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Abstract

Data similarity search is widely regarded as a classic topic in the realms
of computer vision, machine learning and data mining. Providing a cer-
tain query, the retrieval model sorts out the related candidates in the
database according to their similarities, where representation learning
methods and nearest-neighbour search apply. As matching data fea-
tures in Hamming space is computationally cheaper than in Euclidean
space, learning to hash and binary representations are generally appre-
ciated in modern retrieval models. Recent research seeks solutions in
deep learning to formulate the hash functions, showing great potential
in retrieval performance. In this thesis, we gradually extend our re-
search topics and contributions from unsupervised single-modal deep
hashing to supervised cross-modal hashing finally zero-shot hashing

problems, addressing the following challenges in deep hashing.

First of all, existing unsupervised deep hashing works are still not at-
taining leading retrieval performance compared with the shallow ones.
To improve this, a novel unsupervised single-modal hashing model
is proposed in this thesis, named Deep Variational Binaries (DVB).
We introduce the popular conditional variational auto-encoders to for-
mulate the encoding function. By minimizing the reconstruction er-
ror of the latent variables, the proposed model produces compact bi-
nary codes without training supervision. Experiments on benchmarked
datasets show that our model outperform existing unsupervised hash-

ing methods.

The second problem is that current cross-modal hashing methods only

consider holistic image representations and fail to model descriptive



sentences, which is inappropriate to handle the rich semantics of in-
formative cross-modal data for quality textual-visual search tasks. To
handle this problem, we propose a supervised deep cross-modal hashing
model called Textual-Visual Deep Binaries (TVDB). Region-based neu-
ral networks and recurrent neural networks are involved in the image
encoding network in order to make effective use of visual information,
while the text encoder is built using a convolutional neural network.
We additionally introduce an efficient in-batch optimization routine to
train the network parameters. The proposed mode successfully out-

performs state-of-the-art methods on large-scale datasets.

Finally, existing hashing models fail when the categories of query data
have never been seen during training. This scenario is further extended
into a novel zero-shot cross-modal hashing task in this thesis, and a
Zero-shot Sketch-Image Hashing (ZSITH) scheme is then proposed with
graph convolution and stochastic neurons. Experiments show that the
proposed ZSIH model significantly outperforms existing hashing algo-

rithms in the zero-shot retrieval task.

Experiments suggest our proposed and novel hashing methods outper-
form state-of-the-art researches in single-modal and cross-modal data

retrieval.
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Chapter 1

Introduction

1.1 Research Background

Data similarity retrieval plays a role of importance in modern artificial intelli-
gence systems. Providing a certain query, the retrieval model sorts out the related
candidates in the database according to their similarities, where representation
learning methods and approximate nearest-neighbour search apply. Embedding
high-dimensional data to low dimensional binary codes, hashing algorithms arouse
wide research attention in computer vision, machine learning and data mining.
Considering the low computational cost of approximate nearest-neighbour search
in the Hamming space [173, |, hashing techniques deliver more effective and
efficient large-scale data retrieval than real-valued embeddings, which is more ap-
preciated and applicable in real cases.

As a classic but essential research topic, a number of works have been proposed
throughout the years, employing a wide range of machine learning techniques,
which can be either supervised or unsupervised. These methods typically involves
an embedding function f : R” — RM where D and M respectively indicates the
original and targeted representation dimensionality. Therefore, given a single data
point x € RP, the resulting hash code can be obtained by applying an element-
wise sign function to the encoder f (-).! By tuning the corresponding parameters
of the embedding function, the hash model approaches the optimal representation

that numerically describes the original data x. A typical example of f(-) is the

!The hashed code c is computed by ¢ = sign(f(x;6)) € {0,1}™, where sign(-) is the
element-wise sign function and 6 refers to the parameters to learn.
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linear projection function.? The encoder can also be based on other models, e.g.
random projections, and a literature review on the way to build the hash functions
is included following this chapter.

Providing a query, the retrieval model performs nearest-neighbour search *
to find the most related candidate in the data collection as retrieval result. In
a real scenario, finding the exact nearest neighbour as the retrieval candidate is
usually infeasible as, in large-scale datasets, there can be more than one correct
or relevant candidate to the query. Therefore, a conventional generalization of
nearest-neighbour search yields K-Nearest-Neighbour (KNN) search, where a total
number of K closest candidates are retrieved.

Existing researches in data hashing apply to several tasks. For instance,
single-modal hashing learns the binary representations of standalone type of data,
while cross-modal hashing tackles the problem of retrieving data between different
modalities of data, e.g. images and text documents. Recently, deep learning tech-
nologies have been introduced in formulating the embedding function f (-), and
produce promising encoding and retrieval performance, forming the term of deep

hashing.

1.2 Objective

Dramatic progress has been achieved in the past few years, but challenges still
remain in deep hashing from several aspects. The objective of this thesis is to

solve the following problems by proposing novel hashing models:

1. Although deep learning has been proven to be successful in supervised hash-
ing, existing deep learning based unsupervised hashing techniques still can-
not produce leading performance compared with the non-deep methods, as
it is hard to unveil the intrinsic structure of the whole sample space in the

framework of mini-batch optimization.

2A typical linear projection model can be written as ¢ = xWy + by. Here Wy and by refer
to the linear transformation parameters.

3Given a query q and the data collection X = {x1,X2,X3, ..., Xy}, nearest-neighbour search is
defined by NearestNeighbour(q) = argmin,cy d(sign(f(q)),sign(f(x))), where d (-) denotes
the hamming distance computation.
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2. Most of the traditional cross-modal binary encoding methods for textual-
visual retrieval only consider holistic image representations and fail to model
descriptive sentences. This renders existing methods inappropriate to handle
the rich semantics of informative cross-modal data for quality textual-visual

search tasks.

3. Providing training and test data subjected to a fixed set of pre-defined cat-
egories, the cutting-edge cross-modal hashing works obtain acceptable re-
trieval performance. However, most of the existing methods fail when the

categories of query sketches have never been seen during training.

1.3 Contribution

In this thesis, We gradually rise the task difficulty throughout the chapters by
extending our research topics from unsupervised single-modal deep hashing to
supervised cross-modal hashing finally zero-shot cross-modal hashing. The contri-
butions of this thesis include handling the above-mentioned challenges and, mean-
while, proposing novel deep hashing models with state-of-the-art performance in

image retrieval and cross-modal data search, which can be summarized as follows:

e We propose a novel unsupervised image hashing algorithm that differs from
existing deep-learning-based methods, extending the popular variational auto-

encoders [76, 160] to tackle problem 1.

e Problem 2 is improved by designing novel neural network structures as en-
coders. The rich information carried by images and sentences is then effi-

ciently encoded in a newly-proposed cross-modal hashing model.

e We finally define a novel zero-shot cross-modal retrieval task and accord-
ingly design a deep hashing algorithm for problem 3. The proposed model
manages to provide accurate retrieval candidates under the zero-shot setting,

outperforming existing hashing works.

In the next section, how the contributions above are distributed into the chap-

ters is elaborated.
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1.4 Summary of Remaining Chapters

The rest of this thesis consists of three state-of-the-art models in learning deep
binary representations addressing the aforementioned problems 1, 2 and 3. Grad-
ually raising the task difficulty, we firstly present a deep unsupervised hashing
model for single-modal data retrieval and then introduce a cross-modal deep hash-
ing network. Finally, we extend our research topic to a novel zero-shot cross-modal

retrieval scenario. The remaining chapters are summarized as follows:

Chapter 2: Literature Review. An overview of the state-of-the-art binary rep-
resentation learning algorithms is given in this chapter, including both the

traditional shallow models and the deep-learning-based ones.

Chapter 3: Unsupervised Deep Hashing for Image Retrieval. In this chap-
ter, the above-mentioned problem 1 is considered. We propose a novel unsu-
pervised deep hashing model, named Deep Variational Binaries (DVB). The
conditional auto-encoding variational Bayesian networks are introduced in
this work as the generative model to exploit the feature space structure of
the training data using the latent variables. Integrating the probabilistic in-
ference process with hashing objectives, the proposed DVB model estimates
the statistics of data representations, and thus produces compact binary
codes. Experimental results on three benchmark datasets, i.e. CIFAR-10,
SUN-397 and NUS-WIDE, demonstrate that DVB outperforms state-of-the-

art unsupervised hashing methods with significant margins.

Chapter 4: Supervised Deep Hashing for Image-Sentence Retrieval. We
move from single-modal hashing to cross-modal hashing in this chapter, han-
dling problem 2. Considering the factor that cross-modal data may contain
semantic-rich cues, we develop a novel integrated deep architecture to effec-
tively encode the detailed semantics of informative images and long descrip-
tive sentences, named as Textual-Visual Deep Binaries (TVDB). In particu-
lar; region-based convolutional networks with long short-term memory units
are introduced to fully explore image regional details while semantic cues
of sentences are modeled by a text convolutional network. Additionally, we

propose a stochastic batch-wise training routine, where high-quality binary

4
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codes and deep encoding functions are efficiently optimized in an alternat-
ing manner. Experiments are conducted on three multimedia datasets, i.e.
Microsoft COCO, IAPR TC-12, and INRIA Web Queries, where the pro-
posed TVDB model significantly outperforms state-of-the-art binary coding

methods in the task of cross-modal retrieval.

Chapter 5: Deep Hashing for Zero-Shot Image-Sketch Retrieval. In this
chapter, problem 3 is briefed as a novel but realistic zero-shot hashing task
specified in category-level Sketch-Based Image Retrieval (SBIR). We elabo-
rate the challenges of this special task and accordingly propose a zero-shot
sketch-image hashing (ZSIH) model. An end-to-end three-network architec-
ture is built, two of which are treated as the binary encoders. The third
network mitigates the sketch-image heterogeneity and enhances the seman-
tic relations among data by utilizing the Kronecker fusion layer and graph
convolution, respectively. As an important part of ZSIH, we formulate a
generative hashing scheme in reconstructing semantic knowledge representa-
tions for zero-shot retrieval. To the best of our knowledge, ZSIH is the first
zero-shot hashing work suitable for SBIR and cross-modal search. Compre-
hensive experiments are conducted on two extended datasets, i.e. Sketchy
and TU-Berlin with a novel zero-shot train-test split. The proposed model

remarkably outperforms related works.

Chapter 6: Conclusion and Future Work. A brief summery of the contribu-
tions of this thesis is given in this chapter, followed by an outlook of future

research interests.



Chapter 2

Literature Review

In this chapter, the articles and works related to this thesis are discussed. We firstly
introduce the single-modal hashing methods in Section 2.1, which are associated
with problem 1 mentioned in Chapter 1. Problem 2 and 3 are related to cross-
modal hashing and retrieval tasks. Therefore, a review on existing cross-modal
hashing methods is also provided in Section 2.2. Since this thesis focuses on
learning deep binary representations, the state-of-the-at deep hashing models are

also discussed in Section 2.3.

2.1 Single-Modal Hashing

Single-modal hashing learns the encoding function of a single modality. In general,
it can be either supervised or unsupervised. As problem 1 and Chapter 3 are re-
lated to unsupervised hashing, in this section, we mainly focus on the unsupervised
hashing algorithms and then have a quick review on the supervised ones.
Supervised hashing [155, 44, 86, , , , 106] utilizes data labels or pair-
wise similarities as supervision during parameter optimization. It attains relatively
better retrieval performance than the unsupervised models as the conventional
evaluation measurements of data retrieval are highly related to the labels. How-
ever, due to the cost of manual annotation and tagging, supervised hashing is
not always appreciated and demanded. On the other hand, unsupervised hash-

ing [13, , , , 82, 51, | learns the binary encoding function based on
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data representations and require no label information, which eases the task of data

retrieval where human annotations are not available.

2.1.1 Unsupervised Hashing

Existing research interests on unsupervised hashing involve various strategies to
formulate and optimize the encoding functions.

Iterative Quantization (ITQ) [13] aims at minimizing quantization error to pro-
duce binary representations. The computation of ITQ [13] consists of two stages.
In the first stage, the model reduces data dimension using Principal Component
Analysis (PCA) [70]. The second step is to find the target hash codes and an or-
thogonal rotation matrix that minimizes the difference between target codes and
rotated data. The problem of ITQ [43] is that its optimization procedure only
focuses on the second step above and does not cover the dimension reduction step.
This means that though an optimal rotation matrix can be found, there is no
guarantee that the produced codes best represent the original data.

Weiss et al. [178] propose Spectral Hashing (SH) to learn the hash function
using the eigenfunctions. SH [178] aims at minimizing the weighted pairwise Eu-
clidean distance where weights are determined by data similarities. In addition,
the code balance condition is introduced during training, which means the num-
ber of data assigned to each code remains the same. Hash codes are obtained by
thresholding the Laplacian eigenfunctions with the smallest eigenvalues at zero.
The disadvantage of SH [178] comes from a strong assumption that data repre-
sentations follow a uniform distribution, which does not always hold in a realistic
scenario. As a result, it is not suitable for encoding and retrieving informative
data such as images and texts.

Known as a typical random projection method for unsupervised hashing, Lo-
cality Sensitive Hashing (LSH) [21] successively applies thresholding mechanisms
on projected data to producing binary codes, which has been further improved by
Kernelized Locality Sensitive Hashing (KLSH) [87]. The aim of KLSH [87] is to
build the locality sensitive hash functions with the pair-wise representation angle

determined in the kernel space. Then the projection vector can be constructed
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from a Gaussian distribution based on the training data statistics. Random-
projection-based encoding methods are not ideal for realistic applications since
their performances drop dramatically with the decrease of code length. For exam-
ple, KLSH [37] performs poor when the code length is less than 64, and requires a
code length around 400 to obtain best retrieval performance. This is unappreciated
as the state-of-the-art hashing algorithms generally produce reasonable retrieval
performance with short code length, e.g. 16 or 32 bits.

Learning-based projection functions are also widely adopted in unsupervised
hashing. Heoet et al. propose Spherical Hashing (SpH) [51]. Its hash function
is composed of a set of spherical functions and pivots. Hashed codes are deter-
mined by thresholding the distance between the data representation and the pivots.
SpH [54] does not directly penalize the similarity disagreement between the code
space and data representation space, and thus is suboptimal for similarity search.
Furthermore, the iterative optimization procedure in learning the pivots is time
consuming.

Anchor Graph Hashing (AGH) [115] proposed by Liu et al. initially employs
anchor graphs for hashing. An anchor graph represents the similarities between
data pairs in the dataset using a small number of data anchors. In this way,
the model is able to discover the neighborhood structure inherent in the train-

ing data in an efficient way. This design is further extended to Discrete Graph

Hashing (DGH) [113] later on. Instead of thresholding the continuous variables for
hashing in [115], DGH [113] directly produces discrete solutions for graph hashing.
AGH [115] and DGH [113] successfully explore the data structure and therefore

produce compact hash codes. However, their performance largely relies on the
quality and quantity of selected anchor points. Bad choices of anchor points skews
the data similarities, and thus results in less representative hash code. Finding the
anchors that best suit each dataset is computationally expensive and sometimes
unrealistic.

Mathematically profound as the above works are, their performance on simi-
larity retrieval is still far from satisfying. Despite the disadvantages of these works
discussed above, a key problem is that the shallow encoding functions, e.g. linear

projections, in these works are not capable to handle complex data representa-
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tions, and therefore the generated codes are suspected to be less informative. In

this thesis, we utilize deep neural networks to tackle this problem.

2.1.2 Supervised Hashing

Supervised hashing generally attains better retrieval performance than unsuper-
vised hashing on most open-sourced datasets.

One classic paradigm of supervised hashing is Binary Reconstructive Embed-
ding (BRE) [86]. Kulis and Darrell [80] aim at minimizing the difference between
the original representation distance in the Euclidean space and the reconstructed
distance in the Hamming space. Hash codes are obtained using a kernel-based
hash function with a projection matrix to learn. BRE [20] is hard to train as the
learning objective is non-convex and it is infeasible to accelerate the optimization
procedure by parallel computation like deep learning. In addition, its retrieval
performance is still far from satisfactory.

Liu et al. [111] propose a kernel-based hashing scenario, namely Kernel-based
Supervised Hashing (KSH). By utilizing pair-wise data similarities according to the
category information, a learning objective is formulated where the inner-product
of binary codes reflects Hamming distance. The hash function is then sequen-
tially trained with low computational complexity. KSH [l 14] does not consider
intra-class encoding distance during training, and thus fail to produce high-quality
binary codes on datasets with large number of categories.

Kulis et al. [38] represent pairwise data relations using angle-based feature
similarities. Then a positive-valued metric is learned, approximating the angle
relations between data. The procedure of generating the angle similarities requires
single-label data, and it is infeasible to compute the similarities between data with
more than one categories according to [38]. As a result, this design is not working
on multi-label datasets.

Recently, Shen et al. [155] propose Supervised Discrete Hashing (SDH) optimal
for linear classification. The discrete constraints of a trace-like hashing objective
is relaxed to continuous space and the targeted binary codes are treated as auxil-

iary variables employed in an alternating optimization procedure. SDH produces
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acceptable retrieval performance as the learned codes are usually conceptually dis-
tinguishable. The disadvantage of SDH [155] is that it requires training a Support
Vector Machine (SVM) [21] to generate auxiliary binary variables for each training
iteration, which is inefficient for large-scale datasets.

In addition to the label-based and pair-wise-based hashing, several works lever-
age stronger supervision to train the models, e.g. triplet similarities and ranking
lists. Triplet-based hashing [958, ] requires a set of positive-negative data pairs'.
In [98], a column generation scheme is formulated as a convex problem suitable
for large-margin learning. Codes are generated iteratively by selecting the best
hash function at each iteration. On the other hand, Ranking-based Supervised
Hashing (RSH) [174] maximizes the ranking quality of the encoded training sam-
ples, where the learning objective optimizing linear transformation parameters is
solved by employing augmented Lagrangian multiplier method. The problem of
ranking-based and triplet-based hashing techniques lie in labeling and organizing
data relations. Such kind of strong supervision is expensive to obtain, requiring
considerable manpower and time in model optimization on large-scale datasets.

Therefore, these methods are not always appreciated.

2.2 Cross-Modal Hashing

Different from the works discussed in Section 2.1, cross-modal hashing handles the
problem of large-scale data retrieval between different modalities, where more than
one encoding function is formulated and trained for each modality. In particular,
image-text retrieval has become a classic usage scenario. Traditional studies in
cross-modal hashing also employ supervised and unsupervised learning schemes,

though the unsupervised one generally results in inferior encoding quality.

2.2.1 Unsupervised Cross-Modal Hashing

Typical unsupervised hashing methods include Collective Matrix Factorization
Hashing (CMFH) [28], Cross-View Hashing (CVH) [90], Inter-Media Hashing

!This dataset is typically denoted as O = {(x;,x;,x;)}i. Here Similarity(x;,x;) >
Similarity(x;, x; ).

10
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(IMH) [163], Linear Cross-Modal Hashing (LCMH) [215], Multi-modal Stacked
Auto-Encoder (MSAE) [176], etc.
CVH [90] can be regarded as an extension of SH [178] on the cross-modal ap-

plication, where hash codes are obtained by thresholding the eigenfunctions of the
heterogeneous data similarities. Similar to SH [178], CVH [90] is computation-
ally simple and efficient. However, it also assumes that all feature representations
follow a uniform distribution, which no longer holds for cross-modal data.

CMFH [25] employs a collective matrix factorization procedure with a latent
factor model preserving the data representation similarities. A key assumption of
CMFH [25] is that all modalities of an instance generate identical or similar codes.
This assumption works well when data carry simple concepts. However, it fails to
handle information-rich data, as the multiple instances hidden in data confuse the
learning objective.

LCMH [215] is advanced in optimization efficiency, where the training time
complexity is linear to the size of the dataset. During training, data from each
modality are partitioned into a set of clusters. Intra-modality code similarity is
preserved by keeping code distances to the encoded clustering centers. Neverthe-
less, the inter-modality similarity is insufficiently considered in LCMH [215]. A
simple common subspace transformation is not adequate in mitigating the gap
between the heterogeneous representations.

MSAE [176] introduces several sets of auto-encoders to formulate the hash func-
tions for heterogeneous data, where a two-phase training procedure is required for
pre-training and fine-tuning. The pre-training phase preserves the intra-modality
data similarities and the fine-tuning phase mitigates the cross-modal data hetero-
geneity. However, this two-phase optimization routine doubles the training time
and the intra-modality data similarities are no longer preserved after fine-tuning.

Different from MSAE [176], IMH [163] simultaneously explores the intra-modal
and inter-modal encoding consistency with two linear regression models. This
is reached by combining the inter-media consistency and intra-media consistency
together in the learning objective. The problem of IMH [163] is that the differences
of the learned codes are measured in Euclidean distance, which does not fully reflect

the Hamming distances, and therefore the encoding quality is limited.

