS) under the miRNAtop14 

promoter would help to unravel the expression pattern of miRNAtop14. Additionally, 

either the transformed or the wild type plants could be subjected to different stimulus 

in order to assess changes in the levels of miRNA expression as response, either by 

an assay to detect the change in the marker in transgenic plants or directly by miRNA 

detection through sRNA Northern blot in wild type plants. Alternatively, in situ 

detection of miRNAtop14 could be carried out with the same aim388. 
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Chapter 4   

Intron influence in miRNAtop14 biogenesis 
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4.1. Introduction  

4.1.1. pri-miRNAs processing and splicing crosstalk  

Most plant pri-miRNAs are independent transcriptional units generally 

producing a single mature miRNA53,54. Similar to protein-coding transcripts, they are 

capped, polyadenylated and the majority contain introns60,62,193. 

There are several studies of independent plant MIRs with alternative 

transcription start sites, alternative polyadenylation sites and/or going through 

alternative splicing59,62,80,192,196–200. Likewise, protein coding genes which host a 

miRNA hairpin in an intron has also been found to have alternative splicing or 

alternative polyadenylation sites56,201. 

Among miRNA stem-loops contained within an intron of a protein coding gene, 

there are examples in which splicing of the intron increases the level of mature 

miRNA56 and examples of the opposite, in which miRNA is upregulated under splicing 

inhibition and selection of an alternative polyA site within the intron201. Interestingly, 

in both cases alternative splicing and associated miRNA accumulation correlate with 

a specific environmental condition, which in these examples is heat stress56,201. 

There are also examples where the miRNA stem-loop includes an exonic and 

an intronic part, and thereby can only be processed into mature miRNA from the 

unspliced pri-miRNA variant199,200 

Another interesting example is the group of nat-miRNAs, where miRNA and 

miRNA* are located in two different exons separated by an intron and splicing is 

required for the formation of the hairpin195.  

A case has also been reported where a polycistronic Arabidopsis MIR 

produces two different miRNAs, miRNA842 and miRNA846, from three different 

alternatively spliced transcript variants (see figure 4.1). miRNA846 is located in an 

exon and expressed in splicing isoform 1, whereas it is not produced in the other two 

isoforms because its hairpin is truncated, with the miRNA laying in an intron and the 

miRNA* in an exon. On the contrary, miRNA842 hairpin is completely exonic in 

isoform 2 and completely intronic in the other two isoforms, potentially being produced 

in all three variants59. The alternative splicing event is mediated by abscisic acid 

(ABA), which indicates that it must be related to a biological function59. 

In most cases, however, the miRNA stem-loop is located in a single exon of 

the pri-miRNA193,194, so splicing is not necessary a priori for the formation of the 
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Figure 4.1.  AS variants from Arabidopsis MIR842/846 and associated regulation of pri-
miRNA and mature miRNA levels upon ABA application. miRNA846 is located in an exon 
and expressed in splicing isoform 1, but it is not produced in the other two isoforms 
because its hairpin is truncated, with the miRNA laying in an intron and the miRNA* in an 
exon. In Arabidopsis, miR842 and miRNA846 arise from different alternatively spliced 
products. miRNA842 is located in an exon and expressed in splicing isoform 2, whereas 
it is located in an intron but potentially expressed too in the other two isoforms. Application 
of ABA to Arabidopsis seedling increase the production of isoform 3 while reducing the 
production of isoform 1, reducing the expression of both miRNA842 and miR846 
(indicating that miRNA842 is probably expressed at higher level from isoform 1 than from 
isoform 3). Grey boxes represent constitutive exons and white boxes alternatively spliced 
exons in each particular pri-miRNA isoform. Horizontal black lines represent introns. 
Broken lines denote alternative splicing events. Pre-miRNA842 and pre-miRNA846 stem 
loops are indicated and their miRNA/miRNA* duplexes are depicted with the miRNA in red 
and the miRNA* in blue. Broken black lines indicate AS events. Changes in the amount of 
pri-miRNA isoforms and mature miRNAs 842 and 846 after ABA application are indicated 
with arrows and equal sign. Image from193. 

miRNA hairpin and subsequent miRNA processing. Nevertheless, in 2013, two 

publications demonstrated the influence of adjacent pri-miRNA introns on the levels 

of mature miRNAs located in an exon197,198. 
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4.1.2. Influence of pri-miRNA introns in mature miR NA accumulation 

Bielewicz et al.198 studied the influence of the single intron contained in Ath-

MIR161 and Ath-MIR163 on the levels of their mature miRNAs. To do so, they 

generated several transgenes of the MIR genes: one WT, one intron-less and three 

non-sliceable versions (5’SS mutated, 3’SS mutated; 3’SS + 5’SS mutated). They 

subsequently tested them either by transforming MIR163 knock-down Arabidopsis 

with the MIR163 constructs or by performing transient expression in N. benthamiana 

with the MIR161 constructs. In both cases, mature miRNA levels were strongly 

reduced in the intron-less MIRs compared to the WT.  

Besides, a similar mature miRNA reduction occurred when 5’SS or 5’SS + 

3’SS mutants harbouring the intron were tested, but not in an equally non-spliceable 

3’SS mutant. This peculiarity was interpreted as the 5’SS being the main motif 

involved in enhancing mature miRNA levels, rather than the intron excision event 

itself. Interestingly, it was also found that a proximal polyA site in 5’SS mutant, which 

in WT MIR is used around 40% of the times, is used in 80% of the occasions and in 

5’SS + 3’SS mutant in over 95%, which was interpreted as a possible shield effect of 

this proximal polyA site by the functional 5’SS198.  

In addition, it was noted that the amounts of different pri-miRNAs constructs 

did not correlate with their corresponding mature miRNA levels, indicating that the 

intron was influencing processing, rather than gene expression198.  

Finally, to probe the biological significance of the intron, they measured the 

levels of miRNA163 and its mRNA target in WT and 5’SS + 3’SS mutated plants under 

a pathogen infection, known to induce miRNA163 accumulation. While in WT target 

levels decreased, in the mutant target levels were shown to rise instead198.  

With all these results, they hypothesised that the enhancement of miRNA 

accumulation was determined by the interaction between the miRNA biogenesis 

machinery and the spliceosome, possibly involving the spliceosomal component U1 

snRNP, which binds 5’SS198. 

In another publication, Schwab et al.197 also researched the influence of pri-

miRNA introns on mature miRNA accumulation, this time of Ath-MIR163 and Ath-

MIR172. They created several MIR163 transgene variants with and without intron, 

and consistently found higher levels of miRNA from the intron containing variants, 

both in N. benthamiana leaves transient expression and in stably transformed A. 

thaliana MIR163 knock-down seedlings. The same observation was made for 
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MIR172a, which harbours two introns downstream of the miRNA stem-loop. 

Constructs without any intron yielded lower amounts of miRNA than constructs with 

one or both introns.  

Besides, to test whether this enhancing effect was caused by features 

particular to miRNA introns, introns of protein-coding transcripts were placed 

downstream of the intron-less MIR163 transgene, obtaining a similar enhancement 

of miRNA accumulation. However, when placing these same introns upstream of the 

intron-less MIR163, the enhancing effect was much weaker. Furthermore, when 

testing MIR172b, which has an intron 5’ and another 3’ of the miRNA hairpin, 

constructs with the 5’ intron showed the same reduced accumulation of mature 

miRNA172b as the intron-less constructs197.  

Subsequently, to assess whether the excising of the intron was itself 

necessary for the positive effect in mature miRNA accumulation, they generated a 

non-spliceable transgene for MIR163 and another one for MIR172a by mutating the 

5’SS. miRNA mature levels from non-spliceable constructs were slightly reduced 

compared with WT in N. benthamiana transient transformation but rather similar in 

Arabidopsis stable transformation, indicating that splicing itself is not required for 

intron enhancement of miRNA accumulation197.  

Next, the group decided to investigate if increased miRNA levels from intron-

containing MIR could be a consequence of increased pri-miRNA levels, since a 

known effect of introns is the intron-mediated enhancement of gene expression. With 

this aim, an ectopic copy of MIR163 either with or without intron was introduced into 

dcl1 Arabidopsis mutants, in order to measure pri-miRNA levels without the 

interference of processing. Although there was slightly higher amount of pri-miRNA 

from the intron-containing MIR, the difference in levels of miRNA primary transcript 

between intron-less and intron-containing construct did not explain the great 

difference previously observed in mature miRNA levels, and therefore the intron-

mediated enhancement of gene expression was discarded as cause of the intron 

effect in miRNA levels197.  

Finally, they tested whether pri-miRNA processing could in turn affect the 

splicing of introns as well. For this experiment, they measured the amounts of pri-

miRNA with excised vs. retained intron by transforming WT and dcl1 mutant with 

MIR163, MIR172a and MIR172b constructs. It was found that splicing was more 

efficient in a dcl-1 mutant than in WT background for those constructs with a 3’ intron 

(MIR163 and MIR172a), while unchanged when the intron was upstream to the 
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miRNA stem-loop (MIR172b). This result could indeed suggest that dicing has a 

negative effect in splicing of downstream introns197.  

After all these analyses, they concluded that the intron induced increase of 

miRNA accumulation had to be due either to enhanced pri-miRNA processing or to 

reduced mature miRNA turnover197.  

There are a few differences in the results between one and the other study, 

the most obvious is probably the different levels of mature miRNA obtained when 

mutating MIR163 5’SS (strongly reduced in Bielewicz et al.198 study while almost 

unchanged in the study by Schwab et al.197). Both groups attribute this discrepancy 

either to the different promoters used in each study (MIR163198 vs. CaMV35S197) or 

to the different 5’SS point mutations, that in the case of Schwab et al. experiment may 

not have been enough to abolish the recruitment of binding factors (such as U1 

snRNP, according to Bielewicz et al.198). In any case, it is clear in both investigations 

that, at least in the MIRs studied, introns downstream of the miRNA hairpin have a 

positive effect in the accumulation of the mature miRNA197,198. Furthermore, the 

evidences shown from both works point towards the existence of a cross-talk between 

pri-miRNA splicing and processing that regulates each other197,198,389 (see fig. 4.2). 

However, further research is needed to elucidate the specific mechanisms by which 

this happens. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.  Enhancement of miRNA processing by plant introns. A) Schwab et al197 
created MIR transgenes with an exonic miRNA hairpin and a downstream intron (green 
line) under the CaMV 35S promoter (pink box). From their observations, they propose that 
unknown factors within the intron positively influence miRNA processing while miRNA 
processing negatively affects splicing, suggesting an interaction between processing and 
splicing machinery. B) Bielewicz et al198 created MIR transgenes with an exonic miRNA 
hairpin and a downstream intron (green line) under the native MIR promoter (pink box). 
From their results, they propose that a functional 5’SS is key in the intron mediated 
enhancement of miRNA processing, while it also plays a role in supressing a proximal 
polyA site within the intron. They suggest that splicing factors binding the 5’SS interact 
with the miRNA processing machinery. PAS, polyA site. Image adapted from389. 
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4.1.3. Study of miRNAtop14 intron influence 

Until recently, the pri-miRNA region outside the stem loop had been largely 

ignored389. However, recent studies suggest that pri-miRNA introns and their splicing 

and/ or alternative splicing influence mature miRNA accumulation and may be 

regulating miRNA levels spatially and temporally in response to specific 

conditions194,390. 

pri-miRNAtop14 has an uncommon structure in which miRNA and miRNA* are 

in two different exons separated by an intron, which is spliced out or retained in the 

two alternatively spliced transcript variants (see chapter 3).  

This characteristic prompt us to hypothesise that the non-spliced variant, 

despite of creating miRNA-miRNA* pairing, would probably show reduced levels of 

mature miRNAtop14 given its complex miRNA fold-back structure with a large loop, 

which does not match most predicted miRNA hairpin structures and associated 

modes of processing, although some other examples of relatively long loops have 

also been observed in plants106. 

On the other hand, given the results obtained by Bielewicz et al.198 and 

Schwab et al.197 showing the positive influence of introns in mature miRNA 

accumulation, we speculated that pri-miRNAtop14 intron may enhance miRNA 

biogenesis. Supporting this hypothesis, the same intron enhancing effect has been 

observed in intron-split hairpin RNAs (hpRNAs) engineered to induce PTGS in 

plants391,392. It was found that including a spliceable intron in between the two arms 

of the hairpin enhanced efficiency of PTGS to almost 100%, much higher than in other 

construct with non-spliceable spacers in between the arms391,392. 

In sight of this evidence, we decided to create a system to check whether 

MIRtop14 intron is influencing mature miRNA levels, and whether it is doing so in two 

antagonistic ways (enhancement and repression) determined by alternative splicing. 
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4.2. Results 

 

4.2.1. A system to assess intron influence in matur e miRNAtop14 levels 

Solanum lycopersicum MIRtop14 was chosen to analyse whether there were 

any differences in the amount of mature miRNAtop14 coming from each of the two 

alternatively spliced transcript variants, one retaining the intron and the other one with 

the intron spliced, as well as from a third variant coming from the intron-retaining 

transcript mutated to impede splicing. 

Each of the three MIRtop14 variants was assembled with three more 

transcriptional units (two controls of transformation and one control of gene 

expression) into independent constructs which were used to transform Arabidopsis 

thaliana inflorescences. miRNAtop14 levels were then analysed in T2 generation of 

plants transformed with the three different constructs. 

The process, in more detail, consisted in reverse transcription of total RNA 

and PCR amplification of both pri-miRNAtop14 alternative splicing variants. The 

sequences chosen for amplification were almost the same as the ones amplified in 

the analysis of pri-miRNAtop14 expression, the only difference was that in this case 

the 5’ primer was 17 nucleotides upstream compared to the previous analysis (see 

figure 3.5 for Sly-pri-miRNAtop14 expression analysis and appendix for MIRtop14 

sequences and primers).  

Subsequently, both pri-miRNAtop14 variants were cloned first into the 

pGEMT-easy vector and then transferred to a level 0 golden gate vector. At this point, 

site-directed mutagenesis was used to mutate the 5’SS sequence of the pri-miRNA 

harbouring the intron, which was modified from the G/GT exon/intron splice site 

consensus sequence to C/CC. The inability of the resulting transcript to undergo 

spicing was assured by reverse transcription PCR. 

