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INTRODUCTION

The population models used in fisheries manage-
ment require age data to define stock characteristics
(Cadima 2003, Cadrin & Dickey-Collas 2015). For
most commercially exploited fish stocks, this infor-
mation is determined from an analysis of seasonally
accreted growth marks in the calcified structures
(scales, bones, fin rays, otoliths) of fish (Welch et al.
1993, Panfili et al. 2002, Brophy 2014, Zhu et al.
2015). The calcified inner ear-stones of bony fishes,

or otoliths, have been a cornerstone of fish ageing
methodology for over a century, as otolith rings are
formed with regular periodicity (Williams & Bedford
1974, Mendoza 2006). The literature on ageing of fish
stocks continues to grow; however, the approach is
essentially subjective. While expert otolith readers
can enumerate the annual increments for many
stocks with a good degree of accuracy and high pre-
cision, ageing certain stocks and older individuals
can be very challenging (Campana 2001, Morison et
al. 2005, de Pontual et al. 2006, Fey & Linkowski
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ABSTRACT: Otoliths or ear-stones are hard, calcium carbonate structures located within the inner
ear of bony fishes. Counts of rings and measurements of seasonal growth increments from otoliths
are important metrics for assessment and management of fish stocks, and the preparation and
microscopic analysis of otoliths forms an essential part of the routine work undertaken by fisheries
scientists worldwide. Otolith analysis is a skilled task requiring accuracy and precision, but it is
laborious, time-consuming to perform, and represents a significant cost to fisheries management.
In the last 2 decades, several attempts to apply ‘computer vision’ (systems that perform high-level
tasks and exhibit intelligent behaviour) in otolith analysis have been reported. Although consid-
erable progress has been made and several prototype systems developed, laboratories have been
reluctant to adopt image-based computer-assisted age and growth estimation (CAAGE) systems.
This paper surveys applications of CAAGE, focusing on their utility for automated ageing using
images of otolith macrostructure. A cost−benefit analysis of CAAGE of cod, plaice and anchovy
shows that computer vision performs relatively poorly compared with morphometric techniques.
However, there is evidence that information from visual features can boost the performance of
morphometric CAAGE, and further work is needed to develop effective frameworks for this inte-
grated approach. The cost benefit of these systems might be attractive to smaller laboratories that
are already using age−length keys derived from otolith morphometrics for management of smaller
artisanal fisheries.
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2006, Smith 2014, Hüssy et al. 2016a). Otoliths act as
endolymphatic infillings (masses) within the saccule
of the inner ear and function as auditory, balance,
movement, and direction receptors in all vertebrates
and some aquatic invertebrates (Popper & Hoxter
1981, Popper et al. 2005, Schulz-Mirbach et al. 2015).
Bony fish (teleosts) possess 3 pairs of otoliths (sagit-
tae, lapilli and asterisci), and in most species, the sac-
cular sagitta is the largest otolith and the focus of
most scientific inquiries (Fig. 1). Otoliths grow accord-
ing to an accretionary process of calcium carbonate
deposition that builds as a succession of concentric
layers from an inner core. Inter-specific variability in
the shapes and proportional sizes of otoliths is sub-
stantial, and often diagnostic (Schmidt 1969, Messieh
1972, Campana & Casselman 1993, Friedland &
 Reddin 1994, Lombarte & Morales-Nin 1995). Con-
siderable research effort has been expended examin-
ing the biomineralisation process that drives otolith
growth and factors affecting the seasonal formation
of annuli and other growth marks, but our under-
standing is currently incomplete and the mechanics
of the otolith structure and composition continues to
be an active topic of research (Jolivet et al. 2008,

2013, Morales-Nin & Geffen 2015). The individual bio -
chronologies encoded as growth marks are thought
to reflect environmental experience, since the com-
posite calcium carbonate is primarily derived from
the ambient water, but recent research suggests that
physiological factors also play an important role
(Darnaude et al. 2014, Sturrock et al. 2015, Hüssy et
al. 2016a, Smolinski & Mirny 2017). Typically, there
is more growth in summer, less in winter, and this
annual cycle manifests as a macrostructure (MaS)
exhibiting translucent rings, somewhat similar to tree
rings. In many species, the accretion of calcium car-
bonate and glutinous matrix alternates on a daily
cycle, and this periodicity is particularly evident in
microscope examinations of otolith microstructure
(MiS) in juvenile fish (Campana & Neilson 1985). As
otolith shape is indicative of fish species and related
to life history and behaviour (Popper & Lu 2000), this
structure has attracted the interest of fisheries scien-
tists since at least 1899 (Ricker 1975).

Consequently, data gathered from otoliths has
been applied in fisheries science worldwide for over
a century, with otoliths forming the basis of routine
assessment of age and structure of fish stocks. Cam-
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Fig. 1. Micro-computed tomography (micro-CT) image of bowfin Amia calva showing the in situ location of otoliths (sagittae,
lapilli and asterisci), representative of all bony fish (teleosts). Data comprises 1071 slices (1024 × 1024 pixels) along the coronal 

axis; each slice is 0.1237 mm thick, with an interslice spacing of 0.1237 mm
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pana & Thorrold (2001) estimated the minimum num-
ber of otoliths examined worldwide to be be tween
800 000 and 2 000 000 per annum, underlining their
importance in monitoring and characterising fish
populations. Fish have indeterminate growth pat-
terns that are influenced by environmental condi-
tions, and as such, fish growth and production
require frequent measurement to monitor productiv-
ity and population characteristics in response to vary-
ing levels of exploitation and environmental change.
Campana (2001) discusses the importance of this
work and highlights several examples where inaccu-
racies in age determination have led to age estimates
that differ by up to a factor of 3, leading in turn to
overly optimistic estimates of growth and mortality in
certain species that have contributed to overexploita-
tion (e.g. de Pontual et al. 2006). In addition to annual
ageing and otolith MiS, more recent reviews (Begg et
al. 2005, Campana 2005) highlight emerging applica-
tions such as otolith chemistry, and the literature con-
tinues to grow (Geffen 2012, Sturrock et al. 2012),
underlining the ongoing relevance of otoliths to inno-
vations in fisheries science.

