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A fundamental photon creation–annihilation commutation
relation underpins the familiar quantum formulation of op-
tics. However, an internal inconsistency becomes apparent
in the pursuit of structured light applications. This requires
the relationship between operator commutation and mode
orthogonality to be recast in a form ensuring full consis-
tency with the precepts of quantum theory. A suitable re-
formulation, shown to register correctly an intrinsic
quantum uncertainty in the associated interactions, has spe-
cial relevance to optical vortex physics—particularly with
regard to information content—through its connection
to the degrees of freedom in the associated radiation
modes. © 2018 Optical Society of America
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In the field of quantum optics, much of the basic theory is
conventionally cast in terms that are primarily designed to ap-
ply to a single mode of radiation—a single wavelength, direc-
tion, and polarization. In the most obvious extension of these
principles—allowing for more numerous modes of radiation—
there are usually significant intervals between the accommo-
dated frequencies, as, e.g., in the case of frequency combs
[1], or else there are substantial differences in the directions
of propagation. At the heart of most of the quantum formalism,
there is a simple and widely familiar boson commutation rela-
tion between photon creation and annihilation operators [2].
One physical interpretation is that a photon propagating in
a given radiation mode in vacuum cannot spontaneously divert
into another mode.

In the sphere of optics, the creation–annihilation commu-
tation relation is often presented in a mathematically concise
form, neglecting polarization features that ought also, for gen-
erality, to be accommodated. Although these features are not
commonly given attention, they supplement the wave vector
information in uniquely defining each radiation mode. The
commutation relation is specifically cast in terms of a binary
basis, for although polarization measurements can be made

at a spatially localized location with high fidelity, it is well
understood that two linear polarization states whose electric
vectors differ by only a few degrees cannot be regarded as
orthogonal. However, for the directions of propagation associ-
ated with the wave vector, the assumption of an orthonormal
basis is not so straightforward. Moreover the wave vector of
light does not commonly engage with detection apparatus—
unless weak quadrupole attributes are engaged, which is rarely
the case.

The difficulties of assuming an infinitely sharp distinction
between modes of similar wave vectors are thrown into sharp
relief in the case of structured radiation [3], in which there can
be local variation of wave vector direction within the confines
of a single well-defined beam. An optical vortex, or “twisted
light,” constitutes a prime example, where the wave vector rep-
resents the normal to a wavefront of helicoidal form.
Significantly, it has been shown that the twisted character ex-
tends down to the level of individual photons [4,5], such that
any given photon in a structured beam may manifest a variation
in wave vector direction within the plane that is transverse to
the axis of propagation. Part of the problem is that the nominal
quantization volume, within which distinct photons are num-
bered, is invariably assumed to be substantially larger than an
optical wavelength—and it is accordingly a volume that
contains a markedly non-singular distribution of wave vectors.

It emerges that the conventional cast of the creation–
annihilation commutation relation, which imposes complete
orthogonality between modes with infinitesimal differences
in propagation direction, is not only incorrect, but also incon-
sistent with fundamental precepts of quantum theory. It should
be understood that any ultimate imprecision in establishing a
difference between photons of marginally different direction is
not simply a reflection of technical, experimental, or other in-
teraction-related obstacles. Rather, it has to be an intrinsic fea-
ture of the quantum foundations for light itself. In this Letter,
we re-examine the key commutation relation, and show that a
different formulation is entirely consistent with quantum
principles. Moreover, the new formulation has special relevance
for the propagation character, and potential information-
conveying capacity, of structured light [6]. The motivations
behind the study are to highlight the importance of a correct
photon commutation relation, to explore a connection to
beams endowed with orbital angular momentum (OAM) [7],
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and to indicate implications for the burgeoning field of infor-
matics using singular optics.

Photons are the elementary quantum excitations of any
electromagnetic field, each associated with a specific radiation
mode conventionally defined by wave vector and polarization.
Designating such modes with labels m, m 0, the boson character
is exhibited through the canonical commutation relations for
the photon annihilation operator am, and counterpart creation
operator a†m 0, written in Kronecker delta form:

�ama†m 0 � � δmm 0 , (1)

which has been asserted as the starting point for the entirety of
quantum optics [2]. In many applications, the above relation is
interpreted only in terms of modes potentially differing in wave
vector alone—either through measurably different wavelengths
or directions of propagation. However, the above clearly lacks
the detail to account for other conditions. Developing Eq. (1)
in terms of the associated modal wave vectors k and k 0, and
polarization states denoted by labels η and η 0 leads to an appa-
rently more complete cast of the commutation relations [8]:

�a�η��k�, a†�η 0��k 0�� � δkk 0δηη 0 : (2)

However, although the commutation relation (2) is more ac-
curate than the more generalized form (1), both representations
are flawed. The issue is more easily identified in the latter,
whereby the first (Kronecker) delta clearly has an improper
form, containing pairs of indices that do not form an orthogo-
nal basis.

