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ABSTRACT

The use of pulsars as astrophysical clocks for gravitational wave (GW) experiments demands the highest possible
timing precision. Pulse times of arrival (TOAs) are limited by stochastic processes that occur in the pulsar itself,
along the line of sight through the interstellar medium, and in the measurement process. On timescales of seconds
to hours, the TOA variance exceeds that from template-fitting errors due to additive noise. We assess contributions
to the total variance from two additional effects: amplitude and phase jitter intrinsic to single pulses and changes in
the interstellar impulse response from scattering. The three effects have different dependencies on time, frequency,
and pulse signal-to-noise ratio. We use data on 37 pulsars from the North American Nanohertz Observatory for
GWs to assess the individual contributions to the overall intraday noise budget for each pulsar. We detect jitter in
22 pulsars and estimate the average value of rms jitter in our pulsars to be 1%~ of pulse phase. We examine how
jitter evolves as a function of frequency and find evidence for evolution. Finally, we compare our measurements
with previous noise parameter estimates and discuss methods to improve GW detection pipelines.

Key words: gravitational waves – pulsars: general

1. INTRODUCTION

Pulsar timing is used for a variety of unique applications in
astrophysics and fundamental physics. These include mass
determinations of neutron stars (NSs) and their binary
companions to contrain compact object formation mechanisms
and equations-of-state (Demorest et al. 2010; Antoniadis 2013);
precision tests of general relativity and other theories of gravity
(Will 2014); limits on changes in fundamental constants
(Lazaridis et al. 2009; Shao & Wex 2013; Zhu et al. 2015);
and, especially recently, using arrays of pulsars as detectors of
low-frequency (nanohertz) gravitational waves (GWs; e.g.,
Arzoumanian et al. 2015a, 2015c). Improvements in the
accuracy of measured arrival times continue to yield benefits
in these applications. In this paper, we present a detailed
assessment of the time-of-arrival (TOA) noise budget that is
applicable to measurements made on relatively short time-
scales, ranging from single pulse periods to integration times of
10–104 s. The work discussed here complements other studies

that address noise contributions from variations in the spin rates
of NSs (e.g., Hobbs et al. 2010; Shannon & Cordes 2010), the
frequency dependence of pulse shapes (Pennucci et al. 2014),
and from propagation through the interstellar medium (ISM;
Armstrong 1984; Blandford et al. 1984; Foster & Cordes 1990;
Rickett 1990; Cordes & Shannon 2010).
Pulsar timing relies on a foundation of pulsar phenomena

that have been demonstrated over the nearly half century since
pulsars were discovered (see Cordes 2013 for a review).
Rotational stability, especially for recycled millisecond pulsars
(MSPs), allows pulse arrival times to be predicted over long
time scales so that small deviations from solar system and
astrophysical effects can be determined (Verbiest et al. 2009).
Radio emission beams appear to be locked to the crust of the
NS and single pulses have phases that vary with respect to a
fiducial phase that is also locked to the crust (Kramer
et al. 1998; Cordes & Shannon 2010). Averages of Np single
pulses at a specific frequency converge to a stable pulse shape
with fractional deviations N1 p~ , as expected for pulse
fluctuations that are largely statistically independent (e.g.,
Dolch et al. 2014). While average pulse shapes do vary with
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frequency (Kramer et al. 1998), the pulse shapes of radio
pulsars, including those objects having two or more stable
shapes associated with metastable state of the magnetosphere
(i.e., the shapes do not show evolution in time), are stable and
show no secular evolution except for a few pulsars in NS–NS
binaries where geodetic precession alters the orientation of the
beam (Perera et al. 2010) and in the Crab pulsar in which large
changes in pulse shape are seen over a few decades (Lyne
et al. 2013). Magnetars also show secular changes in pulse
shapes (e.g., Yan et al. 2015).

Intrinsic variations in pulses appear to have stationary
statistics (Liu et al. 2011, 2012) in the same way that the
average profile formed by averaging a large number of single
pulses converges to a shape that appears to be epoch
independent (see Craft 1970; Backer et al. 1975; Phillips &
Wolszczan 1992; Hassall et al. 2012; Pilia et al. 2016).
Consequently, pulse-to-pulse variations can be characterized
for each pulsar and can be incorporated into timing studies that
require a noise model, such as GW detection. Within a
Bayesian framework, the average pulse profile and the pulse
variations comprise some of the prior information that underlie
modeling of pulsar orbits and GW detection (van Haasteren
et al. 2009; Lentati et al. 2014).

In this paper, we focus on timescales smaller than one day
and as short as a single spin period. Longer time spans require
consideration of other phenomena, including pulsar spin
variations and changes in the free-electron content along the
line of sight. Intrinsic pulse variations comprise only one
contribution to the arrival time variance on short timescales. A
second contribution is the template-fitting error due to additive
noise in the measured pulse shape which therefore, unlike
single pulse variations, depends on the signal-to-noise ratio
(S/N) of the average pulse (Cordes & Shannon 2010). A third
contribution is due to changes in the interstellar impulse
response from multipath scattering, which depends strongly on
radio frequency (Cordes et al. 1990). The measured impulse
response (or pulse broadening function, PBF) at a given time is
caused by diffractive interstellar scattering/scintillation (DISS)
and it varies as the finite number of constructive intensity
maxima (“scintles”) appearing in the measurement bandwidth
changes. These white-noise contributions to arrival-time errors
are referred to as pulse jitter, template-fitting errors, and
scintillation noise, respectively. They have distinct correlations
with time and frequency that can used to separate them
empirically.

In Section 2, we describe the white-noise model. In Section 3,
we briefly describe observations from the North American
Nanohertz Observatory for GWs (NANOGrav) and the data
sets used in our analysis. We discuss the analysis of individual
objects in Section 4, discuss the collective results in Section 5,
and analyze pulse jitter statistics in MSPs in Section 5.1. In
Section 6 we compare our results with the parameterized
Bayesian noise analysis reported in Arzoumanian et al. (2015b)
and discuss the implications for pulsar timing array (PTA)
optimization. We summarize our conclusions in Section 7.

2. MODEL FOR SHORT-TERM TIMING VARIANCE

We characterize the three white-noise contributions through
appropriate analysis of short (∼30 minutes) timing observa-
tions. Typical observing epochs are separated by several days
or weeks, over which time each of the three contributions is
uncorrelated, thus appearing as a white-noise perturbation of

arrival times, t t,( )nD . The total combined variance of the
residuals19 on short timescales is

, 12
S N
2

J
2

DISS
2 ( )s s s s= + +

where S Ns is the template-fitting error from a finite pulse S/N
primarily due to radiometer noise, Js is the error due to pulse
phase and amplitude jitter, and DISSs is due to scintillation
noise. Spin noise, measurable over roughly yearly timescales,
is negligible over a single epoch, as are changes in dispersion
measure ( dl nDM eò= , the integral of the electron density
over the line of sight) and in the mean shape of the PBF (see
Appendix A for more details). For most objects we find

S N J DISSs s s>  , while a few have J S Ns s at some
epochs of high S/N from periods of strong scintillation.
Several objects show DISSs as the dominant timing error at
particular radio frequencies (see Section 5).
In the following, we will consider the pulse shape model and

individually discuss the TOA errors resulting from template
fitting of finite S/N pulses, jitter, and scattering.

2.1. Pulse Shapes

Radio pulses are subject to a variety of perturbations as they
travel between the pulsar and the Earth. To model the changes
in pulse shape and intensity, we will assume that all chromatic
delays have been perfectly removed or are negligible over each
narrowband channel. These include the dispersive delay from
DM, scattering, and frequency-dependent pulse profile evolu-
tion. We also assume that the signal polarization has been
calibrated perfectly.
Under these assumptions, we model pulse shapes I t, ,( )f n

as a function of phase f obtained in short integrations longer
than the pulse period, centered on time t and in a sub-band
centered on frequency ν. The dominant remaining effect from
scattering is the DISS intensity modulation associated with a
small number of scintles in a time-frequency resolution cell.
Refractive interstellar scintillation (RISS) will also modulate
the signal strength but typically varies more slowly than DISS
and is broadband (though still chromatic; Stinebring
et al. 2000). It is assumed in the following discussion that we
can resolve relevant pulse structure and scintillation fluctua-
tions though in reality observing practices may not always
allow for scintles to be fully resolved for a given pulsar. We
also include a telescope bandpass function Htel ( )n that lumps
together all frequency-dependent gains from the feed antenna
to the output of the digital filterbank channel. The pulse shape
model is then

I t H g t g t

S p t h t

n t

, , , ,

, , , ,

, , 2

tel RISS DISS

i i PBF

( ) ( ){ ( ) ( )
[ ( ) ( ) ( )]

( )} ( )
*

f n n n n
n f n f n
f n

=
´
+

where gRISS is the RISS modulation, gDISS is the DISS
modulation, Si is the intrinsic spectrum of the pulsar, pi is the
intrinsic pulse shape normalized to unit area, hPBF is the pulse
broadening impulse response function, and n is additive
radiometer noise. The intrinsic pulse shape is stochastic and
includes contributions from phase and amplitude jitter. We

19 Residuals ≡ (data−model), as discussed in Section 3. For the white-noise
errors we consider, there is little difference between the pre- and-post-fit
variance. The differences are discussed in Section 4 and Appendix A.
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assume that the time-averaged intrinsic pulse shape,
p t, , ti ( )f ná ñ , converges to a pulse template, U ,( )f n , that is
stable over long timescales. The template shape evolves as a
slow function of frequency and the shape of each individual
pulse is as well.

2.2. Template-fitting Errors

Template matching yields an rms error in the TOAs that
depends on the S N of the pulse. We assume for now that the
data profile is a scaled and shifted version of the template with
additive noise, the condition for matched filtering to yield the
minimum possible TOA error (Turin 1960; Taylor 1992). This
assumption breaks down when considering pulse phase jitter
and the finite scintle effect, which change the profile
dynamically and are discussed in the following subsections.
Let U ( )f be the pulse template as a function of pulse phase f
normalized to unit amplitude, where we have dropped the
explicit frequency dependence. The measured pulse intensity
I ( )f at any epoch is then modeled as

I S U n , 3n 0( ) ( ) ( ) ( )f s f f f= - +

where S is the S/N of the pulse profile (peak to off-pulse rms,
written this way for clarity as a variable in equations), n ( )f is
additive noise with rms amplitude ns , and 0f is the TOA. The
TOA can be determined either through a cross-correlation
analysis with proper interpolation of the cross-correlation
function (CCF) to find the maximum or by least-squares fitting
of the model template to the data. Mathematically, the two
approaches are identical. The peak of the CCF of the template
and pulse profile has an S/N related to S as (J. M. Cordes et al.
2016, in preparation)

S S U 4
i

N

CCF
0

1
2

i

1 2

( ) ( )
⎡
⎣⎢

⎤
⎦⎥å f=

=

-f

and is larger by a factor equal to the square root of the effective
number of samples across the pulse if n ( )f is uncorrelated
between phase bins. Template matching will fail
when S 1CCF  .