The feasibility of using digital imaging in fish
ageing studies has been investigated since Fawel
(1974) first reported results using a video camera
and digital frame store. Further use of computer-
assisted ageing techniques followed (Methot 1981,
Frei 1982, Messieh & McDougall 1985, Campana
1987, McGowen et al. 1987, Panfili et al. 1990) with
the availability of cheaper personal computers. Pro-
tocols and potential advantages of computer-
assisted analysis of MiS and MaS were investigated
by Campana (1992) and King (1993). Routine tasks
which have attracted the attention of the image-
processing community are fish age determination
and the measurement of inter-annual growth incre-
ments (Troadec 1991, Morales-Nin et al. 1998,
Takashima et al. 2000, Campana & Thorrold 2001,
Troadec & Benzinou 2002, Begg et al. 2005, Black
et al. 2005). Other areas where image analysis has
played an important role are otolith allometry and
morphometrics for distinguishing between fish
stocks (Cardinale et al. 2004, Burke et al. 2008a,b,
Parisi-Baradad et al. 2010), quality assurance (Mori-
son et al. 1998, 2005, Palmer et al. 2005) and envi-
ronmental reconstruction (Millner et al. 2011, Mor-
rongiello et al. 2012).

Routine capture and analysis of otolith images has
formed an important component of European Union
(EU)-funded collaborative fisheries research since
1996, with projects focused on improving the accu-
racy of otolith ageing (Moksness 2000, Appelberg et

al. 2005), age determination by otolith shape (Arneri
et al. 2002) and automatic age determination and
growth analysis (Mahé 2009, Mahé et al. 2017). Dig-
ital imaging offers a number of potential advan-
tages, including the development of online scientific
ar chives and historical records (Lombarte et al.
2006), the rapid calculation of biological and life
history information (Carbini et al. 2008), and the
automated capture and seamless storage of associ-
ated information (Morison et al. 1998). Some EU
projects have delivered specialised algorithms and
spawned be spoke software environments for otolith
imaging, such as IMAGIC (Image Science Software)
and TNPC (Mahé 2009, Mahé et al. 2011). Two hun-
dred copies of TPNC are licenced and it is cited in
research (e.g. de Pontual et al. 2006, Mille et al.
2016) and used in routine survey analysis. However,
much of the literature on computer-assisted sclero -
chronology is dominated by generic proprietary
micro scopy tools such as ImagePro (Media Cyber-
netics®), Lucia (Laboratory Imaging®) and open-
source systems such as ImageJ (formerly NIH image)
(Abràmoff et al. 2004). Examples include Whit man
& Johnson’s (2016) tutorial featuring ImagePro and
an ImageJ plug-in for otolith and tree ring counting
resulted from research sponsored by the Norwegian
Institute of Marine Research, but there is no evi-
dence that this has been evaluated (Vischer &
 Nastase 2015).

Panfili et al. (1990) originally coined the phrase
‘computer-assisted age and growth estimation’
(CAAGE) to describe interactive imaging tools, and
this name is still used to describe more recent sys-
tems that operate completely autonomously. Such
systems are attractive in that they seem to offer the
possibility of moving from subjective estimates of age
towards objective measures. However, these systems
have been very difficult to implement. In an observa-
tion that remains true to this day, Morison et al.
(2005) observed,

‘it is a recognition of the complexity of the process
that no age estimation laboratories have been able to re -
place their human readers’ (Morison et al. 2005, p. 777).

This review aims to provide an overview of imag-
ing and pattern recognition systems for routine auto-
mated ageing through computerised analysis of
growth marks that present in the otolith MaS. The
work builds on a previous tutorial introduction by
Troadec & Benzinou (2002) and conference presenta-
tion by Carbini et al. (2008). We highlight results
of the most comprehensive evaluation of CAAGE
 techniques and methodology undertaken by an EU-
funded project entitled Automated FISh Ageing
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(AFISA) (Mahé 2009). In reviewing this work and
attempts by others to develop automatic image-
based ageing tools, we try to explain why there has
been relatively little activity in this area since a flurry
of articles were published in the 2000s. We highlight
an existing approach to integrating information from
otolith images within existing morphometric CAAGE
systems which we believe could be further devel-
oped and exploited more widely. We also signpost
future frameworks that could be developed to enable
experts and computers to work cooperatively, and we
believe that these systems may have a role in training
and quality assurance. 

REVIEW OF TECHNIQUES

Image processing has been used in sclerochronol-
ogy since the 1980s and initially focused on low-level
image-processing tasks aimed at facilitating interac-
tive systems to assist scientists in making measure-
ments and recording results (Campana 1987, Mc-
Gowen et al. 1987, Small & Hirschhorn 1987, Panfili
et al. 1990). In the 1990s, scientists considered high-
level tasks such as classification of otolith shape (for
discrimination between stocks), and CAAGE systems
were designed to analyse 1-dimensional (1-D) opacity
signals recovered from a ray (transect) originating
at the nucleus and extending to the otolith edge
(Troadec 1991, Macy 1995, Welleman & Storbeck
1995, Cailliet et al. 1996) (Table 1). Later, CAAGE ad-
vanced to take advantage of 2-dimensional (2-D) al-
gorithms and growth models. We consider these in
the section ‘Image processing’, after first reviewing
the important step of image acquisition.

Image acquisition

Age-related studies of otoliths can be broadly
divided into those involving MaS, such as routine age
determination from annual rings or species identifi-
cation (Morales-Nin & Panfili 2002, Courbin et al.
2007), or those involving MiS, for example nucleus or
daily incremental width and primordia studies (Cam-
pana & Neilson 1985, Geffen 2002, Neat et al. 2008).
Although all researchers agree that the method used
for otolith preparation and examination with
microscopy is key in obtaining high-quality images,
the imaging techniques employed vary depending
on established protocols within each laboratory. A
survey by Morison et al. (2005) concludes that in gen-
eral there is great diversity in attention to quality and

no consensus on desirable standards. The diversity of
techniques applied for otolith preparation (Chris-
tensen 1984, Miller & Simenstead 1994, Estep et al.
1995, Casselman & Scott 2000, Easey & Millner 2008)
and microscopy has hampered the adoption of
widely agreed protocols with respect to studies of
otolith MaS, and the guidelines for image acquisition
are typically quite imprecise (e.g. Clausen 2006).
While this represents a problem for human interpre-
tation, it is of vital significance for CAAGE systems
(Mahé 2009).

It is tempting to think that image acquisition is
mainly concerned with camera and sensor technolo-
gies, but the considerable improvements in image
quality and widespread availability of colour images
(e.g. Fig. 2) over the last 2 decades have not trans-
lated into similar improvements in overall system
accuracies. Some articles demonstrate that surpris-
ingly good images can be obtained at low cost (Cam-
pana 1987, Rypel 2008). Modern digital cameras are
not prohibitively expensive, and for fisheries that are
well resourced, it is unlikely that camera technology
will be a limiting factor. Studies undertaken by
AFISA used Leica 300/320 digital cameras (3.3
Megapixels, up to 36-bit colour depth) and a stereo-
microscope (Leica MZ6). However, they found that
factors such as consistent illumination geometry and
otolith preparation were important in achieving good
overall performance.

