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ABSTRACT

The on-going Arecibo Pulsar-ALFA (PALFA) survey began in 2004 and is searching for radio pulsars in the
Galactic plane at 1.4 GHz. Here we present a comprehensive description of one of its main data reduction pipelines
that is based on the PRESTO software and includes new interference-excision algorithms and candidate selection
heuristics. This pipeline has been used to discover 40 pulsars, bringing the survey’s discovery total to 144 pulsars.
Of the new discoveries, eight are millisecond pulsars (MSPs; P 10< ms) and one is a Fast Radio Burst (FRB).
This pipeline has also re-detected 188 previously known pulsars, 60 of them previously discovered by the other
PALFA pipelines. We present a novel method for determining the survey sensitivity that accurately takes into
account the effects of interference and red noise: we inject synthetic pulsar signals with various parameters into real
survey observations and then attempt to recover them with our pipeline. We find that the PALFA survey achieves
the sensitivity to MSPs predicted by theoretical models but suffers a degradation for P 100 ms that gradually
becomes up to ∼10 times worse for P 4 s> at DM 150< pc cm−3. We estimate 33 ± 3% of the slower pulsars
are missed, largely due to red noise. A population synthesis analysis using the sensitivity limits we measured
suggests the PALFA survey should have found 224 ± 16 un-recycled pulsars in the data set analyzed, in agreement
with the 241 actually detected. The reduced sensitivity could have implications on estimates of the number of long-
period pulsars in the Galaxy.

Key words: methods: data analysis – pulsars: general

1. INTRODUCTION

Pulsars are rapidly rotating, highly magnetized neutron stars,
the remnants of massive stars after their death in supernova
explosions. They are extremely valuable astronomical tools
with many physical applications that have been used to, for
example, constrain the equation of state of ultra-dense matter
(e.g., Hessels et al. 2006; Demorest et al. 2010), test relativistic
gravity (e.g., Kramer et al. 2006b; Antoniadis et al. 2013),
probe plasma physics within the magnetosphere (e.g., Hankins
et al. 2003; Kramer et al. 2006a; Lyne et al. 2010; Hermsen
et al. 2013), and gain a better understanding of the complete
radio pulsar population (e.g., Faucher-Giguère & Kaspi 2006).
Certain individual pulsar systems are especially well suited to
studying these areas of astrophysics, and thus continued pulsar

surveys to find these rare objects remain an important step of
scientific discovery in the field.
Radio pulsars are found primarily in non-targeted, wide-area

surveys such as the Pulsar-ALFA (PALFA) survey at 1.4 GHz,
which began in 2004 (Cordes et al. 2006). PALFA observa-
tions use the 7-beam Arecibo L-band Feed Array (ALFA)
receiver of the Arecibo Observatory William E. Gordon 305 m
Telescope and focus on the Galactic plane ( b 5∣ ∣ < °) in the two
regions visible with Arecibo, namely the “inner Galaxy” region
(32°  l  77°), and the “outer Galaxy” region (168°  l
 214°).
For the first 5 years, PALFA survey observations were made

using the Wideband Arecibo Pulsar Processor (WAPP), a
3-level auto-correlation spectrometer with 100MHz of
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bandwidth (Dowd et al. 2000). Since 2009, the Mock
spectrometer,21 a 16 bit poly-phase filterbank, has replaced
the WAPP spectrometer as the data-recorder of the PALFA
survey. The Mock spectrometer records two critically sampled,
overlapping 172MHz bands that fully cover the 322MHz
ALFA band. The increased bandwidth, poly-phase filterbank
design, and increased bit-depth of the Mock spectrometer have
increased the sensitivity and robustness to interference of the
PALFA survey. For this reason, we are re-observing regions of
the sky previously observed with the WAPP spectrometers.

The PALFA consortium currently employs two independent
full-resolution data analysis pipelines. The Einstein@Home-
based pipeline (E@H)22 has already been described by Allen
et al. (2013): this pipeline derives its computational power by
aggregating the spare cycles of a global network of PCs and
mobile devices using the BOINC platform,23 and is also
searching data from the PALFA survey for pulsars. In this work
we describe the pipeline based on the PRESTO suite of pulsar
search programs24 (Ransom 2001). In addition to these
pipelines, we also employ a reduced-resolution “Quicklook”
pipeline, which is run on-site at Arecibo shortly after observing
sessions are complete and which enables a more rapid
discovery and confirmation of strong pulsars (Stovall 2013).

As of 2015 March, there have been 144 pulsars discovered in
WAPP and Mock spectrometer observations with the various
PALFA data analysis pipelines. This is already a sizable
increase on the previously known sample25 of 169 Galactic
radio pulsars in the survey region out to b 2∣ ∣ < °, the Galactic
latitude range we have focused on with the Mock
spectrometers.

The relatively high observing frequency and unparalleled
sensitivity of Arecibo, coupled with the high time and
frequency resolution of PALFA ( 65.5 ssampt m and

f 336 kHz,chanD  respectively) make it particularly well
suited for detecting millisecond pulsars (MSPs) deep in the
plane of the Galaxy, such as the distant MSPs reported by
Crawford et al. (2012) and Scholz et al. (2015), the highly
eccentric MSP PSR J1903+0327 (Champion et al. 2008), and
faint, young pulsars (e.g., Hessels et al. 2008). The huge
instantaneous sensitivity of Arecibo enables short integration
times, which has been helpful in detecting relativistic binaries
(e.g., PSR J1906+0746; Lorimer et al. 2006b) by reducing the
deleterious effect of time-varying Doppler shifts of binary
pulsars. The PALFA survey has also proven successful at
detecting transient astronomical signals. For example, the
survey has led to the discovery of several Rotating Radio
Transient pulsars (RRATs; Deneva et al. 2009), as well as FRB
121102, the first Fast Radio Burst (FRB) detected with a
telescope other than the Parkes Radio Telescope (Spitler
et al. 2014).

While PALFA is the most sensitive large-scale survey for
radio pulsars ever conducted, it is not the only on-going radio
pulsar survey. Other major surveys are the HTRU-S (Keith
et al. 2010), HTRU-N (Barr et al. 2013), and SPAN512
(Desvignes et al. 2013) surveys at ∼1.4 GHz, the GBNCC
(Stovall et al. 2014) and AO327 drift (Deneva et al. 2013)

surveys at ∼350MHz, and the LOFAR surveys (Coenen
et al. 2014) at ∼150MHz.
The underlying distributions of the pulsar population can be

estimated using simulation techniques (e.g., Faucher-Giguère
& Kaspi 2006; Lorimer et al. 2006a; Bates et al. 2014). The
large sample of pulsars found in non-targeted surveys are
essential for these simulations. However, for population
analyses to be done accurately, the selection biases of each
survey must be taken into account. While the sensitivity of
pulsar search algorithms is reasonably well understood, the
effect of radio frequency interference (RFI) on pulsar
detectability has not been previously studied in detail.
This paper reports on the current state of PALFA’s primary

search pipeline, its discoveries, and its sensitivity. The rest of
the article is organized as follows: the observing set-up is
summarized in Section 2. The details of the PALFA PRESTO-
based pipeline are described in Section 3. Section 4 reports
basic parameters of the pulsars found with the pipeline, and
Section 5 details how the survey sensitivity is determined,
including a technique involving injecting synthetic pulsars into
the data. These accurate sensitivity limits are used to improve
upon population synthesis analyses in Section 6. The broader
implications of the accurate determination of the survey
sensitivity are presented in Section 7 before the paper is
summarized in Section 8.

2. OBSERVATIONS

The PALFA survey observations have been restricted to the
two regions of the Galactic plane ( b 5∣ ∣ < °) visible from the
Arecibo observatory, the inner Galaxy (32°  l  77°), and the
outer Galaxy (168° l  214°). Integration times are 268 s and
180 s for inner and outer Galaxy observations, respectively.
To optimize the use of telescope resources, the PALFA

survey operates in tandem with other compatible projects using
the ALFA 7-beam receiver. In particular, we have reciprocal
data-sharing agreements with collaborations that search for
galaxies in the optically obscured (“zone of avoidance”)
directions through the Milky Way (Henning et al. 2010) and
recombination-line studies of ionized gas in the Milky Way
(Liu et al. 2013). The PALFA project leads inner Galaxy
observing sessions, whereas our partners lead outer Galaxy
sessions.
For the inner Galaxy region, the pointing strategy has

prioritized observations of the b 2∣ ∣ < ° region before moving
on to the Galactic plane at larger Galactic latitudes. Our
pointing grid densely samples patches of sky out to the ALFA
beam FWHM by interleaving three ALFA pointings (see
Cordes et al. 2006, for more details). In contrast, our
commensal partners have focused outer Galaxy observations
in order to densely sample particular Galactic longitude/
latitude ranges. A sky map showing the pointing positions
observed with the Mock spectrometers can be found in
Figure 1.
Observations conducted with ALFA have a bandwidth of

322MHz centered at 1375MHz. Each of the seven ALFA
beams is split into two overlapping 172MHz sub-bands and
processed independently by the Mock spectrometers.26 The
sub-bands are divided into 512 channels. The data are recorded
with a time resolution of ∼65.5 μs. The observing parameters

21 http://www.naic.edu/~astro/mock.shtml
22 http://einstein.phys.uwm.edu/
23 http://boinc.berkeley.edu/
24 http://www.cv.nrao.edu/~sransom/presto/
25 As listed in the ATNF Pulsar Catalogue: http://www.atnf.csiro.au/
research/pulsar/psrcat (Manchester et al. 2005). 26 http://www.naic.edu/~astro/mock.shtml
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are summarized in Table 1. The data are recorded to disk in
16 bit search-mode PSRFITS format (Hotan et al. 2004).

PALFA survey data have been recorded with the Mock
spectrometers since 2009. However, note that in 2011 our

pointing grid was altered slightly to accommodate our
commensal partners. This required some sky positions to be
re-observed. Prior to 2009, survey observations were recorded
with the WAPPs (see Dowd et al. 2000; Cordes et al. 2006).
The two data recording systems were run in parallel during
2009 to check the consistency and quality of the Mock
spectrometer data.
An unpulsed calibration diode is fired during the first (or

sometimes last) 5–10 s of our integration. While this is
primarily used by our partners, we have found the diode
signals useful in calibrating observations for our sensitivity
analysis (see Section 5.4). The calibration signal is removed
from the data prior to searching (see Section 3.2).
The original 16 bit Mock data files are compressed to have 4

bits per sample. These smaller data files are more efficient to
ship and analyze thanks to reduced disk-space requirements.
The 4 bit data files utilize the scales and offsets fields of the
PSRFITS format to retain information about the bandpass
shape despite the reduced dynamic range. The scales and
offsets are computed and stored for every 1 s sub-integration.
This reduction of bit-depth results in a total loss of only a few
percent in the signal-to-noise ratio (S/N ) of pulsar signals (see
e.g., Kouwenhoven & Voûte 2001).
The converted 4-bit PSRFITS data files are copied to hard

disks, and couriered from Arecibo to Cornell University where
they are archived at the Cornell University Center for
Advanced Computing (CAC). Metadata about each observa-
tion, parsed from the telescope logs and the file headers, are
stored in a dedicated database.
As of 2014 November, a total of 87,689 beams of Mock

spectrometer data have been archived. The break-down of
observed, archived and analyzed sky positions for the two
survey regions is shown in Table 2.

Figure 1. Sky map showing the locations of PALFA observations with the Mock spectrometers, which began in 2009, for the inner and outer Galaxy regions.
Observations up until 2014 December are included. Each position plotted represents the center of the 3-pointing set required to densely sample the area. Positions that
have been only sparsely observed (i.e., 1 of 3 pointing positions observed) are indicated with un-filled circles. Positions with 2 of 3 pointings observed are indicated
with a light-colored filled circle. Positions that have been densely observed (i.e., all 3 pointing positions observed) are indicated with dark-colored filled circles. Red
indicates observations made prior to adjusting our pointing grid at the request of our commensal partners. As a result, some of the sky area covered in early Mock
observations has not been re-observed using the Mocks and the current commensal pointing grid.