11
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2.2.2 Supervised Cross-Modal Hashing

Similar to single-modal hashing, supervised cross-modal hashing requires labels
or pair-wise data relations to train the model and the retrieval performance is in
general better than the unsupervised ones.

Cross-Modal Similarity Sensitive Hashing (CMSSH) [7] simply preserves the
inter-modality correlation using label information and does not consider any other
cross-modal problems. As a result, CMSSH is not producing outstanding retrieval
performance.

Zhang and Li propose the Semantic Correlation Maximization (SCM) [205],
which firstly establishes the cross-modal data affinity matrix according to their
semantic labels and then, reconstructs this affinity using the hashed codes. By
keeping the orthogonality constraint of the projection function, SCM produces
compact binary codes for heterogeneous data retrieval. However, reconstructing
the affinity matrix of the training set requires large memory, which is impractical
for large-scale datasets.

Semantics-Preserving Hashing (SePH) [103] proposed by Lin et al. treats the
data semantic affinity as a probability distribution model P. The approximated
affinity @) is obtained by computing the code distance in Hamming space. By
minimizing the Kullback-Leibler divergence (K-L divergence) between P and @),
the produced binary codes are forced to be semantic-aware. Training SePH [103] is
time-consuming since computing the K-L divergence between the two distributions
requires vast computational resources.

Quantized Correlation Hashing (QCH) [180] introduces the quantization loss
across the modalities. It simultaneously optimizes inter-modality correlation and
quantization error, but does not consider intra-modality data relation and semantic
information. As a result, the produced codes are not ideal for similarity search.

Other iconic shallow supervised cross-modal hashing methods include Discrim-
inative Coupled Dictionary Hashing (DCDH) [201], Sparse Multi-Modal Hashing
(SM?H) [131], Tterative Multi-View Hashing (IMVH) [62], etc. Most of these mod-
els are evaluated on image-text datasets. However, they are in lack of considering
the modal-specific issues such as dominating objects in an image and how to under-

stand combined words within a sentence. The retrieval performance can be further

12
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Figure 2.1: A typical structure of an image CNN. Here Conv refers to the convo-
lutional layer and FC layer refers to the conventional fully-connected layer.

improved by proposing better ways to model image and text data, to which one
feasible solution is to introduce deep learning techniques to formulate the hash
functions. In the next section, we briefly introduce how deep learning currently is

applied to data hashing and retrieval.

2.3 Deep Learning and Neural Networks

Known as a fast-growing research sub-branch of machine learning, deep learning
techniques have been successfully adopted in several fields. Following the illu-
minating Deep Belief Networks (DBN) [55, 130] and Deep Boltzmann Machines
(DBM) [150], a wide range of deep learning models have been proposed. Among
them, deep neural networks, particularly Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs), attain state-of-the-art performance in
computer vision and natural language processing tasks such as image recognition,
video understanding, document classification, etc. Accelerated by Graphics Pro-
cessing Unit (GPU) parallelization, current computational devices efficiently per-
form forward-propagation of a neural network and back-propagation with Stochas-

tic Gradient Descent (SGD) on large-scale datasets for training.

13
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Figure 2.2: An illustration of how convolution is performed and computed along
7

the text sequence. The structure is similar to the one described in [74]. The kernel
numbers are omitted here for the simplicity of illustration.

2.3.1 Convolutional Neural Networks for Images and Texts

As a unique variant of conventional neural networks, CNNs [39, 94, 95] have been
proven to be an efficient way in modelling images. The core of CNNs is the
convolutional layers, where a sliding window of convolutional kernel filters the
feature map obtained from the bottom layer. Convolutional layers are usually
stacked with different filtering window sizes. In this way, CNNs conserve spatial
information of an image from multiple scales. Combining convolutional layers with
pooling [6, 153] and normalization [63, 119] mechanisms, CNNs learn compact
hidden representations of the input data.

Figure 2.1 shows an illustrative example of how CNNs are applied to image
understanding tasks. Popular CNN structures for images include AlexNet [37],
VGG net [157], GoogLeNet [166] and ResNet [52]. The above-mentioned models
obtain state-of-the-art classification performance on the benchmarked ImageNet
challenge [117] and are partially adopted in many cutting-edge researches, e.g.
detection [144, 115], segmentation [50] and super-resolution [J6], with pre-trained
network parameters publicly available.

In addition to the success in image-related tasks, CNNs are also able to model

text [74, 23], where words are represented as embedding vectors and convolution

14
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is performed along the word sequence. Figure 2.2 illustrates this procedure.

2.3.2 Hashing with Deep Neural Networks

An early attempt of hashing with deep learning technologies is Semantic Hash-
ing [151], employing a stack of DBMs to build the hash function. Recent years
observe dramatic progressions in learning to hash with deep neural networks. Com-
pared with traditional linear or random projection as hash functions, a deep neu-
ral network is significantly advanced in its non-linearity and the ability to catch
complex information hidden in data. In general, deep hashing can be achieved
by topping a shot fully-connected layer on a neural network and then performing
thresholding or quantization on the activations of this layer. In image hashing, the
corresponding hashing networks are basically prototyped using the aforementioned
CNN structures.

A number of supervised deep hashing models [3, 10, 15, 64, 97, , 208] highly
improve image retrieval performance, compared with the shallow ones. The recent
SUpervised structured Blnary Code (SUBIC) [61] employs the block-softmax non-
linearty on top of the encoding network. Its learning objective is formed by two
entropy-based penalties, improving the one-hot block quality of the output codes.
However, SUBIC does not fully utilize the code length as the block design does not
allow multiple ones to exist in a certain segment of code, resulting in redundant
code bins. Some other works seek alternating optimization solutions, iteratively
updating the network parameters and targeted binary codebooks [10], while the
training efficiency is not guaranteed. Alternating training is slow because the
codebook updating step can be hardly accelerated by GPU or parallel computation
and requires huge memory to load representations for large-scale datasets.

On the other hand, relatively fewer research attention is paid on unsupervised
deep hashing and the retrieval performance is still far from satisfactory. Liong et
al. [101] propose the Deep Hashing (DH) model by introducing quantization loss
and bit decorrelation loss to train an encoding network. The encoder is composed
of a stack of fully-connected layers and the input of DH [104] is heuristic fea-

ture. As the learning objective does not utilize similarity or semantic information
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of data, DH [104] is suboptimal for similarity search and data retrieval. Deep-
bit [101] produced by Lin et al. targets on learning compact codes with minimized
quantization error, evenly distributed codes and uncorrelated bits. By augment-
ing training images with a set of rotation angles, the network output is claimed to
be rotation-invariant to the input. Deepbit [101] does not employ any similarity-
based learning objective, and therefore is suboptimal for similarity search. Do
et al. [30] slightly improve the hashing quality with a complex multi-step opti-
mization scheme, which is named as Unsupervised Binary Deep Neural Network
(UN-BDNN). Training image features are firstly rendered to the encoding network
to generate codes. The output codes are updated according to the original fea-
ture similarity and then stored as learning target for next training epoch. This
design is also inefficient in optimization. Recently, deep variational models [70]
are employed in deep hashing. Chaidaroon and Fang [18] quantize the latent vari-
ables of a Variational Auto-Encoder (VAE) [70] to hash text documents. However,
simply quantizing the real-valued latent variables with a Gaussian prior is subop-
timal in learning reliable codes. Dai et al. [25] propose the stochastic neurons to
reparametrize the binary variables, allowing back-propagation through layers, but
this simple encoder-decoder structure is not suitable for encoding high-dimensional
data.

Deep hashing is also applied to cross-modal retrieval. Jiang et al. [66] propose
an end-to-end cross-modal hashing network named as Deep Cross-Modal Hashing
(DCMH), but they fail to design modality-specific structures in understanding
images and texts. Text data are represented using simple word count vectors as
text encoding network inputs, which is inadequate in leveraging information carried
by sentences. Similar to [11], DCMH [60] involve alternating training procedure,
which largely influences their training efficiency. On the other hand, though much
effort has been devoted to optimizing hash functions, DCMH is still unable to
solve problem 3 described in Section 1.1. When the categories of test data have
not been seen during training phase, DCMH [(6] does not produce compact codes

for retrieval.
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2.4 Summary

In this section, we discussed the state-of-the-art algorithms in single-modal hashing
and cross-modal hashing. These models fail to solve problem 1 and 2 described in
Chapter 1, leading to unsatisfactory retrieval performance. In addition, the above-
mentioned models are not able to handle the train-test category exclusion problem
for zero-shot retrieval. In the following chapters, we introduce three novel deep
hashing models for similarity retrieval with significant performance improvement

in these areas.
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Chapter 3

Unsupervised Deep Hashing for
Image Retrieval

3.1 Introduction and Motivation

Embedding high-dimensional data representations to low dimensional binary codes,
hashing algorithms arouse wide research attention in computer vision, machine
learning and data mining. Considering the low computational cost of approxi-
mate nearest neighbour search in the Hamming space, hashing techniques deliver
more effective and efficient large-scale data retrieval than real-valued embeddings.
Hashing methods can be typically categorized as either supervised or unsupervised
hashing, while this chapter focuses on the latter.

Supervised hashing [155, 44, 806, , , , | utilises data labels or
pair-wise similarities as supervision during parameter optimization. It attains rel-
atively better retrieval performance than the unsupervised models as the conven-
tional evaluation measurements of data retrieval are highly related to the labels.
However, due to the cost of manual annotation and tagging, supervised hash-
ing is not always appreciated and demanded. On the other hand, unsupervised
hashing [13, , , 47, , , 82, 51, , , , | learns the binary
encoding function based on data representations and require no label information,
which eases the task of data retrieval where human annotations are not available.

Existing research interests on unsupervised hashing involve various strategies
to formulate the encoding functions. Mathematically profound as these works

are, the performance of the shallow unsupervised hashing on similarity retrieval is
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Figure 3.1: Conventional unsupervised deep hashing models (a) only regularize the
output binary codes. Contrarily, our proposed method (b) focus on reconstructing
the latent representations from the encoded binaries and force it to be similar to
the ones produced by the original data features.

still far from satisfying. This is possibly due to the fact that the simple encoding
functions, e.g. linear projections, in these works are not capable to handle complex
data representations, and therefore the generated codes are suspected to be less
informative.

Recently, deep learning is introduced into image hashing, suggesting an alter-
native manner of formulating the binary encoding function. Although supervised
deep hashing has been proven to be successful [14, 214, 91, 184, 109], existing works
on unsupervised deep hashing [104, 101, 30, 17] are yet suboptimal. Different from
the conventional shallow methods mentioned above [13, 115, 113], unsupervised
deep hashing models mainly follow the mini-batch SGD routine for parameter op-

timization. Consequently, providing no label information, the intrinsic structure
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and similarities of the whole sample space can be skewed within training batches
by these models.

Driven by the issues discussed above, a novel deep unsupervised hashing algo-
rithm is proposed which utilises the structural statistics of the whole training data
to produce reliable binary codes. The auto-encoding variational algorithms [70]
, 89]. The recent Condi-

tional Variational Auto-Encoding networks [160] provide an illustrative way to

have shown great potential in several applications |

build a deep generative model for structured outputs, by which we are inspired
to establish our deep hashing model, named as Deep Variational Binaries (DVB).
In particular, the latent variables of the variational Bayesian networks [76] are
leveraged to approximate the representation of the pre-computed pseudo cluster-
ing centre that each data point belongs to. Thus the binary codes can be learnt as
informative as the input features by maximizing the conditional variational lower
bound of our learning objective. It is worth noticing that we are not using the
quantized latent variables as binary representations. Instead, the latent variables
are treated as auxiliary data to generate the conditional outputs as hashed codes.
The main difference between DVB and most existing unsupervised deep hash-
ing is shown in Figure 3.1. DVB employs a data reconstruction procedure to
generate compact codes. The output binaries are used to reconstruct the latent
representations (from the reconstruction network) which need to be close to the
latent variables produced by the original data feature (from the prior network).

The contribution of this chapter can be summarized as:

e To the best of our knowledge, DVB is the first unsupervised deep hashing

work in the framework of variational inference suitable for image retrieval.

e The proposed deep hashing functions are optimized efficiently, requiring no

alternating training routine.

e DVB outperforms state-of-the-art unsupervised hashing methods by signifi-
cant margins in image retrieval on three benchmarked datasets, i.e. CIFAR-
10, SUN-397 and NUS-WIDE.
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The rest of this chapter is organized as follows. A short literature review is
provided in Sec. 3.2. We describe the learning framework of the proposed DVB

model in Sec. 3.3. Extensive experiments and results are given in Sec. 3.4.

3.2 Related Work

3.2.1 Shallow Unsupervised Hashing

In general, traditional hashing models employ simple projection functions to en-
code data, e.g. linear projections and eigenfunctions.

Iterative Quantization (ITQ) [13] proposed by Gong et al. is a classic unsu-
pervised hashing method. It aims at refining the initial projection matrix learned
by PCA using an orthogonal rotation function. The hashing quality of ITQ [13]
largely relies on the performance of PCA. As is discussed in Chapter 2, this is
not a desired design for learning compact data representations because the fea-
tures produced by PCA cannot be improved during training. Spectral Hashing
(SH) developed by Weiss et al. [178] learns the hash function by preserving the
balanced and uncorrelated constraints of the learnt codes. It assumes that data
follow a uniform distribution, but this is not a realistic assumption for large-scale
data retrieval.

Locality Sensitive Hashing (LSH) [21] successively applies thresholding mech-
anisms on projected data to producing binary codes. It is theoretically proven
that as the code length increases, the value of Hamming distance between two
codes will asymptotically approach the Euclidean distance between their original
data representations. This design has been further improved by Shift-invariant
Kernelized Locality Sensitive hashing (SKLSH) [I11]. Random-projection-based
encoding methods can be suboptimal for realistic applications since their perfor-
mances drop dramatically with the decrease of code length. This is unappreciated
as the state-of-the-art hashing algorithms generally produce reasonable retrieval
performances with short code length.

Anchor Graph Hashing (AGH) [115] proposed by Liu et al. initially intro-
duces the concept of anchor points for graph hashing, and is therefore extended to

DGH [113] later. The key idea of graph hashing is to automatically discover the
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neighbourhood structure inhere data. In AGH [I15], this neighbourhood struc-
ture is reflected in an anchor-based similarity matrix, where the anchors are ob-

tained from the clustering centres of training data features. The difference between

AGH [115]) and DGH [113] is that DGH [113] additionally introduces the discrete
constraints on output bits in the learning objective, making the produced codes
more compact. The weakness of AGH [115] and DGH [113] is that bad setting of

number of clustering centres influences the choice of anchor points and encoding
quality as well. This setting varies from different datasets and requires additional
training time to find the best value.

The recent Latent Structure Preserving Hashing (LSPH) [ 1] combines unsu-
pervised hashing with nonnegative matrix factorization. The aim is to effectively
preserve data probabilistic distribution and capture the locality structure from
the high-dimensional data. Each bit of the encoded data represents a data-driven
latent attribute. However, its multi-layered design with nonnegative matrix fac-
torization makes the optimization slow and inefficient.

Despite the drawbacks discussed above, the shallow encoding functions in these
works are not able to fully utilize the latent semantics and information hidden
in data, because the quantities of learning parameters are limited |95, |. This
influences the retrieval performance of these models. To this end, we seek solutions
for unsupervised hashing in deep learning, where the latent information carried by

data can be better leveraged.

3.2.2 Deep Unsupervised Hashing

Recently, supervised deep hashing methods have achieved impressive performances
in both single-modal data retrieval [11, 211] and cross-modal retrieval [66, 109].
However, unsupervised deep hashing is still far from satisfactory.

Salakhutdinov et al. [151] introduce DBM into binary representation learning.
A generative model is pre-trained and then fine-tuned to produce semantically
representative codes on the top of the DBM. This early attempt in deep learning
does not consider data similarities, and thus it underperforms the shallow meth-

ods [43, 111].
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Deep Hashing (DH) [104] applies quantization loss on top of a neural network
to regularize the output codes. A simple multi-layer perceptron is employed and it

merely outperforms existing shallow hashing models with slight margins. The main

idea of DH [104] is to quantize the network output and decorrelate the bits, but,
similar to [151], it also fails to utilize data similarities and semantic information.
DeepBit [101] focuses on assigning the identical code to rotated images with

different rotation angles. Images are firstly rotated and then rendered to a CNN
for encoding. In addition to the hashing learning objective of DH [104], a penalty
of code distances of an image with different rotation angles is introduced in Deep-
Bit [101]. However, the code difference between two images is not considered. So
the encoding quality is not satisfying.

Unsupervised Binary Deep Neural Network (UN-BDNN) [30] becomes one of
the best-performing deep unsupervised methods. A simple multi-layer neural net-
work is involved for encoding. UN-BDNN [30] preserves code similarities according
to the feature distance in Euclidean space. However, its alternating optimization
routine limits its training efficiency, since it requires additional computation which

currently cannot be accelerated by GPUs.

3.2.3 Auto-Encoding Variational Networks

The variational Auto-Encoder (VAE) [70] proposed by Kingma et al. has become
a popular generative model recently. Combining parametrized latent distributions

and sampling methods for lower bound inference, VAE has been applied to many

computer vision and machine learning aspects, e.g. domain adaptation [139], text
modelling [190], tag-image generation [193], conditioned face reconstruction [39]
and many other applications [189, 77, 36, 154]. Sohn et al. [160] extend the vanilla

VAE to a conditional generative model to learning structured outputs, namely
Conditional Variational Auto-Encoder (CVAE). In this work, the advances in
CVAE are leveraged to formulate our theoretical basis.

By the time of writing, we are aware that Chaidaroon et al. [18] propose a
variational binary encoder for text hashing. However, [1%] is not suitable for image

encoding for the following reasons.
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e [18] takes discrete word count vectors as input, while images would have
longer and more complex representations. Simply applying the vanilla VAE
framework to image features as [18] may result in a lossy reconstructed like-
lihood distribution from short binary codes. It is hard to directly recon-
structing high-dimensional representations from short features with a single

decoder.

e In [18], the encoded binary representations are obtained by quantizing the
latent variables, which means the output codes can be extremely intolerant
to the randomness introduced by the Monte Carlo sampling procedure on
the latent space of VAE.

3.3 Deep Variational Binaries

This work addresses the problem of data retrieval with an unsupervised hashing
procedure. Given a data collection X = {x;}¥, € R consisting N data points
with d-dimensional real-valued representations, the DVB model learns an encoding

function f (), parametrized by 6, so that each data point can be represented as
b, = sign(f (x;;60)) € {—1,1}™. (3.1)

Here m indicates the encoding length and sign(-) refers to the sign function
for quantization. In the following description, index ¢ will be omitted when it
clearly refers to a single data point. In this section, we firstly explain the way
to empirically exploit the intrinsic structure of the training set by introducing a
set of latent variables z and then, the encoding function f(-) is formulated by a

Monte Carlo sampling procedure for out-of-sample extension.

3.3.1 The Variational Model

As shown in Figure 3.2, the DVB framework involves three types of variables, i.e.
the data representations x € R? the output codes b € {—1,1}™ and the latent
representations z € R! as auxiliary variables, where [ denotes the dimensionality of

the latent space. The variables in DVB formulate three probabilistic models, i.e.
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the conditional prior py (z|x), the variational posterior g, (z|x,b) and the genera-
tion network pg (b|x, z). Following Kingma et al. [76], the probability models here
are implemented using deep neural networks, parametrized by # or ¢. We con-
sider the prototype of learning objective maximizing the log-likelihood log py (b|x)
for each training data point by approximating the true posterior py (z|x, b) using
¢ (z]x,b). Starting with the K-L divergence between ¢, (z|x,b) and py (z|x, b)

according to [160]:

KL(Q¢ (Z‘Xu b) ” Po (Z‘Xv b))

- g0 (z[x, b) (3.2)
z|x,b)log ————=dz + lo blx),
/q¢( x,b) gpg(z,b\ ) g pg (b|x)
the likelihood of b can be written as [70]
= z|x, b
log pa (b}x) =K L(gs (zix. b) || pu (2. b)) — [ a5 (2fx, b) log 122N

z

Do (Z7 b|X) (33)
2Eq, (zxp) [l0g po (b, z|x) —log g, (z[x, b)] .

Here the expectation term E [-] becomes the prototype of the learning objective of

DVB. Considering the neural networks mentioned above, from [160], we factorize

the lower bound and we obtain:
—logpe (blx) < L
= Eq, (zxp) [l0g g5 (2[%, b) — log py (b, z[x)]
= Eqg, (alx,b)[l0g g5 (z[x, b) — log py (z]x) — log py (b|x, z)]
= KL (qy (2%, b) [[po (2[x)) = Eqgy (zlx) [l0g po (b]x, 2)] .

