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Abstract

This thesis describes an empirical evaluation of semi-supervised and active learning individ-

ually, and in combination for the naïve Bayes classifier. Active learning aims to minimise

the amount of labelled data required to train the classifier by using the model to direct the

labelling of the most informative unlabelled examples. The key difficulty with active learning

is that the initial model often gives a poor direction for labelling the unlabelled data in the

early stages. However, using both labelled and unlabelled data with semi-supervised learning

might be achieve a better initial model because the limited labelled data are augmented

by the information in the unlabelled data. In this thesis, a suite of benchmark datasets is

used to evaluate the benefit of semi-supervised learning and presents the learning curves

for experiments to compare the performance of each approach. First, we will show that

the semi-supervised naïve Bayes does not significantly improve the performance of the

naïve Bayes classifier. Subsequently, a down-weighting technique is used to control the

influence of the unlabelled data, but again this does not improve performance. In the next

experiment, a novel algorithm is proposed by using a sigmoid transformation to recalibrate

the overly confident naïve Bayes classifier. This algorithm does not significantly improve

on the naïve Bayes classifier, but at least does improve the semi-supervised naïve Bayes

classifier. In the final experiment we investigate the effectiveness of the combination of active

and semi-supervised learning and empirically illustrate when the combination does work,

and when does not.
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Chapter 1

Introduction

1.1 Introduction

The primary goal of machine learning is the development of algorithms for the extraction of

general patterns from a finite training set. Generally, machine learning tasks can be divided

into two common types, namely supervised and unsupervised learning. In unsupervised

learning, the learner is given a collection of unlabelled training patterns, represented by

input features alone, without an indication of the desired output. The goal of unsupervised

learning is to determine the internal structure of the training set. A very common form of

unsupervised learning is cluster analysis [36]. Clustering tries to group similar patterns

within the training set, such that examples in the same cluster are similar to each other and

different from patterns in the other clusters. The other major form of machine learning

task is supervised learning. In supervised learning, the learner is given a collection of

training patterns with the corresponding target labels, where the labels indicate the desired

output. Having additional target labels in supervised learning is the key distinction between

supervised and unsupervised learning. In general, supervised learning first attempts to use the

training data to learn a mapping from the input features to the desired outputs. These training

patterns are generally assumed to be an independent and identically distributed (iid.) sample
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from some fixed underlying distribution. The goal of the learner is to predict the labels for

additional new (test) patterns, based on the set of training patterns. Supervised learning tasks

can be categorised into two types, based on the target labels, which are classification and

regression. In classification problems, the labels consist of discrete values indicating the true

class of the example, whereas in regression the output can take on continuous values. The

work reported in this thesis focuses on supervised learning for classification tasks. Figure 1.1

shows the framework of the supervised learning process which is known as passive learning.

In passive learning, we typically submit all training patterns to be labelled by a human, or we

iteratively select training patterns at random to be labelled, and then construct a classifier.

Fig. 1.1 Passive learning framework [72]

In practice, classification performance usually depends on the size of the labelled dataset.

Hence, good classification performance relies on the availability of a substantial amount of

labelled data, and poor classification performance is often obtained with a small amount of

labelled training patterns. In real-world applications, manual labelling of a large amount

of training data is often time-consuming and expensive. Therefore, building effective clas-

sification models with a minimum of labelled training patterns motivates us to improve

classification algorithms, but an important question which arises here is what other sources

of information can reduce the need for labelled patterns?

In many modern classification problems, large quantities of unlabelled patterns can be ob-
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tained plentifully and cheaply. Consequently, combining this large quantity of unlabelled

patterns together with a small amount of the labelled patterns in the learning process might

construct better classification models and improve classification performance. To demon-

strate how unlabelled examples might help and achieve better classification performance

in more detail, we begin with an illustrative example. The example is based on the two

moons benchmark dataset [76], which is a two-class classification problem with two labelled

training patterns, only one labelled pattern in each class, and the rest are unlabelled.

Fig. 1.2 Illustration of the machine learning example where unlabelled patterns can improve
classification performance for the two moons synthetic benchmark dataset

Figure 1.2 shows a decision boundary (solid line) that is estimated by supervised learning,

using one labelled training pattern in each class. However, a more reliable decision boundary

can be obtained by combining both labelled and unlabelled training patterns (dashed line). In

such situations, the two labelled training patterns give an indication of which class belongs

to which cluster and then unlabelled data can help to identify the region. This an intuitive

example of machine learning where unlabelled data can improve classification performance.

However, traditional supervised learning methods cannot use unlabelled patterns to train

models. In general, there are two common paradigms for exploiting unlabelled data.

The first paradigm is semi-supervised learning, lying between supervised and unsupervised

learning as can be seen in Figure 1.3. Semi-supervised learning can potentially use a

combination of a small set of labelled patterns with a large amount of unlabelled data in order

to achieve better performance than supervised learning as shown in Figure 1.2. Thus, the
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semi-supervised learning paradigm seems to address the drawbacks of supervised learning,

which leads to reduced human effort, time and cost of manual labelling especially where

labels cannot be generated automatically.

Fig. 1.3 Semi-supervised learning framework [72]

The second paradigm is active learning. In contrast to passive learning, the active learner

requests the human expert (oracle) to obtain the true labels for unlabelled training patterns

by asking queries. The active learner selects only a small number of unlabelled patterns

to be labelled by the oracle, instead of labelling all unlabelled training patterns as in the

case of passive learning. Therefore, the patterns selected are those the algorithm considers

most likely to improve the performance of the classifier if the labels were known. Figure 1.4

shows the framework of active learning. A feature of active learning is that the active learner

iteratively selects one or more unlabelled patterns and adds them to the previous labelled set,

it then uses them to retrain the classifier. There are different scenarios and strategies to select

unlabelled training patterns that we discuss in more detail in Chapter 2. For example in the

case of pool-based scenario with an uncertainty sampling strategy the active learner selects a

pattern closest to the decision boundary, which is considered the most informative one. Under

these circumstances, active learning might achieve better performance compared to passive

learning by labelling fewer unlabelled training patterns. In such cases, the oracle might

not spend effort on labelling uninformative patterns, which do not influence the decision
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boundary. Thus, active learning can significantly reduce the human effort and labelling cost

in the process of manually labelling [72].

Fig. 1.4 Active learning framework [72]

Figure 1.5 shows how active learning can iteratively select unlabelled patterns to be

labelled for the previous example, two moons benchmark dataset. As you can see after it

labelled a few patterns the active learner can estimate a reliable decision boundary.

1.2 Motivation

In the previous section, we demonstrate that active learning algorithms are a potential

paradigm for exploiting unlabelled data. However, when active learning is used in the

early stages the initial model is often poor, and so can provide a poor direction for the

selection of further unlabelled training data to be labelled by the oracle. The reason for

generally providing a poor initial model in the early stages is that the initial model parameters

are estimated from only a few labelled training patterns. Active learning is then likely to

collect labels for uninformative examples in the training data which will do little to improve

performance. As a result, it may be better to perform some passive learning first where

labels are sampled randomly, as this is more likely to generate useful labels than may be
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(a) iteration 1 (b) iteration 2

(c) iteration 3 (d) iteration 4

Fig. 1.5 Illustrative example to show the active learning process to select informative un-
labelled patterns using uncertainty sampling strategy for the two-moon synthetic dataset
[76]

obtained by using a poor initial model. This process involves exploration-exploitation trade-

off. Exploitation builds a classifier using the patterns that were labelled by the oracle in the

active learning process to direct the selection of the patterns that remain in the unlabelled

patterns pool. However, exploration can pick patterns from the wider feature space, as it

is not only focusing on examples closest to the classification boundary. Exploitation is a

risky choice, especially when the poor initial model provides poor direction for the search

in the early stages. In addition, exploitation can easily present uninformative patterns to be

labelled by the oracle. Semi-supervised learning may help because a better initial model

may be achieved where both labelled and unlabelled data are used, and active learning may

then prove beneficial immediately. There is also a secondary issue that it may be true that

with very few labels it is better to use unsupervised learning rather than semi-supervised
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learning. In practice, this requires managing a transition between unsupervised learning

through semi-supervised learning, to fully supervised learning according to the amount

of labelled data available. The aim of the research described in this thesis is to develop

algorithms to reliably control the transition from unsupervised, semi-supervised to supervised

learning in active learning.

This thesis focuses on the naïve Bayes classifier as a baseline for semi-supervised and active

learning. Although the naïve Bayes classifier is a simple algorithm it is still a useful and

effective algorithm in many real-world applications. For example, [58] show a successful

application of semi-supervised naïve Bayes for multi-class text classification. Mathematically

the naïve Bayes classifier is also simple to analyse. More importantly, understanding the

estimation of model parameters in the case of the partially labelled dataset using Expectation

Maximisation (EM) algorithm Dempster et al. [24] is relatively straightforward. It would

be better to understand a simple model rather than try to understand a more complicated

classifier.

To illustrate the nature of the difficulties involved in active learning, a simple two-

dimensional synthetic dataset is generated that has been shown in Figure 1.6. The data are

drawn from two spherical bivariate Gaussian distributions where each Gaussian represents a

different class, with equal numbers of patterns, 2200 in each class. The data are randomly

partitioned into training and test sets, 400 patterns were used for training a classifier and 4000

were separated as a test set to evaluate the classification performance during the experiments.

The positive class examples are drawn from a Gaussian centred on [1, 3]; the negative

examples are drawn from a Gaussian centred on [-1, 1] where both Gaussian have identical

variance, σ2 =1.

In Figure 1.6a the green line shows the decision boundary for the problem after the model is

trained on all training patterns and the red line shows the decision boundary for the problem

after it is trained on two labelled patterns from each class (red and blue) with the rest of the
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synthetic benchmark dataset unlabelled. Figure 1.6b shows the most informative pattern

selected, in this case, the most informative pattern is the closest pattern to the decision

boundary. Notice that after labelling one pattern using active learning, the generalisation

performance is better than passive learning Figure 1.6c.
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Fig. 1.6 (a) The blue line represents the decision boundary for the naïve Bayes model trained
on all training patterns and the red line represents the decision boundary for the naïve Bayes
model trained with four good labelled patterns, two in each class. Illustration of picking
the most informative patterns (b). (c) The decision boundary for active learning after being
trained with one actively queried example is represented by a green line.

Figure 1.7 shows the same synthetic benchmarks, but with a bad initial model. In contrast,

the active learning generalisation performance is worse compared to the passive learning.
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The reason for this, is that generally we selected uninformative patterns to be labelled using

the initial model.
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Fig. 1.7 (a) The blue line represents the decision boundary for the naïve Bayes model trained
on all training patterns and the red line represents the decision boundary for the naïve Bayes
model trained with four poor labelled patterns, two in each class. (b) Illustrates picking the
most informative patterns. (c) The decision boundary for active learning after being trained
with one actively queried example is represented by a green line.

To illustrate the classification performance for these classifiers, we show the area under

error rate learning curve. The error rate of the classifier performance measures the percentage

of the predicted class that differs from the actual class, and the area under the error rate

learning curve is a curve that shows the error rate with an increasing number of labelled



10 Introduction

patterns. We take the average of 100 iterations to generate the area under the error rate

learning curve of the synthetic benchmark. This experiment consisted of 100 trials to

generate synthetic benchmark with good and bad initial models, and random partitioning into

training and test sets. 400 patterns were used for training and 4000 patterns were held-out as

a test set, used to evaluate the classification error rate performance during the experiments.

Figure 1.8 illustrates that the error rate learning curve of active learning with a good initial

model is much lower than the error rate learning curve of active learning with a bad initial

model.
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Fig. 1.8 Comparison between active learning with a good initial model, pink-line, and active
learning with a bad initial model, blue-line. The passive learning plotted by green dash-line.

From the above example, it is clearly seen that the generalisation performance of active

learning from a good initial model can be better than active learning from a bad initial model.

However, if we use semi-supervised learning in the case of the bad initial model, the two

labelled patterns in each class might identify their cluster and then start the best solution

immediately as shown in Figure 1.9.
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Fig. 1.9 Comparison between the learning curves for random (RL: blue-line), semi-supervised
(SSL: red-line), passive (PL: green dash-line), and active learning with bad initial model (AL:
pink-line)

1.3 Outline of the thesis

The remainder of this thesis is organised as follows:

Chapter 2 we first provide a technical background on active and semi-supervised learning,

and their common applications in general, focusing on naïve Bayes methods in particular

as a base classifier. The details of the derivations of the Expectation-Maximization (EM)

algorithm for semi-supervised learning are provided in this chapter. Then, we look at the

implementation of different model selection criteria, model selection being the general

approach for finding optimal parameter values where the model is defined by a set of model

parameters and hyper-parameters. Finally, different measures to evaluate the performance of

the classifier are presented, highlighting the importance of using statistical tests to compare

classifiers.

Chapter 3 provides an experimental evaluation of naïve Bayes and semi-supervised naïve

Bayes classifier on benchmark datasets in order to investigate whether using unlabelled
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patterns through semi-supervised learning improves supervised classification performance

overall. We began by introducing the benchmark datasets that are used throughout this

thesis. Additionally, we set out the experimental design, including evaluation measures and

statistical significance tests.

Chapter 4 discusses down-weighting approaches for semi-supervised learning to control the

influence of unlabelled patterns relative to labelled patterns because the training data consist

of a large amount of unlabelled patterns with few labelled patterns.

Chapter 5 discusses the over-confidence of the naïve Bayes classifier, which can produce a

bias in the predicted class probabilities in both the naïve Bayes classifier and the EM based

semi-supervised naïve Bayes classifier. Then, the design, implementation, and evaluation

of a logistic transformation are presented to correct the un-calibrated probability estimates

in the E-step for EM-based semi-supervised learning. Finally, the benefit of a logistic

transformation for the semi-supervised naïve Bayes classifier is shown, then is compared to

supervised naïve Bayes classifier.

Chapter 6 first presents results for active learning used to reduce the number of unlabelled

patterns presented to the oracle for a naïve Bayes classifier. Visualisation techniques are

then used to demonstrate the exploration guided active learning selection strategy. Finally,

semi-supervised and active learning are combined to improve the performance of the naïve

Bayes classifier as a baseline classifier in the case of small amount of labelled data and large

amount of unlabelled data.

Chapter 7 presents conclusions about the implications of the experimental results and

suggestions for possible future directions.

1.4 Contributions of the thesis

Benchmarking semi-supervised naïve Bayes: An extensive study was performed using

36 discrete and 20 continuous benchmark datasets to evaluate whether using unlabelled
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data through semi-supervised learning can increase the performance of the naïve Bayes

classifier. Previously, Nigam et al. [58] showed that using unlabelled patterns can improve

the naïve Bayes classifier for the 20 newsgroup benchmark dataset. Self-training is a common

technique for semi-supervised learning which iteratively predicts labels for unlabelled pat-

terns. We investigate whether a self-training scheme, that uses the expectation maximization

algorithm, improves the naïve Bayes classifier. Initially, this investigation focused on a

comparative study between standard naïve Bayes and semi-supervised naïve Bayes with

numerous benchmark datasets. After performing this study we found that, surprisingly, using

unlabelled data generally makes the classifier worse. To determine the cause of this, we

investigate further experiments with categorical and continuous features sets. We found that

the violation of the independence assumption of naïve Bayes may degrade classification

performance. There had been no large-scale empirical evaluation of this issue already in the

literature.

List of Publications:

Awat A Saeed, Gavin C Cawley, and Anthony Bagnall. Benchmarking the semi-supervised

naïve Bayes classifier. In Neural Networks (IJCNN), 2015 International Joint Conference on,

pages 1–8. IEEE, 2015.





Chapter 2

Technical background and Literature

Review

In this chapter we will introduce some background material that is used throughout the thesis

to ensure that experiments are unambiguously described by precisely defining the methods

used. In general, we introduce the ideas behind two fields of machine learning that reduce

the amount of labelled patterns required to learn a classifier. These areas are: active [72] and

semi-supervised [94] learning. We start by introducing semi-supervised learning, followed

by the description of simple supervised learning techniques for the Naïve Bayes classifier.

We then provide a brief overview of common approaches and query strategies for active

learning. Subsequently, we present the different performance criteria used to estimate the

generalisation performance of classifier and test whether there is a statistically significant

difference between estimates. Finally, we briefly describe model selection methods used

to choose good hyper-parameter values, which is difficult where there are few labelled

examples.
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2.1 Supervised learning

In a supervised classification setting, we are given labelled training data, D = {(x(i),y(i))}l
i=1,

where x(i) ∈X ⊆Rd is a feature vector describing the ith example, with corresponding

class label y(i) ∈ {1,2, . . . ,C}. The set of training examples, D, that is assumed to be an

independent, identically distributed (iid) sample drawn from a fixed distribution, is used to

obtain an estimate of the model parameters, denoted by θ̂ . The model parameters of the

naïve Bayes (NB) classifier are the class probabilities p(yi|θ), which are also called prior

probabilities, and class conditional probabilities for input features given corresponding class

label p(xi|yi;θ):

p(xi|yi;θ) = p(x(i)1 ,x(i)2 , ...,x(i)d |y
(i);θ),

where x(i)j refers to the value of feature jth for example i and y(i) is the class label for the

same example.

To reduce the complexity of estimating the model parameters, the NB classifier makes the

assumption that the input features are conditionally independent of each other given the class

labels of the example,

p(xi|yi;θ) = p(x(i)1 |y
(i);θ) . p(x(i)2 |y

(i);θ) ... p(x(i)d |y
(i);θ),

=
d

∏
j=1

p(x(i)j |y;θ).

For example, if the input feature vectors are comprised of d binary attributes and the class

labels have binary value. Then, 2 ∗ (2d − 1) parameters must be estimated for learning

Bayesian classifier. This might be impossible when the number of features becomes large

or given a limited amount of the training examples. In this case the NB model assumption

reduces the amount of estimated parameter to (2d).

The independence assumption is the strong assumptions, because it is valid if the occurrence

of features are not dependent on each other which is not true for many states. Therefore, it
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is often unrealistic in the real world, but it simplifies the estimation of p(x|y;θ) from the

training samples. Therefore, it is particularly suitable when the dimensionality of the input

features is so high that a large number of parameters must be estimated [45].

One common way to estimate the model parameters, θ̂ , is via the maximum likelihood

estimate (MLE):

θ̂ = argmax
θ

p(D ;θ).

As we assumed the training data comprise an iid sample, the likelihood given by

p(D ;θ) =
l

∏
i=1

p
(

x(i)j ,y(i);θ

)
,

=
l

∏
i=1

(
p
(

y(i);θ

) d

∏
j=1

p
(

x(i)j |y
(i);θ

))
. (2.1)

The likelihood function is a product of the conditional probability given class labels,

p(xi
j|yi;θ). In a practical application, the likelihood function (2.1) can be used with low di-

mension of the input features to estimate model parameters. In contrast, when the dimension

of the input features vector is high, the product of many of the conditional probability given

class labels may be underflow and tends to zero. In this case, the product of conditional

probability given class is a very small to represent in a floating point number and may produce

an infinite or NaN result [35]. To address this, taking the log of the likelihood function and

using the maximum log-likelihood instead of maximum likelihood to estimate the model

parameters is a common solution,

log p(D ;θ) =
l

∑
i=1

log
(

p(y(i);θ)
d

∏
j=1

p(x(i)j |y
(i);θ)

)
,

=
l

∑
i=1

log p(y(i);θ)+
l

∑
i=1

d

∑
j=1

log p(x(i)j |y
(i);θ). (2.2)

Finally, the derivative of (2.2) wrt θ̂ can be set to zero to estimate the model parameters.

The task of the naïve Bayes (NB) classifier is the prediction of class labels (y) for a new
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pattern (x) by modelling the class conditional probability p(x|y;θ) and the prior probability

p(y;θ), where θ are the model parameters, and then using Bayes’ rule to estimate the

posterior probability of class membership for all classes, p(y|x;θ), after parameter estimation

[46, 38].

p(y = c|x;θ) =
p(x|y;θ) p(y;θ)

∑
C
k=1 p(x|y = k;θ) p(y = k;θ)

. (2.3)

The summation in the denominator is over all class labels k and it is a constant that is used to

normalise the nominator term to one. The test pattern (x) is classified belonging to a single

class by selecting the maximum posterior probability of class membership according to the

maximum a posterior (MAP) classification rule,

ŷ = argmax
c

p(y = c|x;θ). (2.4)

2.1.1 Maximum likelihood estimation for categorical features

The categorical distribution is the appropriate discrete distribution for handling nominal data.

Suppose the features come from a categorical distribution where the jth feature, x j, has (S j)

possible values (states), x j ∈ {1,2, . . . ,S j}. The jth feature of the ith example indicates one

of the (S j) values, i.e. x(i)j = s. The likelihood of observing a state x(i)j = s is denoted by

θ
j

sc = p(x(i)j = s|y(i) = c) which is the probability of feature value x(i)j = s in class c where

∑
S
s=1 θ

j
sc = 1 and πc = p(y = c) is the class prior probability for class c where ∑

C
c=1 πc = 1.

If x j ∼ cat(θ), x j has a categorical distribution which is a discrete probability distribution,

then (2.2) can be written more explicitly in terms of the parameters.
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log p(D ;π,θ) =
l

∑
i=1

C

∑
c=1

φ(y(i) = c) logπc

+
l

∑
i=1

d

∑
j=1

S

∑
s=1

C

∑
c=1

logcat(x(i)j |y
(i);θ

j
sc) ,

=
l

∑
i=1

C

∑
c=1

φ(y(i) = c) logπc

+
l

∑
i=1

d

∑
j=1

S

∑
s=1

C

∑
c=1

φ(x(i)j = s∧ y(i) = c) logθ
j

sc , (2.5)

where

φ(z) =

 1 if z is true

0 otherwise .

The log-likelihood can be maximised with respect to the parameters (θ j
sc,πc) using the

method of Lagrange multipliers (α,β
j

c ) to enforce the constraint that the class prior and

class-conditional probabilities must sum to one [42]. The log-likelihood with Lagrangian

terms is given as follows:

Λ(π,θ ,α,β ) =
l

∑
i=1

C

∑
c=1

φ(y(i) = c) logπc

+
l

∑
i=1

d

∑
j=1

S

∑
s=1

C

∑
c=1

φ(x(i)j = s∧ y(i) = c) logθ
j

sc

−α

( C

∑
c=1

πc−1
)
−

C

∑
c=1

d

∑
j=1

β
j

c

( S

∑
s=1

θ
j

sc−1
)
. (2.6)

In order to obtain the maximum likelihood solution for the parameters, the partial derivatives

can be computed for (2.6) with respect to all the parameters, and each partial derivative set to
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zero:

∂Λ

∂α
= 0⇒

C

∑
c=1

πc = 1,

∂Λ

∂β
j

c
= 0⇒

S

∑
s=1

θ
j

sc = 1,

∂Λ

∂πc
= 0⇒ πc =

∑
l
i=1 φ(y(i) = c)

∑
C
k=1 ∑

l
i=1 φ(y(i) = k)

,

∂Λ

∂θ
j

sc
= 0⇒ θ

j
sc =

∑
l
i=1 φ(x(i)j = s∧ y(i) = c)

∑
S
m=1 ∑

l
i=1 φ(x(i)j = m∧ y(i) = c)

. (2.7)

In some cases the probability estimation suffers from zero probability values when there

are not enough training samples. If a zero conditional probability or zero prior probability

estimate is used while predicting the class labels for the test data, the whole product becomes

zero. Therefore, a small-sample correction can be added into all probabilities to prevent zero

probability values. This technique is known as the Laplace correction [86].

πc =
∑

l
i=1 φ(y(i) = c) + 1

∑
C
k=1 ∑

l
i=1 φ(y(i) = k) + C

,

θ
j

sc =
∑

l
i=1 φ(x(i)j = s∧ y(i) = c) + 1

∑
S
m=1 ∑

l
i=1 φ(x(i)j = m∧ y(i) = c) + S j

. (2.8)

where πc is the class prior probability, and ∑
l
i=1 φ(y(i) = c) is number of patterns in class (c).

θ
j

sc is a class-conditional probabilities, and ∑
l
i=1 φ(x(i)j = s∧ y(i) = c) is number of (s) value

for the feature x j in class (c).

2.1.2 Maximum likelihood estimation for continuous features

Suppose x j is the jth numeric input feature drawn from a Gaussian distribution conditioned

on class labels, x j ∼N (µc,σ
2
c ), with unknown model parameters (mean µ and variance

σ2). The difference between the Gaussian log-likelihood and the categorical log-likelihood
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distribution lies in the p(x(i)j | y(i);θ), because the estimation of the class prior for all distribu-

tions is the same. Then the log-likelihood (2.2) without class prior probability for Gaussian

distribution can be written as follows.

log p(D ; µ,σ2) =
l

∑
i=1

C

∑
c=1

d

∑
j=1

logN
(

x(i)j

∣∣y(i); µ jc,σ
2
jc

)
,

=
l

∑
i=1

C

∑
c=1

d

∑
j=1

log
(

1

(2π)
1
2 |σ2

jc|
1
2

exp
(
− 1

2

(x(i)j −µ jc)
2

(σ2
jc)

))
. (2.9)

To obtain the maximum likelihood estimate in closed form, the partial derivatives can

be computed for (2.9), with respect to all the parameters (µ jc,σ
2
jc), and then each partial

derivative is set to zero:

∂Λ

∂ µ jc
= 0⇒ µ jc =

∑
l
i=1 x(i)j

lc
,

∂Λ

∂σ2
jc

= 0⇒ σ
2
jc =

∑
l
i=1(x

(i)
j −µ jc)

2

lc
, (2.10)

where lc = ∑
l
i=1 φ(y(i) = c) is number of patterns in class (c).

2.2 Semi-Supervised learning

The goal of semi-supervised learning is to improve the performance of supervised learning

methods by utilising unlabelled data. The labelled data can be used to learn a mapping

from the input features to the desired outputs in supervised learning. However, supervised

learning cannot learn a mapping from unlabelled data because unlabelled data does not

provide corresponding target labels. Normally, unlabelled data provide knowledge about

the unconditional distribution of the input features, x, denoted by p(x), i.e. if we have an

infinite amount of the unlabelled data then the density of the unlabelled data can be known,

which is the data distribution, p(x), and should be beneficial for the inference of the posterior



22 Technical background and Literature Review

probability of class membership, p(y|x). If two points xi and x j in a high density region are

close, then so should be the corresponding outputs yi and y j.

The essential assumption of semi-supervised learning is that the distribution of the features

of labelled and unlabelled data are relevant for the classification problem. If this assumption

about the distribution holds, then the unlabelled data can improve the performance of

supervised learning. Thus, learning from unlabelled data is achieved by matching the

assumptions in the classifier with the actual class structure. If this assumption does not hold

the unlabelled data will not improve the classification performance or may even degrade

classification performance.

Beside this fundamental assumption, semi-supervised algorithms typically also require three

other assumptions in order to use the unlabelled data effectively and improve classification

performance. Therefore, semi-supervised algorithms use one or more of the following

assumptions. In addition, these three fundamental assumptions are generally grouped under

the main assumption known as the semi-supervised smoothness assumption [15]:

Cluster Assumption: the cluster assumption states that if the patterns are located in the

same cluster, they are likely to have similar labels, and hence the value of the predicted

class probabilities for unlabelled data from the same cluster should be close. In general, a

cluster is a set of patterns inside a group such that each two similar (close) patterns, in terms

of similarity measure such as Euclidean distance measure, passes through a high density

region of patterns. The semi-supervised classifiers used in this thesis are based on the cluster

assumption.

In order to show how the cluster assumption can be beneficial, we illustrate the simple

Gaussian Mixture Models in Figure 2.1 where it appears that there are two clusters of data.

First, a small amount of labelled data are used to estimate a model parameters such that

each component contains three patterns as shown in Figure 2.1a. As can be seen, the small

amount of patterns is confusing the classifier because they are far from the centre of the
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components. Then, we add the large amount of unlabelled data for both components, as

shown in Figure 2.1b. The unlabelled data can adjust both Gaussian components because,

with the unlabelled data we can optimise model parameters such that the means of each

Gaussian are equivalent to the centre of the unlabelled data, shown in Figure 2.1c. Therefore,

the decision boundary is drawn in the middle to separate the two classes.

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

decision boundary

(a)

-8 -6 -4 -2 0 2 4 6 8

-8

-6

-4

-2

0

2

4

6

8

(b)

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

decision boundary

(c)

Fig. 2.1 (a) Gaussian Mixture Models using only a small amount of labelled data (b) labelled
and unlabelled data for both components (c) Gaussian Mixture Models using labelled and
labelled data that impact the decision boundary Zhu et al. [94]

This clear example shows that the unlabelled data give information to the classifier about

the cluster structures of the data and then labels the patterns inside each group as the same
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class according to the cluster assumption. Therefore, the unlabelled data can improve the

classification performance.

In contrast, if the assumption does not hold the unlabelled data will not improve classifica-

tion performance or using unlabelled data might degrade the classification performance. For

example, Figure 2.2 shows a binary classification problem for Gaussian synthetic datasets

such that each Gaussian consists of two clusters of data. This dataset is not generated from

two Gaussian in reality, therefore, the decision boundary is a horizontal dashed line, as can

be seen in Figure 2.2a. If we assume each cluster represented one of the class then the model

gets good fit, but the assumption is wrong, as can be shown from Figure 2.2b.
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Fig. 2.2 (a) Synthetic dataset with binary classes in four clusters (b) the model has a good fit,
but the assumptions of the model are wrong [93]

Low Density Separation Assumption: this assumption states that the class decision

boundary should pass through a low density region of the input space. Both the cluster and

low density separation assumption are closely related to each other. Figure 2.3 illustrates this

relation. The cluster assumption is an equivalent assumption to the low density separation

assumption if the class separation boundaries should lie in a low density region as shown in

Figure 2.3a. In this case, clearly if one assumption is holding for a semi-supervised classifier
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then the other assumption will also hold. However, the decision boundary in Figure 2.3b

passes through a high-density region in which the low density separation assumption does

not hold but the cluster assumption does still hold.
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Fig. 2.3 (a) The decision boundary lies in a low density region. (b) The decision boundary
lies in a high density region

Manifold assumption: This assumption states that high-dimensional data lie on a low-

dimensional manifold in the feature space. Using the manifold (low dimension) representation

instead of the original structure of the data (high dimension) is useful to reduce the number of

dimensions and may improve system performance. Therefore, this assumption is beneficial

for a dimensionality reduction. However, if the manifold is the same as the high-dimensional

region regarding dimensionality, then the manifold assumption is equivalent to the smoothness

assumption, Figure 2.4.
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Fig. 2.4 (a)The two moon synthetic dataset with 200 patterns in a two-dimensional space,
198 unlabelled patterns and two labelled patterns belong to two classes. Each of the blue
and red classes contain one labelled pattern and the green unlabelled pattern is the selected
pattern to be labelled. (b) Constructing a graph by propagating labels over the graph using
both labelled and unlabelled patterns. Similar patterns of the labelled and unlabelled data are
connected and they have similar labels.

Consider the two moon synthetic benchmark problem in Figure 2.4 that has one labelled

pattern in each class and the rest are unlabelled. in Figure 2.4a, without the graph, the

unlabelled pattern that is represented by green dot, would be put on the side of the blue class

rather than red class according to Euclidean distance measure. However, with the graph

methods in Figure 2.4b that both the labelled and unlabelled data are taken to construct a

graph and they represented as nodes in a graph. Then, a similarity matrix is used to connect

the graph and the information should propagate from labelled through the unlabelled patterns

using indirect graph methods. In this case, clearly a graph would put the unlabelled green

pattern on the side of the red class because the unlabelled patterns are taken into account.

There are many unlabelled patterns that connect the unlabelled green pattern to the red

labelled patterns but there is a big gap that disconnect the unlabelled green pattern from the

blue class. The intuition this graph captures is similar that patterns on the manifold should

have similar labels.
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In some cases, both manifold and cluster assumption are correct but it is not necessary for

the cluster assumption to be Gaussian, Figure 2.5.
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(a) the unlabelled data with two labelled patterns
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(b) the two clusters shown by the contours.

Fig. 2.5 Clusters in the data set of concentric clusters.

A number of semi-supervised learning algorithms, which typically make one or more of

the above assumptions, have been developed in order to help in learning from a small amount

of labelled data and potentially a large amount of unlabelled data. In this chapter, several

popular semi-supervised learning methods are described.

2.2.1 Self-training:

Self-training [71, 28, 1] is an iterative and single view algorithm, which consists of one

classifier. A single-view means that the algorithm use the whole set of input features. It starts

by using the labelled training set to build an initial classifier. Afterwards, the classifier is used

to classify (predict class labels for) a larger set of unlabelled patterns. The most confidently

classified unlabelled patterns, together with their predicted labels, are added to the training

set. The classifier is then re-trained and the procedure repeated until no more unlabelled

patterns are available or stopping criteria are satisfied [93]. The self-training procedure is

summarised in Algorithm 1.
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Predicting labels for unlabelled patterns in the self-training process is based on confidence

Algorithm 1 Self-training
1: Inputs:

Xl ←
{
(x(i),y(i))

}
l

i=1

Xu←
{

x(i)
}

l+u
i=l+1

L : learning algorithm
2: Onputs:

learn hypothesis f
3: Methods:

t← 0
ft ← L(Xl)

4: while Xu ̸= φ do
5: Xs← φ

6: for all i such that X (i) ∈ Xu do
7: Z(i)← ψ

(
ft(X (i))

)
where ψ(.) is step function

8: ψ(v)←
{

1 v true
0 v f alse

9: Xs←
{
(X (i),Z(i))

} l+u

i=l+1
10: end for
11: Xs← top K most confident (Rank (Xs))
12: Xu← Xu |X ′s
13: Xl ← Xl υ X ′s
14: t← t +1
15: ft ← L(Xl)
16: end while

predictions therefore the selection confidence measure is important to the performance of

self-training. The way in which the confidence of predictions is measured, is dependent

on the type of classifier used. Probabilistic classifiers such as naïve Bayes are based on

the output probability in prediction, i.e. the most confident patterns are the patterns whose

posterior probability of class membership are closest to 1 or 0 for a binary classification

problem. However, non-Probabilistic classifiers such as K nearest neighbour use distance

metric as the measure of confidence. Triguero et al. [81] used the nearest neighbour classifier

as the base learner, so they used a distance metric as the measure of confidence. The most

confident unlabelled instance is defined as the closest unlabelled pattern to any labelled one.
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Self-training is also known as self-teaching because the classifier uses its own predictions

to teach itself based on the high confidence prediction. Thus, the self-training algorithm

assumption is that the classifier’s own predictions tend to be correct at each iteration of the

training procedure to lead itself to better results [26].
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Fig. 2.6 Self-training without outliers and the assumption is correct.
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Figure 2.6 is an illustrative example to show the overall view of the self-training al-

gorithm and explain their steps in Algorithm 1. The self-training algorithm is run on a

two-dimensional binary classification problem, which is the two moon synthetic dataset,

with the k-nearest-neighbour KNN classifier as the base learner, where k = 1. Figure 2.6

illustrates the way labels propagate 1-nearest-neighbour starting from one labelled pattern in

each class. Figure 2.6a shows the original dataset consisting of 200 patterns, two patterns are

labelled and the rest are unlabelled. The labelled training patterns are depicted as a red and

blue classes, and the unlabelled patterns as green. In each iteration, one unlabelled pattern

is assigned to the class of labelled pattern that is closest (in each iteration, self-training can

predict the labels for one nearest pattern) and then add it to the labelled training patterns to

retrain the classifier. Figure 2.6b to 2.6d shows three iterations where self-training can predict

the labels for all unlabelled patterns successfully. This is because the model assumption is

valid for this dataset [93].