For a pulse template with Nf phase bins, the template-fitting
error is (Cordes & Shannon 2010)

W

S N
, 5S N

eff ( )s =
f

where Weff is an effective width20 given by

W
P

N U U
6

i
N

i

eff
1 2

1
1

i 1
2 1 2[ ( ) ( )]

( )⎡⎣ ⎤⎦f f
=

å -f =
-

-
f

for a pulsar with period P. We note that for Equation (5), if
profiles are smoothed by ns samples to increase S nS

1 2µ , the

effective number of phase bins N ns
1µf

- , leaving the product

N S1 2
f invariant. The effective width is useful because it is

unique to each pulsar-frequency combination and does not
depend on any observational parameters. Therefore, it can be
calculated using data obtained from one receiver-backend
system and then the TOA error can be calculated for any value

of S N and number of phase bins. Any instrumental change,
such as a change in Htel ( )n over time, that alters the pulse shape
will have to be taken into account, however. The expression for

S Ns yields the same value as the frequency-domain expression
given by Taylor (1992).

2.2.1. The Role of DISS

The finite S/N causes the TOA to have a Gaussian error PDF
under the assumption of the central limit theorem,
f t S 0,t S N

2( ∣ ) ( ) sD =D . DISS causes the S N of the pulse
to be modulated by a scintillation “gain,” g. The gains have an
exponential PDF f g g gexpg ( ) ( ) ( )= - Q where g( )Q is the
Heaviside step function (see Appendix B of Cordes &
Chernoff 1997). Multiple scintillation maxima in the time-
frequency plane will alter the PDF, which, given nISS scintles,
is

f g n
gn

g n
e g , 7g

n
gn

ISS
ISS

ISS

ISS

ISS( ∣ )
( )

( )
( ) ( )=

G
Q-

where Γ is the gamma function. When pulse shapes and TOAs
are calculated, typically n 1ISS  scintles are averaged over the
bandwidth and integration time, decreasing the variations in the
scintillation gains.
We can transform the PDF of gains to the PDF of the

observable pulse S/Ns with a change of variable to g S S0= ,
where S0 is the mean S/N. The PDF is written as

f S n
Sn S

S n
e S . 8S

n
Sn S

ISS
ISS 0

ISS

ISS
ISS 0( ∣ ) ( )

( )
( ) ( )=

G
Q-

As nISS  ¥, f S n S SS ISS 0( ∣ ) ( )d - , and the pulse S/N will
be constant.
The PDF of the TOA errors is

f t n n
t

H
n

t

1

2
2

2
9

t
S

S
n

n
S

ISS ISS

1

1
ISS

0

0
ISS

ISS
0

( ∣ )
∣ ∣

∣ ∣
( )( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

s p
s

s

D =
D

´
D

D

+

- +

where S0s is the rms from template-fitting errors when no
scintillation occurs (S is constant) and Hn(x) is a Hermite
polynomial of order n. See Appendix B for more details. In
general, the distribution of measured S N, fS(S), will be a
convolution of several distributions, including the distribution
of S N intrinsic to the pulsar f SSint

( ), the DISS modulation
f SSDISS

( ), and the RISS modulation f SSRISS
( ), which will also

affect the distribution of TOA errors.

2.2.2. Example of a Single-component Gaussian Pulse

For a Gaussian pulse having width W (FWHM), the effective
width (using Equation (6)) is

W
WP

2 ln 2
. 10eff

1 2

1 4

( )
( )

( )
p

=

For this case, the effective width is proportional to the
geometric mean of the period and actual pulse width. The

20 This is a different definition than given in Cordes & Shannon (2010)
although the rms error expressions are the same.
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TOA error is

WP

N S

W

S2 ln 2 2 ln 2
, 11S N

1 2

1 4 1 2 1 2
CCF

( )
( ) ( )

( )s
p

= =
f

where we have used Equation (4) to calculate

S
S WN

P

W P N
S

2

2

ln 2

5.55
0.02 2048

. 12

CCF

1 4 1 2

1 2

( )⎜ ⎟

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

p
=

»

f

f

The quantity W/P represents the fiducial duty cycle for an
MSP. SCCF must be of order unity or larger for template
matching to fit appropriately.

2.3. Single Pulse Amplitude and Phase Variations (“Jitter”)

Single pulses of both canonical pulsars and MSPs have been
shown to have stochastic amplitude and phase variations
(Cordes & Downs 1985; Cordes et al. 1990; Liu et al. 2012;
Shannon & Cordes 2012; Dolch et al. 2014; Shannon et al.
2014). When averaged over Np pulses to form a pulse profile,
pulse jitter causes the underlying pulse shape to differ from that
of the template, causing an error that is qualitatively different
from additive noise. The jitter TOA error is independent of
S N. We define a dimensionless parameter k PJ J,1sº as the
ratio of rms phase variation of individual pulses NJ,1 J ps s=
(in time units) to the period P of the pulsar. Cordes & Downs
(1985) and Cordes & Shannon (2010) define a jitter parameter
f UJ J,1s s= , where Us is the equivalent rms width of the
template. Since pulse profiles often display multiple compo-
nents with potentially different jitter statistics, using kJ to
compare the intrinsic jitter between pulsars is less dependent on
the properties of the different components.

We note that single-component pulses that show phase
variations only will have an rms jitter but those that show
amplitude variations only will not display jitter. However, for
pulses with multiple components, amplitude variations without
phase variations will yield an rms jitter but only if the
components overlap in pulse phase. An in-depth analysis on the
role of multiple components in jitter will be presented in
J.M.Cordes et al. (2016, in preparation). As an example, we
consider a single component, Gaussian-shaped pulse with both
a Gaussian phase jitter PDF with dimensionless phase
variations kJ,c and amplitude variations with a modulation
index mI,c (defined as rms intensity divided by mean pulse
amplitude). We use the subscript “c” to explicitly denote that
the parameters describe the single component, whereas the
parameter kJ is defined as the overall timing variation of the
pulse. The TOA error is then (modified from the form in
Cordes & Shannon 2010)

k P

N
k P

m

N

1
. 13J

J

p
J,c

I,c
2

p

1 2

( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟s = =

+

Comparing the TOA errors from additive noise and jitter in
Equations (5) and (13), we can define a transition S/N at which
the two contributions are equal, S N Js s= . The single-pulse
S/N implied by a profile calculated from Np pulses, assuming
statistical independence of jitter between pulses, is
S N S1 p

1 2= - . For a Gaussian-shaped pulse, we find the
single-pulse transition S/N, by setting Equations (11) and

(13) equal when N 1p = , to be

S k
W

P
N m

k W P

N m

2 ln 2 1

0.216
0.007 0.02

2048

1

2
14

1,trans J,c
1

1 2
1 4

I,c
2 1 2

J,c
1 1 2

1 2
I,c
2 1 2

( ) [ ( )]

( )

⎜ ⎟ ⎜ ⎟

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

p= +

»

´
+

f

f

- - -

-

- -

and the corresponding S/N of the CCF is

S
k

W P m

1.20
0.007

0.02

1

2
, 15

CCF1,trans
J,c

1

I,c
2 1 2

( )

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

»

´
+

-

-

where we set the fiducial k k m1 0.01J J,c I,c
2 1 2( )= + = based

on our analysis in Section 5.1. When the single-pulse cross-
correlation S N is greater than about unity, the jitter error
becomes larger than the template-fitting error.
The same pulsar-intrinsic effects that cause frequency-

dependent template evolution will cause jitter to be a slow
function of frequency as well. Over an observing band, we
might approximate jitter as being frequency-independent (see
Shannon et al. 2014 for evidence of decorrelation over widely
separated frequencies) but frequency-dependence of the pulse
template can be measurable (Dolch et al. 2014; Pennucci et al.
2014). We therefore note that jitter will be strongly correlated
in frequency but not in time. DISS has a correlation bandwidth
and timescale that can vary widely from pulsar to pulsar and
between epochs for the same pulsar. Template-fitting errors are
uncorrelated between time samples and frequency sub-bands.

2.4. Scintillation Timing Noise: Finite Scintle Effect

The time-frequency plane is made up of independent
intensity fluctuations called scintles that are 100% modulated
and have characteristic time and frequency scales tdD and dnD ,
respectively. The scintillation structure is related to the
temporal broadening of pulses, resulting in a time delay
(Cordes et al. 1990; Cordes & Shannon 2010). Since a finite
number of scintles will occupy the time–frequency plane, the
instantaneous PBF will be different from the ensemble average
shape. This produces an error that is statistically independent
between two epochs and is therefore white noise in time.
The number of scintles for an observation of duration T and

bandwidth B is approximately

n
T

t

B
1 1 . 16tISS

d d
( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟h h

n
» +

D
+

Dn

The filling factors th , hn are less than unity and are in the range
of 0.1–0.3 (Cordes & Shannon 2010; Levin et al. 2016),
depending on the definitions of the characteristic timescale and
bandwidth.
When nISS is large, the TOA error is

n
17DISS

d

ISS
( )s

t
»

where C 2d 1 d( )t p n= D is the scattering timescale with C1 a
coefficient of order unity. For a thin scattering screen with
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uniscale irregularities, C 11 = but for a Kolmogorov screen,
C 0.961 = . For uniform, thick media, C 1.531 = and 1.16,
respectively, for uniscale and Kolmogorov media (Cordes &
Rickett 1998). When there is only one scintle or a partial scintle
across the band, the TOA error is approximately dt , or some
fraction of it.

3. OBSERVATIONAL DATA

3.1. NANOGrav Timing Observations

We used pulse profile data from the NANOGrav nine-year
data set described in Arzoumanian et al. (2015b, hereafter
NG9) for our analysis. NG9 contains multi-frequency pulse
profiles of thirty-seven MSPs observed at the Green Bank
Telescope (GBT) and Arecibo Observatory (AO). Two
generations of backends were used, the GASP/ASP backend
earlier, processing up to 64MHz (Demorest 2007; Demorest
et al. 2013), and the GUPPI/PUPPI backends later, processing
100, 200, or 800MHz of bandwidth (DuPlain et al. 2008; Ford
et al. 2010). The larger bandwidth of GUPPI and PUPPI yields
an increase in S N from increased averaging of radiometer
noise combined with a higher probability for large scintillation
maxima (Pennucci et al. 2014). Because we wish to maintain
homogeneity of the inferred parameters of our pulsars (e.g.,
consistent scintillation statistics), we analyze pulses observed
with GUPPI/PUPPI only.