We denote £ as the numerical inverse of the lower-bound to log py (b|x) for
the ease of description in the rest of this chapter. Therefore DVB performs SGD to
minimize £. It can be observed that the construction-reconstruction similarities
of the latent variables are instantiated in the KL divergence between ¢, (z|x,b)
and py (z|x).

As image data are usually presented in high-dimensional representations, di-
rectly reconstructing x from z as [70, 18] is not optimal and could induce redun-
dant noise to the training procedure. In DVB, z act as auxiliary variables encoding
latent information through the conditional network py (z|x). By reducing the di-

vergence between the posterior g, (z|x,b) and py (z|x), the generated binaries b
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are supposed to have similar semantics to the original feature x in reconstructing
z. To solve the intractability of the posterior g4 (z|x, b), the inference network is

built using the reparameterizaion trick in [76] with a Gaussian distribution so that

g5 (z|x,b) = N (z; pg(x,b),diag (ai(x, b))) . (3.5)

Note that all u. (-) and o. () can be implemented with multi-layer neural networks,
which is provided in Figure 3.3. To obtain a certain set of sampled latent variables
z®) from o (+), a Monte Carlo sampling process can be conducted by introducing

a set of small-valued random values e:

2 = py(x,b) + € © 74(x,b), (3.6)

where © refers to the element-wise multiplication product. A similar trick is also

performed on py (z|x) as follows

po (z|x) =N (z; ty(x),diag (Jg(x))) ) (3.7)

Although the continues distributions py (z|x) and ¢, (z|x, b) can be reparameter-
ized, it is still hard to model py (b|x,z) because b needs to be discrete and there
is no additional supervision available. Hence, the log-likelihood log ps (b|x,z) is

replaced by a series of deep hashing learning objectives H (+), i.e.
— By, (zix.p) [log po (b|x, 2)] — H (g90(x,2)) . (3.8)

Here gg(-) refers to the deep neural network to generate b so that b = sign (gg(x, 2)).

3.3.2 Exploiting Intrinsic Data Structure.

In addition to the lower-bound mentioned above, we consider utilising the sta-
tistical information on the whole training set for better performance. Inspired
by [115, 113], a small set of K anchor points {c¢/}}*, € R/ are computed before
the SGD training starts, which is also shown in Figure 3.2. Each anchor point
refers to a pseudo clustering centre of the training data. Then each data point
x; is assigned with a clustering centre by nearest neighbour search, i.e. {x;,c;}.

In practice, this is achieved by successively performing dimension reduction and
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clustering on the training set. Different from [115, ], we are not building the
anchor graph on the whole dataset since this is not practical for mini-batch SGD.
Instead, the latent variable z is used to predict the representation of the corre-
sponding anchor ¢ of each x. More precisely, the mean network g (x) of py (z|x)
is related to c, formulating an additional /2 loss term, which particularly requires
z have the same dimensionality as c. This procedure intuitively endows the con-
ditional network py (z|x) with more informative latent semantics. Therefore, the

total learning objective of Equation (3.4) can be rewritten as
£ = KL (g, (2]xb) ||ps (21%)) + H (g%, 2)) + 1o (x) — |2 (3.9)

Note that £ here can be no longer regarded as the exact lower-bound of log py (b|x).
This empirical learning objective partially represents the likelihood of b which
requires further attention with regard to hashing. In the next subsection, the

details of the hashing objective term H (go(x,2)) is discussed.

3.3.3 Hashing Objectives

The hashing objective #H (-) in Equation (3.9) in replacement of —E_ 5)xb) [log pe (b|x, z)]
is formulated by several unsupervised loss components to regularise the output of
the proposed hashing model. Since DVB is trained using mini-batch SGD, the
losses need to be able to back-propagate. Based on several unsupervised deep
hashing works [104, , 30], we formulate the following hashing losses to con-
struct # (-) within a batch of data points Xp = {x;}25 and sampled latent vari-

ables Zp = {2;} %, where Np is the batch size.

3.3.3.1 Quantization Penalty

As DVB produces binary codes, the output bits of gy (+) need to be close to either
1 or —1. This minimizes the numerical gap between the network output and the
quantized product of the sign(-) function. The quantization loss can thus be

written with a Frobenius norm as follows
Hi = |lgo (X, Zp) — sign (99 (X5, Zp)) ||7- (3.10)

The quantization loss is widely adopted in several hashing works [104, 101, 14, 214]

with different formulations. As is discussed in [104], the quantization loss helps
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the network output to be close to 1 or —1, and thus prevent the model from
performance drop due to subsequent quantization with the sign (-) function. In
our experiments, we find the Frobenius norm works best for DVB with a tanh

activation on the top layer of gy (-).

3.3.3.2 Bit Decorrelation

The encoded binaries in hashing algorithms are in general short in length. To
make the produced code representative, it is necessary to decorrelate each bit
and balance the quantity of 1 and —1 in a code vector. To this end, the second

component of H (-) is derived as
My = llgo (X5,Z5)" 90 (X5, Zp) — 1|, (3.11)

where I refers to the identity matrix and both X g and Z g are row-ordered matrices.
Equation (3.11) suggests an indirect way to enrich the information encoded in the

binary codes by balancing the output bits.

3.3.3.3 In-Batch Similarity

For unsupervised hashing, it is usually in demand to closely encode data samples
that have similar representations into the Hamming space. Inspired by [53, 5], the
in-batch Laplacian graph is introduced to build the last term of H (-). To do this,
an in-batch Laplacian matrix is defined by S = diag(Al) — A. Here A is an

Np x Np distance matrix of which each entrance A;; is computed by

2
]

Aj=e 7, (3.12)

where t is a small-valued hyper-parameter. A trace-like learning objective for

in-batch similarity can be written as
H3 = —trace (99 (X5,Z5)" S g5 (X3, ZB)) : (3.13)

‘Hs functionally works similarly to the pre-computed low-dimensional clustering
centres c¢ in preserving the unlabelled data similarities. However, H3 focuses on
regulating b within a batch while ¢ provides support to form the latent space z

on the whole training set.

30



3.3. DEEP VARIATIONAL BINARIES Page 31

Therefore, H in Equation (3.9) can be formulated by a weighted combination
of Hy, Hs and Hs:

H (99(X7 z)) = a1 H1 + aoHa + asHs, (3.14)

where a1, ap and ag are treated as hyper-parameters.

3.3.4 Network Setup

Three neural networks are built as the implementations of py (z|x), ¢, (z|x,b)
and gy (x,2), shown in Figure 3.3. All the networks are composed of two fully-
connected hidden layers, topped by the output layers representing the respective
probabilistic models. We fix the length of the hidden layers to be 1024 with
ReLU activations [131] for all networks. The output lengths of the networks are
determined by the dimensionality of the latent space, notified as [. The tanh
activations are applied to gy () and the mean networks p. (), while the sigmoid
activations are empirically chosen for the variance networks 2 (-). Note that we are
not building enormous networks as the size of the encoding network may heavily

influence the coding efficiency, which is not appreciated in deep hashing.

3.3.5 Optimization

By introducing the hashing losses discussed in Subsection 3.3.3 into DVB, the
overall learning objective ENB on a mini-batch Xp, after combining Equation (3.9)

and Equation (3.14), can be written as follows

Np

L= (KL gy (z:]x:,bs)|Ipo (2:x:))

=1
+ ||,u€ (Xz> - Ci||2) + o1 Hi + aoHa + asHs.

(3.15)

The SGD training procedure of DVB is illustrated in Algorithm 1. A flow diagram
better illustrating all computation steps is additionally provided in Figure 3.4. For
each data point x; within a batch Xpg, a latent representation z; is obtained by
sampling the conditional distribution py (-|x;) and an estimated binary vector b;
can be calculated by b; = sign (gs(x;, z:)) to further compute L. The parameters
(0, ¢) are updated following the mini-batch SGD. I' () here refers to an adaptive
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Convergence
or max iteration
reached

Get a random mini-batch from
training set

All datain
batch have been
processed

Get an x; from the batch
Relate x; with the closest pre-
computer clustering centre c;

Render x; to network pg(z|x;)
Sample z;~py(z|x;)

Render x; and z; to gy (+)

Obtain b; = sign(ge(x;,2;))

Render b; and x; to q4(-)
Compute q4(z|x;, by)

v
For all data in the batch:
Compute the K-L divergence in Equation (3.15)
using g4 (z|x;, z;) and pg(z|x;)
v
For all data in the batch:
Compute ||ug(x;) — ¢;]|? in Equation (3.15)
note that pg(x;) is a part of py(z|x;)
L2

For all data in the batch:
Compute 1, H ,, H 3in Equation (3.15)
according to Equation (3.10, 3.11, 3.13)
¥

Compute the learning objective (Equation (3.15))
using the above outputs

v

Compute the gradients w.r.t. 8 and ¢
Then perform back-propagation

Figure 3.4: Flow diagram of the detailed training procedure of DVB according to
Algorithm 1. 29
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Algorithm 1: Parameter Learning of DVB

Input: A dataset with representations X = {x;}¥, € R*" and max
training iteration 7T’

Output: network parameters 6 and ¢

Perform dimension reduction and clustering on the dataset to have {c}

repeat
Get a random mini-batch Xg from X

for each x; in Xz do
Relate x; with a closest clustering centre representation c;

Sample z; ~ py (z]x;) following [70]
b; = sign (g(x;,2:))
end
L5 + Equation (3.15)
0,0)"" «+ (0,¢) — T (VQE,;, V¢EB) by back-propagation

until convergence or max training iter T’ is reached,

gradient scaler, which is the Adam optimizer [75] in this chapter with a starting
learning rate of 1074
3.3.6 Out-of-Sample Extension

Once the set of parameters 6 is trained, the proposed DVB model is able to encode
data out of the training set. Given a query data x¢, the corresponding binary code

b? can be obtained by a Monte Carlo sampling procedure defined as

L
1 s s
FOc0) =200 (x4,27) 2 ~ o (2,
=1

b? =sign (f (x%0)),

(3.16)

which simulates the sampling trick described in [76, |. In the experiments
of this work, L is fixed to 10 for best performance via cross-validation. Since the
output binaries of DVB are not obtained by directly quantizing the sampled latent
representation z, we mitigate the problem of uncontrollable output codes from [15]

discussed in Sec. 3.2.3.
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Figure 3.5: Precision@5000 curves for all bits of DVB and several existing methods
with VGG-16 [157] features.

3.4 Experiments

The extensive experiments of DVB are conducted on three benchmark image
datasets, i.e. CIFAR-10 [341], SUN-397 [187] and NUS-WIDE [22] for image re-
trieval. We firstly introduce the implementation details, and then the experimental

results are provided according to the following themes:

e Comparison with State-of-the-Art Methods. Several existing unsuper-
vised hashing models are introduced as baselines for retrieval performance

comparison with DVB.

e Ablation Study. We assess the design of our proposed hashing model by

introducing several variants of DVB as baselines.

e Hyper-Parameters. The retrieval performance of DVB w.r.t. different

hyper-parameters are analysed.

e Intuitive Results. Some intuitive results are provided to have a better

picture of the encoding quality of DVB.

3.4.1 Implementation Details

The DVB networks are implemented with the well-known deep learning library
TensorFlow [1]. Before being rendered to the DVB networks, a 4096-dimensional

deep feature vector of each training image is extracted using the output of the
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Table 3.2: Image retrieval mean-Average Precision (mAP) and Precision@5000 on

CIFAR-10 [84] with GIST features.

Method mAP Precision@5000
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits
ITQ [43] 0.153 0.163 0.169 0.177  0.188 0.198
SH [178] 0.127  0.125 0.125 0.144 0.143 0.143
LSH [21] 0.129 0.138 0.149 0.144 0.143 0.169
AGH [115] 0.158 0.153  0.145 0.169 0.169  0.168
DGH [113] 0.160 0.160 0.156 0.187  0.183 0.179
DH [104] 0.162 0.166 0.170 0.182 0.184 0.193
DeepBit [101] 0.159 0.191 0.209 0.180 0.222 0.243
UN-BDNN [30]  0.157  0.161 0.169  0.181 0.189  0.197
DVB 0.165 0.167 0.175 0.191 0.194 0.207
fc_7 layer of the VGG-16 network [157], pre-trained on ImageNet [117], i.e. d =
4096. We follow a similar way presented in [70, , 89] to build the deep neural

networks pyg (z|x), ¢, (z|x,b) and gy (x,2z). The detail structures of these networks
in DVB are provided Figure 3.2. The dimensionality of the latent space z is set to
[ = 1024 via cross-validation. To generate a set of pseudo data centres {c}, PCA
is performed on the (2 normalized training set X to reduce its dimensionality from
4096 to 1024, followed by a K-means clustering [123] procedure to obtain a set of
c. The number of clustering centres K is set according to different datasets. For
the rest of the hyper-parameters, t, a;, as and as are set to 1072, 0.5, 0.1 and 1

respectively. For all the experiments, the training batch size is fixed to Ng = 256.

3.4.2 Experimental Settings

3.4.2.1 CIFAR-10 [84]

This dataset consists of 60000 small-size images, subjected to 10 categories. We
follow the setting in [113] to randomly select 100 images from each class as the

test set, and use the rest 59000 images as the training set and retrieval gallery. K

is set to 20 on this dataset by cross-validation.
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3.4.2.2 SUN-397 [187]

A total number of 108754 images are in involved in this dataset with 397 exclusive
class labels. For each class, 20 images are randomly selected to form the test set.
The reset images are used as training and retrieval candidates. K is set to 300 on
this dataset.

3.4.2.3 NUS-WIDE [22]

This is a multi-label dataset containing 269648 images. We use a subset of 195834
images from the 21 most frequent topics, from which 100 images for each topic are

randomly picked for testing. K is set to 100 on this dataset.

3.4.3 Comparison with State-of-the-Art Methods

The performance of the proposed DVB model is evaluated by conducting image
retrieval on the three datasets mentioned above. For experiments on CIFAR-10 [31]
and SUN-397 [187], the retrieval candidates having the same label as the query
image are marked as the ground-truth relevant data. Since NUS-WIDE [22] is a
multi-label dataset, a relevant retrieval candidate is defined as sharing at least one
label with the query image, which is a conventional setting in image hashing and
retrieval. The code length m is chosen to be 16, 32 and 64.

3.4.3.1 Baselines

Several benchmarked unsupervised hashing methods are involved in the experi-
ments of this chapter, including ITQ [13], SH [178], SpH [54], LSH [21], SKLSH [141],
Sparse Embedding and Least Variance Encoding (SELVE) [216], AGH [115] and
DGH [113]. We employ these models as they are conventional baselines used in
state-of-the-art unsupervised deep hashing articles [104, , 30] and these deep
methods, i.e. DH [104], DeepBit [101] and UN-BDNN [30], are involved as well.
To make a fair comparison between the shallow methods and the deep models, we
utilize the VGG-16 [157] features as inputs for all baselines. As a result, the per-
formance figures of the traditional hashing works reported here are slightly higher

than those in their original papers but are still reasonable and illustrative. We
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directly use the source code of DeepBit [101] developed by the original authors for
experiments, and implement DH [104] and UN-BDNN [30] on our own.

3.4.3.2 Quantitative Results with Deep Features

The image retrieval mean-Average Precision (mAP) [128] results are provided in
Table 3.1, which gives a brief insight of binary encoding capability. A full definition
of mAP is provided in Appendix A. In general, DVB outperforms all state-of-the-
art shallow and deep unsupervised methods with evident margins in most cases.
Particularly, the minimum mAP gaps yield 1.5%, 0.7% and 1.6% on the three
datasets respectively between DVB and other methods. Note that the overall
scores on the SUN-397 [187] are relatively low compared with those on the rest
two datasets, as SUN-397 contains more categories. It is clear that some existing
unsupervised deep hashing models [104, 101] are no longer leading the retrieval per-
formance compared with the shallow ones with deep features. Although benefited
from the compact encoding neural networks, these deep methods still struggle in
handling unsupervised hashing. This is probably because the batch-wise SGD pro-
cedure only manages to preserve the in-batch data similarities and therefore skews
the statistics of the whole training set, which is empirically compensated in DVB
by introducing the latent variables z. UN-BDNN [30] obtains most acceptable per-
formance among the existing deep methods, while it involves a more sophisticated
optimization procedure than DVB. The precision at top-5000 retrieved candidates
(Precision@5000) [128] curves with all bits are plotted in Figure 3.5 to have a more
comprehensive view on retrieval performance. This metric indicates the fraction
of relevant candidates out of the first 5000 returned, of which the definition is also
provided in Appendix A.

The Precision-Recall curves (P-R curves) [19, 119] for image retrieval are illus-
trated in Figure 3.6. The P-R curves represent the precision values corresponding
to the recall values [119]. It can be clearly observed that DVB obtains a higher
plot than the compared baselines. The plot suggests that DVB successfully keep
the related candidates in top of the retrieved sequences, since it obtains higher
precision scores at all recall values. The P-R cures agree the mAP performance

comparison discussed above.
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(c) 64-bit image retrieval Precision-Recall curves.

Figure 3.6: 16-bit (a), 32-bit (b) and 64-bit (c) image retrieval Precision-Recall
curves (P-R curves) [19, 119] with VGG [157] features.
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3.4.3.3 Quantitative Results with Hand-Crafted Features

In addition to the retrieval performances with deep features provided above, we
also compare DVB with existing hashing algorithms using hand-crafted feature for
a comprehensive view on encoding quality. Only the image retrieval performances
with GIST features [131] on CIFAR-10 [¢1] are reported here to make the content
concise. The proposed DVB model is slightly modified to fit the GIST features.
PCA is no longer required in this case since GIST features are relatively short
and easy to reconstruct. Therefore, k-means clustering [123] is performed directly
on the input features in obtaining {c}. As a result, the size of the latent space
becomes exactly the same to the input feature length, while the rest part of DVB
remains unchanged.

Table 3.2 shows the retrieval mAP and Precision@5000 scores of DVB and sev-
eral state-of-the-art unsupervised hashing methods with GIST features on CIFAR-
10 dataset. It is clear that DVB still outperforms the compared models except
DeepBit [101]. The GIST feature [131] is based on orientation histograms, carry-
ing rotation information. This can be fully utilized by the training objective of
DeepBit [101], i.e. producing identical codes for one image with different rotation
angles. As a result, DeepBit [101] outperforms DVB in this experiment. However,
it is infeasible to require all types of descriptors carrying orientation information.
On the other hand, DH [101] and UN-BDNN [30] just marginally reach the aver-
age performance level of the shallow methods, which agrees with their performance

with deep features.

3.4.3.4 Efficiency

The training and encoding time of DVB with deep features are demonstrated in
Table 3.3, where DH [104] and DeepBit [101] are included for comparison. All
experiments are conducted on an Nvidia TitanX GPU. DVB requires less training
time than the two listed deep models to reach the best retrieval performance, since
it efficiently explores the intrinsic data structure. The test time of DVB is slightly
longer than DH [104] and DeepBit [101]. This is because DVB involves a Monte
Carlo sampling procedure with multiple sampled latent variables to encode test
data.
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Table 3.3: Comparison of training and encoding efficiency on CIFAR-10 [34] with
some deep hashing methods.

Training Coding

Method Bit mAP Time Time
16 bits 0.172 149 minutes 20.5ms
DH [104] 32 bits  0.176 152 minutes  20.7ms

64 bits 0.179 177 minutes 21.1ms
16 bits  0.193 203 minutes 21.4ms
DeepBit [101] 32 bits 0.216 210 minutes 21.9ms
64 bits 0.219 265 minutes 22.6ms
16 bits  0.347 127 minutes  28.9ms
DVB 32 bits  0.365 127 minutes 29.4ms
64 bits 0.392 127 minutes 31.7ms

Note that UN-BDNN [30] is not included in this experiment. An unstable
training procedure is experienced. During optimization, the model unpredictably
produces zeros as outputs for all data, and then it has to be retrained. Although
the retrieval performance is recorded, its training time is not illustrative, since the
model requires multiple attempts to reach the best performance. The cause of this
phenomena is that the learning objective of UN-BDNN [30] does not involve bit
decorrelation penalty. Therefore, it is possible that all output bits generate the

same value.

3.4.4 Ablation Study
3.4.4.1 Baselines

We analysis the impact of different components of the learning objective in this

subsection, by introducing the following variants of DVB for ablation study:

e DVB-1. The [2 loss on pp(-) is omitted to form this baseline. Since the
clustering centres are no longer required here, this baseline is able to be

trained end-to-end together with the convolutional networks.
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Table 3.4: Ablation study results (mAP) of DVB on CIFAR-10 [34] and NUS-
WIDE [22] with some terms of the learning objective removed.