In contrast, wrongly labelled patterns during self-training process can lead to a degradation in

performance. This shows that in the case of the outliers, the self-training would be sensitive

[75]. Figure 2.7 shows a different sequence of iterations that a self-training approach based on

the 1-nearest-neighbour classifier leads to propagating incorrect information after introducing

a single outlier pattern for the previous dataset shown in Figure 2.6. This outlier breaks the

well-separated cluster assumption, in that it falls between the two classes and far from the

centre of any of the clusters [93].

The self-training algorithm is very sensitive to the performance of the initial classifier that

may produce an early poor initial model due to limited training data. Then, the classifier can

reinforce the poor initial model by generating incorrect labels for the unlabelled data, i.e. if

we add a misclassified unlabelled pattern in an iteration during the self-labelling process,

it makes the algorithm worse in performance rather than better. Therefore, in some cases,

self-training may try to avoid this by ignoring these unlabelled patterns if the prediction
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confidence drops below a threshold.
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Fig. 2.7 Self-training with outliers then the model assumption would be incorrect [93]
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The first step towards improving classification performance using unlabelled data is the

self-training algorithm that uses both labelled and unlabelled data [71, 28, 1]. Although these

methods have been used for several decades, they still remain effective in machine learning

research, especially when collecting a large amount of labelled data is difficult. Self-training

has been used in several practical applications such as natural language processing tasks. For

example, Yarowsky [87] applied the self-training technique to word sense disambiguation,

and Riloff et al. [67] applied it to identify subjective sentences and distinguish then from

objective sentences. Yarowsky [87] is an early self-training application, which addressed the

word sense disambiguation problem in the context. More specifically, Yarowsky [87] applied

self-training to translate the context of written words when they have different meanings.

For example, whether “crane" can mean a bird or a machine. Furthermore, using only two

labelled patterns with unlabelled patterns to train a classifier can lead to higher classification

performance because words around the target word provide a strong sense as to its meaning.

In order to identify the subjective nouns automatically, Riloff et al. [67] applied the self-

training algorithm to improve the naïve Bayes classifier. The main working principle is

the use of unlabelled patterns to learn sets of subjective nouns through two bootstrapping

algorithms. The first algorithm was Meta-bootstrapping and the second was the Basilisk

algorithm. These two algorithms were designed for learning semantic words such as apple

is a fruit. The Meta-Bootstrapping and Basilisk algorithms start with the non-annotated

texts and seed words that are semantic in nature. Both start with the extraction of patterns

as follows; the former extracts patterns using the syntactic templates and saves the top-five

best nouns phrases only. The latter algorithm extracts patterns to build a semantic dictionary.

Additionally, Basilisk can learn more than a 1000 subjective nouns. Thus, self-training paved

the way to identifying subjective nouns.

The self-training algorithm was brought to the machine translation application by Rosenberg

et al. [68]. They applied self-training to object detection systems from images that specifically
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targeted human eye detection. In this application, the authors use an object detector based on

the Nearest Neighbour classifier. The results obtained showed that using unlabelled patterns

can improve the performance of the Nearest Neighbour classifier where the unlabelled data

were selected by an independent measure rather than the classifier confidence. This suggests

that the low density separation assumption is not satisfied for object detection and other

approaches may work better.

One of the drawbacks of the self-training is apparent when noisy patterns are classified as the

most confident patterns. Thus, the performance of the classifier would be worse when these

noisy patterns are added to the labelled training patterns and then used them for training

model. Li and Zhou [48] modified the self-training approach and they showed that the quality

of the initial labelled patterns is important. If the algorithm starts with poor quality labelled

data then the final prediction will also be distorted, in this case the self-training algorithm

may degrade the performance of the classifier rather than improving it. Therefore, Li and

Zhou [48] added some statistical filters to the self-training algorithm so that a new algorithm

provides better classification performance. A new derived algorithm from self-training is

self-training with Editing (SETRED). Nevertheless, this method does not perform well in

many domains. The aim of adding the statistical filters is generally to remove the noisy

patterns. However, with removal of potentially noisy patterns may remove informative

patterns as well.

Guo et al. [33] illustrate an intensive benchmarking study of self-training techniques based on

a range of different classifiers. In this study, the author considers 26 UCI Benchmark datasets

and applied six different Bayesian classifiers, NB, NBTree, DNB, HNB, TAN, and HGC.

They also used TSVM and graph-based semi-supervised learning methods as well. However,

they obtained results that show that the performance of self-training under-performs that of

the supervised classifier that use only the labelled data.

Tanha et al. [79] reached a similar result and concluded that, using unlabelled data through
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a self-training algorithm, does not improve the performance of a base classifier when the

decision tree is used as base classifier. The best explanation for the poor results obtained

by self-training algorithm is that the decision tree classifier does not compute reliable prob-

ability estimates for their predictions. However Tanha et al. [79] shows that, a sequence

of modifications to the decision tree classifier such as the Laplace correction, grafting and

NBTree leads to an improvement in the probability estimates. Thus, using unlabelled data

through the self-training, based on a new version of the decision tree classifier, can improve

the classification performance.

2.2.2 Semi-supervised learning with generative mixture models

Semi-supervised learning of mixture models is another early semi-supervised method that

uses probabilistic generative models, p(x,y) = p(x|y)p(y), when both labelled and unlabelled

patterns are available. This method attempts to estimate the class conditional densities p(x|y)

by making the assumption that both labelled and unlabelled data are drawn from a mixture

distribution.

In semi-supervised learning there are no true class labels for unlabelled data, so the generative

model treats them as a hidden variable and employs the Expectation-Maximization (EM)

algorithm to maximize the likelihood of the model parameters on both labelled and unlabelled

data [24]. The procedure of labelling the unlabelled data in semi-supervised learning for

mixture models is unlike self-training 2.2.1, which assigns discrete classification label (hard

self-training) to the most confident unlabelled data. In semi-supervised learning for mixture

models, the EM algorithm assigns probabilistic labels to the unlabelled data. Therefore, the

EM algorithm is recognised as a form of soft self-learning [93]. The detailed procedure of

semi-supervised learning with generative models is given in Algorithm 2.
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Algorithm 2 The EM Algorithm for Semi-Supervised Classifier
1: Inputs:

Xl ←
{
(x(i),y(i))

}
li=1

Xu←
{

x(i)
}

l+u
i=l+1

t← 0
2: Initialise:

θ̂ (0)← argmaxθ P(Xl,Yl | θ)P(θ)
3: while classifier parameters improve as measured by the change in l(θ | Xl,Yl,Xu) : do
4: E-Step use the current classifier, θ̂ (t), to find γik← P(yi = k | xu;θ), equation 2.14
5: M-Step re-estimate the classifier, θ̂ (t+1)← argmaxθ P(Xl,Yl,Xu | θ (t))P(θ (t))
6: t← t +1
7: Output a classifier, θ̂ (t), that takes unlabelled data and predicts a class label.
8: end while

The EM algorithm starts with an estimate for the initial vector of model parameters, using

the labelled data only, and then iterates over the following two steps until it converges to a

stable solution and set of predicted labels for the unlabelled data. The EM algorithm first

estimates the expectations of the missing labels (latent variables) for the unlabelled instances

in the E-step and assigns probabilistic labels to the unlabelled data. The M-step estimates the

new model parameters using all of the labelled and unlabelled data, and treats the expected

values of the latent variable that were calculated in the E-step as the true class labels for the

unlabelled data. If the model assumptions are correct, using a large amount of unlabelled

data might improve the classifier’s performance. Otherwise, unlabelled data may not help in

improving the classifier’s performance [13, 66], as it is shown in Figure 2.1 and 2.2.

Mixture models use different methods to fit the data with the EM algorithm. For example, in

the image classification problem investigated by Shahshahani et al. [75], the authors assume

that the data come from a Gaussian mixture model, so, they assume that p(x|y) is a Gaussian

distribution. Similarly, Inoue and Ueda [37] used Hidden Markov Models for the speech

recognition and then Nigam et al. [59] applied the mixture multinomial naïve Bayes model

to the text classification problem, because p(x|y) is then distributed according to the mixture

multinomial. Nigam et al. [59] describes a successful application of the EM algorithm,
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applied to maximise the likelihood for both the labelled and unlabelled patterns. Similarly,

both Fergus et al. [27] and Baluja [7] used the EM algorithm for learning of object categories

and face orientation discrimination, respectively. If the model assumptions are violated, then

using the unlabelled data might degrade the performance of a classifier [18, 21]. Therefore,

valid model assumptions are required in order to apply soft self-training successfully. This

point was experimentally shown by Saeed et al. [70], using large scale real and synthetic

benchmark datasets. When only a few labelled patterns with considerable unlabelled data

are available the majority of the data determining EM’s parameter estimates come from the

unlabelled set. A possible solution for this issue is down-weight the unlabelled data, which is

used by Nigam [60] and Callison-Burch et al. [12].

2.2.3 The semi-supervised naïve Bayes classifier

In Section 2.1, the supervised naïve Bayes (NB) classifier with fully labelled data was

described. However, in some cases the training data D consists of both labelled, Dl , and

unlabelled, Du instances, D = Dl ∪ Du. Applying the NB classifier with both types of

data is called semi-supervised naïve Bayes (SSNB). Considering the labelled data Dl ={
(x(i),y(i))

}l

i=1
and unlabelled data is Du =

{
(x(i))

}l+u

i=l+1
. Then, the likelihood function is

defined as:

p(D ;θ) = p(Dl;θ) × p(Du;θ),

=
l

∏
i=1

(
p(y(i);θ)

d

∏
j=1

p(x(i)j |y
(i);θ)

)
,

×
l+u

∏
i=l+1

d

∏
j=1

p(x(i)j ;θ). (2.11)

The likelihood for the unlabelled data is the essential difference between the supervised

and semi-supervised log likelihoods. The likelihood for unlabelled data is the marginal
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probability p(x(i)j ;θ), as we do not know to which class they belong. To address this problem

we add the latent variables z(i), where i = l +1, l +2, ..., l +u, for the unlabelled data and try

to maximise the semi-supervised likelihood.

p(D ;θ) =
l

∏
i=1

(
p(y(i)|θ)

d

∏
j=1

p(x(i)j |y
(i);θ)

)

×
l+u

∏
i=l+1

( C

∑
c=1

p(z(i) = c;θ)
d

∏
j=1

p(x(i)j |z
(i) = c;θ)

)
. (2.12)

Instead of maximising the likelihood, p(D ;θ), we work with log-likelihood log p(D ;θ).

log p(D ;θ) =
l

∑
i=1

log
(

p(y(i);θ)
d

∏
j=1

p(x(i)j |y
(i);θ)

)
,

+
l+u

∑
i=l+1

log
( C

∑
c=1

p(z(i) = c;θ)
d

∏
j=1

p(x(i)j |z
(i) = c;θ)

)
. (2.13)

When there are latent variables (no labels for unlabelled data) in the model, it is no longer

possible to find a closed form solution for the MLE, because the summation inside the log

is hard to maximise by setting it partial derivatives to zero. Therefore, we use an iterative

statistical technique known as Expectation Maximisation (EM). This algorithm overcomes

this problem; it can find a local maximum or saddle point of the likelihood by maximizing a

lower bound on the likelihood for unlabelled data instead of maximizing likelihood itself.

The EM algorithm starts with an estimate for the initial vector of parameters, using the

labelled data only, via the standard NB, and then iterates over the following two steps until

it converges to a stable solution and set of labels for the data. The EM algorithm first

estimates the expectations of the missing labels (latent variables) for the unlabelled instances

in the E-step, qic = p(z(i) = c|x(i)j ;θ), where i = (l+1, ..., l+u) and 0≤ qic ≤ 1 and assigns

probabilistic labels to the unlabelled data.

qic =
p(z(i) = c;θ)∏

d
j=1 p(x(i)j |z(i) = c;θ)

∑
C
k=1 p(z(i) = k;θ)∏

d
j=1 p(x(i)j |z(i) = k;θ)

. (2.14)
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Note that for the labelled data we already know to which class each pattern belongs then

qic = 1 if y(i) = c and qic = 0 otherwise. In addition, the qic satisfy the summation constraint

∑
C
c=1 qic = 1. In order to obtain the lower bound for unlabelled data we multiply and divide

log p(Du;θ) by qic,

log p(Du;θ) =
l+u

∑
i=l+1

log
(

p(z(i) = c;θ)
d

∏
j=1

p(x(i)j |z
(i) = c;θ)

)
qic

qic
,

=
l+u

∑
i=l+1

log
C

∑
c=1

qic

( p(z(i) = c;θ) ∏
d
j=1 p(x(i)j |z(i) = c;θ)

qic

)
,

=
l+u

∑
i=l+1

logEqic

 p(z(i) = c;θ) ∏
d
j=1 p(x(i)j |z(i) = c;θ)

qic

 . (2.15)

The lower bound for unlabelled data is obtained via Jensen’s inequality [59] E[log(X)] ≤

log(E[X ]),

l+u

∑
i=l+1

logEqic

 p(z(i) = c;θ) ∏
d
j=1 p(x(i)j |z(i) = c;θ)

qic

 ,

≥
l+u

∑
i=l+1

Eqic

log
p(z(i) = c;θ) ∏

d
j=1 p(x(i)j |z(i) = c;θ)

qic

 . (2.16)
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we substitute the right hand side of the expression (2.16), instead of the second term in (2.13)

and denote by ψ(θ),

ψ(θ) =
l

∑
i=1

log
(

p(y(i);θ)
d

∏
j=1

p(x(i)j |y
(i);θ))

)

+
l+u

∑
i=l+1

Eqic

log
p(z(i) = c;θ) ∏

d
j=1 p(x(i)j |z(i) = c;θ)

qic

 ,

=
l

∑
i=1

qic log
(

p(y(i);θ)
d

∏
j=1

p(x(i)j |y
(i);θ)

)

+
l+u

∑
i=l+1

C

∑
c=1

qic log
( p(z(i) = c;θ) ∏

d
j=1 p(x(i)j |z(i) = c;θ)

qic

)
,

=
l

∑
i=1

qic log
(

p(y(i);θ)
d

∏
j=1

p(x(i)j |y
(i);θ)

)

+
l+u

∑
i=l+1

C

∑
c=1

qic log
(

p(z(i) = c;θ)
d

∏
j=1

p(x(i)j |z
(i) = c;θ)

)

−
l+u

∑
i=l+1

C

∑
c=1

qic logqic,

=
l+u

∑
i=1

C

∑
c=1

qic log
(

p(y(i) = c;θ)
d

∏
j=1

p(x(i)j |y
(i) = c;θ)

)

−
l+u

∑
i=l+1

C

∑
c=1

qic logqic, (2.17)

where

y(i) =

 y(i) : i = 1, ..., l

z(i) : i = l +1, ..., l +u .

The M-step estimates the new model parameters via the partial derivatives for (2.17) using

all of the labelled and unlabelled data. In this step, the expected values of the latent variable

that is calculated in the E-step treats as the true class labels for the unlabelled data. We can

show how to estimate the new model parameters as follows.
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Maximum likelihood estimation for the categorical distribution

If x j ∼ cat(θ) then (2.17) can be written in terms of the parameters with a Lagrangian term,

Λ(π,θ ,α,β ) =
l+u

∑
i=1

C

∑
c=1

qic logπc

+
l+u

∑
i=1

d

∑
j=1

S

∑
s=1

C

∑
c=1

qicφ(x(i)j = s) logθ
j

sc

−
l+u

∑
i=l+1

C

∑
c=1

qic logqic−α

( C

∑
c=1

πc−1
)

−
C

∑
c=1

d

∑
j=1

β
j

c

( S

∑
s=1

θ
j

sc−1
)
. (2.18)

To obtain the maximum likelihood estimate the partial derivatives can be computed for (2.18)

with respect to all the parameters (πc,θ
j

sc,α,β
j

c ) and set to zero. The maximum likelihood

estimate for α and β
j

c is same as supervised NB (2.7):

∂Λ

∂πc
= 0⇒ πc =

∑
l+u
i=1 qic

∑
C
k=1 ∑

l+u
i=1 qik

,

∂Λ

∂θ
j

sc
= 0⇒ θ

j
sc =

∑
l+u
i=1 qicφ(x(i)j = s)

∑
S
m=1 ∑

l+u
i=1 qicφ(x(i)j = m)

, (2.19)

where the summation in the denominator is over all possible values (states) of m, for each

feature x j. The Laplace correction for the parameters, (θ j
sc,πc), is as follows:

πc =
∑

l+u
i=1 qic + 1

∑
C
k=1 ∑

l+u
i=1 qik + C

,

θ
j

sc =
∑

l+u
i=1 qicφ(x(i)j = s) + 1

∑
S
m=1 ∑

l+u
i=1 qicφ(x(i)j = m) + S j

. (2.20)

Maximum likelihood estimation for the Gaussian distribution

The log-likelihood (2.17) without class prior probability for Gaussian distribution in SSNB

can be written as follows if X ∼N (µ,σ2), because the only difference with Categorical
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log-likelihood in p(x(i)j |y(i);θ):

log p(D ; µ,σ2) =
l+u

∑
i=l+1

C

∑
c=1

d

∑
j=1

qic log
(

1

(2π)
1
2 |σ2

jc|
1
2

exp
(
− 1

2
(x(i)j −µ jc)

2(σ2
jc)
−1))

−
l+u

∑
i=l+1

C

∑
c=1

qic logqic. (2.21)

The closed form maximum likelihood estimate can be obtained by computing the partial

derivatives for (2.21) with respect to all the parameters (µ jc,σ
2
jc), and then setting each

partial derivative to zero:

∂Λ

∂ µ jc
= 0⇒ µ jc =

∑
l+u
i=1 qic x(i)j

∑
l+u
i=1 qic

,

∂Λ

∂σ2
jc

= 0⇒ σ
2
jc =

∑
l+u
i=1 qic(x

(i)
j −µ jc)

2

∑
l+u
i=1 qic

. (2.22)

The general theory of the expectation-Maximization algorithm

In the previous Section, the derivation of semi-supervised learning for the NB classifier,

based on the EM algorithm, was presented. The EM algorithm was applied with Gaussian

and categorical mixture model. In this section we give the derivation of the general form

of the EM algorithm and we show how it is applied to parameter estimation by maximum

likelihood with latent variables. In this section we discuss Jensen’s inequality as well, which

is important part for this section.

The EM Algorithm

The Expectation-Maximization (EM) Algorithm was introduced by Dempster et al. [24].

The EM Algorithm is an efficient iterative statistical procedure for finding a local maximum

likelihood estimate (MLE) or maximum a posteriori (MAP) estimate of the parameters of an

underlying distribution in the presence of latent (missing or hidden) variables. The algorithm
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starts by initializing the parameters, θ̂ 0, and it then iteratively alternates between two steps,

called the expectation step (E-step) and the maximization step (M-step), respectively.

In the E-step, the values of the latent variables are estimated given the complete data and

current estimate of the model parameters, i.e. the expected value of the complete log likeli-

hood function is computed, which is called the q-function, using the complete data where the

expectation is taken w.r.t. the computed conditional distribution of the latent variables given

the current settings of parameters θ , θ̂ . The M-step, re-estimates all the parameters θ̂ t+1 to

maximize the new, q-function. In this step, the estimates of the latent variables from the

E-step are treated as the actual values, so it is assumed that the values of the latent variables

are known.

These two updates are iterated until the log likelihood converges. The EM algorithm is a

hill-climbing approach, thus it cannot guarantee to reach global maxima. When there are

multiple maxima and it starts close to the right hill, it might reach global maxima. However,

it is often hard to start with right hill if there are multiple local maxima.

Derivation of the EM Algorithm

Assume we are given the unlabelled data an Du =
{
(xi)
}l+u

i=l+1 where xi ∈X ⊆Rd represents

a feature vector describing the ith pattern and the log-likelihood for incomplete data is the

marginal probability p(xi;θ). Here, to address this problem we add the latent (hidden)

variable zi which represents a corresponding unobserved variables for xi. Then, the log-

likelihood function is given by:

L(θ) = log p(Du;θ)

=
l+u

∑
i=l+1

log p(xi;θ)

=
l+u

∑
i=l+1

log p(xi,zi;θ) (2.23)
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We would like to choose the parameters, θ , to maximise the log-likelihood function of

the (2.23). Since zi is a hidden variable, finding the maximum log-likelihood estimate of

the parameters θ directly is difficult. However, if zi were known then it would be easy to

maximise the log-likelihood. It attempts to find a lower bound on the log-likelihood function

(E-step) and then maximise that lower bound (M-step) iteratively as follows:

Suppose for each i, we have some probability distribution p(zi|xi;θ) for the latent variable

zi, where p(zi|xi;θ) > 0 and ∑z p(zi|xi;θ) = 1. Then multiplying and dividing inside the

summation of the right-hand side (2.23) by p(zi|xi;θ), gives

L(θ) =
l+u

∑
i=l+1

log∑
zi

p(zi|xi;θ)
p(xi,zi;θ)

p(zi|xi;θ)
. (2.24)

It is difficult to deal with this expression which involves the logarithm of a sum. So, Jensen’s

inequality is applied to this expression to replace with a sum of the logarithm.

Jensen’s inequality

Let f (x) = log(x) be a real valued function defined on an interval I=[x1,x2]. the function f

is said to be a concave function on I ∀x ∈R if f ”(x)≤ 0. Similarly, f is said to be strictly

concave if f ”(x)< 0. Figure 2.8 shows a example of a concave function.

Fig. 2.8 The log(x) function is a concave on [x1,x2] if λ log(x1) + (1− λ ) log(x2) ≤
log(λx1 + (1−λ )x2)) where λ ∈ [0,1] Ng et al. [56]
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Theorem 1: Let f be a concave function defined on an interval I. If x1,x2, ...,xm ∈ I and

λ1,λ2, ...,λm ≥ 0 then;

m

∑
i=1

λi f (xi) ≤ f
( m

∑
i=1

λixi

)
where

m

∑
i=1

λi = 1 (2.25)

The result above can be adapted to our purposes by defining f (x) = log(x), which is a

concave function as shown in Figure 2.8, to obtain

m

∑
i=1

λi log(xi) ≤ log
( m

∑
i=1

λixi

)
(2.26)

Now Jensen’s inequality can be applied to (2.24) by introducing λi, with p(zi|xi;θ), to replace

the logarithm of a sum with a sum of logarithms, This gives;

L(θ) ≥
l+u

∑
i=l+1

∑
zi

p(zi|xi;θ) log
p(xi,zi;θ)

p(zi|xi;θ)
, (2.27)

Equation (2.27) gives the lower bound on the log-likelihood function, denoted by L (θ).

The EM algorithm in this step could maximise the expected log-likelihood function by

maximising the L (θ).

L (θ) =
l+u

∑
i=l+1

∑
zi

p(zi|xi;θ) log
p(xi,zi;θ)

p(zi|xi;θ)
,

=
l+u

∑
i=l+1

[∑
zi

p(zi|xi;θ) log p(xi,zi;θ) − ∑
zi

p(zi|xi;θ) log p(zi|xi;θ)]. (2.28)

The second term has not affected the optimisation because it is constant with respect to θ .

Thus, we deal only with first part of L (θ), which is the expected log-likelihood function.



2.2 Semi-Supervised learning 45

Using the definition E[ f (x)] = ∑x p(x) f (x)],

L (θ) =
l+u

∑
i=l+1

[∑
zi

p(zi|xi;θ) log p(xi,zi;θ)],

=
l+u

∑
i=l+1

[Ezi|xi;θ log p(xi,zi;θ)]. (2.29)

To make the inequality hold with equality, the EM algorithm uses the initial parameter θ t

to fit the lower bound and iteratively maximise the lower bound L (θ). The process of

maximizing L(θ) is the same as maximizing the difference in the log likelihood between

iterations,

L(θ)−L(θ t) =
l+u

∑
i=l+1

[log∑
zi

p(zi|xi;θ
t)

p(xi,zi;θ)

p(zi|xi;θ t)
− log p(xi;θ

t)],

≥
l+u

∑
i=l+1

[∑
zi

p(zi|xi;θ
t) log

(
p(xi,zi;θ)

p(zi|xi;θ t)

)
− log p(xi;θ

t)],

=
l+u

∑
i=l+1

∑
zi

p(zi|xi;θ
t) log

(
p(xi,zi;θ)

p(zi|xi;θ t)p(xi;θ t)

)
,

≡ △(θ |θ t). (2.30)

△(θ |θ t) is the Kullback-Leibler divergence which is a measure of difference between two

probability distribution. Moving L(θ t) to the other side, then we get

L(θ) ⩾ L(θ t) + △(θ |θ t) = l(θ |θ t). (2.31)

The l(θ |θ t) is the lower bound of the log-likelihood function everywhere but at that value of

θ t , is equal to L(θ) if we show that△(θ |θ t) = 0. This is normally what would happen if the
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two function were exactly equal at θ = θ t ,

△(θ t |θ t) =
l+u

∑
i=l+1

∑
zi

p(zi|xi;θ
t) log

(
p(xi,zi;θ t)

p(zi|xi;θ t)p(xi;θ t)

)
,

=
l+u

∑
i=l+1

∑
zi

p(zi|xi;θ
t) log

(
p(xi,zi;θ t)

p(xi,zi;θ t)

)
,

=
l+u

∑
i=l+1

∑
zi

p(zi|xi;θ
t) log(1),

= 0. (2.32)

Now the goal is finding the value of θ that maximises L(θ). Increasing the value of l(θ |θ t)

would guarantee to an improvement in the L(θ), as a result, at each iteration the EM

algorithm tries to select the θ that maximises l(θ |θ t). The next update of the parameter can

be computed as follows;

θ
t+1 = argmax

θ

{
l(θ |θ t)

}
,

= argmax
θ

{
L(θ t) + △(θ |θ t)

}
,

= argmax
θ

{
L(θ t) +

l+u

∑
i=l+1

∑
zi

p(zi|xi;θ
t) log

(
p(xi,zi;θ t)

p(zi|xi;θ t)p(xi;θ t)

)
)

}
.(2.33)

The constant term could be dropped because it does not have any affect the procedure of

maximisation which is respect to the θ ,

θ
t+1 = argmax

θ

{ l+u

∑
i=l+1

∑
zi

p(zi|xi;θ) log p(xi,zi;θ)

}
,

= argmax
θ

{ l+u

∑
i=l+1

Ezi|xi;θ log p(xi,zi;θ)

}
. (2.34)

The EM algorithm tries to control the lower bound of log-likelihood function with respect to

p(zi|xi;θ) in the M-step and maximise it with respect to θ in the E-step. For this reason it

can be viewed as a coordinate ascent [55].
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2.2.4 Co-training

Another popular algorithm for semi-supervised learning is co-training, introduced by Blum

and Mitchell [11]. In the Co-training algorithm, the features in the training set are divided

into two different sets (views). Co-training starts with training two separate classifiers, with

the labelled data from its respective view. Then, each classifier labels the unlabelled data

of its own view and the most confident predictions of each classifier on the unlabelled data

are used to expand the training set of the other classifier. Afterwards, both classifiers are

retrained with the newly training labelled data given by the other classifier, and the process

repeats. For the co-training algorithm, there are two assumptions on the feature sets:

Algorithm 3 Co-training
1: Inputs:

Xl ←
{
(x(i),y(i))

}
li=1

Xu←
{

x(i)
}

l+u
i=l+1

f (1), f (2): two classifiers
2: Initialise:

learn hypothesis f
split Xl to X (1)

z and X (2)
z ; Xl = (X (1)

z ,X (2)
z )

3: repeat
4: until Xu ̸= φ

5: Classify Xu with f (1) and f (2) separately
6: Select f (1)

′
s top k most confident predictions into X (1)

s , select f (2)
′
s top k most confident

predictions into X (2)
s

7: Xu = Xu−X (1)
s −X (2)

s

8: X (1)
z = X (1)

z +X (2)
s

9: X (2)
z = X (2)

z +X (1)
s

• Features can be split into two views and each view is sufficient to train a good classifier.

• The two views must satisfy the conditional independence given the class label.

The first assumption on the quality of the views is essential to the generalisation of both

classifiers. If both views are sufficiently good, then we can trust the labels of each classifier
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on the unlabelled data. The second assumption of conditional independence between the

views is necessary for adding most confident data with predicted label by one classifier for

the other classifier. If the conditional independence between the views holds, then each view

can add the most informative unlabelled patterns to other view. However, co-training makes

strong assumptions on the conditional independence between the views that are unlikely to

be satisfied in a real world applications.

Dasgupta et al. [22] introduced a new theoretical study based on the Blum and Mitchell

[11] paper. They proved that a lower generalization error for the co-training algorithm can

be obtained by maximising the agreement with unlabelled patterns when the assumptions

of the co-training algorithm are true. Blum and Mitchell [11] empirically investigated the

possibility of the co-training algorithm working well. For this purpose, the original input

features, which consist of the small amount of the labelled patterns and large amount of

the unlabelled patterns, are artificially divided for the two views in order to achieve better

result via the co-training algorithm. The results obtained show that using the unlabelled

patterns to improve the base classifier through the co-training algorithm is difficult when

a few labelled patterns are available. The best explanation for this conclusion is that the

co-training assumptions (finding the best separation of the features for two views) is not valid

with a small amount labelled data.

Due to the success of co-training but its relatively limited application, many works have

proposed the improvement of standard co-training by eliminating the required conditions.

Nigam and Ghani [57] proposed the Co-EM algorithm which is the combination of the

co-training and expectation maximization (EM) and can probabilistically label the unlabelled

patterns. The EM algorithm is used as a base for the new version of the co-training while in

the basic co-training algorithm naïve Bayes classifiers are used. The Co-EM algorithm was

applied to web page datasets and their results were better than the co-training algorithm.

Goldman and Zhou [30] relaxed the co-training split views assumption that does not require
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splitting the input feature for two views. In addition, the co-training algorithm used two

different classifiers instead of just a single classifier. Each classifier can be obtained via an

equivalence classes set by divide the input space.

In order to relax the conditional independence assumption between views, Zhou and Li

[90] proposed the Tri-training algorithm, which uses three classifiers. In order to train one

classifier, the remaining two classifiers should agree on the labelling of the unlabelled data

and then it will be used in the training set of the given (third) classifier. If the splitting of the

feature set is not straightforward, both tri-training and co-training may over-fit with the use of

the most confident instances. In addition, the over-fitting classifier can lead to the degradation

of classification accuracy because both methods depend on the quality of the subsets of

features. More generally, we can define learning paradigms that utilize the agreement among

different classifiers. Subsequently, they expanded this idea by proposing a new algorithm

named the co-forest algorithm, that involved ensemble techniques to include a large number

of base classifiers [49]. Multi-view learning models do not require the particular assumptions

of co-training and it has access to separate classifiers. The classifiers might be of different

types (e.g., naïve Bayes, decision tree, neural network, etc.) but they are trained on the same

labelled data, and are necessary to make similar predictions on any given unlabelled data

[93].

Similarly, the co-training algorithm was modified fro another semi-supervised method [89]

called democratic co-learning. The current algorithm does not use multiple views but it uses

multiple classifiers. In addition, democratic co-learning uses a weighted majority voting

procedure for labelling the unlabelled patterns. The ensemble method is applied to the

training of each classifier separately, using only the labelled patterns, then each classifier uses

the unlabelled patterns to obtain predictions separately. Finally, majority voting is applied

between the classifiers for labelling the unlabelled patterns. In the labelling procedures, the

cross-validation was used over the labelled patterns to select the confidence of the unlabelled
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patterns and also to evaluate the performance of the classifier. However, cross-validation

might give poor estimates when the amount of labelled patterns is small Zhou and Goldman

[89] and Zhou and Li [90].

2.2.5 Low density separation

Low density separation methods are another family of learning algorithms based on the low

density separation assumption that the decision boundary (hyperplane) should fall in low

density regions. Thus, low density separation methods utilise the unlabelled data to regularise

the decision boundary. In this section we highlight the most common low density separation

approaches, which include transductive SVM and entropy regularization.

Transductive support vector machine (TSVM)

The support vector machine (SVM) Cortes and Vapnik [20], Vapnik [84] is the base classifier

for transductive support vector machine (TSVM) Joachims [41], Demiriz et al. [23] that deal

with labelled training data only. However, TSVM extended the SVM to exploit both labelled

and unlabelled training data. In this section, we explain both the SVM and TSVM through

an illustrative example. Figure 2.9a shows that the linear decision boundary, which is found

by the SVM classifier, falls in the middle separating three patterns in each of a positive and

negative class. The distance between the decision boundary and the two dashed lines that go

through the nearest positive and negative examples is called the margin.

The TSVM attempts to find labels for the unlabelled patterns in order to identify the

largest margin between the decision boundary and both labelled and unlabelled patterns by

implementing low density separation assumption. From Figure 2.9b, it can be seen that the

unlabelled data attempt to push the decision boundary into low density regions of unlabelled

data in order to be far away from the both labelled and unlabelled patterns.
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Fig. 2.9 (a) Linear SVM decision boundary for six labelled patterns belonging to two
classes. (b) TSVM decision boundary for both labelled and unlabelled patterns [after Zhu
and Goldberg [93]].