Every one of the three Sly-MIRtop14 constructs was subsequently assembled 

into a full transcriptional unit under the CaMV 35S promoter and terminator hosted in 

a level 1 golden gate construct. 

In parallel, three more level 1 golden gate plasmids harbouring full 

transcriptional units for Kanamycin resistance protein (KanR), Discosoma sp. red 

fluorescent protein (DsRed) and Osa-MIR528 were either gathered or assembled de 

novo. Osa-MIR528 was placed under the CaMV 35S promoter and terminator as 

MIRtop14, KanR was under the Nopaline synthase promoter (pNOS) and terminator 
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(tNOS) and dsRED under the Arabidopsis ubiquitin 10 promoter (AtUBI10) and the 

tNOS terminator. 

Both KanR and dsRED genes were chosen as selectable markers of plant 

transformation. Besides, the monocot specific Osa-MIR528 gene was included to 

have a control of miRNA expression between different transgenic lines from the T-

DNA insert. 

Finally, all three control transcriptional units were assembled together into 

three independent golden gate level 2 binary constructs with a different MIRtop14 

variant each (see fig. 4.3). These three multigene constructs were introduced into 

Agrobacterium tumefaciens GV3101 (pMP90) to mediate Arabidopsis female 

gametophyte cell lineages transformation through the method known as “floral dip”. 

Transformed individuals among the offspring plants were identified as those growing 

in Kanamycin containing media and showing dsRED fluorescence. These individuals 

(T1) were grown until producing seed, and each gave place to an independent 

transgenic line.  

T2 seeds were again sowed on Kanamycin containing media, and 20 healthy 

growing seedlings per transgenic line were pooled together to analyse miRNAtop14 

levels. Three independent transgenic lines per construct were chosen for the analysis.  
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A)                                                       B) 

Figure 4.3. Scheme of the constructs used for Arabidopsis transformation. A) Three 
different constructs only differing in MIRtop14 sequence were created: one harbouring the 
wild type MIRtop14 sequence with an spliceable intron (“MIRtop14 WT”, two green boxes 
separated by a black line), another one consisting in the two MIRtop14 exons without 
intron (“Intronless”, two consecutive green boxes) and a final one similar to wild type 
MIRtop14, but with the 5’SS mutated from G/GT to C/CC making the intron non-spliceable 
(“5’SS Mut”, two green boxes separated by a black line and a red cross indicating the 
mutation at the 5’SS). B) The rest of the plasmid apart from MIRtop14 sequence was the 
same in all three constructs, consisting in four full transcriptional units in between the T-
DNA right and left borders (“T-RB” and “T-LB” red squares in the image): MIRtop14 
sequence (green box) under CaMV 35S promoter and terminator (p35S and t35S grey 
boxes); dsRED sequence (orange box) under AtUBI10 promoter and NOS terminator 
(AtUBI10 and tNOS grey boxes); MIR528 sequence (blue box) under CaMV 35S promoter 
and terminator (p35S and t35S grey boxes); KanR sequence (yellow box) under NOS 
promoter and terminator (pNOS and tNOS grey boxes). 
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4.2.2. Intron influence in S. lycopersicum miRNAtop14 levels 

Ten total RNA samples were analysed by Northern blot for small RNA 

detection. The samples analysed corresponded to three biological replicates (three 

independent transgenic lines) per each MIRtop14 construct (with intron, without intron 

and with non-spliceable intron, see figure 4.3). A sample from WT Col-0 Arabidopsis 

was as well included in the analysis as negative control for pri-miRNAtop14 gene 

expression. 

Each total RNA sample was extracted from a total of 20 seedlings per 

transgenic line (or WT) grown for 16 days in media with Kanamycin (except for WT, 

where Kanamycin was not added). To verify that each sample harboured the 

expected MIRtop14 construct (or none), PCR was carried out to amplify all 

alternatively spliced pri-miRNAtop14 sequences (see fig. 4.4.B). 

RNA samples were separated by electrophoresis in a denaturing 

polyacrylamide-urea gel and subsequently transferred and fixed to a nylon 

membrane. miRNAtop14 was detected by hybridization with a 32P-radiolabeled DNA 

probe complementary to its full 21 nucleotides sequence. The results of this Northern 

blot analysis are shown in fig. 4.4.A. 

Although there are variations in miRNAtop14 levels between different 

transgenic lines, there is a trend that the intron-containing WT MIRtop14 produces 

the highest amount of mature miRNA while MIRtop14 without intron produces slightly 

lower levels and the 5’SS mutated version of the intron-containing MIRtop14, which 

cannot undergo splicing, produces the lowest levels of all. These results suggest that 

the intron of pri-miRNAtop14 could have a positive effect on mature miRNA 

accumulation, but at the same time restricts miRNA processing when it is not spliced. 

Besides confirming the enhancement of miRNA production by MIR introns, these 

results suggest that an alternative splicing event might be regulating the levels of 

mature miRNAtop14 depending on the alternate retention or splicing of its pri-miRNA 

intron. 
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Figure 4.4. Effect of the intron in mature miRNAtop14 accumulation. A) Northern blot 
detection of mature miRNAtop14 in A. thaliana wild type (WT) and A. thaliana transformed 
with the three MIRtop14 constructs (Intronless, MIRtop14 and 5’SS MUT; see fig. 4.3). 
Three independent transgenic lines (L1, L2 and L3) were analysed per construct. Osa-
miRNA528 detection was included as internal control of gene expression. U6 detection 
was included as loading control. B) Detection of pri-miRNAtop14 in each sample after total 
RNA reverse transcription. Bands of 752 nucleotides correspond to the amplification of 
pri-miRNAtop14 with intron and bands of 184 nucleotides correspond to the amplification 
of pri-miRNAtop14 without intron. M, 100bp marker. 
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4.3. Discussion 

The unusual MIRtop14 exon-intron structure prompted us to further study the 

possible functional implications of this structure in miRNAtop14 regulation. With this 

aim we created a system to measure mature miRNAtop14 coming from different 

variations of this exon-intron structure: we assessed the WT MIR, an intronless 

variant and a 5’SS mutated variant in which splicing was inhibited. The results show 

an enhancement of mature miRNA levels by the intron, as long as it can be spliced. 

Otherwise, it negatively influences miRNAtop14 accumulation (see figure 4.4). 

Similar results have been obtained in three independent transgenic lines from 

each one of the three MIRtop14 variants, each line comprising a pool of 20 different 

seedlings. Besides, an internal control of gene expression was included in this 

analysis to reach a confident conclusion from these results. Such a control is required 

because we cannot discard the possibility of some of the transgenic lines harbouring 

more than one T-DNA insert, which can lead either to increased expression or to 

silencing, mainly through PTGS393. Likewise, we neither can ignore the influence of 

the location in the chromosome in which an insertion has taken place in its level of 

expression, a phenomenon called position effect394,395. Therefore, in our constructs 

we have included as control Osa-MIR528 within the same T-DNA as MIRtop14, so 

they both will be in the same copy number and in the same chromosomal locus. This 

allows the normalisation of the levels of mature miRNAtop14 based on the levels of 

mature miRNA528 detected through Northern analysis, making it possible to confirm 

that any differences in miRNAtop14 accumulation between MIRtop14 three variants 

will be a consequence of their exon-intron structures and not of other factors. 

Consequently, it can be concluded that MIRtop14 exon-intron structure is influencing 

mature miRNA levels. 

In previous studies, the positive effect of intron on miRNA accumulation has 

been reported to occur when introns were downstream of the miRNA hairpin, while 

introns upstream of the miRNA hairpin showed no effect on mature miRNA levels197. 

This has been interpreted as indicative that whatever the factors mediating the 

observed effect of intron on miRNA accumulation are, they must be acting either 

before or during spliceosome recruitment197. Interestingly, MIRtop14 has a structure 

different from the other miRNAs studied, with an intron in between miRNA and 

miRNA*, rather than upstream or downstream of their hairpin.  Therefore, it is 

revealing that an intron in the middle of the miRNA stem-loop has a similar positive 

effect on miRNA accumulation to an intron located downstream to the stem-loop, 
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because such observation supports that the enhancement of miRNA accumulation is 

determined simultaneously to spliceosome recruitment, rather than before.  

Although our results reinforce the observation of introns having a positive 

effect in miRNA processing, further experiments would be needed to determine at 

which level this enhancement is taking place: increased pri-miRNA expression, 

increased pri-miRNA processing or reduced miRNA turnover. Increased processing 

is the option favoured by previous studies, mainly because enhanced MIR expression 

was discarded by measuring pri-miRNA levels and comparing them with mature 

miRNA levels197,198. Likewise, we could perform quantitative RT-PCR with the 

samples analysed by Northern (see figure 4.4) to measure the levels of pri-

miRNAtop14 transcripts and correlate them with miRNAtop14 levels. Besides, we 

could also replicate the experiment of Arabidopsis transformation with the three 

MIRtop14 containing constructs using dcl1 mutants instead of WT plants, as done by 

Schwab et al.197; this way we could properly assess whether the intron is having any 

effect in MIRtop14 expression putting aside the interference in pri-miRNA levels 

caused by processing. 

Apart from a positive influence of the intron on miRNAtop14 accumulation, we 

could verify that the large loop in between miRNAtop14 and miRNAtop14* hinders 

miRNA processing, since the non-spliceable MIRtop14 shows a very low amount of 

mature miRNA. This was an expected result given that, if the miRNA hairpin is 

processed from base-to-loop as predicted, the excised long pre-miRNA molecule 

would be more prone to create secondary structures or interactions that could 

interfere with Dicer cleaving. However, it is interesting to note that, although very 

reduced, miRNA biogenesis can still take place despite of the intron not being spliced. 

Based on this observation, the affirmation that nat-miRNAs need to be spliced in order 

to be processed195 may need to be examined. 

If MIRtop14 is indeed alternatively spliced as our results suggest both in 

Solanum and Nicotiana (see chapter 3), that would imply that the production of 

miRNAtop14 can be post-transcriptionally regulated: the spliced transcript variant will 

produce high levels of miRNA (to which the presence of the intron in the pre-mRNA 

will contribute positively) while the transcript variant with the intron retained will 

produce very low levels of miRNA, if any at all.  

The affirmation that miRNAtop14 levels are regulated post-transcriptionally 

through alternative splicing is controversial, as it is difficult to explain why MIRtop14 

would have two alternatively spliced variants instead of being constitutively spliced, 
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when only the spliced variant seems to have a function. It could be argued that the 

intron-retaining pri-miRNAtop14 transcript is just a result of mis-splicing and that it 

does not respond to any biologically relevant function. This is a claim that was often 

made for intron retention events, especially in animals, but that current evidence is 

dismissing396.  

Alternatively, it could be alleged that the low levels of miRNAtop14 produced 

by the non-spliced variant are indeed playing a role and are the response to a 

requirement for a low amount of miRNAtop14 in some specific cells/tissues, 

developmental points or environmental conditions.  

It has been also proposed that mRNA levels can be modulated by changing 

the ratio between functional transcripts and nonsense or intron-retaining 

transcripts397, which could be the role for the alternative splicing event of MIRtop14. 

Another interesting possibility comes from a study in the plant Marsilea vestita, 

where intron retention controls translation in a developmentally regulated manner; 

certain mRNAs are produced and kept with introns until reaching specific 

developmental stages, at which point they go through splicing and induce a quick 

protein production302. Similarly, intron-containing pri-miRNAtop14 may be initially 

produced and stored to allow a rapid miRNAtop14 production at some point, when 

some specific cue would trigger its splicing and subsequent miRNA biogenesis.  

In order to assess whether MIRtop14 alternative splicing is indeed playing a 

role in the regulation of the production of mature miRNAtop14 levels, we could 

perform quantitative RT-PCR to measure pri-miRNA levels, and more specifically to 

estimate the amount of each alternatively spliced variant. By testing the amount of 

each pri-miRNA transcript in samples with different levels of mature miRNAtop14, it 

would be possible to unravel any correlation between them and mature miRNA 

amount. Finally, if there is such correlation, finding a stimulus or spatio-temporal 

pattern associated with the change in the ratio between the two pri-miRNA variants 

would confirm that miRNAtop14 levels are being regulated through a biologically 

relevant alternative splicing event.  
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Chapter 5 

miRNAtop14 mRNA target: LPR 
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5.1 Introduction 

 

5.1.1. miRNAs function, mode of action and roles  

The miRNAs’ main function is to regulate the level of expression of genes78. 

As already seen in the introduction, they perform this regulation by targeting one or 

several specific mRNAs and reducing their translation78. They achieve this by 

assembling into a RNP complex, the so-called RISC, and leading it towards the target 

transcript through base-pairing121. 

Once the RISC-target interaction is established, one of two processes can 

follow; either mRNA degradation (in the case of plants, triggered by the direct 

cleavage of the mRNA by Ago), or inhibition of translation of the mRNA (in which case 

mRNA decay does not seem to follow in plants)141. Which of the two pathways is 

followed is determined by which protein (HYL1 or DRB2) associates with DCL1 during 

the miRNA biogenesis, according to a recent study105. However, it is still unclear 

whether there are biological implications that favour the occurrence of one process 

over the other.  

In any case, both actions lead to a reduction in protein levels from the targeted 

genes, which together with other cellular regulation processes adjust the levels of 

proteins in a specific place and moment determined by different internal or external 

cues. This regulation may affect single proteins, but in many cases, miRNAs influence 

whole regulatory networks by targeting key genes, such as transcription factors or 

hormone receptors166.  

The regulatory influence of miRNAs in development is long known thanks to 

experiments with mutants in components of the miRNA biogenesis pathway398–402. 

Later it was discovered that miRNAs play an important role in the response to 

environmental stimuli. One study found that specific miRNAs were expressed when 

Arabidopsis thaliana plants were grown under drought, high salinity or low 

temperature conditions403 and another study showed that miR395 was induced under 

low-sulphate stress143. Besides miRNA responses to the most common stresses such 

as drought, salinity, temperature or nutrient deficiency stresses, involvement of 

miRNAs in responses to stimuli as varied as hypoxia, UV B irradiation, oxidative 

stress or bacterial pathogenesis has been reported over the years404. An interesting 

aspect of miRNA function is that it can influence plant development based on the 

environmental conditions, therefore acting as a link between both405. For instance, 
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plants can vary their root architecture depending on the availability of nutrients in the 

soil through processes involving miRNAs activity406. 