Images are essentially just the visual rendering of
an array of numbers, representing pixel (picture
element) intensities. Computers running image-pro-
cessing programs make decisions based on individ-
ual values in the array. It is essential that these val-
ues are reproducible; for example, the same otolith,
imaged at a different time, with the same equip-
ment, should yield the same, or very similar values.
Even if the computer program interprets relative
differences between pixel values, rather than
absolute values, it is important that differences in
intensities across the image are consistent. Micro -
scopy in most otolith labs tends to be optimised for
human readers and the lighting geometry is flexible,
allowing it to be easily adjusted for personal prefer-
ence, per otolith. In contrast, automated systems go
to great lengths to ensure lighting geometry is fixed
and this is often addressed by establishing calibra-
tion protocols. There is some evidence that fisheries
science is addressing these issues, driven by a need
to meet quality assurance standards. The AFISA
project (Mahé 2009) took great care to measure
light intensities and adopted a consistent setup
 protocol.
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Fisheries scientists making measurements of opac-
ity using images go to great lengths to ensure their
otolith preparation and imaging protocols deliver
precise measurements. They favour thinly ground
otolith sections under transmitted light (Hüssy &
Mosegaard 2004, Jolivet et al. 2013). The need for
consistent lighting geometry mitigates against using
whole otoliths, as due to their irregular surface and
crystalline structure, the appearance of growth
marks is very sensitive to small variations in the light-
ing geometry. Imaging thin sections has been shown
to enhance the contrast between opaque and hyaline
zones, illuminated by reflected light (Panfili et al.

1990). AFISA tested their system with both whole
otoliths (under reflected light) and transverse and
sagittal sections (under both reflected and transmit-
ted light). They used one magnification setting and
carefully configured the lighting and ensured consis-
tency by making measurements on a ‘calibration
otolith’. AFISA found that

‘the set-up concerning light settings were [sic] highly
influential on the opacity measure and were [sic] very
well defined and all measurements of opacity were done
using a standard set-up in which the magnification, the
light settings, position of light-source and otolith under
the light and the setting of the frame-grabber system was
[sic] kept constant between all otoliths’ (Mahé 2009, p. 15).
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CAAGE classification Method Species Area N Evaluation
1-D 2-D ML Age Prep APE

or size (%)

Interactive systems
Panfili et al. (1990) ✓ Mediterranean eel Anguilla anguilla – – – W –
Cailliet et al. (1996), ✓ ✓ Bank rockfish Sebastes rufus – 60 – S 4.0
King (1993)

Benzinou et al. (1997) ✓ Plaice Pleuronectes platessa L. – – – – –
Formella et al. (2007) ✓ ✓ Cod Gadus morhua <55° N 17 3−5 yr S 14.0

Fully automatic systems
Troadec (1991) ✓ Saithe Pollachius virens VI-A 58 3−10 yr W 4.3

Welleman & ✓ Plaice Pleuronectes platessa L. – 334 2−5 yr W 3.0−
Storbeck (1995) 18.0

Robertson & ✓ ✓ King George whiting Sillaginodes punctate – 378 2−5 yr S 3.5
Morison (2001)

✓ ✓ School whiting Sillago flindersi – 514 1−6 yr S 12.3
✓ ✓ Ling Genypterus blacodes – 2226 0−17 yr S 18.0
✓ ✓ Snapper Pagrus auratus – 987 0−28 yr S 22.2
✓ ✓ Black bream Acanthopagrus butcheri – 913 1−37 yr S 17.2
✓ ✓ Sand flathead Platycephalus bassensis – 963 0−20 yr S 18.2
✓ ✓ Blue grenadier Macruronus novaezelandiae – 1531 1−19 yr S 15.6
✓ ✓ Ocean perch Heliocolenus sp. – 573 4−60 yr S 21.8

Troadec et al. (2000) ✓ Plaice Pleuronectes platessa L. – 102 2−5 yr W 20.0

Takashima et al. (2000) ✓ ✓ White-spotted char Salvilinus leucomaenis – 439 2−6 yr W –

Fablet et al. (2003) ✓ Plaice Pleuronectes platessa L. Eastern Channel 116 0−6 yr – 40.0
Plaice Pleuronectes platessa L. Eastern Channel 116 7−11 yr – 10.0

Fablet et al. (2004) ✓ ✓ Plaice Pleuronectes platessa L. Eastern Channel 300 1−6 yr – 14.0

Fablet (2006b), Fablet ✓ ✓ Plaice Pleuronectes platessa L. Eastern Channel 320 1−6 yr – 12.0
& Le Josse (2005)

Fablet (2006a) ✓ ✓ Plaice Pleuronectes platessa L. Eastern Channel 200 1−6 yr – 11.0
Palmer et al. (2005) ✓ Plaice Pleuronectes platessa L. – – – – –

✓ Cod Gadus morhua – – – – –
Courbin et al. (2007) ✓ ✓ ✓ Hake Merluccius merluccius – 628 8−50 cm W –
Mahé (2009) ✓ ✓ ✓ Cod Gadus morhua North Sea 311 1 to 3+ yr S 13.8

✓ ✓ ✓ Cod Gadus morhua Northeast Arctic 527 2 to 7+ yr S 25.48
✓ ✓ ✓ Cod Gadus morhua Faroe Plateau 254 1−6 yr S –
✓ ✓ ✓ Plaice Pleuronectes platessa L. Eastern Channel 237 2 to 6+ yr S 34.16
✓ ✓ ✓ Plaice Pleuronectes platessa L. Iceland 251 4 to 7+ yr W 13.06
✓ ✓ ✓ Anchovy Engraulis encrasicolus Bay of Biscay 312 1 to 2+ yr W 9.35

Sória Pérez (2012) ✓ ✓ Plaice Pleuronectes platessa L. 189 2−6 yr 11.5

Table 1. Computerised age and growth estimation (CAAGE) of otolith macrostructure (MaS) from the published literature (1990
 onwards). 1-D = 1-dimensional, 2-D = 2-dimensional, ML = machine learning, Prep = otolith preparation, W = whole, S = section, 

APE = average percent error; dashes indicate data not available. VI-A: ICES area
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Image processing