In order to understand the TSVM classifier, we first briefly review a standard SVM

classifier before introducing the TSVM. Given labelled training patterns Xl = {(xi,yi)}l
i=1,

we assume a binary classification problem for simplicity where xi ∈X ⊆ Rd is a feature

vector of a training patterns describing the ith example with class label yi ∈ {−1,+1}. Then

the goal of the SVM classifier is to construct a linear decision boundary given by f (x)

= wT xi + b in order to classify new patterns. As can be seen from the toy example in

Figure 2.10a the decision boundary separates the feature space into two parts, where the

decision boundary is defined by f (x) = 0, such that:

x ∈ yi =+1 i f f (x)> 0,

x ∈ yi =−1 i f f (x)< 0.

The distance between the decision boundary and the training pattens Xl either near or far from

the decision boundary is greater than 0 such that |wT xi +b|> 0, but we are only interested in

nearest patterns, that are called the support vectors x́i of the relative class.



52 Technical background and Literature Review

wT x́i +b =+1,

wT x́i +b =−1.

If the labelled training patterns are linearly separable they also satisfy the following constraint:

wT xi +b≥+1 i f yi =+1,

wT xi +b≤−1 i f yi =−1.

Both of the above inequalities into single inequality:

yi(wT xi +b)≥ 1 i = 1, . . . , l.

The margin is the perpendicular distance between the decision boundary and the support

Fig. 2.10 (a) Linear decision boundary for the hard-margin SVM. (b) Linear decision bound-
ary for the soft-margin SVM.

vectors, defined by γ , as illustrated in Figure 2.10a. The margin can be found for any patterns

in the support vectors x́i as follows:

γ =
1
∥ w ∥

wT (x́ − x),

=
1
∥ w ∥

(wT x́ − wT x),

=
1
∥ w ∥

(wT x́+b − wT x−b),

=
1
∥ w ∥

(1 + 0),

=
1
∥ w ∥

. (2.35)
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where wT x́+b = 1 and wT x−b = 0.

Now, the margin γ = 1
∥w∥ can be maximised subject to the constrains yi(wT xi +b)≥ 1.

minimize 1
∥w∥ ,

subject to yi(wT xi +b)≥ 1, i = 1, . . . , l. (2.36)

Instead of maximising the margin, equivalently we can minimise 1
2 ∥ w ∥2, which is the

quadratic constrained convex optimization problem and will be easier to optimise by consid-

ering the boundaries:

minimize 1
2 ∥ w ∥2,

subject to yi(wT xi +b)≥ 1, i = 1, . . . , l. (2.37)

This is the case, when the linear SVM classifier can separate all labelled training patterns

correctly Figure ??, this type of SVM is called hard-margin SVM, while in reality almost all

datasets have noise where the labelled training patterns may not be linearly separable. In this

case, the soft-margin SVM can be used, which introduces slack variables, which allow some

patterns to lie in the incorrect side of the margin. Thus, the constraint of the optimization

problem can be represented as follows:

yi(wT xi +b)≥ 1−ξi i = 1, . . . , l.

The total of violation patterns is ∑
l
i=1 ξi, where ξi ≥ 0. If the patterns fall into the incorrect

side of the decision boundary then ξi > 1. In the case where the patterns do not fall on

the wrong side, but fall between the decision boundary and the margin boundaries, then

0 ≤ ξi ≤ 1. Thus, in order to penalise the objective function by the amount of violation,

the penalty term C
(

∑
l
i=1 ξi

)k is introduced into the optimization problem with parameter C

and hyper-parameter k. In this case, for simplicity we assumed k = 1. Some methods should
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be used for choosing the regularisation parameter C such as cross-validation. If C is too

small, under-fitting may occur, while large C may result in over-fitting. After modifying both

constraint and objective function, the optimization problem for soft-margin becomes

minimize 1
2 ∥ w ∥2 +C ∑

l
i=1 ξi,

subject to yi(wT xi +b)≥ 1−ξi, i = 1, . . . , l,

ξi ≥ 0, i = 1, . . . , l. (2.38)

The constrained optimization problem can be solved by adding the new constraints to the

objective function through a set of Lagrange multipliers. The new optimization problem is

then:

minimize 1
2wT w − ∑

l
j=1 αi(yi(wT xi +b)−1),

subject to 0≤ αi ≤C, i = 1, . . . , l. (2.39)

The inequality constraint in the optimization problem can be replaced by an equality accord-

ing to the Karushkun-Tucker conditions (KKT). The derivative of the objective function

regarding to the w and b parameters is set to zero:

∂

∂w
= 0⇒ w =

l

∑
i=1

αiyixi,

∂

∂b
= 0⇒

l

∑
i=1

αiyi = 0. (2.40)
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We substitute both w and ∑
l
i=1 αiyi in to the objective function (2.39), and maximises the

new objective function with respect to α:

maximize ∑
l
i=1 αi− 1

2 ∑
l
j=1 αiα jyiy jxix j,

subject to ∑
l
i=1 αiyi = 0 0≤ αi ≤C, i = 1, . . . , l. (2.41)

where α = (α1, ...,αl) is the vector of non-negative Lagrange multipliers. This new form

of optimization problem is called the dual form. The value of α ̸= 0 is only for the support

vectors. Given the optimal value of the parameters α , the prediction for the unseen (test)

datasets can be made.

f (x) = sign

(
l

∑
i=1

αiyixi · xtest +b

)
. (2.42)

where for the support vectors patterns yi(wT xi +b) = 1, so the value of parameter b can be

found as follows:

b = yi−
l

∑
j=1

α jy jx jxi. (2.43)

The soft margin SVM does not help in the case of complex data structure, so we try to

transform the feature space into a new feature space by a fixed non-linear transformation

φ(x), this transformation method is known as a Kernel denoted by K(xi,x j). We re-write the

soft-margin objective function including Kernel function with prediction equation:

maximize ∑
l
i=1 αi− 1

2 ∑
l
j=1 αiα jyiy jK(xi,x j),

subject to ∑
l
i=1 αiyi = 0 0≤ αi ≤C, i = 1, . . . , l. (2.44)

where K(xi,x j) = φ(x) ·φ(x). There are many types of kernel functions, but the most popular

kernel functions are:

K(xi,x j) = xT
i · x j (linear kernel function)
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K(xi,x j) = exp
(
− γ(xi− x j)

T (xi− x j)
)

(Gaussian kernel function)

K(xi,x j) = (1+ xT
i · x j)

γ (polynomial kernel function)

Given the optimal value of the parameters α , the prediction for the unscreened datasets can

be made.

f (x) = sign
(
∑

l
i=1 αiyiK(xi,xtest)+b

)
.

Return back to (2.38), the inequality constraints on ξi can be written as ξi ≥ 1− yi(wT xi +b)

thus the optimization problem can be written as follows:

minimize 1
2 ∥ w ∥2 +C ∑

l
i=1 max(1− yi(wT xi +b),0),

subject to yi(wT xi +b)≥ 1−ξi, i = 1, . . . , l,

ξi ≥ 0, i = 1, . . . , l. (2.45)

where the first term is the regularisation term and the second is the loss function for labelled

data known as hinge loss. The linear function wT xi +b separator attempts to pass through a

region that separates labelled patterns correctly in order to minimise hinge losses. However,

in the case of the existing unlabelled data the separating hyperplane is far from the supervised

decision boundaries that attempt to pass through low density region over both labelled and

unlabelled data. The predicted labels are ŷi = sign( f (x)) because the true labels do not exist

for the unlabelled patterns. Then the loss function for the unlabelled data, which is known as

hat or symmetric function, can be presented as follows:

Lhat = max(1− ŷi(wT xi +b),0),

= max(1− sign(wT xi +b)(wT xi +b),0),

= max(1− | wT xi +b |,0). (2.46)

In order to show the difference between the hinge and hat function, Zhu and Goldberg [93]

illustrated the two diagrams below. As can be seen from Figure 2.11a hinge loss function for
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y f (x) but the hat loss function differs from the hinge loss. The true labels do not exist for the

unlabelled patterns, thus, the hat loss function is just the function of f (x) as can be seen in

Figure 2.11b.
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Fig. 2.11 (a) The hinge loss as a function of y f (x). (b) The hat loss as a function of f (x).

The only change for TSVM is to add a new term, Lhat , to the objective function in (2.45),

which is called the hat function. Thus, in the case of existing labelled and unlabelled patterns,

the optimization problem including objective function with constrained can be shown as

follows

minimize
1
2
∥ w ∥2 +C1

l

∑
i=1

max(1− yi(wT xi +b),0)

+C2

l+u

∑
i=l+1

max(1− | wT xi +b |,0),

subject to yi(wT xi +b)≥ 1−ξi, i = 1, . . . , l,

| wT xi +b |≥ 1−ξi, i = l +1, . . . , l +u,

ξi ≥ 0, i = 1, . . . , l. (2.47)
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The last constraint added to the minimisation problem (2.47) is a class balance constraint.

This constraint helps to avoid the imbalanced solution assigning all unlabelled patterns to

only one of the classes.

1
u

l+u

∑
i=l+1

ŷi =
1
l

l

∑
i=1

yi. (2.48)

In the case of the ŷ j, which is a discontinuous function (2.48), enforcing the constraint would

be hard. The minimisation problem can be solved by a continuous optimisation technique.

Thus, the imbalance constraint changes to:

1
u

l+u

∑
i=l+1

f (xi) =
1
l

l

∑
i=1

yi. (2.49)

The complete objective function for the TSVM includes three terms: A regularization term,

the loss function for labelled training data which is called hinge loss function, and hat loss

function for unlabelled training data.

minimize
1
2
∥ w ∥2 +C1

l

∑
i=1

max(1− yi(wT xi +b),0)

+C2

l+u

∑
i=l+1

max(1− | wT xi +b |,0),

subject to yi(wT xi +b)≥ 1−ξi, i = 1, . . . , l,

| wT xi +b |≥ 1−ξi, i = l +1, . . . , l +u,

ξi ≥ 0, i = 1, . . . , l,

1
u

l+u

∑
i=l+1

f (xi) =
1
l

l

∑
i=1

yi. (2.50)

Unlike the SVM which has a convex optimisation problem, the TSVM objective is non-

convex with multiple local minima. A learning algorithm can be stuck in a sub-optimal local

minimum, and not find the global minimum solution. In order to avoid the TSVM getting
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stuck in local minimum, many algorithms have been developed.

Vapnik [83] proposed the earliest semi-supervised Support Vector Machine approach, de-

noted by TSVM. The goal of the TSVM approach is to use the unlabelled patterns to find

a better decision boundary that maximises the margin between the classes, compared to

SVM. However, the solution for the objective function of TSVM is computationally difficult,

because it is a non-convex function. Therefore, to reduce this computational cost, several

other methods have been proposed. A novel heuristic approach was proposed by Joachims

[40]. This method can iteratively solve the convex function problem for TSVM, but it can

deal with just a few thousand patterns. Another method to fix the TSVM objective function

is Laplacian SVM. This method was first introduced by Chapelle and Zien [16] and adds a

regularization term to the objective function for both labelled and unlabelled patterns while

Tsang and Kwok [82] proposed a new version of the Laplacian SVM, applying a sparse man-

ifold regularisation. Chakraborty [14] introduced a Bayesian approach for semi-supervised

Support Vector Machine training. The large margin space was found for binary classification

problems by adding the regularisation term for the unlabelled patterns. In spite of the review

many algorithms to the TSVM as a low density separation methods but these methods was

very sensitive in the case of overlapping classifier as explained in Section 2.2.

Entropy regularization

In the previous section, the semi-supervised methods for non-probabilistic classifica-

tion model based on the SVM were discussed. However, there are other alternative semi-

supervised learning frameworks for probabilistic models that can compute the posterior

probability of class membership p(y|x), such as entropy regularization. In Section 2.2.2 we

discussed semi-supervised learning with generative mixture models. One drawback of this

approach is estimating the joint probability p(x,y) which needs to estimate more parameters

than discriminative model. Thus, in this section we discuss a particular discriminative model,
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logistic regression, and then extend this to a semi-supervised learning framework via entropy

regularization [32]. Given labelled training patterns, Xl = {(xi,yi)}l
i=1, we assume a binary

classification problem for simplicity where xi ∈X ⊆ Rd is feature vector of a training

patterns describing the ith example with class label yi ∈ {0,1}. Using the logistic regression

model the posterior probability of class membership p(y|x) can be computed directly from

the test data as follows:

p(y = 1|x) =
1

1+ exp(− f (x)))
,

p(y = 0|x) =
exp(− f (x))

1+ exp(− f (x)))
. (2.51)

where f (x) = wT xi +b is a linear function. If f (x) ⩾ 0 then p(y|x) with the positive class

otherwise p(y|x) fall in the negative class. In addition, p(y = 0|x) = 1 − p(y = 1|x) because

the sum of the p(y = 1|x) and p(y = 0|x) must equal to 1. Each w vector and b are model

parameters that can be learned by maximising the log-likelihood of the training data:

log p(D ;w,b) =
l

∑
i=1

log p(yi|xi,w,b). (2.52)

Typically the objective function contains the log-likelihood with a regularization penalty to

prevent over-fitting, that is commonly referred to as L2 regularisation :

log p(D ;w,b) =
l

∑
i=1

log p(yi|xi,w,b)−λ

l

∑
i=1

w2
i , (2.53)

where the regularisation parameter, λ , is normally tuned through cross validation. The

Logistic regression objective function can be maximized using gradient descent methods,

where the gradient with respect to the θi parameter is given by:
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∂ log p(D ;w,b)
∂w

=
l

∑
i=1

(φ(yi− p(yi|xi,w,b))xi−λwi. (2.54)

The logistic regression classifier does not deal with the unlabelled data, so to make use

of the unlabelled data, semi-supervised methods can be used. The entropy regularization

semi-supervised algorithm can be used to exploit unlabelled data. However, semi-supervised

learning cannot be used without an assumption. The entropy regularization can maximise

posterior probability confidently if the decision boundaries lie in low density regions of the

feature space i.e. both classes are well separated so that a posterior probability is either

close to one or to zero which is most certain. It is obvious that the entropy is a measure of

uncertainty, the most certain pattern can be find when entropy reaches zero. This happens

in the case of the entropy regularization if the probability is either close to 1, or to zero.

Thus, given both labelled and unlabelled training patterns entropy regularization can find

parameters by maximising the following objective function:

log p(D ;w,b)) =
l

∑
i=1

log p(yi|xi,w,b))−λ1

l

∑
i=1

w2
i +

λ2

l+u

∑
i=l+1

(
p(yi|xi,w,b)

)
log
(

p(yi|xi,w,b))
)
. (2.55)

where the first two terms are the regularised log conditional likelihood of the labelled training

patterns and the third term is the conditional entropy of the unlabelled training patterns. In

this case, λ1 and λ2 can be tuned using cross-validation. Unfortunately, entropy minimization

is a non-convex optimization problem and has local minima, and so it does not have a unique

solution. Thus, some algorithms have been proposed to solve this problem.

Grandvalet and Bengio [31] proposed a novel semi-supervised approach for discriminative

entropy regularization classification. The objective function can be optimised to find the

parameters that maximise a regularised conditional log-likelihood of the labelled patterns
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and the negative conditional entropy over the unlabelled patterns. The conditional entropy

is optimised with a trade-off parameter to control the influence of the unlabelled patterns.

Whereas the proposed methods experimentally obtain high classification performance, en-

tropy regularization has some drawbacks. For example, difficulty in tuning the parameters

and in the case of a small amount of labelled data, the entropy regularization assigns the same

label to all labelled patterns. This method was extended to provide a new semi-supervised

framework by Jiao et al. [39]. In this paper, the objective function consists of the conditional

random field log-likelihood over labelled patterns that is penalised by the regularisation

parameter, and the negative conditional entropy over the unlabelled patterns. This method

introduced a trade-off parameter to control the influence of unlabelled patterns.

Mann and McCallum [50] introduced a novel algorithm, Expectation Regularization, for

multi class classification problems. The objective function for this method consists of the

conditional log-likelihood of the labelled patterns, a regularisation parameter, and the KL

divergence for the predicted prior probability for each class. Therefore, the estimation of

prior probability for each class should be known. The experimental results obtained suggest

that Expectation Regularization can achieve improved performance compared to naïve Bayes,

semi-supervised naïve Bayes, logistic regression, and entropy regularisation, even with only

a small amount of labelled patterns.

2.2.6 Graph-based semi-supervised learning methods

Graph-based semi-supervised learning [9] usually employ undirected graph methods to con-

struct graphs that connect similar data patterns of the labelled and unlabelled data set. Both

labelled and unlabelled patterns are represented as nodes and edges the distances among the

patterns, respectively. The edges are assigned with weights corresponding to their pairwise

similarities. Thus, the graph can be represented by the weight matrix, W , which is symmetric.
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If there is a connection between both xi and x j patterns then Wi j > 0 otherwise Wi j = 0. In

addition, for these patterns wi j is non-zero, each pair of patterns should be in the same class if

they are connected by a strong edge (highly similarity). Given such a graph, the smoothness

assumption is the main assumption in the semi-supervised learning graph-based methods.

The common used similarity graphs are:

• k-nearest neighbourhood graph where wi j = 1 if xi is among the k-nearest neighbours

of x j or vice-versa and wi j = 0 otherwise.

• ε-nearest neighbourhood graph xi are connected by an edge with x j if the distance

d(xi,x j)≤ ε .

• The similarity graph with respect to the popular weight matrix is the Gaussian kernel

or radial basis function (RBF) kernel,

Wi j = exp
(
−
∥xi − x j∥2

2σ2

)
, (2.56)

where σ is the kernel bandwidth.

Given labelled, Xl = {(xi,yi)}l
i=1, and unlabelled, Xu = {(xi)}l+u

i=l+1, training patterns for

a binary classification problem, yi ∈ {−1,+1}, where xi ∈X ⊆ Rd is a feature vector of

training patterns that describing the ith example. Let G = (V,E) be an image of the weighted

graphs, where E is the set of edges and V is a set of image nodes, V =VL∪VU . The goal of

the graph based semi-supervised learning is to propagate the label information from VL to the

VU of the graph. In this section, different graph-based methods are introduced that some of

these discussions a based on that from Zhu and Goldberg [93].

Min-cut algorithm The first graph-based semi-supervised learning method is the Min-

cuts algorithm proposed by Blum and Chawla [9]. Based on graphs, the min-cut algorithm
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attempt to find minimum cuts in graphs that minimise the number of edges that are given

different labels in order to learn from both labelled and unlabelled data. Mathematically

min-cut algorithm minimises:

minf:f(x)∈{−1,1} ∑
l+u
i, j=1 wi j

(
f (xi) − f (x j)

)2

s.t. f (xi) = yi f or i = 1, . . . , l. (2.57)

The min-cut algorithm is subject to fixing yi for labelled patterns and results in hard labels for

unlabelled patterns yi ∈ {0,1} where i = l +1, . . . , l +u. The min-cut optimisation problem

can be solved using max-flow algorithm for undirected graphs Blum and Chawla [9]. After

the graph is built, the two special nodes (v+,v−) called classification vertices are connected

by edges of infinite weight to the labelled patterns, w(v,v+) = ∞, v is a positive pattern and

w(v,v−) = ∞, v is a negative pattern. Finding the minimum cut in the graph is the main

step of the min-cut algorithm. The graph can be cut in two parts that contain V+,v+ ∈V+

and V−,v− ∈V− by finding and removing a set of edges with minimum total weight. We

assign label +1 to unlabelled patterns from the set of the V+ classification vertices, and label

−1 from the set of the V− classification vertices. The drawback of the min-cut algorithm

is that a single pattern may be left out in a partition after the cut the graph. In this case,

a highly unbalanced partitioning can be obtained. Blum et al. [10] employed bagging to

fix min-cut graph issue. Later, Zhu et al. [94] applied an iterative algorithms for graph

based semi-supervised learning known as Label propagation. The intuition behind Label

propagation is for each node to iteratively pass their label to the neighbour’s nodes until

convergence.

Harmonic Function

In order to relax the binary constraints yi ∈ {−1,1} for i ∈U in the min-cut algorithm to

continuous labels, Zhu et al. [92] introduced a new method based on Gaussian random fields

and harmonic functions. As a first step of relaxation, a harmonic function is a function that
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was has given the weighted average of the value on the unlabelled data, however, the value yi

for labelled data is still fixed, yi ∈ −1,1, f (xi) = yi, i = 1, . . . , l.

f (x j) =
∑

l+u
k=1 w jk f (xk)

∑
l+u
k=1 w jk

, j = l +1, . . . , l +u.

The harmonic function simply computes a continuous prediction function f on a given graph

G = (V,E) and assigns f to the unlabelled patterns which is the weighted average of its

neighbours’ value. Thus, it is known as as soft version of min-cut algorithm and it is the

solution to the same optimisation problem in (2.57).

minf:f(x)∈R ∑
l+u
i, j=1 wi j

(
f (xi) − f (x j)

)2

s.t. f (xi) = yi f or i = 1, . . . , l (2.58)

Equation (2.58) can be minimized to find the optimal value for f in a continuous space which

means f (x) values fall between −1 and 1 by solving a linear equation. The unique value for

f (x) does not correspond to a label, therefore, it can be converted to a label by applying the

thresholds which is a drawback for this methods:

yi =+1 i f f (x)>= 0,

yi =−1 i f f (x)< 0. (2.59)

Zhu et al. [92] used a random walk to interpret the harmonic function. A transition probability

matrix was used to propagate labels, which probability random move from vertex i to j.

P(i/ j) = wi j
∑k wik

.

The easier way to obtain the closed-form solution is the harmonic function with a Laplacian

matrix which basically is a matrix notation for the Laplacian matrix. W is a weight matrix

for both labelled and unlabelled data, D is a diagonal matrix,

Di j =

 ∑
l+u
k=1 w jk : i = j

0 otherwise.
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Then the graph Laplacian matrix L is given as follows:

L = D−W (2.60)

Now, the regularisation term (2.58) can be written as follows:

l+u

∑
i, j=1

wi j
(

f (xi) − f (x j)
)2

= f T L f , (2.61)

where f = ( f (x1), . . . , f (xl+u)). In order to find labels for unlabelled patterns, we can

partition the f vector into ( fl, fu) and Laplacian matrix into sub-matrix respectively:

Lll Llu

Lul Luu


Let yi = (y1, . . . ,yl)

T then using Lagrange multipliers with matrix algebra to solve the

optimisation problem,

fl = yi,

fu = −L−1
uu Lulyl, (2.62)

Zhou et al. [88] used the normalized graph Laplacian to propagate labels.

L̃ = I−D−
1
2WD

1
2 (2.63)

Then, the close form solution for (2.61) can be obtain by setting to zero the partial derivative

w.r.t to the regularisation matrix L.

These methods are transductive that normally use the structure of the graph to propagate

labels from the labelled data to the unlabelled in the graph. Belkin et al. [8] proposed a
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manifold regularisation method called the Laplacian Support Vector Machine (LapSVM).

This approach is the inductive methods that has able to predict labels for the unseen patterns

into the graph, f is defined over the whole feature space, f : X → R . The optimisation

manifold regularisation problem can reprsent as follows:

minf:f(x)∈R λ‘ f T L f +λ2 ∥ f ∥2 (2.64)

where λ1,λ2 ≥ 0. λ1 is a regularisation parameter to f in order to be smooth with respect

to the graph Laplacian. The second regularised term is λ2 which enforces smoothness in

order to improve generalization classification performance. The complexity of the Laplacian

Support Vector Machine was reduced by Melacci and Belkin [53].

2.3 Active learning

Supervised learning often provides poor classification performance with a small amount

of labelled data, Xl = {(x(i),y(i))}l
i=1 , but it is possible to achieve better performance by

adding more labelled data. However, labelling of a large amount of unlabelled data by an

expert (oracle) can be time-consuming and expensive. In this case, involving the unlabelled

data, XU = {x(i)}l+u
i=l+1, in the learning process might help, because the unlabelled data can

obtained cheaply. One possible method that we can rely on is active learning [72] that

requests the human expert to obtain the true labels, y∗, for most informative unlabelled

training patterns, x∗ ∈U , by asking queries. Thus, the labelled training patterns, Xl , can be

expand and may improve the generalisation performance.

In this framework, the active learner selects only the most informative few unlabelled patterns

and ask the oracle to label the new patterns instead of labelling all unlabelled data. Figure 1.6

in chapter 1, shows a simple two-dimensional illustrative example where the active learning
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can improve generalisation performance by selecting the most informative pattern to be

labelled by the expert. The choice of the unlabelled patterns for labelling is the important

step in active learning, known as query selection, and this selection is normally done through

query strategies. We explain the general methods for both query selection and strategies in

the following sections.

2.4 Active learning scenarios

The first critical part in the active learning algorithms is the query selection part that are

explained in this section. In active learning generally, three main query selection scenarios

exist to choose unlabelled patterns: membership query synthesis, stream-based, and pool-

based scenarios.

2.4.1 Membership query synthesis

Membership query synthesis is an early query selection scenario proposed by Angluin [2].

The goal behind this scenario is for the leaner to generate queries artificially based on the

input space setting rather than drawn from the underlying distribution, and to request their

labels from the oracle. This form of query synthesis has been used in different practical

real world applications, such as robotics [19] and handwritten character recognition [44].

This query strategy is an effective scenario for the finite unlabelled patterns set Angluin [3],

but in some cases it has serious problems. For example, Lang and Baum [44] applied the

query synthesis scenario with a human expert to learn a neural network classifier to classify

handwritten digits. They illustrated that the images generated by the query synthesis might

not be recognised by human experts. The queries synthetic were artificial combinations of

digits images that were meaningless. Thus, the experts have difficulty labelling the synthetic
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patterns. In addition, applying the query synthesis is impossible for text classification because

the patterns would meaningless if generated by the query synthesis [47, 80, 52].

2.4.2 Stream-based (Selective Sampling)

Atlas et al. [5] introduced the stream-based active learning scenario, which is an alternative

to the query synthesis approach. In this scenario, rather than constructing the synthetic

queries, on each trial the leaner selects one unlabelled pattern from the stream of unlabelled

patterns. The data stream is a sequential data that arrives at a system continuously, therefore,

an infinite amount of unlabelled data is made available. Then, the leaner request labels for

this pattern or it is discarded. In general, the capacity of this selective sampling is better

than membership query synthesis because the queries are drawn from the natural distribution,

P(x), and it might have natural meaning, which does not confusing the human experts to

labelling patterns.

2.4.3 Pool-based selection

Pool-based active learning was proposed first by Lewis and Gale [47]. In this scenario, a large

pool is available, which consists of a small set of labelled data, L, and a large set of unlabelled

data, U , for training. Essentially, the active learning algorithm attempts to rank the unlabelled

patterns based on informativeness and selects the top k patterns. Then the classifier is trained

after adding additional labelled patterns on each iteration. The drawback of the Pool-based

scenario is that it selects patterns from a dataset, which has finite number of patterns. In

this case, the Pool-based scenario does not deal with dynamically datasets, such as stream

datasets. Lewis and Gale [47], Tong and Koller [80], McCallumzy and Nigamy [52] used

a pool-based approach for the text classification problem, because for text classification, a

large pool of documents already exists.

Both stream-based and pool-based query selection methods have access to a large number
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of patterns. The pool-based method can eventuate the entire pool and select k top most

informative patterns, whilst the stream-based method can sequentially go through the dataset

and select only one pattern each time. On the other hand, both synthetic query and pool-based

query selection methods rank the unlabelled data according to the most informative one and

select best patterns, but the sources of selecting patterns are different. In general, the most

common query selection method is pool-based query approach. In this thesis the pool-based

sampling is investigated.

2.5 Active learning query strategies

In the previous section, three different query selection scenarios have been explained which

form a critical part in the active learning process. In this section, we introduce a different

query criteria, denoted by, ψ(.), for the evaluation most informative patterns in pool-based

active learning.

2.5.1 Uncertainty sampling

Uncertainty sampling Lewis and Gale [47], is the most commonly used active learning

query strategy where the learner selects the closest patterns to the current classification

decision boundary, which is the most uncertain pattern in the unlabelled data. Typically, a

single classifier is trained with labelled patterns, Xl , and subsequently this classifier is used

to classify the unlabelled patterns, Xu. Then, the output of the classifier can be used as a

measure of uncertainty. More details of the uncertainty sampling can be found in Figure 1.5.

The uncertainty sampling query strategy requires the classifier to produce a confidence score

for the prediction. For example, Lewis and Gale [47] used a probabilistic classifier to produce

a confidence score P(y|x) for a pattern x when it is predicted as class y. In the case of a

probabilistic classifier for a binary classification problem, the uncertainty sampling strategy
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queries the pattern with predicted posterior probability nearest 0.5. In general, the uncertainty

sampling query strategy can use different uncertainty measures such as least confidence:

ψLC(x) = argmax
x

(
1 − P(ŷ|x;θ)

)
. (2.65)

where ŷ = argmaxy Pθ (y|x) , is the predicted class that is equivalent to the highest posterior

probability class membership. Another uncertainty measure for selecting unlabelled patterns

is the smallest margin between the two highest posterior probabilities of class membership,

which is called margin sampling:

ψM(x) = argmin
x

(
Pθ (ŷ1|x) − P(ŷ2|x;θ)

)
. (2.66)

where ŷ1 and ŷ2 are class labels that have the highest posterior probability class membership.

However, the most common uncertainty measure that is generally used by uncertainty

sampling strategy is the entropy measure:

ψH(x) = argmax
x
− ∑

i
P(yi|x;θ) log P(yi|x;θ). (2.67)

where yi is calculated over all class label through the posterior probability class membership.

For a binary classification problem, These uncertainty measures are equivalent to selecting

the unlabelled patterns. However, the have different result for multi-class classification

problem, as shown in Figure 2.12.
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(a) least confidence (b) smallest margin (c) entropy measure

Fig. 2.12 Heatmaps illustrating the query behaviour of common uncertainty measures in a
three-label classification problem, (from [72]).

Settles [72] shows the relation between all uncertainty measures for a three classes

problem in Figure 2.12. As can be seen, the least informative patterns are at the corners of the

triangle, where the posterior probability class membership one of the classes is approximately

one and zero for other classes. While, the centre of the triangle is a place for those patterns

that the posterior probability class membership is uniformly distributed which are the most

informative patterns. These uncertainty measures, are similar only in the centre and corner

of triangle, but they are differ in the rest part of the triangle. For example, the least confident

and margin measures select these patterns if the classifier cannot distinguish between the

remaining two classes. In contract, the entropy measure, does not select these patterns where

only one of the labels is highly unlikely.

2.5.2 Query-By-Committee

A second active learning query strategy was proposed by Seung et al. [74], which is known

as Query-By-Committee (QBC). In this method a leaner creates a “committee” from the

classifier, C = θ (1),θ (2), ...,θ (c), based on the disagreement measure in order to select

the unlabelled patterns. Then, these unlabelled patterns will be select for the labelling

if they have the biggest classification disagreement among the committee based the vote

entropy or Kullback-Leibler divergence that are more common methods for estimating the
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disagreement.

Settles [72] illustrates the version space in the Query-By-Committee strategies, as shown

in Figure 2.13. The intuition behind query-by-committee is that all committee member

participate to vote on the selected patterns for labelling such that the uninformative query

which has most disagree, where the version space is consist of the set of hypotheses from the

training labelled patterns.

Fig. 2.13 Version space examples for (a) linear and (b) axis-parallel box classifiers. (from
[72])

The goal of the Query-By-Committee strategy to reduce the size of the version space

through labelling of an few patterns is possible. This is dependent on the properties of

the version space and the committee member. In general, the two most common ways of

measuring the disagreement have been proposed that are vote entropy and Kullback-Leibler

(KL) divergence. The vote entropy can be defined as:

ψV E(x) = argmaxx − ∑
i

V (yi)

C
log

V (yi)

C
. (2.68)

The second measure for the level of disagreement is the average Kullback-Leibler (KL)

divergence:

ψKL(x) = argmaxx
1
C

C

∑
c=1

D(P
θ (c) || PC). (2.69)
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where:

D(P
θ (c) || PC) = ∑

i
P(yi|x;θ

(c)) log
P(yi|x;θ (c))

P(yi|x;C)
(2.70)

θ (c) can be recognised as one of the model in the committee member and C is the

committee as a whole. PC(yi \ x) = 1
C ∑

C
c=1 P(yi|x;θ (c)) is the consensus probability that yi

is the correct label.

Outliers are the major problem for the query-by-committee strategy that prevent it reduc-

ing the version space. However, there some other uncertainty measure can fix this issue.

Ramirez-Loaiza et al. [65] presented an empirical evaluation of different active learning

strategies. They attempted to find a suitable active learning strategy for two probabilis-

tic classification models, naïve Bayes and logistic regression, with different performance

measures. They perform a large scale benchmark on ten datasets, with large dimensional

features and number of patterns. In that paper two sample-based query strategies, uncertainty

sampling (UNC), and query-by-committee (QBC), were compared for the selection of the

most informative unlabelled instances. Then, each of the UNC and QBC query strategy

were compared with the baseline query strategy, random sampling (RND), which selects

patterns randomly from unlabelled. The paper concludes that using a single classifier or

single performance measure can be misleading in an active learning strategies.

McCallum et al. [51] was first proposed the idea of combining active learning with semi-

supervised learning, which interesting topic in this thesis. The author combining the Query-

By-Committee with EM algorithm under name CO-EM to assign new label for unlabelled

patterns, using Bayesian classifier as a base. However, this idea was extended to the CO-EMT

by the Muslea et al. [54]. The deference between this idea with McCallum et al. [51], they

used multi-view learning for both active and semi-supervised learning. Zhu et al. [92] used

different semi-supervised learning. They combining active learning with graph-based method.

However, rather than these method are effect methods by combining active learning with
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semi-supervised learning but almost the implementation on the artificial data set or 20 news

group datasets.

2.5.3 Expected error reduction

The expected error reduction is another query strategy proposed by Roy and McCallum [69]

for evaluating which unlabelled patterns to select for labelling in active learning algorithms.