Each pulsar was observed at each epoch with at least two
receivers. At GBT, the 820 and 1400MHz bands were used,
and at AO, the 430 and 1400MHz or 1400 and 2300MHz
bands were used. PSRs B1937+21 and J1713+0747 were
observed at both AO and GBT and we analyze both
observatories’ data sets independently to check for consistency
across varying S/Ns. In addition, PSR J2317+1439 contained
data from the 327MHz band in addition to the 430 and
1400MHz bands. We also used processed 430MHz data
available for PSRs B1937+21 and J2017+0603 though they
were not included in NG9.

Pulse profiles were computed in real time by averaging
together single pulses according to an initial timing model that
includes the pulsar’s spin kinematics and the orbital motions of
the Earth and, if needed, the pulsar binary orbit. Model
parameters were obtained by fitting to earlier observations.
Raw data profiles from GUPPI/PUPPI were folded and de-
dispersed in ∼10 s and ∼15 s subintegrations at AO and GBT,
respectively, and every eight subintegrations were averaged
together to reduce data volume through the NG9 pipeline.
Some Arecibo 1400MHz observations were initially recorded
in ∼1 s subintegrations to aid in radio frequency interference
(RFI) excision and then combined to form the ∼10 s “raw”
subintegrations. Observations for a given epoch typically
spanned about 0.5 hr. All profiles were divided into 2048
phase bins.

Arzoumanian et al. (2015b) describe the polarization
calibration algorithm, as well as the RFI excision methods,
for creating calibrated data profiles using the PSRCHIVE

21

software package (Hotan et al. 2004; van Straten et al. 2012).
A broadband noise source was locally injected into the two
polarization signal paths at each observatory prior to every
pulsar observation and is recorded by the backend systems.

Both differential gain and phase between the two hands of
polarization were calibrated using the correlated noise source
observation. The noise source power in each hand of
polarization was not assumed to be equal and was measured
separately roughly once per month per telescope per frequency
by observing the noise source after pointing on and off a bright,
unpolarized quasar. After balancing the gains of the two
orthogonal polarizations, the intensity profiles were produced
by summing the two polarization profiles. Future papers will
discuss the complete polarization and flux calibration solutions
at AO and GBT. Frequency channels known to consistently
contain RFI signals were removed first. If the off-pulse
variation in a 20-channel wide frequency window was four
times the median variation value, those channels were also
removed.
We took the calibrated profiles with ∼80 s (AO) and ∼120 s

(GBT) subintegration lengths and average the profiles together
into sub-bands of 50MHz resolution. Frequency-averaging
builds S N for each pulse to avoid mis-estimation of the TOA
in the low-S N limit (see Appendix B of Arzoumanian et
al. 2015b). We note that frequency-dependent profile shape
changes across the entire observing band can be significant for
some sources over the full band (e.g., see Pennucci et al. 2014)
but are small over a 50MHz channel.
We implemented a Fourier-domain TOA estimation algo-

rithm (Taylor 1992) that determines the amplitude S ns , the
TOA, and template-fitting uncertainty of an intensity profile
I t, ,( )f n . Template shapes U ( )f are determined from de-
noised average profiles, smoothed by thresholding the
coefficients of a wavelet decomposition of the pulse shape.
One template is generated from all data for each pulsar,
backend, and frequency band combination.22 Timing offsets
from profile frequency evolution are not accounted for here but
will be accounted for in the analysis in the following section.
We determined the off-pulse window for each pulse template
used to measure ns by finding the rolling eighth (256 out of
2048 phase bins) of phase that has the smallest integrated
intensity. The pulse baseline is defined as the mean of the off-
pulse region and the noise ns is the rms amplitude of the region.
Once we knew the best-fit amplitude and rms noise, we then
calculated the associated S N for each pulse. Our code is freely
available in the PyPulse software package.23

3.2. Scintillation Parameters

Scintillation bandwidths and timescales were taken or
estimated (using the scaling relations as a function of observing
frequency in Cordes & Lazio 2002) from Keith et al. (2013)
and Levin et al. (2016) and references therein. We used these
measurements to derive values of DISSs given by Equation (17)
assuming 0.2th h= =n , C 11 = (Lambert & Rickett 1999;
Cordes & Shannon 2010; Levin et al. 2016), and integration
time/bandwidth values equal to that of the profiles from each
telescope. When scintillation parameters were not available, we
estimated all other values using the NE2001 electron density
model (Cordes & Lazio 2002).

21 http://psrchive.sourceforge.net, accessed via scripts available at https://
github.com/demorest/nanopipe.

22 Templates are available in the NG9 data release at https://data.
nanograv.org.
23 https://github.com/mtlam/PyPulse
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4. SINGLE PULSAR ANALYSIS

We are interested in quantifying noise on intraday time-
scales. We therefore independently analyze individual NANO-
Grav observations, typically of duration 30 minutes or less.
During an observation, the incoming data were folded using a
pre-computed model pulsar ephemeris. We assumed that this
ephemeris is sufficiently accurate that there is very little drift in
pulse arrival times over an observation. We calculated pulse
phases within an observation, “initial timing residuals” t t,( )d n ,
using the Fourier-domain estimation algorithm of Taylor
(1992). We assumed that the initial timing model used for
folding will yield polynomial expansions of phase and spin
period that represent the state of the Earth–pulsar line of sight
at a given epoch to high accuracy. We also assumed that the
initial timing model is accurate such that pulse smearing will be
negligible for our subintegration lengths. We then calculated
“short-term” residuals t,( ) n over a single observation by
fitting a polynomial model over all t t,( )d n observed that
includes a constant offset for TOAs from each frequency
channel and a parabolic fit in time common to all TOAs. The
initial and short-term models can be written as

t t K at bt n t, , 182( ) ( ) ( ) ( )d n n n= + + +

t n t t t K at bt, , , . 192( ) ˆ ( ) ( ) [ ˆ ( ) ˆ ˆ ] ( ) n n d n nº = - + +

Here, a and b are frequency-independent coefficients, n t,( )n is
additive noise in both time and frequency that includes the
three white-noise components in Equation (1), and K ( )n
represents a constant offset that varies with frequency, resulting
from pulse profile evolution or epoch-dependent dispersion and
scattering. Variables with carets denote estimated quantities.
Thus, t,( ) n is the estimated additive noise, calculated by
subtracting the estimated model parameters from the TOAs.
We assumed that subtraction of the offsets removes any
frequency-dependence between sub-bands. The variance
removed by the fit for a, b, and K ( )n to obtain t,( ) n will
be small for white-noise components that are uncorrelated
in time.

Differences between the initial timing model and the short-
term timing model for a given epoch can result from a number
of possible effects that we account for with the quadratic fit in
Equation (19). Table 1 lists the effects and their approximate
amplitudes. We provide details of the estimates in Appendix A.

4.1. An In-depth Analysis of Jitter and Frequency-dependent
Jitter Evolution in PSRJ1713+0747

PSR J1713+0747 is not only one of the best-timed pulsars
but it is the pulsar with the highest S N pulses in our entire
data set and is thus most sensitive to jitter error. The S N
peaked at S 2000» at 1400MHz for one of two observations
on MJD 56380. Figure 1 shows the residuals of sub-bands for
that observation in panel (a); strong correlation between sub-
bands is evident and indicative of pulse jitter (Cordes &
Shannon 2010; Shannon et al. 2014). Along with the ∼80 s
data, we processed the ∼10 s subintegration raw data from this
observation to demonstrate the lack of temporal correlation in
the residuals, shown in panel (b), as expected when jitter noise
becomes dominant. The results in Figure 1 are presented with
the 80 s subintegrations displayed in the left panels and the 10 s
subintegrations on the right.
Within each subintegration, we typically saw a monotonic

increase or decrease in the residual with frequency, which is
most evident in the second-to-last subintegration of the low-
time-resolution residuals, highlighted with a black arrow in
panel (a). Each line in panels (c) and (d) shows the residuals as
a function of frequency for each subintegration. The subinte-
gration highlighted with the arrow in panel (a) is marked with a
thick, black line in panel (c) and demonstrates the trend
increasing with frequency. We fit the slope of each line and plot
the results in panels (e) and (f). The slope values show a
deviation much larger than the median of the fitting errors,
denoted by the dotted, horizontal lines. While the points in the
time series in panel (e) appear correlated, they do not in panel
(f), suggesting the slope changes are uncorrelated. The
autocorrelation functions of the time series in panels (e) and
(f) are shown in panels (g) and (h), respectively, and the
flatness at non-zero lags demonstrates that the slope changes
are consistent with uncorrelated, white noise in time.
The roughly monotonic slope of the residuals with frequency

in each subintegration indicates that there is a systematic
variation of the pulse shape for each subintegration (and thus
TOAs) versus frequency, indicative of frequency-dependent
jitter evolution, which is distinctly different from frequency-
dependent pulse profile evolution, though related. These slopes
are uncorrelated between subintegrations, indicating that longer
averages of larger numbers of pulses will show less variation
with frequency. Nonetheless, it is known that the average pulse

Table 1
Errors in Initial Timing Model

Effect Typical tD Appendix Section Comments

Pulse profile smearing

Spin period error 10 ps A.1.1 systematic
Binary parameter errors 10 ns A.1.2 systematic
DM variations 400 ns A.1.3 stochastic
Polarization calibration gain errors 1 μs A.1.4 stochastic

Deviations from the polynomial fit

Binary orbit parameter errors 10 ps A.2.1 systematic
Ionospheric DM variations 1 ns A.2.2 stochastic
Cross-coupling errors ? A.2.3 systematic, highly pulsar-dependent
Rotation measure (RM) variations 1 ps A.2.4 stochastic
Spin noise 0.1 fs A.2.5 stochastic
Stochastic GW background 1 fs A.2.6 stochastic
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shape of PSR J1714+0747 varies systematically with
frequency (Dolch et al. 2014; Arzoumanian et al. 2015b) and
those must reflect the variations occurring on the single-pulse
level. For the high-time-resolution data, the rms slope
is 0.53 s GHz 1m» - .