Method CIFAR-10 NUS-WIDE

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

DVB-1 (Without /2 on s(-)) 0.269 0.325 0.342 0477 0506 0512
DVB-2 (Without Ha) 0286 0344 0349 0483 0489  0.530
DVB-3 (Without H) 0317 0350 0361 0525 0531  0.578
DVB-4 (Without H and H3) 0275 0293  0.303  0.466 0490  0.487
DVB (Full) 0.347 0.365 0.381 0.546 0.560 0.584

e DVB-2. We build this baseline by removing the bit decorrelation term
in Equation (3.16).

e DVB-3. In this baseline the in-batch similarity regularization term Hj is

omitted.
e DVB-4. This baseline combines the modification of DVB-2 and DVB-3.

The quantization penalty H; is not involved in ablation study since it is usually

compulsory in deep hashing.

3.4.4.2 Results and Analysis

The retrieval mAP results of the three baselines mentioned above are shown in Ta-
ble 3.4. Ablation experiments are not conducted on SUN-397 [187] since the overall
figures on this dataset are too low and the performance margins between different
baselines can be narrow and hard to observe. We have experienced a significant
mAP drop of 5% on average when omitting the (2 loss (DVB-1) on CIFAR-10 [31].
Although DVB-1 is trained end-to-end, it lacks the intrinsic structural informa-
tion out of a single batch during training, which is compensated by regularizing
tg(+) using the pseudo data centres in this work. It also can be observed from the
performances of DVB-2 and DVB-3 that H, and Hs3 do have a positive impact on
the final result of DVB. Interestingly, when simultaneously omitting Hs and Hs

from the learning objective, the retrieval performance degrades remarkably. To
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Figure 3.8: Retrieval performance on CIFAR-10 [¢1] (left), NUS-WIDE [22] (mid-
dle) and SUN-397 [187] (right) w.r.t. different settings of K, where the default
values are 20, 100 and 300 respectively.

this end, it can be observed that the proposed model is successfully designed and

all components are reasonably implemented.

3.4.5 Hyper-Parameters

The hyper-parameters dominant to the performance of DVB are analysed in this
subsection. During our experiments, we figure out DVB tends to be not sensitive
to t, aq, as and a3. As long as they are established with a reasonable scale of
values close to our default settings provided in Sec. 3.4.1, the model is still able to
produce the aforementioned retrieval mAP scores with a performances difference
less than 3% according to experiments. Therefore, we focus on the rest of the

hyper-parameters, i.e. the number of clustering centres K and the dimensionality
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of latent space I.

3.4.5.1 Size of Latent Space

The retrieval performances of DVB on CIFAR-10 w.r.t. different sizes of [ are
shown in Figure 3.7. As [ also determines the size of the pseudo data centres c, a
small value of [ leads to lossy PCA based computation of results on the training
of deep features for further clustering. Thus {c} can hardly provide informative
semantics in regularizing the conditional network py (z|x). On the other hand,
oversized [ is neither appreciated since this hampers the reconstruction procedure
of ¢, (z|x,b). 1024 becomes a reasonable setting for / in our experiments, as it
is close the length of 95%-energy PCA results of VGG-16 features on the three

datasets.

3.4.5.2 Number of Clustering Centres

Figure 3.8 illustrates the retrieval performances w.r.t. different values of K on the
three datasets. It can be observed that the best-performing settings of K are gen-
erally close to the category numbers of the three datasets, while a slightly smaller
value of K is still acceptable. Empirically, K reflects the number of semantic con-
cepts hidden in the dataset, but it also influences the clustering quality to produce
{c}. Large values of K may lead to noisily computed {c} regarding the size of the
training set. Consequently, the choice of K on SUN-397 is relatively smaller than

the category size as this dataset consists of a large number of image classes.

3.4.6 Qualitative results

Qualitative analysis is also provided to empirically demonstrate the binary encod-
ing performance of DVB. Some intuitive retrieval results on 32-bit CIFAR-10 are
shown in Appendix B, which suggests DVB is able to provide relative candidates in
top of the retrieval sequences. From Appendix B, it can be observed that the top-
20 retrieved images are mainly subjected to the same topic as the query images.
The t-distributed Stochastic Neighbour Embedding (t-SNE) [122] visualisation re-
sults on the test set of CIFAR-10 are illustrated in Figure 3.9. It can be observed

that the produced codes are not widely scattered on the two-dimensional panel as
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no class information is provided during parameter training. However, most classes
are clearly segregated, which means the produced binary codes are still compact

and semantically informative to some extent.

3.5 Summary

In this chapter, a novel unsupervised deep hashing method DVB is proposed.
The recent advances in deep variational Bayesian models have been leveraged to
construct a generative model for binary coding. The latent variables in DVB ap-
proximate the pseudo data centres that each data point in the training set belongs
to, by means of which DVB exploits the intrinsic structure of the dataset. By min-
imizing the gap between the constructed and reconstructed latent variables from
data inputs and binary outputs respectively, the proposed model produces compact
binary codes with no supervision. Experiments on three large-scale datasets sug-
gest that DVB outperforms state-of-the-art unsupervised hashing methods with

evident margins.
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Chapter 4

Supervised Deep Hashing for
Image-Sentence Cross Retrieval

4.1 Introduction and Motivation

Learning the semantic relations between image and text modalities has aroused
a lot of recent attention, becoming an overwhelming research topic in computer
vision, natural language processing and machine learning. Dramatic progress has
been achieved in visual question answering [124, 4, 10], caption generation [189, 31,
] and textual-visual retrieval [191, , 73, , 38], with a variety of methods
using real-valued shared space representations. Promising performances have been
achieved by densely encoding image details and language semantics. Typically
embedding different types of data with deep neural networks and trained with
stochastic back-propagation, these methods achieve impressive fine-grained multi-
modal mapping performance [118; 38, 73, , 67]. However, due to the high
complexity of similarity computation, real-valued embeddings are usually infeasible
for large-scale textual-visual retrieval.
Addressing this issue, cross-modal hashing schemes [28, 90, , , , ,
, 66, 62, , | have been proposed to encode heterogeneous data from a high-
dimensional feature space into a shared low-dimensional Hamming space where an
approximate nearest neighbor of a given query can be found efficiently. Tradi-
tionally, most existing research in cross-modal hashing only focus on image-tag
mapping [28, 90, , 7, , , 11, 66], where holistic image representa-

tions and semantic tags feed the shallow binary coding procedure.
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ey
There is a person |E
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laying down
underneath

an umbrella next
to the beach. O‘

(b) Conventional Cross-Modal Hashing

Figure 4.1: The proposed model (a) aims at encoding all informative words of a
sentence and all possible attractive regions in an image. Contrarily, conventional
textual-visual binary encoding methods (b) only utilize simple representations of
each modality and discard some information (e.g. the instances of person and
umbrella are not well-encoded), resulting in low matching quality.
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We argue that, first of all, it is insufficient to simply link images with tags,
instead of real sentences, for multimedia searching problems nowadays. Image-tag
mapping can be barely achieved or replaced by a multi-label image classification
model, regarding text tags as labels. However, sentences usually enclose more
knowledge and semantics than tags, which needs to be considered and modelled
more precisely for cross-modal retrieval. Secondly, the detailed information of
images is usually discarded by simply using holistic representations and features.
Furthermore, the hashing functions for traditional methods are not usually com-
pact. Most cross-modal hashing works mentioned above generally involve a linear
projection as the encoding function, which is easy to be optimized but limited in
the ability of encoding complex data into desired binary codes. Figure 4.1 gives an
illustrative example. Traditional hashing methods is managed to link the query
with retrieval candidates that share some semantic topics (beach in this case), but
the detail information describing the person under the umbrella may be ignored.
This is usually not desirable for cross-modal retrieval.

The recent deep cross-modal hashing methods [11, 37, 66, , 9] produce im-
proved image-text retrieval performance. Utilizing deep neural networks as hashing
functions, the non-linear cross-modal correlations between data points are captured
effectively, which usually yields state-of-the-art retrieval results. However, similar
to the traditional hashing methods, existing deep cross-modal hashing techniques
but also suffer from several drawbacks. For instance, most of the deep models
mentioned above still utilize coarse text representations, which is inappropriate
for modeling long sentences and image data are likewise poorly modeled due to
the lack of detailed regional information during encoding. Moreover, the network
training efficiency can be further improved by more advanced code learning archi-
tectures.

Driven by the drawbacks of previous works, in this chapter, we consider a more
challenging task to encode informative multi-modal data, i.e. semantic-rich images
and descriptive sentences, into binary codes for supervised cross-modal search,
termed as Textual-Visual Deep Binaries (TVDB). Particularly, the popular Region
Proposal Network (RPN) [145] and Long Short-Term Memory (LSTM) units [203,

| are introduced to formulate the image binary coding function, so that the

regional semantic details in images can be well preserved from dominant to minor.

49



4.1. INTRODUCTION AND MOTIVATION Page 50

Meanwhile, the latest advances in text Convolutional Neural Network [74, 23, 57]
is adopted to build the text binary encoding network, leveraging structural cues
between the words in a sentence. The proposed deep architecture produces high-
semantic-retentivity binary codes and achieves promising retrieval performance.
The intuitive difference between the proposed method and the traditional ones
are given in Figure 4.1. It can be seen that the proposed TVDB encodes as many
details as possible from images and sentences, leading to more representative binary
codes for matching.

In addition to the novel deep binary encoding networks of TVDB, a stochas-
tic batch-wise code learning procedure is proposed, efficiently leveraging the label
and similarity information as supervision. Inspired by Shen et al. [155], the bi-
nary codes in TVDB are discretely and alternately optimized during the batch-
wise learning procedure. Batching data randomly and iteratively, the proposed
training routine guarantees an effective learning objective convergence. TVDB is
subjected to supervised cross-modal hashing as the its learning objective is built
using the label information of training data. The contributions of this work can

be summarized as follows:

e The TVDB model is proposed to effectively encode rich regional informa-
tion of images as well as semantic dependencies and cues between words by
exploiting two modal-specific deep binary embedding networks. In this way,
the intrinsic semantic correlation between heterogeneous data can be quanti-
tatively measured and captured, which leads to more satisfying cross-modal

retrieval results (Figure 4.1).

e A novel stochastic batch-wise training strategy is adopted to optimize TVDB,
in which reliable binary codes and the deep encoding functions are optimized

in an alternating manner within every single batch.

e The evaluation results suggest the well-designed deep architecture to be cru-
cial in image-sentence hashing and retrieval, and TVDB highly outperforms
existing state-of-the-art binary coding methods in cross-modal retrieval on

three semantically rich datasets.
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The rest of this chapter is organized as follows. Several related works are
introduced in Section 4.2. In Section 4.3, the architecture of the deep encod-
ing networks of TVDB is demonstrated. The batch-wise alternating optimization
procedure for code learning is discussed in Section 4.4. Extensive experimental
results are provided and illustrated in Section 4.5. A short summary is given in
Section 4.6.

4.2 Related Work

Several research areas are related to this work, including the deep learning algo-

rithms, hashing techniques and various aspects related to vision and language.

4.2.1 Neural Networks for Image and Text

Several deep learning structures are involved in this chapter for the cross-modal
retrieval task. Convolutional Neural Networks (CNNs) [95, 85, 157] have been suc-
cessfully applied to many image-related areas. In addition to the classic classifica-
tion task [117], CNNs are also widely used to extract image features. The hidden
states from the top layers of a CNN contain multi-scale latent information [95],
which is regarded as an efficient way to represent a simple image [72, , ].
However, holistic image representations are not ideal for describing information-
rich images. The multiple objects in image are not well-recognized and encoded.
As a result, these objects cannot be directly related to the concepts carried by
text data. Therefore, simply employing a CNN to encode image is suboptimal for
image-sentence retrieval.

More recently, region-based convolutional architectures [12, ] are proposed
to leverage and recognize dominant image regions and components. RPNs [1415]
deterministically detect objects and instances in image and represent their posi-
tions and sizes using bounding boxes. The multi-anchor design for bounding box
regression in RPN [145] provides a feasible way to recognize objects of different
scales, which is desired for our task. In this chapter, we utilize this design as a
part of our image encoder.

Recurrent Neural Networks (RNNs) are employed in text classification and

sentiment prediction [159, , ], suggesting a valid deep learning solution for
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text recognition. However, RNNs do not utilize structural information, e.g. the
relations and dependencies between words, and is not suitable for learning text
feature [23]. Alternatively, CNNs are also adopted in text understanding with
competitive performance [74, 23, 57]. In general, CNNs employ a clearer design
to leverage structural relations and information between the words in a sentence
in which convolution is conducted along the word sequence. In this work, text-
CNN is chosen for text binary encoding and it provides better performance in

experiments.

4.2.2 Real-Valued Image-Text Embedding

The cutting-edge studies in vision and language achieve promising results in terms
of visual question answering [124, 4, 0], caption generation [189, 31, (8], and
real-valued cross-modal retrieval [164, 73, , 59, 69, 80, 72, ; , 192]. The
best-performing real-valued cross-modal retrieval models typically rely on densely
annotated image-region and text pairs for embedding [09]. The utilization of deep
neural networks, typically CNNs, enables these models to explore the heterogeneity
between vision and language and thus builds a reliable shared representation space
for data understanding and matching. For instance, in [72], images and sentences
are firstly rendered to the corresponding neural networks for feature extraction.
Then, the learning objective is constructed using the ranking loss, which requires
a labelled ranking list as supervision for each image or sentence.

However, these methods are far from satisfactory for large-scale data retrieval
due to the inefficient similarity computation of real-valued embeddings compared
with binary representations. It is usually unnecessary to compare these methods
with cross-modal hashing techniques because they are functionally different [111,

, 103]. Learning to hash aims at efficient data search and quick matching [173],
while real-valued embedding focuses on feature learning and do not consider search
efficiency. Therefore, they are not involved in the experimental comparisons in this

work.
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4.2.3 Binary Image-Text Embedding

On the other hand, there exists several hashing methods [41, , , 4, , 43,

, 21, , 87, | aiming at efficient retrieval. For textual-visual hashing, it
has been a traditional and common solution to encode images and tags via shal-
low embedding functions with either unsupervised [90, , 28, , , , 1,
pairwise based [7, , 62, , , , 117] or supervised [182, 13, ; , 127]
code learning methods. Among these traditional cross-modal binary encoding
methods, Semantic-Preserving Hashing (SePH) [103] has become a successful pro-
posal in reducing data heterogeneity by transforming semantic affinities into a
probability distribution model. Its learning objective is based on the K-L di-
vergence between the original feature distribution and code distribution, where
the codes are obtained by two linear projection functions. However the shallow
cross-modal hashing methods, including SePH [103], mainly suffers from the two

following problems:

e The shallow encoding functions employed in these models, e.g. linear pro-
jections [103, , , 176] and eigenfunctions [215, 90], are not able to fully
leverage the semantics carried by the input data features, resulting in less

informative hash codes.

e The above-mentioned methods are designed for image-tag cross-modal re-
trieval, where language data are modelled using word count vectors as input
features. This is not adequate to represent long sentences and word depen-

dencies.

More recently, supervised deep hashing methods [14, , , , 30, 9] pro-
vide promising results in image recognition, which is also adopted in [11, 37, 66,

, 9] for textual-visual retrieval.

Jiang et al. propose Deep Cross-Modal Hashing (DCMH) [60] for image-tag
retrieval using a set of multi-layer neural networks which simply take deep holistic
image features and word count vectors as input. DCMH can be regarded as an
extension of conventional cross-modal hashing methods with a slight improvement
regarding hash functions. As is discussed in Section 4.2.1, holistic features are

suboptimal in representing information-rich images. The dominating image parts
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are not enhanced for encoding, leading to low-quality image codes. In addition,
the text encoding network of DCMH [60] is not suitable for encoding sentences.

Collective Deep Quantization (CDQ) [9] combines data representation learning
steps with quantization error controlling hash coding methods with deep neural
networks. Nevertheless, it suffers from the same problem as DCMH [(6] in network
architecture. As a result, CDQ [9] does not produce satisfactory image-sentence
retrieval performance.

Deep Visual Semantic Hashing (DVSH) [11] proposed by Cao et al. is a more
feasible solution for image-sentence hashing as the sequential information of sen-
tence data is better encoded by employing RNNs [203]. Although the RNN encoder
preserves more semantic information than word count vectors used in [66, 9], it do
not utilize the relations between words, and thus is not ideal for learning compact
text features. Additionally, the structure of the image encoder in DVSH [11] is
identical to [66, 9]. Therefore, the produced image codes do not efficiently repre-
sent the image content.

In the next section, we introduce the network structure of TVDB, which suc-

cessfully handles the problems mentioned above.

4.3 Deep Encoding Networks for TVDB

This work addresses the problem of data retrieval between informative images and
long sentences using deep binary codes. As shown in Figure 4.2, the proposed
TVDB model is composed of two deep neural networks and a batch-wise code
learning phase. The two deep neural networks play the role of binary encoding
functions for images and sentences denoted as f () and g (+) respectively, of which
the output is fixed to M bits in length. The batch-wise optimization allows using
binary codes as supervision of f (-) and g () in a mini-batch during training.
Some preliminary notation is introduced here. We consider a multi-media data
collection O = {X, Y} containing both image data X = {x;}}¥, and sentence data
Y = {y;}}¥,, with N denoting the total number of data points of each modality
in the dataset. The two deep binary encoding functions f (X;6) and ¢ (Y;®) of
TVDB are parameterized by © and ®. The sign function is applied to f (-) and
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Table 4.1: Configurations of the binary coding networks.

Net Layer Kernel Size Stride Pad Output Dim
Image LSTM 1 - - - (K+1)x1024
: LSTM 2 - - - (K+1)x1024
Coding Fc il 1024 - - 1024
Net f() ge g 1024 ] ; M
Word_Emb - - - 12 x 1 x 128
Convi1l 3x1x128 1 0 10 x 1 x 128
_ Pooll 1 10x1x1 1 - 1x 128
. Convl_2 4x1x128 1 0 9x1x128
ﬁeidmf) Pooll2 9x1xl1 1 - 1x 128
g Convi3 5x1x128 1 0 8 x1x128
Pool1. 3 8x1x1 1 - 1 x128
Fc t1 384 - - 1024
Fc t2 1024 - - M

Note that in the text encoding network, as convolution is only performed along the word
sequence, the second dimension of kernel size of the convolutional layers are always 1.

g (+) to produce binary representations:

B = sign (f (X;0)) € {~1,1}""",

(4.1)
H =sign(g(Y;®)) € {—1, 1},

where M refers to the target binary encoding length. In the following subsections,

we introduce the setups of the deep binary encoding networks.

4.3.1 Image Binary Encoding Network

The architecture of the image encoding network f (-) is given in this subsection. As
discussed previously, encoding the holistic image discards the informative patterns
and produces poor coding quality, which is not desirable for our task. We consider
a deep neural network architecture that embeds several salient regions of an image
into a single binary vector to enrich the encoded semantic information. It is
worthwhile to note that we are not directly linking every image region with a
certain concept of a sentence as it is not feasible for cross-modal hashing problems
and is contrary to the original intention of binary encoding in this work. Instead,

regional semantic cues of images are leveraged here to improve the encoding quality.
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4.3.1.1 Salient Semantic Region Selection

As shown in Figure 4.2, for each image in the mini-batch, TVDB firstly detects
a number of regional proposals that possibly carry informative parts, e.g. recog-
nizable or dominative objects in the image. Recent works in region-based CNN
[42, ] show great potential in detecting semantically meaningful areas of an
image. We adopt the framework of the state-of-the-art RPN [145] as the proposal
detection basis of TVDB. A total number of K semantic regions are sampled for
further processing according to a simple heuristic attraction score a, in descending
order, that is:

ar = (¢, + di)/2, (4.2)

where ¢; € (0,1) denotes the confidence score determined by the RPN and dj, €
(0, 1) refers to the normalized proportion of the k-th detected proposal in an image.
We consider those regional proposals with high attraction score a; semantically
dominating to the whole image as they are usually the most recognizable image
parts. This heuristic region selection solution highly fits the task of cross-modal
binary encoding since it does not require any additional supervision or fine-grained

region-sentence relations and provides good coding convergence.

4.3.1.2 Regional Representation and Augmentation

The selected image regions are fed into CNNs to extract vectorized representa-
tions. The benchmark CNN architecture AlexNet [35] is involved here, from which
a feature representation of 4096-D is obtained. To make the most of structural
information, the feature vector of each region is augmented with four additional
digits indicating the normalized height, width, and center coordinates of the corre-
sponding region bounding box, making the whole regional representation a 5000-D

vector for each.