Table 1
PALFA Mock Spectrometer Observing Set-up Parameters

Parameter Value

General

Sample Time, sampt (μs) 65.476

Integration Timea, tobs (s) 268 (Inner Galaxy, 32°  l  77°)
180 (Anti-center, 168°  l  214°)

High Sub-band

Number of Channels 512
Low Frequency (MHz) 1364.290
High Frequency (MHz) 1536.016

Low Sub-band

Number of Channels 512
Low Frequency (MHz) 1214.290
High Frequency (MHz) 1386.016

Merged Band

Number of Channels 960
Low Frequency (MHz) 1214.290
Center Frequency (MHz) 1375.489
High Frequency (MHz) 1536.688
Bandwidth, fD (MHz) 322.398
Channel Bandwidth, fchanD (kHz) 335.831

Note.
a This is the integration time remaining after the ∼5–10 s calibration diode
signal is removed (see Section 3.2).
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PALFA observations more than one year old are publicly
available. Small quantities of data can be requested via the
web.27 Access to larger amounts of data is also possible, but
must be coordinated with the collaboration because of the
logistics involved.

Additional details about the data management logistics and
data preparation are in Sections 3.1 and 3.2.

3. PULSAR AND TRANSIENT SEARCH PIPELINE

The PRESTO-based pipeline has been used to search PALFA
observations taken with the Mock spectrometers since mid-
2011 for radio pulsars and transients. All processing is done
using the Guillimin supercomputer of McGill University’s
High Performance Computing center.28

While the pipeline described here was designed specifically
for the PALFA survey, it is sufficiently flexible to serve as a
base for the data reduction pipeline of other surveys. For
example, the SPAN512 survey being undertaken at the Nançay
Radio Telescope uses a version of the PALFA
PRESTO pipeline described here tuned to their specific needs
(Desvignes et al. 2013). The PALFA pipeline source code is
publicly available online.29

Since the analysis began with the pipeline, there have been
several major improvements, primarily focusing on ameliorat-
ing its robustness in the presence of RFI (Section 3.4), as well
as post-processing algorithms for identifying the best pulsar
candidates (Section 3.5). The PALFA consortium is constantly
monitoring the performance of the pipeline and the RFI
environment at Arecibo (as described later, RFI is one of the
major challenges), and looking for ways to further improve the
analysis. Here we report on the state of the software as of
early-2015.

The pipeline overview presented here is grouped into logical
components. In Section 3.1 we outline the significant data
tracking and processing logistics required to automate the
analysis. In Section 3.2 we detail the data file preparation
required before searching an observation. In Section 3.3 we
describe the techniques used to search for periodic and
impulsive pulsar signals. In Section 3.4 we summarize the

various complementary stages of RFI identification and
mitigation. Finally, in Sections 3.5 and 3.6 we outline the
tools used to help select and view pulsar candidates, as well as
other on-line collaborative facilities used by the PALFA
consortium.
Figure 2 shows a flowchart summarizing the stages of the

pipeline.

3.1. Logistics

The PALFA search pipeline is designed to be almost entirely
automated. This includes the logistics of data management
required to maintain the analysis of ∼1000 beams on the
Guillimin supercomputer at any given time. This is accom-
plished with a job-tracker database that maintains the status of
processes that are downloading raw data, reducing data, and
uploading results.
The pipeline is configured to continually request and

download raw data that have not been processed and delete
the local copies of files that have been successfully analyzed.
Data files are copied to McGill via FTP from the Cornell
University CAC. The multithreaded data transfers from the
CAC to McGill are sufficiently fast to maintain 1000–2000
jobs running simultaneously.
When the transfer of an observation is complete, job entries

are created in the pipeline’s job-tracker database. As compute
resources become available, jobs are automatically submitted to
the supercomputer’s queue.
When jobs terminate, the pipeline checks for results and

errors. Failed jobs are automatically re-submitted up to three
times to allow for occasional hiccups of the Guillimin task
management system, or processing node glitches. If all three
processing attempts result in failure, the observation is flagged
to be dealt with manually. Observations that are salvageable are
re-processed after fixes are applied. The positions of un-
salvageable observations are re-inserted into the observing
schedule, along with those from observations severely
contaminated with RFI. Observations may be un-salvageable
if they are aborted scans, contain malformed metadata, or their
files have become corrupted. Only ∼0.15% of all observations
have data files that cannot be searched, and only ∼4.5% of all
observations are flagged to be re-observed due to exces-
sive RFI.

Table 2
Breakdown of PALFA Mock Spectrometer Data

No. Beamsa No. Unique Sky Coverage Completenessb, b∣ ∣ < 2° Completenessb, b∣ ∣ < 5°
Sky Positions (sq. deg.) (%) (%)

Inner Galaxy (32°  l  77°)

Observed 40705 38479 94 69 32
Archived 35030 33243 81 60 27
Analyzed 33888 32499 80 58 27

Anti-center (168°  l  214°)

Observed 60305 26194 64 30 18
Archived 52659 21990 54 23 15
Analyzed 51445 21899 54 23 15

Notes. Including observations up until 2014 December.
a There are 7 beams per pointing.
b The completeness percentages are relative to the number of pointings we aim to eventually cover with the Mock spectrometers.

27 http://arecibo.tc.cornell.edu/PalfaDataPublic
28 http://www.hpc.mcgill.ca/
29 https://github.com/plazar/pipeline2.0
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The results from successfully processed jobs are parsed and
uploaded to a database at the CAC, and the local copies of the
data files are removed to free disk space enabling more
observations to be requested, downloaded, and analyzed.

The inspection of uploaded results is done with the aid of a
web-application (see Section 3.6).

3.2. Pre-processing

Before analyzing the data for astrophysical signals, the
two Mock sub-bands must be combined into a single
PSRFITS file. Each of the two Mock data files have 512
frequency channels, 66 of which are overlapping with the other
file. For each sub-integration of the observation, the 478 low-
frequency channels from the bottom sub-band and the 480
high-frequency channels from the top sub-band are extracted,
concatenated together—along with two extra, empty frequency
channels—for each sample, and written into a new full-band
data file, consisting of 960 channels. The choice to discard part
of both bands was made in order to mitigate the effect of the
reduced sensitivity at the extremities of the Mock sub-bands,
which causes a slight reduction of sensitivity where they are
joined together.

The PSRFITS scales and offsets of the Mock sub-bands are
adjusted such that the data value levels of top and bottom bands
are appropriately weighted with respect to each other.

The combining of the two Mock sub-bands is performed
using combine_mocks of psrfits_utils.30

Next, the sub-integrations containing the calibration diode
signal are deleted from the observation. The start time and
length of the observation are updated accordingly.

At this stage, prior to searching for periodic and impulsive
signals, PRESTO’s rfifind is run on the merged observation to
generate an RFI mask. See Section 3.4.2 for details.

3.3. Searching Components

We will now cover the various steps required to search for
pulsars and transients.

3.3.1. Dedispersion

Because the DMs of yet-undiscovered pulsars and transients
are not known in advance, a wide range of trial DMs must be
used to maintain sensitivity to pulsars. For each trial DM value
a dedispersed time series is produced by shifting the frequency
channels according to the assumed DM value and then
summing over frequency. When generating these time series,
the motion of the Earth around the Sun is removed so that the
arrival times of each sample are referenced to the Solar System
barycenter, assuming the coordinates of the beam center.
The PALFA PRESTO pipeline searches observations for

periodic and impulsive signals up to a DM of
∼ 10,000 pc cm−3. We search to such high DMs despite the
maximum DM in our survey region predicted by the
NE2001model being ∼1350 pc cm−3 (Cordes & Lazio
2002) to ensure sensitivity to highly dispersed, potentially
extragalactic FRBs (e.g., Thornton et al. 2013; Spitler
et al. 2014).
A dedispersion plan is determined by balancing the various

contributions to pulse broadening that can be controlled:
the duration of each sample (including down-sampling), ;sampt
the dispersive smearing within a single channel, ;chant the
dispersive smearing within a single sub-band due to approx-
imating the DM, ;subt and the dispersive smearing across the
entire observing band due to the finite DM step size (i.e., if the
DM of the pulsar is half-way between two DM trials), .BWt
Additionally, pulses are broadened by interstellar scattering,

,scattt which cannot be removed. The amount of scatter-
broadening scales with the DM, observing frequency and line
of sight. Bhat et al. (2004) empirically determined the

Figure 2. Overview of the PALFA survey’s PRESTO-based pipeline. The color of each element reflects the category of the step: searching is blue; RFI mitigation is
red; data storage and databases are purple; miscellaneous processes are yellow. Additional details about each pipeline stage can be found in the sections listed in
each box.

30 https://github.com/scottransom/psrfits_utils
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relationship as

log 6.46 0.154 log DM

1.07 log DM 3.86 log , 1
scatt

2( ) ( )
t

n
=- +

+ -

where scattt is given in ms, and ν is the observing frequency in
GHz. Even for the same DM, log scattt are different for pulsars
in different locations with a scatter of up to 2–3 orders of
magnitude (Bhat et al. 2004). Because scattt cannot (in practice)
be corrected, we ignore it when determining our dedisper-
sion plan.

The total correctable pulse broadening, ,tott is estimated by
summing the first four contributions in quadrature,

. 2tot samp
2

chan
2

sub
2

BW
2 ( )t t t t t= + + +

All of these broadening terms vary with DM. The dedispersion
plan is chosen to equate these four broadening effects roughly
by adjusting the DM step-size and down-sampling factor as a

function of DM. To reduce the number of DM trials, the
minimum step-size is determined by 0.1BWt > ms.
The PALFA survey dedispersion plan for Mock spectro-

meter data was determined with a version of PRESTO’s
DDplan.pymodified to allow for non-power-of-two down-
sampling factors, and is shown in Table 3. The down-sampling
factors are selected to be divisors of the number of spectra per
sub-integration, 15,270. The amount of dispersive smearing
incurred at the middle of the observing band, ∼1375MHz,
when using the dedispersion plan in Table 3, ranges from
∼ 0.1 ms for the lowest DMs, to ∼ 1 ms for DMs of a few
100 pc cm−3, increasing to ∼ 10 ms for a DM of
∼ 10,000 pc cm−3. Above a DM of ∼ 500 pc cm−3 scattering
begins to dominate (see Figure 3).
The more aggressive down-sampling at higher DMs has the

advantage of reducing the data size, making the analysis more
efficient. Also, at higher DMs the step-size between successive
DM trials is increased, further reducing the amount of
processing. Therefore, the extra computing required to go to

Table 3
Dedispersion Plan for Mock Spectrometer Data

DM Range DM Step Size No. DMs No. Sub-bands Sub-band DM Spacing Down-sample Factor Approx. Computing
(pc cm−3) (pc cm−3) (pc cm−3) (%)

0–212.8 0.1 2128 96 7.6 1 73.19
212.8–443.2 0.3 768 96 19.2 2 12.20
443.2–534.4 0.3 304 96 22.8 3 8.13
534.4–876.4 0.5 684 96 38.0 5 2.93
876.4–990.4 0.5 228 96 38.0 6 2.44
990.4–1826.4 1.0 836 96 76.0 10 0.73
1826.4–3266.4 2.0 720 96 144.0 15 0.24
3266.4–5546.4 3.0 760 96 228.0 30 0.08
5546.4–9866.4 5.0 864 96 360.0 30 0.05

Note. See also Figure 3 for the pulse broadening as a function of DM due to dispersive smearing and this dedispersion plan.