4.2. Distributions of Residuals from Jitter and Scintillation

We modeled the variance in the residuals separately for each
pulsar/backend/frequency band combination using Equa-
tion (1). While all three terms scale as Np

1- , only the

Figure 1. Analysis of jitter in residuals for the highest S N epoch for PSR J1713+0747. The panels on the left side show the analysis for the ∼80 s subintegration data
while the panels on the right side are for the ∼10 s subintegration data. Panel (a): low-time-resolution residuals as a function of time. Each frequency channel is shaded
differently, with darker lines indicating lower frequencies. The arrow indicates the subintegration with the greatest change in residual vs. frequency. Typical TOA
errors are shown in the top left of panels (a)–(d). Panel (b): high-time-resolution residuals as a function of time, where we have plotted residuals as points for clarity.
Panels (c), (d): residuals as a function of frequency, where each line represents one subintegration. The thick, black line in panel (c) corresponds to the subintegration
highlighted with the arrow in panel (a). Panels (e), (f): slopes of fitted lines to the residuals vs. frequencies for each subintegration. The horizontal, dotted lines indicate
the median fitting error. Panels (g), (h): autocorrelation functions (ACFs) of the time series in panels (e) and (f), respectively.
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template-fitting term depends on the S N of the pulse profile
whereas the jitter and the DISS terms do not. Therefore, we
used a one-parameter model for the variance as a function of
S N,

S S
W

S N
. 202

S N
2

C
2 eff

2

C
2( ) ( ) ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟s s s s= + = +

f

where C
2

J
2

DISS
2s s s= + , as implied by Equation (1), is the

variance that is constant in S/N. At high S N, 0S Ns  and

C
2s becomes the dominant term. We took the scintillation

parameters to be constant for all epochs so that DISSs is fixed,
though measurements of these parameters indicate small
variations (factor of 2 ) over many years, with some pulsar
showing larger fluctuations (e.g., Coles et al. 2015).

The observed S N PDF depends on the intrinsic pulse
amplitude distribution, on modulations from DISS and RISS,
and on variations of the system equivalent flux density (SEFD)
of the receiver. We assumed that the average intrinsic flux
density of the pulsar and SEFD were constant over all times.
Therefore, the mean S N, S0, is constant for our many-period
pulse averages (large Np), i.e., f S S SS 00

( ) ( )d= - , assuming
that changes in the S N are due solely to modulation from
DISS. RISS has been shown to change the observed flux
density by a factor of 2 on the timescale of 10 s of days
(Stinebring et al. 2000). Since we observed S N variations
spanning over an order of magnitude from the mean in some
cases, we ignored the contribution to the S N PDF from RISS.

We assumed that residuals at a given S N follow a Gaussian
distribution

f S e,
1

2
, 21S C

2

22 2( ∣ ) ( )∣
( )



 s
ps

= s-

where again s is a function of both S and Cs (Equation (20)).
The normality assumption is a good approximation due to the
fact that while residuals must lie within one cycle of pulse
phase, P0.001∣ ∣  and deviation from a Gaussian distribu-
tion is negligible. We removed all residuals with S 100.5<
( 3» ) to avoid contamination by low-significance noise being fit
by the template matched filtering (see Appendix B of
Arzoumanian et al. 2015b), which excluded five pulsar/
backend/frequency band residual sets and two pulsars from our
analysis entirely. We excised evident RFI beyond the methods
described in Section 3 by inspection of the residuals and the
corresponding pulse profiles.

We performed a maximum likelihood (ML) analysis over the
residuals S R,i i{ } given the three parameters S0, nISS, and Cs . To
include our cut in S N, we included a parameter Smin and
determined the factor that properly normalizes the distribution
in S. The normalized distribution is

f S S n S f S S n S S
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where x,( )aG is the incomplete Gamma function and
, 0( ) ( )a aG = G (see Equation (3.381.3-4) of Gradshteyn

et al. 2007, for the relevant integrals).

The likelihood function can be calculated by combining
Equations (7), (21), and (22),
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where i labels the individual residuals. We performed a grid
search in the three-dimensional parameter space to estimate the
values and uncertainties on the three model parameters. The
likelihood function can be expressed as the product of
individual likelihoods

S n S S
S S S n S S

, , , ,
, , , , , 24

0 ISS C min

C min 0 ISS min

( ∣ )
( ∣ ) ( ∣ ) ( )

 
  

s
s=

so that we could perform the grid search in Cs independently
from the search in S n,0 ISS space. We limited our search in nISS

with a lower bound of 1 so that the minimum number of
degrees of freedom across both the time and frequency
dimensions is 2 (Cordes & Chernoff 1997), or that each pulse
must come from at least one ray path through the ISM. An
F-test was used to determine the significance of Cs with a
significance value of 0.05 (i.e., 2s significant). If not, we
computed the 95% upper limit on Cs .
Figure 2 shows the results for one of NANOGrav’s best-

timed pulsars, PSR J1713+0747 observed at 1400MHz at AO.
The top panel shows the residuals Si i( ) with the 3 s ranges
plotted in the blue lines. At higher S N, the rms of the residuals
asymptotes to a constant value, Cs , represented by the constant
width scatter of points, and is indicative of jitter and
scintillation noise and the S N regime over which they
dominate the template-fitting error. A histogram of the
residuals Ri are shown at right with bins 0.1 s mD = and a
histogram of Si with logarithmic bins of Slog 0.062510D = is
shown below with Poisson uncertainties shown by the error
bars. We plot Sf S S n S, ,S 0 ISS min( ∣ ) in the middle panel to
properly compare the scaled PDF to the logarithmically binned
histogram, with S0 and nISS determined in the ML analysis.
The bottom panel shows the rms residual for the same

logarithmic binning of the data. The dashed line shows the
predicted rms from template-fitting error only given by
Equation (5). We emphasize that the dashed line is not a fit
to the data points in this plot. We see agreement between the
dashed line and the points at low S N for most pulsars, which
indicates that Equation (5) represents the template-fitting noise
well. Deviation from the line can be explained by other
systematic effects that can increase the variance, such as
remaining RFI in the data. The blue line shows the best
estimate S( )s from the ML analysis. We note that the ML
analysis is less susceptible to parameter mis-estimation from
the effects of RFI in the data over a fit of Equation (20) to the
rms residual points because the ML analysis fits all of the data
simultaneously.
Figures 3–6 show the same ML analysis for four other

pulsars observed at 1400MHz. While s matches the data for
PSR J1909−3744, the S N histogram does not match well
with the data and the PDF of nISS in the ML analysis peaks at
the edge of the sampling space (n 1ISS = ), expected since

39 14.7 MHzdnD =  and t 2258 sdD = for the pulsar at a
reference frequency of 1500MHz (Keith et al. 2013; Levin
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et al. 2016), of order the pulse channel bandwidth and typical
total observation length. We see a similar result with PSR
J2317+1439 though sparseness in the S/N histogram is a result
of increased RFI excision for the pulsar. For PSR B1937+21,
the S N histogram is well described by the result of the ML
analysis. The remaining low S N residuals (S N 10~ ) are
spurious noise spikes that pass our S N cut criterion and lie
close to the main pulse in phase. The narrowing of residuals at

large S/N is not understood and may require further
investigation of this pulsar. Lastly, we show the analysis for
PSR J1918−0642 as a typical pulsar with an upper limit
on Cs .
To measure jitter values, we estimated DISSs as described in

the previous section for 50MHz sub-bands and subintegrations
of length tsub and then solved for Js given our measured Cs (see

Figure 2. Analysis of residuals for PSR J1713+0747 observed at 1400 MHz with AO, containing the highest S N residuals in our sample. Top: residuals vs. S N.
The solid lines (blue) show the±3 S( )s ranges from the maximum likelihood analysis. The inset shows the residuals for S/N greater than 70% of the maximum.
Histograms of  (right panel) and S N (middle panel) are shown, with the solid (blue) lines showing the predicted histogram given the most-likely estimates for S0
and nISS. The error bars show the standard Poisson uncertainties for each bin only. Bottom: rms residual s in bins of S N. The dashed line is the predicted TOA
template-fitting error (not a fit to the points on the graph) based on the template shape while the solid line shows the estimated S( )s from Equation (20) that includes
a S/N-independent term.

Figure 3. Analysis of residuals for PSR J1909−3744 observed at 1400 MHz
with GBT. See the Figure 2 caption for more details. Figure 4. Analysis of residuals for PSR J2317+1439 observed at 1400 MHz

with AO. See the Figure 2 caption for more details.

9

The Astrophysical Journal, 819:155 (21pp), 2016 March 10 Lam et al.



Equation (20)). In several cases, the estimates of the
scintillation noise from Equation (17) were larger than the Cs
estimated from the ML analysis, which is supposed to
encapsulate all possible variance at high S N. We employed
a correlation analysis described in the next sub-section to
separate the jitter and scintillation noise values for PSR B1937
+21 at 1400MHz, the only pulsar where the estimated DISSs is
larger than Cs and the S/N of the residuals is high enough to
perform such an analysis.

4.3. Cross-correlation Analysis between Frequencies

Jitter causes simultaneously measured residuals at different
frequencies to be correlated, which allows us to distinguish
jitter noise from template-fitting noise. If the sub-band
bandwidth is d nD , the residuals will not be correlated in
frequency by DISS and we can distinguish jitter noise from
scintillation noise as well. PSR B1937+21 has

2.8 1.3 MHzdnD =  and t 327 sdD = at a reference fre-
quency of 1500MHz (Keith et al. 2013; Levin et al. 2016) and

therefore residuals with 50MHz of bandwidth will be
correlated in frequency due to jitter only. We find n 4ISS »
for PSR B1937+21 observed at 1400MHz at AO with 50MHz
sub-bands and ∼80 s subintegrations. Therefore, the finite
scintle effect is prominent and we expect scintillation noise to
be large for this pulsar.
We let the total residual be the sum of the fluctuations from

the three contributions to white noise,

t t t t, , , , , 25S N J DISS( ) ( ) ( ) ( ) ( )   n n n n= + +

where the subscripts denote the specific contribution. The
cross-correlation coefficient between residuals from two sub-
bands in and jn is

t t, , , 26i j J
2( ) ( ) ( ) n n sá ñ =

where we assumed that the scintles are statistically independent
between sub-bands for PSR B1937+21 and therefore do not
correlate. The autocorrelation coefficient t,i 2( ) ná ñ reduces to
the variance in Equation (1) plus cross terms that tend toward
zero in the ensemble average limit. The correlation coefficient ρ
is the autocorrelation coefficient divided by the square root of
the cross-correlation coefficients between sub-bands, which we
assumed to be identical within a single band. Therefore,

S
S

27J
2

2
( )

( )
( )


r

s
s

=

and is a function of pulse S N. Since we calculated ρ from
residuals whose corresponding profiles differ in S N, we took
the average S N for the profiles in a given sub-band and used
the geometric mean S Si j

1 2( )á ñá ñ as a proxy for pulse S N.
Figure 7 shows the correlation coefficients (gray) as a

function of S, computed over all epochs observed at 1400MHz
for PSRs J1713+0747 (top) and B1937+21 (bottom) at AO
(left) and GBT (right). Since PSR J1713+0747 has J Cs s»
and high S N, we show the results of our correlation analysis
to demonstrate how the method performs before applying it to
PSR B1937+21. The black points show the median ρ with
linear bins in S N each increasing by 10. The blue lines show
the best fit of Equation (27) to the black points via a grid search
in Js , holding s fixed from the ML analysis. Each panel shows

Js as a fraction of Cs as well as the single-pulse rms J,1s , which
accounts for the differences in tsub between telescopes. The
errors include both errors on Cs and errors from the fit.
For PSR J1713+0747, we find consistency of J,1s between

AO and GBT, with 23.3 0.5 sJ,1s m=  , 22.5 0.7 sm ,
respectively, which demonstrate a good check of the methods
used in this paper. These values are generally consistent with,
though somewhat lower than, measurements reported else-
where. Dolch et al. (2014) report a measurement of jitter
though their method includes the contribution from DISSs . They
find 27.0 3.3 sC,1s m=  , though we note that the DISSs
contribution is not well-defined at the single-pulse level.
Shannon & Cordes (2012) find 26 sJ,1s m» from a cross-
correlation analysis between frequency bands. Shannon et al.
(2014) find 31.1 0.7 sC,1s m=  (again including the con-
tribution of DISSs ) by adding Gaussian noise to the template,
generating residuals, and subtracting the quadrature difference
from the observed residuals. Even accounting for the small
contribution from DISSs , their measurement formally disagrees
with ours for reasons that are uncertain.