Image processing is mostly concerned with digital
processing of signals derived from images. The tech-
niques employed can be classified as low-level, e.g.
enhancement of contrast, noise removal, and thresh-
olding; and high-level, e.g. image/object classifica-
tion, and scene understanding (Sonka et al. 2008,
Gonzalez & Woods 2008). The term ‘computer vision’
is used to describe systems that perform high-level
tasks and exhibit intelligent behaviour. Computer
vision systems often take advantage of temporal
coherence between video frames rather than work-
ing with one isolated image. Almost all computer
vision systems employ computer software, and devel-
oping efficient pattern-recognition algorithms is very
much a focus of current research. Image-based
CAAGE techniques can be broadly classified as 1-D
or 2-D, and a good overview of these is provided by
Troadec & Benzinou (2002). 1-D approaches measure
the opacity profile along a line originating at the
otolith core and ending at the edge (Panfili et al.
1990, Troadec 1991, Welleman & Storbeck 1995).
This line is called a ray or transect and is usually

taken in the direction of maximal growth; an exam-
ple is shown in Fig. 3. In contrast, 2-D approaches
consider all the otolith’s pixels rather than just those
that underlie one (or a small number of) transect(s). A
2-D approach is essential for some algorithms, such
as finding the position of the core or nucleus, but
other operations such as filtering the image may be
accomplished equivalently in 1-D or 2-D. One of the
most common image-processing operators used in
CAAGE is a smoothing filter. Many otolith readers
interactively apply filters to improve the distinction
between increments and will be familiar with the
names used to identify the kernels (e.g. ‘Laplacian’,
‘unsharp’ etc.). These enhance fine detail, but often
amplify image noise. Fortunately, humans are good
at discriminating between structured and unstruc-
tured visual information and can discount the noise.
But, unlike humans, computers are unable to dis-
criminate between structured high-frequency infor-
mation and noise, so high frequencies are usually
suppressed by applying a smoothing filter prior to
processing. AFISA highlighted some challenges in
applying smoothing filters to otolith images. Firstly,
the ring structures are clearly oriented, and secondly,
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Fig. 2. Example otolith images illustrate improvement in image capture technology: (a) eel Anguilla anguilla, sectioned otolith
(Panfili et al. 1990); (b) cod Gadus morhua, sectioned otolith (2013 image from Cefas); (c) eel, sectioned otolith stained with
neutral red (2013 image from Cefas); (d) sole Solea solea, sectioned otolith stained with neutral red (2013 image from Cefas)



Fisher & Hunter: Digital image analysis for otolith interpretation

their width is modulated by the growth function. Fur-
ther, the opaque and translucent rings are also asso-
ciated with different scales. These factors make opti-
mising the filter parameters very difficult. AFISA
addressed this by employing a novel filter that used a
2-D otolith growth model (discussed in the section
‘2-D analysis’) to automatically adapt its parameters
in different regions of the otolith image.

1-D analysis

The first algorithms for automatically ageing
otoliths simply enumerated the peaks in a 1-D tran-
sect opacity signal (Panfili et al. 1990), but more
robust results are obtained using Fourier analysis to
digitally process the signal (Troadec 1991). Troadec
demodulates the transect signal by assuming otolith
growth to be modelled by a 1-D growth function and

then uses Fourier analysis to establish the fish age.
Welleman & Storbeck (1995) consider the problem of
automatically identifying the nucleus and evaluate
their system for routine ageing of 334 plaice Pleu-
ronectes platessa individuals. Extending this work,
other researchers have exploited alternative signal
processing techniques such as wavelet decomposi-
tion (Morales-Nin et al. 1998, Palmer et al. 2005) and
bilinear transforms (Fablet et al. 2003) to study the
time-frequency signal behaviour. Both Troadec
(1991) and Formella et al. (2007) apply coordinate
transformations before processing; an example is
shown Fig. 4. Fig. 4b,c illustrates problems associ-
ated with non-uniform growth that in turn give rise to
local discontinuities. To address problems that arise
due to differences in accretion rates that (in extreme
cases) can give rise to local discontinuities in 1-D sig-
nals representing growth rings, Troadec (1991) inte-
grates profiles using a median estimator to improve
robustness and Campana (1992) proposed combining
measurements from different sources. Takashima et
al. (2000) combine information from 1-D transects in
a statistical model, while Guillaud et al. (2002a,b),
Rodin et al. (1996) and Palmer et al. (2005) describe
algorithms linking growth features in adjacent tran-
sects, thereby providing a step towards 2-D analysis.

2-D analysis

In the late 1990s, researchers attempted to use 2-D
image segmentation tools called active contour mod-
els to recover complete growth rings. The approach
is inspired by a computational analogue of an elastic
band that is seeded in the image and allowed to
deform due to external forces generated by image
features (e.g. annular rings). The contour is free to
move, finally reaching equilibrium when the internal
elastic force in the model and the external image fea-
tures are balanced. The internal force comprises sev-
eral parameterised components that can be tuned to
ensure the contour remains smooth and unbroken
even when the external image features are weak, so
that the contour is robust to cases where the annular
growth marks are incomplete. Sethian’s work on
evolving interfaces (Sethian 1996) provides an effi-
cient mathematical framework for this type of model,
and Troadec et al. (2000) use this to recover 2-D
growth features. The model aims to generate the
arrival time surface, T(x,y), shown in Fig. 5, that in
turn is interpreted as a forward model of growth.
Using this surface, the otolith ring structures are pre-
dicted by solving the equation
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Fig. 3. (a) Section of a 3 yr old cod otolith. Red dots, from left
to right: the nucleus and successive year marks, placed man-
ually by an expert. Yellow/green line: the radial transect
used to extract the intensity profile. Black dots denote posi-
tions where growth marks identified by red dots intersect
the  radial transect. Open red circle: position of the com-
puted first annual ring along this intensity profile. (b) Inten-
sity profile along the radial growth axis. Note: x-axis shows
relative distance from otolith nucleus, y-axis  shows pixel in-
tensity (0.0 = black, 1.0 = white). Vertical red lines denote
positions of black dots shown in panel (a). From Mahé (2009)
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Fig. 4. (a) Plaice (Pleuronectes platessa) otolith binary image illustrating Cartesian to polar transform P(r,θ) where r =
; (b) transformed plaice otolith P(r,θ); (c) rescaled polar transformation P(r t,θ) where r t = r/R; (d) filtered

radial 1-dimensional (1-D) transect signal (path highlighted in green in (c)); (e) ensemble of 1-D transects (0−30°); (f) covari-
ance between neighbouring 1-D transects

x y y x2 2 1+ = −, tanθ
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T(x,y) = T0 (1)

for any T0. The solution of this equation corresponds
to the otolith surface at time T0, and further
embedded growth layers at t > T0, thereby allowing a
time series of otolith shapes to be synthesised. AFISA
(Mahé 2009) adopted and extended this model by
combining low-level growth cues derived from the lo-
cal orientation and shape of growth marks (Álvarez et
al. 2008, Chessel et al. 2008, Fablet et al. 2008, 2009).
The accuracy of this forward model of accretionary
otolith morphogenesis in space and time is illustrated
in Fig. 6. The model is used by AFISA to drive the
adaptive smoothing filter introduced in the section
‘Image processing’ above, but more recently it has
been extended to form the basis for more complex
bioenergetic models (Fablet et al. 2011). 