This method attempts to reduce expected error, which reduce the overall uncertainty of the

model by directly minimising error on the available data to select the unlabelled patterns

confidently. If the most informative pattern is labelled by the oracle and added to the training

set, how much its generalization error would be reduced? Technically, this strategy is started

by using either log loss or zero-one loss of a model trained on L(xi,yi), where, yi is a true

label for a pattern, xi. The pattern is selected for labelling with minimal expected error. In

the case of the expected zero-one loss:

x∗0/1 = argmin
x ∑

i
P(yi|x;θ)

(
U

∑
u=1

1 − P(ŷ|x(u);θ
+⟨x,yi⟩)

)
(2.71)

After training the labelled patterns with new selected unlabelled patterns then the model

θ+⟨x,yi⟩ would be achieved.

2.5.4 Density-Weighted methods

The previous method, expected error reduction, utilises all the available data in order to

reduce the generalization error. In this section another query strategy approach is shown that

focuses on the individual patterns rather than all the data, which is known as the density-

weighted approach, Zhu et al. [91]. Both active learning query strategies, US and QBC,

may query outliers as uncertain pattern for US and controversial for QBC. An outlier is a

pattern that behaviour is far from the other patterns distribution. Figure 2.14 shows the linear
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classifier separate the binary classification problem, which red and blue classes, where the

data consist of both labelled and unlabelled patterns. As we can see, the green pattern is

the most informative unlabelled pattern regarding uncertainty sampling, as it is the closest

pattern from the decision boundary. Selecting the green pattern however provides a poor

direction for the selection of further unlabelled training data to be labelled by the oracle and

does not improve the classier because it is an outlier. In this case a density estimator might

help because it is a modelling the input distribution while selecting unlabelled patterns. Thus,

the most informative patterns are the patterns selected from the same underlying distribution

rather than the patterns that are most uncertain.
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Fig. 2.14 An illustration of selecting the green pattern, which is closest pattern from decision
boundary, using uncertainty sampling query strategy. Uncertainty sampling is a poor strategy
and does not improve the performance of the classifier, because distribution of green patterns
is not illustrative of the distribution of the other patterns. [ After Settles [72]]
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The general density-Weighted method is proposed by Settles and Craven [73], which is

known as information density (ID) technique. In this technique, the informativeness pattern

x∗H is weighted by its avenge similarity to the unlabelled patterns U , where the relative

importance of the density can be controlled by parameter β ,

x∗ID = argmin
x

x∗H

(
1
U

U

∑
u=1

sim(x∗,x(u))

)β

. (2.72)

2.6 Performance Evaluation

In this section, we describe metrics and methods used to evaluate the performance of classifi-

cation algorithms. A classifier usually learns from a set of labelled training patterns and the

performance of a classifier is evaluated on a set of unseen (test) labelled patterns, which are

never used during training.

The outcome of a classifier on a test data are stored in a confusion matrix, which is a base for

calculating various performance measures. Suppose we have a binary classification problem

where one class is known as positive and the other as negative. Then the actual and predicted

label outcomes for this particular classifier can be illustrated by plotting a confusion matrix.

Table 2.1 shows a confusion matrix for a binary classification problem.

If the outcome from a prediction is positive and the actual label is also positive, then it is

Table 2.1 Confusion matrix for a binary classification task, the actual class is given by the columns while the
predicted class is given by the rows

actual class

predicted class

p n total
p’ TP FP P’
n’ FN TN N’

total P N

called a true positive (T P); however if the actual label is negative then it is said to be a false

positive (FP). Conversely, a true negative (T N) has occurred when negative examples are
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correctly classified as negative, and a false negative (FN) is when a positive examples is

incorrectly classified as negative. These four values can be combined to evaluate a classifiers

performance. Generally, high performing classifiers will have relatively few false positives

and false negatives.

Given the numbers from the confusion matrix, several performance measures can be cal-

culated, such as classification accuracy, error rate, and recall. In this thesis, classification

performance was measured using the error rate. It is the fraction of the total number that are

incorrectly classified (2.73). For a particular pattern, if the predicted class is equal to the

actual class then the incorrect classification is 0, otherwise is 1.

Error rate =
FP+FN

T P+FP+FN +T N
(2.73)

The error rate classification measure typically is most useful as a measure in the case of

balanced data that a number of patterns from each class are approximately equal compare the

other classes. While, the error rate might not be appropriate when the data is imbalanced,

when the data consists of a large percentage of a single class. It has a poor evaluation measure

in this case because a classifier may assign the label of the majority class found in the training

patterns which obtain low error rate[17].

A Classification performance can be representation via a learning curve Perlich [62]. The

learning curve generally refers to a plot of the generalization performance on a training

and testing set of a machine learning model over a varying number of training patterns. A

particular learning curve is the error rate learning curve would be considered in this thesis.

Error rate learning curves ware a plot of the test set error rate of a classifier on a testing set

over a function of number of training patterns.

One technique is used for partitioning data is called hold out. This method randomly parti-

tions a dataset into two disjoint sets where the first is used as training data and the second as

test data. In each partitions, the error rate with varying numbers of labelled training patterns
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is recorded on approximately equal intervals on a logarithmic scale. Using a logarithmic

scale x-axis instead of linear scale can be helpful since it covers a large range of quantities

data and we want to focus on scenario with few labelled patterns. Then the learning curve

is plotted for the error rate as a function of the number of labelled training patterns on a

logarithmic x-axis that the patterns is added in a random way. Then, the area under the

error rate learning curve (AULC) was computed to compare the error rate learning curve of

different classifiers.

Algorithm 4 shows the steps of finding area under the error rate learning curve in each

partition. The Algorithm start by introducing the training and test set in step1. Then the

varying numbers of labelled training patterns is initialised using a logarithmic scale x-axis in

step2. Later, step 3-9 shows the learning and evaluating a classifier. In step10, the error rate

as a function of the number of labelled training patterns is calculated. Then, the trapezoid

method is used to find approximating the area under the error rate learning curve. As can be

seen in step13-16, the area under the error rate learning curve between two labelled set size

is approximately equal to the average of the error rate as a function for this two labelled set

size multiply by difference of log2 for this two labelled set size. The reason for using log2 to

make approximately equal interval between labelled set size. Assuming x1 and x2 are two

labelled set size respectively and f (x1) and f (x2) are their error rate as a function for x1 and

x2. Then, the AULC between x1 and x2 can be calculate as follows:

AULC ≈
(

f (x1)+ f (x2)

2

)
×∆(x) (2.74)

where ∆(x) = log2(x2) − log2(x1). Finally in step17, the AULC for whole learning curve in

this trail is approximately calculated by integrating the result obtained in step17, AUC.

In order to reduce the possible bias introduced by the partitioning of training set and test

set, usually multiple trials of the experiments are used with a different random partition of

the training set and the test set according to the held-out method. I this thesis, 100 trials was
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Algorithm 4 Find area under the error rate learning curve
1: Inputs:

Let X : dataset
Split X into training set (Xtr) and test set (Xts)
n: number of training pattern
m: number of test pattern
n0: number of initial labelled training pattern
L: learning algorithm

2: Initialise:
l = unique([round(10[ log10(n0): 0.05: log10(n) ]) n])

3: for t from 1 to length(l) do
4: Xl ←

{
(x(i),y(i))

}
lt

i=1

5: θ̂ (t)← argmaxθ P(Xl,Yl | θ)P(θ)
6: for j from 1 to m do
7: ŷ j← argmaxc p(y = c|Xts;θ)
8: e j← φ(ŷ j ̸= y j)
9: end for

10: errt ← 1
m ∑

m
j=1 e j

11: t← t +1
12: end for
13: for k from 2 to length(l) do
14: AUCk−1←

(
errt−1 + errt

2

)
× (log2(lt−1) − log2(lt))

15: t← t +1
16: end for
17: AULC← ∑

t−1
k=1 AUCk

used for each dataset. Finally, the test statistic is provided by averaging the AULC over all

trials associate with standard error.

2.7 Statistical comparisons of classifiers

To test the generalization performance of classifiers involved in the experiments, two proce-

dures have been used to compare the classification algorithms. The former is whether there

is a statistically significant difference in the performance of a pair of classifiers over various

benchmark datasets or between the performance of two classifiers on a single benchmark
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dataset, where multiple training/test partitions are used. Later whether there is a statistically

significance difference between the k classifiers over multiple benchmark datasets.

Comparison of a pair of Classifiers: The Wilcoxon signed-ranks test [85] is a non-

parametric approach used to determine whether there is a statistically significant difference

between the performance of two classifiers over various multiple benchmark datasets or

over a single benchmark dataset that using results obtained from independent test sets. This

approach is based on the ranks of the differences in performance of two classifiers for each

dataset.

Suppose we have C-matrix classification performance, which is k by n where k = 2 is the

number of classifiers and n is the number of trials from independent test sets. Let Ci1 and Ci2

be classification performances on the ith trial for a single dataset. Then the idea behind the

Wilcoxon signed-ranks test is to rank the absolute values of Di, when Di is the difference

between two classifiers performance on the ith trial, Di = |Ci1−Ci2|. The rank starting from

smallest to largest rank, then calculate the sum of ranks for positive R+ and negative R−

differences separately. Then the smallest sum of the ranks is considered as the test statistic.

It is approximately normally distributed For large number of benchmark datasets. Later we

will find a critical value at the level of significance α = 0.05. If the test statistic is less than

or equal to the critical value, that means the null hypothesis H0 can be rejected, where H0:

that the two set of classifier results have equal median ranks. The alternative hypothesis test

is H1, where H1: that the two set of classifier results have different median ranks. In order to

compare two classifiers over multiple benchmark datasets, the Wilcoxon signed-ranks test is

used that instead of ith trails we have ith benchmark datasets.

The Wilcoxon signed-rank test is a more appropriate test for comparing two classifiers as it

assumes independence between the performance measures. In addition, it does not require

that the difference in the performance of a pair of classifiers are commensurable, because

communicability of the differences is difficult across multiple benchmark datasets. Moreover,



82 Technical background and Literature Review

the test does not assume that the difference in the performance of a pair of classifiers is

normally distributed, which is more useful when the number of benchmark datasets are small.

The Wilcoxon signed-rank test is robust to outliers, that skew the performance measures

have less affect on this test. The Wilcoxon signed-rank test assumes the distributions of the

differences must be symmetrical. In other words each side of the median must have a similar

shape. If this assumption is violated, it can affect the power of Wilcoxon signed-rank test.

Comparisons of Multiple Classifier The Friedman test [29] is a non-parametric alterna-

tive to analysis of variance ANOVA. This test is to determine whether there is a statistically

significant difference between the average ranks of k classifiers, where k > 2. The null

hypothesis H0 assumes that the average ranks Ri over multiple datasets will be equal against

the alternative hypothesis H1 that at least one of the classifiers has different average ranks.

Given two matrices, C-matrix classification performance, which is k by n where k > 2 is a

number of classifier and n is the number of benchmark datasets and R, which is a matrix of

average ranks, which is k by n as well. Then the Friedman statistic Q can be calculated:

Q =
12n

k(k+1)
.

[ k

∑
j=1

R̄2
j −

k(k+1)2

4

]
,

The Q statistics is approximately distributed according to a Chi-squared distribution

with (k− 1) degrees of freedom. The Q statistics is sufficiently use when the number of

benchmark datasets, n, and classifiers, k, are large enough (as a rule of a thumb, n > 10

and k > 5). However, Demšar [25] notes that this calculation is often conservative for small

number of benchmark datasets, and proposes using the following statistic:

F =
(n−1)Q

n(k−1)−Q
,

which follows an F distribution with (k− 1)(n− 1) degrees of freedom. The null

hypothesis, H0, will be rejected if the value of this statistic greater than critical value
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that means there is a statistically significant difference at least between two classifiers. If a

significant difference is found then post-hoc test is applied to determine statistical significance

between pairs of classifiers. The Nemenyi test is used to calculate the critical difference, CD,

CD = qα

√
k(k+1)

6n

where qa depends on both α and k. The Nemenyi test result can be visually demonstrated

by critical difference datagram. Figure 2.15 is an illustrative example for representing The

Nemenyi test result for three classifiers. The two classifiers are significantly different if their

average ranks is differ by more than the critical difference. While, these classifiers are linked

by the bar indicate that there are no statistically significant differences between the means

ranks for these classifiers and the differences between the means ranks is less than the critical

difference. For example, in Figure 2.15 the Classifier 1 is statistically significantly different

compare to the Classifier 3. In addition, the statistical different between the Classifier 1

and Classifier 2, and the statistical different between the Classifier 2 and Classifier 3 is not

significantly difference.

CD

3 2 1

1.6786 Classifier 1

1.8929 Classifier 2

2.4286Classifier 3

Fig. 2.15 Illustrative example for critical difference diagram
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2.8 Model selection

Model selection is the search for optimal hyper-parameter values where the model is defined

by a set of model parameters and hyper-parameters such as finding parameters in chapter 3.

The simplest approach to model selection criterion is a validation-set approach that randomly

partitions the data in to three sets ; the training set Ctrain is used to estimate model parameters,

an appropriate performance statistic is evaluated on the validation set Cval to determine the

optimal hyper-parameter values, finally, test set Ctest is used to estimate the generalisation

performance of the model. If yi is the actual class for a particular pattern, xi and f (xi) is their

predicted class, then the error rate measure for the validation set Cval , which consist of nval

patterns, can be calculate as follows:

Errval(h) =
1

nval
∑

i∈Cval

φ(h(xi) ̸= yi). (2.75)

where φ(z) = 1 if z is true, and φ(z) = 0 otherwise.

However, for the semi-supervised and active learning problem, the amount of labelled data is

limited, separating train and validation set is wistful. Therefore, the cross-validation approach

is better.

Cross-validation is the most commonly used approach to model selection, [78]. In k-fold

cross-validation, the labelled training data are randomly partitioned into k approximately

equal sized non-overlapping subsets C1,C2, ...,Ck, where Ck denotes the indices of the

observations in part k, As can be seen in Figure 2.16. There are nk observations in part k,

then nk = n
K . The k - 1 sets are used for training each model and the remaining kthfold set,

which is a validation set, is used for evaluating performance.

Errk(h) =
1
nk ∑

i∈CK

φ(h(xi) ̸= yi). (2.76)
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The average performance on the test sets is used to estimate the model performance, and

this can be repeated and averaged over multiple random partitions. The main advantage

of the cross-validation approach is use all available labelled patterns as both training and

test patterns, however the achieved cross-validation can suffer when only small amounts of

labelled patterns are available [77].

Fig. 2.16 The cross-validation model selection method.

The extreme case of k-fold cross-validation is leave-one-out cross-validation [43] that is

normally used for extremely small datasets, in which each subset contain only one pattern

i.e. k = l where l is the labelled training patterns, Figure 2.17. The result obtained from

leave-one-out cross-validation procedure almost unbiased estimator but it is computational

expensive and it has high variance which can lead to over-fitting. In general, the available

model selection approach for estimating model performance suffer when there are not many

labelled patterns.

Errloocv(h) =
1
l ∑

i∈CK

φ(h(xi) ̸= yi). (2.77)

φ(z) = 1 where z is true, and φ(z) = 0 otherwise.

So, in this thesis we focused on leave-one-out cross-validation when only a few labelled
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patterns is available, but when the amount of labelled patterns is sufficiently large we used

k-fold cross-validation for model selection.

Fig. 2.17 The leave-one-out cross-validation model selection method.



Chapter 3

Benchmarking the Semi-supervised

naïve Bayes classifier

In this chapter, we investigate whether an expectation maximization scheme improves a

naïve Bayes classifier in a semi-supervised learning context, through experimentation with

36 discrete and 20 continuous real world benchmark UCI datasets. Rather surprisingly, we

find that in practice self training generally makes the classifier worse. The cause for this

detrimental effect on performance could either be with the self training scheme itself, or how

self training works in conjunction with the classifier. Our hypothesis is that it is the latter

cause, and the violation of the naïve Bayes model assumption of independence of features

means predictive errors propagate through the self training scheme. To test whether this is the

case, we generate simulated data with the same feature distribution as the UCI data, but where

the features are conditionally independent. Experiments with this data demonstrate that

semi-supervised learning does improve performance, leading to significantly more accurate

classifiers. These results demonstrate that semi-supervised learning cannot be applied blindly

without considering the nature of the classifier, because the assumptions implicit in the

classifier may result in a degradation in performance. When the assumption of the classifier

is not valid the self training iteratively makes the classifier worse.
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3.1 Experiments

3.1.1 UCI benchmark datasets

Datasets and experimental design

To evaluate the performance of NB compared to the SSNB classifier, we performed two sets

of experiments for discrete and continuous features respectively. The first experiment is based

on 36 discrete benchmark datasets and a summary of the properties of these datasets is shown

in Table 3.1. The second experiment used the 28 continuous benchmark datasets. Table 3.2

shows the information about the selected datasets for the second experiment. All datasets

were taken from the UCI machine-learning repository [6], excluding (monk1-corrupt,

monk1-cross, monk1-local, monk3-cross, monk3-local) that are available in the SGI1

repository. Both Table 3.1 and Table 3.2 show the information about the number of features,

patterns, and frequency of each class for each dataset. As we can see, they differ in the

number of features, patterns, and classes. The smallest datasets had 32 patterns and the

largest had 105908, and the number of features ranges from 3 to 180. Both experiments

include binary and multi-class classification problems where the number of classes varies

between two 2 to 26.

# Dataset Features Patterns Classes

1 audiology 69 226 24
2 balance scale 4 625 3
3 blogger 5 100 5
4 breast cancer 9 286 2
5 breastw 9 699 2
6 car 6 1728 4
7 DNA 180 3186 3
8 flare1 12 323 6
9 flare2 12 1066 6
10 hayes roth 4 160 3
11 house votes 16 435 2

Continued on next page

1https://www.sgi.com/tech/mlc/db/
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# Dataset Features Patterns Classes

12 kr-vs-kp(chess) 36 3196 2
13 led7 7 3200 10
14 led24 24 3200 10
15 lung-cancer 56 32 3
16 lymphography 18 148 4
17 marketing 13 8993 9
18 monk1-corrupt 6 432 2
19 monk1-cross 5 432 2
20 monk1-local 17 432 2
21 monk1 6 432 2
22 monk3-cross 7 432 2
23 monk3-local 17 432 2
24 monk3 6 432 2
25 mushroom 22 8124 2
26 nursery 8 12960 5
27 primary-tumor 17 339 21
28 promoters 57 106 2
29 shuttle-landing-control 6 253 2
30 soybean-small 35 47 4
31 soybean-large 35 683 19
32 splice 60 3190 3
33 threeOf9 9 512 2
34 titanic 3 2201 2
35 xd6 9 512 2
36 zoo 16 101 7

Table 3.1 Attributes of the UCI datasets with discrete input features

# Dataset Features Patterns Classes

1 banknote 4 1372 2
2 blood-transfusion 4 748 2
3 breast-cancer-continuous 9 683 2
4 climate model simulation crashes 18 540 2
5 glass 9 214 6
6 haberman 3 306 2
7 ionosphere 34 351 2
8 iris 4 150 3
9 letter 16 20000 26
10 liver-disorder 6 345 2
11 magic04 10 19020 2
12 magic04 166 476 2

Continued on next page
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# Dataset Features Patterns Classes

13 new-thyroid 5 215 3
14 pendigits 16 10992 10
15 sleep 13 105908 5
16 vehicle 18 846 4
17 vowel 10 528 11
18 waveform-noise 40 5000 3
19 waveform 21 5000 3
20 wine 13 178 3
21 arcene 10000 200 2
22 gisette 5000 7000 2
23 madelon 500 2600 2
24 sonar 60 208 2
25 spambase 57 4601 2
26 Synthetic 2 1250 2
27 vertebral 6 310 2
28 diabetes 8 768 2

Table 3.2 Attributes of the UCI datasets with continuous input features

Across both of the experiments, the following steps were taken for all datasets at the

pre-processing stage: The categorical and ordinal variables were encoded using discrete

values from 1-to-n. For each feature, whether discrete or continuous, the instances where any

feature value is missing are discarded.

All experiments consisted of 100 trials, with random partitioning of the datasets without

replacement into training and test sets in each trial. For each dataset, 75% was used for

training and 25% was held-out as a test set, used only to evaluate the classification error rate

during the experiments. The error rate learning curve is plotted for each dataset, then the

area under error rate learning curve (AULC) was computed in each replication to evaluate

the error rate performance. The learning curve plot started with one labelled training pattern

for discrete benchmark datasets during training stage, while at least two labelled training

patterns were required for each class for continuous benchmark datasets. For example, in the

case of binary classification problem, the learning curve started with four labelled training

patterns, two patterns for each class, in order to estimate the variance for each features. For
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a particular feature, if the two labelled training patterns for each class has the same value

then this feature is omitted from the analysis in order to avoid having zero variance. Finally,

the Wilcoxon signed rank test [25] was used to determine the statistical significance of the

difference between the SSNB and the NB over multiple datasets in terms of the AULC.

Results for UCI benchmark datasets

Our first experiments found that the use of the unlabelled dataset does not generally reduce

the classification error rate. Table 3.3 shows the AULC results for 36 discrete benchmark

datasets. NB was best on 24 out of 36 benchmark datasets, the SSNB best on only 12. The

result for the Wilcoxon signed rank test shows that the NB is not statistically superior over

all datasets at the 95% level of significance.

From Table 3.4 it can be seen that the AULC of the SSNB is statistically better than the NB

only for the eight continuous datasets. However, the AULC for NB was best on most of the

datasets. There is statistical significant difference according to Wilcoxon signed rank test at

the 95% level of significance over all datasets.

# Dataset NB SSNB

1 audiology 4.891±0.0339 5.292±0.0317
2 balance-scale 2.830±0.0312 3.224±0.0247
3 blogger 2.173±0.0422 2.521±0.0376
4 breast-cancer 2.656±0.0432 2.965±0.0392
5 breastw 0.874±0.0225 0.325±0.0293
6 car 2.965±0.0308 3.208±0.0474
7 DNA 3.181±0.0231 2.103±0.0642
8 flare1 4.185±0.0354 4.149±0.0336
9 flare2 4.264±0.0299 4.151±0.0315
10 hayes-roth 3.140±0.0396 3.587±0.0304
11 house-votes 1.043±0.0234 1.119±0.0266
12 kr-vs-kp 3.136±0.0200 4.771±0.0249
13 led7 5.200±0.0234 5.095±0.0234
14 led24 6.193±0.0141 5.676±0.0210
15 lung-cancer 2.743±0.0442 2.637±0.0462
16 lymphography 2.190±0.0365 2.373±0.0379

Continued on next page
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# Dataset NB SSNB

17 marketing 9.488±0.0200 9.768±0.0188
18 monk1-corrupt 3.465±0.0245 3.553±0.0284
19 monk1-cross 1.803±0.0237 2.106±0.0250
20 monk1-local 3.218±0.0294 3.644±0.0296
21 monk1 3.129±0.0259 3.158±0.0300
22 monk3-cross 1.681±0.0275 2.207±0.0474
23 monk3-local 1.735±0.0223 2.737±0.0368
24 monk3 1.695±0.0237 2.029±0.0231
25 mushroom 1.771±0.0226 1.670±0.0313
26 nursery 3.662±0.0172 3.767±0.0236
27 primary-tumor 5.806±0.0301 5.890±0.0259
28 promoters 1.694±0.0360 1.336±0.0361
29 shuttle-landing-control 1.365±0.0275 1.440±0.0386
30 soybean-small 1.362±0.0513 1.010±0.0483
31 soybean-large 6.563±0.0191 6.770±0.0198
32 splice 3.332±0.0169 2.652±0.0522
33 threeOf9 2.711±0.0294 2.967±0.0267
34 titanic 3.033±0.0451 3.211±0.0411
35 xd6 2.670±0.0292 2.789±0.0275
36 zoo 1.696±0.0446 1.577±0.0469

Table 3.3 AULC for the NB and SSNB over 36 discrete datasets from the UCI repository. The results for each
AULC classifier are presented in the form of the mean and standard error over test data for 100 realisations of
each dataset. The boldface font indicates that the AULC for one of the classifiers is better than for the other
classifier. The results that are statistically equivalent (according to the Wilcoxon signed rank test at the 0.95%
confidence level) are shown in italics.

# Dataset NB SSNB

1 banknote 1.541±0.0225 2.931±0.0197
2 Blood-transfusion 2.070±0.0262 2.564±0.0357
3 breast-cancerw-continuous 0.500±0.0167 0.343±0.0120
4 Climate-Model-Simulation-Crashes 0.603±0.0140 0.631±0.0154
5 glass 2.006±0.0192 2.289±0.0170
6 haberman 1.778±0.0301 2.045±0.0527
7 ionosphere 1.415±0.0278 1.742±0.0298
8 iris 0.418±0.0187 0.349±0.0170
9 letter 4.201±0.0111 5.647±0.0074
10 liver-disorder 2.719±0.0210 2.989±0.0207
11 magic04 3.506±0.0182 4.832±0.0136
12 musk1 2.207±0.0225 2.716±0.0240
13 new-thyroid 0.352±0.0150 0.183±0.0122
14 pendigits 2.104±0.0139 2.652±0.0164

Continued on next page
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# Dataset NB SSNB

15 sleep 4.956±0.0145 7.175±0.0296
16 vehicle 3.517±0.0166 3.948±0.0168
17 vowel 2.051±0.0138 2.481±0.0112
18 waveform-noise 2.581±0.0145 2.913±0.0254
19 waveform 2.917±0.0121 3.451±0.0205
20 wine 0.640±0.0187 0.311±0.0185
21 arcene 2.160±0.0223 2.051±0.0255
22 gisette 2.099±0.0117 3.057±0.0285
23 madelon 4.116±0.0091 3.935±0.0160
24 sonar 1.928±0.0239 2.247±0.0210
25 spambase 2.263±0.0195 2.409±0.0288
26 Synthetic 1.182±0.0217 1.116±0.0269
27 vertebral 1.421±0.0200 1.417±0.0231
28 diabetes 2.137±0.0207 2.525±0.0249

Table 3.4 AULC for the NB and SSNB over 28 continuous datasets from the UCI repository. The results for
each AULC classifier are presented in the form of the mean and standard error over test data for 100 realisations
of each dataset. The boldface font indicates that the AULC for one of the classifiers is better than for the other
classifier. The results that are statistically equivalent (according to the Wilcoxon signed rank test at the 0.95%
confidence level) are shown in italics.

In these experiments, we concluded that the performance of the SSNB was inferior overall

to that the NB for both discrete and continuous input features.

3.1.2 Why is the naïve Bayes classifier significantly better on average

than the semi-supervised naïve Bayes classifier?

The most obvious explanation for this result is that NB is unable to utilise the unlabelled

data correctly. The key characteristic of NB is that it makes the assumption of independence

between features. This assumption is usually false and NB often produces inaccurate

probability estimates, but fairly good classifications [61]. EM relies on the probability

estimates, so may be overcompensating. To test this hypothesis, we generate simulated data

that satisfies the NB assumption. A simple synthetic dataset is generated from two classes

with univariate Gaussian distributions when an infinite amount of labelled and unlabelled
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data is available for training and testing. The model parameters mean and variance for the

two Gaussian is (µ1=-1, µ2=+1, σ1 = σ2 =1) respectively as shown in Figure 3.1.
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Fig. 3.1 Two-class classification problem for the synthetic dataset.

This experiment consisted of 10,000 trials of random partitioning of the datasets (67584

patterns) into training and test sets, that 2048 patterns were used for training and 65536

patterns were held-out as a test set used to evaluate the classification error rate performance

during the experiments. The experimental design was exactly the same as Section 3.1.1.
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Fig. 3.2 The learning curve for a two-class classification problem in Gaussian distribution for
synthetic dataset
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Figure 3.2 shows the error rate learning curve for both the semi-supervised Gaussian

classifier and the Gaussian classifier. It is clearly seen that the semi-supervised Gaussian

classifier performs better than the Gaussian classifier, especially when very few labelled data

were used for training, and rapidly converges in the number of labelled samples.

3.1.3 Synthetic benchmark datasets

Generating synthetic dataset and experimental design

The results from the previous Section 3.1.2 indicate that violation of the independence

assumption of the NB classifier model might be a reason for the lack of increased performance

for SSNB classifier. It is possible that the SSNB is sensitive to the correctness of the model’s

assumptions. To investigate this further, we generate simulated data from the UCI sets that

will satisfy the independence assumption. To do this, we first fit a NB model to each data

set, then use the model estimates of the feature distributions to generate simulated data with

independent features. The synthetic datasets are similar in character to the original datasets

but the model’s assumption of the independence of features is valid.

Result for synthetic benchmark datasets

Table 3.5 shows that the SSNB performs well compared to the NB for the 33 synthetic

benchmark datasets. The SSNB also was best for all the continuous synthetic datasets, shown

in Table 3.6, thus the SSNB performed better than the NB in the current experiment. There is

a statistical significant difference between the average rank of the AULC for the SSNB and

NB classifier according to the Wilcoxon signed rank test at the 95% level of confidence over

multiple benchmark datasets in both experiments. This suggests that SSNB is sensitive to

conformance to its assumption of independence between features.

# Dataset NB SSNB

1 audiology 4.683±0.0361 4.777±0.0334
Continued on next page
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# Dataset NB SSNB

2 balance-scale 3.359±0.0316 3.182±0.0417
3 blogger 2.350±0.0430 2.248±0.0529
4 breast-cancer 2.553±0.0381 2.631±0.0336
5 breastw 0.705±0.0221 0.098±0.0274
6 car 3.286±0.0324 3.146±0.0407
7 DNA 2.724±0.0242 1.624±0.0616
8 flare1 4.005±0.0292 3.637±0.0346
9 flare2 4.037±0.0278 3.796±0.0359
10 hayes-roth 3.188±0.0417 3.008±0.0395
11 house-votes 0.135±0.0099 0.011±0.0071
12 kr-vs-kp 3.265±0.0201 2.310±0.0471
13 led7 5.199±0.0229 5.123±0.0210
14 led24 6.163±0.0155 5.542±0.0224
15 lung-cancer 1.988±0.0558 1.824±0.0565
16 lymphography 1.832±0.0372 1.230±0.0385
17 marketing 8.816±0.0195 8.305±0.0219
18 monk1-corrupt 3.096±0.0258 3.105±0.0387
19 monk1-cross 2.137±0.0278 1.238±0.0549
20 monk1-local 3.205±0.0263 2.942±0.0433
21 monk1 3.265±0.0273 3.191±0.0399
22 monk3-cross 1.704±0.0267 0.868±0.0386
23 monk3-local 1.950±0.0281 1.083±0.0309
24 monk3 1.985±0.0288 1.530±0.0478
25 mushroom 1.003±0.0309 0.016±0.0008
26 nursery 4.022±0.0194 3.422±0.0472
27 primary-tumor 5.561±0.0321 5.509±0.0319
28 promoters 1.215±0.0311 0.245±0.0240
29 shuttle-landing-control 1.569±0.0315 1.417±0.0412
30 soybean-small 1.235±0.0458 0.902±0.0482
31 soybean-large 6.462±0.0220 6.215±0.0214
32 splice 3.167±0.0161 1.505±0.0781
33 threeOf9 2.953±0.0327 2.656±0.0408
34 titanic 2.978±0.0391 2.772±0.0379
35 xd6 2.713±0.0289 2.219±0.0423
36 zoo 1.897±0.0466 1.716±0.0515

Table 3.5 AULC for the NB and SSNB over 36 synthetic discrete datasets from the UCI. The results for each
AULC classifier are presented in the form of the mean and standard error over test data for 100 realisations of
each dataset. The boldface font indicates that the AULC for one of the classifiers is better than for the other
classifier. The results that are statistically equivalent (according to the Wilcoxon signed rank test at the 0.95%
confidence level) are shown in italics.
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# Dataset NB SSNB

1 banknote 2.033±0.0168 1.738±0.0254
2 Blood-transfusion 1.022±0.0180 0.713±0.0235
3 breast-cancerw-continuous 0.220±0.0160 0.018±0.0082
4 Climate-Model-Simulation-Crashes 0.280±0.0110 0.122±0.0114
5 glass 0.735±0.0178 0.525±0.0165
6 haberman 1.417±0.0272 1.242±0.0387
7 ionosphere 0.418±0.0207 0.127±0.0168
8 iris 0.067±0.0118 0.014±0.0077
9 letter 3.086±0.0060 2.188±0.0095
10 liver-disorder 1.714±0.0205 1.371±0.0238
11 magic04 0.538±0.0219 0.083±0.0038
12 musk1 0.760±0.0285 0.441±0.0320
13 new-thyroid 0.130±0.0110 0.024±0.0080
14 pendigits 1.623±0.0093 0.730±0.0128
15 sleep 2.461±0.0107 1.845±0.0225
16 vehicle 2.118±0.0141 1.776±0.0168
17 vowel 0.945±0.0123 0.545±0.0149
18 waveform-noise 1.205±0.0165 0.516±0.0216
19 waveform 1.386±0.0157 0.645±0.0192
20 wine 0.199±0.0160 0.053±0.0119
21 arcene 0.138±0.0173 0.035±0.0110
22 gisette 0.427±0.0190 0.318±0.0213
23 madelon 3.306±0.0109 2.855±0.0171
24 sonar 0.086±0.0146 0.023±0.0143
25 spambase 0.004±0.0023 0.002±0.0019
26 Synthetic 0.047±0.0091 0.032±0.0057
27 vertebral 0.491±0.0239 0.181±0.0224
28 diabetes 1.639±0.0218 1.185±0.0239

Table 3.6 AULC for the NB and SSNB on 28 synthetic continuous datasets from the UCI. The results for each
AULC classifier are presented in the form of the mean and standard error over test data for 100 realisations of
each dataset. The boldface font indicates that the AULC for one of the classifiers is better than for the other
classifier. The results that are statistically equivalent (according to the Wilcoxon signed rank test at the 0.95%
confidence level) are shown in italics.

3.1.4 Exploratory data analysis

The results for UCI benchmark datasets experiments suggest that a few datasets are al-

ways likely to have better performance for SSNB, such as (breastw, DNA, led7, led24,
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lung-cancer, promoters, shuttle-landing-control, splice, soybean-small) in dis-

crete and (iris, new-thyroid, wine) in continuous benchmark datasets. The details of this

performance can be seen by examining the learning curve. We can show the learning curve

only for a few datasets due to space limitation. Figure 3.3 shows the learning curve for one

of the discrete datasets splice and new-thyroid which is a continuous dataset.
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Fig. 3.3 The average learning curve for NB and SSNB of the UCI and synthetic (splice,
newthyroid) datasets

Interestingly, most of the synthetic discrete and continuous benchmark datasets show

improved classification performance for the SSNB. Figure 3.4 shows the learning curve for

nursery and waveform datasets which are discrete and continuous respectively. However,

the learning curves for (audiology, breast-cancer, monk1, mushroom, primary-tumor,
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soybean-large) in discrete datasets and (magic04) in continuous datasets show that SSNB

does not help in all experiments, as we can see from the learning curve for one of them in

Figure 3.5.