Figure 5. Analysis of residuals for PSR B1937+21 observed at 1400 MHz
with AO. See the Figure 2 caption for more details.

Figure 6. Analysis of residuals for PSR J1918−0642 observed at 1400 MHz
with GBT. See the Figure 2 caption for more details. The 95% upper limit on

Cs is shown in the bottom left of the bottom panel, with the corresponding s
in blue.
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For PSR B1937+21, DISSs is comparable to the predicted
values from the scaling relation (Equation (17)) for both AO
and GBT at 1400MHz. Differences between the estimated J,1s
between telescopes come from differences in the estimated Cs
whereas the ratio of RMSs J Cs s is consistent between the
measurements at both observatories. Since the GUPPI
observations span more years than the PUPPI observations
(∼3.6 years versus ∼1.6 years, respectively), if the scintillation
parameters differed in the first half of the GUPPI observations
than the second half when PUPPI ran in coincidence, then the
average DISSs would differ between the two sets of observa-
tions. The small scintle size at 1400MHz means that we are
unable to study the scintillation properties of this pulsar with
the current NANOGrav data set.

5. SUMMARY RESULTS

Figures 8 and 9 show the results for the three white-noise
contributions to the timing residuals per frequency band per
pulsar. We performed the ML analysis independently for
observations of PSRs J1713+0747 and B1937+21, which
were observed at both telescopes. For each frequency band, the
pulsars are ordered in increasing amounts of template-fitting
noise. Template-fitting noise values are calculated using
Equation (5) and using the median and 68.3% confidence
limits from the PDFs of S N for each pulsar. Jitter values are

also 68.3% confidence intervals or upper limits at the 95%
level. DISS noise is calculated through scattering measure-
ments as discussed in Section 3 and according to Equation (17).
We scale the observation time T to 30 minutes and the
bandwidth B equal to that of each receiver in NG9 (see Table 1
of Arzoumanian et al. 2015b).
To compare numbers expected over the length of a typical

NANOGrav observation, we scaled all three contributions to
30 minutes. We multiplied the mean S N, S0 (see Equation (7)),
by a factor of t30 minutes sub , where tsub is the subintegration
time for either GBT (∼120 s) or AO, (∼80 s) to find the
30 minutes S N for use in Equation (5). Because the
scintillation timescales are of the order of the typical
observation length or longer for most of these MSPs (Levin
et al. 2016), the simple scaling relation of Equation (16) will
hold on average though not exactly since the number of scintles
in the time dimension is restricted. The scintillation noise term
was scaled up in time and frequency using Equation (17). The
gray band shows the template-fitting error scaled to the full
bandwidth B by a factor of B50 MHz . The rightmost panel
shows the jitter parameter k PJ J,1s= .
The raw values from our analysis are reported in Table 2. In

Table 3, we convert all three white-noise contribution
measurements to 30 minutes TOA uncertainties and rank the
pulsars according to each contribution and to the total white
noise per frequency band (thus matching Figures 8 and 9).

Figure 7. Correlation analysis for PSRs J1713+0747 (top) and B1937+21 (bottom) at AO (left) and GBT (right) for 1400 MHz band residuals. The gray points mark
the correlation coefficient ρ of two different sub-bands of residuals on a given epoch as a function of the geometric average of the mean S N of the pulse profiles for
those sub-bands as S S1 2

1 2( )á ñá ñ . We show the median ρ in bins of S N in black. The blue line marks the best-fit S( )r to the black points.
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5.1. Pulse Jitter Statistics

The preceding analysis provides detections of Js for over half
of the NANOGrav pulsars for the 1400MHz band. This large
sample allows us to examine the statistics of the jitter
distribution. We use the jitter parameter kJ to compare pulsars,
since it is independent of the pulse period.

Since DISS Js s for most pulsars in our sample at
1400MHz, we can use the likelihood functions C( ) s
computed in the ML analysis (see Equation (24)) as a proxy

for the likelihood functions J( ) s . In the case of PSR

B1937+21, we explicitly set J C
2

DISS
2( ) ( ) s s s= - . We

ignore PSR J1903+0327 as the upper-limit C( ) s translates
non-trivially to J( ) s . We create a continuous histogram that is
the sum of the individual likelihoods J( ) s , shown in Figure 10.
The black region shows the contributions from upper limit
pulsar jitter values and the gray region shows the contributions
from measured pulsar values. The median jitter parameter
is k P 0.010J J 0.006

0.023s= = -
+ .

Figure 8. Summary of white-noise components for pulsars observed at the two highest frequency bands. The middle panel shows the three contributions, template-
fitting noise as black circles (AO) or crosses (GBT), jitter noise as blue dots, and estimated DISS noise as red triangles. We observed PSRs J1713+0747 and B1937
+21 with both telescopes and plot the separate analysis for each. The template-fitting and jitter contributions are for a 50 MHz bandwidth but scaled to a 30 minutes
observating time. The gray bands represent the template-fitting noise scaled to the full receiver bandwidth to show the relative contribution with respect to jitter in a
given NANOGrav observation. The DISS noise has been scaled to a 30 minutes observation and the appropriate total bandwidth for each band. Within each band,
pulsars are ordered by increasing template-fitting noise (ordered by black points, not gray bands). The rightmost panel shows the single-pulse rms jitter divided by the
period of the pulsar, kJ. For PSR B1937+21, the upside-down triangles indicate the measured DISS noise from the correlation analysis (see Section 4.3). The bold
lines for PSR J1903+0327 at 1400 MHz indicates an upper limit on Cs inconsistent with the estimate of DISSs (recall that DISSs has been scaled to the total bandwidth
and a 30 minutes observing time and so appears smaller in the plot).
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6. NOISE MODEL AND IMPLICATIONS FOR PTA
OPTIMIZATION

The noise covariance matrix for short timescales implied by
our analysis is

C S T

T , 28

tt tt

tt

, S N
2

J
2

DISS, , DISS
2

[ ( ) ( )]

( ) ( )

d d s s

r s

= +

+

nn nn

nn

¢ ¢ ¢ ¢

¢ ¢

where δ is the Kronecker delta and ttDISS, ,r nn ¢ ¢ encapsulates the
correlation scales for DISS and we assume that bandwidth is
fixed for each receiver. Shannon et al. (2014) find that jitter
decorrelates over a range of frequencies larger than the total
bandwidth of any receiver used in NG9; a decorrelation term is
therefore not included in our model. We re-emphasize that S Ns
can be calculated directly from the template shape and Js is
fixed for a given pulsar-frequency combination.

Pulsars dominated by template-fitting errors will see the
greatest increase in timing precision from increased integration
time and larger bandwidth instrumentation. Wideband timing
systems allow for observations of an increased number of
scintles and a reduction of DISSs . Therefore, higher DM pulsars,
dominated by scintillation noise, will improve in timing quality
and will would then become attractive candidates for inclusion
into PTAs. By contrast, pulsars dominated by jitter on many
epochs do not benefit substantially from wideband timing,
though their timing precision will always improve with the
increased numbers of pulses observed.

Scintillation monitoring is required in order to characterize
the time-varying scintillation parameters, which will not only
change DISSs but change the PBF over timescales much greater
than that of a single epoch. Changes in the PBF will alter pulse
shapes and therefore introduce a timing delay into any TOA
estimate and contribute to the total white-noise variance.
NG9 uses an empirical, parameterized noise model fit in the

timing analysis (Arzoumanian et al. 2015a, 2015b, 2015c). For
TOAs with an associated error S Ns from template-fitting, the
white-noise model is

C S , 29tt tt,
2

S N
2 2 2[ ( ( ) ) ] ( )  d d s= + +nn nn¢ ¢ ¢ ¢

where  (commonly referred to as EFAC) is a dimensionless,
constant multiplier to the template-fitting error,  (EQUAD)
accounts for sources of Gaussian white noise added in
quadrature to the template-fitting error,  (ECORR) accounts
for sources of white noise correlated in frequency such as jitter.
In NG9, 1 » for all pulsars, to within a factor of 2 for most
pulsars. NG9 also fits a red noise model that is negligible on the
timescales of a single epoch.
Figure 11 shows the comparison between measurements of

 versus J,30 minutess in black, with the gray points showing
values where at least one of the two estimates is an upper limit.
We find that J,30 minutes s , which suggests that ECORR is
systematically measuring increases in the variance of the
residuals, correlated in frequency, beyond pulse jitter. For
example, broadband RFI can cause correlations in TOAs

Figure 9. Summary of white-noise components for pulsars observed at the three lowest frequency bands. See the caption for Figure 8 for information. The bold upper
limit lines for PSRs J1600−3053 and J1643−1224 at 820 MHz and J1640+2224 at 430 MHz, indicate an upper limit on Cs inconsistent with the estimated DISSs .
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Table 2
Maximum Likelihood Analysis Output

Pulsar Period DM Telescope Frequency Weff W50 tsub
a S0 nISS Cs Cs+ s Cs- s

(ms) (pc cm−3) (MHz) ( sm ) ( sm ) (s) (ns) (ns) (ns)