4.3.1.3 Recurrent Network for Encoding

For our task, it is desirable to use a method which capitalizes on information from
the selected ordered regions so that dominating image parts contribute more to
the final representation. It has been proven that human eyes sequentially browse

image parts from dominant to minor [143]. Simulating this procedure, we sort the
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K selected regional proposals according to their attraction scores in descending
order and then the corresponding 5000-D representation for each proposal is se-
quentially fed into an RNN so that the dominant image parts can be well utilized.
Additionally, the CNN feature of the holistic image is also appended to the end
of the RNN input sequence, making a total of K 4+ 1 semantic regions for encod-
ing. In particular, a two-level LSTM [56] is implemented as the RNN unit with
1024-D output length, following the popular structure described in [203]. Shown
in Figure 4.2, the outputs of the LSTMs are averaged along the time sequence and
appended with a ReLU [I31] activation. Two fully-connected layers are applied
to the top of the averaged LSTM outputs, with output dimension 1024 and M
respectively. Thus the whole image can be encoded into an M-bit binary vector
using the sign (-) function. We choose the ReLU [131] and identity function as the
activations to the fully-connected layer for the convenience of code regression. The

convolutional layers for images are built following AlexNet [35].

4.3.2 Sentence Binary Encoding Network

Although recurrent networks are widely adopted in textual-visual tasks [124, 31,
, |, it is still argued that RNNs such as LSTMs are not usually a superior
choice for specific language tasks due to their non-structural designs [57, 23]. We
aim at encoding the structural and contextual cues between the words in a sentence
to ensure the produced binary codes have adequate information capacity. To this
end, the text-CNN [71] is chosen as the text-side encoding network ¢ (-), where
each word in a descriptive sentence is firstly embedded into a word vector with a
certain dimension and then convolution is performed along the word sequence.
We pre-process text data following the conventional manner where all sentences
are appended with an eos token and padded or truncated to a certain length with
all full stops removed. The sentence length after preprocessing is fixed to 12, which
is about the mean length of text data in the datasets used in our experiments. Each
word is embedded to a 128-D vector using a linear projection before being fed into
the CNN. The text-CNN architecture in TVDB is similar to the one of Kim [74],
with more fully-connected layers for coding. The full configuration of our text-
CNN is given at the bottom of Figure 4.2. The Word Emb layer in Figure 4.2
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refers to the word embedding!, the parameters of which are also involved in the
back-propagation procedure. For the text convolution setups, the first and second
digits of the kernel size denote the height and width of the convolutional kernels,
with the third digit being the kernel number. Note that, as text convolution is
only performed along the word sequence, the second dimension of kernel size of
the convolutional layers are always 1. In this work, the number of kernels for all
convolutional layers is set to 128, which follows the design in [71]. We also build
two fully-connected layers here, where the first one Fc_t1 takes inputs from all
pooling layers followed by an ReLU activation, and for the second one, Fc_t2, the

identity activation is applied.

4.4 Stochastic Batch-Wise Code Learning

The entire training procedure for f () and g (-) follows the mini-batch SGD since
deep neural networks are utilized. We suggest the binary learning solution should

provide reliable target codes as network supervision every time a mini-batch feeds.

4.4.1 Batch-wise alternating optimization

Let O, = {Xy,Y,} denote a mini-match stochastically taken from the data col-
lection O, where X, = {x;,} and Y, = {y;}*, are image and sentence data in
the mini-batch respectively. As the training process of TVDB is typically batch-
based, we introduce an in-batch pair-wise similarity matrix S, € {0, 1} for
target binary code learning, with N, denoting the number of data points within a

mini-batch for training. The entry s,, of Sy is defined as follows:

(4.3)

{1 Xp, ¥4 share at least one semantic label,
Spg =

0 otherwise.

The aim is to learn a set of target binary codes By, for images and H, for sentences

that best describe the in-batch samples. Fully utilizing the pairwise relations S,

"Word embedding is the technique that represents each word using a real-valued vector. It
contains the semantic information of the encoded word. A typical example of word embedding
is the skip-gram word vector [129].
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as supervision, a trace-based prototypic learning objective for hashing is thus built
as
L (Bb, Hb, Sb) = —trace (BbSbHI;r) . (44)

Remark. The trace-like objectives are also adopted in several recent works
such as Deep CCA [192]. We denote the main differences of TVDB from Deep
CCA as follows: 1) Deep CCA outputs real-valued representations for mapping
while TVDB produces codes with binary constraints, which leads to different and
more challenging ways to optimize the trace-like learning objectives; 2) TVDB is a
supervised hashing method, basing the similarity matrix S, on label information,
while Deep CCA computes the correlations according to the data representations.

A common learning procedure for cross-modal hashing can be formulated by

solving the following problem:

g, i L(By.Hp, Sy). (45)

s.t. By, =sign(f (X;0)),H, =sign(g (Y P)).

Relaxing the binary constraints to be continuous, i.e. B, = f(X,;0),H, =
g (Xp; @), results in a slow and difficult optimization process. Inspired by Shen et
al.[155], we reformulate the problem of (4.5) by keeping the binary constraints and
regarding B, and H, as auxiliary variables,

pmin £ (B, Hy,8y) +([By — f (X 0)]}

+|Hy, — g (Yu;9)|17), (4.6)
s.t. By € {—1, 11N H, e {—1,1}M*N

where 7 is a penalty hyper parameter and ||-||g refers to the Frobenius norm.
The two Frobenius norms here depict the quantization error between the binary
codes B;, H, and the binary coding function outputs f (-), ¢ (-). It has been
proven in [155] that with a sufficiently large value of 7, Equation (4.6) becomes a
close approximation to Equation (4.5), in which slight disparities between B, and
[ (Xy; ©) or Hy, and g (Yy; @) are tolerant to our binary learning problem.
Therefore, the comprehensive learning objective of TVDB is formulated. We
provide optimization schemes below. It is observed that Equation (4.6) is a non-

convex NP-hard problem due to the binary constraints. To better access it, an
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Algorithm 2: The Training Process of TVDB

Input: Image-sentence dataset O = {X, Y}, Max
training iteration 7'
Output: Hash function parameters © and ¢

Randomly initialize B, H € {—1, 1}M*¥
repeat
Get a stochastic mini-batch O, from O
Get By, H, from B, H with respective indices
Build S, according to data relations and labels
Update B, < Equation (4.8)
Update H;, < Equation (4.9)
(lossy, loss,) <= Equation (4.10)
Update
(0,0)"" + (0,0) —T' (Vg losss, Vg loss,)
until convergence or max training iter T' is reached;

alternating solution based on coordinate descent is adopted to sequentially opti-
mize By, Hy, © and @ in every single batch as follows.
Updating B,. By fixing H,, © and @, the subproblem of (4.6) w.r.t. B, can

be written as

r%ibn By — f (Xp; O)||7 — trace (ByS,H, ) ,

(4.7)
s.t. By € {—1, 1},
to which the closed-form optimal solution becomes
B, = sign (2nf (X;;0) + H,S; ) . (4.8)

Updating H,. Similar to By, the solution to the subproblem of (4.6) w.r.t.
Hb is
H, = sign (2ng (Y,; @) + B,Sy) . (4.9)
Updating © and ¢. The subproblem of (4.6) w.r.t. © and w.r.t. ¢ can be
respectively written as
min loss; = |B, — / (X, O)[12

4.10
mgn loss, == n||H, — g (Yi; D) |17, 10
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when all other variables are fixed. These two subproblems are typically in the
form of the [2 norm which are differentiable problems and thus @ or @ can be
optimized in the framework of SGD using back-propagation. Here the updated
auxiliary binary codes B, and H, act as the supervisions to the binary encoding
networks f (+) and ¢ (+).

4.4.2 Stochastic-batched training procedure.

In the above subsection, we have presented the binary code learning algorithm
for each mini-batch of TVDB. However, how to apply the batch-wise learning
objective to the whole dataset has not yet been discussed. In this subsection, the
overall training procedure for mini-batch SGD is introduced. Note that simply
keeping data in every mini-batch unaltered in each training epoch usually results
in poorly-learned hash functions. This is because the cross-modal in-batch data
are not able to interact with the data outside of the batch and thus the batch-
wise similarity S, skews the statistics of the whole dataset. To be more precise,
we consider a data batching scheme to build every O, and S, that well explores
the cross-modal semantic relationships across the entire dataset. To this end, a
stochastic batching routine is designed. Each data mini-batch is randomly formed
before being input into the training procedure. Therefore, S, varies across each
batch, which ensures the in-batch data diversity.

Combining the stochastic batching method with the alternating parameter up-
dating schemes, the whole training procedure of TVDB is illustrated in Algorithm
2. The operator T (-) in Algorithm 2 indicates the adaptive gradient scaler used
for SGD, which is the Adam optimizer [75] in this work. Unlike some existing
deep hashing methods [06] which update the target binary codes when a whole
epoch is finished, TVDB updates B, and H; instantly when a mini-batch arrives.
This training routine proves to achieve fast convergence for effectively learning the
encoding networks f (+) and g () as shown in Figure 4.6. The code learning pro-
cedure of TVDB differs from those of recent deep hashing methods. For instance,
DCMH [66] and CDQ [9] update codes only after each epoch of training.
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4.4.3 Out-of-Sample Extension

Once the TVDB model is trained, given an image query x, for example, we com-

pute its binary code by rendering it to the respective encoding network
b, = sign (f (x,:6)). (4.11)

For the retrieval database, the unified binary codes from each sentence is obtained
via
H=sign(g(Y;®)). (4.12)

A sentence query can be processed in the similar manner.

4.5 Experiments

4.5.1 Implementation Detalils

Experiments of TVDB on cross-modal retrieval are performed on three semanti-
cally fruitful sentence-vision datasets: Microsoft COCO [102], IAPR TC-12 [15]
and INRIA Web Queries [33]. For implementation details, we utilize the RPN
[145] for image proposal detection to pick K = 20 informative regions for fur-
ther LSTM-based encoding, and the value of 7 in problem (4.6) is set to 107 via
cross-validation. For the image-side CNNs, AlexNet [35] without its £c_8 layer is
adopted with the pre-trained parameters from ImageNet classification [117]. The
TVDB framework is implemented using Tensorflow [1].

The evaluation results are reported according to the following themes:

e Performance Comparison with Existing Methods. We compare the
proposed TVDB algorithm with some state-of-the-art image-text hashing

methods to demonstrate the overall high-quality retrieval performance of it.

e Deep encoding network ablation study. To prove that the deep en-
coding networks in this chapter are designed reasonably, a set of variants of
TVDB are built as baselines by modifying the deep encoding networks with

some other architectures.
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e Training Efficiency. The training efficiency and convergence of the pro-
posed TVDB model are illustrated. Several baselines are built to show the
feasibility of the designed optimization routine. Some existing deep cross-

modal hashing methods are also involved for training time comparison.

e Intuitive Results and Failure Cases. Qualitative sentence-to-image re-
trieval results are given and discussed compared with several existing cross-

modal benchmarks.

e Hyper-Parameters The settings of hyper-parameters n and K are also

analyzed to produce the reported results.

4.5.2 Experimental settings

The experiments of sentence-vision retrieval are taken on three multimedia datasets.
Following the conventional textual-visual retrieval measures [103, 11], the relevant

instances for a query are defined by sharing at least one label.

4.5.2.1 Microsoft COCO [102]

The COCO dataset contains a training image set of 80,000 samples with about
40,000 validation images. Each image is assigned five sentence descriptions and
labeled with 80 semantic topics. To be consistent with [l 1], we randomly select
5,000 images from the validation set and thus the retrieval gallery becomes around
85,000 images, from which we explicitly take 5,000 pairs as the query set and
50,000 images for training.

4.5.2.2 IAPR TC-12 [15]

It consists of 20,000 images. Each image is provided with 1.7 descriptive sentences
on average. In addition, category annotations are given on all images with 275
concepts. Following the setting in [11], we use 18,000 image-sentence pairs that
belong to the most frequent 22 topics as the retrieval gallery, from which we take

2,200 pairs as the query data and 5,000 as the training set.
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Image Query Sentence on COCO Image Query Sentence on COCO
0.6 T T
- TVDB - TVDB
— SCM \ —— SCM
g —— SePH o 045 | |=—— SePH
= — CVH = — CVH
3 —CMFH | § [ e — CMFH
= DCMH | £ (3 N DCMH
A CcDQ 8 . cDQ
(2
8 8 \
jus 0.15 |-
0 | |
16 32 64 128
Bit
Sentence Query Image on COCO
0.6 T T
- TVDB - TVDB
——  SCM ——  SCM
g —— SePH o 045 | | =—— SePH
= — CVH = — CVH
.2 o —
3} —— CMFH g F — —— CMFH
I DCMH | /& (3l 4 DCMH
=8 CcDQ 8
N
a s
T 0.15 |- b
| | | |
0‘2516 32 64 128 016 32 64 128
Bit Bit

Figure 4.5: HD2 precision and recall of TVDB and some baselines on Microsoft
COCO [102]

4.5.2.3 INRIA Web Queries [83]

This dataset contains about 70,000 images categorized into 353 conceptual labels.
Sentence descriptions are provided to most of the images. We select images belong-
ing to the 100 most frequent concepts, making the gallery 25,015 image-sentence
pairs. For the query set, 10 images and sentences are randomly selected from each

category and the rest are used as training data.

4.5.3 Comparison with Existing Methods

The quantitative retrieval performance of TVDB is analyzed and compared us-
ing mean-Average Precision (mAP) [128], precision at top-200 retrieved candi-
dates (Precision@200), precision and recall of Hamming Distance with radius 2
(HD2). The detailed definitions of these metrics are elaborated in Appendix A.

The Precision-Recall curves (P-R curves) [19, 119] are also given.
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4.5.3.1 Baselines

Several baselines of traditional cross-modal hashing methods are adopted for com-
parison, including CMFH [28], CVH [90], SCM[205], IMH [163], QCH [180], CMSSH [7]
and SePH [103], while Cross-View Feature Learning (CVFL) [188], Canonical Cor-
relation Analysis (CCA) [167] and Partial Least Square Regression (PLSR) [179]
are also involved as real-valued methods. The neural-network-based cross-modal
hashing methods, i.e. Correspondence Auto-Encoder (CorrAE) [37], Cross-Modal
Neural Network (CM-NN) [127], Deep Neural Hashing (DNH) [92], DCMH [66],
CDQ [9] and DVSH [11], are also considered here. These models are selected in
this chapter as they are widely regarded as conventional baselines in cross-modal
hashing and they attain state-of-the-art performance in data retrieval.

Since the codes of some works mentioned above, e.g. DVSH and CorrAE,
are not available and their performances have never been reported on the INRIA
Web Queries dataset, we directly cite their results on COCO and TAPR TC-12
from [11] with the same settings and leave them blank on the INRIA Web Queries.
For DNH [92], we cite the performances of its variants DNH-C provided in [11].
DCMH [66] is implemented by our own for comprehensive comparison before the
authors release the official code.

To make fair comparisons, we utilize deep features for all traditional baseline
methods mentioned above if the codes are available. For image features, we directly
use the 4096-D AlexNet [25] pre-trained representations. For text features, a
multi-label classification text-CNN, which shares most of its structure with our
text encoding network ¢ (-) excluding the last layer, is pre-trained on each dataset.
Then a 384-D feature is extracted for each sentence from the pooling layers. In
implementing DCMH [66] and testing CDQ [9], we build an identical text coding

network to ours, enabling it to handle sentence data.

4.5.3.2 Results and Analysis

The mAP retrieval results on the three datasets are reported in Table 4.2 and Ta-
ble 4.3. In general, the proposed TVDB model outperforms existing methods on
the three datasets with large margins. Most traditional cross-modal hashing tech-

niques are not usually designed specifically for images and sentences, which limits
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their performances on the three datasets. This suggests that image-tag hashing
and retrieval are unrepresentative for vision-language tasks. The recent deep hash-
ing model DVSH [11] hits the closest overall figures to ours as its modal-specific
deep networks are able to explore the intrinsic semantics of images and sentences.
TVDB provides even superior performance since both regional image information
and relations between the words are well encoded, making the output binary codes
more discriminative. Some results are left blank because the corresponding base-
line codes are not available and the performances are never reported. Note that
the overall mAP scores on INRIA Web Queries [33] are relatively lower than those
on the other two. This is probably due to the relatively low image quality.

The Precision@200 scores given in Table 4.4 agree with the mAP performance.
TVDB is leading all figures with large margins, barely followed by CDQ [9] and
DCMH [66]. Precision@200 reflects the accuracy to the query within the top of the
retrieved data sequence, which is essential to the empirical retrieval quality. As a
result, we believe that TVDB retrieves intuitively better candidates to the query.
This is supported by the intuitive analysis discussed in the following subsections.
Figure 4.5 shows the HD2 precision and recall scores on the Microsoft COCO [102]
dataset. It is clear that the HD2 precision and recall scores are not guaranteed
to increase w.r.t. the encoding length M, because the overall hamming distances
between data samples are expected to be larger with longer encoding length. How-
ever, TVDB is also able to outperform the listed baselines. This suggests that the
proposed TVDB is able to produce descriptive binary codes employing semantic
information for image-sentence retrieval. The corresponding precision-recall curves
are given in Figure 4.3 (32 bits) and Figure 4.4 (128 bits).

We consider the proposed TVDB model benefits from both the precisely de-
signed deep encoding networks and the high-efficiency alternating optimization
routine, so it produces competitive image-sentence retrieval performance. The im-
plications of the proposed deep binary encoding networks and the training routine

are analyzed in the next two subsections.
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4.5.4 Ablation Study of Deep Encoding Network

We demonstrate the impact of the deep encoding networks for TVDB in this

subsection.

4.5.4.1 Baselines

Four variants of TVDB are built as baselines by modifying the deep encoding

networks with some other architectures:

e TVDB-I1 is built by replacing the region-based image encoding network of
TVDB by a holistic AlexNet CNN [35].

e TVDB-I2 mixes the image region features using average pooling instead of
rendering them to the LSTM units.

e TVDB-T1 takes text bag-of-words as sentence features with the original
text-CNN removed.

e TVDB-T2 is a variant of TVDB where the text-CNN is replaced by a
two-layer LSTM structure, where images are encoded by a simple AlexNet
CNN [85] and the text encoding network is LSTM-based.

4.5.4.2 Results and Analysis

Self-comparison mAP results on cross-modal retrieval are shown in Table 4.5. As
we expected, the mAP scores drop dramatically with simple image CNN (TVDB-
I1, TVDB-12) and bag-of-words features (TVDB-T1), but are still acceptable com-
pared to some existing methods. Image binary encoding without regional informa-
tion is still far from satisfactory. TVDB-T2 with text-LSTM obtains reasonable
performance and is in general superior to the state-of-the-art DVSH [l 1], since
LSTM is also capable of modeling sentences. However, TVDB-T2 performs poorer
than the original TVDB, suggesting that the proposed text-CNN architecture is
a suitable choice for the cross-modal hashing task. To this end, it can be seen
that our proposed binary encoding network is successfully designed and all com-

ponents are reasonably implemented. It is worth noticing that TVDB-I1 uses the
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Figure 4.6: The 128-bit retrieval mAP of Image Query Sentence (bottom left) and
Sentence Query Image (bottom right) w.r.t. training epochs on Microsoft COCO
dataset are shown here. The corresponding losses are also given on the top.

same image and text representations as CDQ [9] and DCMH [60] during our ex-
periments, and it performs slightly better than CDQ and DCMH. This may due
to the well-designed training routine and learning objective evaluated in the next

subsection.

4.5.5 Training Efficiency and Encoding Time

The training efficiency of the proposed learning objective and the stochastic batch-
wise training routine are illustrated in this subsection. We firstly compare our
optimization routine with several variant baselines of TVDB, while the networks

are not modified for a fair comparison.
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4.5.5.1 Baselines

e TVDB-S varies TVDB by keeping in-batch images and sentences unaltered
with each epoch.

e TVDB-N is a variant of TVDB where B and H are initialized by
maxpg y trace (BSHT) and are not updated during SDG training. Here, S

refers to the similarity matrix on the whole training set as in Equation (4.3).

e TVDB-EL1 is similar to the optimization of DCMH [(6], performing epoch-
wise binary code learning instead of batch-wise, i.e. updating both B, H in
a similar manner to Equation (4.8) and (4.9) on the whole training set after

each epoch.

e TVDB-E2 is similar to TVDB-E1, but code learning and updating is per-

formed after every five epochs of training instead of each one.