An important subproblem for both 1-D and 2-D ap-
proaches is that of detecting the otolith nucleus or
core; this is the focus of work by Cao & Fablet (2006).
They combine morphological features recovered
from the otolith image and a statistical model trained

on expert readers to automatically locate the otolith
core. Machine learning is a paradigm that seems to
deliver the best results in terms of performance for
automatic ageing, and neural network and statistical
frameworks are popular implemen tations. Ap-
proaches that use machine learning paradigms often
derive features from spatial and frequency do main
analysis of 1-D transect signals, sometimes combined
with 2-D features extracted from the image (Robert-
son & Morison 1999, Fablet et al. 2004, Fablet & Le
Josse 2005, Fablet 2006a) and other measurements
such as weight (Fablet 2006b, Bermejo 2007).

Since 2010, there has been a noticeable shift to-
wards computational modelling of otolith increment
formation through integration of visual and chemical
analysis. These efforts have attempted to answer
questions relating to the coupling between otolith
growth and fish growth through metabolism and the
formation of opaque and translucent growth zones in
relation to the physiology of the individual (Grønkjaer
2016).

VALIDATION OF COMPUTER-ASSISTED
OTOLITH ANALYSIS

Troadec & Benzinou (2002) review the motivation
for pursuing research into CAAGE systems, citing
improvements in accuracy, precision, and produc -
tivity. While early research tended to evaluate the
accuracy of computer-assisted and automatic ageing
systems with reference to human interpretation and
give results in terms of absolute error (Δ), more re -
cent studies use methods that report errors in the
context of amongst-reader variability. A recent
 evaluation by Fablet (2006b) (plaice Pleuronectes
platessa otoliths, N = 320) reported 95% of automatic
age estimates were identical to those of human read-
ers, and Takashima et al. (2000) claimed the perform-
ance of automated counting to be indistinguishable
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Fig. 5. The arrival time surface T(x,y) in relation to observed 
otolith ring structures

Fig. 6. (a) Cod otolith image (transverse section) rendered by overlaying annular growth rings, generated by forward growth 
model (b)
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to that of expert readers. The precision (the ability of
a system to produce repeatable measurements) of
computer-assisted techniques has been reported to
be similar to that of human interpretation (Cailliet et
al. 1996), and broad agreement exists that the benefit
from computational recording of results lies in the
elimination of minor errors in the process. Troadec &
Benzinou (2002) argue that using a computerised
process forces readers to focus their attention on a
defined protocol, and this in turn produces benefits
in terms of quality assurance. With this in mind, some
laboratories have written species-specific protocols
for age analysis that require the users to execute
(ImagePro) macros defining sequences of  image-
processing functions. An  ImagePro plug-in devel-
oped by Alaska fisher ies is available from www.
mediacy. com/ resources/ appcenter/ otolith-application-
-27-detail. The question of productivity is frequently
addressed. Developers of interactive systems claim a
benefit (from 30−300% depending on the task) in
using computer-assisted techniques, while develop-
ers of fully automated systems (e.g. Troadec & Benzi-
nou 2002) conclude that the prospect of fully auto-
mated unsupervised processing (of a subset of fish
species) is entirely feasible. AFISA (Mahé 2009)
undertook a very detailed evaluation of the technol-
ogy, and their findings are summarised in the next
section.

Since 2010, most work on automated ageing has
been focused on evaluating and improving models
that use otolith morphology, sometimes combined
with biological measurements, for stock assessment
(Smith & Campana 2010, Matic-Skoko et al. 2011,
Campana & Fowler 2012, Bermejo 2014, Williams et
al. 2015). Some of this work is motivated by a need to
manage stock in artisanal fisheries located in areas
where there is a shortage of trained readers. Al -
though the accuracy of morphometric approaches is
poorer than estimates provided by human readers,
some scientists conclude that, with hindsight, there
would have been little difference in stock manage-
ment strategies, had previous decisions been based
on ages derived from morphometric rather than
expert estimates (Williams et al. 2015).

COST−BENEFIT ANALYSIS

The most significant research effort in recent
years to assess CAAGE applications in otolith read-
ing was the AFISA project (Mahé 2009). AFISA
attempted to address the cost of using age-based
models based on age estimations using otolith read-

ings, considered to be several million euros annu-
ally, by using automated computerised techniques.
In this context, the project aimed to provide a
means of standardising ageing amongst laboratories
and to build interpreted image databases that could,
in turn, be used for quality assurance as well as re -
ducing the cost of acquiring age data. AFISA devel-
oped and tested a suite of algorithms for image-
based CAAGE. Some of these have been reviewed
earlier in this article, but although results testing
the accuracy of various systems ageing plaice were
published (Table 1), the wider picture resulting
from a detailed cost−benefit analysis comparing the
performance of several different CAAGE systems
and otolith reading across a range of fisheries has
until now only been accessible as a final project
report (Mahé 2009). The project evaluation focused
on 3 case studies (Table 2): cod Gadus morhua
(Faroe Plateau, North Sea, and northeast Arctic);
anchovy Engraulis encrasicolus (Bay of Biscay); and
plaice Pleuronectes platessa (Eastern Channel and
Iceland). A total of 6729 otoliths were collated from
surveys and commercial landings, and the following
associated data were recorded: area, year, quarter,
total length, weight, sex, and maturity. Two different
approaches delivering automated age estimates
were evaluated (Table 3): using 1-D opacity profiles
along radial transects, and a conditional model
using morphologic descriptors together with a near-
est-neighbour classifier. These were compared with
another morphologic approach using a mixture
model (Francis & Campana 2004) and estimates by
expert readers. The evaluation method built age−
length keys for each approach based on a subset of
each fish stock from the database. The efficiency or
precision of a method is determined by the good-
ness-of-fit of the age−length key built from a subset
compared to the true age distribution of the sam-
ple. Results from 3 case studies (cod, plaice, and
anchovy) undertaken by AFISA are presented in
Table 3. The analysis only considered a homoge-
neous subset of fish (i.e. individual fish data for
which the relationship between age, length, otolith
weight and other otolith characteristics is the same)
caught in the same year and quarter (Table 2). The
costs (Table 4) were estimated from work under-
taken within the project. As all the automatic meth-
ods required experts to prepare training sets of
otoliths, manual age reading remained an essential
component. The cost of both the morphological and
image-based automated methods are considered as
equivalent, the major component of cost being due
to the preparation of otolith samples. The accuracy
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of each method is given in terms of mean-squared
error (MSE) and  relative bias (Table 3), computed as
follows:

‘For a given stock and period, usually a quarter, data
on fish length and weight, otolith characteristics such as
weight, area etc. and the age determined by expert
readers were available for a random sample of fish. This
sample was randomly divided into two groups of equal
size, for which one group was used as learning data
with the age included and the second was used as test-
ing data for which the age information were [sic]
excluded. For each of the three methods the age distri-
bution in the combined learning and testing sample (i.e.
the original random sample available) was estimated
based on these data. This procedure was repeated 100
times and thus resulting [sic] in 100 estimates of the age
distribution in the combined learning and testing sam-
ple. As the ‘true’ age distribution is known in this com-
bined sample the goodness of the methods can be eval-
uated’ (Mahé 2009, p 120).