J0023+0923 3.05 14.33 AO 430 335 72 84.6 8.4 2.7 <363 K K
AO 1400 430 201 84.6 5.8 1.0 <273 K K

J0030+0451 4.87 4.33 AO 430 705 643 85.9 9.6 1.0 380 120 122
AO 1400 540 505 85.9 5.2 5.1 1328 71 71

J0340+4130 3.30 49.58 GBT 800 545 189 126.0 3.5 27.6 <999 K K
GBT 1400 515 213 126.0 3.7 37.0 <3301 K K

J0613−0200 3.06 38.78 GBT 800 250 66 126.5 10.5 13.7 <97 K K
GBT 1400 331 274 126.5 2.4 3.7 <328 K K

J0645+5158 8.85 18.25 GBT 800 590 70 128.8 20.3 1.0 85 16 16
GBT 1400 627 117 128.8 5.1 1.0 <268 K K

J0931−1902 4.64 41.49 GBT 800 669 296 126.5 3.6 5.5 <1323 K K
GBT 1400 466 348 126.5 2.8 1.9 <786 K K

J1012+5307 5.26 9.02 GBT 800 667 691 128.8 12.1 1.0 <102 K K
GBT 1400 634 584 128.8 5.1 1.0 <343 K K

J1024−0719 5.16 6.49 GBT 800 553 338 128.8 7.9 1.0 <138 K K
GBT 1400 574 141 128.8 2.4 1.0 <541 K K

J1455−3330 7.99 13.57 GBT 800 956 440 121.7 5.2 1.1 <541 K K
GBT 1400 996 207 121.7 3.9 1.7 1542 162 161

J1600−3053 3.60 52.33 GBT 800 485 102 122.5 7.2 19.2 <277 K K
GBT 1400 424 70 122.5 7.7 10.6 <236 K K

J1614−2230 3.15 34.50 GBT 800 449 109 122.5 5.6 7.5 <348 K K
GBT 1400 391 84 122.5 2.1 1.2 385 71 68

J1640+2224 3.16 18.43 AO 430 383 96 84.6 17.5 1.5 <135 K K
AO 1400 465 220 84.6 8.0 1.0 648 43 43

J1643−1224 4.62 62.41 GBT 800 1040 390 122.5 14.0 46.7 555 106 101
GBT 1400 973 315 122.5 7.9 11.5 899 65 64

J1713+0747 4.57 15.99 AO 1400 539 110 82.0 159.9 1.0 180 4 3
AO 2300 512 104 82.0 36.8 1.0 223 10 10
GBT 800 694 170 121.7 22.1 1.5 268 24 24
GBT 1400 533 109 121.7 31.4 1.0 143 4 4

J1738+0333 5.85 33.77 AO 1400 643 120 83.4 5.6 1.0 421 84 83
AO 2300 696 118 83.4 3.8 1.0 <472 K K

J1741+1351 3.75 24.19 AO 430 458 109 85.0 7.0 3.2 <475 K K
AO 1400 390 86 85.0 7.4 1.0 247 28 28

J1744−1134 4.07 3.14 GBT 800 513 147 121.7 21.6 1.0 225 15 15
GBT 1400 511 137 121.7 14.1 1.0 193 12 12
GBT 1400 187 49 121.7 3.8 30.6 <1006 K K

J1853+1303 4.09 30.57 AO 430 486 606 83.4 3.7 4.2 <1035 K K
AO 1400 346 125 83.4 2.6 1.0 <451 K K

B1855+09 5.36 13.30 AO 430 796 653 85.2 5.0 5.6 <888 K K
AO 1400 750 518 85.2 17.4 1.9 1025 25 25
AO 2300 716 485 85.2 6.3 7.7 <2722 K K

J1903+0327 2.15 297.54 AO 1400 405 195 82.6 3.4 51.3 <760 K K
AO 2300 327 99 82.6 3.3 108.8 <2023 K K

J1909−3744 2.95 10.39 GBT 800 279 53 121.7 23.1 1.1 99 7 7
GBT 1400 261 41 121.7 16.7 1.0 56 4 4

J1910+1256 4.98 38.06 AO 1400 634 133 82.0 7.3 5.3 823 67 67
AO 2300 574 108 82.0 3.5 3.6 1819 273 273

J1918−0642 7.65 26.59 GBT 800 979 184 121.7 10.2 4.3 <377 K K
GBT 1400 879 151 121.7 4.5 1.0 <384 K K

J1923+2515 3.79 18.86 AO 430 448 175 83.9 3.3 5.3 <1319 K K
AO 1400 534 146 83.9 5.1 6.4 1355 168 168

B1937+21 1.56 71.02 AO 430 190 63 84.1 263.1 170.5 448 48 50
AO 1400 145 37 84.1 135.8 4.1 51 1 1
AO 2300 147 36 84.1 38.4 1.5 76 4 4
GBT 800 153 54 120.9 98.6 9.7 128 3 3
GBT 1400 146 37 120.9 43.6 3.5 66 2 1

J1944+0907 5.18 24.34 AO 430 1120 500 83.4 7.4 5.3 1524 341 336
AO 1400 949 364 83.4 6.3 1.4 2354 99 99

J1949+3106 13.14 164.13 AO 1400 916 142 80.8 3.5 41.8 1996 608 561
B1953+29 6.13 104.58 AO 430 1293 481 84.6 8.7 15.1 <1505 K K

AO 1400 823 224 84.6 4.1 11.2 1615 235 230
J2010−1323 5.22 22.16 GBT 800 499 240 121.7 5.4 8.6 <342 K K
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measured at different frequencies if unremoved. Replacement
of the NG9 empirical white-noise model with our measure-
ments will reduce the number of free parameters in the timing
analysis and should improve overall sensitivity to GWs.

7. CONCLUSIONS

The short-term white-noise model for pulsar timing is well
defined. We have estimated or placed limits on the contribu-
tions of the noise model’s three white-noise components in the
timing residuals of the NANOGrav PTA. The template-fitting
errors are consistent with Equation (5) and dominate TOA
precision for many of the pulsars for many epochs, but
scintillation makes jitter important for the higher S N epochs
and TOAs. We find that the template-fitting and jitter errors can
be estimated with only pulse S N as a parameter. The total
short-term variance needs contemporaneous measurements of
scintillation parameters during observations to properly
estimate the time-varying DISSs contribution. Errors in pulse
polarization calibration, or those errors introduced from
unremoved RFI, will produce extra variance on short time-
scales. Long-term observations spanning multiple epochs will
have extra variance compared to the short-term model due to a
variety of effects that are not included in our analysis.

A large subset of our observed pulsars are jitter-dominated
on many epochs and we have measured jitter values for 22 of
37 pulsars. Major improvements in TOA estimation can
therefore only be made through increased integration time.
For several pulsars, however, DISSs is an important if not
dominant contribution to the residuals. Wideband timing
systems can yield improvements in pulsars with higher DMs
such as PSRs B1937+21, J1600−3053, J1903+0327, and
even moderate-DM pulsars like J2317+1439. Such systems
can also improve the average S/N over all epochs, and
therefore gains in timing precision can still be made for nearly
all of the NANOGrav pulsars.

Jitter appears to be correlated in frequency over each band
but not in time. We find that the rms phase variations from jitter
are of order 1% of the pulse period, though with an extended
tail toward higher values of the jitter parameter kJ. Current
noise models, such as the one used in NG9, utilize an empirical

parameterization that overestimates the rms jitter. Replacement
of model fit parameters with those that can be fixed will
ultimately increase sensitivity of the PTA to GWs.
Future telescopes with increased collecting area and

sensitivity will become jitter- and DISS-noise dominated.
Arrays can therefore be partitioned and pointed at multiple
pulsars simultaneously rather than one after another, providing
longer integration times for each pulsar and increasing the
number of pulses being averaged to reduce the jitter error
contribution. The sub-arrays can be partitioned to minimize
TOA uncertainty per target pulsar using the formalism outlined
here. Wideband timing systems that allow for fine frequency-
and time-resolution are needed to fully characterize scintillation
structures on a per-epoch basis.
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framework, created the modified data set and residuals,
undertook the analysis, and prepared the majority of the text,
figures, and tables. JMC and SC helped with the development
of the framework, the format of figures and tables, and
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observations and developed timing models for the NG9 data
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manian et al. (2015b). JAE developed the noise model in NG9
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Table 2
(Continued)

Pulsar Period DM Telescope Frequency Weff W50 tsub
a S0 nISS Cs Cs+ s Cs- s

(ms) (pc cm−3) (MHz) ( sm ) ( sm ) (s) (ns) (ns) (ns)

GBT 1400 527 247 121.7 1.6 1.0 <631 K K
J2017+0603 2.90 23.92 AO 430 323 62 83.4 4.2 36.1 <1430 K K

AO 1400 242 64 83.4 3.5 1.0 <223 K K
AO 2300 234 61 83.4 2.7 1.3 578 162 157

J2043+1711 2.38 20.71 AO 430 222 35 83.5 5.6 4.3 <269 K K
AO 1400 178 21 83.5 3.6 1.0 <145 K K

J2145−0750 16.05 9.01 GBT 800 1826 395 121.7 48.7 1.0 778 32 32
GBT 1400 1823 339 121.7 14.6 1.0 815 40 40

J2214+3000 3.12 22.56 AO 1400 562 181 82.0 7.1 1.0 682 60 60
AO 2300 551 180 82.0 2.1 1.0 1345 236 237

J2302+4442 5.19 13.76 GBT 800 608 345 128.8 3.2 20.9 <1588 K K
GBT 1400 682 347 128.8 2.0 1.5 <1307 K K

J2317+1439 3.44 21.90 AO 327 395 152 85.7 11.6 3.5 677 71 72
AO 430 392 169 85.7 11.4 2.6 266 58 57
AO 1400 376 152 85.7 9.6 1.0 378 47 48

Note.
a Median subintegration length.
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Table 3
Summary of White Noise Contributions Scaled to 30 Minutes

Pulsar Period DM Telescope S Ns Js DISSs s Rank S/N Rank J Rank DISS Rank Total
(ms) (pc cm−3) (ns) (ns) (ns) (ns)

327 MHz

J2317+1439 3.44 21.90 AO 181 163 114 269 1 1 1 1

430 MHz

J0023+0923 3.05 14.33 AO 313 <90 163 <364 5 6 4 5
J0030+0451 4.87 4.33 AO 737 75 19 742 8 4 1 8
J1640+2224 3.16 18.43 AO 191 49a 189 198a 2 2 7 1
J1741+1351 3.75 24.19 AO 504 <105 208 <556 6 7 8 6
J1853+1303 4.09 30.57 AO 977 <158 218 <1014 9 8 9 9
B1855+09 5.36 13.30 AO 1173 <213 342 <1240 13 9 13 13
J1923+2515 3.79 18.86 AO 996 <249 184 <1043 10 11 6 10
B1937+21 1.56 71.02 AO 5.0 44 278 281 1 1 12 2
J1944+0907 5.18 24.34 AO 1108 317 252 1179 12 12 10 12
B1953+29 6.13 104.58 AO 1051 <217 270 <1106 11 10 11 11
J2017+0603 2.90 23.92 AO 533 <384 167 <678 7 13 5 7
J2043+1711 2.38 20.71 AO 295 <81 89 <318 4 5 2 4
J2317+1439 3.44 21.90 AO 273 64 99 298 3 3 3 3