The incorrect commutation relation (2) can be recast, using
a Dirac delta function (of which the Kronecker delta is a
discrete analogue), into a form that is suitable for the limiting
case of an infinite plane wave [9]:

�a�η��k�, a†�η 0��k 0��
� �8π3 V �−1δ3�k − k 0�δηη 0

� �8π3 V �−1δ�kx − k 0x�δ�ky − k 0y�δ�kz − k 0z�δηη 0 , (3)

where V is the quantization volume, and the single Kronecker
delta in Eq. (3) is fully restricted to orthogonal basis sets—such
as might be represented by any pair of points on opposite sides
of a Poincaré sphere. This orthogonality of basis polarization
states correlates with the usual binary basis for conveying
information.

It is readily verified that the constants on the right-hand side
of Eq. (3) satisfy the dimensionless character of the commuta-
tor. With regard to its �L�3 dimensions, deployment of the
Dirac delta necessarily relates to a three-dimensional region
of space, here registered by the quantization volume V .
With increasing V , there is an increasing capacity to distinguish
between photons with wave vectors of marginally different
angular disposition. It is noteworthy that each Dirac delta func-
tion can be expressed as any one the numerous limit represen-
tations [10], and those limits may in principle be considered as
physically corresponding to a quantization volume of infinite
size. This signifies that there are no boundary constraints on
the wave vectors, which therefore constitute a continuous,
unbounded set in three-dimensional space.

Before proceeding further, it is useful to consider the impli-
cations for physical environments, or forms of radiation, when
these assumptions fail. If we restrict attention to two modes
whose photons have a common frequency ω � cjkj � cjk 0j,

but marginally different directions of propagation (and there-
fore unequal vector momenta), then the non-zero commutator
in Eq. (3) signifies a degree of compromise to the possibility of
local discrimination between photons in these two modes. This
conclusion, entirely consistent with position-momentum
uncertainty, thus invites closer scrutiny for light with inbuilt
variations in wave-vector directionality.

Having addressed the fundamental issues of the photon
annihilation–creation commutation relation for plane waves,
the archetype of propagating light, we may now follow similar
principles for so-called “structured” or “complex” light. Having
a mathematically correct and physically defensible form for
the creation–annihilation commutation relations is clearly
essential. For structured laser light with a specific direction
of propagation, Eq. (3) is more suitably recast in cylindrical
coordinates. As shown in Fig. 1, the three degrees of freedom
for the wave-vector k are now developed as axial, radial, and
azimuthal components: kz , kρ, and kϕ (the angular dependence
of the latter cast in wavenumber dimensions for consistency
with the other two components):

�a�η��k�, a†�η 0��k 0�� � �8π3V �−1δ�kz − k 0z�
× δ�kρ − k 0ρ�δ�kϕ − k 0ϕ�δηη 0 : (4)

In the limit of Eq. (4), the product of four delta functions
appears to signify that if two radiation modes differ in any
one or more of the parameters kz , kρ, kφ, and η, they are
orthogonal—and therefore have the capacity to independently
convey information. However, it will be shown that precise mo-
dal orthogonality cannot be secured—not at least through
experimental limitations, but also for more fundamental
quantum uncertainty reasons.

To highlight such quantum issues, we consider the most
studied vortex form of structured light: Laguerre–Gaussian
(LG) modes. In the quantum operator formulation, each regis-
ter of the electromagnetic field (e.g., electric or magnetic field)
is now cast as a sum over modes designated by four distinct
parameters [11]—k, η,l, p, representing a partition into longi-
tudinal, polarization, angular, and radial functions—thereby
signifying four degrees of freedom for the photon. This
contrasts with the usual four degrees of freedom in the conven-
tional plane wave expansions, consisting of three Cartesian
components of the wave vector and one for the polarization
state. It is this disparity between plane-wave and structured

Fig. 1. Cylindrical vector components of the wave vector in a vortex
beam. Note that the kz vector component need not be identified with
the beam axis: this is a representation in reciprocal space.
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radiation, which forms the basis for the conveyance of
additional information, density for a photon with the character
of the latter form of light, i.e., a photon possessing OAM,
can carry more information than its plane-wave counter-
part [12,13].

