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CHIR 99021: 6-[[2-[[4-(2,4-Dichlorophenyl)-5-(5-methyl-1H-imidazol-2-yl)-2-

pyrimidinyl]amino]ethyl]amino]-3-pyridinecarbonitrile 

CLCA1: Calcium-activated chrloride channel regulator 1 

DAPT: GSI-IX, LY-374973, N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester 

DNAJC3: DNAJ homolog subfamily C member 3 

GSK3β: Glycogen synthase kinase-3 beta 

IWP-2: N-(6-Methyl-2-benzothiazolyl)-2-[(3,4,6,7-tetrahydro-4-oxo-3-phenylthieno[3,2-d]pyrimidin-

2-yl)thio]-acetamide 

KIAA1324: UPF0557 protein 

LGR5: Leucine-rich repeat-containing G-protein coupled receptor 5 

MUC2: Mucin-2 

NUCB2: Nucleobindin-2 

OLFM4: Olfactomedin-4 

SLC27A4: Long-chain fatty acid transport protein 4 

TFF3: Trefoil factor 3 

UGT2B17: UDP glucuronosyltransferase family 2 member B17 

Wnt: Wingless-related MMTV integrated site 

ZG16: Zymogen 16 
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Abstract  

Recently, three-dimensional small intestinal organoids (enteroids) have been developed from 

cultures of intestinal stem cells which differentiate in vitro to generate all the differentiated 

epithelial cell types associated with the intestine and mimic the structural properties of the intestine 

observed in vivo. Small-molecule drug treatment can skew organoid epithelial cell differentiation 

towards particular lineages, and these skewed enteroids may provide useful tools to study specific 

epithelial cell populations, such as goblet and Paneth cells. However, the extent to which 

differentiated epithelial cell populations in these skewed enteroids represent their in vivo 

counterparts is not fully understood. In this study, we have performed label-free quantitative 

proteomics to determine whether skewing murine enteroid cultures towards the goblet or Paneth 

cell lineages results in changes in abundance of proteins associated with these cell lineages in vivo. 

Our data confirm that skewed enteroids recapitulate important features of the in vivo gut 

environment, confirming that they can serve as useful models for the investigation of normal and 

disease processes in the intestine. Furthermore, by comparison of our mass spectrometry data with 

histology data contained within the Human Protein Atlas, we identify putative novel markers for 

goblet and Paneth cells.  
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The small intestine is organised into protruding finger-like villi, and crypts of Lieberkühn which 

extend into the muscularis mucosae. These structures are covered by a single layer of epithelium 

consisting of specialised cell types, including absorptive enterocytes, goblet cells, enteroendocrine 

cells, M cells and Paneth cells [1,2]. Goblet and Paneth cells play crucial roles in protecting the host 

from microbial invasion, and in regulating the commensal flora. Goblet cells produce a protective 

mucus layer that is loosely adhered to the intestinal epithelium, and acts as a barrier to pathogen 

colonisation and invasion [3,4]. Furthermore, they have been shown to play a role in luminal antigen 

sampling across the small intestinal epithelium [5]. Paneth cells reside at the crypt base, and secrete 

antimicrobial compounds into the crypt lumen following antigenic stimulation [6–9]. Systems based 

approaches have the potential to provide a more holistic view of the development and host-

protective role of these epithelial cell populations. However, their relative scarcity in the epithelial 

cell layer, combined with complexities in the isolation and culture of these cells, pose a significant 

barrier to the application of unbiased profiling techniques, such as proteomics, to study these cells.  

