Gravitational waves from individual supermassive black hole binaries in circular orbits: Limits from the North American Nanohertz Observatory for gravitational waves

Arzoumanian, Z., Brazier, A., Burke-Spolaor, S., Chamberlin, S. J., Chatterjee, S., Cordes, J. M., Demorest, P. B., Deng, X., Dolch, T., Ellis, J. A., Ferdman, R. D. ORCID: https://orcid.org/0000-0002-2223-1235, Garver-Daniels, N., Jenet, F., Jones, G., Kaspi, V. M., Koop, M., Lam, M. T., Lazio, T. J. W., Lommen, A. N., Lorimer, D. R., Luo, J., Lynch, R. S., Madison, D. R., McLaughlin, M. A., McWilliams, S. T., Nice, D. J., Palliyaguru, N., Pennucci, T. T., Ransom, S. M., Sesana, A., Siemens, X., Stairs, I. H., Stinebring, D. R., Stovall, K., Swiggum, J., Vallisneri, M., van Haasteren, R., Wang, Y. and Zhu, W. W. and NANOGrav Collaboration (2014) Gravitational waves from individual supermassive black hole binaries in circular orbits: Limits from the North American Nanohertz Observatory for gravitational waves. Astrophysical Journal, 794 (2). ISSN 0004-637X

Full text not available from this repository.

Abstract

We perform a search for continuous gravitational waves from individual supermassive black hole binaries using robust frequentist and Bayesian techniques. We augment standard pulsar timing models with the addition of time-variable dispersion measure and frequency variable pulse shape terms. We apply our techniques to the Five Year Data Release from the North American Nanohertz Observatory for Gravitational Waves. We find that there is no evidence for the presence of a detectable continuous gravitational wave; however, we can use these data to place the most constraining upper limits to date on the strength of such gravitational waves. Using the full 17 pulsar data set we place a 95% upper limit on the strain amplitude of h(0) less than or similar to 3.0 x 10(-14) at a frequency of 10 nHz. Furthermore, we place 95% sky-averaged lower limits on the luminosity distance to such gravitational wave sources, finding that dL greater than or similar to 425 Mpc for sources at a frequency of 10 nHz and chirp mass 10(10) M-circle dot. We find that for gravitational wave sources near our best timed pulsars in the sky, the sensitivity of the pulsar timing array is increased by a factor of similar to four over the sky-averaged sensitivity. Finally we place limits on the coalescence rate of the most massive supermassive black hole binaries.

Item Type: Article
Uncontrolled Keywords: gravitation,general pulsars
Depositing User: LivePure Connector
Date Deposited: 10 Jul 2018 15:30
Last Modified: 13 Jul 2023 10:30
URI: https://ueaeprints.uea.ac.uk/id/eprint/67568
DOI: 10.1088/0004-637X/794/2/141

Actions (login required)

View Item View Item