Figure 3. Pulse broadening from down-sampling, and dispersive DM smearing for the dedispersion plan generated by DDplan.py shown in Table 3 (gray), as well
as the optimal case (dashed black) where neither down-sampling nor smearing from DM errors are included. The optimal case including interstellar scattering is shown
(with 1 order of magnitude; thin dashed black) assuming the empirical scattering dependence on DM of Bhat et al. (2004). While this dependence is likely
reasonable for estimating the scattering of Galactic sources, it is likely to grossly overestimate the scattering of extragalactic sources (e.g., FRBs). In all cases, the
middle of the observing band is assumed (∼1375 MHz). Discontinuities are due to down sampling. The horizontal lines (red) show the down sampled time resolution
at various DMs.
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high DMs is relatively small compared to what is required to
search for pulsars and transients at low DMs. Searching DMs
between 1000 and 10,000 pc cm−3 adds only ∼5% the total
data analysis time.

Dedispersion is done with PRESTO’s prepsubband,
passing through the raw data 99 times, and resulting in 7292
dedispersed time series. In all cases prepsubband internally
uses 96 sub-bands, each of 10MHz, for its two-stage sub-band
dedispersion process. Time intervals containing strong impul-
sive RFI are removed by prepsubband, as prescribed by a
RFI mask (see Section 3.4.2).

A second set of dedispersed time series are created as before,
but also applying a version of the zero-DM filtering technique
described by Eatough et al. (2009) that has been augmented to
use the bandpass shape when removing the zero-DM signal
from each channel. These zero-DM filtered time series are
especially useful for single-pulse searching, which is described
in Section 3.3.3. See Section 3.4.3 for details on time-domain
RFI mitigation strategies used.

Dedispersion makes up roughly 15%–20% of the proces-
sing time.

3.3.2. Periodicity Searching

For every dedispersed time series, the discrete Fourier
transform (DFT) is computed using PRESTO’s realfft.
Prior to searching the DFT for peaks, it is normalized to have
unit mean and variance. The normalization algorithm is
designed mainly to suppress red noise (i.e., low-frequency
trends in the time series; for more details see Section 3.4.4).
Also, Fourier bins likely to contain interference are replaced
with the median-value of nearby bins. Details of the algorithm
used to determine RFI-prone frequencies are described in
Section 3.4.5.

Two separate searches of the DFT are conducted using
PRESTO’s accelsearch. Both searches identify peaks in
the DFT down to a frequency of 0.125 Hz.

The first, zero-acceleration, search is tuned to identify
isolated pulsars. The power spectrum of the signal from an
isolated pulsar will consist of narrow peaks at the rotational
frequency of the pulsar and at harmonically related frequencies.
The number of significant harmonics depends on the width of
the pulse profile, W, and the spin period, P, as N P W .harm ~
To improve the significance of narrow signals, power from
harmonics is summed with that of the fundamental frequency.
The zero-acceleration search sums up to 16 harmonics,
including the odd harmonics, in powers of 2 (i.e., 1, 2, 4, 8,
16 harmonics). For signals with significant higher harmonics,
this harmonic summing procedure also improves the precision
of the detected frequency.

The second, high-acceleration, search is optimized to find
pulsars in binary systems. The time-varying line of sight
velocity of such pulsars gives rise to a Doppler shift that varies
over the course of an observation. This smears the signal over
multiple bins in the Fourier domain. To recover sensitivity to
binary pulsars we use the Fourier-domain acceleration search
technique described in Ransom et al. (2002). In short, the high-
acceleration search performs matched-filtering on the DFT
using a series of templates each corresponding to a different
constant acceleration. We search using templates up to 50
Fourier bins wide, which corresponds to a maximum accelera-
tion of ∼ 1650 m s−2 for a 5-minute observation of a 10-ms
pulsar. Only up to 8 harmonics are summed in the high-

acceleration case because of its larger computational
requirements.
For each of the periodic signal candidates identified in both

the zero- and high-acceleration searches we interpolate the
frequency and frequency derivative (i.e., acceleration) to
optimize the harmonics. We then normalize the harmonics,
and compute the equivalent Gaussian significance of the
candidate, Fs , based on the probability of seeing a noise value
with the same amount of incoherently summed power (see
Ransom et al. 2002, for details). The zero- and high-
acceleration candidate information is saved to separate lists
for later post-processing. We record information candidates
with 2Fs > for the zero-acceleration search. For the high-
acceleration search we use a slightly larger threshold of 3Fs >
to partially compensate for the increased number of trials.
However, due to the large number of candidates resulting from
searching all DM trials, we only consider those with 6Fs >
for folding (see Section 3.3.4 for details).
Typically, the zero-acceleration and high-acceleration

searches make up between 2–5% and ∼30% of the overall
computation time, respectively.

3.3.3. Single Pulse Searching

Each dedispersed time series is also searched with PRE-
STO’s single_pulse_search.py for impulsive signals
with a matched-filtering technique (e.g., Cordes & McLaughlin
2003). Prior to searching, the time series is detrended by
subtracting the linear slope from each 1000-sample block. The
standard deviation of each block, blocks is estimated.31 To
identify single pulse candidates, multiple box-car templates
corresponding to a range of durations up to 0.1 s are used.32

Candidate single-pulse events at brighter than 5 blocks are
recorded. Diagnostic plots featuring only >6 blocks candidate
events are generated and archived for later viewing. In addition
to the basic diagnostic plots, all of the >5 blocks events are used
in post-processing algorithms designed to distinguish astro-
physical signals (e.g., from pulsars/RRATs and extragalactic
FRBs) from RFI and noise. The algorithms employed by
PALFA are described elsewhere (Spitler 2013; Karako-Arga-
man et al. 2015).
The same searching and post-processing procedure is also

applied to zero-DM filtered time series. To filter the data, we
employ an enhanced version of what was originally described
in Eatough et al. (2009). See Section 3.4.3 for more details
about the time-domain RFI-mitigation techniques used.
The single-pulse searching makes up approximately 20% of

the computing time.

3.3.4. Sifting

As described above, the output of periodicity searching is a
set of files, the zero- and high-acceleration candidate lists for
each DM trial, containing the frequency of significant peaks
found in the Fourier transformed time series, along with other
information about the candidate. In total, for all DMs, there are
typically 104~ period-DM pairs per beam. These signal

31 In single_pulse_search.py, the standard deviation calculation
excludes the 2.5% largest values and the 2.5% smallest values in the block.
The standard deviation is corrected for the discarded data assuming the
remaining values are Gaussian distributed.
32 The possible widths of the templates are 1, 2, 3, 4, 6, 9, 14, 20, 30, 45, 70,
100, 150, 220, 300 bins. The largest template used depends on the resolution of
the time series and the 0.1< s restriction.
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candidates are sifted to identify the most promising pulsar
candidates, match harmonically related signals, and reject RFI-
like signals.

The first stage of the sifting process is to remove short-period
candidate signals (P 0.5< ms), which contribute a large
number of false-positives, as well as to ensure no candidate
signals with periods longer than the limit of our search (P 15>
s) are present. Weak candidates with Fourier-domain signifi-
cances 6Fs < are also removed. Furthermore, candidates with
weak or strange harmonic powers are rejected if they match one
of the following cases: (1) the candidate has no harmonics
whose power is at least 8 times larger than the local power
spectrum level; (2) the candidate has  8 harmonics and is
dominated by a high harmonic (fourth33 or higher), having at
least twice as much power as the next-strongest harmonic; (3)
the candidate has 4 harmonics and is dominated by a high
harmonic (third or higher), having at least three times as much
power as the next-strongest harmonic.

The next stage of sifting is to group together candidates with
similar periods (at most 1.1 Fourier bins apart) found in
different DM trials. When a duplicate period is found, the less
significant candidate is removed from the main list, and its DM
is appended to a list of DMs where the stronger candidate was
detected.

At this stage, for each periodic signal, there is a list of DMs
at which it was detected. The next step is to purge candidates
with suspect DM detections. Specifically, candidates not
detected at multiple DMs, candidates that were most strongly
detected at DM � 2 pc cm−3, and candidates that were not
detected in consecutive DM trials are all removed from
subsequent consideration.

The steps described above are applied separately to
candidates found in the zero- and high-acceleration searches.
At this point, the two candidate lists are merged, and signals
harmonically related to a stronger candidate are removed from
the list. This process checks for a conservative set of integer
harmonics, and small integer ratios between the signal
frequencies. As a result, some harmonically related signals
are occasionally retained in the final candidate list.

The sifting process typically results in ∼200 good candidates
per beam, of which 100~ are above the significance threshold
for folding. The fraction of time spent on candidate sifting is
negligible ( 0.1%< ) compared to the rest of the pipeline.

3.3.5. Folding

The raw data are folded for each periodicity candidate with
6F s remaining after the sifting procedure using PRESTO’s

prepfold. At most 200 candidates are folded for each beam.
In more than 99% of cases this limit is sufficient to fold all

6F s candidates. If too many candidates have 6,F s the
candidates with largest Fs are folded.

After folding, prepfold performs a limited search over
period, period-derivative, and DM to maximize the significance
of the candidate. However, for candidates with P 50> ms the
search over DM is excluded because it is prone to selecting a
strong RFI signal at low DM even if there is a pulsar signal
present. Furthermore, the optimization of the period-derivative
is also excluded for P 500> ms candidates.

For each folded candidate a diagnostic plot is generated (see
Ransom 2001, for examples). These plots, along with basic
information about the candidate (optimized parameters,
significance, etc.) are placed in the PALFA processing results
database, hosted at the Cornell CAC. The prepfold binary
output files generated for each fold are also archived at Cornell.
The binary output files created by prepfold are used by a

candidate-ranking artificial intelligence (AI) system, as well as
to calculate heuristics for candidate sorting algorithms. Details
can be found in Section 3.5.
Folding the raw data for up to 200 candidates per beam is a

considerable fraction (∼25%) of the overall computing time.

3.4. RFI-mitigation Components

The sensitivity of Arecibo and PALFA can only be fully
realized if interference signals in the data are identified and
removed. To work toward this goal, the PALFA pipeline
includes multiple levels of RFI excision. Each algorithm is
designed to detect and mitigate a different type of terrestrial
signal. Because these interference signals are terrestrial they are
not expected to show the f1 2 frequency sweep characteristic
of interstellar signals. Unfortunately, some terrestrial signals
show broadband frequency sweeps that cannot be distinguished
from astronomical signals by data analysis pipelines (e.g.,
“perytons” Burke-Spolaor et al. 2011; Petroff et al. 2015).
Despite some non-astronomical signals remaining in the data,
the suite of RFI-mitigation techniques described here are an
essential part of the pipeline.
All of the algorithms described here are applied to non-

dedispersed, topocentric data.

3.4.1. Removal of Site-specific RFI

Unfortunately, some of the electronics hardware at the
Arecibo Observatory, specifically the ALFA bias monitoring
system,34 introduced strong periodic interference into our data.
By the time the source of the interference was determined
several months of observations had been affected. Fortunately,
we were able to develop a finely tuned algorithm to excise the
signal using our knowledge of the sub-pulse structure to
identify and remove these intense bursts of interference. The
removed sections of data are replaced with a running median,
which is computed separately for each ∼1 s block of data.
Finely tuned algorithms such as this one have the advantage of
more easily identifying specific RFI signals and only extracting
the affected data. In this particular case, each 1 s burst of RFI is
made up of a comb of ∼10 ms-long sub-pulses repeated every
∼50 ms. By removing these bursts, our algorithm largely
eliminates the broad peaks in the Fourier domain that are
introduced by the pernicious electronics, typically between 1
and 1000 Hz (i.e., exactly where we expect pulsars to be
found). See Figure 4 for an example. Furthermore, by removing
the interference pulses in the time domain, the power spectrum
is cleaned without sacrificing any intervals of the Fourier
domain, as would be the case with the zapping algorithm
described in Section 3.4.5.
Because the equipment causing the bursts of interference in

our observations is not essential to data taking we have been
able to shut it off during PALFA sessions.