The learning curve results across all experiments show that if the model assumption is correct

the unlabelled data might help to improve performance, especially when a few labelled

data are used as a training set; but if the model assumption is violated, the classification

performance could degrade when adding more unlabelled data to the training set.
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Fig. 3.4 The average learning curve for the NB and SSNB of the UCI and synthetic (nursery,
waveform) dataset
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Fig. 3.5 The average learning curve for the NB and SSNB of the UCI and synthetic audiology
datasets

3.2 Conclusions

The contribution of this chapter is an empirical evaluation of NB and SSNB on binary and

multi-class classification problems with continuous and discrete features. We wish to address

the question of whether using unlabelled data will improve classification accuracy. This will

clearly be dictated by our choice of classifier and semi-supervised learning scheme. We

evaluated a naïve Bayes classifier used in conjunction with an Expectation-Maximization

algorithm that iteratively uses NB to predict the unlabelled instances. We found that using

the unlabelled data made the classifier significantly less accurate. To understand why this

may be so, we assessed the performance of NB and SSNB on synthetic data for which the

NB assumption of independent features was valid. We found that SSNB was significantly

more accurate on these data. We conclude that if a classifier is not suitable for a data set, then

using unlabelled data in a self training scheme is likely to make it worse. This implies that

effort should be applied in finding a classifier suitable for a problem before using unlabelled

data to self train.



Chapter 4

Differential weighting of labelled and

unlabelled examples

As demonstrated by the benchmarking in Chapter 3, the use of semi-supervised learning with

the naïve Bayes classifier generally degrades rather than improves classification performance.

Experiments show that one of the reasons for this degradation is that the assumption of

independence between input features is often invalid in practice. Another reason probably

is the size of data, where the amount of labelled patterns is usually much smaller than the

amount of unlabelled patterns. Thus, it is possible that a large amount of uninformative

unlabelled data is swamping the more reliable information in the labelled data.

In this chapter, we employ down-weighting of the unlabelled data to test whether this

reduces the influence of the unlabelled data and improves the performance of the naiv̈e Bayes

classifier. Furthermore, we investigate the use of a hyper-parameter, λ , to down-weight the

contribution of the unlabelled data, and some model selection methods which have been used

to tune λ . A preliminary study, as expected, shows that down-weighting the influence of the

unlabelled data improves the baseline classifier somewhat. The cause for this improvement is

tuned to maximise test set performance, which is a biased protocol. Then, an unbiased model

selection procedure has been investigated but then the down-weighting was less successful.
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Investigating other model selection procedures such as k fold cross-validation and leave-one-

out-cross-validation, may give unreliable indicate for selecting a hyper-parameter, λ . The k

fold cross-validation procedure needs a large amount of labelled patterns to obtain a reliable

result and using leave-one-out-cross-validation provides high variance. Thus, a different

value of λ , might be utilised if the experiment is repeated with different a sample of dataset.

Therefore, we used a new method between the leave-one-out-cross-validation and k folds

cross-validation section 4.5 and again the unlabelled data does not improve classification

performance because it is difficult to tune the value of λ .

4.1 Down-weighting of the unlabelled data

The standard EM based semi-supervised NB algorithm procedure works well to estimate

the model parameters with unlabelled patterns in the case of semi-supervised learning,

when the data conform to the assumptions of the model [59]. However this assumption of

independence is generally invalid in practice, thus there exists the possibility that the EM

algorithm would degrade rather than improve classification error [70]. As described in the

chapter 3, a common scenario in semi-supervised learning is that the majority of the data is

unlabelled, but unlabelled data participates in estimating the model parameters in the M-step

of the EM algorithm. Thus, it is possible that a large amount of unlabelled data may swamp

the more reliable information in the labelled data.

In order to reduce the influence of unlabelled data, we investigate the inclusion of a hyper-

parameter, λ , to down-weight the contribution of the unlabelled data in the M-step of the

EM algorithm, which is denoted by EM-λ .

Nigam et al. [59], show that down-weighting the influence of the unlabelled data in this

way can improve the performance of the naïve Bayes classifier for the WebKB dataset. The

experiments in this chapter, use a large number of benchmark datasets from the UCI repository

to test whether implementing down-weighting of the contribution of the unlabelled data can
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improve the performance of naïve Bayes SSNB-λ classifier, especially for cases with a small

number of labelled examples. In addition, while running the experiments, another research

question is raised which is how to choose the value of weighting factor λ .

The contributions of this chapters are summarised as follows:

• The main contribution is that down weighting the influence of the unlabelled data does

not generally improve the classifier. In fact, our experiments show that for the majority

of the benchmark datasets it is preferable not to use the unlabelled data.

• Tuning the value of λ through the test set can improve the performance of the NB

classifier, but it is a biased protocol giving over-optimistic estimates of performance.

Therefore, it would be better to investigate other model section methods for tuning

hyper-parameter λ .

• The results obtained with other model selection methods suggest that none of the model

selection methods that we evaluate for choosing the value of the λ are a significant

improvement over the naïve Bayes classifier.

4.2 Technical background

In this section, we provide a brief overview of the SSNB that uses the extended EM algorithm,

EM-λ , for estimating the parameters in the M-step. The EM-λ algorithm, proposed by Nigam

et al. [59], allows the contribution of the unlabelled data to be down-weighted in order to

decrease the impact of the unlabelled data for the EM algorithm on the WebKB dataset

when the ratio of labelled to unlabelled data is low. In this section, the EM-λ method is

used to moderate the contribution the labelled and unlabelled data by adding a weighting
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hyper-parameter λ , 0≤ λ < 1, into the log likelihood function (2.13), such that

log p(D ;θ) = (1−λ )
l

∑
i=1

log
(

p(y(i);θ)
d

∏
j=1

p(x(i)j |y
(i);θ)

)

+ (λ )
l+u

∑
i=l+1

log
( C

∑
c=1

p(z(i) = c;θ)
d

∏
j=1

p(x(i)j |z
(i) = c;θ)

)
. (4.1)

It is obvious that when λ = 0 the unlabelled data are ignored, such that the likelihood depends

only on the labelled data. In contrast, when λ has largest value, λ = 0.9, the labelled data

have little weight and the likelihood approximately depends only on the unlabelled data,

but with λ = 1, the likelihood depends only on the unlabelled data (unsupervised learning).

The EM-λ algorithm has the same E-step as standard EM algorithm, but maximizing of the

M-step is different. The weighting hyper-parameter λ can be added into the M-step in (2.17),

ψ(θ) = (1−λ )
l

∑
i=1

qic log
(

p(y(i);θ)
d

∏
j=1

p(x(i)j |y
(i);θ)

)

+ (λ )
l+u

∑
i=l+1

C

∑
c=1

qic log
(

p(z(i) = c;θ)
d

∏
j=1

p(x(i)j |z
(i) = c;θ)

)

− (λ )
l+u

∑
i=l+1

C

∑
c=1

qic logqic. (4.2)

The M-step estimates the new model parameters by setting the partial derivatives to zero

for (4.2), using the labelled and unlabelled data, the true class labels for labelled data is y

and the expected values of the latent variable is z that EM-λ algorithm treated the expected

values as a true class labels for the unlabelled data in the M-step. in addition, the expected

values of the latent variable z are calculated in the E-step. We can show how to estimate the

new model parameters as follows. If x j ∼ cat(θ) then (4.2) can be written in terms of the
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parameters with Lagrangian term.

Λ(π,θ ,α,β ) = (1−λ )
l

∑
i=1

C

∑
c=1

qic logπc

+ (1−λ )
l

∑
i=1

d
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S
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C
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j

sc−1
)
. (4.3)

To obtain the maximum likelihood estimate, the partial derivatives can be computed for (4.3)

with respect to all the parameters (α,β
j

c ,πc,θ
j

sc) and set to zero. For α and β
j

c , it is the same

as for supervised NB.

∂Λ

∂πc
= 0⇒

πc =
(1−λ )∑

l
i=1 qic +(λ )∑

l+u
i=l+1 qic
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C
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l
i=1 qik +(λ )∑

C
k=1 ∑

l+u
i=l+1 qik

,

∂Λ
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j
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= 0⇒

θ
j
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l
i=1 qicφ(x(i)j = s)+(λ )∑

l+u
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S
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l
i=1 qicφ(x(i)j = m)+(λ )∑

S
m=1 ∑

l+u
i=l+1 qicφ(x(i)j = m)

,

(4.4)
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where the summation in the denominator is over all possible values (states) m for each feature

x j. The Laplace correction for the parameters, (θ j
sc,πc), is as follows:

πc =
(1−λ )∑

l
i=1 qic +(λ )∑

l+u
i=l+1 qic + 1

(1−λ )∑
C
k=1 ∑

l
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l+u
i=l+1 qik + C
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l
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S
m=1 ∑

l+u
i=l+1 qicφ(x(i)j = m) + S j

.

(4.5)

Suppose x j are drawn from a Gaussian distribution, x j ∼N (µ,σ2), with unknown model

parameters (mean µ and variance σ2). Then we can illustrate (4.2) as follows:

Λ(πc,µ
j

c ,σ
2 j
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. (4.6)

Then, the closed form of the maximum likelihood estimate can be obtained by computing

the partial derivatives of (4.6) with respect to all the parameters (α,πc,µ
j

c ,σ
2 j

c), and then

setting each partial derivative to zero. The result for (α,π j) are the same as for naïve Bayes
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classifier.
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. (4.7)

where for labelled data qic = 1 if yi = c, qic = 0 otherwise, and for unlabelled data qic is the

expected value.

4.3 Preliminary experiment for contribution of labelled and

unlabelled data

In the preliminary experiments, we performed two sets of experiments in order to evaluate

the performance of NB compared to the SSNB-λ classifier. The 28 continuous benchmark

datasets in Table 3.2 used in the former experiment and the 36 discrete benchmark datasets

in Table 3.1 used in the latter were taken from the UCI machine learning repository. The

experimental design for both experiments is the same as the experimental design in Section

3.1.1. The experiments in this section investigate the impact of weight λ in the contribution

of labelled and unlabelled data by varying λ in the Equation 2.13. In the EM-λ algorithm, the

hyper-parameter λ is assigned values such as λ ∈ [0,1) in increments of 0.1. If the optimal

value of λ̂ is found such that λ > 0 then we search for a better value of λ within a smaller

interval in smaller increments such that λ ranges from optimal value of λ̂ -0.1 to optimal

value of λ̂+0.1 in increments of 0.01. On the other hand, if the optimal value of λ̂ = 0, then

we look for the optimal value of λ̂ between 0 and λ̂+0.1 in increments of 0.01. Experimental

results are summarised in Table 4.1 and 4.2
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# Dataset NB SSNB SSNB-λ Optimal λ

1 banknote 1.541±0.0225 2.931±0.0197 1.541±0.0225 0
2 Blood_transfusion 2.070±0.0262 2.564±0.0357 2.070±0.0262 0
3 breast_cancerw_continuous 0.500±0.0167 0.343±0.0120 0.327±0.0118 0.2
4 Climate_Model_Simulation_Crashes 0.603±0.0140 0.631±0.0154 0.588±0.0148 0.11
5 glass 2.006±0.0192 2.289±0.0170 2.006±0.0192 0
6 haberman 1.778±0.0301 2.045±0.0527 1.778±0.0301 0
7 ionosphere 1.415±0.0278 1.742±0.0298 1.415±0.0278 0
8 iris 0.418±0.0187 0.349±0.0170 0.319±0.0168 0.22
9 letter 4.201±0.0111 5.647±0.0074 4.201±0.0111 0
10 liver_disorder 2.719±0.0210 2.989±0.0207 2.719±0.0210 0
11 magic04 3.506±0.0182 4.832±0.0136 3.506±0.0182 0
12 musk1 2.207±0.0225 2.716±0.0240 2.207±0.0225 0
13 new_thyroid 0.352±0.0150 0.183±0.0122 0.175±0.0116 0.48
14 pendigits 2.104±0.0139 2.652±0.0164 2.104±0.0139 0
15 sleep 4.956±0.0145 7.175±0.0296 4.956±0.0145 0
16 vehicle 3.517±0.0166 3.948±0.0168 3.517±0.0166 0
17 vowel 2.051±0.0138 2.481±0.0112 2.051±0.0138 0
18 waveform_noise 2.581±0.0145 2.913±0.0254 2.581±0.0145 0
19 waveform 2.917±0.0121 3.451±0.0205 2.917±0.0121 0
20 wine 0.640±0.0187 0.311±0.0185 0.255±0.0148 0.49
21 arcene 2.141±0.0216 2.051±0.0255 2.010±0.0257 0.2
22 gisette 2.099±0.0117 3.057±0.0285 2.099±0.0117 0
23 madelon 4.116±0.0091 3.935±0.0160 3.918±0.0160 0.99
24 sonar 1.928±0.0239 2.247±0.0210 1.928±0.0239 0
25 spambase 2.263±0.0195 2.409±0.0288 2.263±0.0195 0
26 Synthetic 1.182±0.0217 1.116±0.0269 1.111±0.0262 0.34
27 vertebral 1.421±0.0200 1.417±0.0231 1.385±0.0214 0.03
28 diabetes 2.137±0.0207 2.525±0.0249 2.168±0.0217 0

Table 4.1 AULC for the NB, SSNB and SSNB-λ classifiers over 28 continuous benchmark datasets from
the UCI repository. The results for each AULC classifier are presented in the form of the mean and standard
error over test data for 100 realisations of each dataset. The boldface font indicates that the AULC for the
SSNB-λ classifier is better than for the NB classifiers. The results that are statistically equivalent (according to
the Wilcoxon signed rank test at the 0.95% confidence level) are shown in italics. Underlining indicates that the
AULC for the SSNB classifier is better or equivalent to the AULC for the SSNB-λ classifier.

As can be seen from Table 4.1, down-weighting the unlabelled data makes a slight

improvement for just nine benchmarks datasets out of 28. The mean rank of SSNB-λ

classifier is not statistically different from that of the standard NB classifier. To illustrate the

statistical difference between the NB, SSNB-λ , and SSNB classifiers, a critical difference
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diagram is shown in Figure 4.1. Both NB and SSNB-λ classifier are grouped with a clique

bar which means there is no statistically significant difference between their average ranks.

However, both classifiers are statistically superior to the SSNB classifier, which suggests

that down weighting the influence of unlabelled data is better than using all unlabelled data

without down-weighting.

CD

3 2 1

1.3571 SSNB-λ
1.9286 NB

2.7143SSNB

Fig. 4.1 Critical difference diagram for NB, SSNB, and SSNB-λ over 28 continuous bench-
mark datasets. It shows that there are no statistically significant differences between the
mean ranks for the classifiers which are linked by the bar

In the second experiment, which evaluates the performance of down weighting the

unlabelled data over 36 discrete benchmark datasets, the results obtained for the SSNB-λ

classifier are statistically superior to the NB classifiers according to the Wilcoxon signed

rank test at the 95% level of significance over all benchmark datasets. Table 4.2 presents

the results for discrete benchmark datasets that the SSNB-λ classifier outperforms the NB

classifier on 20 of the 36 benchmark datasets.

# Dataset NB SSNB SSNB-λ Optimal λ

1 audiology 4.891±0.0339 5.292±0.0317 4.891±0.0339 0
2 balance_scale 2.830±0.0312 3.224±0.0247 2.830±0.0312 0
3 blogger 2.173±0.0422 2.521±0.0376 2.168±0.0421 0.03
4 breast_cancer 2.656±0.0432 2.965±0.0392 2.629±0.0478 0.11
5 breastw 0.874±0.0225 0.325±0.0293 0.329±0.0294 0.93
6 car 2.965±0.0308 3.208±0.0474 2.858±0.0451 0.03
7 DNA 3.181±0.0231 2.103±0.0642 2.129±0.0613 0.36

Continued on next page
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# Dataset NB SSNB SSNB-λ Optimal λ

8 flare1 4.185±0.0354 4.149±0.0336 4.185±0.0354 0
9 flare2 4.264±0.0299 4.151±0.0315 4.222±0.0318 0.32
10 hayes_roth 3.140±0.0396 3.587±0.0304 3.140±0.0396 0
11 house_votes 1.043±0.0234 1.119±0.0266 1.043±0.0234 0
12 kr_vs_kp 3.136±0.0200 4.771±0.0249 3.136±0.0200 0
13 led7 5.200±0.0234 5.095±0.0234 5.137±0.0239 0.33
14 led24 6.193±0.0141 5.676±0.0210 5.548±0.0215 0.18
15 lung_cancer 2.743±0.0442 2.637±0.0462 2.726±0.0462 0.79
16 lymphography 2.190±0.0365 2.373±0.0379 2.166±0.0372 0.19
17 marketing 9.488±0.0200 9.768±0.0188 9.488±0.0200 0
18 monk1_corrupt 3.465±0.0245 3.553±0.0284 3.465±0.0245 0
19 monk1_cross 1.803±0.0237 2.106±0.0250 1.803±0.0237 0
20 monk1_local 3.218±0.0294 3.644±0.0296 3.218±0.0294 0
21 monk1 3.129±0.0259 3.158±0.0300 3.111±0.0266 0.04
22 monk3_cross 1.681±0.0275 2.207±0.0474 1.681±0.0275 0
23 monk3_local 1.735±0.0223 2.737±0.0368 1.735±0.0223 0
24 monk3 1.695±0.0237 2.029±0.0231 1.695±0.0237 0
25 mushroom 1.771±0.0226 1.670±0.0313 1.577±0.0309 0.03
26 nursery 3.662±0.0172 3.767±0.0236 3.527±0.0198 0.05
27 primary_tumor 5.806±0.0301 5.890±0.0259 5.806±0.0301 0
28 promoters 1.694±0.0360 1.336±0.0361 1.220±0.0366 0.41
29 sls 1.365±0.0275 1.440±0.0386 1.334±0.0282 0.06
30 soybean_small 1.362±0.0513 1.010±0.0483 1.108±0.0525 0.81
31 soybean_large 6.563±0.0191 6.770±0.0198 6.563±0.0191 0
32 splice 3.332±0.0169 2.652±0.0522 2.466±0.0439 0.11
33 threeOf9 2.711±0.0294 2.967±0.0267 2.711±0.0294 0
34 titanic 3.033±0.0451 3.211±0.0411 2.857±0.0558 0.02
35 xd6 2.670±0.0292 2.789±0.0275 2.643±0.0283 0.08
36 zoo 1.696±0.0446 1.577±0.0469 1.630±0.0455 0.24

Table 4.2 AULC for the NB, SSNB, and SSNB-λ classifier over 36 discrete datasets from the UCI repository.
The results for each AULC classifier are presented in the form of the mean and standard error over test data for
100 realisations of each dataset. The boldface font indicates that the AULC for the SSNB-λ classifiers is better
than for the NB classifiers. The results that are statistically equivalent (according to the Wilcoxon signed rank
test at the 0.95% confidence level) are shown in italics. Underlining indicates that the AULC for the SSNB
classifier is better or equivalent to the AULC for the SSNB-λ classifier.

Figure 4.2 shows a critical difference diagram for the NB, SSNB, and SSNB-λ over the

36 discrete benchmark datasets. The diagram shows that the SSNB-λ is statistically superior

to both the NB and SSNB classifiers.
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Fig. 4.2 Critical difference diagram for NB, SSNB, and SSNB-λ over 28 continuous bench-
mark datasets. It shows that there are no statistically significant differences between the
mean ranks for the classifiers which are linked by the bar

4.3.1 Discussion

The experimental evaluation in the first experiment shows that using SSNB-λ does not

significantly improve the performance of the semi-supervised naïve Bayes classifier. The

question is, how much can λ make a better result compared to the previous chapter 3, results?

In each trial, when the value of λ is increased, then a different result for a different value of

λ is obtained but it is not statistically different. Figure 4.3 shows result from the banknote

dataset that illustrate ten different lines, representing ten different values of λ between 0 to

0.9 in increments of 0.1. As we can see, tuning the extra hyper-parameter does not reduce

the area under the error rate learning curve, but just decreases the classification performance,

such that for both experiments 19 dataset out of the 28 continuous benchmark datasets and 16

dataset out of the 36 discrete benchmark datasets the optimal value is λ̂ = 0. In addition, the

optimal value is λ̂ for each of the vertebral, blogger, car, monk1, mushroom, nursery,

shuttle-landing-control, titanic, xd6 benchmarks is approximately zero.

These results implies that tuning λ does not help. In addition, for the rest of the datasets

using SSNB-λ does not make significant improvements and using a different value of λ

gives approximately the same result. However, in second experiment down-weighting the
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influence of unlabelled data does make some improvements as expected because of choosing

the value of λ to maximise test set performance. The reason for that is that a biased model

selection procedure for choosing λ is used because the benchmark datasets partition is just

for training and testing set. Therefore, it is better to partition the benchmark datasets into

training, validation, and test sets. Then the validation set is used to choose λ rather than

having at the test set.
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(b) SSNB-λ -cvs learning curve classifier with best value of λ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.25

0.3

0.35

0.4

0.45

0.5

banknote

λ

A
U

L
C

 

 

NB

SSNB−λ

(c) The AULC result for the varying value of λ

Fig. 4.3 Comparison of the error rate learning curve for the NB and SSNB-λ -cvs classifiers
for the banknote benchmark dataset.
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4.4 Using a validation set to determine the contribution of

labelled and unlabelled data

4.4.1 Design of experiments

In these experiments, we performed two sets of experiments to evaluate the performance

of NB compared to the SSNB-λ -cvs classifier. A validation set is used to tune, λ , instead

of minimizing the test set error rate. The former experiment used the 36 discrete datasets

in Table 3.1 and the latter used 28 continuous datasets in Table 3.2 which were taken from

UCI machine learning repository. The main purpose of these experiments, is to illustrate the

nature of how to choose λ , which is a significant challenge.

The experimental design for both experiments is the same as Section 4.3. The only difference

in these experiments is that instead of just randomly partitioning the datasets into training

and test sets in each trial, the datasets was partitioned into training, validation, and test

set. The purpose of adding a validation set is to avoid an over-fitting problem when tuning

hyper-parameter λ . For each dataset, 60% was used for training the classifier with varying

values of λ , 20% was used as a validation set to obtain optimal value of hyper-parameter,

and 20% was held-out as a test set, used only to evaluate the classification error rate during

the experiments.

4.4.2 Results

Table 4.3 and Table 4.4 show the results for 28 continuous and 36 discrete benchmark datasets

respectively. The SSNB-λ -cvs classifier is run with different values of λ , which in some

cases does help but not very much and was best on nine out of 28 continuous and 19 out of

36 discrete benchmark datasets. The result for the Wilcoxon signed rank test shows that there

is no overall statistically significant difference between the NB and SSNB-λ -cvs classifiers.
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# Dataset NB SSNB SSNB-λ -cvs Optimal λ

1 banknote 1.514±0.0207 2.768±0.0193 1.514±0.0207 0
1 banknote 1.514±0.0207 2.768±0.0193 1.514±0.0207 0
2 Blood_transfusion 2.008±0.0268 2.500±0.0443 2.008±0.0268 0
3 bcc 0.522±0.0208 0.345±0.0169 0.328±0.0169 0.11
4 CMSC 0.590±0.0158 0.609±0.0165 0.585±0.0177 0.15
5 glass 1.841±0.0176 2.197±0.0168 1.841±0.0176 0
6 haberman 1.653±0.0295 1.866±0.0513 1.653±0.0295 0
7 ionosphere 1.331±0.0279 1.564±0.0290 1.331±0.0279 0
8 iris 0.400±0.0172 0.312±0.0141 0.296±0.0148 0.16
9 letter 4.087±0.0120 5.335±0.0070 4.087±0.0120 0
10 liver_disorder 2.622±0.0207 2.847±0.0221 2.622±0.0207 0
11 magic04 3.377±0.0174 4.697±0.0160 3.377±0.0174 0
12 musk1 2.127±0.0189 2.601±0.0239 2.127±0.0189 0
13 new_thyroid 0.339±0.0148 0.174±0.0150 0.185±0.0197 0.5
14 pendigits 2.073±0.0115 2.981±0.0256 2.073±0.0115 0
15 sleep 4.837±0.0153 7.046±0.0265 4.837±0.0153 0
16 vehicle 3.324±0.0181 3.727±0.0167 3.324±0.0181 0
17 vowel 1.901±0.0143 2.287±0.0130 1.901±0.0143 0
18 waveform_noise 2.498±0.0136 2.817±0.0252 2.498±0.0136 0
19 waveform 2.824±0.0141 3.359±0.0222 2.824±0.0141 0
20 wine 0.580±0.0214 0.286±0.0181 0.220±0.0130 0.49
21 arcene 1.950±0.0224 1.933±0.0215 1.887±0.0241 0.2
22 gisette 2.101±0.0126 4.518±0.0068 2.101±0.0126 0
23 madelon 4.005±0.0109 3.834±0.0159 3.830±0.0159 0.9
24 sonar 1.799±0.0237 2.095±0.0216 1.799±0.0237 0
25 spambase 2.180±0.0217 2.768±0.0256 2.180±0.0217 0
26 Synthetic 1.129±0.0181 1.097±0.0243 1.086±0.0245 0.6
27 vertebral 1.361±0.0229 1.348±0.0272 1.323±0.0278 0.1
28 diabetes 2.096±0.0220 2.417±0.0253 2.096±0.0220 0

Table 4.3 AULC for the NB, SSNB and SSNB-λ -cvs classifiers over 28 continuous benchmark datasets
from the UCI repository. The results for each AULC classifier are presented in the form of the mean and
standard error over test data for 100 realisations of each dataset. The boldface font indicates that the AULC
for the SSNB-λ -cvs classifier is better than for the NB classifiers. The results that are statistically equivalent
(according to the Wilcoxon signed rank test at the 0.95% confidence level) are shown in italics. Underlining
indicates that the AULC for the SSNB classifier is better or equivalent to the AULC for the SSNB-λ classifier.

# Dataset NB SSNB SSNB-λ -cvs Optimal λ

1 audiology 4.838±0.0354 5.191±0.0326 4.838±0.0354 0
2 balance_scale 2.828±0.0346 3.298±0.0288 2.828±0.0346 0
3 blogger 2.169±0.0495 2.443±0.0417 2.169±0.0495 0
4 breast_cancer 2.563±0.0427 2.885±0.0349 2.503±0.0444 0.07

Continued on next page
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# Dataset NB SSNB SSNB-λ -cvs Optimal λ

5 breastw 0.902±0.0280 0.302±0.0298 0.399±0.0401 0.86
6 car 2.930±0.0301 3.170±0.0451 2.848±0.0470 0.04
7 DNA 3.235±0.0242 2.205±0.0640 2.371±0.0419 0.45
8 flare1 4.068±0.0302 3.986±0.0335 4.068±0.0302 0
9 flare2 4.127±0.0332 4.048±0.0367 4.127±0.0332 0
10 hayes_roth 3.098±0.0349 3.482±0.0329 3.098±0.0349 0
11 house_votes 0.984±0.0296 1.067±0.0343 0.984±0.0296 0
12 kr_vs_kp 3.120±0.0213 4.645±0.0272 3.120±0.0213 0
13 led7 5.122±0.0227 5.028±0.0245 5.084±0.0257 0.31
14 led24 6.073±0.0149 5.560±0.0240 5.480±0.0221 0.18
15 lung_cancer 2.559±0.0505 2.536±0.0499 2.559±0.0505 0
16 lymphography 2.096±0.0416 2.267±0.0479 2.095±0.0394 0.25
17 marketing 9.229±0.0220 9.490±0.0199 9.229±0.0220 0
18 monk1_corrupt 3.373±0.0244 3.472±0.0285 3.378±0.0259 0.11
19 monk1_cross 1.777±0.0219 2.060±0.0306 1.767±0.0224 0.07
20 monk1_local 3.079±0.0341 3.521±0.0324 3.079±0.0341 0
21 monk1 3.035±0.0266 3.069±0.0313 3.021±0.0271 0.04
22 monk3_cross 1.707±0.0256 2.135±0.0380 1.707±0.0256 0
23 monk3_local 1.786±0.0292 2.683±0.0330 1.786±0.0292 0
24 monk3 1.720±0.0234 2.044±0.0353 1.720±0.0234 0
25 mushroom 1.754±0.0286 1.676±0.0391 1.572±0.0354 0.02
26 nursery 3.649±0.0183 3.858±0.0238 3.526±0.0186 0.04
27 primary_tumor 5.642±0.0293 5.719±0.0251 5.642±0.0293 0
28 promoters 1.688±0.0401 1.404±0.0395 1.526±0.0369 0.37
29 sls 1.320±0.0322 1.450±0.0389 1.298±0.0338 0.2
30 soybean_small 1.299±0.0459 0.910±0.0435 1.158±0.0466 0.77
31 soybean_large 6.411±0.0187 6.601±0.0195 6.411±0.0187 0
32 splice 3.323±0.0133 2.531±0.0518 2.389±0.0400 0.12
33 threeOf9 2.629±0.0330 2.895±0.0302 2.629±0.0330 0
34 titanic 2.939±0.0457 3.115±0.0480 2.789±0.0586 0.05
35 xd6 2.576±0.0284 2.673±0.0331 2.554±0.0290 0.1
36 zoo 1.712±0.0446 1.605±0.0476 1.724±0.0447 0.2

Table 4.4 AULC for the NB, SSNB, and SSNB-λ -cvs classifier over 36 discrete datasets from the UCI
repository. The results for each AULC classifier are presented in the form of the mean and standard error over
test data for 100 realisations of each dataset. The boldface font indicates that the AULC for the SSNB-λ -cvs
classifiers is better than for the NB classifiers. The results that are statistically equivalent (according to the
Wilcoxon signed rank test at the 0.95% confidence level) are shown in italics. Underlining indicates that the
AULC for the SSNB classifier is better or equivalent to the AULC for the SSNB-λ classifier.

Figures 4.4 and 4.5 show the AULC for the NB, SSNB, and SSNB-λ -cvs over the

28 continuous and 36 discrete benchmark datasets respectively. Clearly, the SSNB-λ is
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statistically superior compared to the SSNB, however, SSNB-λ is not statistically superior to

NB.

CD

3 2 1

1.375 SSNB-λ-cvs
1.9464 NB

2.6786SSNB

Fig. 4.4 Critical difference diagram for NB, SSNB, and SSNB-λ -cvs over 28 continuous
benchmark datasets. It shows that there are no statistically significant differences between
the mean ranks for the classifiers which are linked by the bar
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Fig. 4.5 Critical difference diagram for NB, SSNB, and SSNB-λ -cvs over 36 discrete
benchmark datasets. It shows that there are no statistically significant differences between
the mean ranks for the classifiers which are linked by the bar

According to the results from Table 4.3, the SSNB-λ -cvs classifier outperforms the

NB classifier, for breast-cancerw-continuous, iris, new-thyroid, wine, arcene,

Climate-Model-Simulation-Crashes, madelon, Synthetic, and vertebral bench-

mark datasets with continuous features. Figure 4.6 shows the average of the error rate

learning curve results for the above nine datasets.
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Fig. 4.6 Comparison of the error rate learning curve for NB, SSNB and SSNB-λ -cvs classi-
fiers for nine continuous benchmark datasets.

As can be seen from Figure 4.6, the learning curve for the Climate Model Simulation

Crashes benchmark dataset has nearly equivalent performance for all three classifiers. Fur-

thermore, it is clear that the down weighting technique can improve NB classifier for the

above nine benchmark datasets but the SSNB classifier without using down-weighting

technique, already improved the NB classifier for these datasets. On the other hand,

the benchmark datasets results for discrete features are presented in Table 4.4. The re-

sults show that the SSNB-λ -cvs classifier outperforms the NB classifier for 19 benchmark

datasets, breast-cancer,breastw, car, DNA, led7, led24, lymphography, monk1-cross,

monk1-corrupt, monk1, monk1, nursery, promoters, shuttle-landing-control, xd6,

soybean-small, splice, titanic, and zoo. Figure 4.7 shows the average of the error rate

learning curve results for the above 19 datasets.
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Fig. 4.7 Comparison of the error rate learning curve for NB, SSNB and SSNB-λ -cvs classi-
fiers for 19 discrete benchmark datasets.

From the results of the learning curves shown, in Figure 4.7, the performance of the

SSNB-λ -cvs classifier can be divided into two groups. The first group, where the SSNB-

λ -cvs classifier can be slightly useful compared to the baseline which is NB classifier,

on lymphography, led7, monk1-cross, monk1-corrupt, monk1, mushroom, nursery,

shuttle-landing-control, xd6, and zoo benchmark datasets. In addition, there is no sta-

tistically significant difference between the AULC for both classifiers on the lymphography,

monk1-corrupt, monk1-cross, shuttle-landing-control, and zoo benchmark datasets.

The second group is where the performance of the SSNB-λ -cvs rather than that of the NB clas-

sifier is better on the rest of the learning curves in Figure 4.7, especially on breast-cancer,

breastw, car, DNA, led24, promoters, soybean-small, splice, and titanic. However,

the performance of the SSNB classifier is better than that of the NB classifier on these
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datasets.

We expected down-weighting would make some improvement because the unbiased method

was used, which partitions each dataset into training, validation, and testing set, but it appears

the chosen values of λ give very similar results. The results of this experiment imply that

SSNB-λ -cvs is not helpful on more than half of benchmarks datasets, suggesting zero for the

optimal value of λ . The results for these benchmark datasets in Table 4.3 and Table 4.4 that

suggests a non-zero value for the optimal value of λ , as the SSNB classifier is already better

than NB classifier.

Only 20% of the original set is used for the validation set to get an unbiased estimator. This

is the reason we get high variance compared to the biased estimator method as this is a

relatively small amount of data. In practice, when there are very few labelled examples, it

is hard to get a good estimate. However, these experiments show that in principle, using

unlabelled data does help to reduce classification error rate slightly which is not statistically

significant different compared to the based classifier. We used 20% of the original set as

validation set, so the main question here is: if we have more labelled data, can we use any

other better methods to choose λ?