Since the true age−length key is built using otolith
ages provided by expert readings for the whole sam-
ple, the results for age−length key (i.e. age determined
by expert readers) given in Table 3 reflect the sam-
pling error. MSE is the most important since it meas-
ures the mean error across all ages. Relative bias pro-
vides information about how the errors are distributed.

For example, a high relative bias
 indicates that the error is not normally
distributed and the system shows a
tendency to under- or over-estimate a
particular year group. It is important
to note that bias can exist for the age
estimation among inter national read-
ers. For example, ex changes of Arctic
cod otoliths have also reported inter-
reader bias, indicating that there are
significant differences in age esti-
mates among readers from different
institutions (Yara gina et al. 2009,
Healey et al. 2011).

The results presented in Table 3
show that the mixture model (Francis
& Campana 2004) outperforms the
nearest-neighbour classifier built on
morphometric features and gives an
MSE close to that of expert readers.
The performance of image-based
CAAGE gives at best an MSE
between 5 and 10 times greater than
expert readers (often more for particu-
lar year groups). We discuss these
results in the next section.

DISCUSSION

Computer vision, image processing and 
image quality

Computer vision technology has matured over the
last 3 decades and is now commonly deployed by
manufacturing industries to guide robotic systems,
inspect component parts or complete assemblies, etc.
These will usually have been precisely manufactured
often by numerically controlled machines using data
derived from computer-aided design (CAD) soft-
ware. The lighting within manufacturing cells that
use these systems is tightly controlled and conven-
tional camera images are often supplemented by
additional sensors (e.g. lasers). More challenging
scenarios for computer vision lie in specific applica-
tions that are less constrained but which are the sub-
ject of well-documented domain ontologies. Otolith
ageing represents an important application and an
opportunity to benchmark intelligent systems that
integrate computer vision and machine learning. The
importance of this research within the image analysis
and machine learning community is evidenced by
the many articles published in relevant computer-
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Institute Species Area Year Quarter Source Prep N

Cefas Cod NS 1998 3 Survey S 400
Cefas Cod NS 1999 3 Survey S 347
Cefas Cod NS 2000 3 Survey S 400
Cefas Cod NS 2001 3 Survey S 400
IMR Cod NEA 2000 1−4 Survey S 494
IMR Cod NEA 2001 1−4 Survey S 498
IMR Cod NEA 2004 1−4 Survey S 500
IMR Cod NEA 2005 1−4 Survey S 500
Difres Cod FP 1996−2001 1−4 Tag/recapture S 255
Ifremer Plaice EC 2006 1 Survey/market W/S 248
Ifremer Plaice EC 2006 2 Survey/market W/S 249
Ifremer Plaice EC 2006 3 Survey/market W/S 195
Ifremer Plaice EC 2006 4 Survey/market W/S 237
MRI Plaice Iceland 2006 1−4 Market W 1000
AZTI Anchovy Biscay 1998 1−3 Market W 500
AZTI Anchovy Biscay 1999 1−3 Market W 500
AZTI Anchovy Biscay 2004 2 Market W 500
AZTI Anchovy Biscay 2005 1−3 Market W 500

Table 2. Automated FISh Ageing (AFISA) case study samples (Mahé 2009). Ce-
fas = Centre for Environment, Fisheries and Aquaculture Science (UK), IMR =
Institute of Marine Research (Norway), Difres = Danish Institute for Fisheries
Research, Ifremer = Institut Français de Recherche pour l’Exploitation de la Mer
(France), MRI = Marine Research Institute (Iceland), AZTI = AZTI Technology
Centre (Spain), NS = North Sea, NEA = northeast Arctic, FP = Faroe Plateau,
EC = Eastern Channel (ICES area VIId), Biscay = Bay of Biscay, Prep = otolith
preparation, W = whole, S = section. Faroe samples collected by the Fish Ageing 

by Otolith Shape Analysis (FAbOSA) project (Arneri et al. 2002)
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vision journals (Caselles et al. 1998, Guillaud et al.
2002a,b, Cao & Fablet 2006) and presented at confer-
ences (Rodin et al. 1996, Benzinou et al. 1997, Fablet
et al. 2003, Fablet 2005, Chessel et al. 2006). Most
research into automated image-based CAAGE under -
taken in the 2000s was funded by the European
Union, and the emphasis probably reflected the

broader information and communication technology
(ICT) research and development (R&D) agenda that
existed at that time in the EU.

Image quality is a decisive factor for image-based
automatic ageing systems. Attempts to acquire and
measure growth rings using other sensors have
either failed, or are too costly to use in production
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Stock                      Age                                                           Method
                                (yr) Automated       Conditional       Francis &        Age−length
                                                                                                                  Campana (2004)         key
                                          MSE (×100)   Bias (%)     MSE (×100)   Bias (%)     MSE (×100)   Bias (%)      MSE (×100)   Bias (%)

North Sea               1           0.40            4.47               0.66            1.65               0.23           −0.88               0.31           −0.22
cod (N = 311)        2           4.04            8.68               0.71            0.92               0.36           −0.34               0.36           −0.25
                              3+                4.44          −100.0             0.21          −14.77             0.12            5.67                0.12            2.92

Northeast Arctic   2−                1.02          −67.64             0.58          −46.84             0.06           10.73               0.02            1.06
cod (N = 527)        3           1.47          −18.39             0.32           −1.02              0.17           −3.14               0.16            1.04

                                4           8.32           31.35               0.87            7.86               0.34             2.6                 0.25           −0.42
                                5           2.83           19.54               1.09           11.52               0.22           −1.12               0.33           −0.81
                                6           0.70           −1.37              0.41           −2.51              0.16           −0.77               0.22            0.13
                              7+                4.12          −51.58             0.69          −13.74             0.09           −1.61               0.15            0.15

Faroe Plateau         1               −                 −                 0.93          −17.31               −                 −                   9.32            1.48
coda,b (N = 254)     2               −                 −                 2.52          −13.81               −                 −                   3.47            0.67