33 We number harmonics such that the frequency of the Nth harmonic is N
times larger than the fundamental frequency.

34 The ALFA bias monitoring system measures the amplifier bias voltages, as
well as other systems in the dewars, including temperatures, currents, and
voltages.
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3.4.2. Narrow-band Masking

Every observation is examined for narrow-band RFI signals
using PRESTO’s rfifind, which considers 2 s long blocks of
data in each frequency channel separately. For each block of
data two time-domain statistics are computed: the mean of the
block data value, and the standard deviation of the block data
values. Also, one Fourier-domain statistic is computed for each
block: the maximum value in the power spectrum. Blocks
where the value of one or more of these three statistics is
sufficiently far from the mean of its respective distribution are
flagged as containing RFI. For the two time-domain metrics, in
the PALFA survey the threshold for flagging a block is 10
standard deviations from the mean of the distribution, and for
the Fourier-domain metric, the threshold is 4 standard
deviations from the mean. The resulting list of flagged blocks
is used to mask out RFI. Masked blocks are filled with constant
data values chosen to match the median bandpass of that time
interval. Sub-integrations that are at least 70% masked are
completely replaced. Similarly, channels that are more than
30% masked are completely replaced with zeros.

On average, only ∼5.75% of time-frequency space is
masked by this algorithm, and ∼93% of observations have
mask-fractions less than 10%. Having a mask-fraction larger
than 15% is one of the conditions used to identify observations
that will be re-inserted into the list of sky positions to observe.
Only ∼1.1% of observations fall into this category.

The fraction of data masked for each beam, and a graphical
representation of the mask are stored in the results database as
diagnostics of the observation quality.

Generating the rfifindmask makes up only ∼1% of the total
pipeline running time.

3.4.3. Time-domain Clipping and Filtering

It is possible for broad-band impulsive interference signals to
be missed by the masking procedure described above if the
signals are not sufficiently strong to be detected in individual
channels. Fortunately, the PALFA pipeline makes use of a
complementary algorithm designed to remove such signals
from the data: a list of bad time intervals is determined by
identifying samples in the DM = 0 pc cm−3 time series that are
significantly larger ( 6 locs> ) than the surrounding data samples.
The spectra corresponding to the bad time intervals are
replaced by the local median bandpass.
As previously mentioned, for single-pulse searching, the

PALFA pipeline also applies the PRESTO-implementation of
the zero-DM filtering technique described in Eatough et al.
(2009). This implementation enhances the original prescription
by using the bandpass shape as weights when removing the
DM = 0 pc cm−3 signal. The zero-DM filter greatly reduces the
impact of RFI on single-pulse searching, facilitating low-DM
RRATs being distinguished from RFI. To illustrate the benefits
of zero-DM filtering, Figure 5 shows a comparison of the
single-pulse events identified by single_pulse_search.
py in an observation of PSR J1908+0734 with and without
filtering.

3.4.4. Red-noise Suppression

In order to properly normalize the power spectrum and
compute more correct false-alarm probabilities (see Ransom
et al. 2002), we use a power spectrum whitening technique to
suppress frequency-dependent, and in particular “red” noise.

Figure 4. Example of the effect of the bursts of interference caused by some of
the electronics equipment at the Arecibo Observatory on PALFA survey data in
time and frequency domain (labeled “Before”) and the same interval of time
series and power spectrum after our finely tuned removal algorithm, described
in Section 3.4.1, is applied (labeled “After”). Part of the time series is
sacrificed, but the broad features in the frequency domain are completely
removed. The RFI peak at 60 Hz that remains in the bottom panel is caused by
the electrical mains and is later removed by zapping intervals of the power
spectrum (described in Section 3.4.5). The source of this interference signal has
been identified and can be dealt with by shutting it off during PALFA
observations. The linear slope in the power spectrum is due to red noise in the
PALFA data. The effect of red noise is discussed in Sections 6 and 7.

Figure 5. Comparison of single-pulse events detected in a PALFA observation
of PSR J1908+0734 in a search of the un-filtered time series (top) and the zero-
DM filtered time series (bottom). Each circle represents the time and DM of an
impulsive signal found by PRESTO’s single_pulse_search.py. The
size of the circle is proportional to the significance of the signal (up to a
maximum radius). Most of the RFI is filtered out of the observation by the zero-
DM algorithm while leaving the pulsar pulses, albeit with some loss of
significance at the lower DMs (see Eatough et al. 2009, for a discussion). Thus,
the zero-DM filtering technique makes it far easier to disentangle astrophysical
signal at non-zero DMs from RFI at DM = 0 pc cm−3 both by eye and
algorithmically. The pulsar’s DM = 11 pc cm−3 is indicated with the dashed
red line.
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The median power level is measured in blocks of Fourier
frequency bins and then divided by log 2 to convert the median
level to an equivalent mean level assuming that the powers are
distributed exponentially (i.e., 2c with 2 degrees-of-freedom).

The number of Fourier frequency bins per block is
determined by the log of the starting Fourier frequency bin,
beginning with 6 bins and increasing to approximately 40 bins
by a frequency of 6 Hz. Above that frequency, where there is
little to no “colored” noise, block sizes of 100 bins are used.
The resulting filtered power spectrum has unit mean and
variance. This process is accomplished with PRESTO’s
rednoise program.

3.4.5. Fourier-domain Zapping

Sufficiently bright periodic sources of RFI can be mistakenly
identified as pulsar candidates by our FFT search. To excise, or
zap, these signals from our data we tabulate frequency ranges
often contaminated by RFI. The Fourier bins contained in this
zap list are replaced by the average of nearby bins prior to
searching.

The RFI environment at Arecibo is variable. The number,
location, and width of interference peaks in the Fourier
transform of DM = 0 pc cm−3 time series vary on a timescale
of months to years. To demonstrate this, the fraction of Fourier
bins occupied by RFI as a function of epoch is illustrated in
Figure 6. The median fraction of the Fourier spectrum occupied
by RFI for all Mock spectrometer data for various intervals is:
2.9% (0–10 Hz), 5.1% (10–100 Hz), and 0.5% (100–1000 Hz).
To account for this dynamic nature of the RFI, we compute zap
lists for each MJD.

To compute zap lists we exploit the fact that RFI signals are
typically detected by multiple feeds in a single 5 minute
pointing, or persist for most of an observing session (typically
1–3 hr). The strategy we employ here is similar to what was
used in the Parkes Multibeam Pulsar Survey (Manchester

et al. 2001). Fourier bins contaminated by RFI are determined
by finding peaks in a median power spectrum, which is
comprised of the bin-wise median of multiple
DM = 0 pc cm−3 power spectra. This is done twice, using
two different subsets of data: (a) all observations made with a
given ALFA feed on a given day (to identify RFI signals that
persist for multiple hours, or issues specific to the ALFA
receiver), and (b) all seven observations from a given pointing
(to identify shorter-duration periodic RFI signals that enter
multiple feeds). The zap list for any given observation is the
union of the lists for its pointing and its feed.
Observations whose power spectra are more than 8%

occupied by RFI are flagged for re-observation. Roughly 3%
of observations meet this criterion.
With the advent of sophisticated candidate ranking and

candidate classifying machine-learning algorithms (see
Section 3.5), it is better to leave some RFI in the data than to
remove large swaths of the Fourier domain. To avoid excessive
zapping we remove at most 3% from each frequency decade,
up to a maximum of 1% globally, preferentially zapping bins
containing the brightest RFI.
In addition to being an essential part of the PALFA RFI-

mitigation strategy, zap lists have also proven to be a useful
diagnostic for monitoring the RFI environment at Arecibo.

3.5. Post-processing Components

3.5.1. Ratings

A series of 19 heuristic ratings are computed for each folded
periodicity candidate produced by the data analysis pipeline.
These ratings encapsulate information about the shape of the
profile, the persistence and broadbandedness of the signal,
whether the frequency of the signal is particularly RFI-prone,
and whether the signal is stronger at DM = 0 pc cm−3. Each of
the ratings is uploaded to the results database, and is available
for querying and sorting candidates (see Section 3.6). The
ratings and brief descriptions are presented in Table 4.
The ratings are incorporated into candidate-selection queries

along with standard parameters such as period, DM, and
various measures of time-domain and frequency-domain
significance. Using ratings in this way allows users to constrain
the candidates they view to have certain features they would
require when selecting promising candidates by eye. Alter-
natively, the ratings have been used in a decision-tree-based AI
algorithm, but this has since been supplanted by the more
sophisticated “Pulsar Image-based Classification System
(PICS)” algorithm described in Section 3.5.2 (Zhu et al. 2014).
The code to compute the ratings35 is compatible with the

binary files produced by PRESTO’s prepfold for each
periodicity candidate. For each candidate a text file is written
containing the name, version, description, and value for all
ratings being computed. This task is performed as part of the
data analysis pipeline. The rating information is later uploaded
to the results database. In cases where a new rating is devised,
or an existing rating is modified, the prepfold binary files
are fetched from the results archive, ratings are computed in a
stand-alone process (i.e., independent of the pipeline), and the
values are inserted into the database. The values of improved
ratings are inserted alongside values from old versions to
permit detailed comparisons.

Figure 6. Median percentage of the Fourier domain occupied by RFI in three
frequency ranges for 50-day intervals (solid lines) compared against the median
percentage for all observations (dashed lines). Many periodic sources of RFI
are found to vary on daily timescales. Thus, lists of RFI-contaminated Fourier
frequencies to be removed from the power spectrum prior to searching are
tailored to the RFI of each MJD. The increase in RFI in the middle panel
between MJD 55750 and 56100 was due to on-site electronics at the telescope,
which since being identified in 2012 June (MJD 56100 ) have nearly always
been turned off during PALFA observations, significantly reducing the RFI in
the 10–100 Hz interval.

35 Available at https://github.com/plazar/ratings2.0.
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3.5.2. Machine Learning Candidate Selection

All periodicity candidates are also assessed by the PICS
(Zhu et al. 2014), an image-pattern-recognition-based
machine-learning system for selecting pulsar-like candidates.
The PICS deep neural network enables it to recognize
and learn patterns directly from 2D diagnostic images
produced for every periodicity pulsar candidate. The large
variety of pulsar candidates used to train PICS has
developed its ability to recognize both pulsars and their
harmonics.

PICS can reduce the number of candidates to be inspected by
human experts by a factor of ∼100 while still identifying 100%
of pulsars and 94% of harmonics to the top 1% of all candidates
(Zhu et al. 2014).

Since late 2013, PICS has been integrated directly into the
PALFA processing pipeline. It produces a single rating for each
candidate, which is uploaded into the results database as a
rating (see Section 3.5.1). So far, this has aided in the discovery
of 8 pulsars (see Section 4).

3.5.3. Coincidence Matching

While PALFA has been successful at finding moderately
bright MSPs, the vast quantity of periodicity candidates close
to the detection threshold at very short periods (2 ms) have
made it more challenging to identify the faint MSPs in the
PALFA results database. To facilitate the process, a search for
signals with compatible periods, DMs, and sky positions has
been performed on the periodicity candidates in the database.
By applying our coincidence matching algorithm to the
complete list of folded candidates we are able to reliably
probe lower S/Ns than would be reasonable to do thoroughly
by manual viewing. This algorithm is complementary to our
machine learning technique that operates on each candidate
individually. The software developed to find matching
candidates is available on the web for general use.36

Large parts of the survey region have either been observed
more than once or have been densely sampled (see Figure 1),

Table 4
Heuristic Candidate Ratings

Rating Description

Profile Ratingsa

Duty Cycle Fraction of profile bins larger than half the maximum value of the profile
Peak Over rms Maximum value of the profile divided by the RMS

Profile Ratings (Gaussian Fitting)a

Amplitude Amplitude of a single Gaussian component fit to the profile
Single Component GoF Goodness of Fit of a single Gaussian component fit to the profile
FWHM Full-width at half-maximum of a single Gaussian component fit to the profile
No. Components Number of Gaussian components required to acceptably fit the profile

(up to 5 components)
Multi-component GoF Goodness of fit of the multiple Gaussian component fit (up to 5 components)
Pulse Width Ratio of narrowest component of the multiple Gaussian fit compared to the

pulse broadening (excluding scattering)

Time versus Phase Ratings

Period Stability Fraction of good time intervals that deviate in phase by 0.02
Frac. of Good Sub-ints Fraction of time intervals that contain the pulsar signal
Sub-int. SNR Variability The standard deviation of sub-integration S/Ns

Frequency versus Phase Ratings

Frac. of Good Sub-bands Fraction of sub-bands that contain the pulsar signal
Sub-band SNR Variability The standard deviation of sub-band S/Ns

DM Ratings

DM Comparison Ratio of the standard deviation of the profile at DM = 0 pc cm−3

(standard deviation) and at the optimal DM
DM Comparison ( 2c ) Ratio of the 2c of the profile at DM = 0 pc cm−3 and at the optimal DM
DM Comparison (peak) Ratio of the peak value of the profile at DM = 0 pc cm−3 and at the optimal DM

Miscellaneous Ratings

Known Pulsar A measure of how similar the candidate period and DM are to a nearby pulsar
(also checks harmonic relationships)

Mains RFI A measure of how close the topocentric frequency is to 60 Hz, or a harmonic
Beam Count The number of beams from the same pointing containing another candidate

with the same period

Notes. See Section 3.5.1 for more details on how ratings are used to select candidates.
a Prior to computing ratings, the profile is normalized such that the median level is 0 and the standard deviation is 1.