820 MHz

J0340+4130 3.30 49.58 GBT 478 <181 19 <511 15 15 11 15
J0613−0200 3.06 38.78 GBT 74 <26 27 <83 3 4 13 3
J0645+5158 8.85 18.25 GBT 128 19 14 130 6 1 8 5
J0931−1902 4.64 41.49 GBT 600 <403 9.0 <723 17 17 2 16
J1012+5307 5.26 9.02 GBT 243 <22 9.2 <244 10 2 3 9
J1024−0719 5.16 6.49 GBT 309 <37 12 <311 13 6 6 13
J1455−3330 7.99 13.57 GBT 762 <199 8.5 <788 18 16 1 18
J1600−3053 3.60 52.33 GBT 204 <81a 169 <220a 8 10 17 8
J1614−2230 3.15 34.50 GBT 250 <101 20 <271 11 13 12 10
J1643−1224 4.62 62.41 GBT 223 162a 440 276a 9 14 18 11
J1713+0747 4.57 15.99 GBT 118 91 18 150 5 12 10 6
J1744−1134 4.07 3.14 GBT 102 66 12 122 4 8 5 4
J1909−3744 2.95 10.39 GBT 50 25 13 57 2 3 7 2
J1918−0642 7.65 26.59 GBT 309 <51 18 <314 14 7 9 14
B1937+21 1.56 71.02 GBT 4.8 33 32 47 1 5 16 1
J2010−1323 5.22 22.16 GBT 286 <77 27 <297 12 9 15 12
J2145−0750 16.05 9.01 GBT 161 89 12 184 7 11 4 7
J2302+4442 5.19 13.76 GBT 591 <461 27 <750 16 18 14 17

1400 MHz

J0023+0923 3.05 14.33 AO 142 <43 3.0 <149 16 6 15 12
J0030+0451 4.87 4.33 AO 149 216 0.2 263 18 29 1 21
J0340+4130 3.30 49.58 GBT 229 <935 3.8 <963 23 38 22 38
J0613−0200 3.06 38.78 GBT 247 <62 4.6 <255 24 13 27 19
J0645+5158 8.85 18.25 GBT 292 <87 2.6 <305 29 16 11 24
J0931−1902 4.64 41.49 GBT 327 <221 1.6 <394 31 31 5 29
J1012+5307 5.26 9.02 GBT 295 <145 1.5 <329 30 22 4 27
J1024−0719 5.16 6.49 GBT 568 <145 2.0 <587 36 23 8 35
J1455−3330 7.99 13.57 GBT 503 250 1.4 562 35 32 3 34
J1600−3053 3.60 52.33 GBT 91 <35 34 <104 10 4 36 7
J1614−2230 3.15 34.50 GBT 404 87 3.9 413 33 15 24 31
J1640+2224 3.16 18.43 AO 112 168 3.3 202 13 24 19 14
J1643−1224 4.62 62.41 GBT 204 219 85 311 21 30 38 25
J1713+0747 4.57 15.99 AO 6.4 39 3.2 40 3 5 17 4

GBT 39 51 3.2 65 5 9 18 5
J1738+0333 5.85 33.77 AO 219 103 3.0 243 22 17 14 18
J1741+1351 3.75 24.19 AO 102 59 3.5 117 12 11 21 10
J1744−1134 4.08 3.14 GBT 83 44 2.1 94 9 8 9 6
J1832−0836 2.72 28.18 GBT 79 <281 4.4 <292 8 35 25 22
J1853+1303 4.09 30.57 AO 254 <59 3.9 <261 25 12 23 20
B1855+09 5.36 13.30 AO 69 182 6.3 195 6 25 30 13
J1903+0327 2.15 297.54 AO 158 257a 68 301a 20 33 37 23
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research were carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. TTP was a
student at the National Radio Astronomy Observatory (NRAO)
while this project was undertaken. Data for the project were
collected using the facilities of the NRAO and the Arecibo
Observatory. The NRAO is a facility of the NSF operated
under cooperative agreement by Associated Universities, Inc.

The Arecibo Observatory is operated by SRI International
under a cooperative agreement with the NSF (AST-1100968),
and in alliance with the Ana G. Méndez-Universidad

Table 3
(Continued)

Pulsar Period DM Telescope S Ns Js DISSs s Rank S/N Rank J Rank DISS Rank Total
(ms) (pc cm−3) (ns) (ns) (ns) (ns)

J1909−3744 2.95 10.39 GBT 36 14 2.2 39 4 3 10 3
J1910+1256 4.98 38.06 AO 121 190 9.3 226 14 26 32 16
J1918−0642 7.65 26.59 GBT 451 <144 3.3 <474 34 21 20 33
J1923+2515 3.79 18.86 AO 147 193 3.1 242 17 27 16 17
B1937+21 1.56 71.02 AO 1.6 5.7 10 11 1 1 33 1

GBT 5.9 9.6 13 17 2 2 34 2
J1944+0907 5.18 24.34 AO 258 277 4.4 379 26 34 26 28
J1949+3106 13.14 164.13 AO 344 198 21 398 32 28 35 30
B1953+29 6.13 104.58 AO 276 321 6.4 424 27 36 31 32
J2010−1323 5.22 22.16 GBT 762 <133 5.1 <773 38 19 29 36
J2017+0603 2.90 23.92 AO 132 <54 3.0 <143 15 10 13 11
J2043+1711 2.38 20.71 AO 94 <43 1.3 <104 11 7 2 8
J2145−0750 16.05 9.01 GBT 288 120 2.0 312 28 18 7 26
J2214+3000 3.12 22.56 AO 150 136 2.9 202 19 20 12 15
J2302+4442 5.19 13.76 GBT 713 <349 4.7 <794 37 37 28 37
J2317+1439 3.44 21.90 AO 76 84 1.9 113 7 14 6 9

2300 MHz

J1713+0747 4.57 15.99 AO 31 40 0.9 51 2 2 3 2
J1738+0333 5.85 33.77 AO 414 <71 0.9 <420 7 3 4 5
B1855+09 5.36 13.30 AO 188 <592 2.3 <621 5 8 5 7
J1903+0327 2.15 297.54 AO 155 <563 36 <585 3 7 8 6
J1910+1256 4.98 38.06 AO 280 217 3.6 354 6 5 7 4
B1937+21 1.56 71.02 AO 7.6 23 2.7 25 1 1 6 1
J2017+0603 2.90 23.92 AO 179 148 0.8 232 4 4 2 3
J2214+3000 3.12 22.56 AO 588 287 0.8 654 8 6 1 8

Note.
a When the estimated DISSs is larger than the measured Cs , entries for Js are replaced by the values for Cs . The total residual rms s is set equal to C

2
S N
2s s+ .

Figure 10. Continuous histogram of the jitter parameter k PJ J,1s= . The
shaded regions denote the probability density associated with measured values
(gray) and upper limits (black) of kJ.

Figure 11. Comparison of ECORR from NG9 with jitter values from this work.
Black points denote measurements in both while the gray points mark upper
limits in at least one of the values for a given pulsar/receiver combination. The
diagonal blue line shows where ECORR equals J,30 minutess .
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Metropolitana, and the Universities Space Research
Association.

APPENDIX A
DEVIATIONS FROM THE INITIAL TIMING MODEL

Errors in the initial timing model parameters used for pulse
folding and de-dispersion cause effects that can be separated
into two related categories: an increase in TOA uncertainties
from pulse shape changes on the subintegration timescale tsub,
and correlated TOA errors over the observation duration T. The
quadratic fit of initial timing residuals in Equation (19) will
remove the latter, whereas the former cannot be mitigated after
data collection. In part A.1 we discuss the non-removable pulse
shape changes, in part A.2 we discuss the systematic deviations
from the initial timing residuals that we remove with our
quadratic fit, and in part A.3 we discuss other miscellaneous
effects that can cause departures from the initial timing model.

A.1. Irreversible Pulse Profile Smearing

A.1.1. Spin Period Errors

If the initial folding period is incorrect by an amount Pd ,
pulse profiles will be smeared by an amount

P

P
t . 30P sub ( )s

d
~

For isolated pulsars, the dominant folding error is due to an
error in spin period,
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where the typical error in the initial folding period is 10−16 s
for pulsars in the NANOGrav data set. Note that periods fit
over many years of data are known to much higher precision.

A.1.2. Binary Orbit Parameter Errors

For binary pulsars, the observed pulse period for low-
eccentricity MSPs is Doppler-shifted by an amount (Lorimer &
Kramer 2012)

P
v

c

P

c

a i

P

Pa i

cP

a

a

i

i

P

P

2 sin

2 sin sin

sin
32

P
b

b

b

b

2 2 2

b

( ) ( )⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

s
d p

d

p d d d

~ ~

~ + +



P a i P

a

a

i

i

P

P

72.7 ns sin

sin

sin
33

b

b

b

ms lsec ,day
1

2 2 2( ) ( )⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

d d d

~

´ + +

-

where a is the semimajor axis, i is the inclination angle, and Pb

is the binary orbital period, and we assume that the errors in the
binary parameters are uncorrelated. The error on these three
parameters is much larger than the spin period error, with

i isin sin 10 3( )d ~ - dominating the other two binary error
terms in the NANOGrav initial timing models even when isin
is well-measured. Therefore, for typical pulsar parameters and
when isin is measurable, the profile smearing error will be
comparable to the spin period error but still negligible.

Otherwise, the timing error will be of the order of 10 s of
nanoseconds.

A.1.3. DM Variations

Differences in the initial timing model DM from the actual
DM will cause smearing of pulse profiles. The timing
perturbation is roughly the error in the dispersive delay across
a frequency channel (Cordes 2002):

t 8.3 s DM B , 34DM MHz GHz
3 ( )d m d n-

with DMd measured in units of pc cm 3- . The typical range in
total DM variation in the NANOGrav data set is 10 3~ -

pc cm 3- , which given a 50MHz channel bandwidth and an
observing frequency of 1 GHz, yields a timing perturbation of
∼400 ns. A constant DM over the observation is removed by
the term K ( )n in the timing model fit. Intra-observation DM
variations are discussed later in A.2.2.