                                3               −                 −                 1.25           12.03                 −                 −                   1.25            0.07
                                4               −                 −                 1.65          −16.68               −                 −                   6.71           −0.27
                                5               −                 −                 2.62           35.29                 −                 −                   1.30           −0.70
                                6               −                 −                 2.17           31.63                 −                 −                   1.30           −0.17

Eastern Channel   2−                0.45          −12.81             2.69          −38.69             0.19            6.36                0.28            0.37
plaice (N = 237)    3           2.13           21.96               2.27           13.36               0.47           −2.44               0.52           −0.51

                                4           2.24           −6.19              1.93          −11.01             0.56           −3.33               0.58           −1.08
                                5           21.3           53.73               6.20           24.71               0.74           −0.79               0.78            0.92
                              6+                21.1          −49.91             2.25          −10.13             0.56            1.85                0.59           −0.02

Icelandic plaice     4−                1.28          −35.56             1.68          −31.00             0.28           −3.26               0.21            1.14
(N = 251)               5           0.63           −6.77              2.62          −19.57             0.59            3.86                0.43           −0.31

                                6           6.09           16.70               2.88            7.88               0.89           −0.30               1.09            0.72
                              7+                1.96           −5.83              2.26            5.30               0.71           −0.49               1.09           −0.84

Bay of Biscay         1           3.44            7.23               29.26          23.22               0.43           −1.69               0.32            0.35
anchovy (N = 312) 2+               2.94          −13.94            29.26         −53.60             0.43            3.92                0.32           −0.82

aThe contrast between transparent and opaque zones was too low for automatic zone detection
bA requirement for the Mixture analysis (Francis & Campana 2004) is that otolith weight and fish length data are normally
distributed within ages. Data from the Faeroe cod stock violated this requirement and Mixture analysis was therefore not
possible

Table 3. Automated FISh Ageing (AFISA) case study: mean squared error (MSE) and relative bias (RB) by method, stock
and age (Mahé 2009). Note: MSE and RB are calculated using the methodology described by Mahé 2009 (p. 121). (–) not 

determined (Mahé 2009)

Process Cost (€) per otolith
Cod Plaice Anchovy

NS NEA FP EC Iceland Biscay

Measuring length and weight and manual age reading 2.81 5.88 2.85 2.13 5.37 6.5
Automated age determination and manual age reading 3.93 10.46 5.61 2.47 6.24 9.71
Automated age determination − − − 1.38 3.03 7.74
Tag/recapture and pen rearing − − 17.0 − − −

Table 4. Automated FISh Ageing (AFISA) case study: costs in euros (⇔) per fish for measuring fish characteristics (Mahé 2009).
NS = North Sea, NEA = northeast Arctic, FP = Faroe Plateau, EC = Eastern Channel, Biscay = Bay of Biscay, (–) not determined
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(Hamrin et al. 1999, Jolivet et al. 2008, 2013, Mapp et
al. 2016). AFISA’s (Mahé 2009) image acquisition
protocol used otolith sections for cod and Eastern
Channel plaice and whole otoliths for Icelandic
plaice and anchovy, consistently imaged at one mag-
nification. They tested using reflected and transmit-
ted light and carefully set up their system with a cal-
ibration otolith. AFISA were unable to obtain age
estimates for some stocks due to poor contrast (e.g.
Faroe Plateau cod), and found that although images
recovered from whole otoliths suffer from instability
due to lighting inconsistencies, ages could be auto-
matically estimated from 1-D transects (Mahé 2009).
However, more successful outcomes were obtained
from digitised images exhibiting clear annual growth
structures, such as those acquired from North Sea
cod, Icelandic plaice and Eastern Channel plaice
(year groups <5 yr).

The need for further work

The literature on image-based CAAGE of otolith
MaS since 1990 is summarised in Table 1. While many
authors describe image-processing approaches and
algorithms for image-based CAAGE of otolith MaS,
few studies evaluate performance on a significant co-
hort of fish (N > 30). The most comprehensive studies
involving multiple species have been undertaken by
Morison et al. (1998), Robertson & Morison (1999,
2001) and Mahé (2009). Both use information from
1-D transects. Robertson and colleagues (Morison et
al. 1998, Robertson & Morison 1999, 2001) include this
information as an additional feature and show that its
inclusion slightly improves the performance of a neu-
ral network trained using only morphological and bio-
logical features. They use Fourier transforms to en-
code features of 5 transect signals and test 3 neural
network architectures, showing that all deliver simi-
lar performance (note: results shown in Table 1 are
obtained from a simple back-propagation network
trained using only transect signals, i.e. morphological
or biological features have been excluded).

The results from AFISA have been published in the
form of an EU report only (Mahé 2009), although a
subset of the work concerning Eastern Channel
plaice feature widely in publications by Fablet and
colleagues (Fablet 2005, 2006b, Fablet & Le Josse
2005). AFISA also analyse transect signals but
employ a statistical framework and more complex
pre-processing than do Robertson and colleagues
(Morison et al. 1998, Robertson & Morison 1999,
2001). Both systems are automatic, but adopt differ-

ent strategies for choosing a suitable set of transects
and finding the otolith nucleus. Overall, AFISA’s
results are consistent with those of Morison et al., but
evaluations often highlight problems of undercount-
ing and coping with marginal rings, and this seems to
be reflected in high bias for year groups > 3 yr.
AFISA also highlight problems due to under-repre-
sented year groups in the training set for some
stocks, resulting in high relative bias. North Sea cod,
Icelandic plaice and Bay of Biscay anchovy exhibit
the lowest average percent errors. Results from
image-based CAAGE using whole otoliths are sur-
prisingly good (e.g. Icelandic plaice and Bay of
 Biscay anchovy), and could potentially deliver a cost
benefit. Although Eastern Channel plaice exhibit
high-contrast growth marks, the results suffer from
high relative bias (year groups 5 to 6+), and the aver-
age percent error found by AFISA is much poorer
than that reported in previous studies published by
Fablet and colleagues, which seems to suggest that
some of these systems combine image-based and
morphological information (Fablet 2006b).

While Morison et al. aim to integrate visual and
morphological features, AFISA’s primary focus is on
visual analysis. However, their tests benchmarking
against other approaches employing morphological
features show that age estimates produced using
the mixture model proposed by Francis & Campana
(2004) are consistently better than either of the 2
CAAGE approaches developed by AFISA, and de -
liver estimates close to those achieved by experts.
However, neither technique is applicable for Faroe
Plateau cod due to either poor contrast or  non-
normally distributed data. This may be because the
Faroe Plateau cod data were derived from a tag/
recapture sample, i.e. fish were reared in captivity,
tagged, released and subsequently recaptured at dif-
ferent times of the year (Doering-Arjes et al. 2008).