4.5.5.2 Results and Analysis

Experiments of training efficiency are conducted on the Microsoft COCO [102]
dataset with code length M = 128. We show results with M = 128 because the
efficiency difference between TVDB and the above-mentioned baselines are most
significant with this code length, and thus this makes the comparison illustrative.
Less training iterations with superior performance are always in demand for cross-
modal hashing and retrieval. The mAP scores and corresponding learning losses?
w.r.t. training epochs are shown in Figure 4.6. It is obvious that TVDB converges
quickly to an acceptable mAP score and then gradually hits the best performance
at about the 20" epoch. TVDB is generally superior to the compared baselines
both in terms of peak performance and training efficiency. It can be seen that
TVDB-N obtains a similar rate of convergence to TVDB for the first five training
epochs but ends up with significantly lower retrieval performance since the network
parameters © and @ are disjointly optimized with B and H. TVDB-S follows a
close path to TVDB-N with a slightly higher performance. It is clear that our code

learning strategy with unaltered in-batch data is not appealing in exploring the

2The loss value here is the sum of Equation 4.10 for each training batch.
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Table 4.6: Training Time Comparison with DCMH [60] (in Minutes). The first
value of mAP here refers to the one of Image Query Sentence while the second
refers to Sentence Query Image.

Dataset Bit

TVDB DCMH
mAP Time mAP Time
16 0.702/0.713 434 0.562/0.595 615
32 0.781/0.779 479 0.597/0.601 684

COco 64 0.797/0.787 503  0.609/0.633 790
128 0.818/0.810 527 0.646/0.658 954
16 0.629/0.674 212 0.443/0.486 299
IAPR 32 0.697/0.678 240 0.491/0.487 342

64 0.731/0.704 268 0.559/0.499 434
128 0.772/0.721 285 0.556/0.541 513

Table 4.7: Query Encoding Time Comparison (in Milliseconds)
Modality Method 16 bits 32 bits 64 bits 128 bits

Image TVDB 52.2 53.7 54.2 54.9
DCMH 16.5 17.3 17.9 18.7

Sentence TVDB 6.4 6.5 6.9 7.4
DCMH 6.4 6.5 6.9 7.4

generalized optima of B and H on the whole dataset. TVDB-E1 and TVDB-E2
carry out acceptable retrieval performances but are still outperformed by TVDB.
Although TVDB-E1 and TVDB-E2 also perform alternating optimization, the
overall training efficiencies are far from satisfactory. This demonstrates that each
aspect of TVDB is necessary to obtain optimal performance. On the other hand,
computing maxg y trace (BSHT) on the whole training set is extremely time con-
suming, taking 130 minutes for updating B and H each round with an Intel XEON
CPU server. However, since Equations (4.8,4.9) are only dealing with in-batch
data and can be assigned to GPUs for computation, it requires only about 300
milliseconds for each batch of TVDB to work out B, and H, which significantly
saves the training time. In particular, for a 20-epoch training, TVDB-E2 requires
approximately 2600 minutes additional time than TVDB to optimize the model.

For a comprehensive study on training and coding efficiency, we also consider
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comparing TVDB with the most recent deep cross-modal hashing method. Note
that it is infeasible and unreasonable to compare the time efficiency of TVDB
with the traditional cross-modal hashing methods as these methods usually in-
volve simpler binary encoding functions and less training variables with inferior
performance to TVDB. To make a fair comparison, the most recent cross-modal
hashing method, i.e. DCMH [66], is selected here as the benchmark.

The training time (in minutes) of TVDB and DCMH on Microsoft COCO
and TAPR TC-12 is given in Table 4.6. It is clear that TVDB is more efficient
than DCMH for training. TVDB consumes at average 70% of the training time of
DCMH. We are aware that DCMH consists of more simpler deep network architec-
ture than TVDB, and it requires less time to forward and backward a single batch
during training. However, DCMH performs code updating after each epoch, during
which each data point for training has to be forwarded into the encoding network
again. This procedure considerably slows down the training speed of DCMH for
each epoch, while TVDB performs batch-wise code updating. Furthermore, it
takes more training epochs for DCMH than TVDB to obtain an acceptable result.

The encoding time (in milliseconds) for each query image and sentence is given
in Table 4.7. Since the image encoding network for TVDB is composed by more
sophisticated deep architecture than DCMH, the query image encoding time for
TVDB is relatively longer. As we use exactly the same text encoding network as
that of TVDB to implement DCMH, the sentence query encoding time does not
differ. Tt is worthwhile noticing that, for the version of Tensorflow [1] used for
implementation, the word embedding procedure of the text-CNN we use can only
be conducted on CPUs currently. It is possible to further improve the sentence

encoding efficiency if the word embedding procedure can be assigned to GPUs.

4.5.6 Intuitive Results

More intuitive cross-modal retrieval results are provided in this section. We con-
sider the task of Sentence Query Image to be more important and illustrative
than Image Query Sentence and thus, some Sentence Query Image comparisons
are given on the Microsoft COCO dataset with code length M = 128. We show
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results with M = 128 to make the comparison illustrative, because TVDB outper-

forms the compared baselines with largest margin using this code length.

4.5.6.1 Positive Examples

Several selected query examples are listed and compared with some existing meth-
ods in Appendix C. We notice that these intuitive examples are the most illustra-
tive and best-performing ones for TVDB. Again, TVDB provides closer retrieval
candidates to the queries than the baselines. Most of the topics mentioned in the
query sentences are correctly encoded and then retrieved by TVDB. On the other
hand, the compared methods are generally able to select retrieval candidates shar-
ing one or two semantic topics with the query but are empirically not providing
satisfying matches. Taking the first query in Appendix C, i.e. Figure C.1, for in-
stance, TVDB provides well-matched results with detailed information preserved
(e.g. people, bike, street), while the compared methods are only able to give results

around the topic of people.

4.5.6.2 Failure Cases

We provide two failure cases of TVDB in Appendix D, where almost all top-ten
retrieved candidates are not relative. The first query in Appendix D consists
of a long sentence of which the dominant object zebra appears at the end. The
proposed text-CNN of TVDB is not able to handle this case. This can be improved
by extending the input length of the text-CNN. In our experiments, we follow the
design in [74] to set the input length of our text-CNN to be the average length of
the training sentences, i.e. 12 words. Sentences longer than this length are trimmed
using the first 12 words. As a result the information of an unusual long sentences
is not fully encoded in our model. Extending the length of input sequence of
the text-CNN allows the model to handle unusual long sentences. However, this
requires more long descriptions as training data.

The second query of Appendix D illustrates a relatively rare situation. It is not
very usual case that carrots stand up and hold something in the training set. The
combination of these words results in a confusing semantic that our text-CNN can

hardly process. To solve this problem, more training sentences with these unusual
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Figure 4.7: Hyper Parameter Analysis on Microsoft COCO [102] with coding

length M = 128 for different K and 7

descriptions are needed, and thus the network can recognize the actual semantic

meanings of these text data.

4.5.7 Hyper-Parameters

Two hyper-parameters, i.e. K and 7, are involved in the TVDB model, referring
to the number of selected image regions and the quantization penalty respectively.
We evaluate the retrieval performance w.r.t. K by fixing n and wvice versa.

As is shown in Figure 4.7, the value of K plays an evident role in the overall
performances of TVDB (the left-side figure). Reducing the value of K from 20
to 0 dramatically degrades the mAP score since the detailed image semantics are
discarded, which agrees with the results of TVDB-I. On the other hand, we do not
experience significant performance improvement when increasing K from 20 to 25.
This is because it exceeds the encoding capability of our LSTM design.

The right-side graph of Figure 4.7 illustrates the retrieval performance of TVDB
w.r.t. 1. The overall performance difference w.r.t. n is within 5%. An extreme
small value of 7, i.e. 1079, does not produce best-performing retrieval scores as it
scales down the loss function value of Equation 4.10, making it hard to train the
network. Similarly, when setting 1) to be 1, the performance drops as well, because
this results in large loss value of Equation 4.10, which is also not desired for neural

network training.
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4.6 Summary

In this chapter, we propose a deep binary encoding method termed as Textual-
Visual Deep Binaries (TVDB) which is able to encode information-rich images
and descriptive sentences. Two modal-specific binary encoding networks are built
using LSTM and text-CNN, leveraging image regional information and semantics
between the words to obtain high-quality binary representations. In addition, we
propose a stochastic batch-wise code learning routine that performs effective and
efficient training. Our experiments justify that both the proposed deep encoding
networks and the training routine contribute greatly to the final outstanding cross-

modal retrieval performance.
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Chapter 5

Deep Hashing for Zero-Shot
Image-Sketch Retrieval

5.1 Introduction and Motivation

Matching real images with hand-free sketches has recently aroused extensive re-
search interest in computer vision, multimedia and machine learning, forming the
term of Sketch-Based Image Retrieval (SBIR). Differing to the conventional text-
image cross-modal retrieval, SBIR delivers a more applicable scenario where the
targeted candidate images are conceptually unintelligible but visualizable to the
user.. Several works have been proposed handling the SBIR task by learning real-
valued representations [33, 34, 60, 61, , , , , , , , , ;

, , . Cross-modal hashing techniques [7, 28, , , 90, 66, 9, 11]
show great potential in retrieving heterogeneous data with high efficiency due to
the computationally costless Hamming space matching, which is recently adopted
to large-scale SBIR in [109] with impressive performance. Entering the era of big
data, it is always feasible and appreciated to seek binary representation learning
methods for fast SBIR.

However, the aforementioned works suffer from obvious drawbacks. Given a
fixed set of categories of training and test data, these methods successfully manage
to achieve sound SBIR performance, which is believed to be a relatively easy task
as the visual knowledge from all concepts has been explored during parameter
learning, while in a real-life scenario, there is no guarantee that the training data

categories cover all concepts of potential retrieval queries and candidates in the
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Figure 5.1: In conventional SBIR and cross-modal hashing (bottom right), the
categories of training data include the ones of test data, marked as ‘A" and ‘B’.
For our zero-shot task (bottom left), training data are still subjected to class ‘A’
and ‘B’, but test sketches and images are coming from other categories, i.e. ‘plane’
and ‘cat’ in this case. Note that data labels are not used as test inputs and the
test data categories shall be unknown to the learning system.

database. An extreme case occurs when test data are subjected to an absolutely
different set of classes, excluding the trained categories. Unfortunately, experi-
ments show that existing cross-modal hashing and SBIR works generally fail on
this occasion as the trained retrieval model has no conceptual knowledge about
what to find.

Considering both the train-test category exclusion and retrieval effi-
ciency, a novel but realistic task yields zero-shot SBIR hashing. Figure 5.1 briefly
illustrates the difference between our task and conventional SBIR task. In conven-
tional SBIR and cross-modal hashing, the categories of training data include the
ones of test data, marked as ‘A’ and ‘B’ in Figure 5.1. On the other hand, for
the zero-shot task, though training data are still subjected to class ‘A’ and ‘B’
test sketches and images are coming from other categories, i.e. ‘plane’ and ‘cat’
in this case. In the rest of this chapter, we denote the training and test categories
as seen and unseen classes, since they are respectively known and unknown to the

retrieval model.
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Our zero-shot SBIR hashing setting is a special case of zero-shot learning in

inferring knowledge out of the training samples. However, existing works basically

focus on single-modal zero-shot recognition [158, , , 81], and are not suitable
for efficient image retrieval. In [195], an inspiring zero-shot hashing scheme is
proposed for large-scale data retrieval. Although [195] suggests a reasonable zero-

shot train-test split close to Figure 5.1 for retrieval experiments, it is still not
capable for cross-modal hashing and SBIR.

Regarding the drawbacks and the challenging task discussed above, a novel
Zero-shot Sketch-Image Hashing (ZSIH) model is proposed in this chapter, simul-
taneously delivering (1) cross-modal hashing, (2) SBIR and (3) zero-shot learning.
Leveraging state-of-the-art deep learning and generative hashing techniques, we

formulate our deep network according to the following problems and themes:

1. Not all regions in an image or sketch are informative for cross-modal map-

ping.

2. The heterogeneity between image and sketch data needs to be mitigated

during training to produce unified binary codes for matching.

3. Since visual knowledge alone is inadequate for zero-shot SBIR hashing, a
back-propagatable deep hashing solution transferring semantic knowledge to

the unseen classes is desirable.
The contributions of this work are summarized as follows:

e To the best of our knowledge, ZSIH is the first zero-shot hashing work for
large-scale SBIR.

e We propose an end-to-end three-network structure for deep generative hash-
ing, handling the train-test category exclusion and search efficiency with

attention model, Kronecker fusion and graph convolution.

e The ZSIH model successfully produces reasonable retrieval performance un-

der the zero-shot setting, while existing methods generally fail.
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5.2 Related Work

ZSTH is proposed for a new task, i.e. zero-shot hashing for SBIR, which, to the
best of our knowledge, has not been studied by existing works. Since ZSIH simul-
taneously handle (1) cross-modal hashing, (2) SBIR and (3) zero-shot learning,
the related articles from these three aspects are discussed in this section. We also
provide the reasons why these related works are not suitable for our task.

As is discussed in Chapter 4, general cross-modal binary representation learning
methods [7, 28, 205, 90, 163, 127, 103, 66, 11, 180, 35, 211, 194, 9, 12, 125] target to
map large-scale heterogeneous data with low computational cost. Although these
works have shown potential in image-text retrieval, they are not suitable for our

task for the following reasons:

e First of all, conventional cross-modal hashing methods do not employ com-
pact encoding functions, and therefore fail to fully utilize the hidden infor-

mation of images.

e Secondly, these models are not originally designed for SBIR. The structural
similarities [109] between real images and hand-crafted sketches are not ex-

plored, resulting in unsatisfactory SBIR performance.

e Finally, existing cross-modal hashing methods do not consider the problem
of train-test exclusion, and are not able to be applied to data of unseen cat-

egories.

SBIR, including fine-grained SBIR, aims at learning shared representations to
specifically mitigate the expressional gap between hand-crafted sketches and real
images [33, 34, 60, 61, , , , , , , , , , , , ].
Sketch-a-Net (SaN) [200] is the first SBIR model that outperforms human on rec-
ognizing hand-crafted sketches. The utilization of the two-network pipeline in SaN
largely improves the quality of learnt features. This network architecture is then
extended in [140] with the siamese loss. The siamese loss [110] successfully mit-
igates the sketch-image heterogeneity. A similar network design is also employed
in [199] focusing on retrieving shoe images using sketches. In [199], the triplet loss

is involved to train the network in order to identify the similar shoe pictures from
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the dissimilar ones. However, conventional SBIR models are unable to handle our

zero-shot cross-modal retrieval task for two reasons:

e Existing SBIR models aim at learning real-valued representations, which is

inefficient for large-scale data retrieval.

e These works fail to handle the zero-shot tasks. The visual knowledge of

unseen categories is not considered during training.

Zero-shot learning [38, 81, , , , , 19, 2, , 3, 93, 27, 20, 65,

, 29, 99, , 71, | is also related to our work, though it does not orig-
inally focus on cross-modal retrieval. Traditionally, zero-shot learning focuses
on recognizing and classifying data of unseen categories. To do this, auxiliary
knowledge in addition to the visual information is introduced during training so
that the category-wise semantic relations can be leveraged. Conventional seman-
tic information for zero-shot learning includes category-level attributes [93] and
word representation vectors [33, 129]. Existing works in this area mainly aim at
learning a intermediate feature space between images and category-wise semantic
representations for classification. In particular, two embedding functions, typically
linear projection functions, project the images and the corresponding class-level
semantic information, e.g. attributes or word vectors [129] of labels, to a common
space, and then zero-shot classification is performed according to the distances
between the image features and the category semantic features in this common
space [38, 81, , |. Nevertheless, traditional zero-shot learning algorithms

are not solving our task because of the following facts:

e The above-mentioned zero-shot learning methods only work on single-modal

data, and the cross-modal data heterogeneity is not considered.

e These models are designed for classification tasks, and therefore are unable

to directly produce compact binary codes for efficient similarity retrieval.

Among the existing research, Zero-Shot Hashing (ZSH) [195] and Deep Sketch
Hashing (DSH) [109] are the two closest works to this chapter. DSH [109] consid-
ers fast SBIR with deep hashing technique. A three-encoder structure is defined,

86



5.3. THE PROPOSED ZSIH MODEL Page 87

taking real images, hand-crafted sketches and image edge maps [100] as inputs.
By introducing the edge maps [100], the geometric difference between sketches and
real images is mitigated. The learning objective of DSH [109] is built to minimize
the code differences of data within each training category, but the inter-category
code distances are not considered. Similar to the traditional cross-modal hashing
models, DSH [109] does not transfer the supervised label knowledge to unseen cat-
egories. As a result, it fails to handle the zero-shot setting. On the other hand,
ZSH [195] is the first work that extends the traditional zero-shot learning model to
a single-modal hashing scheme. The semantic information, e.g. attributes or word
vectors [129] of labels, implicitly defines the category-wise code distances, which
is utilized to formulate the learning objective of ZSH [195]. Therefore, the learnt
code space is structured and capable to be generalized from the seen categories
to the unseen ones. This design is followed by the Similarity-transfer Network
(SitNet) [16]. Instead of the linear projection function for hashing in ZSH [195],
SitNet [16] involves a CNN as the encoder. ZSH [195] and SitNet [10] are un-
able to simultaneously encode cross-modal data, and therefore are not suitable for
the task of this chapter. In addition, a similar remove-one-class metric is evalu-
ated in [120, 16], but these works are proposed for classification tasks instead of

cross-modal hashing and SBIR.

5.3 The Proposed ZSIH Model

This work focuses on solving the problem of hand-free SBIR using deep binary
codes under the zero-shot setting, where the image and sketch data belonging
to the seen categories are only used for training. The proposed deep networks
are expected to be capable for encoding and matching the unseen sketches with
images, categories of which have never appeared during training. As this is a new
task, in this section, we firstly introduce some preliminary notation with the task
definition, and then the proposed model is discussed in detail.

We consider a multi-modal data collection O° = {X° Y°} from seen categories
C¢ covering both real images X¢ = {x¢}¥, and sketch images Y¢ = {y$}¥, for
training, where NN indicates the set size. For the simplicity of presentation, it is

assumed that image and sketch data with the same index i, i.e. x§ and y¢ share the
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same category label. Additionally, similar to many conventional zero-shot learning
algorithms, our model requires a set of semantic representations S¢ = {s¢}¥ | in
transferring supervised knowledge to the unseen data. The aim is to learn two
deep hashing functions f (-) and g (-) for images and sketches respectively. Given
a set of image-sketch data O" = {X* Y*"} belonging to the unseen categories C*
for test, the proposed deep hashing functions encode these unseen data into binary
codes, i.e. f: R — {0,1}M g:R? — {0,1}M, where d refers to the original data
dimensionality and M is the targeted hash code length. The image and sketch data
from the same category are supposed to be encoded closely in hamming space for
cross-modal search. Concretely, as the proposed model handles SBIR under the
zero-shot setting, there should be no intersection between the seen categories for
training and the unseen classes for test, i.e. C°(|C* = &. Note that since zero-
shot learning conventionally targets at revealing category-level information of data
points, it is feasible to define the relevant cross-modal data by sharing the coherent

class label in our task.

5.3.1 Network Overview

The proposed ZSTH model is an end-to-end deep neural network for zero-shot sketch-
image hashing. The architecture of ZSIH is illustrated in Figure 5.2, which is com-
posed of three concatenated deep neural networks, i.e. the image/sketch encoders

and the multi-modal network, to tackle the problems discussed above.

5.3.1.1 Image/Sketch Encoding Networks

As is shown in Figure 5.2, the networks with light blue and grey background refer
to the binary encoders f(:) and g (-) for images and sketches respectively. An
image or sketch is firstly rendered to a set of corresponding convolutional layers
to produce a feature map, and then the attention model mixes informative parts
into a single feature vector for further operation. The AlexNet [35] before the
last pooling layer is built to obtain the feature map. We introduce the attention
mechanism in solving issue 1 of Section 5.1, of which the structure is close to [162]

with weighted pooling to produce a 256-D feature. Considering a convolutional
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feature map hem™ ¢ RI3x13x256 ghtained from either the sketch or image CNNs,

the attention score s; ; of a certain entry (4, j) is computed as follows:

si,; = h{7 W, (5.1)

Note that the size of the convolutional feature map, i.e. hem™ ¢ RI3x13x256 g
determined by the structure of the employed AlexNet CNNs [35]. We omit the
bias here for the simplicity of representation. Therefore, the attention mask « is
defined by

o;; = softmax (s; ;). (5.2)

Finally, the attended 256-D sketch/image representation h®* is obtained by

h*' =" a; /hi7" € R, (5.3)
6J

Binary encoding is performed by a fully-connected layer taking input from the
attention model with a sigmoid non-linearity. During training, f (-) and ¢ (-) are
regularized by the output of the multi-modal network, so these two encoders are
supposed to be able to learn modal-free representations for zero-shot sketch-image

matching.