 

5.1.2. miRNA-target evolution 

When MIRs arise de novo, they may already have a target, usually if they 

come from the inverted duplication of their target gene 407, or they may have no target, 

as has been suggested for many young miRNAs230,237,408. This second possibility 

would occur mainly in miRNAs derived from transposons219,223 or from hairpin folding 

RNAs that appear randomly in the genome216. In this second case, most miRNAs 

lacking a target would be lost by mutational drift230,237,408. However, over time a few of 

these miRNAs could eventually find a complementary transcript and, if the interaction 

gives an advantage, the miRNA-target pair would be fixed216,223. For instance, 

purifying selection has been shown to contribute to the conservation of miRNAs and 

target sites217,408. 

 

5.1.3. Multicopper oxidases and LPR 

Multicopper oxidases (MCOs) are a family of enzymes widely distributed 

across life taxa409,410. They are characterised by containing four copper atoms 

arranged in two centres; a type 1 centre with one atom and a type 2/ type 3 centre 

with three atoms each411. Through electron transfer from one to the other centre, they 

perform substrate oxidation together with the reduction of dioxygen to water411. 

Structurally, MCOs are formed of multiple domains homologous to cupredoxin412. 

Depending on their substrate, they can be divided in several subclasses, such as 

laccases, ascorbate oxidases, ferroxidases or bilirubin oxidases409,410. 

Two proteins belonging to the MCO family of enzymes are the so-called LOW 

PHOSPHATE ROOT1 (LPR1) and its close paralogue LPR2, both first identified in 

Arabadipsis413. More specifically, they are ferroxidases, since both of them have been 

probed to display iron oxidation activity414. 

The modification of root architecture in response to media low in phosphate is 

a long-known phenomenon; proliferous roots allow plants to better explore the soil 

and to expand their surface to uptake this nutrient415. In Arabidopsis, low phosphate 

media determines a reduced growth of the primary root and an increased growth of 

the lateral roots416. 
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LPR1 was initially mapped as an Arabidopsis quantitative trait locus (QTL) 

connected to primary root growth arrest under low phosphate in the soil417. Later on, 

the LPR1 gene responsible for this trait was identified, as well as a paralogous gene, 

LPR2413. In this study, experiments with lpr1 and lpr2 loss of function mutants 

indicated that both LPR1 and LPR2 play a role in the arrest of primary root growth 

under low phosphate, with lpr2 showing a lower effect than lpr1 and lpr1, lpr2 double 

mutant showing an additive effect between both genes413 (see fig. 5.1.A). Besides, 

LPR1 mRNA was detected in both Arabidopsis leaves and roots, but further 

experiments focused only in LPR1 localization within the root, since it is where its only 

known function was carried out413. This way, it was find out that, although with 

differences between alleles, LPR1 is mainly expressed in the root tip, within the 

meristematic region and the root cap413. Furthermore, it was demonstrated that it was 

necessary that the root tip was in contact with the low phosphate media, rather than 

any other part of the plant, to trigger the arrest of growth response413. 

In a subsequent publication, LPR1 was specifically localized to the ER in root 

cells418. Furthermore, it was found to interact with another protein also present in the 

ER of root tip cells; PHOSPHATE DEFICIENCY RESPONSE 2 (PDR2)418. While pdr2 

mutants have an oversensitive response to low phosphate and develop an extremely 

short root with a very reduced meristem under phosphate deficiency conditions419, 

pdr2, lpr1, lpr2 triple mutants show a phenotype similar to that of lpr1, lpr2 double 

mutant418 (see fig. 5.1.B). It was therefore proposed that PDR2 could act upstream in 

the process, regulating LPR1/LPR2 and all together adjusting the activity of the 

primary root meristem under low phosphate conditions418. 
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A later publication shows the first evidence of a mechanism by which LPR1/ 

LPR2 and PDR2 could control root growth414. In this study, LPR1 expression in the 

root apical meristem is detected in the cell wall apart from the ER, and both LPR1 

and LPR2 are found to have ferroxidase activity414. LPR1-dependent Fe oxidation in 

the cell wall, specifically in the apoplast, would initiate redox cycling and the creation 

of reactive oxygen species (ROS), which would trigger callose deposition that, in turn, 

would impair symplastic communication in the apical root meristem414. The inhibition 

of symplastic communication would lead to meristem reduction, determining the 

arrest in root growth observed in low phosphate conditions414. Besides, it is suggested 

that it is not only phosphate deficiency, but the antagonistic interaction between 

phosphate and iron availability, which triggers this response414. 

Figure 5.1. LPR function in Arabidopsis root growth arrest under low phosphate. A) LPR1 
and LPR2 display a similar function in root growth arrest under low phosphate. The effect 
of LPR1 is stronger, but both effects are cumulative. Seeds of wild type Col0, lpr1 and lpr2 
single mutants and lpr1, lpr2 double mutant were grown in media with the concentrations 
of phosphate indicated at the bottom of each picture (µM) and the indicated pH and 
resultant phenotypes are shown. White scale bar, 1 cm. B) LPR proteins interact with 
PDR2, acting downstream of it. Seeds of wild type Col0, pdr2, lpr1, lpr2 double mutant 
and pdr2, lpr1, lpr2 triple mutant were grown in media with sufficient or scarce phosphate 
and the resultant phenotypes are shown. Insets show enlarged root tips, with yellow bars 
indicating meristem length. Image adapted from413,414. 
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Figure 5.2.  Scheme depicting the pathway that inhibits cell division and cell elongation 
processes in the root as response to a low Pi/ Fe ratio. A low Pi/ Fe ratio activates the 
transcription factor STOP1, which induces the expression of ALMT1, which in turn 
facilitates malate exudation into the apoplast. Concurrently, PDR2 stops inhibiting LPR1, 
which starts oxidising Fe2+ into Fe3+ also in the apoplast. As a result, Fe3+-malate 
complexes are formed in the apoplast, giving place to iron accumulation, LPR1-
ferroxidase dependent redox cycling, peroxidase activity, ROS creation, callose deposition 
and cell wall stiffening, which determines the cease of root cell elongation. In a second 
process independent of STOP1 or ALMT1 but also triggered by a low Pi/ Fe ratio, PDR2 
and LPR1 are involved in an unknown pathway that equally leads to iron accumulation, 
redox cycling, peroxidase activity, ROS creation, callose deposition and, in this case, cell 
wall thickening420. The final result is the inhibition of cell division in the meristem. Image 
from420. 
 

Finally, a very recent study divides this response into two processes: the rapid 

inhibition of cell elongation in the elongation zone of the apical root (just above the 

meristem) and the subsequent inhibition of the cell division in the meristem420 (fig. 

5.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the first process, a low phosphate/ iron ratio post-transcriptionally activates 

the transcription factor SENSITIVE TO PROTON TOXICITY1 (STOP1) to induce the 

expression of its target, the malate channel encoding gene ALUMINUM-ACTIVATED 

MALATE TRANSPORTER1 (ALMT1), which will facilitate malate exudation into the 

apoplast. At the same time, PDR2 stops inhibiting LPR1 which starts oxidising Fe2+ 

into Fe3+, also in the apoplast. Consequently, Fe3+-malate complexes will be formed 

in the apoplast, giving place to iron accumulation, LPR1-ferroxidase dependent redox 

cycling, ROS creation and callose deposition as already explained in the previous 

study414,420. Besides, peroxidase-dependent cell wall stiffening is also observed in this 

study, which determines the cease of root cell elongation420. 

The second process (in which cell division in the meristem is inhibited) does 

not require the activity of STOP1 or ALMT1, as have been observed in stop1 and 
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almt1 mutants. However, it does involve PDR2 and LPR1 and the pathway of iron 

accumulation, redox cycling, ROS creation, callose deposition and peroxidase 

activity, that determines, in this case, cell wall thickening420. 

 

5.1.4. Study of miRNAtop14 target 

When top14 was first discovered in tomato, Moxon et al.370 predicted a target 

for this sRNA; the transcript variant 2 of CTR1-like protein kinase (CTR4). However, 

when they tried to validate this target performing RNA ligase-mediated 5’ amplification 

of cDNA ends (RLM-RACE), no cleavage was detected370.  

Later on, when Baksa et al.372 identified top14 in Nicotiana benthamiana, they 

also proposed a target based on their PARE libraries data. However, this data did not 

show an irrefutable miRNAtop14 directed cleavage of the target as can be 

appreciated in the T-plot (see fig. 5.3), and confirmation by RLM-RACE was not 

carried out.  

 

Figure 5.3.  T-plot of Nicotiana benthamiana polyphenol oxidase mRNA 
comp88815_c0_seq1, from Baksa et al.372 degradome data. Blue dots represent 
abundance vs position of degradome reads. The yellow dot indicates the reads coming 
from the position where miRNAtop14 would putatively cleave, which corresponds to a 
category 2 out of 4, 0 being the most reliable cleavage. Image from372, supplementary 
material.  
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In this study, we have again attempted to find evidence of any transcript 

cleaved by miRNAtop14-RISC. With this aim, we first performed RLM-RACE analysis 

and degradome library search of putative targets in Solanum lycopersicum. Once a 

target was identified, we carried out RLM-RACE and degradome search to check 

miRNAtop14 directed cleavage of this target in Nicotiana benthamiana, and then 

RLM-RACE in Petunia axillaris. Besides, we have also identified this target in most of 

the species of Solanales where we had previously identified miRNAtop14, and we 

have made a prediction of the interaction in each case. 
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5.2. Results 

 

5.2.1. Identification of miRNAtop14 target in Solanum lycopersicum 

 

5.2.1.1. RLM-RACE 

A list of putative Solanum lycopersicum miRNAtop14 (Sly-miRNAtop14) 

targets was obtained through psRNAtarget server, version 2011, which analyses 

target-site accessibility as well as complementarity between target transcript and 

miRNA based on the specific rules of plant miRNA-mRNA interactions421. A total of 9 

possible targets were predicted by this tool when comparing miRNAtop14 sequence 

against Solanum lycopersicum transcript cDNA library version 2.4, SGN422, using the 

default parameters (see table 5.1 caption for details). The list of predicted Sly-

miRNAtop14 targets together with each complementarity score (expectation), target 

accessibility, miRNA-mRNA alignment and mode of target inhibition can be seen in 

table 5.1. 

All nine putative Sly-miRNAtop14 targets were subsequently tested 

experimentally by RLM-RACE, despite some of them being predicted to undergo 

translational repression rather than cleavage according to psRNAtarget (see table 

5.1). Total mRNA from three tomato plantlets aerial parts was used for the analysis. 

GRAS24 and LANCEOLATE (LA) transcripts were included in the analysis as 

experimental controls. These two transcripts were chosen because miRNA-directed 

cleavage had been confirmed for both by RLM-RACE in tomato423,424. The presence 

of all transcripts in the sample was confirmed by RT-PCR amplification before the 

RLM-RACE assay. The results of this experiment are shown in fig. 5.4.A. 

Target 5 (Solyc05g008290.2.1) was the only one showing a clear band of the 

expected amplicon size. This band was recovered from the gel and cloned into 

pGEM-T easy vector. 26 clones were sequenced and 25 of them were the 

amplification product of the transcript precisely cleaved between nucleotides 

complementary to the 10th and 11th nucleotide of miRNAtop14 (see fig. 5.4.B). This 

analysis clearly indicated that Solyc05g008290.2.1 transcript is subjected to 

miRNAtop14 directed cleavage. 

According to SGN, transcript Solyc05g008290.2.1 is predicted to encode a 

bilirubin oxidase enzyme, which is a type of multicopper oxidase protein407(Sakurai 

et al., 2007),408(Solomon et al., 1996). However, when performing BLAST search of 

the transcript sequence against NCBI nucleotide collection, the identical mRNA is 
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predicted to code for a multicopper oxidase, but for the ferroxidase LPR2 instead of 

a bilirubin oxidase. 

As already seen in the introduction, LPR is a protein first discovered in 

Arabidopsis thaliana where there are two variants: LPR1 and LPR2. However, our 

search in both SGN and NCBI indicated that there is only one variant of LPR in 

Solanum lycopersicum. Surprisingly, although in NCBI the tomato LPR mRNA is 

called LPR2, when performing BLAST of this sequence against TAIR10 

Transcripts425, the best alignment is with A. thaliana LPR1 (although LPR2 also shows 

homology). Therefore, we concluded that miRNAtop14 target in tomato is indeed 

LPR, but decided not to specify the variant in the absence of more information. 

 

 

. 