In other domains such as medicine and remote sens-
ing, the availability of open-access, online databases,
ground-truthed data and algorithms has motivated
considerable interest amongst the computer-vision
research community and has generated a valuable
and voluminous portfolio of published studies. We
suggest therefore that publication of the AFISA data-
base as an online resource could act as a significant
catalyst to progress CAAGE-based otolith research.

Cost

Costs for human and machine ageing systems are
broadly similar since a large part of the cost is associ-
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ated with preparing the otolith sections. Some costs
shown in Table 4 assume that the cost for both mor-
phometric and image-based systems are equal and
that they do not include capital equipment. This is an
oversimplification, and it may be reasonably ex -
pected that costs for imaging may be slightly higher,
given that the process developed by AFISA is com-
putationally demanding. All methods need to be
trained using expert reader estimates and assume
that there are an equal number of otolith samples in
training and production samples. Further work is
needed to evaluate the relationship between per-
formance and training. The power of an automated
approach lies in the ability to scale, and in a success-
ful system, an adequate performance using as few as
<10% of the number of production otoliths might be
anticipated.

Is age reading too difficult a problem?

At first sight, otolith reading represents an ideal
candidate for a computer vision system, since the ap-
plication offers a natural progression for state-of-the-
art algorithms, which by the early 2000s had chalked
up some successes on similar but less demanding ap-
plications. But, some features of otolith reading pres-
ent difficulties to the designer of an image-processing
algorithm. Firstly, the task is much more challenging
than a naïve description in terms of a cyclic pattern of
rings suggests. For example, Chauvelon & Bach
(1993) observe that many otoliths are difficult for ex-
pert readers to interpret and it is not always possible
to age fish along a predefined axis. Secondly, the
structure of visual features comprising internal
growth marks is complex, comprising check or stress
marks in addition to opaque and translucent bands
(e.g. Smith 2014, Hüssy et al. 2016b), and although
the domain ontology is well defined (Kalish et al.
1995), the expertise needed to successfully interpret
growth marks is sometimes related to specific stocks
and held within specific institutes. For example,
Faroe Plateau cod form a transparent ‘winter ring’
which is out of phase with the annual cycle, and de-
pending on the time of year that the fish was
captured, the final ring has either to be counted or
neglected. The accuracy of age estimates from a
reader unfamiliar with the Faroe cod stock is only
40−50%, while the equivalent figure is 95−99% for
expert Faroe readers (Doering-Arjes et al. 2008).

AFISA represents the most recent comprehensive
attempt to implement and evaluate a CAAGE sys-
tem. Here we provide a glimpse only of AFISA’s case

studies; however, the project report describes >15
separate algorithms, tested in MATLAB and imple-
mented in C code within Ifremer’s TNPC platform
(Fablet & Ogor 2005). The executive summary of the
AFISA project highlights the success of the project
and concludes:

‘the AFISA project resulted in advances in computer
vision which provide more reliable methods to extract
information from otoliths in order to estimate the indi-
vidual age and the age structure. These methods are
operational using TNPC software. However, such meth-
ods should not be seen as being able to fully substitute
to experts. They should rather be seen as tools to pro-
vide automatically extracted information that requires a
subsequent control by experts for the estimations of
individual age and age structure. For some species such
as plaice, these methods could be usable from the per-
spective of bias and costs’ (Mahé 2009, p. 7).

With hindsight, perhaps AFISA’s goals were over-
ambitious and the decision to include species such
as Faroe Plateau cod unwise, since the challenges of
reading these stocks are well documented. As a rule
of thumb, automated image analysis systems rarely
outperform human experts and one would anti -
cipate problems for tasks that attract a high degree of
inter-expert variation. The study concludes that results
obtained from plaice and North Sea cod which exhibit
higher-contrast annular rings would be usable and
highlights the importance of ensuring all year groups
are equally represented in the training set. Anchovy is
also highlighted as a possible candidate for further
work due to the potential cost saving. The performance
achieved by the mixture model is a major problem for
CAAGE and perhaps the reason why this has been the
focus of much of the work since 2010.

Future directions for image-based CAAGE

With the above in mind, there are 2 possible direc-
tions for future image-based CAAGE developments
in relation to fisheries management and assessment.
The first of these lies in adapting the integrated sys-
tem proposed by Robertson & Morison (2001) and
exploring frameworks for fusing morphological and
image-based otolith features. Robertson & Morison
(2001) show this approach boosts performance in the
context of a neural network classifier, and if the infor-
mation from a transect, perhaps positioned interac-
tively, was integrated with the mixture model pro-
posed by Francis & Campana (2004), then for plaice
and cod (Table 3) it could conceivably deliver accura-
cies that are indistinguishable from those of human
expert readers.
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The second direction addresses a more general
problem that affects all existing machine-learning
frameworks to some extent, in that for most users, the
system is a ‘black box’. The priority for software de-
signers is to produce systems with equivalent per-
formance to that of human experts, and the require-
ment to explain decisions made, particularly within
an operational context, is a secondary concern. Build-
ing systems that can be trained by domain experts
rather than by computer programmers might offer a
solution. With intelligent system applications ranging
from clinical decision-making, autonomous driving,
financial services, and predictive policing comes the
growing need for accountability. In this context, the
exposure of the decision-making logic is not just a le-
gal necessity but can prevent system errors and build
trust amongst users. Details of a potential ‘right to ex-
planation’ were debated in the most recent revision of
the EU’s General Data Protection Regulation (GDPR)
(Goodman & Flaxman 2016). While current legislation
requires explanations only in very limited contexts,
questions around operational explanation are ex-
pected to become more important in the future. In
fisheries management, the development of appropri-
ate computational frameworks that support explana-
tions could begin by exposing the human−computer
interactions that occur when the system is trained.
Open-access logging of this decision process could be
used to reduce inter-reader variation, improve quality
assurance and perhaps play a role in training future
generations of otolith readers.

CONCLUSIONS

Digital otolith imagery is easy to acquire and rela-
tively cheap to store compared with physical speci-
mens, which may degrade with age; its use in otolith
science is already well established and will become in-
creasingly important, particularly for projects involving
long chronological time-series. Fisheries management
has benefitted from CAAGE systems that exploit both
fully automatic and interactive paradigms. However,
the cost−benefit analysis reviewed in this paper
shows that imaging systems are currently unable to
deliver accuracies comparable with systems using
models built on morphologic features or age−length
keys based on estimates from expert readers, and us-
ing current systems, any associated cost-savings will
be marginal at best. However, image-based informa-
tion has been shown to improve age estimates using
morphological features, and in the short term, future
research should focus on refining this approach.
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