 

The small intestinal epithelium undergoes regular renewal via shedding of epithelial cells into the 

mucus layer, which is removed along with other gastrointestinal waste. Intestinal epithelial 

regeneration requires the presence of LGR5+ stem cells, which reside at the crypt base and are 

capable of generating all the specialised epithelial cell types found in the small intestine [10,11]. A Wnt 

gradient exits along the crypt-villus axis, originating in the crypt domain. Wnt-signalling maintains 

LGR5+ cell proliferation in the crypt. As daughter cells migrate along the Wnt gradient, crosstalk 

between Wnt, Notch and BMP signalling determines cell fate, giving rise to differentiated epithelial 

lineages. These renewal properties can be exploited to generate three-dimensional organoid 

cultures (called enteroids) from isolated intestinal LGR5+ stem cells or crypts [12]. When cultured in 
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Matrigel® with a cocktail of growth factors, LGR5+ stem cells generate the differentiated epithelial 

cell types found in the small intestine, arranged in crypt-villus structures that mimic the complex 

intestinal architecture observed in vivo [12]. Since the initial description of these cultures in 2009, 

there has been a dramatic uptake in their use as in vitro models of a variety of different physiologic 

and pathologic processes. Consequently, characterisation of the enteroid proteome would serve as a 

valuable resource in this growing field. 

 

Enteroids can be treated with small molecule inhibitors to skew cell differentiation towards specific 

lineages [13–15]. For example, the combination of DAPT and CHIR99021, which inhibit notch signaling 

and GSK3β-mediated β-catenin degradation respectively, directs epithelial cell differentiation 

towards the Paneth cell lineage [15]. If DAPT is instead combined with an inhibitor of Wnt signaling, 

IWP-2, epithelial cells are directed along the secretory cell lineages resulting in cultures enriched for 

goblet cells [15]. These skewed enteroids might allow systems approaches to be applied to study the 

host-defensive properties of specialized intestinal epithelial cells that have up until now evaded 

culture ‘in vitro’. However, the extent to which differentiated epithelial cell populations generated 

from enteroids represent their in vivo counterparts is not fully understood [16–23].  

 

Four biological replicates of drug-skewed enteroid cultures were generated from murine small 

intestinal crypts essentially as previously described [12]. For drug skewing, media was changed on 

days two, five and seven to include 10μM DAPT and either 3μM CHIR99021 or 2μM IWP-2 (Tocris, 

Oxford, United Kingdom) [15]. On day eight, enteroids were fixed and prepared for confocal imaging 

as described in the Supporting informtion.  
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In DAPT and CHIR-treated enteroids (“Paneth-skewed”), we observed a higher proportion of cells 

stained with a Paneth cell marker, lysozyme, compared to control cultures (Figure S1A). In DAPT and 

IWP-2-treated enteroids (“Goblet-skewed”), we observed a greater proportion of cells stained with 

the goblet cell marker, MUC2, when compared to control enteroid cultures (Figure S1B). These 

changes in expression of canonical markers of differentiated epithelial cell types confirm the success 

of small molecule inhibitors in directing the differentiation of LRG5+ stem cells towards specific 

epithelial cell lineages. 

 

For mass spectrometry, a minimum of 50 organoids per treatment group were extracted from 

Matrigel® using Cell Recovery Solution (BD Bioscience). Proteins were extracted in solution using 

50mM ammonium bicarbonate, 0.2% w/v Rapigest (Waters) and protein content was normalised 

between samples.  Trypsin digested peptide mixtures (2µl) were analysed by on-line nanoflow liquid 

chromatography using the nanoACQUITY-nLC system (Waters MS technologies, Manchester, UK) 

coupled to an LTQ-Orbitrap Velos (ThermoFisher Scientific, Bremen, Germany) mass spectrometer 

with the manufacturer’s nanospray ion source. Sample injections were not grouped by treatment 

type to avoid any batch bias. Protein identification and quantification were performed using 

Progenesis LC-MS for proteomics (v 4.1, Nonlinear Dynamics) and the Mascot search engine (v 

2.3.02, Matrix Science), using the parameters described in the supporting information. 