36 https://github.com/smearedink/PALFA-coincidences

11

The Astrophysical Journal, 812:81 (23pp), 2015 October 10 Lazarus et al.

https://github.com/smearedink/PALFA-coincidences


making it possible to match the detection of a pulsar from
multiple observations confidently. For each observation, a list
of beams from other pointings that fall within 5′ is generated.
Candidates from the different beams are matched by their DMs
and barycentric periods. Allowances are made for slightly
different DMs and periods, as well as for harmonically related
periods. Multiple matches that include the same candidate are
consolidated to form groups of more than two candidates.

The results of this matching algorithm are examined with a
dedicated, web-based interface. Many known pulsars, espe-
cially high harmonics of very bright slow pulsars, have already
been identified.

As of 2015 January, our coincidence matching search has
not yet resulted in the discovery of new pulsars, but it continues
to be applied to the results database. This algorithm will be
increasingly useful as more of the PALFA survey region
becomes densely sampled, and as more Mock spectrometer
observations cover positions previously observed with the
WAPP spectrometers.

3.6. Collaborative Tools

The PALFA Consortium has created and made use of several
online collaborative tools on the CyberSKA portal37 (Kiddle
et al. 2011), a website developed to help astronomers build
tools and strategies for large-scale projects in the lead-up to the
Square Kilometre Array (SKA).

The CyberSKA portal allows for third-party applications to
be accessed directly without a need for separate user
authentication. Within this framework several PALFA-specific
applications were developed:

Candidate Viewer—The primary method for viewing and
classifying PALFA candidates is by using the CyberSKA
Candidate Viewer application. It allows users to access the
Cornell-hosted results database using form-based, free-text, and
saved queries. Queries include basic observation and candidate
information (e.g., sky position, period, DM, significance), as
well as ratings (Section 3.5.1), and the PICS classifications
(Section 3.5.2). Users are presented with a series of
prepfold diagnostic plots in sequence, one for each
candidate matching the query. By inspecting the plots, as well
as other relevant information provided, such as a histogram
showing the number of occurrences of signals in the relevant
frequency range as well as a summary plot showing all the
beam’s periodic signal candidates in a period-DM plot, the user
can quickly classify candidates. Classifications are saved to the
database and can be easily retrieved.

Top Candidates—Especially promising candidates found
with the Candidate Viewer can be added to the Top Candidates
application, which is designed to store the most likely pulsar
candidates. The application also allows collaboration members
to view and vote on which candidates should be subject to
confirmation observations, as well as help organize and track
these observations and their outcomes.

Survey Diagnostics—Optimizing the use of telescope time
and computing resources is extremely important for large-scale
pulsar surveys such as PALFA. The Survey Diagnostics
application automatically compiles a set of information and a
set of plots from various sources to help the project run
smoothly. This includes the status of data acquisition and

reduction, the severity of the RFI environment, and the quality
of the data.

4. RESULTS

The PALFA Survey has discovered 144 pulsars, including
19 MSPs and 11 RRATs, and one FRB, as of 2015 March. The
PRESTO-based pipeline described in Section 3 has discovered
40 pulsars from their periodic emission, 5 RRATs from their
impulsive emission, and re-detected another 60 pulsars that
were previously discovered with other PALFA data analysis
pipelines. The other pulsars found in the PALFA survey were
discovered with the different data analysis pipelines, such as
the E@H and Quicklook pipelines (Allen et al. 2013; Sto-
vall 2013) which use complementary RFI-excision and search
algorithms, with dedicated transient searches, or in earlier
observations with the WAPP spectrometers using an earlier
version of the pipeline described here. Not all sky positions
observed with the WAPP spectrometers have been covered
with the Mock spectrometers yet.
We report details for 40 of the periodicity-discovered pulsars

found in Mock spectrometer data with the pipeline described
above. All but one of these discoveries are in the inner Galaxy
region. These pulsars were discovered by analyzing 85,333
beams, covering a total of 134 sq. deg., which consists of
80 sq. deg. in the inner Galaxy region, and 54 sq. deg. in the
outer Galaxy region (see Table 2). Basic parameters of the
discoveries are in Table 5, and pulse profiles from the
discovery observations are shown in Figure 7.
Eight of the 40 pulsars reported here are MSPs, including the

most distant MSP (based on its DM) discovered to date, PSR
J1850+0242. The distance estimated from the DM of PSR
J1850+0242, assuming the NE2001 model (Cordes & Lazio
2002), is 10.4 kpc, a testament to the ability of the PALFA
survey to find highly dispersed, short period pulsars. PSR
J1850+0242, along with three of the other MSPs discoveries
reported here are described in detail in Scholz et al. (2015).
Three more of the MSPs reported here will be included in
K. Stovall et al. (2015, in preparation).
Nine of the 40 pulsars reported here are in binary systems,

including seven of the MSPs, and two slower pulsars, PSRs
J1932+17 (P 42 ms) and J1933+1726 (P 22 ms), which
have small spin-down rates, indicating they were spun-up by
the accretion of mass and transfer of angular momentum, the
so-called “recycling” process (Alpar et al. 1982). The timing
analyses of PSRs J1932+17 and PSR J1933+1726 will be
provided by E. Madsen et al. (2015, in preparation) and K.
Stovall et al. (2015, in preparation), respectively.
Timing solutions for six of the slow pulsars presented in this

work, including the young PSR J1925+1721, will be published
in a forthcoming paper along with the timing of other PALFA-
discovered pulsars (A. G. Lyne et al. 2015, in preparation).
In addition to the 40 pulsars detailed here that were

discovered in periodicity searches, the PRESTO-based pipeline
has found 5 RRATs. The beams containing these RRATs were
identified using a post-processing algorithm originally devel-
oped for pulsar surveys at 350MHz with the Green Bank
Telescope (see Karako-Argaman et al. 2015, for details).
Discovery parameters and detailed follow-up observations for
these RRATs will be described elsewhere.37 http://www.cyberska.org
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4.1. Estimating Flux Densities of New Discoveries

The flux densities of the new discoveries were estimated
using the radiometer equation (Dewey et al. 1985),

S
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where relevant parameters are the pulse profile width, W, the
telescope gain, G ZA, ,( )q the number of polarization channels
summed, np, the observation length, tobs, the observing
bandwidth, f ,D the period of the pulsar, P, the system and

sky temperatures, Tsys and Tsky, respectively. The time-domain
S/N, S N T( ) , was measured from folded profiles using the area
under the pulse and the off-pulse RMS.
In some cases, predominantly for long-period pulsars, the

baseline of the pulse profile exhibited broad features, likely
due to red noise. (See some examples in Figure 7.) To
more robustly estimate flux densities, we fit Gaussian
components to the pulse profile, including the broad off-pulse
features. The integrated pulsar signal was determined from
the on-pulse components, and the noise level of the profile
was determined from the standard deviation of the
residuals after subtracting all fitted components from the
profile.

Table 5
Pulsars Discovered in Mock Spectrometer Data with the PRESTO Pipeline

Name Disc. Period Disc. DM Disc. Significance Flux Densitya

(ms) (pc cm−3) ( Fs ) (mJy)

J0557+1550b 2.55 102.7 8.34 0.050(6)c

J1850+0242b 4.48 540.5 13.08 0.33
J1851+0232 344.02 605.4 10.82 0.09
J1853+03 585.53 290.2 14.28 Kd

J1854+00e 767.33 532.9 10.44 Kd

J1858+02 197.65 492.1 14.91 Kd

J1901+0235e 885.24 403.0 26.7 Kd

J1901+0300b 7.79 253.7 11.8 0.113(4)c

J1901+0459 877.06 1103.6 10.93 0.10
J1902+02e 415.32 281.2 7.58 Kd

J1903+0415e 1151.39 473.5 12.48 Kd

J1904+0451b 6.09 183.1 8.78 0.117(9)c

J1906+0055 2.79 126.9 16.47 0.12
J1906+0725 1536.51 480.4 7.13 0.05
J1907+0256 618.77 250.4 12.07 0.19
J1907+05 168.68 456.7 10.0 Kd

J1909+1148 448.95 201.9 15.93 0.06
J1910+1027 531.47 705.7 9.29 0.06
J1911+09 273.71 334.7 7.13 Kd

J1911+10 190.89 446.2 7.48 Kd

J1913+0617 5.03 155.8 9.81 Kd

J1913+1103 923.91 628.9 9.86 0.09
J1914+0659 18.51 224.7 12.66 0.33
J1915+1144 173.65 338.3 23.59 0.08
J1915+1149 100.04 702.1 7.58 Kd

J1918+1310 856.74 247.4 6.56 Kd

J1921+16 936.43 204.7 8.13 Kd

J1924+1628e 375.09 542.9 21.12 0.09
J1924+17 758.43 527.4 10.66 Kd

J1925+1721 75.66 223.7 16.06 0.09
J1926+1613e 308.30 32.9 14.9 Kd

J1930+14e 425.71 209.2 12.15 0.04
J1931+1440 1779.23 239.3 23.63 0.12
J1932+17e 41.82 53.2 12.89 Kd

J1933+1726 21.51 156.6 7.28 0.04
J1934+19 230.99 97.6 18.67 0.10
J1936+20 1390.88 205.1 6.6 Kd

J1938+2012e 2.63 237.1 8.55 0.02
J1940+2246 258.89 218.1 14.47 0.09
J1957+2516 3.96 44.0 6.61 0.04

Notes.
a Phase-averaged flux density. Determined using the radiometer equation (see Section 4.1) unless otherwise noted.
b Pulsar was previously published by Scholz et al. (2015).
c Flux calibrated using noise diode. Value from Scholz et al. (2015).
d Refined position not available. Flux density could not be estimated.
e Pulsar was first identified using the PICS machine learning candidate selection system described in Section 3.5.2.
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Figure 7. Pulse profiles at 1.4 GHz from the discovery observations of the 40 pulsars discovered with the PRESTO-based PALFA pipeline in Mock spectrometer data.
The name of each pulsar is included above each profile along with the period, and dispersion measure. The names of binary pulsars are indicated with an asterisk (*).
The number of bins across the profile is what was used by the pipeline, and is larger for longer period pulsars. These profiles also include intra-channel DM smearing,
which is most significant for high-DM, short-period pulsars. The baselines of several profiles, predominantly of the long-period pulsars, show broad features due to
interference and red noise in the data (for example, PSRs J1854+00, J1921+16, and J1924+17). The discovery profiles contaminated with RFI and red noise are
shown here to highlight the ability of the PALFA pipeline to identify pulsars despite these conditions. Pulsars with truncated names do not yet have positions
determined from timing campaigns.
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The gain was scaled according to the angular offset of the
pulsar from the beam center, θ, assuming an Airy disk beam
pattern38 with FWHM 3.35= ¢ (Cordes et al. 2006), as well as
the dependence on the zenith angle, ZA. The gain also took into
account the ALFA beam with which the pulsar was detected.
We scaled the gain of the outer 6 beams to be 79% of the gain
of the central beam (Cordes et al. 2006).