4.5 Final experiments for contribution of labelled and un-

labelled data

4.5.1 Design of experiments

The more data available for cross-validation, the better the estimate of the probability an

error can be obtained. When you have a few labelled patterns, the cross-validation estimate is

not a very reliable indicator. So, it would be better to use Leave-one-out-Cross-validation but

unfortunately Leave-one-out-Cross-validation has a high variance. Repeating the experiment

with different samples might give very different values, while the result with normal k fold
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cross-validation tends to be a more reliable performance indicator. So, in the final experiment

we use k-fold cross-validation method to choose λ in the semi-supervised learning, denoted

by SSNB-λ -mcv classifier. The best way for using cross-validation adapts the number of

folds according to the amount of data available. In order to have the minimum number of

examples for each class in each training fold, but increasing k up to say 10 as the labelled

data set gets bigger to reduce the bias and variance of the cross-validation estimate.

4.5.2 Results

Table 4.5 shows the outcome of a comparison of NB, SSNB, and SSNB-λ -mcv classifiers for

28 continuous benchmark datasets. The SSNB-λ -mcv classifiers outperform the NB classifier

on eight of the 28 benchmark datasets, which are breast-cancerw-continuous, iris,

new-thyroid, wine, arcene, madelon, spambase, and Synthetic. The result for the

Wilcoxon signed rank test shows that there is no statistically significant difference between

NB and SSNB-λ -mcv when using cross-validation to choose λ .

# Dataset NB SSNB SSNB-λ -mcv

1 banknote 1.184±0.0167 2.473±0.0166 1.222±0.0179
2 Blood_transfusion 1.701±0.0201 2.118±0.0307 1.734±0.0185
3 bcc 0.310±0.0108 0.284±0.0099 0.284±0.0097
4 CMSC 0.492±0.0105 0.466±0.0112 0.506±0.0121
5 glass 1.436±0.0152 1.663±0.0123 1.486±0.0152
6 haberman 1.397±0.0234 1.603±0.0432 1.413±0.0250
7 ionosphere 0.999±0.0232 1.352±0.0234 1.030±0.0235
8 iris 0.216±0.0118 0.212±0.0107 0.210±0.0117
9 letter 3.154±0.0095 4.697±0.0070 3.209±0.0098
10 liver_disorder 2.270±0.0181 2.499±0.0184 2.324±0.0177
11 magic04 3.090±0.0133 4.358±0.0099 3.117±0.0144
12 musk1 1.743±0.0200 2.262±0.0210 1.781±0.0206
13 new_thyroid 0.173±0.0090 0.133±0.0087 0.147±0.0087
14 pendigits 1.494±0.0093 2.064±0.0133 1.535±0.0097
15 sleep 4.366±0.0125 6.500±0.0268 4.406±0.0134
16 vehicle 2.880±0.0143 3.307±0.0133 2.934±0.0151
17 vowel 1.367±0.0105 1.763±0.0090 1.410±0.0103
18 waveform_noise 1.956±0.0109 2.410±0.0238 2.001±0.0127

Continued on next page
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# Dataset NB SSNB SSNB-λ -mcv

19 waveform 2.297±0.0109 2.930±0.0191 2.337±0.0118
20 wine 0.232±0.0098 0.173±0.0108 0.155±0.0086
21 arcene 1.694±0.0181 1.600±0.0206 1.626±0.0195
22 gisette 1.607±0.0114 2.579±0.0263 1.649±0.0123
23 madelon 3.617±0.0086 3.439±0.0153 3.477±0.0124
24 sonar 1.439±0.0230 1.764±0.0192 1.504±0.0233
25 spambase 1.887±0.0154 2.044±0.0204 1.870±0.0148
26 Synthetic 0.877±0.0141 0.856±0.0164 0.865±0.0147
27 vertebral 1.094±0.0164 1.148±0.0187 1.109±0.0160
28 diabetes 1.757±0.0172 2.072±0.0191 1.800±0.0151

Table 4.5 AULC for the NB, SSNB and SSNB-λ -mcv classifiers over 28 continuous benchmark datasets
from the UCI repository. The results for each AULC classifier are presented in the form of the mean and
standard error over test data for 100 realisations of each dataset. The boldface font indicates that the AULC
for the SSNB-λ -mcv classifier is better than for the NB classifiers. The results that are statistically equivalent
(according to the Wilcoxon signed rank test at the 0.95% confidence level) are shown in italics. Underlining
indicates that the AULC for the SSNB classifier is better or equivalent to the AULC for the SSNB-λ classifier.

Table 4.6 shows the result of a comparison of NB, SSNB, and SSNB-λ -mcv classifiers for

36 discrete benchmark datasets. The SSNB-λ -mcv classifiers outperforms the NB classifier

on 14 of the 36 benchmark datasets, which are, breastw, car, DNA, flare2, led7, led24,

lung-cancer, mushroom, nursery, promoters, shuttle-landing-control, soybean-small,

splice, and titanic. The results of the Wilcoxon signed rank test shows that there is no

statistically significant difference between NB and SSNB-λ -mcv when using cross-validation

to choose λ .

# Dataset NB SSNB SSNB-λ -mcv

1 audiology 4.064±0.0298 4.447±0.0282 4.086±0.0290
2 balance_scale 2.329±0.0269 2.665±0.0211 2.390±0.0271
3 blogger 1.765±0.0349 2.056±0.0318 1.859±0.0326
4 breast_cancer 2.251±0.0330 2.501±0.0352 2.261±0.0328
5 breastw 0.585±0.0151 0.229±0.0131 0.457±0.0189
6 car 2.546±0.0247 2.775±0.0336 2.517±0.0262
7 DNA 2.573±0.0174 1.546±0.0527 1.694±0.0362
8 flare1 3.424±0.0325 3.393±0.0300 3.478±0.0313
9 flare2 3.523±0.0263 3.425±0.0273 3.477±0.0245
10 hayes_roth 2.567±0.0347 2.972±0.0273 2.699±0.0328
11 house_votes 0.849±0.0164 0.922±0.0158 0.863±0.0164
12 kr_vs_kp 2.652±0.0192 4.274±0.0241 2.745±0.0200

Continued on next page
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# Dataset NB SSNB SSNB-λ -mcv

13 led7 4.377±0.0217 4.273±0.0212 4.342±0.0207
14 led24 5.344±0.0135 4.850±0.0191 4.884±0.0185
15 lung_cancer 2.083±0.0369 1.979±0.0378 2.073±0.0355
16 lymphography 1.662±0.0320 1.812±0.0316 1.687±0.0312
17 marketing 8.632±0.0175 8.957±0.0156 8.670±0.0169
18 monk1_corrupt 2.983±0.0224 3.058±0.0256 3.035±0.0228
19 monk1_cross 1.367±0.0212 1.614±0.0233 1.438±0.0195
20 monk1_local 2.736±0.0260 3.140±0.0277 2.808±0.0258
21 monk1 2.650±0.0237 2.664±0.0275 2.680±0.0247
22 monk3_cross 1.266±0.0239 1.795±0.0389 1.285±0.0264
23 monk3_local 1.312±0.0204 2.231±0.0352 1.405±0.0210
24 monk3 1.277±0.0211 1.554±0.0209 1.330±0.0194
25 mushroom 1.337±0.0188 1.399±0.0217 1.275±0.0213
26 nursery 3.012±0.0157 3.114±0.0224 2.925±0.0181
27 primary_tumor 4.921±0.0264 4.995±0.0236 4.961±0.0243
28 promoters 1.288±0.0298 0.983±0.0281 1.117±0.0288
29 sls 0.998±0.0219 1.008±0.0335 0.979±0.0248
30 soybean_small 0.742±0.0413 0.533±0.0377 0.728±0.0411
31 soybean_large 5.627±0.0181 5.825±0.0185 5.677±0.0177
32 splice 2.689±0.0153 2.037±0.0458 2.000±0.0312
33 threeOf9 2.279±0.0249 2.503±0.0226 2.349±0.0242
34 titanic 2.568±0.0358 2.769±0.0325 2.527±0.0343
35 xd6 2.211±0.0243 2.328±0.0243 2.254±0.0231
36 zoo 1.213±0.0369 1.155±0.0379 1.227±0.0367

Table 4.6 AULC for the NB, SSNB, and SSNB-λ -mcv classifier over 36 discrete datasets from the UCI
repository. The results for each AULC classifier are presented in the form of the mean and standard error over
test data for 100 realisations of each dataset. The boldface font indicates that the AULC for the SSNB-λ -mcv
classifiers is better than for the NB classifiers. The results that are statistically equivalent (according to the
Wilcoxon signed rank test at the 0.95% confidence level) are shown in italics. Underlining indicates that the
AULC for the SSNB classifier is better or equivalent to the AULC for the SSNB-λ classifier.

Following the recommendation of Demšar [25], Friedman’s test is used to determine

whether there exist statistical significant differences in the mean ranks of the NB, SSNB, and

SSNB-λ -mcv classifiers. There is no statistical difference between the mean ranks of the

three classifiers for both discrete and continuous benchmark datasets. A graphical illustration

is provided for these results which is a critical difference diagram as presented in Figure 4.8

and 4.9.
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CD

3 2 1

1.5714 NB
1.9286 SSNB-λ-mcv

2.5SSNB

Fig. 4.8 Critical difference diagram for the NB, SSNB, and SSNB-λ -mcv over 28 continuous
benchmark datasets. It shows that there are no statistically significant differences between
the mean ranks for the classifiers which are linked by the bar

Figure 4.8 and 4.9 shows the mean rank for the NB, SSNB, and SSNB-λ -mcv classifiers

over the 28 continuous and 36 discrete benchmark datasets respectively. Clearly, the SSNB-

λ -mcv classifier does not statistically outperform the NB and SSNB classifiers.

CD

3 2 1

1.6944 NB
1.9167 SSNB-λ-mcv

2.3889SSNB

Fig. 4.9 Critical difference diagram for the NB, SSNB, and SSNB-λ -mcv over 36 discrete
benchmark datasets. It shows that there are no statistically significant differences between
the mean ranks for the classifiers which are linked by the bar

The results from Table 4.5 and 4.6, show that the tuning λ does help only for eight out

of the 28 continuous benchmark datasets and 14 out of the 36 discrete benchmark datasets.

It is useful if the average of the error rate learning curve can be shown for these datasets

that choose non zero values for λ . Figures 4.10 and 4.11 show the average of the error rate
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learning curves for these continuous and discrete benchmark datasets respectively. From

Figure 4.10, it is clear that the SSNB-λ -cvs classifier performs slightly better than NB

classifier on breast-cancerw-continuous, iris, spambase, and Synthetic benchmark

dataset. However, the performance of the SSNB-λ -cvs classifier is better compared to NB

classifier on new-thyroid, wine, arcene, and madelon benchmark datasets.
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Fig. 4.10 Comparison of the error rate learning curve for NB, SSNB and SSNB-λ -cvs
classifiers for eight continuous benchmark datasets.

The average learning curves shown in Figure 4.11 suggest that the SSNB-λ -cvs classifier

can slightly improve on the NB classifier on car,flare2, led7,lung-cancer, mushroom,

nursery, shuttle-landing-control, and soybean-small datasets. The SSNB-λ -cvs

classifier can improve on the NB classifier just on breastw, DNA, led24, promoters,

splice, and titanic datasets.
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Fig. 4.11 Comparison of the error rate learning curve for NB, SSNB and SSNB-λ -cvs
classifiers for 14 discrete benchmark datasets.

Tuning the value of λ does help in a few cases, but not very much and it quickly become

worse. Thus we reach the conclusion that the SSNB-λ -mcv makes performance worse in

general and tuning the different value of λ does not seem to really help.
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4.6 Conclusions

In this chapter, we test whether down-weighting the unlabelled data can improve classification

performance against 64 UCI benchmark datasets, 36 of these benchmark datasets have

discrete features and the rest have continuous features. We investigated methods to choose

the optimal value of λ , which is the main research question in this chapter. For a starting

point, we used the train-test partition method. In this method for choosing the value of λ ,

using the test partition performance is an optimistically biased protocol. The weighting factor

seems to decrease the sensitivity to unlabelled data. In order to choose the value of λ in

an unbiased way, the λ factor can be chosen via a validation set. In this experiment, down-

weighting the unlabelled data technique does not substantially improve the base classifier at

all. In addition, instead of using part of the labelled data to choose the value of λ , we prefer

to use it for training purposes. In practice there are two other ways of choosing λ : k-fold

cross-validation and leave one out cross-validation. However, the k-fold cross-validation

protocol does not reliably indicate the best value of λ because the amount of labelled patterns

is very small. On the other hand, leave one out cross-validation protocol is unreliable because

it has a high variance. If the experiment is repeated with different sample datasets, it might

obtain very different values. Therefore, we used a method alternatively between k-folds

cross-validation and leave one out cross-validation depending on the size of the labelled

training. As mentioned in Section 4.5, in order to have the minimum number of examples of

each class in each training fold, but increasing k up to say 10 as the labelled data gets bigger

to reduce the bias and variance of the cross-validation estimate. Finally, we conclude that

none of these model selection methods for choosing the value of λ can substantially improve

the baseline classifier.





Chapter 5

The problem of class frequency bias in

the predicted labels for unlabelled

examples

As described in chapter 3, the use of unlabelled data may degrade the classification perfor-

mance of semi-supervised learning methods when the assumptions of the baseline model are

not valid. In practice, the naïve Bayes classifier often provides poor estimates of the probabil-

ity of class membership due to the assumption of independence between input features. As a

result, the naïve Bayes classifier tends to be overconfident, generating posterior probabilities

with scores either very close to 0 or 1, tending to produce poorly calibrated probabilities of

class membership. This is likely to be important for EM based semi-supervised learning as it

relies on the estimated class probability for the unlabelled data, in the E-step.

A classifier is well-calibrated if the average of the predicted class probability, p(y = c|x;θ),

is approximately equal to the true class proportion. Unfortunately, the naïve Bayes classifier

does not generally provide well-calibrated predictions, due to overconfidence in its predicted

class probabilities. Therefore, it is possible that this is one of the reasons why the unlabelled

data does not improve the classification performance and the semi-supervised naïve Bayes
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classifier may provide uncalibrated predicted class probabilities for unlabelled data too. In

this case, recalibrating (correcting) the predicted class probabilities for unlabelled data may

improve the performance of semi-supervised naïve Bayes classifier. Thus, the predicted class

probabilities can be transformed to another domain which might discover better quality of

predicted class.

In this chapter we begin by demonstrating overconfidence in the output of the naïve Bayes

classifier such that it provides poorly calibrated predictive class probabilities for EM algo-

rithm based semi-supervised naïve Bayes classifiers. Consequently, this problem leads to

providing a bias between the averages of the predicted class probabilities and the true class

proportion. Then, we introduce different transformation methods in order to provide better

calibrated predictive class probabilities in the E-step stage of the EM algorithm. Finally, the

benefit of these transformation techniques with semi-supervised naive Bayes classifier are

demonstrated using benchmark datasets from the UCI repository.

5.1 Overconfidence generated by uncalibrated probability

classes

In principle, the naïve Bayes classifier provides probability estimates for class membership

that range between 0 and 1, but it can give poor estimates of the class probability membership,

i.e. uncalibrated predicted class probabilities. In this section we show why the naïve Bayes

classifier gives poorly calibrated estimates of the probability of class membership using a

simple example. Assume Table 5.1 shows the results of twenty matches of a chess player,

who was playing ten matches with black and the rest with white. In this example, the match

colour is an feature and the target is the match result.
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white black

1 won 6 won 11 lost 16 lost
2 lost 7 lost 12 lost 17 won
3 won 8 draw 13 draw 18 lost
4 lost 9 won 14 lost 19 draw
5 won 10 won 15 lost 20 lost

Table 5.1 The twenty matches of a chess player used as a training data for naive Bayes classifier.

We use the naïve Bayes classifier to predict whether the chess player won, drew or lost

based on this data, via equation 5.1.

p(y = c|x;θ) =
p(x|y;θ) p(y;θ)

∑
C
k=1 p(x|y = k;θ) p(y = k;θ)

. (5.1)

The prior probabilities p(y;θ) for the illustrative example are;

p(won) = 7
20 = 0.35, p(draw) = 3

20 = 0.15, p(loss) = 10
20 = 0.50

The condition probabilities p(x|y;θ) for the feature values;

p(white|won) = 6
7 = 0.86, p(black|won) = 1

7 = 0.14,

p(white|draw) = 1
3 = 0.34, p(black|draw) = 2

3 = 0.66,

p(white|loss) = 3
10 = 0.30, p(black|loss) = 7

10 = 0.70.

Suppose we are interested in finding the posterior probabilities p(y = c|x;θ) for class won;

p(won|white) = 0.60, p(won|black) = 0.40.

Now, we duplicate the feature (matches), which include white and black;

p(won|white,white) = 0.85, p(won|black,black) = 0.15.

Then, we triplicate the matches;

p(won|white,white,white) = 0.93, p(won|black,black,black) = 0.07.
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As we can see from the above example, duplicating and triplicating the same feature violates

the naïve Bayes classifier assumption as a copy of an feature is perfectly correlated with the

original, and the posterior probabilities of the class won tend to 0 or 1, which provides an

overconfident output. The main reason for this overconfidence is the likelihood that gets

the double and triple count. The likelihood is then maximised. Thus, the poorly calibrated

predicted class probability is produced by the naïve Bayes classifier.

5.2 Effect of overconfident classification on EM based SSNB

In the previous section, poor calibration of predicted class probabilities for labelled data

are generated by the naïve Bayes classifier due to the overconfidence problem. Then, the

EM algorithm may place too much confidence in the predicted class probabilities for the

unlabelled data. Hence, the semi-supervised naïve Bayes classifier degrades performance.

The question is how the EM algorithm based semi-supervised naïve Bayes classifier is

affected by the overconfidence problem with the naïve Bayes classifier.

In this section, the predicted class probabilities of the unlabelled data and true class proportion

can be visualized in order to evaluate the predicted class probabilities for unlabelled data.

The average value of the predicted probability for the positive class for the unlabelled data

for 100 replications in the Mushroom benchmark dataset, is plotted as a function of the

amount of labelled data, Figure 5.1. In this Figure, a clear difference (bias) between the true

positive class proportion, which is a green line, and the average value of the predicted class

probabilities of positive class for the unlabelled data can be seen. This bias is unstable until

approximately training 30 labelled patterns are available to the naïve Bayes classifier, but

later the bias remains stable.

This result suggest that the EM algorithm is affected by the overconfidence problem with the

naïve Bayes classifier. Then, solving this bias issue in the Mushroom dataset might reduce

the error rate. One of the possible solutions is to force the mean value of the predicted class
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Fig. 5.1 The average value of the predicted probabilities of the positive class for the unlabelled
data for 100 replications of the Mushroom benchmark dataset.

probabilities of the unlabelled data, qic, to the correct value (assuming the correct value

is known). So, rather than trusting the initial values of the predicted probabilities of class

distribution for the unlabelled data, qic, by adjusting them slightly we hope to make them

better for the subsequent iteration.

5.3 Logit transformation function for predicted class prob-

abilities

In the previous section, Figure 5.1 shows the discrepancy is produced between the predicted

and true class, because the basic EM algorithm based semi-supervised learning is more likely

to produce uncalibrated predicted probabilistic labels. Thus, the semi-supervised naïve Bayes

classifier is more likely to give worse performance results rather than better. To overcome this
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problem, we recalibrate the uncalibrated predicted labels for the unlabelled patterns between

the E-step and the M-step during each iteration of the EM algorithm in order to obtain the

correct mean value. The basic idea is to shift all the predicted probability labels of unlabelled

patterns to the level approximately equal to that class distribution, whilst constraining them

to be within the range 0 to 1.

The inverse sigmoid function is used to transform the predicted class probabilities of the

unlabelled patterns in advance in order to shift the probability values. The inverse sigmoid

function gives the log-odds ratio, ric, for binary classification so in this work, we consider

only binary classification tasks, where yi ∈ {−1,+1} is an indicator variable such that

yi =+1 if the ith pattern is drawn from the positive and yi =−1 if drawn from the negative

class.

Let the proportion of patterns in the positive class be denoted by θ and qic+ be the predicted

probabilistic label of the ith unlabelled pattern belonging to the positive class. We believe

that there is a bias between θ and the mean qic+ value. Correcting this bias by recalibrating

the qic values might improve classification performance. The whole calibration process is

given below:

The predicted class probabilities of the unlabelled patterns belonging to the positive class,

qic+ where i = l + 1, ..., l + u, are transformed into other real value domain, ric+ where

i = l +1, ..., l +u, using the inverse sigmoid function.

ric+ = − log
(

1−qic+

qic+

)

In the case, ric+ has a real value in the range [−∞,+∞], for all i = l +1, ..., l +u such that;

ric+ =


(0,+∞], if qic+ > 0.5,

0, if qic+ = 0.5,

[−∞,0), if qic+ < 0.5.

(5.2)
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We then normalise the real values, ric+ , by dividing each value by the total number of

unlabelled data, u ;

ric+ = −
ric+

u
.

We apply the sigmoid function to convert the average value of the ric+ corresponding to

the probability values qic+ and then plot against the true proportion of positive class to see

whether this transformation can approximately give the correct mean values,

q̃ic+ =
1

1+ exp(− r̄ic+)
; where r̄ic+ =

l+u

∑
i=l+1

ric+.

q̃ic− = 1 − q̃ic+.

Before the next iteration in the estimation of the model parameters, the sigmoid function is

applied in order to convert the log-odds values ric back into probability values, qic, that will

guarantee 0≤ qic ≤ 1,

qic+ =
1

1+ exp(− ric+)
,

qic− = 1 − qic+.

The whole procedure of the semi-supervised naïve Bayes classifiers with the inverse sigmoid

function transformation technique for predicting the probabilities of class membership for

the unlabelled patterns can be seen in Algorithm 5.3 . The error rate results for the SSNB

classifier by using the inverse sigmoid function transformation is the same as the normal

SSNB classifier, because the log-odds ratio, ric, was converted back to the, qic. However, the

mean value of the predicted class log-odds ratio of the unlabelled data was converted by the

sigmoid function, q̃ic, that corresponds to the mean value of the predicted class probabilities,

qic. Therefore, the inverse sigmoid function transformation will give the correct mean value.
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Algorithm 5 log-odds ratio transformation for uncalibrated predicted class probabilities for
the EM based Semi-Supervised naïve Bayes classifier

• Input : X = {(x1,y1), ...,(xl,yl),xl+1, ...,xl+u}
• Set : t = 0
• Set Initialise : θ̂ (0) = argmaxθ P(Xl,Yl | θ)P(θ)
• Loop while classifier parameters improve as measured by the change in
l(θ | Xl,Yl,Xu) :

• (E-Step) : Use the current classifier, θ̂ (t), to find qik = P(yi = k | xu;θ) as
shown in Equation 2.14

rik+ = − log
(

1−qik+
qik+

)
,

rik+ =
rik+

u ,

q̃ik+ = 1
1+exp(− r̄ic+)

, see Figure5.2; where r̄ic+ = ∑
l+u
i=l+1 ric+

qik+ = 1
1+exp(− rik+)

,

qik− = 1 − qik+.

• (M-Step) : Re-estimate the classifier, θ̂ (t+1), using
θ̂ (t+1) = argmaxθ P(Xl,Yl,Xu | θ (t))P(θ (t))

• Set : t = t +1
• Output : A classifier, θ̂ (t), that takes unlabelled data and predicts a class label.

Figure 5.2 shows the plot of the q̃ic+ and the proportion of the positive examples, θ which

is the green line, for 100 replications of the Mushroom benchmark dataset. The inverse

sigmoid function transformation fits badly, effectively pushing the converted mean value of

the ric+ to 0 or 1 as can be seen in the Figure 5.2.

The positive patterns are more clustered with less variability which makes the classifier

overconfident when the positive patterns have been added. However, the average value of the

predicted probability for the positive class for the unlabelled patterns seems to have a small

difference with the proportion of the positive examples, θ , in Figure 5.1. In reality almost

always the value of predicted probabilities for the positive class for the unlabelled patterns

is close to 0 or 1, as can be seen in Figure 5.2, but when averaged it seems to have a small

difference.
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Fig. 5.2 The average value of predicted probabilities for the positive class, for the unlabelled
data for 100 replications of the Mushroom benchmark dataset, using Platt scaling [63] for
rank transformation

The log-odds ratio transformation does not fix the discrepancy problem between the

predicted and actual class. In addition, this results suggest that the discrepancy problem is not

the only issue problem. The overconfidence problem is also an issue. One way to visualize

the overconfidence problem is by plotting a histogram of the predicted class probabilities.

Figure 5.3 shows the percentage histogram of predicted class probabilities output, qic+ ,

for 100 replication for the UCI Mushroom benchmark dataset. It should be noted that the

classifier output is overly confident, the output being almost always close to 0 or close to 1.

5.4 Logistic rank transformation function

The log-odds ratio transformation technique from the previous section clearly suggests that

an attempt to fix the discrepancy problem between predicted and true class does not improve

classification performance. There are two key problems with the EM algorithm that are

consequences of the violations of the independence assumption of the naïve Bayes classifier.
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Fig. 5.3 Histogram of the predicted probabilities of the positive class for the unlabelled data
for 100 replications of the Mushroom benchmark dataset for positive and negative classes.

Firstly, the values of estimated class probabilities for the unlabelled data tend to 0 or 1, and

the second is the difference between the relative class frequency distribution and the mean of

the predicted class probabilities.

Previously, the Platt scaling method [63] was proposed for transforming the SVM classifier

outputs to provide estimates of the probability of class membership. Platt scaling is a

parametric method, which was used for calibrating SVM predictions on [−∞,+∞] into the

posterior probability values p(y = c|x;θ) on the range [0,1] by passing them through a

sigmoid function. However, Platt scaling cannot be used because there are no labels for the

unlabelled patterns. The question that arises here is: what are the possible solutions for the

semi-supervised version? Moreover, does solving the overconfidence problem and fixing the

variation problem between predicted and actual class frequencies improve the naïve Bayes

classification performance?
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5.4.1 Spreading out and fixing the average of the predicted class prob-

abilities

One possible solution would be to rank the predicted class probabilities for the unlabelled

patterns, qic, from the most probable member of the positive class to the least probable

member. By doing this, each pattern has a particular rank, ric, such that, for two patterns

x1 and x2, if the predicted probability positive class q1c+ > q2c+ then the rank r1c+ > r2c+ .

Therefore, let ric+ be the rank values for the predict probabilities positive class for the

unlabelled data qic+ ,

ric+ = rank
(

qic+

)
.

The normalised rank values, sic+ , can be calculated by dividing the rank values by the total

number unlabelled data, u ;

sic+ =
ric+

u
.

After ranking and normalising the predicted class probabilities for the unlabelled data, qic+ ,

calibrated class probabilities might be obtained through a sigmoid function;

qic+ =
1

1+ exp−α(sic+−β )
,

where α is a parameter controlling the slope of the sigmoid function and β is a parameter

controlling the position of the sigmoid function. We attempt to spread out the predicted class

probability for the unlabelled data, qic+ , by changing the value of α . In addition, changing

the value of β corrects the error in the mean of the predicted class probabilities. To perform

this experiment, we want to spread out the class probabilities without changing the level of

average value of qic+ assuming the correct average value is known.

The value of β should be chosen such that the average value of the qic+ is equal to the
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proportion of positive examples in the dataset. Therefore, the average value of the qic+

does not dependent on unlabelled patterns, instead it is dependent on β . The value of β

can be optimised using scaled conjugate gradient methods, implemented by the MATLAB

Optimisation Toolbox function fminunc, to minimise loss function.

During different trials in each experiment, where the qic+ variables are updated we need

to change β but for a particular trial, it is necessary that the value of β remains the same,

assuming the correct average value is known. As can be seen in Figure 5.4a, the value

of β remains the same from the beginning to the end of the plot in a particular trial for

Mushroom benchmark dataset. Consequently, the mean value of qic+ would be the same

as the proportion of positive examples all the time, regardless of the value of α . Therefore,

choosing any value for α , all the lines should be underneath the green line, which is the

proportion of patterns in the positive class, θ .

The sigmoid function seems to fit the rank values reasonably well without having difference
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Fig. 5.4 (a) The average value of predicted probabilities for the positive class for unla-
belled patterns, qic+ , using the logistic transformation. (b) The area under the error rate
learning curve for 100 replications of the Mushroom benchmark dataset using the logistic
transformation.

between the true class proportion and the mean of the predicted class probabilities for

unlabelled patterns, qic. Thus, using the sigmoid function to spread the ranks of the predicted
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probabilities class of the unlabelled patterns can reduce the area under the error rate learning

curve for the Mushroom benchmark dataset from (0.115 ± 0.0013) to (0.105 ± 0.0008) as

shown in Figure 5.4b.

The results obtained suggest that the sigmoid transformation can improve the performance of

the semi-supervised naïve Bayes classification. The whole procedure of the semi-supervised

naïve Bayes classifier with the sigmoid function for rank values transformation technique

(SSNB-sigmoid-fb) is shown in the Algorithm 6.

Algorithm 6 Logistic function and rank transformation for uncalibrated predicted probabili-
ties class for EM based Semi-Supervised naïve Bayes classifier

• Input : X = {(x1,y1), ...,(xl,yl),xl+1, ...,xl+u}
• Set : t = 0
• Initialise : θ̂ (0) = argmaxθ P(Xl,Yl | θ)P(θ)
• Loop while classifier parameters improve as measured by the change in

l(θ | Xl,Yl,Xu) :
• (E-Step) : Use the current classifier, θ̂ (t), to find qik = P(yi = k | xu;θ) as shown in

equation 2.14

ric+ = rank
(

qic+

)
ric+ =

ric+
u

α = 2.[−10 : 5]; and β optimised using the function f minunc
qic+ = 1

1+exp−α(ric+−β )

qic− = 1−qic+
• (M-Step) : Re-estimate the classifier, θ̂ (t+1), using

θ̂ (t+1) = argmaxθ P(Xl,Yl,Xu | θ (t))P(θ (t))
• Set : t = t +1
• Output : A classifier, θ̂ (t), that takes unlabelled data and predicts a class label.

In spite of having improved classification performance, the improvement for a single

benchmark dataset is not sufficient to decide that the sigmoid function transformation can

generally improve classification performance. Therefore, in the next step, we demonstrate an

empirical result for the set of benchmark datasets. Table 5.2 gives the details for 12 discrete

and 16 continuous binary classification benchmark datasets from the UCI repository. For
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each dataset there are 100 random partitions of the data into training and test set for each

trial.

# Dataset
Training
Patterns

Testing
Patterns

Number of
Attributes

Type of
Attributes

1 blogger 75 25 5 discrete
2 breast-cancer 215 71 9 discrete
3 breastw 524 175 9 discrete
4 house-votes 326 109 16 discrete
5 kr-vs-kp 2397 799 36 discrete
6 monk1 324 108 6 discrete
7 mushroom 6093 2031 22 discrete
8 promoters 80 26 57 discrete
9 slc 190 63 6 discrete
10 threeOf9 384 128 9 discrete
11 titanic 1651 550 3 discrete
12 xd6 384 128 9 discrete
13 banknote 1029 343 4 continuous
14 Blood-transfusion 561 187 4 continuous
15 bcc 512 171 9 continuous
16 CMSC 405 135 18 continuous
17 haberman 230 76 3 continuous
18 ionosphere 263 88 33 continuous
19 liver-disorder 259 86 6 continuous
20 magic04 14265 4755 10 continuous
21 musk1 357 119 166 continuous
22 arcene 150 50 10000 continuous
23 gisette 5250 1750 5000 continuous
24 madelon 1950 650 500 continuous
25 sonar 156 52 60 continuous
26 spambase 3451 1150 57 continuous
27 Synthetic 938 312 2 continuous
28 vertebral 233 77 6 continuous

Table 5.2 Detials of the datasets used in experiemnts

The purpose of the logistic transformation on the rank values in this experiment, is to fix

the average value of the qic variables to achieve the correct average value of the labels for the

unlabelled data that does not depended on unlabelled patterns. Furthermore, the plot of the

average value of the qic variables (see Figure 5.4a) should just be a horizontal line and same
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for all runs, because we set it to the correct value for all of the datasets by pretending that we

know what the true ratio of labels is. Obviously this is unrealistic and means this approach is

biased and gives an optimistic estimate of performance. The question being raised here is:

even if we do know what the true value is, would that improve classification performance?

# Dataset NB SSNB SSNB-sigmoid-fb α

1 blogger 2.173±0.0422 2.521±0.0376 1.981±0.0430 0.25
2 breast_cancer 2.656±0.0432 2.965±0.0392 2.264±0.0297 1
3 breastw 0.874±0.0225 0.325±0.0293 0.286±0.0220 16
4 house_votes 1.043±0.0234 1.119±0.0266 1.064±0.0214 0.25
5 kr_vs_kp 3.136±0.0200 4.771±0.0249 3.647±0.0179 0.125
6 monk1 3.129±0.0259 3.158±0.0300 3.045±0.0285 0.0625
7 mushroom 1.771±0.0226 1.670±0.0313 1.425±0.0266 0.125
8 promoters 1.694±0.0360 1.336±0.0361 1.213±0.0455 16
9 slc 1.365±0.0275 1.440±0.0386 1.192±0.0464 16
10 threeOf9 2.711±0.0294 2.967±0.0267 2.690±0.0241 1
11 titanic 3.033±0.0451 3.211±0.0411 2.559±0.0316 2
12 xd6 2.670±0.0292 2.789±0.0275 2.458±0.0285 2
13 banknote 1.541±0.0225 2.931±0.0197 2.320±0.0310 32
14 Blood_transfusion 2.070±0.0262 2.564±0.0357 1.683±0.0185 0.125
15 bcc 0.500±0.0167 0.343±0.0120 0.259±0.0090 32
16 CMSC 0.603±0.0140 0.631±0.0154 0.536±0.0124 4
17 haberman 1.778±0.0301 2.045±0.0527 1.510±0.0254 1
18 ionosphere 1.415±0.0278 1.742±0.0298 1.334±0.0208 0.031
19 liver_disorder 2.719±0.0210 2.989±0.0207 2.549±0.0210 0.001
20 magic04 3.506±0.0182 4.832±0.0136 3.358±0.0102 0.25
21 musk1 2.207±0.0225 2.716±0.0240 2.370±0.0256 0.001
22 arcene 2.160±0.0223 2.051±0.0255 1.878±0.0286 0.125
23 gisette 2.099±0.0117 3.057±0.0285 2.160±0.0200 0.001
24 madelon 4.116±0.0091 3.935±0.0160 3.862±0.0224 32
25 sonar 1.928±0.0239 2.247±0.0210 1.884±0.0267 0.001
26 spambase 2.263±0.0195 2.409±0.0288 2.202±0.0268 32
27 Synthetic 1.182±0.0217 1.116±0.0269 1.037±0.0165 0.125
28 vertebral 1.421±0.0200 1.417±0.0231 1.459±0.0227 16

Table 5.3 AULC of the NB, SSNB, and SSNB-sigmoid-fb classifier with the best value of α over 12 discrete
and 16 continues benchmark datasets. The results for each AULC classifier are presented in the form of the
mean and standard error over test data for 100 realisations of each dataset. The boldface font indicates that
the AULC for one of the classifiers is better than for the other classifier between NB and SSNB-sigmoid-fb
classifiers. The results that are statistically equivalent between NB and SSNB-sigmoid-fb classifiers (according
to the Wilcoxon signed rank test at the 0.95% confidence level) are shown in italics. Underlining indicates that
the AULC for the SSNB classifiers is better or equivalent to the AULC for the SSNB-sigmoid-fb classifier.
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Table 5.3 shows a comparison of the area under the error rate learning curve of NB, SSNB,

and SSNB-sigmoid-fb classifiers for the 28 UCI benchmark datasets. The experiments for

each dataset consisted of 100 trials, with random partitioning of the data to form training and

test sets in each trial. In this experiment, there is a statistically significant difference between

the mean values of the classifiers according to the Friedman test [25]. For test significant

pairwise differences between classifiers the Nemenyi post-hoc test is used. As we can see

in Figure 5.5 the SSNB-sigmoid-fb achieves the highest average rank. However, in this

experiment the biased method is used because in reality we cannot fix the difference between

true class and the average value of qic variables as we do not know the true ratio of positive

and negative patterns.