 

Using an exclusion criteria of ≥ 2 peptides identified, we identified a total of 1574 proteins in Paneth-

skewed, and 1471 proteins in goblet-skewed enteroids. Applying exclusion criteria of log2 fold 
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change > 1 and q value (ANOVA) < 0.05 (FDR adjusted p value), 36 proteins were up-regulated and 

65 proteins were down-regulated in Paneth-skewed enteroids compared to untreated controls 

(Figure 1A-B, Table S1). In goblet-skewed enteroids, 55 proteins were up-regulated, and 153 down-

regulated compared to untreated controls (Figure 1C-D, Table S2). Thus, treatment with DAPT/CHIR 

or DAPT/IWP-2 results in distinct patterns of protein expression. 

 

We next determined if the observed changes in protein abundance in Paneth-skewed cultures were 

reflective of known features of Paneth cells observed in vivo. Matrilysin (MMP7), a known marker of 

Paneth cells required for activation of pro-α-defensins, was significantly upregulated (log2 fold 

change = 1.78, q value = 0.00093, Table S1) [24]. We also observed an increased abundance of several 

α-defensins (DEFA4, DEFA5, DEFA7, DEFA20, DEFA22, DEFA24) though none reached statistical 

significance. To confirm that proteins found to be significantly up-regulated in Paneth-skewed 

cultures were also expressed by Paneth cells in vivo, we performed searches for human homologues 

of the proteins on The Human Protein Atlas (http://v13.proteinatlas.org, and Supporting 

Information)[25]. Paneth cells were identified as granular cells residing at the base of small intestinal 

crypts, and antibody staining for Paneth cell products, lysozyme (LYZ) and defensin α5 (DEFA5), used 

as a reference (Figure 2A,B). Of the 36 proteins upregulated, expression of MMP7, KIAA1324, 

SLC27A4, and DNAJC3 was restricted to, or enriched within, Paneth-like cells (Figure 2C-F). Of these 

proteins, only MMP7 and DNAJC3 were uniquely upregulated in Paneth-skewed enteroids. To cope 

with their secretory demands, Paneth cells require a highly developed endoplasmic reticulum (ER)[26] 

which is protected from ER stress by the unfolded protein response (UPR). Intestinal epithelial cell-

specific deletion of the UPR gene, Xbp1, leads to induction of ER stress, and a profound defect in 
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Paneth cells [27]. Since DNAJC3 also plays a role in attenuation of ER stress[26], we hypothesise that 

DNAJC3 may be important for Paneth cell development and function. 

 

Goblet cells secrete mucins which form a protective mucus layer that maintains physical separation 

between the host epithelium and colonising microbes. To determine if the observed changes in 

protein abundance in goblet-skewed cultures were reflective of differentiation towards the goblet 

cell lineage, proteomic profiles were cross-compared with a published database of murine small 

intestinal mucus components [28]. Of the 56 significantly up-regulated proteins within our goblet-

skewed enteroids, 14 (25%) were also detected in murine gastrointestinal mucus [28] (Table S3). Of 

these, CLCA1 (log2 fold change = 3.328, q value = 0.00347), AGR2 (log2 fold change = 1.857, q value = 

0.04257) and ZG16 (log2   fold change = 2.26, q value = 0.03612) are among the most highly 

abundant constituents of gastrointestinal mucus. Our data therefore support the idea that goblet-

skewed enteroid cultures accurately recapitulate the in vivo environment, and may be useful models 

of goblet cell function. Indeed, goblet skewed colonic enteroids have been used to study the role of 

autophagy genes in mucus secretion [29]. 

 

To further confirm that proteins found to be significantly up-regulated in goblet-skewed cultures 

were also expressed by goblet cells in vivo, we again performed searches for human homologues of 

the proteins in The Human Protein Atlas (http://v13.proteinatlas.org, and Supporting Information) 

[25]. Goblet cells were identified based on the presence of mucin granulae filling the cytoplasm at the 

apical surface, and antibody staining for a canonical marker of goblet cells, TFF3, was used as a 

reference (Figure 3A). Of the 55 proteins upregulated, TFF3, CLCA1, ZG16 and UGT2B17 expression 
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was restricted to, or enriched within, Goblet cells (Figure 3A-D). TFF3, CLCA1 and ZG16 have 

previously been associated with mucus production. Across a large panel of normal tissues 

encompassing all major organ systems, the Human Protein Atlas states that goblet cells show the 

strongest positivity for the remaining protein, UGT2B17.  