Sky temperatures were scaled from the Haslam et al. (1982)
408MHz survey to 1400MHz using a spectral index of 2.76-
for the Galactic synchrotron emission (Platania et al. 1998).
The sky temperatures also include the 2.73 K cosmic micro-
wave background.

The resulting phase-averaged flux density estimates (i.e., the
integrated flux of the pulse divided by the pulse period) of the
PALFA pulsars discovered with our pipeline range from 16 to
280 μJy (see Table 5), making them among the weakest
detected pulsars in the Galactic field, along with other PALFA-
discovered pulsars (see Figure 8).

4.2. Re-detections of Known Pulsars

In total, 83 pulsars for which 1400MHz phase-averaged flux
densities, S1400, are reported in the ATNF catalog were detected
with the Mock spectrometers in 268 different PALFA
observations (i.e., some known pulsars were re-detected
multiple times).

To confirm that our observing set-up is as sensitive as
expected, we estimate the S N T( ) at which our pipeline should
blindly re-detect known pulsars in our observations and
compare with the S N T( ) measured from the profile of the
corresponding candidate. The expected S N T( ) values were
estimated by inverting Equation (3) to solve for the signal-to-
noise ratio using S1400 from the ATNF catalog. As in
Section 4.1 the telescope gain is modeled as an Airy disk with
FWHM 3.35.= ¢

By comparing expected and measured S/N against pulsar
spin period we find that longer-period pulsars show an increase
scatter in S N T( ) ratio as well as a bias toward larger ratios (see
Figure 9). This is consistent with the reduced sensitivity to
long-period pulsars due to red noise we find from our
sensitivity analysis using synthetic pulsar signals (see
Section 5).
In addition to the 83 known pulsars with published S1400

detected with the PALFA PRESTO pipeline, there are 50 more
that do not have values for S1400 listed in the ATNF catalog.
The complete list of 128 previously discovered pulsars blindly
re-detected by the PALFA PRESTO pipeline is in Table 6.

4.3. Known Pulsars Missed

In addition to the 268 detections of 128 separate known
pulsars mentioned in Section 4.2, there were 7 instances in
which a known pulsar was not detected by the search pipeline,
despite being detected when subsequently folding the search
data with the most recently published ephemeris. In all cases
the data were badly affected by RFI; there are strong signals
within one Fourier bin of the pulsar period. Furthermore, these
are long-period pulsars, which are more difficult to detect than
expected due to red noise in the data. It is therefore not entirely
surprising that these observations did not result in detections. A
thorough analysis of the effects of RFI and red noise on the
sensitivity to long period pulsars is therefore crucial, and forms
the discussion of the following section.

5. ASSESSING THE SURVEY SENSITIVITY

The sensitivity of pulsar observations is typically estimated
using the radiometer equation (Equation (3)). In principle, the

Figure 8. Distribution of phase-averaged flux densities of pulsars discovered in
the PALFA survey, and the distribution of 1400 MHz phase-averaged flux
densities from the ATNF pulsar catalog of all non-PALFA, non-globular
cluster discoveries. The sub-set of PALFA pulsars featured in this work is
highlighted. Only PALFA-discovered pulsars with timing positions are
included.
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Figure 9. Ratio of expected and measured S N T( ) as a function of pulsar
period. Expected S N T( ) values are calculated using the radiometer equation
and measured flux densities at 1400 MHz from the ATNF catalog. Measured
S N T( ) values are computed from detections of known pulsars in PALFA
observations. The increased scatter and bias toward higher S/N ratios of
longer-period pulsars are consistent with reduced sensitivity to these pulses due
to red noise (see Section 5.4 and Figure 11). Known pulsars without reported
flux densities and uncertainties are excluded, as are pulsars that have reported
flux densities consistent with 0 mJy. Also excluded from the plot are 15 known
pulsars with published flux densities that were detected in observations pointed
more than 3′ from the position of the pulsar. This is because the actual beam
pattern differs considerably from the theoretical Airy disk beam pattern beyond
∼3′, making it difficult to reliably estimate the expected S N T( ) . The dashed
line indicates equality of the expected and measured S N T( ) values, and the
dotted lines are at a factor of two above and below equality.

38 The FWHM of the ALFA beams varies by only ∼5% over the ZA range of
the telescope. Also, FWHM of all 7 beams are largely consistent with each
other. Thus, we use a fixed FWHM for all beams and all ZA.
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Table 6
Known Pulsars Re-detected in Mock Spectrometer Data with the PRESTO Pipeline

Name Period DM ATNF S1400 Measured S/N Measured S1400
(ms) (pc cm−3) (mJy) (mJy)

B1848+04 284.70 115.5 0.66(8) 36.9 L
B1849+00 2180.20 787.0 2.2(2) 64.1 L
B1853+01 267.44 96.7 0.19(3) 99.7 0.323
B1854+00 356.93 82.4 0.9(1) 267.9 1.048
B1855+02 415.82 506.8 1.6(2) 470.2 2.288
B1859+01 288.22 105.4 0.38(5) 74.7 0.531
B1859+03 655.45 402.1 4.2(4) 1061.3 3.498
B1859+07 644.00 252.8 0.9(1) 339.1 1.830
B1900+01 729.30 245.2 5.5(6) 106.5 L
B1900+05 746.58 177.5 1.2(1) 283.2 1.228
B1900+06 673.50 502.9 1.1(1) 21.5 L
B1901+10 1856.57 135.0 0.58(7) 212.1 0.568
B1903+07 648.04 245.3 1.8(2) 91.2 1.892
B1904+06 267.28 472.8 1.7(2) 33.9 L
B1906+09 830.27 249.8 0.23(3) 17.7 0.127
B1907+02 989.83 171.7 0.63(7) 37.7 L
B1907+10 283.64 150.0 1.9(2) 365.2 2.591
B1907+12 1441.74 258.6 0.28(4) 28.2 0.196
B1910+10 409.35 147.0 0.22(3) 47.1 0.196
B1911+09 1241.96 157.0 0.14(2) 18.9 0.228
B1911+11 601.00 100.0 0.55(7) 85.4 0.301
B1911+13 521.47 145.1 1.2(1) 85.5 1.221
B1913+10 404.55 241.7 1.30(14) 416.8 0.905
B1913+105 628.97 387.2 0.22(3) 46.2 0.507
B1913+167 1616.23 62.6 L 16.1 L
B1914+09 270.25 61.0 0.9(1) 298.6 0.721
B1914+13 281.84 237.0 1.2(1) 616.7 2.043
B1915+13 194.63 94.5 1.9(2) 1453.2 4.477
B1916+14 1181.02 27.2 1.0(1) 14.3 0.362
B1919+14 618.18 91.6 0.68(8) 217.6 1.060
B1921+17 547.21 142.5 L 126.6 0.408
B1924+14 1324.92 211.4 0.48(6) 126.6 0.860
B1924+16 579.82 176.9 1.3(2) 179.1 0.735
B1925+18 482.77 254.0 L 156.0 0.441
B1925+188 298.31 99.0 L 77.3 0.385
B1929+15 314.36 140.0 L 69.4 0.360
B1929+20 268.22 211.2 1.2(4) 457.9 1.099
B1933+16 358.74 158.5 42(6) 73.0 L
B1933+17 654.41 214.6 L 62.8 0.176
B1937+21 1.56 71.0 13(5) 349.1 12.572
B1937+24 645.30 142.9 L 39.4 L
B1944+22 1334.45 140.0 L 55.0 0.173
B2002+31 2111.26 234.8 1.8(1) 68.2 L
J0621+1002 28.85 36.6 1.9(3) 11.4 L
J0625+10 498.40 78.0 L 14.5 0.086
J0631+1036 287.80 125.4 L 175.3 0.941
J1829+0000 199.15 114.0 L 52.4 0.370
J1843−0000 880.33 101.5 2.9(3) 38.5 L
J1844+00 460.50 345.5 8.6(9) 1226.8 4.616
J1849+0127 542.16 207.3 0.46(9) 143.2 0.444
J1849+0409 761.19 56.1 L 29.0 0.312
J1851+0118 906.98 418.0 0.10(2) 27.9 0.118
J1852+0305 1326.15 320.0 0.8(2) 37.7 0.214
J1853+0056 275.58 180.9 0.21(4) 55.3 0.281
J1853+0545 126.40 198.7 1.6(1.7) 5.3 L
J1854+0317 1366.45 404.0 0.12(1) 34.9 0.153
J1855+0307 845.35 402.5 1.0(1) 129.7 0.393
J1855+0422 1678.11 438.0 0.45(9) 104.0 0.245
J1856+0102 620.22 554.0 0.4(1) 66.3 0.195
J1856+0404 420.25 341.3 0.48(1) 40.4 0.276
J1857+0143 139.76 249.0 0.7(2) 37.2 0.486
J1857+0210 630.98 783.0 0.30(6) 40.2 0.236
J1857+0526 349.95 466.4 0.66(8) 145.5 0.645
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Table 6
(Continued)

Name Period DM ATNF S1400 Measured S/N Measured S1400
(ms) (pc cm−3) (mJy) (mJy)

J1858+0215 745.83 702.0 0.22(4) 42.8 0.280
J1859+00 559.63 420.0 4.8(5) 581.9 24.461
J1859+0601 1044.31 276.0 0.30(4) 15.9 0.126
J1900+0227 374.26 201.1 0.33(7) 111.6 0.414
J1901+00 777.66 345.5 0.35(4) 32.4 L
J1901+0254 1299.69 185.0 0.58(7) 102.1 0.911
J1901+0320 636.58 393.0 0.9(1) 67.3 0.301
J1901+0355 554.76 547.0 0.15(3) 40.9 0.185
J1901+0413 2663.08 352.0 1.1(2) 161.9 0.521
J1901+0435 690.58 1042.6 L 106.9 4.244
J1901+0510 614.76 429.0 0.66(8) 47.6 0.498
J1902+0248 1223.78 272.0 0.17(3) 60.6 0.169
J1903+0601 374.12 388.0 0.26(4) 9.7 L
J1904+0412 71.09 185.9 0.23(5) 68.4 0.271
J1904+0800 263.34 438.8 0.36(5) 11.2 0.285
J1905+0600 441.21 730.1 0.42(5) 85.6 0.401
J1905+0616 989.71 256.1 0.51(6) 43.5 0.236
J1906+0912 775.34 265.0 0.32(6) 34.0 0.149
J1907+0249 351.88 261.0 0.5(1) 124.3 0.478
J1907+0345 240.15 311.7 0.17(3) 21.5 0.133
J1907+0534 1138.40 524.0 0.36(7) 24.6 0.096
J1907+0731 363.68 239.8 0.35(4) 68.8 0.571
J1907+0740 574.70 332.0 0.41(8) 121.4 0.327
J1907+0918 226.11 357.9 0.29(4) 133.4 0.263
J1907+1149 1420.16 202.8 L 30.4 0.156
J1908+0457 846.79 360.0 0.9(1) 274.4 0.958
J1908+0500 291.02 201.4 0.79(9) 48.5 L
J1908+0734 212.35 11.1 0.54(6) 36.0 0.205
J1908+0839 185.40 512.1 0.49(1) 114.4 0.403
J1908+0909 336.55 467.5 0.22(4) 110.7 0.340
J1909+0616 755.99 352.0 0.33(7) 10.3 L
J1909+0912 222.95 421.5 0.35(7) 125.8 0.533
J1910+0534 452.87 484.0 0.41(8) 62.4 0.444
J1910+0714 2712.42 124.1 0.36(5) 137.3 0.287
J1910+0728 325.42 283.7 0.8(1) 189.8 0.887
J1910+1256 4.98 38.1 0.5(1) 139.7 0.497
J1913+0832 134.41 355.2 0.6(1) 187.9 0.999
J1913+0904 163.25 95.3 L 96.7 0.224
J1913+1000 837.15 422.0 0.53(6) 28.8 0.522
J1913+1011 35.91 178.8 0.5(1) 111.0 0.434
J1913+1145 306.07 637.0 0.43(9) 126.5 0.403
J1913+1330 923.39 175.6 L 213.6 L
J1914+0631 693.81 58.0 0.3(1) 36.9 0.140
J1915+0738 1542.70 39.0 0.34(4) 109.1 0.254
J1915+0752 2058.31 105.3 0.21(3) 18.2 0.238
J1915+0838 342.78 358.0 0.29(4) 12.3 L
J1915+1410 297.49 273.7 L 11.6 0.134
J1916+0748 541.75 304.0 2.8(3) 66.8 L
J1916+0844 440.00 339.4 0.44(5) 89.9 0.526
J1916+0852 2182.75 295.0 0.13(2) 36.6 0.148
J1920+1040 2215.80 304.0 0.57(7) 24.5 0.092
J1920+1110 509.89 182.0 0.39(8) 22.9 0.288
J1921+1544 143.58 385.0 L 65.5 0.211
J1922+1733 236.17 238.0 L 435.6 1.157
J1924+1639 158.04 208.0 L 73.6 0.207
J1926+2016 299.07 247.0 L 12.0 0.122
J1928+1923 817.33 476.0 L 221.7 0.639
J1929+1955 257.83 281.0 L 25.1 0.421
J1930+17 1609.69 201.0 L 30.9 L
J1931+1952 501.12 441.0 L 71.9 0.126
J1935+2025 80.12 182.0 L 79.6 0.527
J1936+21 642.93 264.0 L 13.6 L
J1938+2213 166.12 91.0 L 20.4 L
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effects of DM, period, and pulse width on sensitivity are
adequately described by the radiometer equation. The expres-
sion derived by Cordes & Chernoff (1997, see their Appendix
A), includes a more complete description of pulse shape and
the effect of DM, which causes distortions of the pulse profile.
However, neither of these equations includes the effect of RFI.
In this section, we describe a prescription for accurately
modeling the sensitivity of pulsar search observations including
the effect of RFI, as well as its dependence on period, DM, and
pulse width.