CD

3 2 1

1.25 SSNB-sigmoid-fb
2.0714 NB

2.6786SSNB

Fig. 5.5 Critical difference diagram for the NB, SSNB, and SSNB-sigmoid-fb over 12
discrete and 16 continues benchmark datasets. It shows that there are statistically significant
differences between the means ranks for the SSNB classifier and both NB and SSNB-sigmoid-
fb classifiers

This is a useful result, explaining why the unlabelled data do not help to improve naïve

Bayes classifier most of the time, which is because the EM based semi-supervised learning

has overconfidently predicted the class probabilities. Additionally, there is a variation

between the mean of the predicted and actual class labels. Thus, we need to do further

experiments to test whether the classification improvement is caused by the spread out of

the qic or if it is caused by fixing the average value of the qic to be correct. The purpose of

this experiment is to test: if we know what the correct average value of the labels for the

unlabelled data, does the semi-supervised learning improve the naïve Bayes classifier? If the
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unlabelled data does not improve the naïve Bayes classifier even if we know the true average

value, obviously it is not going to help when we must estimate it from the limited amount of

labelled data. The result in this experiment shows that if we know the correct average value

of the labels for the unlabelled data, the performance of the NB classifier can be improved. It

is true that we used the biased method but at least we are pointing out what the key issue of

SSNB is.

5.4.2 Spreading out without fixing the average of the predicted class

probabilities

In the previous section, two different actions are used. The former action is spreading out

the rank of the qic variables and the latter is fixing the average value of the qic variables.

Furthermore, fixing the average value of the qic variables is incorrect in the real world because

the actual class labels known for the unlabelled patterns. Therefore, the previous protocol is

a biased. In this section, instead of changing two factors at the same time, a new experiment

is designed to discover whether it is the spreading or the fixing the average value of the qic

variables that produces the improvement in performance.

We start by just spreading out the rank of the qic variables without fixing the average value

and expect that the protocol for this experiment is better than the previous one because at

least this method is less biased compared to the previous experiment. We spread out the rank

of the qic variables by scaling, qic, but do not fix the average value of the qic variables which

means we do not fix the bias between predicted and actual class.

In this experiment, we want to make β the average of the qic variables before they were

rescaled and then use the logistic transformation. We set β such that the average of the qic

variables after the transformation is still the average qic variables before the rescaling. Thus

the true average value can be found which is the average value of ric and should be equal to

the average value of the qic variables before the ranking.
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Basically this experiment and the previous experiment are equivalent formula, just the values

of α and β differ. Moreover, both experiments tell us whether spreading out the qic variables

or changing their mean value reduces the error rate or both (when we made both changes).

# Dataset NB SSNB SSNB-sigmoid α

1 blogger 2.173±0.0422 2.521±0.0376 2.224±0.0398 0.001
2 breast_cancer 2.656±0.0432 2.965±0.0392 2.963±0.0353 0.500
3 breastw 0.874±0.0225 0.325±0.0293 0.309±0.0270 32.000
4 house_votes 1.043±0.0234 1.119±0.0266 1.063±0.0246 0.031
5 kr_vs_kp 3.136±0.0200 4.771±0.0249 3.080±0.0210 0.001
6 monk1 3.129±0.0259 3.158±0.0300 3.031±0.0274 0.250
7 mushroom 1.771±0.0226 1.670±0.0313 1.423±0.0250 0.016
8 promoters 1.694±0.0360 1.336±0.0361 1.238±0.0439 16.000
9 slc 1.365±0.0275 1.440±0.0386 1.167±0.0452 32.000
10 threeOf9 2.711±0.0294 2.967±0.0267 2.660±0.0271 0.250
11 titanic 3.033±0.0451 3.211±0.0411 3.034±0.0454 0.001
12 xd6 2.670±0.0292 2.789±0.0275 2.706±0.0332 0.001
13 banknote 1.541±0.0225 2.931±0.0197 1.623±0.0247 0.001
14 Blood_transfusion 2.070±0.0262 2.564±0.0357 2.102±0.0304 0.001
15 bcc 0.500±0.0167 0.343±0.0120 0.267±0.0090 16.000
16 CMSC 0.603±0.0140 0.631±0.0154 1.365±0.0167 0.001
17 haberman 1.778±0.0301 2.045±0.0527 1.777±0.0302 0.001
18 ionosphere 1.415±0.0278 1.742±0.0298 1.333±0.0262 0.001
19 liver_disorder 2.719±0.0210 2.989±0.0207 2.824±0.0223 0.001
20 magic04 3.506±0.0182 4.832±0.0136 3.337±0.0163 0.001
21 musk1 2.207±0.0225 2.716±0.0240 2.427±0.0250 0.001
22 arcene 2.160±0.0223 2.051±0.0255 1.886±0.0285 0.125
23 gisette 2.099±0.0117 3.057±0.0285 2.160±0.0199 0.001
24 madelon 4.116±0.0091 3.935±0.0160 3.883±0.0214 32.000
25 sonar 1.928±0.0239 2.247±0.0210 1.894±0.0264 0.001
26 spambase 2.263±0.0195 2.409±0.0288 2.539±0.0306 32.000
27 Synthetic 1.182±0.0217 1.116±0.0269 1.059±0.0167 0.125
28 vertebral 1.421±0.0200 1.417±0.0231 1.433±0.0244 32.000

Table 5.4 AULC of the NB, SSNB, and SSNB-sigmoid classifier with the best value of α over 12 discrete and
16 continues benchmark datasets. The results for each AULC classifier are presented in the form of the mean
and standard error over test data for 100 realisations of each dataset. The boldface font indicates that the AULC
for one of the classifiers is better than for the other classifier between NB and SSNB-sigmoid classifiers. The
results that are statistically equivalent between NB and SSNB-sigmoid classifiers (according to the Wilcoxon
signed rank test at the 0.95% confidence level) are shown in italics. Underlining indicates that the AULC for
the SSNB classifiers is better or equivalent to the AULC for the SSNB-sigmoid classifier.
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Table 5.4 shows a comparison of the area under error rate learning curve of the NB,

SSNB, and SSNB-sigmoid classifiers over 28 UCI benchmark datasets. The experiments for

each dataset consisted of 100 trials, with random partitioning of the data to form training and

test sets in each trial. In this case, there is a statistically significant difference between the

classifiers according to the Friedman test. As we can see in Figure 5.6 the SSNB-sigmoid and

NB classifier are statistical superior to the SSNB, but both SSNB-sigmoid and NB classifier

have equivalent performance.
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Fig. 5.6 Critical difference diagram for the NB, SSNB, and SSNB-sigmoid over 18 discrete
and 16 continues benchmark data sets. It shows that there are statistically significant dif-
ferences between the means ranks for the SSNB classifier and both NB and SSNB-sigmoid
classifiers, however there are no statistically significant differences between the mean ranks
for the classifiers which are linked by the bar

The SSNB-sigmoid approach is statistically superior to the SSNB classifier. However,

the difference between NB and SSNB-sigmoid is very small and in this case SSNB-sigmoid

does improve classification performance. Figure 5.6 shows that the SSNB-sigmoid classifier

is best compared to the SSNB and NB classifiers but not enough to make a statistically

significant difference with the NB classifier.

The two previous experiments show that, the unlabelled data can improve the performance

of the NB classifier through the SSNB-sigmoid and SSNB-sigmoid-fb classifiers because

they assume we know the true class frequency. When the obvious biased protocol is used,

SSNB-sigmoid-fb classifier, it is statistically superior to NB classifier. On the other hand, if

the sigmoid transformation is used without fixing the bias, the rank of the SSNB-sigmoid
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classifier, which is a less biased protocol, is higher than the NB classifier rank, but the

difference is not statistically significant.

The algorithm could be guide if the best value for β knew but the problem is of course in the

reality we do not know the true labels for the unlabelled examples. Unfortunately, the SSNB

classifier does improve just a little bit by applying some transformation methods, but these

methods are biased approaches of getting α and β .

5.4.3 Spreading out the predicted class probabilities using Transfer

Learning

In the previous experiment, we applied the biased version of the SSNB-sigmoid classifier

that spreads out the qic without fixing their average value, which improves performance . We

next set up a new experiment that is a diagnostic of what happens if we use a default value of

α all the time, rather than using a biased method for calculating α or fixing β . This approach

is called transfer learning. We estimate α for one dataset from the optimal αs for the other

datasets, hence transfer learning means what is learned from one dataset is transferred to

another problem. The log scale parameter log2 α is used for the experiment Leave one dataset

out (LODO). Taking the median of the log scale parameter log2 α is probably a more sensible

way than having a default value of α .

In this section, the leave one dataset out approach is used over 28 UCI benchmark datasets

described in Table 5.2. The SSNB-sigmoid classifier is trained over only 27 benchmark

datasets which gives an idea what α should be by taking the median of α . Then, we can

use that median value of αs to choose the value of α for this remaining benchmark dataset,

which is the leave one dataset out and just using a single value of α . This is called transfer

learning, which implies learning something for one task by taking parameters that seem good

for another task. Previous experiments show that the sigmoid transformation does help to

improve the NB classifier if we use a biased approach, but in this section we want to test
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whether without using a biased approach, the NB classifier still improves. The research

question for this experiment is: can we predict the value of α via an unbiased approach that

is basically established as transfer learning?

# Dataset NB SSNB SSNB-sigmoid-LODO α

1 blogger 2.173±0.0422 2.521±0.0376 2.227±0.0400 0.0156
2 breast_cancer 2.656±0.0432 2.965±0.0392 2.992±0.0289 0.0078
3 breastw 0.874±0.0225 0.325±0.0293 0.482±0.0173 0.0078
4 house_votes 1.043±0.0234 1.119±0.0266 1.069±0.0247 0.0078
5 kr_vs_kp 3.136±0.0200 4.771±0.0249 3.185±0.0216 0.0156
6 monk1 3.129±0.0259 3.158±0.0300 3.048±0.0289 0.0078
7 mushroom 1.771±0.0226 1.670±0.0313 1.423±0.0250 0.0156
8 promoters 1.694±0.0360 1.336±0.0361 1.683±0.0323 0.0078
9 slc 1.365±0.0275 1.440±0.0386 1.536±0.0265 0.0078
10 threeOf9 2.711±0.0294 2.967±0.0267 2.689±0.0285 0.0078
11 titanic 3.033±0.0451 3.211±0.0411 3.128±0.0386 0.0156
12 xd6 2.670±0.0292 2.789±0.0275 2.724±0.0307 0.0156
13 banknote 1.541±0.0225 2.931±0.0197 1.685±0.0247 0.0156
14 Blood_transfusion 2.070±0.0262 2.564±0.0357 2.142±0.0318 0.0156
15 bcc 0.500±0.0167 0.343±0.0120 0.283±0.0094 0.0078
16 CMSC 0.603±0.0140 0.631±0.0154 1.382±0.0166 0.0156
17 haberman 1.778±0.0301 2.045±0.0527 1.784±0.0304 0.0156
18 ionosphere 1.415±0.0278 1.742±0.0298 1.340±0.0265 0.0156
19 liver_disorder 2.719±0.0210 2.989±0.0207 2.833±0.0224 0.0156
20 magic04 3.506±0.0182 4.832±0.0136 3.624±0.0242 0.0156
21 musk1 2.207±0.0225 2.716±0.0240 2.449±0.0247 0.0156
22 arcene 2.160±0.0223 2.051±0.0255 1.894±0.0274 0.0078
23 gisette 2.099±0.0117 3.057±0.0285 2.241±0.0215 0.0156
24 madelon 4.116±0.0091 3.935±0.0160 4.085±0.0104 0.0078
25 sonar 1.928±0.0239 2.247±0.0210 1.899±0.0264 0.0156
26 spambase 2.263±0.0195 2.409±0.0288 2.875±0.0493 0.0078
27 Synthetic 1.182±0.0217 1.116±0.0269 1.106±0.0177 0.0078
28 vertebral 1.421±0.0200 1.417±0.0231 1.853±0.0300 0.0078

Table 5.5 AULC of the NB, SSNB, and SSNB-sigmoid-LODO classifier with the best value of α over 12
discrete and 16 continues benchmark datasets. The results for each AULC classifier are presented in the
form of the mean and standard error over test data for 100 realisations of each dataset. The boldface font
indicates that the AULC for one of the classifiers is better than for the other classifier between NB and SSNB-
sigmoid-LODO classifiers. The results that are statistically equivalent between NB and SSNB-sigmoid-LODO
classifiers (according to the Wilcoxon signed rank test at the 0.95% confidence level) are shown in italics.
Underlining indicates that the AULC for the SSNB classifiers is better or equivalent to the AULC for the
SSNB-sigmoid-LODO classifier.
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In this case, there is no statistically significant difference between SSNB-sigmoid-LODO

and both NB and SSNB classifiers according to the Friedman test. As we can see in Figure

5.7 the SSNB-sigmoid-LODO outperforms the SSNB classifier and also the SSNB-sigmoid-

LODO just underperformed the NB classifier but the difference is not statistically significant.
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Fig. 5.7 Critical difference diagram for the NB, SSNB, and SSNB-sigmoid-LODO over 12
discrete and 16 continues benchmark datasets. It shows that there are statistically significant
differences between the means ranks for the SSNB classifier and both NB and SSNB-sigmoid-
LODO classifiers, however there are no statistically significant differences between the mean
ranks for the classifiers which are linked by the bar

5.4.4 Spreading out the predicted class probabilities using cross-validation

method

In the SSNB-sigmoid-LODO experiment, the value of α was chosen by looking at the test

data partition, which obviously we can say is still using a bit of a biased method because of

choosing a parameter by looking at the test data, which is biased protocol. In addition, this

biased method is tried to fixing bias between predictive and actual class, and estimate the

test error. A better action is used the cross-validation method in terms of minimizing the test

error. If it does not help, then choosing the value of α badly is probably making it much

worse which does not really help.
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# Dataset NB SSNB SSNB-sigmoid-cv
1 blogger 1.765±0.0349 2.056±0.0318 1.886±0.0314
2 breast_cancer 2.251±0.0329 2.501±0.0352 2.530±0.0281
3 breastw 0.585±0.0151 0.229±0.0131 0.364±0.0102
4 house_votes 0.849±0.0163 0.922±0.0157 0.886±0.0162
5 kr_vs_kp 2.652±0.0192 4.273±0.0241 2.744±0.0205
6 monk1 2.650±0.0236 2.664±0.0275 2.610±0.0232
7 mushroom 1.337±0.0188 1.398±0.0217 1.270±0.0155
8 promoters 1.288±0.0298 0.983±0.0281 1.077±0.0291
9 slc 0.998±0.0219 1.008±0.0335 0.945±0.0258
10 threeOf9 2.279±0.0249 2.503±0.0226 2.296±0.0222
11 titanic 2.568±0.0358 2.769±0.0325 2.687±0.0320
12 xd6 2.211±0.0243 2.328±0.0243 2.344±0.0241
13 banknote 1.167±0.0153 2.464±0.0170 1.351±0.0209
14 Blood_transfusion 1.786±0.0216 2.093±0.0314 1.879±0.0244
15 bcc 0.323±0.0113 0.283±0.0099 0.236±0.0076
16 CMSC 0.628±0.0165 0.467±0.0117 1.340±0.0114
17 haberman 1.487±0.0240 1.567±0.0467 1.478±0.0263
18 ionosphere 1.011±0.0238 1.319±0.0244 1.096±0.0233
19 liver_disorder 2.284±0.0175 2.501±0.0198 2.372±0.0189
20 magic04 3.112±0.0129 4.347±0.0103 3.045±0.0128
21 musk1 1.732±0.0197 2.273±0.0223 2.027±0.0223
22 arcene 1.661±0.0180 1.582±0.0217 1.493±0.0228
23 gisette 1.564±0.0101 2.541±0.0277 1.804±0.0173
24 madelon 3.607±0.0087 3.430±0.0163 3.450±0.0147
25 sonar 1.424±0.0238 1.748±0.0206 1.535±0.0234
26 spambase 1.889±0.0145 2.026±0.0204 1.896±0.0211
27 Synthetic 0.861±0.0133 0.829±0.0144 0.863±0.0123
28 vertebral 1.077±0.0164 1.143±0.0188 1.304±0.0207

Table 5.6 AULC of the NB, SSNB, and SSNB-sigmoid-cv classifier over 12 discrete and 16 continues
benchmark datasets. The results for each AULC classifier are presented in the form of the mean and standard
error over test data for 100 realisations of each dataset. The boldface font indicates that the AULC for one of
the classifiers is better than for the other classifier. The results that are statistically equivalent between NB and
SSNB-sigmoid-cv classifiers (according to the Wilcoxon signed rank test at the 0.95% confidence level) are
shown in italics.

Table 5.6 shows a comparison of the area under the error rate learning curves for the NB,

SSNB, and SSNB-sigmoid-cv classifiers over 28 UCI benchmark datasets. The experiments

for each dataset consisted of 100 trials, with random partitioning of the data to form training

and test sets in each trial. In this case, there is a statistically significant difference between
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classifiers according to the Friedman test. As we can see in Figure 5.8 the performance of the

NB classifier is statistically superior to that of the SSNB classifier and it has higher rank than

the SSNB-sigmoid-cv classifier but the difference is not statistically significant. Furthermore,

the SSNB-sigmoid-cv classifier has equivalent classification performance compared to both

NB and SSNB classifiers.
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Fig. 5.8 Critical difference diagram for the NB, SSNB, and SSNB-sigmoid-cv over 12
discrete and 16 continues benchmark datasets. It shows that there are statistically significant
differences between the means ranks for the SSNB classifier and both NB and SSNB-sigmoid
classifiers, however there are no statistically significant differences between the mean ranks
for the classifiers which are linked by the bar

5.4.5 Does the logistic transformation improve the SSNB classifier?

Figure 5.9 shows a critical difference diagram for NB, SSNB, SSNB-sigmoid, SSNB-sigmoid-

fb, SSNB-sigmoid-LODO, SSNB-sigmoid-cv. Clearly, the logistic transformation improves

the SSNB classifier. If the biased protocols are used with the logistic transformation trick,

SSNB-sigmoid and SSNB-sigmoid-fb, then the result obtained is better than SSNB and NB,

especially if the average value of the qi variables was fixed. In addition, if the unbiased

protocols are used with logistic transformation, SSNB-sigmoid-LODO and SSNB-sigmoid-

cv, then the result obtained is equivalent to the NB classification performance but at least

superior to the SSNB classifier. This result suggests that using the logistic transformation

in the E-step of the EM based semi-supervised learning has not significantly improved the

performance of NB classifier but it is a step that at least guides the algorithm better than just
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the SSNB classifiers. The logistic transformation is likely to be beneficial, but the problem

with estimating the parameters α and θ using the labelled data is unreliable.
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Fig. 5.9 Critical difference diagram for the NB, SSNB, SSNB-sigmoid, SSNB-sigmoid-fb,
SSNB-sigmoid-LODO and SSNB-sigmoid-cv over 12 discrete and 16 continues benchmark
datasets. It shows that there are statistically significant differences between the means ranks
for the SSNB, SSNB-sigmoid-LODO and SSNB-sigmoid-cv classifiers and NB, SSNB-
sigmoid and SSNB-sigmoid-fb classifiers, however there are no statistically significant
differences between the mean ranks for the NB, SSNB-sigmoid and SSNB-sigmoid-fb
classifiers which are linked by the bar

5.5 Conclusions

In this chapter we started off by describing problem in the NB classifier, in which the

predicted class probability were overconfident, being extremely close to 0 and 1. Then,

we showed the effect of this problem in the NB classifier to the EM algorithm base semi-

supervised learning when it used both labelled and unlabelled data to estimate the model

parameters. Consequently, the main research question was established: could spreading

out the predicted class probabilities for the unlabelled data improve the NB classifier? In

order to do that, the logistic transformation method was used with various approaches to

choose the logistic function parameters was used in a series of experiments. In the first

experiment, the predicted class probabilities for unlabelled data were spread out and we as-

sumed that the correct average value of the labels for unlabelled data was known by using the

SSNB-sigmoid-fb approach. This approach can improve the baseline classifier because the

SSNB-sigmoid-fb has a very biased protocol. Next, the SSNB-sigmoid approach was used
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without assuming that the correct average value of the labels for unlabelled data was known,

which has a slightly biased protocol. The experiment results show that the SSNB-sigmoid

approach is better than the NB classifier but there is no statistically significant difference.

The transfer learning method was used with the SSNB-sigmoid approach in another exper-

iment known as SSNB-sigmoid-LODO. The goal behind using transfer learning is to use a

default value for the rate of spread out of the predicted class probabilities for unlabelled

data. Finally, the cross-validation method, SSNB-sigmoid-cv, was used for choosing the

logistic transformation function parameters. The rank of the NB classifier is higher than the

SSNB-sigmoid-LODO and SSNB-sigmoid-cv,but there is no statistically significant differ-

ence. The SSNB-sigmoid approaches, (SSNB-sigmoid-fb and SSNB-sigmoid), which are

biased protocols, do help a bit and are approximately equivalent to the NB classifier, while in

both cases SSNB-sigmoid-LODO and SSNB-sigmoid-cv, logistic transformation methods

do not help because both are unbiased protocols. In this chapter, we conclude that less

improvement in the NB classification performance can be obtained by using less unbiased

protocol. The logistic transformation method improve SSNB, but not to the point where it

is a significant improvement on NB. The logistic transformation method just moderates a

little bit but the experiments results suggest that does not help very much. However, it does

generate better performance than the SSNB classifier.



Chapter 6

Investigation of active learning

In previous chapters, various experiments were performed and discussed in order to evaluate

whether semi-supervised learning can improve the performance of the naïve Bayes classifier.

In this chapter, we present results from active learning experiments for selectively labelling

large amounts of unlabelled patterns. The dual goals of using active learning methods are

the creation of high-quality labelled data to improve classification performance, and the

minimisation of the manual labelling effort required. This chapter starts with a reproduction

of some existing experimental results and a description of the experimental design for the

real world benchmark datasets. It continues with a discussion of results obtained using the

suite of benchmark datasets, including the evaluation measures and statistical tests used.

After selecting the least confidently unlabelled pattern by active learning especially in the

early stages, we attempt to use the remaining the large amount of unlabelled patterns via

semi-supervised leaning to increase the classification performance. Thus, we design some

experiments to combine active learning with semi-supervised learning.
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6.1 Introduction to active learning

A limitation of supervised learning methods is that they require the training data to be

labelled, which is often a time consuming and expensive task. Semi-supervised techniques

were used previously to extract predictive information from unlabelled patterns. Nevertheless

using unlabelled patterns does not generally improve classification performance in the case

of a naïve Bayes classifier. In this chapter, we investigate active learning methods that

acquire labelled data incrementally, using the existing model to select particularly helpful

additional training patterns for labelling by an oracle. Therefore, active learning methods

may reduce the number of examples that must be labelled to achieve a particular level of

accuracy. Achieving the same naïve Bayes classification performance with fewer labelled

training examples is an important step towards improving the classifier and previous works

have shown that this can be done successfully [52].

As mentioned in Chapter 2.3, active learning is a machine learning framework that allows

the classifier to automatically select the most informative unlabelled patterns for manual

labelling. Thus, the main goal in active learning can be referred to as selective sampling.

Different sampling strategies exist, for example, uncertainty sampling is a specific type of

active learning which selects informative patterns. These patterns are near of the decision

boundaries and so have the lowest confidence score. In this section, we are interested in

implementing uncertainty sampling for pool-based active learning, which provides a small set

of labelled data, L, and a large set of unlabelled data, U , for training. With the small amount

of labelled patterns the initial parameters of model are estimated, this method has been

applied by Ramirez-Loaiza et al. [64]. Therefore, before investigating the main hypothesis,

we first attempt to reproduce the experiments from Ramirez-Loaiza et al. [64] as a preliminary

investigation.

The preliminary experiment attempted to reproduce the ALNB (Active Learning Naïve Bays)

classifier results with the Hiva benchmark dataset that was originally reported in Ramirez-
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Loaiza et al. [64] which is a recent empirical evaluation paper that used ten well-studied

benchmark datasets to demonstrate the effectiveness of the ALNB classifier. The Hiva

benchmark dataset is one of the datasets used, which is a real world binary classification

problem with 42,678 examples and 1,617 features, that was originally developed for an active

learning challenge by Guyon et al. [34].

The authors of [64] designed their experiments as follows: the performance of the ALNB

classifier was averaged over five runs of five-fold cross validation. For each experiment, ten

labelled patterns (five from each class ) are chosen from the available data and the rest of

the training set was treated as the unlabelled pool, U . However, if the unlabelled pool, U ,

consisted of more than 10,000 patterns, then 10,000 patterns were randomly sub-sampled

from the large unlabelled pool. For computational convenience, at each iteration the top ten

most informative instances were selected, as determined by the AL strategy. Following this

experimental design, we obtained the average recall learning curve plot for Hiva benchmark

as shown in Figure 6.1.
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Fig. 6.1 Average test set recall learning curve for the Hiva benchmark dataset using the
uncertainty sampling strategy of ALNB classifier over 5-run 5-fold cross validation
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The learning curve obtained for the ALNB classifier suggested that current experimental

results were approximately the same as the learning curve from Hiva benchmark dataset

given by, [64] suggesting our implementation of ALNB is correct.

After this experiment, we also reproduced the results described in Antonucci et al. [4],

which evaluated the uncertainty sampling strategy with pool-based active learning for datasets

with various continuous features. This paper is an empirical evaluation for AL algorithms for

classification tasks, one of the classifiers investigated being NB, on different data sets from

the UCI repository. In order to reproduce some of the results from Antonucci et al. [4], two

benchmark datasets, diabetes and iris , were chosen from UCI repository. The diabetes

benchmark dataset is a binary classification problem, which consist of 768 examples and 8

features, whereas the iris dataset has three classes with 150 examples and 4 features.

The author implemented uncertainty sampling as follows: 50 replications were generated for

each dataset and the average of the accuracy learning curve was calculated on the test data.

The datasets are partitioned to form the training and test sets in a stratified way. Antonucci

et al. [4] randomly draw 10 patterns as the labelled training set and 100 patterns as a test set,

then the remaining patterns are treated as unlabelled training patterns. The procedure was

started by training on ten labelled patterns, L = 10, to estimate the initial parameters for the

initial NB classifier. Then, the predicted probabilities of the labels for unlabelled patterns

were ranked according to uncertainty sampling. five patterns with the highest uncertainty

score were then selected and submitted for labelling by the oracle. Then, newly labelled

patterns were added to the labelled training patterns and removed from the large unlabelled

pool. Finally, the labelled training examples were used to update the parameters of a standard

NB classifier. Then the accuracy of ALNB classifier is evaluated on the test set. This

procedure is repeated until the active learning set is empty.

Figure 6.2a shows the mean accuracy of the ALNB classifier for the diabetes benchmark

using uncertainty sampling with pool based active learning. Figure 6.2b shows the same



6.2 Comparing passive and active learning classifier 163

algorithm for the iris benchmark dataset. The results obtained suggest that the current

learning curves for both diabetes and iris are equivalent to the learning curves of the

Antonucci et al. [4]. Based on the initial experiments results, we then evaluated the ALNB

classifier over a larger suite of benchmark datasets.
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Fig. 6.2 The average accuracy of the ALNB classifier for (a)diabetes and (b) iris

6.2 Comparing passive and active learning classifier

In this section we provide an experimental comparison of the naïve Bayes (NB) and active

learning naïve Bayes (ALNB) classifiers. We performed two sets of experiments for discrete

and continuous real world and synthetic benchmark datasets from the UCI machine-learning

repository [6], shown in Table 3.1 and 3.2 respectively. The classification performance is

presented as the mean AULC over 100 error rate learning curves for the test set partition

along with the standard error of the mean. The details of experimental design for active

learning is as follows: for the uncertainty sampling approach, the number of oracle queries is

displayed on a logarithmic scale. At each step, the best k patterns, i.e. the nearest k patterns

from the decision boundary (most k uncertain patterns) of the remaining training patterns are
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labelled and the model updated after each query. The AULC for active learning classifier

was estimated in each replication after all unlabelled patterns are queried.

# Dataset NB ALNB

1 audiology 4.891±0.0339 4.836±0.0320
2 balance_scale 2.830±0.0312 2.677±0.0263
3 blogger 2.173±0.0422 2.211±0.0488
4 breast_cancer 2.656±0.0432 2.641±0.0445
5 breastw 0.874±0.0225 0.886±0.0376
6 car 2.965±0.0308 2.811±0.0229
7 DNA 3.181±0.0231 2.912±0.0196
8 flare1 4.185±0.0354 4.071±0.0375
9 flare2 4.264±0.0299 4.392±0.0305
10 hayes_roth 3.140±0.0396 3.004±0.0315
11 house_votes 1.043±0.0234 0.810±0.0222
12 kr_vs_kp 3.136±0.0200 2.703±0.0145
13 led7 5.200±0.0234 5.325±0.0231
14 led24 6.193±0.0141 5.973±0.0161
15 lung_cancer 2.743±0.0442 2.595±0.0455
16 lymphography 2.190±0.0365 2.063±0.0352
17 marketing 9.488±0.0200 9.596±0.0249
18 monk1_corrupt 3.465±0.0245 3.385±0.0274
19 monk1_cross 1.803±0.0237 1.580±0.0194
20 monk1_local 3.218±0.0294 3.052±0.0336
21 monk1 3.129±0.0259 2.897±0.0292
22 monk3_cross 1.681±0.0275 1.472±0.0264
23 monk3_local 1.735±0.0223 1.545±0.0177
24 monk3 1.695±0.0237 1.454±0.0224
25 mushroom 1.771±0.0226 1.250±0.0275
26 nursery 3.662±0.0172 3.449±0.0153
27 primary_tumor 5.806±0.0301 5.665±0.0292
28 promoters 1.694±0.0360 1.752±0.0387
29 shuttle_landing_control 1.365±0.0275 1.235±0.0292
30 soybean_small 1.362±0.0513 0.912±0.0230
31 soybean_large 6.563±0.0191 6.366±0.0204
32 splice 3.332±0.0169 3.164±0.0181
33 threeOf9 2.711±0.0294 2.670±0.0308
34 titanic 3.033±0.0451 3.319±0.0688
35 xd6 2.670±0.0292 2.606±0.0297
36 zoo 1.696±0.0446 1.298±0.0345

Continued on next page
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# Dataset NB ALNB

Table 6.1 AULC of the NB, and ALNB classifiers with the uncertainty sampling strategy over 36 discrete
benchmark datasets. The boldface font indicates that the AULC for one of the classifiers is better than the other
classifier. The results that are statistically equivalent (according to the Wilcoxon signed rank test at the 0.95%
confidence level) are shown in italics.

Table 6.1 shows that the ALNB classifier performs well compared to NB for the 29 out

of the 36 benchmark datasets, this suggests that the ALNB classifier is better than the NB

classifier in the current experiment. There is also a statistically significant difference between

the mean ranks of the ALNB and NB classifiers for AULC according to the Wilcoxon

signed rank test and the p-value > 0.01. According to this result we can see that active

learning outperforms passive learning. On the following pages, the area under the error

rate learning curves are shown for the above experiments to show how active learning re-

duces the classification error rate. The learning curves indicate the mean of the area under

error rate learning curve on the test set over 100 replication. Figure 6.3 shows results for

the house-votes, kr-vs-kp, lung-cancer , monk1, monk1-cross, monk1-local, monk3,

monk3-cross, monk3-local, mushroom, shuttle-landing-control, soybean-small,

zoo benchmark datasets, which are the most best results where active learning substantially

improves classification performance. For example, the active learning technique for the

mushroom, dataset can achieve almost minimal level of error rate with only 40 patterns

whereas passive learning requires more than 6000 patterns to obtain this error rate level, (see

Figure 6.3). Similarly, the passive learning technique for the kr-vs-kp benchmark needs

more than 2300 patterns to achieve same error rate level in active learning. From the results,

it is important to note that an active learning technique can demonstrate good classification

performance using a relatively small proportion of the training labelled set which is why it

can be said that we only need a small labelling cost if active learning does work.
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Fig. 6.3 Comparison of the error rate learning curve for the NB and ALNB classifiers. In
these cases, the ALNB better than the NB classifier and the difference between these two
classifiers are statistically significant for 13 discrete benchmark datasets.