 

Finally, we observed some commonalities in the proteins up or down-regulated in response to both 

DAPT/CHIR or DAPT/IWP-2 treatment. For example, OLFM4, an anti-apoptotic factor and marker of 

intestinal stem cells, was significantly down-regulated under both treatment conditions, while 

expression of the canonical enteroendocrine cell marker, CHGA, was significantly up-regulated in 

both Paneth- and goblet-skewed enteroids (Table S4). This result is in close agreement with a 

previous study which used chga mRNA levels to show that treatment with both DAPT/CHIR and 

DAPT/IWP-2 results in increased differentiation towards the enteroendocrine lineage[15]. Finally, 

UPP1 and NUCB2 staining were observed in both Paneth and goblet cells (Figure 3E,F). 

 

In this study we have subjected murine enteroids to quantitative label-free proteomics, and shown 

that Paneth and goblet cells generated from intestinal stem cells in vitro share features typical of 

these cell types observed in vivo. This study has also lead to the identification of novel protein 

markers not previously associated with these cell populations. Our data therefore support the use of 

Paneth or goblet-skewed enteroids as a means of applying systems approaches to the study of 

infection of intestinal epithelial surfaces with pathogens. 

 



www.proteomics-journal.com Page 11 Proteomics 

 

 

This article is protected by copyright. All rights reserved. 

11 

 

Acknowledgements 

We thank Dong Xia and Nadine Randle for helpful suggestions and critical reading of the manuscript. 

We also gratefully acknowledge the Centre for Proteomic Research, University of Liverpool. JC, LL 

and JW gratefully acknowledge the support of the Biotechnology and Biological Sciences Research 

Council (BBSRC); this research was funded by BBSRC TRDF BB/M019071/1 (JC, JW) and a BBSRC 

Doctoral Training Partnership Studentship (LL). TW and ZM also gratefully acknowledge the support 

of the Biotechnology and Biological Sciences Research Council (BBSRC); this research was funded by 

the BBSRC Institute Strategic Programme Gut Health and Food Safety BB/J004529/1. This work was 

also supported by a Wellcome Trust ISSF to the University of Liverpool (097826/Z/11/A). The authors 

declare no conflict of interest. 

 

References 

[1] A. Gregorieff, H. Clevers, Genes Dev. 2005, 19, 877. 

[2] L. W. Peterson, D. Artis, Nat Rev Immunol 2014, 14, 141. 

[3] T. Pelaseyed, J. H. Berstrom, J. K. Gustafsson, A. Ermund, G. M. H. Birchenough, A. Schutte, S. 

Post, F. Svensson, A. M. Rodriguez-Pineiro, E. E. L. Nystrom, C. Wising, M. E. V Johansson, G. 

C. Hansson, Immunol. Rev. 2014, 260, 8. 

[4] R. D. Specian, M. G. Oliver, Am J Physiol 1991, 260, C183. 

[5] J. R. McDole, L. W. Wheeler, K. G. McDonald, B. Wang, V. Konjufca, K. A. Knoop, R. D. 

Newberry, M. J. Miller, Nature 2013, 483, 345. 

[6] D. M. Foureau, D. W. Mielcarz, L. C. Menard, J. Schulthess, C. Werts, V. Vasseur, B. Ryffel, L. 

H. Kasper, D. Buzoni-Gatel, J. Immunol. 2010, 184, 7022. 

[7] A. Menendez, B. P. Willing, M. Montero, M. Wlodarska, C. C. So, G. Bhinder, B. A. Vallance, B. 