5.3.1.2 Multi-Modal Network as Code Learner

The multi-modal network only functions during training. It learns the joint rep-
resentations for sketch-image hashing, handling the problem 2 of modal hetero-
geneity. One possible solution for this is to introduce a fused representation layer
taking inputs from both image and sketch modality for further encoding. Inspired
by Hu et al. [58], we find the Kronecker product fusion layer suitable for our model,
which is discussed in Section 5.3.2. Shown in Figure 5.2, the Kronecker layer takes
inputs from the image and sketch attention model, and produces a single feature
vector for each pair of data points. We index the training images and sketches in a
coherent category order. Therefore the proposed network is able to learn compact
codes for both images and sketches with clear categorical information.

However, simply mitigating the model heterogeneity does not fully solves the

challenges in ZSIH. As is mentioned in problem 3 of Section 5.1, for zero-shot tasks,
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it is essential to leverage the semantic information of training data to generalize
knowledge from the seen categories to the unseen ones. Suggested by many zero-
shot learning works [31, 38, |, the semantic representations, e.g. word vec-
tors [129], implicitly determine the category-level relations between data points
from different classes. Based on this, during the joint code learning process, we
novelly enhance the hidden neural representations by the semantic relations within
a batch of training data using the Graph Convolutional Networks (GCNs) [26, 79].
It can be observed in Figure 5.2 that two graph convolutional layers are built
in the multi-modal network, successively following the Kronecker layer. In this
way, the in-batch data points with strong latent semantic relations are entitled
to interact during gradient computation. Note that the output length of the sec-
ond graph convolutional layer for each data point is exactly the target hash code
length, i.e. M. The formulation of the semantic graph convolution layer is given
in Section 5.3.3.

To obtain binary codes as the supervision of f(:) and ¢ (), we introduce the
stochastic generative model [25] for hashing. A back-propagatable structure of
stochastic neurons is built on the top of the second graph convolutional layer,
producing hash codes. Shown in Figure 5.2, a decoding model is topped on
the stochastic neurons, reconstructing the semantic information. By maximiz-
ing the decoding likelihood with gradient-based methods, the whole network is
able to learn semantic-aware hash codes, which also accords to our perspective
of issue 3 for zero-shot sketch-image hashing. We elaborate on this design in
Section 5.3.4 and 5.3.5.

5.3.2 Fusing Sketch and Image with Kronecker Layer

Sketch-image feature fusion plays an important role in our task as is addressed
in problem 2 of Section 5.1. An information-rich fused neural representation is in
demand for accurate encoding and decoding. To this end, we utilize the recent
advances in Kronecker-product-based feature learning [58] as the fusion network.
Denoting the attention model outputs of a sketch-image pair {y,x} from the same
category as h(**) € R?6 and h™ ¢ R*%, the fused output of the Kronecker layer
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h*7°m) in our model is derived as
h(kron) _ 5((h(sk)W(sk)) ® (h(zm)W(zm))), (54)

resulting in a 65536-D feature vector. Here ® is the Kronecker product operation
between two tensors, and WK Wm) ¢ R2%6x256 are matrices of trainable linear
transformation parameters. § () refers to the activation function, which is the
ReLU [131] non-linearity for this layer.

Kronecker layer [58] is supposed to be a better choice in feature fusion for
ZSIH than many conventional methods such as layer concatenation or factorized
model [202]. This is because the Kronecker layer largely expands the feature
dimensionality of the hidden states with a limited number of parameters, and
thus consequently stores more expressive structural relation between sketches and

images.

5.3.3 Semantic-Relation-Enhanced Hidden Representation
with Graph Convolution

In this subsection, we describe how the categorical semantic relations are enhanced
in our ZSIH model using GCNs. Considering a batch of training data {x;, yi, s;} 2%
consisting of Np category-coherent sketch-image pairs with their semantic repre-
sentations {s;}, we denote the hidden state of the I-th layer in the multi-modal
network of this training batch as H' to be rendered to a graph convolutional layer.
As is mentioned in Section 5.3.1.2, for our graph convolutional layers, each train-
ing batch is regarded as an Npg-vertex graph. Therefore, a convolutional filter gy
parameterized by @ can be applied to H!, producing the (I + 1)-th hidden state
H*Y = g, « HY. Suggested by [79], this can be approached by a layer-wise

propagation rule, i.e.
HD = §(D :AD :HOW,), (5.5)

using the first-order approximation of the localized graph filter [26, 18]. Again, here
d (+) is the activation function and Wy refers to the matrix of linear transformation
parameters. A is an Ng X Npg self-connected in-batch adjacency and D can be
defined by D = diag (A1). It can be seen in Figure 5.2 that the in-batch adjacency
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A is determined by the semantic representations {s;}, of which each entry A, is
computed by ,

Ajr = e (5.6)
where ¢ is a hyper-parameter included in our ablation study. In the proposed ZSIH
model, two graph convolutional layers are built, with output feature dimensions of
Npx1024 and Ng x M for a whole batch. We choose the ReLU nonlinearty [131] for
the first layer and the sigmoid function for the second one to restrict the output
values between 0 and 1.

Intuitively, the graph convolutional layer proposed by [79] can be construed
as performing elementary row transformation on a batch of data from a fully-
connected layer before activation according to the graph Laplacian of A. In this
way, the semantic relations between different data points are intensified within
the network hidden states, benefiting our zero-shot hashing model in exploring
the semantic knowledge. Traditionally, correlating different deep representations
can be tackled by adding a trace-like regularization term in the learning objective.
However, this introduces additional hyper parameters to balance the loss terms
and the hidden states in the network of different data points are still isolated,

leading to inferior performance to GCNs.

5.3.4 Stochastic Neurons and Decoding Network

The encoder-decoder model for ZSIH is introduced in this subsection. Inspired
by [25], a set of latent probability variables b € (0,1)™ are obtained from the
second graph convolutional layer output respective to {x,y} corresponding to
the hash code for a sketch-image pair {x,y} with the semantic feature s. The
stochastic neurons [25] are imposed to b to produce binary codes b € {0,1}

through a sampling procedure:

_ 1 b > e
b™ = U form=1..M, (5.7)
where €™ ~ U/ (]0,1]) are random variables. As has been proven in [25], this

structure can be differentiable, allowing error back-propagation from the decoder
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Algorithm 3: The Training Procedure of ZSIH
Input: Sketch-image dataset O = {X, Y}, semantic representations S
and max training iteration T’
Output: Network parameters ©

repeat
Get a random mini-batch {x;,y;, Si}@']\iBly assuring x;,y; belong to the
same class
Build A according to semantic distances
fori=1 ... Nz do
Sample a set of €™ ~ ¢/ ([0, 1])
Sample a set of b ~ q(b|x;,y:)
end
L + Equation (5.10)
O +— O —T' (VL) according to Equation (5.11)
until convergence or max training iter T' is reached;

to the previous layers. Therefore, the posterior of b, i.e. p (b|x,y), is approximated

by a Multinoulli distribution:

M
~ m) b (™) m)\1—b(™)
a(blx,y) = [T () (1 — By, (5.8)
m=1
We follow the idea of generative hashing to build a decoder on the top of the
stochastic neurons. During optimization of ZSIH, this decoder is regularized by
the semantic representations s using the following Gaussian likelihood with the

reparametrization trick [70], i.e.

p (s|b) = N (s|u(b), diag(c*(b))), (5.9)

where p(+) and o () are implemented by fully-connected layers with identity ac-
tivations. To this end, the whole network can be trained en-to-end. The learning

objective is given in the next subsection.
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5.3.5 Learning Objective and Optimization

The learning objective of the whole network for a batch of sketch and image data

is defined as follows [25]:

Np

L= Z Eqbix.y:) [log q(b|x;,yi) — logp(s;|b)
i=1 (5.10)

n ﬁ(”f(xi) —b* + lg(vi) - b*)].

which is composed of an expectation term E [-] and two [2 terms. Concretely, the
expectation term E [-] in Equation (5.10) simulates the variational-like learning ob-
jectives [70, 25] as a generative model. However, we are not exactly lower-bounding
any data prior distribution since it is generally not feasible for our ZSIH network.
E [-] here is an empirically-built loss, simultaneously maximizing the output code
entropy via Eypjxy)[log ¢(b|x,y)] and preserving the semantic knowledge for the
zero-shot task by Eqpxy)[—log p(s|b)]. The single-model encoding functions f (-)
and g (-) are trained by the stochastic neurons outputs of the multi-modal network
using [2 losses. The sketch-image similarities can be reflected in assigning related
sketches and images with the sample code. To this end, f(-) and ¢ (-) are able
to encode out-of-sample data without additional category information, as the im-
posed training codes are semantic-knowledge-aware. The gradient of our learning
objective w.r.t. the network parameter © can be estimated by a Monte Carlo pro-
cess in sampling b using the small random signal e according to Equation (5.7),

which can be derived as

Np
VoL =Y E.|Vo(loga(blxi,y:) — logp(silb) _—
i=1 5.11

+ o (176e) = BI” + lgty:) — BI)]

Aslog q(-) forms up into an inverse cross-entropy loss and log p(+) is reparametrized,
this estimated gradient can be easily computed. Note that we are not propagat-
ing the [2 errors back to the stochastic neurons. Algorithm 3 illustrates the whole
training process of the proposed ZSIH model, where the operator I" (+) refers to the

Adam optimizer [75] for adaptive gradient scaling. Different from many existing
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deep cross-modal and zero-shot hashing models [9, , , 66] which require alter-
nating optimization procedures, ZSIH can be efficiently and conveniently trained
end-to-end with SGD.

5.3.6 Out-of-Sample Extension

When the network of ZSIH is trained, it is able to hash image and sketch data

from the unseen classes C* for matching. The codes can be obtained as follows:

B = (sign(f(X“ —0.5)) +1)/2 € {0, 1}V"*M

. (5.12)
B** = (sign(g(Y" —0.5)) +1)/2 € {0, 1}V"*M

where N is the size of test data. As is shown in Figure 5.2, the encoding networks
f(-) and g (-) are standing on their own. Semantic representations of test data
are not required and there is no need to render data to the multi-modal network.
Thus, encoding test data is non-trivial and can be efficient.

As is suggested by existing zero-shot research [195, 46], the auxiliary semantic
representations during training implicitly demonstrates the category-wise simi-
larities of data. By preserving the category-wise semantic relations between en-
coded data, the learnt feature space is capable to be applied to unseen visual
concepts [195]. Therefore the trained model handles thezero-shot retrieval task.
In this chapter, this is achieved by introducing the GCNs [79] and the semantic
decoder into the multi-modal network. The GCNs [79] mix data hidden repre-
sentations with semantically related concepts. The semantic decoding network
introduces semantic knowledge to the stochastic neurons [25] to produce compact
codes. In this way, ZSTH recognizes unseen visual concepts for the zero-shot SBIR
task.

5.4 Experiments

Extensive experiments are elaborated in this section. We firstly introduce our
implementation details and the zero-shot experimental settings, and then results

are provided according to the following themes:

e Comparison with existing methods
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Conventional category-level SBIR

Ablation study

Training efficiency and overfitting

Qualitative results and failure cases

5.4.1 Implementation Details

The proposed ZSTH model is implemented with the popular deep learning tool-
box Tensorflow [I]. We utilize the settings of AlexNet [35] pre-trained on Ima-
geNet [117] before the last pooling layer to build our image and sketch CNNs.
The attention mechanism is inspired by Song et al. [162] without the shortcut con-
nection. The attended 256-D feature is obtained by a weighted pooling operation
according to the attention map. All configurations of our network are provided in
Figure 5.2. We obtain the semantic representation of each data point using the
300-D word vector [129] according to the class name. When the class name is not
included in the word vector dictionary, it is replaced by a synonym. For all of our
experiments, the hyper-parameter ¢ is set to t = 0.1 with a training batch size of
250. Our network is able to be trained end-to-end.

5.4.2 Zero-shot experimental settings

To perform SBIR with binary codes under the novelly-defined zero-shot cross-
modal setting, the experiments of this work are taken on two large-scale sketch
datasets, i.e. Sketchy [152] and TU-Berlin [32], with extended images obtained
from [109]. We follow the SBIR evaluation metrics in [109] where sketch queries
and image retrieval candidates with the same label are marked as relevant, while
our retrieval performances are reported based on nearest neighbour search in the
hamming space. Note that the zero-shot retrieval experiments reported in this

section are strictly evaluated on unseen images and sketches.
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5.4.2.1 Sketchy Dataset [152] (Extended)

This dataset originally consists of 75,471 hand-drawn sketches and 12,500 cor-
responding images from 125 categories. With the extended 60,502 real images
provided by Liu et al. [109], the total size of the whole image set yields 73, 002.
We randomly pick 25 classes of sketches and images as the unseen test set for
SBIR, and data from the rest 100 seen classes are used for training. During the
test phase, the sketches from the unseen classes are taken as retrieval queries, while
the retrieval gallery is built using all the images from the unseen categories. Note

that the test classes are not presenting during training for zero-shot retrieval.

5.4.2.2 TU-Berlin Dataset [32] (Extended)

The TU-Berlin dataset contains 20, 000 sketches subjected to 250 categories. We
also utilize the extended nature images provided in [109, | with a total size
of 204,489. 30 classes of images and sketches are randomly selected to form the
retrieval gallery and query set respectively. The rest of the data are used for
training. Since the quantities of real images from different classes are extremely
imbalanced, we additionally require each test category have at least 400 images

when picking the test set.

5.4.3 Comparison with Existing Methods

As cross-modal hashing for SBIR under the zero-shot setting has never been pro-
posed before to the best of our knowledge, the quantity of potential related existing
baselines is limited. Our task can be regarded as a combination of conventional
cross-modal hashing, SBIR and zero-shot learning. Therefore, we adopt exist-
ing methods according to these themes for retrieval performance evaluation. We
use the seen-unseen splits identical to ours for training and testing the selected
baselines. The deep-learning-based baselines are retrained end-to-end using the
zero-shot setting mentioned above. For the non-deep baselines, we extract the
respective AlexNet [85] fc_7 features pre-trained on the seen sketches and images

as model training inputs for a fair comparison with our deep model.

98



Page 99

5.4. EXPERIMENTS

$€2'0 0Z2°0 102'0 6920 $ST'0 TET0 N N N HISZ
910 ggl'0  6IT0  S9T'0  ¥9T'0  LETO 2 2 [601] HSA
G90'0  890°0 2900  TLO0 9900  690°0 2 N [C0T] INDT-HJPS
000  S90°0  T.00  ¥60°0  L600  S0T0 2 N [€01] puey-HJ®S
G600 T90°0 G900  TLO0  GL00  9L0°0 2 2 [06] HAD
gL00 1800  ¥SO0  F80'0 000  T60°0 2 N [c0z] Pag-INDS
G600  T60'0 6800 €600  L0T0  SOTO s N [G0z] UHO-NDS
GeT’'0  SIT0  FIT0  G2T'0 9110  SITO 2 2 [82] HAND
080°0  LL0°0 €00  TIT0 9600  ¥60°0 2 2 [2] HSSID
2900 ¥L00 €800  ¥80'0 6800  T60°0 M [291] VOO
6VT°0  SPT'0  SIT'0 €510  O0LT0  6£10 A 2 [97] 1NS
eGT'0  68T°0  ¢ET0  89T'0 G910  9¥T0 A ) [c61] HSZ

$Iq 8ZT  SNQ F9  SIq ge SNQ 8T SN F9  S1qgE I0YS 9po)  [BPOIN p—
(pepuegxyy) urreg-N I (pepueixy) AyojeyS 01977, Axeulqg ssoi))

"Sour[eseq SUIYsey [BPOUI-SSOID dWOS pue [[S7 Uoomjaq uostreduwioo Jyu IS 70YS-0492 1°G 9[qR],

99



5.4. EXPERIMENTS Page 100
32-Bit P-R Curves on Sketchy 32-Bit P-R Curves on TU-Berlin
085 T T T T
— ZSIH
—— CMFH
0.68 4 |— CMSSH
—— SCM-Orth
5 & o051 — CVH
-2 a v —— SePH-KM
& 33 DSH
8 9] — ZSH
= = 0.34 ]
A A —  SitNet
0.17 b
| | | | | | | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Recall Recall
Precision@100 on Sketchy Precision@100 on TU-Berlin
0.35 I 0.35 T
— ZSIH
—— CMFH
0.29 - B 0.29 - - |—— CMSSH
2 = —— SCM-Orth
= = — CVH
% 0.23 @; 0.23 - 1| SePH-KM
E = ] & e DsH
wn n
‘o 0.17F B = 0170 | |=——  ZSH
8 8 —  SitNet
|51 1=
A a8
0.11 B 0.11 !
I ———
| |
0'0532 64 128 0'0532 64 128

Bits

Bits

Figure 5.3: P-R curves and Precision@100 results of ZSIH and several hashing
baselines are shown above. To keep the content concise, only 32-bit precision-

recall curves are illustrated here.
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5.4.3.1 Cross-Modal Hashing Baselines

Several state-of-the-art cross-modal hashing works are introduced including CMSSH [7],
CMFH [25], SCM [205], CVH [90], SePH [103] and DSH [109], where DSH [109]
can also be subjected to an SBIR model and thus is closely related to our work. In
addition, CCA [167] is considered as a conventional cross-modal baseline, though it
learns real-valued joint representations. These models are widely used as baselines

in cross-modal hashing research [109].

5.4.3.2 Zero-Shot Baselines

Existing zero-shot learning works are not originally designed for cross-modal search.
We select a set of state-of-the-art zero-shot learning algorithms as benchmarks,
including Cross-Modal Transfer (CMT) [158], Deep Visual-Semantic Embedding
(DeViSE) [38], Semantic Similarity Embedding (SSE) [209], Joint Latent Similar-
ity Embedding (JLSE) [210] and Semantic Auto-Encoder (SAE) [31] because they
are the best-performing zero-shot learning models in classification tasks [186]. In
addition, ZSH [195] and SitNet [10] are introduced for comparison since , to the
best of our knowledge, they are the only two existing zero-shot hashing models.

For CMT [158], DeViSE [38] and SAE [158], two sets of 300-D embedding
functions are trained for sketches as images with the word vectors [129] as the
semantic information for nearest neighbour retrieval, and the classifiers used in
these works are ignored. SSE [209] and JLSE [210] are based on seen-unseen class
mapping, so the output embedding sizes are set to 100 and 220 for Sketchy [152]
and TU-Berlin [32] dataset respectively. We train two modal-specific encoders of
ZSH [195] and SitNet [10] simultaneously for our task.

5.4.3.3 Sketch-Image Mapping Baselines

Siamese CNN [110], SaN [200], GN Triplet [152], 3D Shape [170] and DSH [109] are
involved as SBIR baselines. These models are originally designed for category-level
SBIR and attain state-of-the-art performance [109]. As a result, they are suitable
baselines for our experiments. We follow the instructions of the original papers

to build and train the networks under the zero-shot setting. A softmax baseline
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is additionally introduced, which is based on computing the 4096-D AlexNet [35)]

feature distances pre-trained on the seen classes for nearest neighbour search.

5.4.3.4 Results and Analysis

The zero-shot cross-modal retrieval mean-Average Precision (mAP) of ZSIH and
several hashing baselines are given in Table 5.1, while the corresponding Precision-
Recall curves (P-R curves) [128] and precision at top-100 retrieved candidates (Pre-
cision@100) scores are illustrated in Figure 5.3. The definitions of these metrics
are given in Appendix A. The performance margins between ZSIH and the selected
baselines are significant, suggesting the existing cross-modal hashing methods fail
to handle our zero-shot task. ZSH [195] and SitNet [16] turn out to be the only
two well-known zero-shot hashing model and they attain relatively better results
than other baselines. However, it is originally designed for single-modal data re-
trieval. DSH [109] leads the SBIR performance under the conventional cross-modal
hashing setting, but we observe a dramatic performance drop when extending it
to the unseen categories. An illustrative comparison of ZSIH and DSH [109] are
provided in Appendix E to demonstrate the difference of their zero-shot retrieval
performance. ZSIH attains higher accuracy than DSH [109] in the top-10 retrieved
candidates, which agrees with the results reported in Table 5.1. Figure 5.4 shows
the 32-bit t-SNE [122] results of ZSIH on the training set and test set, where a
clearly scattered map on the unseen classes can be observed. We also illustrate
the retrieval performance w.r.t. the number of seen classes in Figure 5.4. It can
be seen that ZSIH is able to produce acceptable retrieval performance as long as
an adequate number of seen classes is provided to explore the semantic space.
The comparisons with SBIR and zero-shot baselines are shown in Table 5.2,
where an akin performance margin to the one of Table 5.1 can be observed. To

some extent, the SBIR baselines based on positive-negative samples, e.¢g. Siamese

CNN [110] and GN Triplet [152], have the ability to generalize the learned represen-
tations to unseen classes. SAE [31] produces closest performance to ZSIH among
the zero-shot learning baselines. Similar to ZSH [195], these zero-shot baselines

suffer from the problem of mitigating the modality heterogeneity. Furthermore,

most of the methods in Table 5.2 learn real-valued representations, which leads
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Table 5.3: Conventional (non-zero-shot) SBIR mAP comparison between ZSIH
and some cross-modal hashing baselines. The experimental settings are coherent
to the ones proposed in [109].