The orthogonality of disparate modes—through either their
radial or angular functions, or both—offers a basis for deter-
mining the structural information content. The azimuthal
functions in the field operators emerge in the form of simple
phase factors eilϕ, consistent with the orthogonality of modes
with different topological charges. Most applications seeking to
exploit mode orthogonality, for a given k, η, consider only the
differing values of topological charge (winding number) l: the
index p is either not accounted for, or simply assumed to be 0.
However, the radial index p has to be included in the mode
summation, for generality and completeness of the modal
decomposition [14]. Indeed, there has been a recent surge in
interest in the radial term, and it has been sought to substan-
tiate the role p can play in informatics [15–17]. Of course, l
and p both feature in the detailed form of the Laguerre–
Gaussian radial distribution:

f l,p�ρ� �
Cp

jlj
w0

� ffiffiffi
2

p
ρ

w0

�jlj
exp

�
−ρ2

w2
0

�
Lpjlj

�
2ρ2

w2
0

�
, (5)

where Cp
jlj is a normalization constant, and w0 is the Gaussian

beam waist at z � 0. The above expression is cast as the famil-
iar product of a Gaussian with an associated Laguerre polyno-
mial Lpl�x�, the latter being one of the solutions of the following
partial differential equation:

x
∂2Lpl�x�
∂x2

� �p� 1 − x� ∂L
p
l�x�
∂x

� lLpl�x� � 0: (6)

Since l appears in Eq. (5) in the guise of its modulus, vortices of
opposite topological charge have identical radial distributions;
their physical differences arise through their phase factors [18].

Orthogonality among the associated Laguerre polynomials
is usually specified with respect to those of the same index p.
The form that is relevant for Laguerre–Gaussian beam
applications, which also introduces a weighting factor, is
expressible as follows:Z

∞

0

e−xxpLpl�x�Lpl 0 �x�dx � �l� p�!
l!

δll 0 : (7)

However, with p ≠ p 0, an expression of the following general
form arises, cast in terms of hypergeometric functions [19]:Z

∞

0

e−xxμLpl�x�Lp
0

l 0 �x�dx

�
�
l� p

l

��
l 0 � p 0 − μ − 1

l 0

�

× 3F 2�−l, μ� 1, μ − p 0 � 1; p� 1, μ − p 0 − l 0 � 1; 1�
× Γ�μ� 1�, (8)

which holds under the conditions that are satisfied in our
application, i.e., integer l,l 0 and real μ, R�μ� > −1.

Returning to the commutation relations, the modal discrim-
inators of radial and azimuthal form reduce to the familiar
Kronecker form appropriate to a properly orthonormal basis
set. Accordingly, the quantization volume is now cast in terms
of a lateral extension z along the propagation axis:

�a�η�l,p�kẑ�, a†�η
0�

l 0, p 0 �k 0ẑ�� ≅ �2πz�−1δ�kz − k 0z�δll 0δpp 0δηη 0 : (9)

Although a result of this form emerges on integration over the
nominally infinite extent of a plane transverse to the propaga-
tion axis z, its validity is contingent upon the fulfillment of the
specific condition p � p 0 (and p � p 0 � 0 is frequently exper-
imentally favored). In other circumstances, explorations of
radial function discrimination may be compromised by the
evaluations of Eq. (9), giving results that are no longer simply
expressible in terms of the Kronecker delta δpp 0—see Eq. (7).

We now focus on the physical significance of the first delta
on the right of Eq. (9). To accommodate quantum uncertainty,
it is appropriate to recast the longitudinal wave-vector con-
straint in terms of a limit. There are various choices available
for representing the Dirac delta function in such a form. For
our present purposes—departing from an earlier formulation
[9], and arguably more true to the physicality of beam propa-
gation—we choose the form of a sinc function, effectively rep-
resenting the extent of local divergence between beams with
axial wave-vector components kz and k 0z :

δ�kz − k 0z� � lim
ε→0

�
sin�kz − k 0z�∕ε
π�kz − k 0z�

�

� lim
ε→0

�πε�−1 sinc��εz�−1�k − k 0� · z�: (10)