To estimate the survey sensitivity we injected synthetic
pulsar signals into actual survey data, and attempted to recover
the period and DM of the input signal using our pipeline. By
using synthetic signals we can also better determine the
selection effects imposed by our pipeline.

5.1. Constructing a Synthetic Pulsar Signal

For this work, a simple synthetic pulsar signal was
constructed for a given combination of period, DM, phase-
averaged flux density, and profile shape. Once the relevant
parameters were chosen (see Section 5.3 and Table 7), a two-
dimensional pulse profile (intensity versus spin phase and
observing frequency) was generated.

The pulse profile of each frequency channel was smeared by
convolving with a box-car whose phase width corresponded to
the dispersion delay within the channel, as well as scattered by
convolving with a one-sided exponential function with a
characteristic phase width corresponding to the pulse broad-
ening timescale. We determined the scattering timescale using
version of Equation (1) from Cordes et al. (2002). Care was
taken to conserve the area under the profile during the
convolutions. The scaling factor applied to the synthetic
signals was determined by flux-calibrating the PALFA
observing system (see Section 5.2).

5.2. Calibration

On 2013 December 21, we observed the radio galaxy 3C 138
in order to calibrate the central beam of ALFA. Three
observations using the standard survey set-up described in
Section 2 were conducted, but with 5 minute integrations, and
with the calibration diode being pulsed on and off at 40 Hz.
The on-source scan of 3C 138 was preceded by an off-source

scan 0°.5 to the north of 3C 138 and followed by a similar off-
source scan 0°.5 to the south.
The calibration observation data were converted to 4-bit

samples, and the Mock spectrometer sub-bands were combined
(see Section 3.2). The data were folded at the modulation
frequency of the calibrator diode using fold_psrfits of
psrfits_utils. Next, the on-cal and off-cal levels in the on-
source and off-source observations were used to relate the flux
density of the calibration diode with the cataloged flux density
of 3C 138 (for details, see e.g., Lorimer & Kramer 2004, page
176). The result is the flux density of the calibration diode as a
function of observing frequency. In practice, this was done
using fluxcal of psrchive.39

The per-channel scaling factors between flux density and the
observation data units were determined by applying the
calibration solution along with the calibration diode signal.
This procedure determines the absolute level of the injected
signal corresponding to a target phase-averaged flux density, as
well as the shape of the bandpass, which was retained thanks to
the PSRFITS scales and offsets (see Section 2).

5.3. Injection Trials

Artificial pulsar signals were injected into the data by
summing the two-dimensional, smeared, scattered, and scaled
synthetic pulse profile with the data at regular intervals
corresponding to the period of the synthetic pulsar. The scaling
was determined using the calibration procedure described in
Section 5.2. The resulting data file, including the injected
signal, was written out with 32 bit floating-point samples in
SIGPROC “filterbank” format40 for simplicity, without re-
quantizing the data. Neither using 32-bit floating-point samples
nor filterbank format data should significantly influence the
results.
Many synthetic signals with a broad range of parameters

were required to build a comprehensive picture of the survey
sensitivity (see Table 7). In total, 17 periods were selected
between 0.77 ms and 11 s along with six DMs ranging from 10
to 1000 pc cm−3. In all cases, the profile of the synthetic signal
was chosen to have a single centered von Mises component

Table 6
(Continued)

Name Period DM ATNF S1400 Measured S/N Measured S1400
(ms) (pc cm−3) (mJy) (mJy)

J1946+2611 435.06 165.0 L 232.0 0.697
J1957+2831 307.68 139.0 1.0(2) 34.4 L

Note. Values for period, DM, and “ATNF S1400” are taken from the ATNF Catalogue (Manchester et al. 2005).

Table 7
Synthetic Pulsar Signal Parameters

Parameter Possible Values

0.766 1.102 2.218 5.218 10.870 18.505 26.965
Period, ms 61.631 126.175 286.555 533.320 850.158 1657.496 2643.410

3927.013 5580.899 10964.532 K K K K
DM, pc cm−3 10 40 150 325 400 600 1000
FWHM, % Phase 1.5 2.6 5.9 11.9 24.3 K K

39 http://psrchive.sourceforge.net/
40 http://sigproc.sourceforge.net/
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with a FWHM selected from 5 possible values between ∼1.5%
and ∼24% of the period. The example profile in Figure 10
shows the case where FWHM = 2.6%. The synthetic signals
were injected into 12 different observations to determine the
survey sensitivity in a variety of RFI conditions. All 12
observations used in this analysis are from late 2013 and from
the central beam of ALFA. Although the gains of the outer
beams are lower than that of the central beam, the response of
the observing system and pulsar search pipeline to RFI and red
noise derived for the central beam should also apply to the
outer beams.

The total number of combinations of synthetic signals and
observations is >7000. Multiple trials, each with a different
amplitude, were constructed, injected, and searched to
determine the sensitivity limit at each point in (period, DM,
pulse FWHM) phase-space. To reduce the computational
burden, not all possible combinations of parameters were used.
In particular, only the profile with FWHM ∼2.6% was injected
into all 12 observations. The remaining four profiles shapes
were only injected into a single observation. This still permits
the determination of the dependence of the minimum detectable
flux density, Smin, on pulse width.

In addition to injecting synthetic pulsars into the 12 survey
observations, we also conducted a series of trials where we
injected the FWHM ∼2.6% signal into 5 independently
simulated observations consisting of pure white noise.

5.4. Realistic Survey Sensitivity

It is well known (Dewey et al. 1985) that the Smin of a pulsar
depends on the intrinsic width of its profile, as well as the DM,
because dispersive smearing and scattering broaden the profile.
It is also reasonable to expect a reduction of sensitivity due to
RFI and red noise, even with the red noise suppression
algorithms employed (see Section 3.4.4). By recovering
injected signals using the pipeline described in Section 3, we
have determined the true sensitivity of the PALFA survey, and
its dependence on spin period and DM (see Figure 11). We
found the commonly used version of the radiometer equation
(Equation (3); Dewey et al. 1985) overestimates the survey
sensitivity to long-period pulsars. For example, for
P = 0.1–2.0 s pulsars with DM >150 pc cm−3 (the majority
of the pulsars we expect to find with PALFA), the degradation
in sensitivity compared with the ideal case is a factor
of ∼1.1–2.

We have also confirmed the claim by Cordes & Chernoff
(1997) that the Dewey et al. (1985) radiometer equation
underestimates the sensitivity to high-DM MSPs, by not
correctly modeling the distortion of the profile due to smearing
and scattering. The more accurate variant of the radiometer
equation from Cordes & Chernoff (1997) better matches our
measured sensitivity curves in the MSP regime, thanks to its
inclusion of the profile shape and distortions. However, the
degraded sensitivity we find at long periods is still not properly
modeled with these adjustments.
Red noise present in pulsar search data due to RFI, receiver

gain fluctuations, and opacity variations of the atmosphere
makes it difficult to detect long-period radio pulsars. Our
analysis has shown that for the PALFA survey, at low DMs,
the reduction in sensitivity already affects pulsars with periods
of 100~ ms. Fortunately, the effect is slightly less significant
for pulsars with higher DMs. This is evident in Figure 11.
We have parameterized the sensitivity curves by fitting

Slog min versus DM with a cubic function and modeling how
these curves depend on period. To estimate Smin at an arbitrary
profile width, we first estimate Smin at each of the five trial
widths, then fit a quadratic function in Slog min versus width,
and use the parameters of the fit to calculate Smin at the desired
width. This empirical scheme provides reliable estimates of
Smin within the intervals used for trial values of period, DM,
and width. Sensitivity maps for each of the five profile widths
used are shown in Figure 12.

6. POPULATION SYNTHESIS ANALYSIS

We have used the sensitivity curves determined above (see
Section 5.4) to re-evaluate the expected yield of the PALFA
survey by performing a population synthesis analysis with
PsrPopPy 41 (Bates et al. 2014).
Galactic populations of non-recycled pulsars were simulated

using the radial distribution from Lorimer et al. (2006a) and a
Gaussian distribution of heights above/below the plane with a
scale height of 330 pc. The pulsar periods were described by a
log-normal distribution with Plog 2.7á ñ = and 0.34Plogs = -
(Lorimer et al. 2006a). The pulse-width-to-period relationship
was also taken from Lorimer et al. (2006a). We used a log-
normal luminosity distribution described by the best-fit
parameters found by Faucher-Giguère & Kaspi (2006),

Llog 1.1á ñ = - and 0.9.Llogs =
We created 5000 simulated pulsar populations, each contain-

ing enough pulsars such that a simulated version of the Parkes
multi-beam surveys detected 1038 pulsars, the number of non-
recycled pulsars detected by the actual surveys. We then
compared the pulsars in each of these populations against a list
of PALFA observations,42 and estimated their significance
using the radiometer equation. Pulsars with S N 11.3expect( ) >
were considered “detectable.”43 Next, we compared the flux-
density for each “detectable” pulsar against the parameterized
PALFA sensitivity curves to determine if the pulsar also has a

Figure 10. Profile of a synthetic P = 5 ms pulsar consisting of a single von
Mises component with FWHM = 2.6% (gray), and the same profile broadened
according to DM = 250 pc cm−3. The broadening is caused by dispersive
smearing within each channel and scattering according to Equation (1). Note
that the plot is zoomed into the region: 0.45 0.7.f< <

41 https://github.com/samb8s/PsrPopPy
42 For each observation we used the sky position, integration time, zenith
angle, and beam number. We used the model of gain and system temperature
dependence on zenith angle provided by the observatory. We assumed the six
outer beams have a gain of ∼80% of the central beam, consistent with the gains
reported by Cordes et al. (2006).
43 The value of S N expect( ) was chosen such that the minimum detectable flux
density coincided with the measured sensitivity curves for a duty cycle
of 2.6%.
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sufficiently large flux density to lie above the measured
sensitivity curves. For each pulsar, the measured sensitivity
curves are shifted according to the zenith angle of the
observation, the gain of the beam used, the sky temperature
and the angular offset between the pulsar position and the beam
center.