Similar to the previous results, we can present the learning curve results for the car,

balance-scale, breast-cancer, DNA, flare1, hayes-roth, led24, lymphography, xd6,

monk3-corrupt, primary-tumor, soybean-large, splice, threeOf9 benchmark
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datasets (Figure 6.4). The area under the error rate learning curve for active learning demon-

strates that reduced classification error rate is achieved slightly faster than for passive learning,

but it is not a statically significant improvement according to the Wilcoxon signed rank test.
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Fig. 6.4 Comparison of the error rate learning curve for NB and ALNB classifiers. In
these cases, the ALNB classifier performs slightly better than NB classifier over 14 discrete
benchmark datasets.
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Fig. 6.5 Comparison of the error rate learning curve for NB and ALNB classifiers. In these
cases, both classifiers have equivalent performance on four discrete benchmark datasets.

For a few benchmark datasets, for example audiology, blogger, breastw, led7,

nursery active learning shows no improvement in classification performance (Figure 6.5).

So, adding additional patterns actively or passively to the training labelled set achieves a

similar reduction in error rate. Finally, active learning is worse than passive learning for the

remaining benchmark datasets shown in Figure 6.6.
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Fig. 6.6 Comparison of the error rate learning curves for NB and ALNB classifiers. The
ALNB classifier is inferior to the NB classifier and the differences between these two
classifiers are statistically significant for five discrete benchmark datasets.

So far the active learning method is compared to passive learning on benchmark datasets

with discrete feature. Clearly, active learning techniques yield superior results on most of

the datasets. Thus, it seems that active learning techniques are suitable for problems with
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unlabelled data. The second experiment performed in order to evaluate the performance of

active learning for datasets with continuous features. This experiment shows the comparison

of active and passive learning for the NB classifier on the 28 continuous benchmark datasets

and the results presented in Table 6.2.

# Dataset NB ALNB

1 banknote 1.541±0.0225 1.074±0.0225
2 Blood_transfusion 2.070±0.0262 2.080±0.0458
3 breast_cancerw_continuous 0.500±0.0167 0.432±0.0129
4 Climate_Model_Simulation_Crashes 0.603±0.0140 0.630±0.0208
5 glass 2.006±0.0192 1.902±0.0205
6 haberman 1.778±0.0301 1.870±0.0339
7 ionosphere 1.415±0.0278 1.340±0.0290
8 iris 0.418±0.0187 0.377±0.0180
9 letter 4.201±0.0111 4.567±0.0152
10 liver_disorder 2.719±0.0210 2.565±0.0304
11 magic04 3.506±0.0182 3.194±0.0362
12 musk1 2.207±0.0225 2.263±0.0291
13 new_thyroid 0.352±0.0150 0.347±0.0164
14 pendigits 2.104±0.0139 2.106±0.0200
15 sleep 4.956±0.0145 5.930±0.0370
16 vehicle 3.517±0.0166 3.073±0.0230
17 vowel 2.051±0.0138 1.945±0.0130
18 waveform_noise 2.581±0.0145 2.481±0.0155
19 waveform 2.917±0.0121 2.978±0.0205
20 wine 0.640±0.0187 0.499±0.0164
21 arcene 2.160±0.0223 2.156±0.0221
22 gisette 2.099±0.0117 2.129±0.0145
23 madelon 4.116±0.0091 4.119±0.0095
24 sonar 1.928±0.0239 1.729±0.0211
25 spambase 2.263±0.0195 2.238±0.0281
26 Synthetic 1.182±0.0217 1.332±0.0320
27 vertebral 1.421±0.0200 1.357±0.0270
28 diabetes 2.137±0.0207 2.206±0.0234

Table 6.2 AULC of the NB and ALNB classifiers with uncertainty sampling strategies over 28 continuous
benchmark datasets. The boldface font indicates that the AULC for one of the classifiers between the NB
and ALNB is better than for the other classifier. The results that are statistically equivalent (according to the
Wilcoxon signed rank test at the 0.95% confidence level) are shown in italics.
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From Table 6.2 it can be seen that the AULC of the ALNB is better than the NB for only

half of the datasets. In addition, there is no statistically significant difference between active

and passive learning over all datasets according to the Wilcoxon signed rank test at the 95%

level of significance (p-value > 0.01). On the following pages, the learning curves results

for the above experiment are shown.

Figure 6.7 shows how the average area under the learning curve over 100 random replications

for the active learning compares to the passive learning classifier on the test set. As we can

see, the area under error rate learning curve for active learning is slightly higher from the

beginning of the learning curve but after only few additional training labelled patterns are

used, active learning achieves consistently good classification performance on the banknote,

breast-cancerw-continuous, glass, ionosphere, iris, liver-disorder, magic04,

sonar, vehicle, vertebral, vowel, and wine benchmark datasets.
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Fig. 6.7 Comparison of the error rate learning curve for NB and ALNB classifiers. In these
cases, the ALNB performs better than NB classifier and the differences between these two
classified are statistically significant for 12 continuous benchmark datasets.
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Figure a 6.8 shows the learning curves for passive and active learning on the waveform-noise

benchmark dataset. It can be seen that active learning is slightly better than passive learn-

ing. Thus, the sample selection of active learning is not very effective for the NB classifier

compared to random sampling for this dataset.
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Fig. 6.8 Comparison of the error rate learning curve for the NB and ALNB classifiers on
waveform-noise. In these cases, the ALNB performs slightly better than NB classifier.

Active learning does not perform better than passive learning for the arcene, gisette,

madelon, pendigits, Climate-Model-Simulation-Crashes, new-thyroid, spambase

benchmark datasets. We show the learning curves for these benchmark datasets in Figure 6.9.

The performance of active and passive learning is very similar and stable. Finally, active

learning is worse than passive learning for the remaining benchmark datasets, shown in

Figure 6.10.
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Fig. 6.9 Comparison of the error rate learning curve for NB and ALNB classifiers. In these
cases, both classifiers has equivalent performance on eight continuous benchmark datasets.
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Fig. 6.10 Comparison of the error rate learning curves for NB and ALNB classifiers. The NB
better than ALNB classifier and the differences between these two classified are statistically
significant for seven continuous benchmark datasets.
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In a short summary on the continuous benchmark datasets, these results may indicate that

the training patterns are equally informative for both learning techniques therefore adding

different amount of the training patterns almost has the same effect and give comparable

learning curves for these datasets.

In this experiment the area under the error rate learning curve was used for evaluating

the classification performance. For these learning curves, building a good initial model is

very helpful for achieving high performance in active learning algorithm, as described in

Figure 1.6. The initial labelled training patterns are generally selected at random for building

the initial model, so, based on random sampling we may still build a good initial model.

However, in reality, occasionally we can build reasonably good initial models due to the

small size of initial training labelled patterns. Therefore, the error rate learning curve for

active learning classifier is generally inferior to passive learning. However, in some cases the

error rate learning curve rises again, as can be seen in Figures 6.3 and 6.7 for 27 benchmark

datasets in both previous experiments.

In this section, uncertainty sampling for pool-based active learning was investigated but

did not provide much help to improve the classifier. When uncertainly sampling selects the

most uncertain unlabelled patterns, it seems it often fails by selecting outliers. The new

experiments in the next section are designed, to investigate whether the selected unlabelled

patterns at the end of these learning curves are outliers or not.
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6.3 Investigation of anomalous learning curves

In theory, active learning iteratively attempts to reduce the classification error rate by labelling

the most informative patterns from a large pool of unlabelled examples. Through the error

rate learning curve this error rate reduction can be seen when the active learning algorithm

continues the labelling process. However, we found that sometimes the error rate learning

curve rises again. These results suggest active learning might select uninformative patterns

and degrade the classification performance. For example, the learning curves for banknote,

glass, ionosphere, liver-disorder, magic04, vehicle, sonar, and vertebral in the

continuous benchmark datasets and house-votes, kr-vs-kp, monk1, and mushroom, in the

discrete benchmark datasets show this phenomenon. It is important to determine why the

active learning classifier shows these kinds of result. It is probably when the active learning

classifier has reached its maximum effectiveness and no informative patterns could be found

in the remaining unlabelled patterns which might include outliers.

In such a situation, removing patterns at the end of the learning curve might effectively

avoid selecting these outliers as the most informative patterns, improving classification perfor-

mance. However, there is a difficulty in identifying these patterns as outliers at the end of the

learning curve because the learning curve come from averaging 100 replications, especially

for large benchmark datasets. For example, in the mushroom, dataset active learning utilises

nearly 1000 unlabelled patterns at the end of learning curve. Therefore, pattern removing

techniques cannot be easily applied for uncertainty sampling for active learning. However,

at least to determine whether these unlabelled patterns are outliers or not that often cause

uncertainty sampling to fail, we used the liver-disorder benchmark dataset, shown in

Figure 6.11, that utilises seven unlabelled patterns at the end of learning curve where the

error rises again sharply.
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Fig. 6.11 The average of the error rate learning curve for 1000 replications for both active
(alNB) and passive (NB) learning for the liver-disorder benchmark dataset

To investigate why the error rate learning curve increases again, we design another simple

experiment on the liver-disorder dataset chosen because only a few patterns remain at

the end of learning curve. In this experiment instead of 100 replications, we increased the

number of replications to 1000 in order for each pattern to have the opportunity to appear in

a training set a large number of times. Figure 6.11 shows the average result of 1000 learning

curves for both active and passive learning on the test set.
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Fig. 6.12 Scatter plot between Liver-disorder benchmark datasets feature patterns. The seven
removed patterns are shown inside circles.

Finally, we remove the last seven most uninformative patterns at the end and the passive

learning classifier improved significantly. Figure 6.12, shows these seven patterns that were

selected as an outliers. Figure 6.13 shows the average of error rate learning curve for both

active and passive learning without those seven data points. As we can see the error rate

learning curve has jumped at the end and there is huge difference compared to Figure 6.11.

This result suggests that these patterns are probably outliers. Finally, we remove the last

seven patterns at the end which are uninformative patterns.
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Fig. 6.13 The average of 1000 area under error rate learning curve for both active (alNB) and
passive (NB) learning for the liver-disorder benchmark dataset after removal of outliers.

6.4 Combining active and semi-supervised learning

Passive learning techniques attempt to select patterns randomly from a large pool of unla-

belled patterns to be labelled, by contrast, active learning techniques attempt to select the

most informative patterns to be labelled by using sampling strategies. The previous section

6.2, shows that a lower error rate can be achieved with fewer training labels and so can

reduce human labelling effort. Moreover, we show that there is a statistically significant

difference between active and passive learning. Those patterns that have the least confidence

are selected to be labelled by the oracle in active learning process, but what happen to those

patterns that have high confidence scores, which are not selected to be labelled? Especially if
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from the beginning of the learning process we left out a considerable number of unlabelled

patterns. In this section, we use the semi-supervised learning to further exploit these unla-

belled patterns. These unlabelled patterns are attempted to use via semi-supervised learning

to improve classification performance. The research question that arises in this section is,

does the combination of active learning and semi-supervised learning give better performance

than active learning alone?

# Dataset NB ALSSNB

1 audiology 4.891±0.0339 5.288±0.0272
2 balance_scale 2.830±0.0312 3.010±0.0227
3 blogger 2.173±0.0422 2.484±0.0415
4 breast_cancer 2.656±0.0432 2.899±0.0366
5 breastw 0.874±0.0225 0.466±0.0357
6 car 2.965±0.0308 3.295±0.0338
7 DNA 3.181±0.0231 2.108±0.0642
8 flare1 4.185±0.0354 4.117±0.0361
9 flare2 4.264±0.0299 4.357±0.0332
10 hayes_roth 3.140±0.0396 3.376±0.0273
11 house_votes 1.043±0.0234 1.088±0.0304
12 kr_vs_kp 3.136±0.0200 4.734±0.0160
13 led7 5.200±0.0234 5.113±0.0232
14 led24 6.193±0.0141 5.511±0.0226
15 lung_cancer 2.743±0.0442 2.507±0.0490
16 lymphography 2.190±0.0365 2.210±0.0354
17 marketing 9.488±0.0200 9.802±0.0221
18 monk1_corrupt 3.465±0.0245 3.512±0.0294
19 monk1_cross 1.803±0.0237 1.878±0.0220
20 monk1_local 3.218±0.0294 3.432±0.0341
21 monk1 3.129±0.0259 2.996±0.0313
22 monk3_cross 1.681±0.0275 2.101±0.0378
23 monk3_local 1.735±0.0223 2.483±0.0266
24 monk3 1.695±0.0237 1.786±0.0245
25 mushroom 1.771±0.0226 1.626±0.0212
26 nursery 3.662±0.0172 3.467±0.0182
27 primary_tumor 5.806±0.0301 5.872±0.0252
28 promoters 1.694±0.0360 1.316±0.0354
29 shuttle_landing_control 1.365±0.0275 1.307±0.0343
30 soybean_small 1.362±0.0513 0.749±0.0236
31 soybean_large 6.563±0.0191 6.561±0.0211

Continued on next page



184 Investigation of active learning

# Dataset NB ALSSNB

32 splice 3.332±0.0169 2.588±0.0488
33 threeOf9 2.711±0.0294 2.873±0.0233
34 titanic 3.033±0.0451 3.411±0.0745
35 xd6 2.670±0.0292 2.714±0.0282
36 zoo 1.696±0.0446 1.252±0.0367

Table 6.3 AULC of the NB, and ALSSNB classifiers with uncertainty sampling strategy over 36 discrete
benchmark datasets. The boldface font indicates that the AULC for one of the classifiers is better than for the
other classifier. The results that are statistically equivalent (according to the Wilcoxon signed rank test at the
0.95% confidence level) are shown in italics.

Our first experiments found that the use of the unlabelled dataset does not generally reduce

the AULC. Table 6.3 shows the results for 36 discrete benchmark datasets. Passive learning

was best on 21 out of the 36 benchmark datasets, active learning with semi-supervised naïve

Bayes (ALSSNB) being best on 15. The result of the Wilcoxon signed rank test shows that

the NB classifier is statistically superior at the 95% level of significance.

CD

4 3 2 1

1.6944 ALNB
2.5 ALSSNB2.5556NB

3.25SSNB

Fig. 6.14 Critical difference diagram for NB, SSNB, ALNB, and ALSSNB over 36 discrete
benchmark datasets. It shows that the ALNB classifiers are statistically superior to the other
classifiers.

The critical difference diagram can be used to compare the average ranks of the classifiers.

Figure 6.14 shows that the average rank of ALSSNB is slightly higher that for NB and SSNB

but the difference is not statistically significant. However, the average rank of ALSSNB

is inferior to the ALNB, and so the ALNB classifier is statistically superior to the other

classifiers. The result suggest that SSNB generally makes the active learning algorithm worse

rather than better.
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Figure 6.15 shows the efficiency of combing active learning with semi-supervised learning

on the ten benchmark datasets. Compared to the baseline classifier, which is the conventional

naïve Bayes classifier, and each of active and semi-supervised learning alone, combing active

learning with semi-supervised learning can achieve significant improvements on four datasets

lung-cancer, monk1, soybean-small, and splice. Among the six remaining benchmark

datasets, combing active learning with semi-supervised learning gives nearly the same

performances as either active learning or semi-supervised learning, while combing active

learning with semi-supervised learning outperforms passive learning on the all benchmark

datasets in Figure 6.15.

100 101 102

Labeled queried size

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

e
rr

o
r 

ra
te

breastw 

NB

SSNB

ALNB

ALSSNB

100 101 102 103

Labeled queried size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

e
rr

o
r 

ra
te

DNA 

100 101 102 103

Labeled queried size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

e
rr

o
r 

ra
te

led24 

NB

SSNB

ALNB

ALSSNB

100 101

Labeled queried size

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

e
rr

o
r 

ra
te

lung cancer 



186 Investigation of active learning

100 101 102

Labeled queried size

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

e
rr

o
r 

ra
te

monk1 

100 101

Labeled queried size

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

e
rr

o
r 

ra
te

promoters 

100 101 102

Labeled queried size

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

e
rr

o
r 

ra
te

shuttle landing control 

100 101

Labeled queried size

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

e
rr

o
r 

ra
te

soybean small 

100 101 102 103

Labeled queried size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

e
rr

o
r 

ra
te

splice 

100 101

Labeled queried size

0

0.1

0.2

0.3

0.4

0.5

e
rr

o
r 

ra
te

zoo 

Fig. 6.15 Comparison of the error rate learning curves for NB, SSNB, ALNB, and ALSSNB
classifiers. In these cases, the ALSSNB is statistically superior to the NB classifier for 10
discrete benchmark datasets.

Figure 6.16 shows that combing active learning with semi-supervised learning yields

no significant improvements compared to passive learning. Moreover, active learning gives

slightly better performance compared to other classifiers. In addition, active learning achieves
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the best performances on the house-votes, monk1-cross, monk1-local, and mushroom

benchmark datasets, shown in Figure 6.16. These results seem to suggest that using the

unlabelled patterns via semi-supervised learning after selecting the least confident classifier

patterns through active learning does not improve classification performance.
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Fig. 6.16 Comparison of the error rate learning curves for NB, SSNB, ALNB, and ALSSNB
classifiers. The ALSSNB classifier have equivalent performance over 13 discrete benchmark
datasets.
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Figure 6.17 shows that combining active with semi-supervised learning for one third of

the UCI discrete benchmark datasets in Table 6.3 makes the classifier worse. However, in

some cases involving unlabelled patterns with the active learning technique can improve the

performance of the classifier.
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Fig. 6.17 Comparison of the error rate learning curves for NB, SSNB, ALNB, and ALSSNB
classifiers. In these cases, the ALSSNB is inferior to the other classifiers for 12 discrete
benchmark datasets.

This section also shows the mean of the area under error rate learning curves for both

passive and combined active and semi-supervised learning in Table 6.4 for 28 continuous

benchmark datasets. The corresponding learning curves for these datasets are show in Figures
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6.19, 6.20, and 6.21. Passive learning was best on 22 out of 28 benchmark datasets i.e. the

ALSSNB best on only 6 benchmark datasets. The results of the Wilcoxon signed rank test at

the 95% level of significance show that the ALNB is statistically superior to both ALSSNB

and SSNB classifier. In addition, ALNB is slightly higher ranks than NB but the difference is

not statistically significant.

# Dataset NB ALSSNB

1 banknote 1.541±0.0225 2.920±0.0193
2 Blood_transfusion 2.070±0.0262 2.629±0.0557
3 breast_cancerw_continuous 0.500±0.0167 0.346±0.0108
4 Climate_Model_Simulation_Crashes 0.603±0.0140 0.638±0.0221
5 glass 2.006±0.0192 2.321±0.0199
6 haberman 1.778±0.0301 2.147±0.0710
7 ionosphere 1.415±0.0278 1.758±0.0427
8 iris 0.418±0.0187 0.288±0.0156
9 letter 4.201±0.0111 5.836±0.0084
10 liver_disorder 2.719±0.0210 2.912±0.0251
11 magic04 3.506±0.0182 5.022±0.0342
12 musk1 2.207±0.0225 2.544±0.0332
13 new_thyroid 0.352±0.0150 0.244±0.0279
14 pendigits 2.104±0.0139 3.094±0.0217
15 sleep 4.956±0.0145 7.684±0.0390
16 vehicle 3.517±0.0166 3.728±0.0225
17 vowel 2.051±0.0138 2.434±0.0108
18 waveform_noise 2.581±0.0145 3.006±0.0354
19 waveform 2.917±0.0121 3.511±0.0264
20 wine 0.640±0.0187 0.284±0.0158
21 arcene 2.160±0.0223 2.075±0.0235
22 gisette 2.099±0.0117 4.759±0.0089
23 madelon 4.116±0.0091 3.966±0.0169
24 sonar 1.928±0.0239 2.242±0.0223
25 spambase 2.263±0.0195 2.826±0.0289
26 Synthetic 1.182±0.0217 1.307±0.0436
27 vertebral 1.421±0.0200 1.469±0.0312
28 diabetes 2.137±0.0207 2.512±0.0365

Table 6.4 AULC of the NB, and ALSSNB classifiers with uncertainty sampling strategies over 28 continuous
benchmark datasets. The boldface font indicates that the AULC for one of the classifiers is better than for the
other classifier. The results that are statistically equivalent (according to the Wilcoxon signed rank test at the
0.95% confidence level) are shown in italics.
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Fig. 6.18 Critical difference diagram for the NB, SSNB, ALNB, and ALSSNB over 28
continuous benchmark datasets. It shows that there are statistically significant differences
between the mean ranks for the ALNB and both SSNB and ALSSNB classifiers and that
ALNB classifier is superior. Additionally, there is no statistically significant difference
between ALNB and NB classifier

The critical difference diagram can be used to compare the average rank of classifiers.

Figure 6.18 surprisingly, shows that the average rank of ALSSNB is worse compared to the

other classifiers. The average rank of ALNB classifier is statistically superior to the ALSSNB

and the SSNB classifiers but ALNB just slightly higher ranks than NB classifier but the

difference is not statistically significant. The results suggest that SSNB makes the active

learning algorithm worse rather than better.

Figure 6.19 shows the average of 100 replications of the error rate learning curves for

passive, active, semi-supervised and combined active and semi-supervised learning on

the six continuous benchmark datasets arcene, breast-cancerw-continuous, iris,

new-thyroid,wine, and madelon. As shown in this figure, by comparing the combined

active and semi-supervised learning with the other three models, the classification error rate

of the combined approach is lower. This improvement is most rapid for the first few training

patterns labelled, especially in the iris and wine benchmarks. However, all four clas-

sifiers have nearly the same performance on the Climate-Model-Simulation-Crashes

benchmark dataset, Figure 6.20.
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Fig. 6.19 Comparison of the error rate learning curve for NB, SSNB, ALNB, and ALSSNB
classifiers. In these cases, the ALSSNB is superior to the NB and ALNB classifiers but have
equivalent classification performance as SSNB for six continuous benchmark datasets
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Fig. 6.20 Comparison of the error rate learning curves for NB, SSNB, ALNB, and
ALSSNB classifiers. All classifiers have equivalent classification performance for the
Climate-Model-Simulation-Crashes benchmark dataset.

The results shown in Figure 6.21 indicate that using semi-supervised learning after

selecting patterns by queries from active learning can degrade classification performance. As

can be seen, the classification performance of combining active learning with semi-supervised

learning is worse, compared to the NB and ALNB classifiers on 21 benchmark datasets.
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Fig. 6.21 Comparison of the error rate learning curves for NB, SSNB, ALNB, and ALSSNB
classifiers. In these cases, the ALSSNB is inferior to the other classifiers for the 21 continuous
benchmark datasets

6.5 When does combining active and semi-supervised learn-

ing work?

Previous results, show that combining active and semi-supervised learning almost always

fails to improve the classifier. In the beginning of this chapter we illustrated that using

unlabelled pattens can improve classification performance but this improvement generally

does not give a statistically significant difference compared to using only labelled patterns.

Therefore, the results of both Section 6.4 and Chapter 3 are good evidence that utilising

unlabelled patterns with semi-supervised and active learning generally makes the classifier
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worse. In addition, the most obvious explanation for this result is that the assumptions of

the classifier are usually false and so it often produces inaccurate probability estimates. To

test this hypothesis, we run two further experiments on the discrete and continuous synthetic

benchmark datasets that were used in Section 3.1.3. Table 6.5 shows the results for 36

discrete benchmark datasets indicating that combining active with semi-supervised learning

techniques can improve the naïve Bayes classifier for synthetic benchmark datasets, provided

the assumption of independent is valid.

# Dataset NB ALSSNB

1 audiology 4.683±0.0361 5.077±0.0478
2 balance_scale 3.359±0.0316 3.158±0.0348
3 blogger 2.350±0.0430 2.276±0.0502
4 breast_cancer 2.553±0.0381 2.538±0.0369
5 breastw 0.705±0.0221 0.237±0.0334
6 car 3.286±0.0324 3.134±0.0332
7 DNA 2.724±0.0242 1.779±0.0661
8 flare1 4.005±0.0292 3.564±0.0427
9 flare2 4.037±0.0278 4.009±0.0351
10 hayes_roth 3.188±0.0417 3.006±0.0405
11 house_votes 0.135±0.0099 0.055±0.0054
12 kr_vs_kp 3.265±0.0201 2.302±0.0328
13 led7 5.199±0.0229 5.145±0.0262
14 led24 6.163±0.0155 5.393±0.0221
15 lung_cancer 1.988±0.0558 1.719±0.0553
16 lymphography 1.832±0.0372 1.161±0.0375
17 marketing 8.816±0.0195 8.298±0.0219
18 monk1_corrupt 3.096±0.0258 3.030±0.0336
19 monk1_cross 2.137±0.0278 1.229±0.0408
20 monk1_local 3.205±0.0263 3.054±0.0364
21 monk1 3.265±0.0273 3.148±0.0366
22 monk3_cross 1.704±0.0267 0.926±0.0271
23 monk3_local 1.950±0.0281 1.184±0.0303
24 monk3 1.985±0.0288 1.518±0.0407
25 mushroom 1.003±0.0309 0.254±0.0019
26 nursery 4.022±0.0194 3.321±0.0517
27 primary_tumor 5.561±0.0321 5.544±0.0318
28 promoters 1.215±0.0311 0.400±0.0232
29 shuttle_landing_control 1.569±0.0315 1.296±0.0386

Continued on next page
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# Dataset NB ALSSNB

30 soybean_small 1.235±0.0458 0.627±0.0352
31 soybean_large 6.462±0.0220 6.308±0.0224
32 splice 3.167±0.0161 1.499±0.0652
33 threeOf9 2.953±0.0327 2.669±0.0404
34 titanic 2.978±0.0391 2.831±0.0568
35 xd6 2.713±0.0289 2.249±0.0431
36 zoo 1.897±0.0466 1.465±0.0415

Table 6.5 AULC of the NB, and ALSSNB classifiers with uncertainty sampling strategies over 36 discrete
synthetic benchmark datasets. The boldface font indicates that the AULC for one of the classifiers is better than
for the other classifier. The results that are statistically equivalent (according to the Wilcoxon signed rank test
at the 0.95% confidence level) are shown in italics.

As we can see the combination of active and semi-supervised learning was best on 35

out of the 36 discrete synthetic benchmark datasets and, passive learning best on only in one

benchmark dataset. The results of the Wilcoxon signed rank test shows that the ALSSNB

classifier is statistically superior at the 95% level of significance. Also, we can compare

the ALSSNB classifier with both active learning and semi-supervised learning. Figure 6.22

shows the critical difference diagram for the NB, SSNB, ALNB, and NB over the 36 discrete

benchmark datasets. The diagram shows that the ALSSNB is statistically superior to both

NB and ALNB classifiers, while ALSSNB higher rank than SSNB but it is not statistically

significant difference.

CD

4 3 2 1

1.5833 ALSSNB
1.7778 SSNB3.0833ALNB

3.5556NB

Fig. 6.22 Critical difference diagram for the NB, SSNB, ALNB, and ALSSNB over 36
discrete benchmark datasets. It shows that the ALSSNB is statistically superior compared to
the other classifier
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The second experiment in this section is run for the same motivation but on 28 continuous

synthetic benchmark datasets. Table 6.6 shows that combining active learning with semi-

supervised learning was best on 27 out of 28 benchmark datasets, passive learning best on

only in one benchmark dataset. The result for the Wilcoxon signed rank test shows that the

NB is statistically superior at the 95% level of significance.

# Dataset NB ALSSNB

1 banknote 2.033±0.0168 2.373±0.0857
2 Blood_transfusion 1.022±0.0180 0.837±0.0456
3 breast_cancerw_continuous 0.220±0.0160 0.071±0.0096
4 Climate_Model_Simulation_Crashes 0.280±0.0110 0.083±0.0093
5 glass 0.735±0.0178 0.172±0.0149
6 haberman 1.417±0.0272 1.388±0.0504
7 ionosphere 0.418±0.0207 0.119±0.0100
8 iris 0.067±0.0118 0.010±0.0018
9 letter 3.086±0.0060 2.272±0.0106
10 liver_disorder 1.714±0.0205 1.507±0.0379
11 magic04 0.538±0.0219 0.155±0.0062
12 musk1 0.760±0.0285 0.382±0.0299
13 new_thyroid 0.130±0.0110 0.043±0.0054
14 pendigits 1.623±0.0093 0.698±0.0254
15 sleep 2.461±0.0107 1.920±0.0300
16 vehicle 2.118±0.0141 1.796±0.0242
18 waveform_noise 1.205±0.0165 0.467±0.0183
19 waveform 1.386±0.0157 0.671±0.0192
20 wine 0.199±0.0160 0.060±0.0144
21 arcene 0.138±0.0173 0.044±0.0113
22 gisette 0.427±0.0190 0.357±0.0213
23 madelon 3.306±0.0109 2.844±0.0178
24 sonar 0.086±0.0146 0.005±0.0014
25 spambase 0.004±0.0023 0.001±0.0005
26 Synthetic 0.047±0.0091 0.014±0.0023
27 vertebral 0.491±0.0239 0.150±0.0154
28 diabetes 1.639±0.0218 1.337±0.0351

Table 6.6 AULC of the NB, and ALSSNB classifiers with uncertainty sampling over 28 continuous synthetic
benchmark datasets. The boldface font indicates that the AULC for one of the classifiers between the NB and
ALNB is better than the other classifier. The result that statistically not different according to the Wilcoxon
signed rank test at 0.95% confidence level are shown in italics
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Figure 6.23 shows the average rank of NB, SSNB, ALNB, and ALSSNB classifiers.

Again, the ALSSNB classifier is statistically superior compared to the NB and ALNB

classifiers but slightly worse compare to the SSNB classifier.

CD
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1.7143 ALSSNB3.3036ALNB

3.5893NB

Fig. 6.23 Critical difference diagram for the NB, SSNB, ALNB, and ALSSNB over 28
continuous benchmark datasets. It shows that the ALSSNB classifier is statistically superior
compared to the NB and ALNB classifiers. In addition, it shows that SSNB is rather better
than ALSSNB but the difference between their mean ranks is not statistically significant

6.6 Summary

In this section, we proposed a new model by combining active learning and semi-supervised

learning in order to reduce the human labelling effort and increase the classification per-

formance, especially when very few labelled training patterns are available. We applied

this method for different types of benchmark datasets and compared the performance of the

four classifiers, NB, ALNB, SSNB, ALSSNB. Both experimental results showed that the

SSNB and ALSSNB classifiers outperformed the baseline classifier in the synthetic datasets.

Even ALNB was better than NB classifier but not statistically different. Moreover, both the

SSNB and ALSSNB classifiers had equivalent performance. In this case, the incorporation

of unlabelled patterns can effectively improve performance. The further experimental results

on the synthetic datasets showed that the ALSSNB classifier outperforms NB, and ALNB

classifier. The main reason for this improvement is the assumption of the model in synthetic
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benchmark dataset is valid which means involving semi-supervised learning does improve

classification performance and combining semi-supervised learning with active learning does

give extra improvement.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis initially investigated the use of semi-supervised and active learning for naïve

Bayes classifier individually, and in combination, using a suite of benchmark datasets. Using

a substantial series of experiments we have attempted to answer the research question with a

small amount of labelled patterns and normally a poor initial model was obtained especially in

the early stage. Does the semi-supervised naïve Bayes classifier achieve better performance,

when using both labelled and unlabelled data. The results obtained show that the unlabelled

data does not substantially improve classification performance in general. Previous research

in semi-supervised learning has proposed many different methods but there remain some

questions with no clear answer, such as why semi-supervised learning often makes the classi-

fier performance worse. This thesis answered the question for semi-supervised naïve Bayes,

through generating a simulated benchmark dataset, where the independence assumption is

valid. Experiments with these benchmark datasets demonstrated that the violation of the

naïve Bayes model assumption (independence of features) means predictive errors propagate

through the self-training methods reducing performance.

We conducted the experiments to determine whether down-weighting the influence of the
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unlabelled data can improve the performance of the classifier, but the results obtained show

that it does not because tuning the weighting factor, λ , is difficult, especially when the

amount of the labelled data is small. A novel algorithm was proposed that used a sigmoid

transformation function to re-calibrate the predicted class probabilities of the unlabelled data

to overcome the overconfidence of the naïve Bayes classifier. The results obtained are higher

rank than those of the naïve Bayes classifier, but there is no statistically significant difference

between them. However, in some cases using the sigmoid transformation gives superior

results to those of the conventional semi-supervised naïve Bayes classifier. Therefore, we

believe that using this novel algorithm might be better than the standard semi-supervised

naïve Bayes classifier in practical applications. We also present benchmark dataset results

from active learning experiments for naïve Bayes classifier. The aim of using active learning

was to create of high quality of labelled patterns in order to improve classification perfor-

mance, but active learning cannot provide much help to improve the classifier. Later, after

selecting the least confident pattern by uncertainty sampling especially in the early stages we

attempted to use the remaining unlabelled patterns via semi-supervised learning to improve

the classification performance. Thus, we design some experiments to combine active learning

with semi-supervised learning, but this does not generally produce better results. Finally,

synthetic benchmark datasets was generated to show when the combination of active and

semi-supervised learning does improve the classifier. The results obtained show that the

combined active learning with semi-supervised learning approach can improve performance

if the semi-supervised learning already improve that classifier separately.
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7.2 Future Work

• The experimental results obtained suggest that down-weighting the unlabelled data

does not improve the performance of the classifier. However, the key challenge in

the technique lies in how to choose the best value of λ . Using the train-test partition

method is a biased protocol because we look at the test data to find the optimal value

for the weighting factor. Then an approach using a validation set was applied, but

instead of separating the validation set to evaluate the optimal value it would be better

to use this set for training purposes, especially with the a small amount of labelled

data. Choosing the value of λ , through k fold cross-validation may not provide a very

reliable indicator because there are just a few labelled patterns initially available and

leave-one-out-cross-validation may be unreliable because it has a high variance and

could give a very different value if the experiment is repeated with a different sample

dataset. We also used a new method moving from k-fold-cross-validation to leave-

one-out-cross-validation, but again it does not improve the classifier. In conclusion,

we found that none of these model selection methods for choosing the value of λ

can improve the baseline classifier. Furthermore, work is required to develop a more

reliable mean of choosing λ by using different classifiers.

• The semi-supervised naïve Bayes classifier is often applied for text classification and

the reason that naïve Bayes classifier is useful is that: although the naïve Bayes model

assumption is invalid we can estimate the parameter from less data than it is required for

the full model which includes the dependence and has no more parameters. However,

during the thesis experiments, there are three Molecular Biology datasets DNA, splice,

promoters where the unlabelled data does improve the naïve Bayes classifier. This

result suggest that semi-supervised naïve Bayes classifier could be useful in analysis

of biological data.
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