  

No. Target accession, 
description Exp. UPE miRNA-target alignment mode of 

action 

T1 Solyc08g074640.1.1, 
Polyphenol oxidase  1 20.406 

miRNA    20  AACCACUGAAACCAGGGUUC 
              ::::::::::::::::::: 
Target 1723  GUGGUGACUUUGGUCCCAAG 

Cleavage 

T2 Solyc06g008810.2.1, 
Auxin F-box protein 5 2.5 13.888 

miRNA     21 CAACCACUGAAACCAGGGUUC 
             :::: ::: :::::::.::::                        
Target   973 GUUGAUGAAUUUGGUCUCAAG  

Cleavage 

T3 
Solyc10g080180.1.1, 

U3 small nucleolar RNA-
associated protein 18 

2.5 14.166 
miRNA    20  AACCACUGAAACCAGGGUUC 
             ::: ::::: ::::.:::::       
Target   443 UUGAUGACUAUGGUUCCAAG 

Translation 

T4 Solyc07g066260.2.1, 
Protein phosphatase 2C 2 17.499 

miRNA    20  AACCACUGAAACCAGGGUUC 
             :::::::.::: :::.::::       
Target  1225 UUGGUGAUUUUUGUCUCAAG 

Translation 

T5 
Solyc05g008290.2.1, 
Cupredoxin / Bilirubin 
oxidase (LPR in NCBI) 

3 18.982 
miRNA    20  AACCACUGAAACCAGGGUUC 

            ::::::::::::::::. :        
Target   136 UUGGUGACUUUGGUCCUCAA 

Cleavage 

T6 
Solyc03g115840.2.1, 

DnaJ homolog subfamily 
C member 10 

3 20.11 
miRNA     21 CAACCACUGAAACCAGGGUUC 
             :::::: :. ::::::.::::       
Target  1888 GUUGGUCAUCUUGGUCUCAAG 

Cleavage 

T7 
Solyc03g118010.2.1, 

RISC, nuclease 
component Tudor-SN 

3 19.192 
miRNA    20  AACCACUGAAACCAGGGUUC 
             :::::: ::::  :::::::       
Target  2537 UUGGUGCCUUUAAUCCCAAG 

Translation 

T8 Solyc08g062910.2.1, 
Elongation factor EF-2 3 19.407 

miRNA    20  AACCACUGAAACCAGGGUUC 
             :::::: :::::::::..::       
Target  2000 UUGGUG-CUUUGGUCCUGAG 

Cleavage 

T9 Solyc08g062920.2.1, 
Elongation factor EF-2 3 19.407 

miRNA    20  AACCACUGAAACCAGGGUUC 
             :::::: :::::::::..::       
Target  4242 UUGGUG-CUUUGGUCCUGAG 

Cleavage 

 

Table 5.1.  Solanum lycopersicum miRNAtop14 predicted targets by psRNAtarget server. 
Column 1)  Target number, given to identify each target in our RLM-RACE experiments. 
Column 2)  Target accession and description, according to SGN transcript cDNA library 
version 2.4. Column 3)  Expectation (Exp.), a score for miRNA-target complementarity, 
was set to a maximum of 3. Column 4)  UPE, target accessibility as the maximum energy 
to unpair the target site, was set to a maximum of 25. Column 5)  miRNA-target alignment 
gives the position of the first aligning nucleotide of the target and the last aligning 
nucleotide of the miRNA, considering the first position the 5’ end in both cases. The 
sequence of the target is written from the 5’ to the 3’ end (from left to right) and the 
sequence of the miRNA in the opposite direction. Column 6)  miRNA mode of action was 
predicted to be cleavage whenever there were not mismatches between target and miRNA 
nucleotides 9 and 11, and translational repression otherwise.  
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Figure 5.4. RLM-RACE analysis and miRNAtop14-LPR targeting in Solanum 
lycopersicum. A) RLM-RACE analysis of the 9 predicted targets predicted in tomato, 
compiled in table 5.1, each labelled with a target number (e. g. T1) according to the table 
5.1. Target T8 and target T9 share the same sequence in the region of the putative 
miRNAtop14 cleavage, so they could not be independently analysed (they have the same 
primers) and therefore their common product is labelled as T8-9. Top)  Nested PCR 
products from RLM-RACE run in an agarose gel. Two control targets are included: C1, LA 
cleaved by miRNA319 and C2, GRAS24 cleaved by miRNA171. Bands showing the 
expected length are marked by an arrowhead (T5, C1 and C2). Expected product length 
from each target in nucleotides: T1=77, T2=145, T3=114, T4=145, T5=197, T6=158, 
T7=203, T8-9=140, C1=209, C2=274. Note: T1 and T2 show bands that are proximate to 
the expected amplicon size, so these bands were recovered and cloned as well. T1 cloning 
failed while T2 band resulted to be the product of an unspecific amplification. Bottom)  
Control of target mRNA presence in the sample; PCR amplification across putative 
miRNAtop14 directed cleavage. All targets are present in the sample in non-cleaved form. 
Expected product length from each target in nucleotides: T1=437, T2=149, T3=434, 
T4=405, T5=378, T6=348, T7=449, T8-9=235. M, low molecular weight marker B) miRNA-
T5 (LPR) target site interaction scheme and results of the cloning and sequencing of the 
RLM-RACE products. Shadowed in grey 5’UTR followed by the translation start codon in 
bold. 25 out of 26 clones showed the cleaved position indicated by the arrow, which 
correspond to the expected cleaved position between miRNA nucleotides 10th and 11th (in 
bold). 
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5.2.1.2. Degradome 

In parallel to RLM-RACE analysis, a published Solanum lycopersicum 

degradome library426 was searched for evidence of miRNAtop14 cleaved transcripts. 

This degradome library was composed of three libraries; one from fruit, one from 

flower and one from leaf tissue. 

First, we looked for any transcripts complementary to miRNAtop14, allowing 

up to 4 mismatches and one gap, within the Solanum lycopersicum transcript cDNA 

library version 2.4, SGN422. Then, from the resulting list of transcripts, we discarded 

those with no degradome reads within 50 nucleotides upstream or downstream of 

miRNAtop14 complementary site, leaving only 26 transcripts left. Finally, we 

screened the 26 transcripts that remained and their associated degradome reads to 

identify anyone with reads in which the first nucleotide was complementary to 

miRNAtop14 10th nucleotide, which would indicate cleavage directed by this miRNA.  

There were six transcripts with reads that could come from a hypothetical 

miRNAtop14 directed cleavage. When combining the reads form the three libraries, 

in only 1 of the 6 transcripts these reads corresponded to a category 0 degradome 

peak, in other words, only one of these transcripts had its maximum number of reads 

coming from the miRNAtop14 cleaving site (see fig. 5.5). Suitably, this transcript was 

the same identified by RLM-RACE to be cleaved; Solyc05g008290.2.1, which codes 

for the protein LPR and is therefore confirmed to be a miRNAtop14 target. 

Although all potential targets analysed by RLM-RACE were initially included 

in the degradome search due to its complementarity with miRNAtop14, apart from 

target 5 (LPR) only target 8/ target 9 had 2 reads from miRNAtop14 cleavage site in 

the tomato fruit library. These two transcripts share the same sequence for most of 

their length and miRNAtop14 complementary site is within an identical sequence 

region, so it was impossible to determine from which of the 2 transcripts were the 2 

reads produced. In any case, there are other locations within these transcripts with a 

much higher number of reads than the two reads coming from the predicted 

miRNAtop14 cleaving site, which makes both unlikely miRNAtop14 targets. 

 

 

  



119 
 

  

Figure 5.5.  T-plots of Solanum lycopersicum LPR from Lopez-Gomollon et al.426 
degradome data, three tissues analysed. Reads coming from the putative miRNAtop14 
cleavage are indicated by green arrows. As seen in the image, reads were detected from 
both flower (15) and leaf (7) tissues, but not from fruit. When the three libraries are 
combined miRNAtop14 cleavage position harbours the maximum number of reads, 22, 
from across the LPR mRNA, and becomes a category 0 degradome peak with the closest 
maximum at 19 reads. 
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5.2.2. Identification of miRNAtop14 target in Nicotiana benthamiana 

 

5.2.2.1. RLM-RACE 

Nicotiana benthamiana miRNAtop14 (nbe-miRNAtop14) targets were 

predicted through psRNAtarget server, version 2011421. This analysis yielded a total 

of 22 possible miRNAtop14 targets from Nicotiana benthamiana transcript library 

Niben101, SGN422, using the same default parameters used previously for the similar 

analysis in tomato. Of these putative 22 nbe-miRNAtop14 targets, there are 12 with 

an expectation of 2.5 or lower (the default parameters consider a maximum 

expectation of 3). These 12 predicted targets are shown in table 5.2, together with 

expectation, target accessibility, miRNA-mRNA alignment and mode of target 

inhibition of each one. 
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  Target accession, 
description 

Exp. UPE miRNA-target alignment 
mode of 
action 

Niben101Scf02994g03003.1, 
Cupredoxin / copper oxidase 

(LPR2) 
1 16.238 

miRNA     20 AACCACUGAAACCAGGGUUU     
             ::::::::::::::::..::       
Target   187 UUGGUGACUUUGGUCCUGAA 

Cleavage 

Niben101Scf13776g01016.1, 
Cupredoxin / copper oxidase 

(LPR1) 
2 22.836 

miRNA     21 CAACCACUGAAACCAGGGUUU    
             ::::::::::::: :::..::       
Target   188 GUUGGUGACUUUGUUCCUGAA 

Cleavage 

Niben101Scf00180g08002.1, 
Polyphenol oxidase 1  

(PPO1) 
2.5 13.508 

miRNA     21 CAACCACUGAAACCAGGGUUU     
             : :::::::::: ::.:::::       
Target  1851 GGUGGUGACUUUUGUUCCAAA 

Translation 

Niben101Scf04384g02010.1, 
Polyphenol oxidase A1 2.5 19.048 

miRNA     21 CAACCACUGAAACCAGGGUUU    
             : :::::::::: ::.:::::       
Target   225 GAUGGUGACUUUUGUUCCAAA 

Translation 

Niben101Scf04384g02014.1, 
Polyphenol oxidase 3 2.5 17.71 

miRNA     21 CAACCACUGAAACCAGGGUUU    
             : :::::::::: ::.:::::       
Target  1840 GGUGGUGACUUUUGUUCCAAA 

Translation 

Niben101Scf03619g05002.1, 
Polyphenol oxidase 3 2.5 16.309 

miRNA     20 AACCACUGAAACCAGGGUUU   
              :::::::: :::::::.::       
Target  1752 GUGGUGACUCUGGUCCCGAA 

Translation 

Niben101Scf03733g00006.1, 
Protein phosphatase 2C 2.5 22.127 

miRNA     20 AACCACUGAAACCAGGGUUU     
             :::::::.::: :::.:::.       
Target   200 UUGGUGAUUUUUGUCUCAAG 

Translation 

Niben101Scf17372g00015.1, 
Protein phosphatase 2C 2.5 21.66 

miRNA     20 AACCACUGAAACCAGGGUUU     
             :: :::::.::: :::.:::.       
Target   881 UUGGUGAUUUUUGUCUCAAG 

Translation 

Niben101Scf17372g00016.1, 
Protein phosphatase 2C 2.5 23.037 

miRNA     20 AACCACUGAAACCAGGGUUU     
             :::::::.::: :::.:::.       
Target  1234 UUGGUGAUUUUUGUCUCAAG 

Translation 

Niben101Scf05484g02007.1, 
Protein phosphatase 2C 

(PP2C) 
2.5 22.092 

miRNA     20 AACCACUGAAACCAGGGUUU     
             :::::::.::: :::.:::.       
Target  1467 UUGGUGAUUUUUGUCUCAAG 

Translation 

Niben101Scf05241g02004.1, 
Protein phosphatase 2C 2.5 19.969 

miRNA     20 AACCACUGAAACCAGGGUUU    
             :::::::.::: :::.:::.       
Target  1589 UUGGUGAUUUUUGUCUCAAG 

Translation 

Niben101Scf05173g03012.1, 
Protein of unknown function 2.5 22.024 

miRNA     20 AACCACUGAAACCAGGGUUU    
             ::: :::.:: : ::::::::       
Target  2805 UUGCUGAUUUGGGUCCCAAA 

Translation 

 

Table 5.2 . Nicotiana benthamiana miRNAtop14 predicted targets by psRNAtarget server. 
Column 1)  Target accession and description, according to SGN transcript cDNA library 
Niben101. Column 2)  Expectation (Exp.), a score for miRNA-target complementarity, was 
set to a maximum of 2.5. Column 3)  UPE, target accessibility as the maximum energy to 
unpair the target site, was set to a maximum of 25. Column 4)  miRNA-target alignment 
gives the position of the first aligning nucleotide of the target and the last aligning 
nucleotide of the miRNA, considering the first position the 5’ end in both cases. The 
sequence of the target is written from the 5’ to the 3’ end (from left to right) and the 
sequence of the miRNA in the opposite direction. Column 5)  miRNA mode of action was 
predicted to be cleavage whenever there were not mismatches between target and miRNA 
nucleotides 9 and 11, and translational repression otherwise. Transcripts later analysed 
by RLM-RACE are shadowed in grey. 
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As table 5.2 shows, there are two transcripts with higher expectation 

(complementarity with miRNAtop14) than the rest, which also are the only ones 

predicted to be cleaved. Both transcripts code for multicopper oxidases according to 

SGN, and when their sequences are used for “nucleotide collection” NCBI search, 

the closest homologous are LPR-like proteins, first from Nicotiana and then from other 

Solanales. In fact, when tomato LPR sequence is used for BLAST search against N. 

benthamiana transcript library Niben101, SGN, these two transcripts are the only 

ones aligning with it (~95% identity), which indicates that these are the only two N. 

benthamiana LPR genes. The alignment of each N. benthamiana LPR sequence with 

Arabidopsis thaliana LPR1 and LPR2 TAIR sequences shows that 

Niben101Scf02994g03003.1 is slightly more similar to LPR2 (Score 74 LPR2 and 68 

LPR1) and Niben101Scf13776g01016.1 is slightly more similar to LPR1 (Score 60 

LPR1 and 58 LPR2). Thereby, we decided to refer to N. benthamiana transcripts as 

LPR1 or LPR2 accordingly. 

RLM-RACE was performed to test cleavage of N. benthamiana LPR1 and 

LPR2. Together with these two putative targets, we included in the analysis 

Niben101Scf00180g08002.1. (Polyphenol oxidase 1, PPO1) and 

Niben101Scf05484g02007.1 (Protein phosphatase 2C, PP2C). Although these 

transcripts are only predicted to be translationally repressed in N. benthamiana (see 

table 5.2), they are homologous to Solanum lycopersicum target 1 and target 2, 

respectively, which are the only targets with a higher probability than LPR to be 

cleaved in tomato, according to psRNAtarget prediction (see table 5.1). Furthermore, 

PPO1 transcript was identified by Baksa et al.372 as a target of miRNAtop14 in N. 

benthamiana according to their degradome data. Given that the evidence for this 

cleavage was not very conclusive, since the T-plot in their publication indicates that 

this putative target corresponds to a category 2 (see fig. 5.3), we considered adequate 

to test it by RLM-RACE as well. 