B. Finlay, J. Innate Immun. 2013, 5, 39. 

[8] T. Peeters, G. Vantrappen, Gut 1975, 16, 553. 



www.proteomics-journal.com Page 12 Proteomics 

 

 

This article is protected by copyright. All rights reserved. 

12 

 

[9] N. H. Salzman, Gut Microbes 2010, 1, 401. 

[10] N. Barker, J. H. van Es, J. Kuipers, P. Kujala, M. van den Born, M. Cozijnsen, A. Haegebarth, J. 

Korving, H. Begthel, P. J. Peters, H. Clevers, Nature 2007, 449, 1003. 

[11] C. Pin, A. J. M. Watson, S. R. Carding, PLoS One 2012, 7, e37115. 

[12] T. Sato, R. G. Vries, H. J. Snippert, M. Wetering, N. Barker, D. E. Stange, J. H. Es, A. Abo, P. 

Kujala, P. J. Peters, H. Clevers, M. van de Wetering, J. H. van Es, Nature 2009, 459, 262. 

[13] H. F. Farin, J. H. Van van Es, H. Clevers, Gastroenterology 2012, 143, 1518. 

[14] D. Pinto, A. Gregorieff, H. Begthel, H. Clevers, Genes Dev. 2003, 17, 1709. 

[15] X. Yin, H. F. Farin, J. H. van Es, H. Clevers, R. Langer, J. M. Karp, Nat. Methods 2014, 11, 106. 

[16] A. Aoki-Yoshida, S. Saito, S. Fukiya, R. Aoki, Y. Takayama, C. Suzuki, K. Sonoyama, Benef. 

Microbes 2016, 7, 421. 

[17] S. R. Finkbeiner, X. L. Zeng, B. Utama, R. L. Atmar, N. F. Shroyer, M. K. Estes, MBio 2012, 3, 

e00159. 

[18] J. L. Forbester, N. Hannan, L. Vallier, G. Dougan, Methods Mol. Biol. 2016, 257. 

[19] M. Schweinlin, S. Wilhelm, I. Schwedhelm, J. Hansmann, R. Rietscher, C. Jurowich, H. Walles, 

M. Metzger, Tissue Eng. Part C Methods 2016, 22, 1. 

[20] S. S. Wilson,  a Tocchi, M. K. Holly, W. C. Parks, J. G. Smith, Mucosal Immunol. 2014, 8, 1. 

[21] Y. Yin, M. Bijvelds, W. Dang, L. Xu, A. A. Van Der Eijk, K. Knipping, N. Tuysuz, J. F. Dekkers, Y. 

Wang, J. De Jonge, D. Sprengers, L. J. W. Van Der Laan, J. M. Beekman, D. Ten Berge, H. J. 

Metselaar, H. De Jonge, M. P. G. Koopmans, M. P. Peppelenbosch, Q. Pan, Antiviral Res. 2015, 

123, 120. 

[22] Y. Zhang, J. Sun, Study Host-Bacteria Interactions Using Intestinal Organoids, 2016. 

[23] Y. Zhang, S. Wu, Y. Xia, J. Sun, Physiol. Rep. 2014, 2, e12147. 

[24] T. Komiya, Y. Tanigawa, S. Hirohashi, Biochem. Biophys. Res. Commun. 1998, 251, 759. 

[25] M. Uhlen, L. Fagerberg, B. M. Hallstrom, C. Lindskog, P. Oksvold, A. Mardinoglu, A. Sivertsson, 

C. Kampf, E. Sjostedt, A. Asplund, I. Olsson, K. Edlund, E. Lundberg, S. Navani, C. A.-K. 

Szigyarto, J. Odeberg, D. Djureinovic, J. O. Takanen, S. Hober, T. Alm, P.-H. Edqvist, H. Berling, 

H. Tegel, J. Mulder, J. Rockberg, P. Nilsson, J. M. Schwenk, M. Hamsten, K. von Feilitzen, M. 

Forsberg, L. Persson, F. Johansson, M. Zwahlen, G. von Heijne, J. Nielsen, F. Ponten, Science, 

2015, 347, 1260419. 



www.proteomics-journal.com Page 13 Proteomics 

 

 

This article is protected by copyright. All rights reserved. 