A.1.4. Polarization Calibration Errors

Incorrect gain calibration and summation of the polarization
profiles into the intensity profiles will cause pulse shape
changes that lead to TOA uncertainties when fitting with a
template. The TOA error from gain variation for circularly
polarized channels is (Cordes et al. 2004)

t W1 s , 35pol 0.1 V,0.1 0.1ms ( )d m e p~

where g ge d= is the fractional gain error, Vp is the degree of
circular polarization, and W is the pulse width. Timing offsets
from gain calibration errors will vary slowly with time and will
be removed by the quadratic fit discussed in the next sub-
section (see for example A.2.3).

A.2. Systematic Deviations from the Quadratic Fit of Initial
Timing Perturbations

A.2.1. Binary Orbit Parameter Errors

For pulsars in short-period binary orbits, we will need to fit
out higher order terms in t when the period is of order the
integration time over the epoch and the binary parameter errors
are large. The shortest period binary in NG9 is PSR J0023
+0923 with a period of 200 minutes, nearly seven times longer
than the typical total integration time per epoch. The quadratic
fit in Equation (19) will approximate the sinusoidal variations
in TOA offsets introduced by the orbit mis-estimation. The
next dominant polynomial term is the cubic term, with error

T PP b
3

b ( )s~ , where T P 0.15 3.4 10b
3 3 3( ) ~ ~ ´ - for PSR

J0023+0923 and smaller for all other pulsars in the
NANOGrav data set. Therefore, using Equation (33), the error
is negligible.

A.2.2. Ionospheric DM Variations

Changes in DM over short timescales, such as from
ionospheric variations, will cause K ( )n to have time-depen-
dence. The ionospheric DM will vary over the time span of a
day due to the changing incident solar flux on a position on the
Earth’s surface by an amount 3 10 5 ´ - pc cm 3- (Lam
et al. 2015). The timing error is approximately the error in
the dispersive delay across a frequency channel, given by
Equation (34). For a maximum change in DM of 3 10 5´ -

pc cm 3- over a 12 hr period, a 1 hr observing length, a 50MHz
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channel bandwidth, and an observing frequency of 1 GHz, the
timing perturbation is 1» ns. Therefore, over the observing
span, the assumption that K t K,( ) ( )n n» holds.

A.2.3. Cross-coupling Errors

Instrumental self-polarization will cause a slow, secular
variation in the initial timing residuals when unremoved
(Cordes et al. 2004). Cross coupling in the feed will induce a
measured false circular polarization 2V

1 2
Lp h p , where η is

the voltage cross coupling coefficient and Lp is a pulsar’s
degree of linear polarization. While the associated timing errors
can be large, errors introduced by the cross-coupling term will
cause a slow, secular variation in the residuals as the feed
rotates during an observation and will therefore be removed by
our quadratic fit. Estimates of these parameters and the induced
timing uncertainties will be focused on in future papers.

A.2.4. Rotation Measure (RM) Variations

Faraday rotation from magnetic fields along the pulse
propagation path causes both a birefringent TOA delay and
the pulse polarization position angle (PPA) to rotate. Changes
in the rotation measure ( dl n BRM eò= , in units of rad m−2)
over short timescales can come from ionospheric variations as
with DM. The birefringent delay is given as (Cordes 2002)

t 0.18 ns RM 36RM GHz
3 ( )d n= -

and the change in PPA is (Lorimer & Kramer 2012)

RM 0.09 RM . 37PPA
2

GHz
2 ( )l nDY = = -

The RM through the ionosphere is 1 rad m 2~ - with 10%~
variations on the timescale of 1 hr (Sotomayor-Beltran
et al. 2013) and the birefringent delay is therefore negligible
over short timescales. The change in the PPA will cause errors
in the polarization calibration that are slowly varying with time
and therefore removed by the quadratic fit.

A.2.5. Intrinsic Pulsar Spin Noise

Rotational instabilities in the pulsar cause deviations from
the initial timing model with a steep, power-law noise spectrum
over the timescale of years (Cordes 2013). Shannon & Cordes
(2010) measured spin noise in radio pulsars to scale as

Tspin
2.0 0.2s µ  . The pulsar with the largest measured rms spin

noise in the NANOGrav data set is PSR B1937+21, with
1.5 sspins m» over 10 years (Shannon & Cordes 2010; Arzou-

manian et al. 2015b). The rms on the timescale of 1 hr is
∼0.2 fs and is therefore negligible.

A.2.6. Stochastic GW Background

Like intrinsic pulsar spin noise, GW perturbations will also
induce long-term correlations in residuals. However, the rms
timing perturbation from a stochastic GW background of
supermassive black hole binaries over 10 years is on the order
of 100 ns (Siemens 2013). The rms is expected to scale as

TGW
5 3s µ , and therefore on the timescale of 1 hr the rms is

∼0.6 fs and is also negligible.

A.3. Increases in Variance from Other Effects

A.3.1. Frequency-dependent DM

Cordes et al. (2016) describe differences in DM measured at
different frequencies due to multipath scattering in the ISM and
different volumes of electrons probed. The different DMs as a
function of frequency cause differences in the frequency-
dependent delays per channel, K ( )n . However, the timescales
of refractive variations are weeks or longer, and therefore this
effect is negligible on short timescales.

A.3.2. Mean PBF Variations

As with frequency-dependent DM, the changes in PBFs will
occur on a pulsar’s refractive timescale and will therefore be
negligible on a timescale of an hour.

A.3.3. Pulsar Mode Changes

Any potential mode changes may cause timing parameter
differences from the initial timing model. Pulse profile shapes
in our MSPs have not been shown to deviate from the template
over the timespan of single observations and any possible
epoch-to-epoch mode changes are small and will be removed
by our quadratic fit to obtain the short-term timing model
(Equation (19)).

A.3.4. Transient Events

Giant pulses have been seen in pulsars such as PSR
B1937+21 and cause pulse shapes to deviate from the average
template shape (Cognard et al. 1996; Jenet et al. 2001;
Zhuravlev et al. 2013). For PSR B1937+21, giant pulses will
appear at a rate of approximately 0.5 per 10 s pulse average,
which spans 6400» pulse periods. Therefore, the giant pulse
S/N must be a factor of 6400 80~ ~ larger than the average
single-pulse S/N in order to dominate the template matching fit
and significantly alter the estimated TOA. The flux density of
the strongest giant pulse in Zhuravlev et al. (2013) is a factor of
∼3 smaller than the threshold needed to affect the TOA
estimation.

A.3.5. Remaining RFI

Any remaining RFI in the pulse profiles will introduce
unmodeled variance into our analysis. Broadband RFI can
cause correlations between residuals that can increase estimates
of jitter.

APPENDIX B
PDF OF TOA ERRORS DUE TO COMBINED ADDITIVE

NOISE AND ISS MODULATION

The template-fitting error (Equation (5)) can be written in the
form

S

S
. 38S N 0

0 ( )s s=

Again, S is the S/N, proportional to S BTSEFD 2PSR( ) ,
where SPSR is the pulsar flux density, SEFD is the system
equivalent flux density, B is the receiver bandwidth, and T is
the total integration time. The subscript “0” is used to denote
intrinsic values. We assume that S0 is constant, meaning that
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both the pulsar flux density and system parameters are also
constant (see Section 4.2).

We describe changes in S0 with a multiplicative gain factor g
such that S gS0= . The PDF of the scintillation gains due to
DISS with nISS scintles contributing to the measured profile is
given by a chi-squared distribution with n2 ISS degrees of
freedom (Cordes & Chernoff 1997, Appendix B):

f g n
gn

g n
e g . 39g

n
gn

ISS
ISS

ISS

ISS

ISS( ∣ )
( )

( )
( ) ( )=

G
Q-

Unlike DISS, gains from RISS will vary slowly with both time
and frequency. For media that follow a Kolmogorov-type
electron density wavenumber spectrum with small refractive
modulations, DISS and RISS are decoupled in the strong
scattering regime. RISS will have a symmetric PDF if focusing
is not important and can be approximated with a Gaussian
distribution, f g 0,g RISS

2
RISS

( ) ( ) s= with some correlation
time much greater than the observing duration T (Stinebring
et al. 2000). The total gain can be written g g gDISS RISS= .

We can solve for the PDF of scintillated pulse S/Ns under a
change of variables. Equation (39) becomes

f S n f g n
dg

dS
40S gISS ISS( ∣ ) ( ∣ ) ( )=

f
S

S
n

S

1
41g

0
ISS

0
∣ ( )

⎛
⎝⎜

⎞
⎠⎟=

Sn S

S n
e S . 42

n
Sn SISS 0

ISS

ISS
ISS 0

( )
( )

( ) ( )=
G

Q-

We can also quantify the distribution of TOA errors, tD ,
from scintillation. Errors solely from template fitting in the
unscintillated case, t0D , will be normally distributed, written as

f t 0, . 43t S0
2

0 0
( ) ( ) ( ) sD =D

As in Equation (5), we rewrite the rms error is

W

S N
44S N

eff ( )s =
f

W

gS N
45eff

0

( )=
f

g
. 46S0 ( )

s
=

Again, under a change of variables, we can write

f t g f t
d t

d t
47t t 0

0
0

( ∣ ) ( ) ( )D = D
D
DD D

gf g t . 48t0
( ) ( )= DD

For brevity, we will write Z t t0∣ ∣ s= D D . The marginal PDF is
then

f t dg f g f t g 49t g t( ) ( ) ( ∣ ) ( )òD = DD
-¥

¥

D

dg g f g f g t 50g t 00
( ) ( ) ( )ò= D

-¥

¥

D

dg g e g Z g
1

2
exp 51g

S

1

2
2 2

0

( )( ) ( )ò s p
= Q -

-¥

¥
-

dg g e Z g
1

2
exp . 52

S

g

0

1

2
2 2

0

( ) ( )òs p
= -

¥
-

From Gradshteyn et al. (2007), Equation (3.462.1), we have

x e dx e

D

2

2
, Re 0, Re 0, 53

x x

0

1 2 82 2( ) ( )

( )

( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ò b a

g
b

b a

= G

´ > >

a b g a g b

a

¥
- - - -

-

where D x e H x2 2n
n x

n
2 42( ) ( )= - - is the parabolic cylinder

function defined in terms of the Hermite polynomial of order
n, Hn(x). For this calculation, we have n 1,ISSa = +

Z n,1

2
2

ISSb g= = . Thus, we can write

f t n
n

n
Z n

n

Z
D

n

Z

1

2
1

exp
4
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t
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n
n

n

ISS
ISS

ISS

1
ISS
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2
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ISS

0

ISS

ISS
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In the case where n 1ISS = , this reduces to

f t n

Z
Z
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