We found 33 ± 3% of the simulated pulsars having fluxes
above the theoretical sensitivity threshold derived from the
radiometer equation (Equation (3)) are not sufficiently bright to
also be “detected” by our measured sensitivity limits for the
PALFA survey (e.g., Figure 12) due to the residual effect of red
noise and RFI following the extensive mitigation procedures
described in Section 3.4. The median period of the pulsars
missed is P 585miss  ms, which is considerably longer than the
median period of the potentially detectable pulsars brighter
than the radiometer-equation-based threshold, P 440det.  ms
(see Figure 13).

Our 5000 realizations of simulated Galactic pulsar popula-
tions, adjusted for the reduced sensitivity to long-period
pulsars, suggest 224 ± 16 un-recycled pulsars should be
detected in PALFA Mock spectrometer observations, given the
current processed pointing list. As of 2015 January, 241 un-
recycled pulsars have been discovered/detected in PALFA
observations with the Mock spectrometers.

The number of un-recycled pulsar detections predicted for
the PALFA survey by Swiggum et al. (2014) is an overestimate
for two reasons. First, their analysis used a threshold S/N 9.=
Given the observing parameters assumed, a more appropriate
threshold of S/N 11.3= should have been used to correspond
to the minimum detectable flux density we find (S 0.015min =
mJy). Second, the analysis by Swiggum et al. (2014) did not
include the effect of red noise, which we have shown reduces
the number of pulsars expected to be found in the PALFA
survey by 33%.

7. DISCUSSION

The detailed sensitivity analysis of Section 5.4 confirms that,
on average, the PALFA survey is as sensitive to MSPs and
mildly recycled pulsars as expected from the radiometer
equation. However, the survey is less sensitive to long-period
pulsars than predicted. The degradation in sensitivity is
between 10% and a factor of 2 for the majority of pulsars we
expect to find in the PALFA survey (spin periods between 0.1 s
and 2 s and DM 150> pc cm−3), and up to a factor of ∼10 in
the worst case (DM 100< pc cm−3 and P 2 s;> this for-
tunately corresponds to a parameter space that contains far

Figure 11. Top—Period distribution of all Galactic radio pulsars, excluding RRATs, listed in the ATNF catalog. Pulsars discovered in the Parkes Multibeam Pulsar
Survey of the Galactic Plane (PMPS) are highlighted, as are as those found in PALFA. Bottom—Minimum detectable phase-averaged flux density curves for the
PALFA survey as measured using synthetic pulsar signals with FWHM = 2.6% (thick solid lines). Only four of the seven trial DM values are shown here for clarity;
these are DM = 10 pc cm−3 (dark blue), 325 pc cm−3 (green), 600 pc cm−3 (purple), and 1000 pc cm−3 (light blue). The omitted trials (DM 40,= 150, and
400 pc cm−3) exhibit similar behavior. The majority of the reduction in sensitivity at long periods is due to RFI and red noise in the data. This is especially clear when
comparing against the pipeline sensitivity we determined by injecting synthetic pulsar signals into simulated purely Gaussian distributed noise (thin lines).
Furthermore, we see clear discrepancies when comparing the measured curves with the analogous sensitivity limits derived with the commonly used radiometer
equation (Dewey et al. 1985) (dashed lines). Sensitivity to long-period pulsars is overestimated, and sensitivity to MSPs is underestimated. However, the formulation
of the radiometer equation by Cordes & Chernoff (1997, dotted lines) is more complete—albeit less frequently used—and better models the sensitivity in the short-
period regime. See Section 5.4 for details.
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fewer expected pulsars). The reduction of sensitivity is mostly
caused by red noise present in the observations (see Figure 11).

The empirical sensitivity curves we determined apply
specifically to the PALFA survey, its observing set-up, and
the search algorithms used. Because the effects of red noise on
radio pulsar survey sensitivity have the potential to be
significant, as in the case of PALFA, we strongly suggest
measuring the impact of red noise on other surveys by
performing similar analyses to what we described in Section 5.
Also, future population analyses should include these measured
effects of red noise rather than assuming the theoretical
radiometer equation (e.g., Faucher-Giguère & Kaspi 2006;
Lorimer et al. 2006a) when deriving spatial, spin, and
luminosity distributions for the underlying Galactic population
of pulsars.

What are the potential ramifications of reduced sensitivity to
long-period pulsars being unaccounted for in population
synthesis analyses? First, the existence of radio-loud pulsars
beyond the “death line” is important to our understanding of
the radio emission mechanism in pulsars. For example, the
existence of the 8.5 s PSR J2144−3933 contradicted several
existing emission theories (Young et al. 1999; Zhang
et al. 2000). The existence of a larger population of slowly
rotating pulsars, particularly the discovery of pulsars so slow
that existing theories cannot explain their radio emission,
would further constrain models.

It is also possible there is a larger population of highly
magnetized rotation-powered pulsars and quiescent radio-loud

magnetars that have been missed by the lower than predicted
sensitivity of pulsar surveys. Radio emission from three of the
four known radio-loud magnetars was detected following high-
energy radiative events (Camilo et al. 2006, 2007; Eatough
et al. 2013; Shannon & Johnston 2013). However, the other
radio-loud magnetar PSR J1622−4950 was discovered from its
radio emission (Levin et al. 2010; Olausen & Kaspi 2014).
There is no evidence that the turn-on of PSR J1622−4950 at
radio wavelengths was preceded by a high-energy event. The
possibility that radio emission from magnetars is not always
accompanied by X-ray or γ-ray emission means it is crucial to
understand the biases against finding such long-period pulsars.
Characterizing, and hopefully uncovering a hidden population
of radio-loud magnetars, as well as highly magnetized-rotation
powered pulsars, will help clarify the relationship between
these two classes of pulsars, as well as the influence of strong
magnetic fields on emission properties (e.g., flux and spectral
index variability).
It may be possible to address the reduced sensitivity to long-

period pulsars by using algorithms that perform better in the
presence of red noise, as well as algorithms that remove red
noise without suppressing the pulsar signal.
Long-period pulsars may be found via their harmonics even

if red noise obscures the signal in the Fourier domain at the
fundamental frequency of the pulsar, or if the power of the
fundamental is suppressed by the red noise removal algorithm.
As a result, the total summed power of the pulsar signal will not
include the power of the fundamental and possibly even low

Figure 12. PALFA survey sensitivity as a function of DM and spin period. The maps are determined using synthetic pulsar signals injected into observations and
recovered using the pipeline. Contours correspond to minimum detectable phase-averaged flux densities of 20, 50, 100, 1000 μJy. The five panels (a)–(e) correspond
to profile FWHMs of 1.5%, 2.6%, 5.9%, 11.9%, 24.3%, respectively. In all cases, the profile consists of a single centered von Mises component (see Figure 10 for an
example). The period, DM combinations used in the sensitivity analysis are shown with the small dots.
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harmonic frequencies, which can contain large amounts of
power, especially in the case of pulsars with wide profiles.
Furthermore, by not being based at the fundamental frequency
of the pulsar, the total summed power will not include the
power of slower, more significant harmonics in favor of weaker
harmonics at higher frequencies. Despite the reduction in
sensitivity several pulsars have been found in the PALFA
survey thanks to their higher harmonic content.

One suggested method of improving sensitivity to long-
period pulsars is by using the Fast-folding algorithm (FFA;
see e.g., Lorimer & Kramer 2004, page 151; Kondratiev
et al. 2009, and references therein). The periodograms
produced by the FFA, a time-domain algorithm, are generated
from computing a significance metric from pulse profiles. Thus,
the broad profile features caused by red noise pose a problem
for FFA-based searches. In short, the FFA is not immune to the
degradation of sensitivity to long-period pulsars described
above. However it does have the advantage of coherently
summing all harmonics of a given period and greater period
resolution than the DFT. These two factors should make the
FFA slightly more sensitive to long-period pulsars, especially
those with narrow profiles, than the Fourier Transform
techniques described in Section 3.3.2, which is limited in the
number of harmonics that can be summed (typically

incoherently; Kondratiev et al. 2009). The FFA has only been
used sparingly in large-scale pulsar searches (e.g., Kondratiev
et al. 2009). A more systematic investigation and application of
the FFA is warranted.
Another algorithm that might have better performance in the

presence of red noise is the single-pulse search technique
described in Section 3.3.3. Single-pulse search algorithms are
known to be more sensitive than standard FFT techniques to
long-period pulsars in short observations (Deneva et al. 2009;
Karako-Argaman et al. 2015). This is because of the natural
variability of pulsar pulses and small number of pulses. Pulse-
to-pulse variability was not included in the synthetic pulsar
signals used in our sensitivity analysis and no single pulse
searching was performed. It is likely that the sensitivity curves
determined in this work are partially compensated by the
single-pulse search techniques already in place, especially
considering the recent suggestion that pulsars with P 200> ms
have a greater likelihood of being detected in single-pulse
searches than faster pulsars (Karako-Argaman et al. 2015), at
least in short integrations like the ones employed in PALFA
observations. However, the extent of this compensation
depends on the pulse-energy distributions of pulsars and the
relative significances of their detections in periodicity and
single-pulse searches.

8. CONCLUSIONS

We described the PRESTO-based PALFA pipeline, the
primary data analysis pipeline used to search PALFA
observations made with the Mock spectrometers. This pipeline
has led to the discovery of 40 pulsars in periodicity searches
and 5 RRATs, the re-detection of 60 pulsars previously
discovered in the survey (using other pipelines), and the
detection of 128 previously known pulsars. The PRESTO-
based pipeline described here consists of several complemen-
tary search algorithms and RFI-mitigation strategies. The
performance of the pipeline was determined by injecting
synthetic pulses into actual survey observations and recovering
the signals.
We have found that the PALFA survey is as sensitive to fast-

spinning pulsars as expected by the theoretical radiometer
equation. However, in the case of long-period pulsars, we have
found that there is a reduction in the sensitivity due to RFI and
red noise in the observations. The actual detection threshold for
pulsars with P 4 s> at DM 150< pc cm−3 is up to ∼10 times
higher than predicted by the theoretical radiometer equation.
We have performed a population synthesis analysis using this
empirical model of the survey sensitivity. Our analysis
indicates that 33 ± 3% of pulsars, with predominantly long
periods, are missed by PALFA, compared to expectations
based on theoretical sensitivity curves derived using the
radiometer equation.
The magnitude of the effect of red noise on the PALFA

survey’s sensitivity to long-period pulsars is surprising and
should be taken into account in future population synthesis
analyses. Furthermore, the effect of red noise on other radio
pulsar surveys should be quantified in a similar manner and be
included in population synthesis analyses to ensure the
distributions determined for the underlying pulsar population
are robust. The presence of more long-period pulsars could
have implications on the location of the pulsar death line, the
structure of pulsar magnetospheres and radio emission
mechanism, as well as the relationship between canonical

Figure 13. Top—Fraction of potentially detectable pulsars missed by PALFA
due to red noise as a function of spin period, assuming the underlying pulsar
population is accurately modeled by our input distributions (i.e., the
distributions in Lorimer et al. 2006a, see Section 6). Middle—Cumulative
fraction of simulated pulsars (thick black line), and pulsars missed (thin red
line) as a function of pulse period. Bottom—Period distribution of potentially
detectable simulated population of un-recycled pulsars averaged over 5000
realizations (thick black line) compared with the period distribution of pulsars
expected to be missed due to red noise (thin red line). The median spin period
of the potential detectable pulsars (P 440 ms) is shown by the dashed black
line, and the median spin period (P 585 ms) of the missed pulsars is shown
by the dotted red line.
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pulsars, highly magnetized rotation-powered pulsars, radio-
loud magnetars, and RRATs.
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