Total mRNA from the shoot system of three Nicotiana benthamiana plantlets 

was used for the analysis. N. benthamiana scarecrow-like protein 6 (SCL6) and TCP4 

transcription factor transcripts were included in the RLM-RACE analysis as 

experimental controls. These two transcripts were chosen because they are 

homologous to tomato GRAS24 and LA, respectively, and both had been detected 

as category 0 targets in Baksa et al. N. benthamiana degradome372. Besides, it was 

checked that all four RLM-RACE target candidates were present in the total mRNA 

sample by RT-PCR amplification. RLM-RACE products of the four putative targets 

and controls were run in agarose gels and are shown in fig. 5.6.A 
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LPR1 and LPR2 transcripts showed both a band of the correct amplicon 

length, while neither of the other two transcripts had visible amplification at the 

expected size. The bands from LPR1 and LPR2 RLM-RACE amplification were 

recovered from the gel and cloned each into pGEM-T easy vector. 20 clones from 

LPR2 were sequenced and all of them corresponded to the precise cleavage of this 

transcript by miRNAtop14-RISC. However, when another 20 clones from the 

transformation with LPR1 were sequenced, we realised that the reverse nested 

primer used for LPR1 RLM-RACE was not specific for LPR1, but was able to amplify 

both LPR1 and LPR2 transcripts instead, which was not very surprising given the 

similarity between their sequences. As a result, we decided to analyse a higher 

number of clones in order to get at least 20 from LPR1, which finally made a total of 

43 clones tested. Of these 43 clones, 20 corresponded to LPR1 transcript, of which 

19 showed the expected cleavage site. The remaining 23 clones came from LPR2 

and 22 of them indicated the expected miRNAtop14 directed cleavage. Overall, 19 

clones out of 20 for LPR1 and 42 clones out of 43 for LPR2 were cleaved between 

the nucleotides complementary to the 10th and 11th nucleotide of miRNAtop14 (see 

fig. 5.6.B.). These results confirm that in Nicotiana benthamiana, similarly to Solanum 

lycopersicum, LPR transcripts are subjected to miRNAtop14 directed cleavage. 

However, the cleavage of PPO1 by miRNAtop14 that was suggested by Baksa et 

al.372 degradome data remains possible, although we were not able to verify it since 

PPO1 mRNA was not present in our sample (see fig. 5.6.A). 
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Figure 5.6. RLM-RACE analysis and miRNAtop14-LPR targeting in Nicotiana 
benthamiana. A) RLM-RACE analysis of cleavage by miRNAtop14 of its LPR1, LPR2, 
PPO1 and PP2C predicted targets in N. benthamiana, shadowed in grey in table 5.2. Top)  
Nested PCR products from RLM-RACE run in an agarose gel. Two control targets are 
included: C1, TCP4 cleaved by miRNA319 and C2, SCL6 cleaved by miRNA171. Bands 
showing the expected length are marked by an arrowhead (LPR1, LPR2, C1 and C2). 
Expected product length from each target in nucleotides: LPR1=125, LPR2=179, 
PPO1=145, PP2C=236, C1=182, C2=237. Bottom)  Control of target mRNA presence in 
the sample; PCR amplification across putative miRNAtop14 directed cleavage. All targets 
but PPO1 are present in the sample in non-cleaved form. Expected product length from 
each target in nucleotides: LPR1=232, LPR2=233, PPO1=563, PP2C=778. M, 100bp 
marker for LPR1 and LPR2 gels, low molecular weight marker for PPO1 and PP2C gels. 
B) miRNA-LPR1 and LPR2 target site interaction schemes and results of the cloning and 
sequencing of the RLM-RACE products. Shadowed in grey 5’UTR followed by the 
translation start codon in bold for both transcripts. 19 out of 20 clones in LPR1 and 42 out 
of 43 clones in LPR2 showed the cleaved position indicated by the arrows, which 
correspond to the expected cleaved position between miRNA nucleotides 10th and 11th (in 
bold). 
 

B 
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5.2.2.2. Degradome 

As already seen above, Baksa et al.372 had produced a Nicotiana benthamiana 

degradome library in which they had identified the target of miRNAtop14 as the PPO1 

mRNA Niben101Scf00180g08002.1. However, the reads detected at this 

miRNAtop14 cleavage site constituted a category 2 degradome peak, indicating that 

there was a higher number of reads from several other positions in the transcript (fig. 

5.3). We consequently tried to confirm this target by RLM-RACE, but failed to do so 

because PPO1 transcript was not present in our sample (see fig. 5.6.A). 

In contrast, we identified LPR1 and LPR2 as miRNAtop14 targets by RLM-

RACE. Thereby, we decided to check the data from Baksa et al.372 PARE library for 

these two transcripts to determine whether the cleavage we had detected by RLM-

RACE could be confirmed analysing their degradome data. 

Baksa et al.372 degradome cDNA library is constituted of 10 separate libraries 

which include leaf, stem, root, flower and seedling tissue, two replicas of each. We 

decided to search for our 2 targets of interest keeping the data of each of these 

libraries independent. Surprisingly, we could only find a very low number of reads 

coming from miRNAtop14 cleaving position in one of the replicas of the root library, 

and only for LPR1 transcript (see t-plot in fig 5.7). This may indicate a difference in 

the conditions in which the plants were grown for our RLM-RACE experiment 

compared with the conditions at which they were grown to make these PARE libraries. 

Otherwise, it could just indicate that the two experimental methods, although similar 

in their basis, may have enough differences to favour the recovery of some transcript 

fragments over others in each case, which would also explain the incongruous result. 
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5.2.3. miRNAtop14  targeting of LPR in other Solanales species 

 

5.2.3.1. miRNAtop14- LPR complementarity in Solanales 

After the previous analysis in which LPR was detected to be a target of 

miRNAtop14 in both tomato and Nicotiana benthamiana, we decided to look for LPR 

transcripts in the rest of Solanales in which miRNAtop14 had already been identified 

(see table 3.1). We searched various NCBI and SGN sequencing collections and 

found at least one LPR variant in all Solanales species quested, sometimes two, with 

the exception of Ipomoea batatas in which no LPR sequence was found, which could 

possibly be explained by the limited amount of sequenced genome available. See 

results of this search in table 5.3. 

Subsequently, we tested whether miRNAtop14 was predicted to target LPR 

(one or two variants) in each one of the species studied through psRNAtarget. The 

prediction is made based on miRNA-mRNA complementarity and target accessibility, 

and the mode of action of the miRNA (cleavage or translational repression) is 

Figure 5.7.  T-plots of LPR1 and LPR2 from Nicotiana benthamiana root degradome library 
data from Baksa et al.372, two replicas. Root is the only tissue out of the five analysed in 
which reads from putative miRNAtop14 directed cleavage could be detected. Reads 
coming from each replica are indicated as red or blue stars. The peak of reads produced 
from the potential miRNAtop14-RISC cleavage is indicated by a green arrow. As seen in 
the image, there are only reads from LPR1 transcript and only in one of the replicas, and 
the number is 0.57 after normalisation. 
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suggested based on the presence of any mismatches in the central positions of the 

miRNA-target alignments. The results of this analysis are compiled in table 5.3. 

 

  

Species 
LPR 

paralog 
Exp. UPE miRNA-target alignment 

mode of 
action 

Solanum 
lycopersicum 

LPR 3 18.982 
miRNA     20 AACCACUGAAACCAGGGUUC   

            ::::::::::::::::. : 
Target   136 UUGGUGACUUUGGUCCUCAA 

Cleavage 

Solanum 
pimpinellifolium 

LPR, not 
5’ UTR 5’ UTR not available, targeting prediction could not be performed 

Solanum 
arcanum 

LPR 3 17.743 
miRNA     20 AACCACUGAAACCAGGGUUC     
             ::::::::::::::::. : 
Target    63 UUGGUGACUUUGGUCCUCAA 

Cleavage 

Solanum 
habrochaites 

LPR 3 19.125 
miRNA     20 AACCACUGAAACCAGGGUUC    
             ::::::::::::::::. :   
Target   139 UUGGUGACUUUGGUCCUCAA 

Cleavage 

Solanum 
pennellii 

LPR 3 17.958 
miRNA     20 AACCACUGAAACCAGGGUUC    
             ::::::::::::::::. :  
Target    53 UUGGUGACUUUGGUCCUCAA 

Cleavage 

Solanum 
commersonii 

LPR 3 13.307 
miRNA     20 AACCACUGAAACCAGGGUUC    
             ::::::::::::::::. : 
Target    43 UUGGUGACUUUGGUCCUCAA 

Cleavage 

Solanum 
tuberosum 

LPR 3 24.483 
miRNA     20 AACCACUGAAACCAGGGUUC 
             ::::::::::::::::. : 
Target   212 UUGGUGACUUUGGUCCUCAA 

Cleavage 

Solanum 
melongena 

LPR 0.5 19.119 
miRNA     20 AACCACUGAAACCAGGGUUU    
             ::::::::::::::::.::: 
Target    41 UUGGUGACUUUGGUCCUAAA 

Cleavage 

Capsicum 
annuum 

LPR 3.5 14.038 
miRNA     20 AACCACUGAAACCAGGGUUC   
             ::::::::::::::.:. : 
Target   102 UUGGUGACUUUGGUUCUCAA 

Cleavage 

Nicotiana 
tabacum 

LPR1 1 11.75 
miRNA     21 CAACCACUGAAACCAGGGUUU  
             :::::::::::::::::..::  
Target    29 GUUGGUGACUUUGGUCCUGAA 

Cleavage 

LPR2 1 18.932 
miRNA     21 CAACCACUGAAACCAGGGUUU    
             :::::::::::::::::..::  
Target   116 GUUGGUGACUUUGGUCCUGAA 

Cleavage 

Nicotiana 
sylvestris 

LPR 1 20.326 
miRNA     21 CAACCACUGAAACCAGGGUUU    
             :::::::::::::::::..::  
Target   910 GUUGGUGACUUUGGUCCUGAA 

Cleavage 

Nicotiana 
benthamiana 

LPR1 2 22.836 
miRNA     21 CAACCACUGAAACCAGGGUUU    
             ::::::::::::: :::..::  
Target   188 GUUGGUGACUUUGUUCCUGAA 

Cleavage 

LPR2 1 16.238 
miRNA     20 AACCACUGAAACCAGGGUUU   
             ::::::::::::::::..:: 
Target   187 UUGGUGACUUUGGUCCUGAA 

Cleavage 

Nicotiana 
attenuata 

LPR No targeting predicted 

Nicotiana 
otophora 

LPR 3.5 18.719 
miRNA     21 CAACCACUGAAACCAAGGUUU     
             :::::::::::: :: :..::  
Target   136 GUUGGUGACUUUAGUCCUGAA 

Translation 

Nicotiana 
tomentosiformis 

LPR 2.5 18.932 
miRNA     21 CAACCACUGAAACCAAGGUUU   
             ::::::::::::::: :..::  
Target   123 GUUGGUGACUUUGGUCCUGAA 

Cleavage 

Petunia 
axillaris 

LPR No targeting predicted 

Petunia 
integrifolia 

LPR1 No targeting predicted 

LPR2 No targeting predicted 

Ipomoea 
batatas 

LPR not 
available 

LPR sequence not available, targeting prediction could not be performed 

Ipomoea 
trifida 

LPR1 No targeting predicted 

LPR2 No targeting predicted 

Ipomoea 
nil 

LPR1 No targeting predicted 

LPR2 No targeting predicted 
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As can be seen in table 5.3., in all Solanum species, in Capsicum annum and 

in all Nicotiana species but one (Nicotiana attenuata) miRNAtop14 is predicted to 

target LPR. Interestingly, the target site is located in the 5’UTR of the transcript in all 

of them, 14 nucleotides upstream of the transcription start site in Solanum (apart than 

in Solanum melongena where it is only 3 nucleotides upstream), 15 nucleotides 

upstream in Capsicum annuum and 13 nucleotides upstream in both Petunia and 

Nicotiana (with the exception of Nicotiana otophora, where it is only 11 nucleotides 

upstream of the transcription start site). Finally, the mode of action of the miRNA when 

targeting is predicted to be cleavage in all cases, with the only exception of Nicotiana 

otophora where it is translational repression. 

On the other hand, in both Petunia species and the two Ipomoea species that 

could be analysed, miRNAtop14 is not predicted to target LPR due to the low 

complementarity between both. This complementarity is virtually non-existent for 

Ipomoea, where no putative target site could be identified at all. However, in Petunia, 

a site complementary to miRNAtop14 can be identified 12 nucleotides upstream of 

the transcription start site (see fig. 5.8.B), a location similar to where miRNAtop14 

targets all the rest of Solanaceae transcripts. Although the pairing nucleotides are not 

enough to determine miRNA targeting in plants according to the canonical rules142,144, 

alternative rules for some specific cases like 5’UTR targeting have been suggested158, 

so we decided to test Petunia axillaris LPR for miRNAtop14 directed cleavage by 

RLM-RACE. 

 

 

Table 5.3.  Analysis of miRNAtop14-LPR complementarity in Solanales in which 
miRNAtop14 has been detected using psRNAtarget. Column 1)  Solanales species. 
Column 2)  Number of LPR paralogous found in the species analysed. Column 3)  
Expectation (Exp.), a score for miRNA-target complementarity, was set to a maximum of 
5, less possible restrictive value. Column 4)  UPE, target accessibility as the maximum 
energy to unpair the target site, was set to a maximum of 100, less possible restrictive 
value. Column 5)  miRNA-target alignment gives the position of the first aligning nucleotide 
of the target and the last aligning nucleotide of the miRNA, considering the first position 
the 5’ end in both cases. The sequence of the target is written from the 5’ to the 3’ end 
(from left to right) and the sequence of the miRNA in the opposite direction. Column 6)  
miRNA mode of action was predicted to be cleavage whenever there were not mismatches 
between target and miRNA nucleotides 9 and 11, and translational repression otherwise. 
Note,  in two species the analysis could not be carried out: in Solanum pimpinellifolium, in 
which LPR mRNA sequence was lacking the 5’UTR region, and in Ipomoea batatas, where 
not LPR sequence could be found. 
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5.2.3.2. miRNAtop14 targeting of LPR by cleavage in Petunia 

axillaris 

Petunia is, of the four Solanaceae genera studied, the first one to have 

diverged, and thereby the other three genera (Solanum, Capsicum and Nicotiana) are 

more closely related among them. In agreement with this, Petunia is also the only one 

of the four genera in which miRNAtop14 is not predicted to target LPR, apart from the 

exception of Nicotiana attenuata species(see table 5.3). In order to assess 

experimentally whether this prediction is true, we proceeded to check miRNAtop14 

directed cleavage of LPR transcript in Petunia by RLM-RACE. 