The scalar multiplier ε−1 in the even sinc function, in its limit,
essentially compensates the effect on that function of increasing
the range z. The sinc function is, of course, similar in form to
the amplitude for forward scattering of a plane-wave electro-
magnetic field of wave-vector k at a position z, measured at
a position z 0—which is sinc k:�z − z 0�, whose delta function
limit in the far field ensures a conservation of linear momen-
tum.Writing k 0 � k � δk and z 0 � z � δz, and discarding δ2
terms, underscores the comparison. The connection has the
physical significance that only by registering the electromag-
netic field at two separate positions can the direction of a wave
vector be determined: the same principle naturally applies in
the case of a quadrupolar interaction, measured by an extended
charge distribution. Once again, the physical implication re-
vealed by expressing the Dirac delta on the left of the above
equation as a limit of the function on the right is that in
any regime short of the asymptote, the creation-annihilation
commutator is not precisely zero in further correlation with
the principle of position-momentum uncertainty.

We now focus on the local variation in wave-vector direc-
tion, which is intrinsic in the nature of structured light. It is
especially instructive to examine further the implications of
the reformulated delta function with a specific focus on optical
vortices. To do so, it is necessary to correct a widely supposed
relation between the topological charge and the pitch angle of
the helicoidal wavefront, i.e., the pitch angle θ in Fig. 1.
Yeganeh et al. [20] and Bekshaev et al. [21], e.g., report the
pitch angle as θ � l∕kρ, but this cannot be correct, since it
implies θ > π∕2 for large enough l—which would signify a
reversal of handedness. The correct form of the relationship
has to be tan θ � l∕kρ, which correctly gives θ � 0 for l � 0
and θ � π∕2 for l � ∞. Moreover, the usual form of expres-
sion is consistent with the small angle limit of the tangent. Of
course, the singular nature of the beam means there is zero in-
tensity along the axis where ρ � 0. The behavior of the argu-
ment for the sinc function in Eq. (10) can be pursued by
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assigning primed and unprimed locational coordinates to
the positions for measurement of the correspondingly primed
and unprimed modes. For two locations, �z, ρ,ϕ� and
�z, ρ� δρ,ϕ�, which differ only marginally in radial position,
we define a parameter g as

g�k; z, ρ,ϕjk 0; z, ρ 0,ϕ� ≡ z−1�k − k 0�:z
� k�cos θ − cos θ 0�
� k��1� l2∕�kρ�2�−1∕2
− �1� l2∕�kρ 0�2�−1∕2�, (11)

and therefore,

δg � −
k
2
��1� l2∕�kρ�2�−3∕2�−2��l2∕�k2ρ3���δρ

� l2

kρ3
�1� l2∕�kρ�2�−3∕2δρ: (12)

For small ρ, and/or small k, and/or large l, signifying large θ,
the result approximates to

δg ≈
l2

kρ3
�l2∕�kρ�2�−3∕2δρ � l2

kρ3
k3ρ3

l3 δρ � k2

l
δρ: (13)

On the other hand, for large ρ, and/or large k, and/or small l,
signifying small θ, we have the asymptotic form:

δg ≈
l2

kρ3
δρ: (14)

The physical significance in the former case—such as for
positions close to the longitudinal axis—is that an uncertainty
in measurability of the angular distinction δθ, between the as-
sociated locally oriented wave vectors, is inversely proportional
to l. Since the OAM per photons is lℏ, this is entirely
consistent with the angle–angular momentum uncertainty
principle for structured light [22]. The latter asymptote, which
might equally be conceived for positions remote from the axis,
signifies that the measurability of the differential δθ scales
quadratically with l, but there is a much more demanding limit
on the degree of non-collinearity that can escape detection.

Methods that have been devised to sort optical modes on
the basis of their OAM have proven that each mode can
confidently be sorted from a range of 10 or more other, numeri-
cally adjacent l values. Nonetheless, incomplete differentiation
is evident in the results of most experiments [23,24].
Imperfections are also apparent in groundbreaking experiments
on the multiplication of OAM values [25]. Some of these im-
perfections could certainly arise from technical limitations;
however, our conclusion is that at the limits of experimental
resolution—or below it—there is a fundamental limit on mo-
dal orthogonality, of quantum character, which cannot be over-
come. Since it has also been shown that individual photons
register mode topology [26], the true extent of associated in-
formation conveyance per photon presents an issue of technical
relevance to schemes for the high-fidelity encoding and
sorting of information using structured light. By tackling the
fundamental photon physics, our work has aimed to address

and advance the underlying quantum theory. Possible implica-
tions for the propagation of guided modes now invite further
scrutiny.
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