13 

 

[26] J. Grootjans, A. Kaser, R. Kaufman, R. Blumberg, Nat Rev Immunol 2016, 16, 469. 

[27] A. Kaser, 2012, 317, 2772. 

[28] A. M. Rodriguez-Pineiro, J. H. Bergström, A. Ermund, J. K. Gustafsson, A. Schutte, M. E. V. 

Johansson, G. C. Hansson, Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 305, G348. 

[29] K. K. Patel, H. Miyoshi, W. L. Beatty, R. D. Head, N. P. Malvin, K. Cadwell, J.-L. Guan, T. Saitoh, 

S. Akira, P. O. Seglen, M. C. Dinauer, H. W. Virgin, T. S. Stappenbeck, EMBO J. 2013, 32, 3130. 

 

Figure 1. Drug treatment skews enteroids towards Paneth or Goblet cell lineages. Intestinal 

enteroids were treated with DAPT/CHIR or DAPT/IWP-2 to promote differentiation towards the 

Paneth or goblet cell lineages, respectively. (A) Volcano plot depicting changes in protein expression 

between control and Paneth-skewed enteroids. (B) Top 10 proteins up- and down-regulated in 

Paneth-skewed enteroids (C) Volcano plot depicting changes in protein expression between control 

and Goblet-skewed enteroids. (D) Top 10 proteins up- and down-regulated in Goblet-skewed 

enteroids.  

 

Figure 2. Intestinal expression patterns of proteins up-regulated in Paneth-skewed cultures. 

Proteins up-regulated in Paneth-skewed enteroids were cross-referenced with immuno-

histochemical staining of normal human tissue available in the Protein Atlas. (A-B) Immuno-

histochemical staining for known Paneth cell markers DEFA5 and LYZ. (C-G) Immuno-histochemical 

staining for a selection of proteins found to be up-regulated in Paneth-skewed enteroid cultures, and 

also expressed in Paneth cells in human intestinal tissue. Pink regions highlight crypts, while green 

regions highlight villi. Arrows indicate Paneth cells (in crypt regions) or goblet cells (in villus regions). 

Images from v13.proteinatlas.org . 

 



www.proteomics-journal.com Page 14 Proteomics 

 

 

This article is protected by copyright. All rights reserved. 

14 

 

Figure 3. Intestinal expression patterns of proteins up-regulated in goblet-skewed cultures. 

Proteins up-regulated in goblet-skewed enteroids were cross-referenced with immuno-

histochemical staining of normal human tissue available in the Protein Atlas. (A) Immuno-

histochemical staining for a known goblet cell marker, TFF3. (A-D) Immuno-histochemical staining 

for a selection of proteins found to be up-regulated in goblet-skewed enteroid cultures, and also 

expressed in goblet cells in human intestinal tissue. Pink regions highlight crypts, while green regions 

highlight villi. Arrows indicate Paneth cells (in crypt regions) or goblet cells (in villus regions). Images 

from v13.proteinatlas.org. 

 

 

Figure S1. Drug treatment skews enteroids towards Paneth or Goblet cell lineages. Intestinal 

enteroids were treated with DAPT/CHIR or DAPT/IWP-2 to promote differentiation towards the 

Paneth or goblet cell lineages, respectively. (A) Confocal microscopy of β-catenin (red) and Lysozyme 

(green) in un-treated control and DAPT/CHIR treated enteroid cultures. (Β) Confocal microscopy of E-

cadherin (green) and mucin-2 (red) in untreated control and DAPT/IWP-2 treated enteroid cultures. 
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