The analysis was performed using total mRNA from the aerial part of three 

Petunia axillaris plantlets. Different primers and PCR conditions were tried for both 

RLM-RACE PCR and nested PCR amplifications. The homologous of tomato 

GRAS24 and LA transcripts (GRAS family and TCP4 transcription factors, 

respectively) were included in the analysis as experimental controls, as had been 

done for tomato and N. benthamiana. Although the cleavage of these transcripts had 

not been tested in Petunia to our knowledge, we expected it to be conserved in this 

species since it was confirmed to happen in species much more distant to Solanum 

and Nicotiana than Petunia, as is the case of Arabidopsis150,232. Finally, the presence 

of the putative target mRNA in the sample was also confirmed by RT-PCR. The 

agarose gel with the results of the RLM-RACE analysis for the target and the controls, 

including some of the different PCR conditions tried, is shown in fig. 5.8.A.  

As can be appreciated in the figure, there is no band of the expected size in 

any of the P. axillaris samples in which the cleavage of the LPR target was tested. 

However, the cleaved fragments of both control transcripts are detected in the very 

same Petunia samples, as well as the non-cleaved LPR and miRNAtop14. 

Consequently, we concluded that miRNAtop14 does not direct cleavage of LPR in 

Petunia axillaris, at least in the conditions at which the plants tested were grown. This 

result matches psRNAtarget analysis, in which no cleavage of LPR was predicted by 

Petunia miRNAtop14. However, the possibility of translation inhibition could not be 

discarded, especially given that the target site is located in the 5’UTR of the 

transcript158. 
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Figure 5.8.  RLM-RACE analysis and miRNAtop14-LPR putative targeting in Petunia 
axillaris. A) RLM-RACE analysis of cleavage by miRNAtop14 of its LPR predicted target 
in Petunia axillaris. Top)  Nested PCR products from RLM-RACE run in an agarose gel. 
Two control targets are included: C1, TCP4 cleaved by miRNA319 and C2, GRAS cleaved 
by miRNA171. Bands showing the expected length are marked by an arrowhead (C1 and 
C2). Expected product length from each target in nucleotides: LPR=244, C1=174, 
C2=223. Numbers 1, 2, 3, 4 on top of the wells correspond to different conditions in the 
first RLM-RACE PCR on the Generacer primer. In a 30µl reaction volume: 1=2.7µl 
Generacer primer, 2=0.9µl Generacer primer, 3=2.7µl Generacer nested primer, 4=0.9µl 
Generacer nested primer. Bottom)  Control of target mRNA presence in the sample; PCR 
amplification across putative miRNAtop14 directed cleavage. Both LPR and C1 are 
present in the sample in non-cleaved form. Expected product length from each target in 
nucleotides: LPR=344, C1=451. M, 100bp marker. B) miRNA-LPR target site interaction 
scheme. Shadowed in grey 5’UTR followed by the translation start codon in bold. No 
miRNAtop14 cleavage was detected by RLM-RACE (see gel on the top), so not cloning 
and sequencing analysis was carried out. 
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5.3. Discussion 

 

5.3.1. Identification of miRNAtop14 target 

RLM-RACE150 has been the method of preference to validate targets of 

miRNAs in plants given that, unlike in animals, it is thought that most plant miRNAs 

direct cleavage of their targets rather than supressing their translation215. PARE 

method is based on the same principles as RLM-RACE, the detection of cleaved 

transcripts through their characteristic 5’ P, but in PARE it is done in a high-throughput 

scale148,363.  

In S. lycopersicum, both RLM-RACE and PARE analysis results nicely agree 

as expected, both showing clear LPR directed cleavage. However, it is striking that in 

N. benthamiana there is a difference between RLM-RACE and PARE results given 

that both methods are based on the same principle. While RLM-RACE shows a clear 

miRNAtop14 directed cleavage of both LPR1 and LPR2, PARE only detected very 

low level of cleaved LPR1 in one out of ten libraries.  

This can be a result of slight differences in the methodologies. For instance, 

degradome libraries could be biased towards certain sequences as it has been 

observed in sRNA libraries365. Besides, PARE may be less sensitive towards 

transcripts that are in lower amount among the whole group of cleaved transcripts 

that is being searched by this method, while in RLM-RACE each transcript is tested 

individually, so the absence of competition with the whole population of cleaved 

transcripts can make this method more sensitive to detect less abundant cleaved 

mRNAs.  

Another reason for such discordant results could be biological, that is, that the 

samples analysed by one and the other method had indeed very different levels of 

cleaved LPR. On one hand, this would be in agreement with the high variability 

observed in the levels of miRNAtop14 in tomato (see figure 3.6), which could suggest 

miRNAtop14 expression to be inducible; in this case the differences in cleaved LPR 

could be explained by differences in the growth conditions between the two samples. 

On the other hand, the fact that miRNAtop14 is ubiquitously detected in all plant 

samples that we have tested make us think that there must be some level of MIRtop14 

expression stimulus-independent, and thereby the very low level of LPR cleavage 

detected in the N. benthamiana PARE libraries could have other reasons. 

The incongruity between the high levels of miRNAtop14 (see figure 3.5.A) and 

of non-cleaved LPR (see figure 5.4.A and 5.6.A) in the same S. lycopersicum and N. 
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benthamiana samples may be explained by different factors. For instance, 

miRNAtop14 could be repressing translation at the same time as directing cleavage 

of the LPR population, a phenomenon known to happen with other plant 

miRNAs145,147. Besides, it may be that LPR is not accessible to miRNAtop14 in some 

instances; they may be present in different cells or tissues, what is called mutual 

exclusion214,427, or LPR target site may be protected by mRNA secondary structures 

or binding proteins428. Finally, miRNAtop14 could have more targets not identified in 

this study that could be competing with LPR.  

In fact, we were surprised by the observation that, in tomato, LPR was 

detected to be cleaved by miRNAtop14 by both RLM-RACE and degradome while 

PPO, another miRNAtop14 predicted target with higher complementarity, was not 

detected by either. However, in N. benthamiana both LPR1 and LPR2 have higher 

complementarity to miRNAtop14 than PPO, but PPO is the one that has been 

proposed to be targeted by Baksa et al.372 based on degradome data (although in our 

experiment both LPRs are detected by RLM-RACE and not PPO). This indicates that, 

as has already been reported, miRNA-transcript complementarity is not the only 

parameter that determines miRNA-RISC targeting, and other parameters such as the 

discussed above (target site accessibility, different patterns of expression, etc.) can 

influence miRNA-target interaction428 and even possibly change it depending on the 

conditions. 

 

5.3.2. miRNA-target coevolution and interaction 

It was expected that MIRtop14 was playing a biological role based on the high 

conservation of its mature miRNA sequence and the maintenance of the miRNA-

miRNA* stem-loop across species, as well as from the high levels of mature miRNA 

being detected by the Northern analyses. However, proving that miRNAtop14 directs 

the cleavage of a protein-coding mRNA is the conclusive evidence. 

The importance of miRNAtop14 directed LPR regulation is evident in both 

Solanum and Nicotiana genera, where the miRNA-LPR target site shows near-perfect 

complementarity in all seven and in five out of six species studied, respectively (see 

table 5.3). Besides, in Capsicum genus, where only Capsicum annum species was 

analysed, miRNAtop14 also showed enough complementarity to LPR target site for 

cleavage to be performed.  
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In addition to the conservation of miRNAtop14 target site in LPRs of different 

species, miRNAtop14 target site is also conserved among paralogous LPR variants 

present in the same species. Such is the case in Nicotiana benthamiana and in 

Nicotiana tabacum, which harbour two LPR paralogs each, both predicted to be 

cleaved by miRNAtop14 in both species. 

These predicted cleavages were later confirmed by RLM-RACE in Solanum 

lycopersicum only LPR and in Nicotiana benthamina LPR1 and LPR2 variants. 

In Petunia genus, however, LPRs were not predicted to be miRNAtop14 

targets in any of the two species studied. Nevertheless, partial complementarity 

including the 10th and 11th miRNA nucleotides is observed between miRNAtop14 and 

LPR at the same position where the target site is present in Nicotiana, Capsicum and 

Solanum species. Still, as predicted by the in-silico analysis, when performing RLM-

RACE in Petunia axillaris no miRNAtop14 directed cleavage was detected. Although 

it is difficult to reach a conclusive proof based only in negative data like in this case, 

all evidences seem to indicate that Petunia LPRs are indeed not cleaved by 

miRNAtop14. 

It is nevertheless interesting to note that miRNAtop14 is targeting LPR 5’UTR 

rather than its coding region. While plant miRNAs require almost full complementarity 

with their targets for either cleavage or repression of translation to take place158,234, in 

the specific case in which the target site is within the 5’UTR, partial complementarity 

between miRNA and target is sufficient to cause repression of translation158. This 

would open a possibility for Petunia LPRs to be regulated by miRNAtop14 through 

translational repression. Furthermore, since non-cleaved LPR transcripts have been 

detected in both S. lycopersicum and N. benthamiana RLM-RACE samples, it cannot 

be dismissed that miRNAtop14 may regulate LPR by both cleavage and translational 

repression, as it is known to occur in other plant miRNA-target pairs145,157.  

If we wanted to test whether translational inhibition is taking place, it would be 

necessary to measure protein levels of LPR and compare them with LPR mRNA 

levels and miRNAtop14 levels. Alternatively, we could take advantage of the fact that 

LPR target site is in its 5’UTR region to check the possibility of translational inhibition 

in Petunia. We would just need to create two constructs with two transcriptional units 

each: one construct with Pax-MIRtop14 and Pax-LPR 5’UTR fused to a reporter gene 

such as GUS and another construct identical but with Pax-LPR 5’UTR mutated at the 

miRNAtop14 predicted target site. Subsequently, we could transform any plant 
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species lacking miRNAtop14 such as Arabidopsis with these constructs, and 

measure the differences in the reporter protein expression between both. 

In Ipomoea genus, where Ipomea nil species was studied more in depth, not 

even a low level of complementarity could be found between miRNAtop14 and any of 

its two LPR variants. miRNAtop14 does not seem to be regulating LPR in this genus. 

It, however, remains intriguing that, despite of the lack of any known targets 

in Ipomoea and possibly in Petunia genera, miRNAtop14 sequence is equally 

conserved in these species, so is the interaction between miRNA and miRNA*. One 

possible explanation is that miRNAtop14 has another target which is shared by all 

species, and that LPR is a later, additionally gained target. In support of this 

possibility, it has been observed in Arabidopsis as well as in animals that older 

miRNAs have a greater number of targets than young ones218,408. To explain this 

observation, it has been hypothesized that, as miRNA with targets tend to be 

conserved, they also tend to be expressed at higher levels or broader patterns and 

this would increase the chances of pairing with other mRNAs that could eventually be 

fixed as new targets if the interaction is beneficial for the plant408. 

On the other hand, since we could not find homology between MIRtop14 and 

any other protein coding gene, it is also plausible that MIRtop14 raised randomly from 

a hairpin forming transcript216 and existed initially as a miRNA without target (as it is 

predicted for most young miRNAs217,230,237) until eventually captured LPR as a target. 

However, in this case, miRNAtop14 is expected to be evolving neutrally on those 

clades where it has no target, and therefore it would show divergence with the 

conserved miRNAtop14 sequence or would have already been lost, as tend to 

happen with young miRNAs without function209,217,230,237.   

It would be difficult to conclude at which point miRNAtop14 started regulating 

LPR. If Petunia LPR was found to be regulated by miRNAtop14, it would indicate that 

the interaction between miRNAtop14 and LPR started before the divergence of this 

genus. Otherwise, miRNAtop14-LPR interaction may have started after Petunia 

divergence, or their interaction may have been lost in this genus. Similarly, although 

Ipomoea and miRNAtop14 are not currently interacting, it cannot be dismissed that 

such interaction was lost in this genus too. In fact, it cannot even be discarded that 

miRNAtop14 and LPR started interacting at the point when this miRNA first arose. 

It could be hypothesised that miRNAtop14-LPR initial interaction could have 

been facilitated by the position of the target site at the 5’UTR, which would have 

allowed miRNAtop14 to decrease LPR translation despite a relatively low 
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complementarity between miRNA and target158. Later on, once such regulation of LPR 

resulted beneficial, higher levels of complementarity between miRNAtop14 and LPR 

would have been achieved through miRNA-target site coevolution, leading to directed 

cleavage once the complementarity between both was sufficient. In support of this 

theory, it has been suggested that translational inhibition could be the preferred mode 

of action of non-conserved miRNAs, which would explain the general lack of targets 

from young miRNAs validated at the mRNA level145. 

 

5.3.3. miRNAtop14 function in Solanales 

Based on the activity of LPR, a multi-copper ferroxidase414, and on its known 

function in Arabidopsis413,414,418,420, it could be predicted that miRNAtop14 plays a role 

in phosphate and/or iron homeostasis. However, it should be a function specific of 

Solanaceae, since despite of the ubiquitous presence of LPR in plants429, 

miRNAtop14 only regulates LPR in this specific family. 

Another important aspect to note is that LPR's known function in Arabidopsis 

takes place in the root 413, while according to our northern analysis, mature 

miRNAtop14 shows lower levels in root, compared to shoot and leaves (see figure 

3.6). Nevertheless, LPR is expressed in Arabidopsis leaves413, and an analogous 

function linking phosphate/iron homeostasis with plant development is plausible to 

take place in either shoot or leaves.  

For instance, ferroxidase activity by multicopper oxidases has already been 

detected in vascular plants, where it has been suggested to be involved in tissue 

lignification given their high expression in lignifying vascular tissues430. Furthermore, 

LPR ferroxidases themselves have been suggested to play a role in lignin 

polymerization during phosphate starvation, since it was observed that phosphate 

deprivation led to increased lignification in WT Arabidopsis root tips, but not in lpr1, 

lpr2 double mutants431. Therefore, LPR could be playing a role assisting in 

lignification. Such a role would fit the patterns of miRNAtop14 expression observed 

by the Northern analyses. First, lignification occurs in specific cells and tissues, mainly 

associated to the vascular system, such as xylem432. Accordingly, stem shows the 

highest levels of miRNAtop14 accumulation (see figure 3.6.A). Second, biosynthesis 

of lignin is developmentally activated as the vascular system is developed432, which 

could explain the gradient in miRNAtop14 amount observed from tip to bottom of 

individual leaves (see figure 3.6.B). Finally, there is strong evidence demonstrating 

that lignin is produced and quickly deposited in cell walls in response to both biotic 



136 
 

and abiotic stresses, even in cells that do not normally accumulate lignin, where it 

acts as barrier to pathogens and/or by limiting further growth433. This could account 

for the high variations on the levels of miRNAtop14 found when replicating 

experiments, sometimes showing increased accumulation of the miRNA, suggesting 

a stimulus-induced way of expression (data not shown). 