Sketchy (Extended) TU-Berlin (Extended)

Method 32 bits 64 bits 128 bits 32 bits 64 bits 128 bits
CMFH [25] 0320 0.490  0.190  0.149 0202  0.180
CMSSH [7] 0.206 0211 0211 0121 0183  0.175
SCM-Seq [205]  0.306  0.417  0.671 0211 0276  0.332
SCM-Orth [205]  0.346 0536  0.616  0.217 0301  0.263
CVH [90] 0.325 0525  0.624 0214 0294  0.318
SePH][103] 0.534  0.607  0.640  0.198 0270  0.282
DCMH [66] 0.560  0.622  0.656 0274  0.382  0.425
DSH [109] 0.653 0.711  0.783 0358 0521  0.570
ZSTH 0.689 0.730 0776 0.415 0.562 0.597

to poor retrieval efficiency when performing nearest neighbour search in the high-

dimensional continuous space.

5.4.4 Conventional Fully-Supervised Category-Level SBIR

In addition to the zero-shot retrieval setting discussed above, we believe the con-
ventional fully-supervised category-level SBIR setting is also essential in justifying
our model plausibility. We follow the experimental settings discussed in [109] and
report the mAP score on the two extended datasets of Sketchy [152] and TU-
Berlin [32] in Table 5.3. The baselines for this experiment include CMFH [25],
CMSSH [7], SCM [205], SePH [103], DCMH [66] and DSH [109].

It can be clearly seen from Table 5.3 that, even under the fully-supervised set-
ting, ZSIH is able to produce state-of-the-art results. The mAP scores of ZSIH are
generally higher than the ones of the best-performing DSH [109]. This suggests
that ZSIH manages to recognize category-level information using the semantic de-
coder. These results agree with the t-SNE [122] diagram where data from different
categories are clearly scattered. Although ZSTH consists of a simpler encoder struc-

ture than DSH [109], it still outperforms DSH [109] in most of our experiments.
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Table 5.4: Ablation study. 64-bit mAP results of several baselines are reported.

Description Sketchy TU

Kron. layer — concatenation 0.228 0.207
Kron. layer — MFB [202] 0.236 0.211
Stochastic neuron — bit regularization 0.187 0.158
Decoder — classifier 0.162 0.133
Without GCNs 0.233 0.171
GCNs — word vector fusion 0.219 0.176
t =1 for GCNs 0.062 0.055
t = 107° for GCNs 0.241 0.202
ZSIH (full model) 0.254  0.220

5.4.5 Ablation Study

Some ablation study results are reported in this subsection to justify the plausi-

bility of our proposed model.

5.4.5.1 Baselines

The baselines in this subsection are built by modifying some parts of the original
ZSIH model. To demonstrate the effectiveness of the Kronecker layer for data
fusion, we introduce two baselines by replacing the Kronecker layer [58] with the
conventional feature concatenation and the Multi-modal Factorized Bilinear pool-
ing (MFB) layer [202]. Regularizing the output bits with quantization error and
bit decorrelation loss identical to [104] is also considered as a baseline in replacing
the stochastic neurons [25]. The impact of the semantic-aware encoding-decoding
design is evaluated by substituting a classifier for the semantic decoder. We intro-
duce another baseline by replacing the graph convolutional layers [79] with con-
ventional fully connected layers. Fusing the word embedding to the multi-modal
network is also tested in replacement of graph convolution. The hyper-parameter
t of Equation (5.6) is also analysed here. Two baselines are proposed with ¢ = 1

and t = 107° respectively.
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Figure 5.4: First row: 32-bit ZSIH retrieval performance on Sketchy according
to different numbers of seen classes used during training. Second row: 32-bit t-
SNE [122] scattering results on the Sketchy dataset of the seen and unseen classes.

5.4.5.2 Results and Analysis

The ablation study results are demonstrated in Table 5.4. We only report the
64-bit mAP on the two datasets for comparison in order to ensure the chapter
content to be concise. It can be seen that the reported baselines typically under-
perform the proposed model. Both feature concatenation and MFB [202] produce
reasonable retrieval performances, but the figures are still clearly lower than our
original design. This is because the Kronecker layer [58] considerably expands
the hidden state dimensionality, i.e. from 256-D features to 65536-D features, and
thus the network produces compact hidden representations, carrying more infor-
mation for cross-modal hashing. When testing the baseline of bit regularization

similar to [104], we experience an unstable training procedure easily leading to
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overfitting. The quantization error and bit decorrelation loss introduce additional
hyper-parameters to the model, making the training procedure hard. Replacing
the semantic decoder with a classifier results in a dramatic performance fall as the
classifier basically provides no semantic information and fails to generalize knowl-
edge from the seen classes to the unseen ones. Graph convolutional layer [79]
also plays an important role in our model. The mAP drops by about 4% when
removing it. Graph convolution enhances hidden representations and knowledge
within the neural network by correlating the data points that are semantically
close, benefiting our zero-shot task. As to the hyper-parameters, a large value of ¢,
e.g. t =1, generally leads to a tightly-related graph adjacency, making data points
from different categories hard to be recognized. On the contrary, an extreme small
value ¢, e.g. t = 1079, suggests a sparsely-connected graph with binary-like edges,
where only data points from the same category are linked. This is also suboptimal

in exploring the semantic relation for zero-shot tasks.

5.4.6 Training Efficiency and Overfitting

We compare the training efficiency of ZSITH with some baselines in this subsection.

5.4.6.1 Overfitting

We pick three baselines here from our ablation study. The first baseline is formed
by replacing the stochastic neurons with bit regularization similar to [104]. In the
second baseline, the semantic decoder is replaced by a classification layer. In the
last baseline, the hyper-parameter ¢ is set to t = 1076.

The retrieval performance w.r.t. the training epochs is illustrated in Fig. 5.5.
Note that, only in this experiment, we fix the CNN parameters for a clearer insight
into the training efficiency trend and therefore, the figures are slightly lower than
the ones reported above.

It can be observed that all selected baselines show clear performance decay
immediately after hitting the best figures, while the original ZSIH model persists
reasonable mAP scores along the training epochs. The proposed ZSIH model
successfully learns the semantic relations between encoded images and sketches due

to the utilization of the semantic decoder and GCNs [79] simultaneously. When
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Figure 5.5: The 64-bit retrieval performance w.r.t. the training epochs on the
Sketchy dataset [152]. Note that, only in this experiment, we fix the CNN pa-
rameters for a clearer insight into the training efficiency trend. The baselines in
Table 5.4 which are not included here do not have any effect on training epochs.

replacing the semantic decoder with a classification layer, i.e. the dark blue baseline
in Figure 5.5, the codes are generated only according to the label information.
Therefore, the semantic similarity structure of the code space [195] is no longer
preserved. As a result, this baseline fails to transfer supervised knowledge to
unseen categories for zero-shot tasks. It is also clear that, with the CNNs fixed,
our model attains reasonable training efficiency, where only 8 epochs are enough to
reach the best retrieval performance. On the other hand, some baselines here show
slower convergence speed. This phenomena also applies when the CNN parameters

are set trainable.

5.4.6.2 Training Efficiency

Fig. 5.6 gives a rough illustration on the training procedure of ZSIH and most ex-
isting deep hashing models. Existing supervised [109, 66, 11, 9] or zero-shot hash-
ing [195, 10] generally require alternating optimization to meet the discrete con-
straint. This ultimately influences the training efficiency as updating the discrete

variables usually cannot be accelerated by GPU computation and may require
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ZS|H sGD | sGD | sGD | sGD sGD | sGp | sGp | sGb

Batchl s=ssssssssssssssnsan Batch N Batchl s=ssssssssssssssnsan Batch N

Most Existing
Supervised and Zero- SGD | SGD | SGD | SGD
Shot Deep Hashing

Update Update
Codes SGD | SGD | SGD | SGD Codes

Figure 5.6: The proposed ZSIH model does not involve a trivial alternating training
procedure, while existing supervised [J, 11, 66, 109] or zero-shot hashing [195, 40]
generally require alternating optimization. Here the Update Codes phase in the
second line refers to a computation step where the binary codes of all data are
optimized on the whole training set and then are stored as target codes for the
next training epoch [66, 109].

large size of memory to store them. On the other hand, due to the three-network
design and the utilization of stochastic neurons, ZSIH only needs to perform SGD

to obtain trained parameters, which ensure better training efficiency.

5.4.7 Qualitative Results and Failure Cases

We show more illustrative zero-shot SBIR results in Appendix F. As is shown
in Appendix F, ZSIH attain high accuracy among the first ten retrieved candi-
dates, which accords to the quantitative results discussed in Section 5.4.3 that
ZSTH produces high-quality zero-shot SBIR results. On the other hand, we do
experience failure cases during our experiments. Recalling the t-SNE diagram on
the unseen classes, though most of the data are clearly scattered, some categories
of data are still unintelligible from the others. This is because some sketches are
drawn with bad quality and therefore, are hard to be recognized by the network.
This phenomena is shown in Appendix GG. Another cause is that some sketch cate-
gory names are semantically close to some other concepts existing in the train/test
classes, which puzzles the model, but we do not observe a severe problem caused
by this.
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5.5 Summary

In this chapter, a novel but realistic task of efficient large-scale zero-shot SBIR
hashing is studied and successfully tackled by the proposed Zero-shot Sketch-Image
Hashing (ZSIH) model. We design an end-to-end three-network deep architecture
to learn shared binary representations and encode sketch/image data. Modality
heterogeneity between sketches and images is mitigated by a Kronecker layer with
attended features. Semantic knowledge is introduced in assistance of visual in-
formation by graph convolutions and a generative hashing scheme. Experiments
suggest the proposed ZSIH model significantly outperforms existing methods in
our zero-shot SBIR hashing task.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis mainly focuses on learning binary representations for efficient image
and image-text similarity retrieval using the popular deep learning techniques. We
explore three challenging cases in learning to hash, i.e. unsupervised deep hashing
(Chapter 3), cross-modal hashing (Chapter 4) and zero-shot cross-modal hashing
(Chapter 5), and respectively propose novel algorithms that outperforms the state-
of-the-art.

6.1.1 Unsupervised Deep Image Hashing

In Chapter 3, we addressed the problem of unsupervised deep hashing where the
existing research and models are not producing satisfying image retrieval perfor-
mance. Unlike the most common solution that simply regularizes the output bits
of a neural network [107, , 17], our Deep Variational Binaries (DVB) model is
based on the popular conditional variational auto-encoders, where the latent vari-
ables are learnt in addition to the output codes. A three-network architecture is
built and this approach significantly improves the retrieval performance, compared

with existing models on three widely-recognized datasets.

6.1.2 Image-Sentence Cross-Modal Hashing

Conventional cross-modal hashing does not have model-specified designs in learn-

ing compact representations for informative images and sentences and thus, are not
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ideal for large visual-language retrieval. This problem is observed and addressed
in Chapter 4 by proposing the deep cross-modal hashing namely Textual-Visual
Deep Binaries (TVDB). TVDB employs an RPN-LSTM structure to model im-
ages of multi topics and a text CNN encoding long sentences, capturing informative
patterns hidden in images and texts. The model is trained using a alternating op-
timization scheme with acceptable efficiency. Extensive experiments agree that
the proposed TVDB model outperforms existing cross-modal algorithms by large

margins.

6.1.3 Zero-Shot Cross-Modal Hashing

In Chapter 5, a novel problem of zero-shot cross-modal hashing is introduced.
Existing supervised models fail to handle this situation where the test categories
exclude the training ones. This problem is studied in a special category-level SBIR
case. We propose the Zero-shot Sketch-Image Hashing (ZSIH) model, utilizing sev-
eral cutting-edge deep learning structures. A shared representation of images and
sketches are learnt using the Kronecker layer [58]. The GCNs [79] and genera-
tive hashing framework [25] ensure the network to be semantic-aware, suitable for
zero-shot tasks. Experiments conducted on two datasets agree with our insight

into this problem and ZSIH clearly leads zero-shot SBIR performance.

6.2 Open Questions and Future Work

6.2.1 Binary Representations for Video Sequences

In this thesis, we studied the problem of learning to hash with images and sen-
tences. However, there exist other data modalities, e.g. video, audio, etc. A
large number of video hashing algorithms have been proposed to retrieve video
data within standard datasets, which simply focus on learning the holistic repre-
sentations of the whole video. In industrial-level applications, recent years have
witnessed the challenge to pick a certain temporal part or segment from a long
video sequence correlated to a relatively short video query with high efficiency.

This task can be considered as a combination of representation learning and video
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abstraction, where a temporal attention model and learning to hash could apply.

We are planning to have a thorough study on this problem in the near future.

6.2.2 Improved Reparametrization Tricks for Discrete Vari-
ables

In Chapter 5, the stochastic neurons [25] for hashing are priored and reparametrized
with a Multinoulli distribution. This can be typically regarded as a discrete exten-
sion of the Gaussian latent variables in the vanilla VAEs [76]. However, we observe
unpredictable loss perturbation at the first two training epochs when optimizing
ZSTH. This is caused by the incompact feature sampled from the Multinoulli pos-
terior when the network is not well tuned. Although a better pre-training strategy
can be of help here, it is also expected that an in-depth statistical analysis and
advanced reparametrization model will largely improve the aforementioned phe-
nomena and further promote the hashing quality. A typical example is Inverse
Autoregressive Flow (IAF) [78] for continuous variables, where a discrete exten-
sion is reasonable and appreciated. We are about to have a closer insight into this

in the near future.

6.2.3 Binary Representations for Fine-Grained Retrieval

In this thesis, the proposed novel models mainly focus on category-level data re-
trieval. This is because (a) category-level tasks are ultimately suitable for large-
scale retrieval; (b) this has been a classic and conventional evaluation metric for
hashing in most related literatures. However, the demand in fine-grained retrieval
is growing, where an exact retrieval candidate is expected according to a query.
For instance, fine-grained SBIR is now a welcomed application [161, | for its
potential in web shopping and many other areas.

Learning fine-grained hash codes is challenging. Fine-grained retrieval basi-
cally requires highly descriptive features to distinguish one data point from the
other with reasonable distances, but binary representations carry relatively less
information than the continuous ones of the same length. This claims the full

entropy utilization of each bit.

113



6.2. OPEN QUESTIONS AND FUTURE WORK Page 114

We are planning to study an even harder case in fine-grained hashing, which
is zero-shot fine-grained SBIR. The difficulties here lie in simultaneously solving
the above-mentioned challenges and the ones described in Chapter 5. Hard as the

task is, we believe it can be a promising research topic.
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Appendix A

Quantitative Retrieval Evaluation
Measures

In this appendix, the quantitative evaluation matrices used in this thesis are elab-

orated.

A.1 Precision@QK

Precision at top-K retrieved candidates (Precision@K) is a widely used perfor-
mance metric in large-scale data retrieval. In this thesis, we respectively use
Precision@5000, Precision@200 and Precision@100 in Chapter 3, 4 and 5, which

can be computed by

[{relevent data} N {top-K retrieved data}|

PrecisionQK =
recision I

(A.1)

where |-| indicates the set size. In our experiments, we report the mean value of

this score among all test queries.

A.2 Mean-Average Precision

In data retrieval, mean-Average Precision (mAP) is a key performance measure. To
obtain the mAP score, the first step is to compute the retrieval average precision

of each query. Given a query q, the average precision of the retrieval result is
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defined by

B Zgil(Precision@k X Rel(k)
B |{relevent data}|

AveragePrecision(q) (A.2)

Here N, is the number of retrieved candidates. Rel(k) is an indicator function
which equals 1 if the retrieved item at rank k is relevant to the query q, zero

otherwise [108]. Therefore, the mAP of a set of queries is computed by

SN AveragePrecision(q;)
N )

q

mAP =

(A.3)

where N, refers to the number of queries.

A.3 HD2 Precision and Recall

The precision and recall of Hamming Distance with radius 2 (HD2) also illustrate
the code similarity of relevant data [109]. For each query, the HD2 precision and

recall are defined as follows:

|{relevent data} N {data within Hamming distance of 2}|

HD2Precision =

?

{data within Hamming distance of 2}|
|{relevent data} N {data within Hamming distance of 2}|

HD2Recall =
Reca [{relevent data}|

(A4)

In our experiments, we report the mean values of these scores among all test

queries.
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Appendix B
Qualitative Results of DVB

In this appendix, five intuitive image retrieval cases of DVB introduced in Chap-
ter 3 on CIFAR-10 [¢1] are provided. Note that the CIFAR-10 [31] dataset contains
low-resolution images, i.e. 32 x 32. It can be clearly seen that the top-20 retrieved

images are mainly subjected to the same topic as the query images.

Query Top-20 Retrieved Images
e &

Figure B.1: Examples of top-20 32-bit image retrieval results of DVB on CIFAR-
10 [31] dataset.
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Top-20 Retrieved Images

Query Top-20 Retrieved Images

Figure B.2: Examples of top-20 32-bit image retrieval results of DVB on CIFAR-
10 [34] dataset (continued).
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Query Top-20 Retrieved Images

Figure B.3: Examples of top-20 32-bit image retrieval results of DVB on CIFAR-
10 [34] dataset (continued).
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Appendix C
Qualitative Results of TVDB

In this appendix, eight intuitive Sentence Query Image cases of TVDB introduced
in Chapter 4 on Microsoft COCO [102] are provided.

We show results with M = 128 to make the comparison illustrative, because
TVDB outperforms the compared baselines with largest margin using this code
length. As is shown in Figure C.1,C.2,C.3,C.4,C.5,C.6,C.7,C.8, TVDB retrieves
the best matching candidates, where most of the objects mentioned in the query
are included. This agrees the quantitative analysis provided in Chapter 4 that

TVDB produces compact binary codes for cross-modal retrieval.
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Appendix D
Failure Cases of TVDB

In this appendix, two failure retrieval cases of TVDB discussed in Chapter 4 are

shown.

Query: Inside an enclosed area, beyond which stands trees, lies a rocky domicile and an earthen area for one

Query: Several cut up carrots standing up while holding up a leafy vegetable and peppers.

Figure D.1: Two failure cases of TVDB with top-10 retrieved candidates on Mi-
crosoft COCO [102].
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Appendix E

Qualitative Comparison between
ZSIH and DSH

In this appendix, Three intuitive zero-shot SBIR retrieval cases of ZSIH introduced

in Chapter 5 are reported and compared with DSH [109].

Query Method Top-10 Retrieved Images

x>
oD
O 2
\%}l;
4
‘K’ s
s

Figure E.1: Top-10 zero-shot SBIR results of ZSIH and DSH [109] are shown
here according to the hamming distances, where the green ticks indicate correct
retrieval candidates and red crosses indicate the wrong ones.
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Query Method Top-10 Retrieved Images

Query Method Top-10 Retrieved Images

‘EE ZSIH

Figure E.2: Top-10 zero-shot SBIR results of ZSIH and DSH [109] are shown
here according to the hamming distances, where the green ticks indicate correct
retrieval candidates and red crosses indicate the wrong ones (continued).
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Appendix F
More Qualitative Results of ZSIH

In this appendix, More successful zero-shot SBIR retrieval cases of ZSIH introduced
in Chapter 5 are demonstrated with top-10 retrieved candidates on the Sketchy
dataset [152].

Query Top-10 Retrieved Images

ik
a1

Figure F.1: Successful zero-shot retrieval results on the Sketchy dataset [152] of
ZSIH.
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Figure F.2: Successful zero-shot retrieval results on the Sketchy dataset [152] of
ZSIH (continued).
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Figure F.3: Successful zero-shot retrieval results on the Sketchy dataset [152] of
ZSIH (continued).
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Appendix G
Failure Cases of ZSIH

In this appendix, three failure zero-shot SBIR cases of ZSIH on the Sketchy
dataset [152] discussed in Chapter 5 are illustrated.

Query Top-10 Retrieved Images
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Figure G.1: Failure cases of ZSIH on the Sketchy dataset [15:

!
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