In any case, further research is needed to determine LPR function, as well as 

which advantage provides the regulation of LPR by miRNAtop14, in Solanaceae. 

Furthermore, it would also be interesting to investigate whether this miRNA has any 

additional function involving other targets, as could be suggested by its high 

conservation in species where it is not targeting LPR. 

Finding out the pattern of expression of MIRtop14 and possibly of LPR would 

be one of the first ways to obtain information about this miRNA function. To achieve 

this, MIRtop14 harbouring plants could be transformed with constructs in which a 

reporter gene was placed under MIRtop14 or LPR promoter. Besides, these 

transgenic plants could be used to test changes in MIRtop14 or LPR expression under 

certain conditions or stresses. Based on our knowledge of LPR function in 

Arabidopsis, a first step could be assessing whether there are any changes in 

MIRtop14 or LPR expression in response to a low phosphate/ iron ratio in the soil. 

Additionally, we could also test factors known to produce stress-induced lignification, 

such as drought434, pathogen infection433, or wounding, the last one known to occur 

in tomato435. 

To deepen the knowledge on how miRNAtop14 regulates LPR in vivo, the 

constructs with LPR promoter followed by a reporter gene could easily include 

miRNAtop14 target site within the promoter region, taking advantage of miRNAtop14 

target site location at LPR 5’UTR. Subsequently, we could create constructs in which 

the miRNAtop14 target site had been mutated and compare both patterns of LPR 

expression in the plant, with and without miRNAtop14 regulation. 

Creating MIRtop14 and LPR knock-out and overexpression mutants could be 

another strategy to figure out their function. This approach, especially MIRtop14 

mutation, has the risk of obtaining a weak phenotype that would not be very 

informative of miRNAtop14 function, especially if miRNAtop14's main function 

responds to a specific stimulus which may not be present. However, given the broad 

expression of MIRtop14, it would be expected to see some phenotypic consequences 

after its mutation.  
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Finally, it would be interesting to research the possibility of miRNAtop14 

regulating another target apart from LPR. In fact, PPO proteins, one of which is 

predicted to be N. benthamiana target according to Baksa et al. degradome372 data, 

are also good candidates to be regulated by miRNAtop14 in tomato according to 

psRNAtarget prediction. One possibility to test the regulation of other putative targets 

would be to perform RLM-RACE in samples growth under different conditions to try 

to detect regulation directed under specific stimulus. Another possibility would be to 

test whether any of the remaining predicted targets are being regulated by 

translational repression rather than by cleavage. To address this, we would need to 

measure the protein levels of the target relating them with the levels of its mRNA and 

miRNAtop14 in the sample, for example, between wild-type and MIRtop14 knock-out 

mutants. 
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Chapter 6 

Summary and general discussion 
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After the discovery that miRNAs are ubiquitous molecules in animals and 

plants at the beginning of the century, the last 15 years have witnessed an explosion 

in both the finding of new miRNA species and the broadening of our knowledge in 

miRNA biology. While great numbers of “traditional” miRNAs have been identified in 

many plant species and the general principles of miRNA processing and mode of 

action have already been elucidated, current research is now focusing on the 

characterization of less conventional miRNAs, which can also help to unveil some 

less well understood aspects of miRNA biology, such as the regulation of biogenesis. 

In the current work, we have focused on studying one of those less conventional 

miRNAs, miRNAtop14, a miRNA with an intron in between its miRNA and miRNA* 

sequences in both tomato and Nicotiana benthamiana, the plant species where it was 

first discovered370,372. 

Thanks to the growing number of plant reference genomes available, besides 

other sequence collections such as EST, we have been able to determine that the 

MIRtop14 gene is present across members of the Solanaceae family, as well as at 

least in one genus of the Convolvulaceae family, the closest family to Solanaceae 

within the Solanales order. However, despite of searching in all the orders close to 

Solanales, it has not been identified beyond this linage.  

Apart from the in-silico prediction, the presence of MIRtop14 locus in the 

genome as well as the production of mature miRNAtop14 have been both 

experimentally confirmed in the species Solanum lycopersicum, Nicotiana 

benthamiana, Petunia axillaris and Ipomoea nil, the first three belonging to 

Solanaceae and the last one to Convolvulaceae family.  

These findings indicate that miRNAtop14 is a Solanales specific miRNA, 

which makes this miRNA an interesting candidate to be further studied if only because 

the economic importance of this order, as such research may unveil some distinct 

characteristic of Solanales that could be utilised in agricultural development. 

The biological role of miRNAtop14 has also been studied. RLM-RACE 

experiments have revealed that miRNAtop14 directs the cleavage of LPR protein-

coding mRNA in both S. lycopersicum and N. benthamiana, including the two LPR 

paralogues present in the last species. Surprisingly, no cleavage has been detected 

in Petunia axillaris, despite of Petunia LPR mRNA and miRNAtop14 showing partial 

complementarity, and no complementarity at all has been found between LPR mRNA 

and miRNAtop14 in Ipomoea.  
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In Arabidopsis, LPR proteins are involved in the pathway that arrests root 

growth under low phosphate conditions413,414. However, despite its wide distribution 

in the plant kingdom429, there are currently no reports about the role of LPR in other 

plants, neither whether its function is confined to root or LPR may also be playing 

another task in other tissues, since this protein is known to be expressed in other 

parts of the plant apart from root413.  

Based on the known function of its target in Arabidopsis, and supposing such 

function would be conserved in Solanales, it can be hypothesised that miRNAtop14 

expression would change in response to phosphate stress conditions in order to fine 

tune the required levels of its target. It would be interesting to test this postulate, which 

could be done by growing plants in normal vs. low phosphate conditions and 

measuring the levels of both miRNAtop14 and LPR by, for example, Northern and 

Western blot, respectively. Besides, measurement and comparison of root length 

between plants grown in both phosphate conditions would indicate if the mechanism 

of root growth arrest under scarce phosphate observed in Arabidopsis also applies to 

Solanales. 

From comparing the results of the study of miRNAtop14 conservation and 

those from studying its interaction with LPR a surprising yet interesting observation is 

inferred; while miRNAtop14 sequence is very conserved among all Solanales, with 

only the 5’ end nucleotide changing in some cases, this is not the case for 

miRNAtop14 target site in LPR, up to the point where there is not target site to be 

found at all in Ipomoea LPR.  

Generally, miRNA and target sites are supposed to coevolve in order to 

maintain its interaction and thus the miRNA function243–246. In fact, when a miRNA 

does not have any interaction with a mRNA target it does not achieve conservation 

because it tends to be quickly lost by genetic drift217,230,237.This raises the question of 

why does miRNAtop14 maintain such a high conservation in all harbouring species, 

including those ones where it does not interact with LPR, where it would be expected 

to be lost or at least degenerated.  

The most obvious explanation would probably be that it may have another 

target across all this species, and that LPR targeting has been newly acquired in the 

last diverging branch of Solanaceae which comprises Solanum, Capsicum and 

Nicotiana genera. One way to try to solve this question would be to carry out RLM-

RACE experiments including additional putative targets not already tested. Besides, 

it cannot be discarded the possibility of miRNAtop14 directing translational repression 
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of mRNA without cleavage, a kind of interaction which RLM-RACE would not reveal 

and should be examined by an alternative method such as measuring target protein 

levels in different conditions and comparing them with target mRNA and miRNAtop14 

levels. In any case, the door remains open to research the role of miRNAtop14 

beyond LPR regulation, as an additional target is likely to exist. 

Finally, the study of MIRtop14 peculiar intron-exon structure has been the last 

main focus of our study. The MIRtop14 phylogenetic conservation analysis have 

shown that the presence of an intron in between miRNA and miRNA* is conserved 

across Solanum, Capsicum and Nicotiana species. However, the whole intron has 

been experimentally confirmed to be absent in Petunia, and in Ipomoea it is predicted 

to engulf miRNAtop14 sequence itself, although experimental corroboration remains 

to be carried out. Besides, the pri-miRNAtop14 search in EST libraries has revealed 

that MIRtop14 produces two pri-miRNA variants; one retaining the intron and the 

other one with the intron spliced. This finding has been experimentally confirmed in 

S. lycopersicum and N. benthamiana by RT-PCR of polyadenylated transcripts. 

pri-miRNAtop14 intron-split arrangement has only been previously observed 

in the MIR444 family, in the so-called nat-miRNAs195. This publication assumes a 

connection between the characteristic intron-exon structure and the cis-antisense 

nature of the newly found miRNAs, even so two of the MIR444 family members do 

not have an antisense target. Such association agrees with their hypothesis that the 

presence of the intron is important for the formation of these MIRs because it prevents 

the annealing between the pri-miRNA and its antisense target195. Accordingly, they 

suggest further searches for this kind of MIRs, since more miRNAs of this type may 

have been easily missed given their peculiar characteristics.  

On one hand, our research confirms the need to look for other MIR that may 

have been missed because of the presence of an intron in their stem-loop. On the 

other hand, pri-miRNAtop14 transcript is not antisense to any known mRNA, which 

indicates that MIRs with this intron-exon structure but not targeting antisense 

transcripts may exists as well, in which case they would be better defined as intron-

split miRNA than as nat-miRNA369. 

While the biological reason behind the apparent requirement of an intron to 

be present in between miRNA and miRNA* may be to restrict base-pairing between 

pri-miRNA and its mRNA targets in nat-miRNAs195, the reason for the conservation of 

this structure in the rest of intron-split miRNAs remains to be unravelled since the 

above explanation would not apply. Furthermore, in the case of MIRtop14, the intron-
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retaining pri-miRNA variant would not impede the annealing with any hypothetical 

anti-sense transcript anyway. 

An alternative possibility, taking into account the finding of the two pri-miRNA 

variants being produced from MIRtop14, is that the intron may be enabling the 

differential production of miRNAtop14 under different circumstances. From what it is 

known about pri-miRNA processing, it is probable that the distinct secondary 

structures created by the two pri-miRNA variants would be diced with varying 

efficiencies, with the intron containing variant being expected to produce a lower 

quantity of miRNA or not at all. Consequently, the higher amount of one or the other 

pri-miRNA variant in the cell would influence the levels of mature miRNA being 

produced. Thereby, controlling the percentage of each pri-miRNA transcript could be 

used as an additional layer of miRNA regulation beyond the activation or repression 

of transcription. This would confer the miRNA with a broader regulatory system and 

hence with higher flexibility to respond to different stimulus. 

In this regard, it may be interesting to note that the intron-split structure of 

MIRtop14 is conserved only on those genera in which miRNAtop14 targets LPR and 

not in the rest. This may be a mere coincidence or it may, otherwise, be speculated 

that this structure could be relevant in some way for the interaction between 

miRNAtop14 and LPR. Since the need for this pri-miRNA to avoid base paring with 

an antisense transcript is discarded, the hypothesis of this intron-split structure 

enabling a wider miRNA regulation through the production of the two pri-miRNAtop14 

transcripts could better fit this observation. For instance, the wider flexibility of 

response gained by miRNAtop14 with this additional way of regulation would increase 

the potential of the miRNA to regulate more than one target, and thus it would have 

allowed the acquisition of LPR as new target besides the hypothesised target shared 

by all species in which miRNAtop14 is conserved. 

This hypothesis which contemplate that the intron may be important for the 

regulation of pri-miRNA processing and thus for the modulation of miRNA levels and 

associated function has not been discarded to occur in nat-miRNAs, since it has not 

been experimentally tested; in the only study published it was assumed that all 

transcripts were constitutively spliced and that non-spliced pri-miRNAs would not be 

able to undergo dicing195. 

To study this conjecture, we have first analysed if the amount of mature 

miRNA produced from the spliced and the intron containing Sly-pri-miRNA variant 

differ from each other. As previously described in chapter 4, we have done so by 
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creating an artificial system in which A. thaliana plants, which do not contain 

MIRtop14, were independently transformed with three Sly-MIRtop14 variants; wild 

type, a variant without intron and a variant in which the intron is non-spliceable.  

After comparing the level of miRNAtop14 between the transgenic plants 

carrying MIRtop14 without intron or with an unspliceable intron, it was verified that 

the intron retaining pri-miRNA variant yields a much lower amount of miRNA than the 

spliced one, although not null. This result confirms that this intron-exon structure, by 

allowing the creation of the two pri-miRNA variants, makes possible a 

posttranscriptional change in the levels miRNAtop14 and, therefore, could potentially 

have value to the plant if it was used as additional regulatory element of the miRNA. 

Besides, by comparing the accumulation of mature miRNAtop14 from the wild 

type versus the intron-lacking MIRtop14 transformed plants using the same system 

as above, it was observed that the presence of the intron on the MIR enhances the 

levels of mature miRNA (as long as it can be spliced). A similar positive effect on 

miRNA accumulation had been previously reported for some other MIRs harbouring 

introns in positions downstream of the miRNA stem-loop197,198. In these studies, it was 

speculated that this was due to an increase in pri-miRNA processing, which was 

suggested to be achieved by the positive influence of the crosstalk between splicing 

and processing factors. This scenario would perfectly fit our results, which together 

with the results from the two previous studies would further support the hypothesis 

that the presence of the intron is advantageous for the MIR functioning. 

The first step towards elucidating whether miRNAtop14 is being regulated at 

the posttranscriptional level has been taken by finding that two pri-miRNAs variants 

associated with different levels of mature miRNA accumulation are being produced 

from MIRtop14. However, several questions remain to be answered before being able 

to confirm that such event is indeed actively regulating the levels of miRNAtop14, and 

before understanding the complete mechanism of regulation.  

First, it would need to be examined whether the production of one over the 

other pri-miRNAtop14 variant is being used in vivo to achieve different levels of 

miRNA accumulation in the cell. If such was the case, the ratio between spliced/non-

spliced transcripts should show variation associated with the levels of total mature 

miRNA. This would indicate that mature miRNA levels are, at least partially, regulated 

through splicing. Otherwise, if this ratio remained constant, it would indicate that no 

regulation is taking place at this level. Finally, it should be possible to associate the 

production of one or the other pri-miRNA variant to some stimulus that should be 
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relevant for miRNAtop14 function, which would indicate that the regulation of 

miRNAtop14 levels is biologically meaningful. 

In order to explore this, it would be necessary to first identify two 

circumstances in which miRNAtop14 levels vary, whether it is in response to a 

stimulus such as an abiotic or biotic stress, or between different stages of 

development or different tissues of the plant.  For example, scarce of phosphate in 

the soil would be a plausible factor to be determining downregulation of miRNAtop14 

in the root if LPR had the same function in tomato than in Arabidopsis, since LPR is 

known to be upregulated in the root of Arabidopsis in low phosphate conditions. 

Once two conditions which determine differential miRNAtop14 accumulation 

are known, the levels of intron-retaining and of spliced pri-miRNAtop14 should be 

measured and related to those of mature miRNA. As already discussed, if they are 

involved in miRNAtop14 regulation, the ratio between one and the other pri-miRNA 

variant should change among samples from one or the other condition.  

In contrast, if no change in this ratio is detected, it probably indicates that no 

regulation is taking place at this point of miRNA biogenesis and would open the 

question of why two pri-miRNA variants are being produced. One possibility would be 

that this regulation is still taking place under different conditions, since this miRNA is 

likely to be modulating more than one target. It would still be possible that while 

miRNAtop14 responds to one stimulus in order to regulate a specific target in a 

specific tissue or developmental stage, it could also respond to a different stimulus in 

a different tissue or developmental stage to regulate a second target. In this scenario, 

while the production of one over the other pri-miRNA variant may not be influenced 

by one of the stimulus, it can still be influenced by the other. Another possibility would 

be that the retained intron is altering the localization of the pri-miRNA. This 

mechanism has been seen in neurons, in which introns retained in some transcripts 

facilitate their targeting to dendrites, where they are finally spliced436. Finally, it would 

also be possible that the production of these two pri-miRNA transcripts does not have 

any value for the MIR, but it is instead a case of non-functional alternative splicing437.  

Lastly, in the case it was confirmed that miRNAtop14 levels are indeed being 

regulated by the different ratio between its pri-miRNA variants, it would still have to 

be elucidated the mechanism by which this is happening. In this case, two different 

regulatory scenarios would be possible: 

1) There are two alternative splicing variants: an intron containing variant which 

produces very low level of miRNA and a spliced variant which produces high level 
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of miRNA. The non-spliced variant is not spliced if more mature miRNA is 

eventually required; in the case more mature miRNA is needed, more spliced 

variant is transcribed. The ratio between both variants would determine the levels 

of mature miRNA. A similar mechanism, in which mRNA abundance would be 

modulated through changing ratios between functional and nonsense/intron-

retaining alternatively spliced variants has been already proposed397. 

2) The non-spliced transcript could be a “storage form” that would undergo splicing 

just when high levels of mature miRNA are required. Removal of the retained 

intron would enable efficient pri-miRNA processing and facilitate the quick rise of 

mature miRNA levels in response to some specific condition. Such scenario has 

been already observed in the plant Marsilea vestita, where some mRNAs retain 

their introns until reaching specific developmental stages, at which point they go 

through splicing and the translation into proteins is triggered302. 

Although still partially incomplete, the first steps have been taken towards the 

full characterization of MIRtop14, including its biological role and possible post-

transcriptional regulation. The completion of this study would increase the current 

knowledge about miRNA regulation, a field of study just starting to emerge, and would 

shed light to the increasingly evident crosstalk between different RNA pathways, as 

is the case of splicing and miRNA biogenesis. In addition, the identification of a MIR 

with such an unusual exon-intron structure could open the door to search for more 

miRNA produced by unconventional pri-miRNAs, including other intron-split miRNAs. 
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Appendix 

MIRtop14 sequences and primers used in the different analys es performed.  

Exon sequences are shaded in grey while introns are not shaded. Intron GT-

AG consensus splicing site sequences are highlighted in yellow. miRNAtop14 is 

highlighted in red and miRNAtop14* is highlighted in green.  

Forward primers sequences are indicated in orange characters. Reverse 

primers sequences correspond to the reverse complement of the sequences 

indicated in blue characters. Sequences of the primers used for genomic DNA 

analysis (fig. 3.2) are in bold and sequences of the primers used for pri-miRNA 

analysis (fig. 3.5.B) are underlined. Note that for S. lycopersicum and P. axillaris, the 

same primers were used for gDNA and pri-miRNA analysis. Note that for I. nil, pri-

miRNA analysis was not performed.  

Finally, in S. lycopersicum it is shown the whole sequence included in the 

constructs created to assess the influence of the intron in mature miRNAtop 

accumulation (see scheme of the three constructs in fig 4.3). The three different 

MIRtop14 sequences included in the constructs correspond to the full sequence 

shown: 1) with intron, 2) without intron, 3) with intron but with the 5’SS site mutated 

from G/GT to C/CC. The reverse primer used is the same as the one used for gDNA 

and pri-miRNA analyses, while the forward primer is 17 nt upstream of the forward 

primer used previously for gDNA and pri-miRNA analyses. The sequences of both 

primers used are indicated in italics. 

 

Solanum lycopersicum MIRtop14 

5’ TAGGCCACTTATATTTGTGAAAGAATAATATAATGTACTGCATCATATCAATAATCTTATCTATAA
AAGGAGTAAAATTTGCTACATTGAATATACCATAGAGGAAATTGAATTAATGAAGAAGTAGAAGATGA
CACTTTGTTGGTGACTTTGATCTCAAAAGAGTGCTTATCAATATTGTTTGTTTAATTTATTACGGTAT
GTTATTTGTCTTATTTTACTTTAGTAAACTATTTATTGAAACTTCTTTCAAAGATTAGTTTTTTTAGT
CGAAAGTTTTTTGAAAGCATATTTTATATTGAGCAAGAGGTAAGAATAAGATTTATATACATTTCATG
ACCTGCTTATGAAATCATACTGAATATGTTATTATTATTATTTATTTTAGCAAAATGCTCATGTAGTA
TATTGTATTGTACCTTAATTGAATGTTTGATGCATGTTTGTGGGGCGGTGAAGCAATATTTGATCCTA
TATATGAAATAGTTTTTTAGTTGAAGATCGTTCAGCTGATCGTCCTTGAATTTATATACCTTTTATAA
TATAAAAGTGTCAAATTTGTAATTTAAAAAAAATAATCACCATTCTTATATACTATTTGTAAGAATGA
TCCTTGTTATTTTTACTTGAACTTAGAAATGATTTAGATGATTTACTTTAAAATTTTAAACATATTGT
AGTCTTGCTTTTTTGCATTACATGCCTTTTTGCTCTAACCTTTGTTCAAGAAATCGTGTACAATGGAA
TTGTGAAACAATATTTGTAGGAATATCAAGCATTATTATCATCACTATATGGACACATGGCATTATAC
TCTTGGGACCAAAGTCACCAACAGAGTGTCAAATTTCTCATCATTCCGAGCTCAAACACAGCGACGGA
GCCAGAATTCTCATCGAAGAAAATATCAAAATATTTTCTTAATTAATGATCTCTATTGTTTTGTTGTT
TTTTAGTAGTGCCTTGTTATTTTCTTTGGAGAATGTAACCAGCTAGATGTAATCCCCACATATATGTA
ATATAATAAATCAATCCCCTACCTTTTGGGGGTATGTTTACTAAGCTATGCAACATAAAGTAACACTT
TA 
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Nicotiana benthamiana MIRtop14 

5’ GGACAAGATTTTACTACTTGTAGTACAATCAGTGTACTTGCTAGTATTGTTGTAAAAAATTGTACG
GTTGTGACATGGTAGAACTAATCTATAAAAGTAGTCGAATTTGCCCCACTCGATATGCTAAGGGGAAA
TTGAAGAAGAAGCAGAAGATGATACGTTGTTGGTGACTTTGGTCCCGAAAGAATGTTGGTTAGTATTA
ATTGTTTGTATACACGCACTTACGCCTAAAATATAGATTTTTCACTATATGTTTTCAATTTACATAAA
CAAAACCTTTTTTCCCCAAAAATGTGGTCCAACTCTTTTCTTAAACTCTTATATATACAAGAACACCC
ACGTAAGCTTTTGTATATAGCGGAAACATAACGCACCGTCAGATTAATTGTCTTGTTTCCTCATACAT
TTTTGTGTGGTCTATGGCATCAACCACTAATTTTCTCATTACCAAAATGGCTACCATTTTTACATATC
TTTTTCTGTGTTCCATAAACCGCAATTTTTATATTTTATTTCAATATACCTTAAACCAAATTAATAAA
TTATTCTTATGTAAAGTGTCGATAAGATTGTCCCTTTTTCTTTACAACAACTCAGTTTCCTTATTTGA
AAATGTTAAGATCAGTCAACTTCATCATTTCATGTGTTTTCTCCTTTCCGCTAATTACAAGTGCATTT
ACCAAGTTTTTTGTATTACATTCCCTCTGTGCTAAATTGATCAAATAGGTTATTTTGACGGACAACAT
TATTAAATTAGATTAACAAATTATGCGCATGAAAACCCAACTTTTTCAAAAAGGCAAACTTGCAGTCT
TGTATACGATGAAACTGTAGGACTTTAGCTTTTATTTACTGATAATACAATTAAATATTTACACTCCA
TTGCAATTTAACCTAGTGCATAAGGTTGCAGCTTGTGTTATTGTTTAGGTTAGTAGTTCAATTGTTTT
ATGTAGAGTTACCTGCAATTACATTTCAAGCGAGCAGATAATGTTGAAAATTTACATTATCAATGTAT
ATAGTTAAGGTCATTGTTGAATGCTACGAAAGAAGAAGCATCAGTGTATGGACACAGCATTAAACTTT
TGGGACCAAAGTCACCAACAGAGTCTCAAATTTCTCATCTCCAACATCCAACTGAGGGGAACAGCCAA
CAACTTTGTTTCTCAATGATTTCTATTGTTATGTTTTTGTATATTAGTGACGTTTTGTTCCACTTGGA
GAATGTAACATATAG 

 

Petunia axillaris MIRtop14 

5’ GTCAAATTTGCTACACTTGAAATGCCAAGTGCAAACAGGAAGAAATCGAAGAAGATGACACTTTGC
TGGTGACTTTGGTCTCGAAAGAGTTTTCGTGCTAATTATTATTGTTATGACACGGCATGACATAACAC
TTTTGGGACCAAAGTCACCAACATAGTATCAAATTTCTCATCCATCCGAGGAAACTCTACCTATGCAA
TTAGCTCGACTCCAGGTATATATAGATAGCTCTTAATATAAGCGAAATCAGGAGTTGAAGCTTATAAA
TTCAGGATATATTTAATAGTACAACATAATTAGAGATTGAAACATATATTTACATGTCAACTAGAAGG
TGCAAAAATAGTTAGGGAGTGAATTTTTTTTGCCAGCCGGGCATTTTAGAGATGAGGCTCAATTTCTC
TCAGTGATACACCCTGCAATCTCAGTATCCCTGCTTACTTGCCAACTTAGGTTCCAAGCAACAAGTTA
TGATGCTTCATAGAGTATGTCGAGAAATTGCTCTCCATGTGCATGTTAAGAGGCCAAAATGTTAGTCA
GGCATTAGAGCAGCTCAATTCATTCCCTTAGTCCTATAAACGATGTAATGAATACAAGGAAGCCGAAC
CCCAAAGTTAGTTAATTGTCTGCAATGTTAGTTAAGTGTCTGATGTAGCGGAGCAAGTGATCAGCACT
TGCCTGGTTCTGTAAAATGTAAATATTTTTTTGGTTGAATGAAGTTACTTTACCAAAAAAAGAAAAAG
ACGTTTGAGAACTC 

 

Ipomoea nil MIRtop14 

5’ TCCTCCAACCTCAAAGCAAAATAATACATAGTACTAAATTAGTACTTCGGAGAGGCTTAGATAACA
ATGGAGAACAACAACTAGGCTTGGTAACAGTACGTACTACAATTGTTGGGAGAAGAAGAAGTAGCAGT
ACTACAATTGTGTACTAAATTAAAAGGAAAATATAATTTAAATATGTAACCCCAAGAAACTTTGTATA
AAAACCTCAGGGCTATTGTGTCTGGGAGATCACAGAAAAGCAAGAATGAATTGAGCATTTTATATATT
TAGAGGGCAAAAGTGAAGAAGATGGCAGTTTGTTGGTGACTTTGTATCCAAAACTGTGGGTCATGGTT
TCATCTCAGGTTTGAGTTTAAGATAGGGAATGTTTGGTTCATATTGCTTAGGACTTCTTTTTATATAC
TTTTTGGAATGGGAGGGGCAATGTTGTCATTTTTACTTCCAATATGATTTTGCTATAGGTATTAAAGT
ATTAGATTAGATTACTTTAGGGAAGAAAAAAAAAAAATCAATACTTTTATGTACACAACATTTTAACC
TTTTATTTTCAGTTAGAGCATTATGGACATTGTAGACTTTTTTTTTATTCTTTTATTTGAATGACCAG
CAAAATCTGTTGTCACTACTTAAGAGTGTGCATTAGGTAAATCGGCTAGAATTTTCTTATAAATTAGA
TATATATGAGGTGGAGTAAGATTTTAATTTGGTTTTCAATTTATGAAGTTGTGGGTTTGTAGAGTTGC
ATCCATTTCCAACACTATTTTGGGACCAAAGTCACCAACACACTGTCATCATTCTCAGCTTCAGAAGA
TCTCAATTAAGATACTGTACAATAAGACACGACCAGCCATTTCACAAACAACTCAGGGAACATTGAGA
TTATTTATGCTTAGTTTTTGCTTCATTCTTAATCATCATATTTTTATGCTTCTACTTAAGGTACATGT
TTTGTATTGTGATCCAGGCCGAATTGAGGGTTTCTTCTGCTTTAATTTGCTCAAGTGCTTGATTAGTT
CAGCTGGAGACTAGCTATTGAAGACGACAATATCAAGAAAATTTCAATTGTAAAACAAAGATGTTTAT
GTTTTGTTTGTCTTACTTTTTGGAACTCAAACAATATTGGACTTGTTATTGGGTCATGGTCCTCCCAA
GAGTTTAGACTGGTTTGTAGGTTTGGGTTTGTGGACTACCCATTATCTACATGGGTCCAATGTATATC
CAGATACATATCTACATATCTACCA 

 


