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Causes of irregularities in trends of global mean surface
temperature since the late 19th century
Chris K. Folland1,2,3,4*, Olivier Boucher5, Andrew Colman1, David E. Parker1

The time series of monthly global mean surface temperature (GST) since 1891 is successfully reconstructed from
known natural and anthropogenic forcing factors, including internal climate variability, using a multiple regres-
sion technique. Comparisons are made with the performance of 40 CMIP5 models in predicting GST. The relative
contributions of the various forcing factors to GST changes vary in time, but most of the warming since 1891 is
found to be attributable to the net influence of increasing greenhouse gases and anthropogenic aerosols.
Separate statistically independent analyses are also carried out for three periods of GST slowdown (1896–1910,
1941–1975, and 1998–2013 and subperiods); two periods of strong warming (1911–1940 and 1976–1997) are also
analyzed. A reduction in total incident solar radiation forcing played a significant cooling role over 2001–2010.
The only serious disagreements between the reconstructions and observations occur during the Second World
War, especially in the period 1944–1945, when observed near-worldwide sea surface temperatures (SSTs) may be
significantly warm-biased. In contrast, reconstructions of near-worldwide SSTs were rather warmer than those
observed between about 1907 and 1910. However, the generally high reconstruction accuracy shows that known
external and internal forcing factors explain all the main variations in GST between 1891 and 2015, allowing for
our current understanding of their uncertainties. Accordingly, no important additional factors are needed to ex-
plain the two main warming and three main slowdown periods during this epoch.
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INTRODUCTION
The recent slowdown in the warming of globalmean surface tempera-
ture (GST) around 1998–2013 has caused much discussion about its
causes (1, 2), including the sequestration of heat in the deeper oceans
(3), asmany climatemodels appear to overestimate recent warming of
GST (4). Here, we analyze the causes of GST variations from 1891 to
2015, placing the causes of the recent slowdown in a longer-term con-
text.Wedo not use thewords “pause” or “hiatus” as, particularly in the
recent slowdown, GSTwarming did not entirely cease on decadal time
scales. Therefore, pause and hiatus cause semantic difficulties that are
best avoided (5). However, the recent slowdown was one of at least
three slowdown or cooling periods lasting about 15 years or more
since 1891. The best-known apparent multidecadal cooling episode
lasted from the early 1940s to 1975 (6). This has been called the big
pause (6), so we will term this the big slowdown. An earlier cooling
period occurred around 1896–1910, partly associated with volcanic
eruptions in the West Indies (7), although it has not been fully ex-
plained. Not surprisingly, the uncertainty in GST data was apprecia-
bly greater at that time than during the recent slowdown (8). GST
also shows two periods of strong warming around 1911–1940 and
1976–1997, although as throughout the instrumental GST record,
temperatures showed considerable variability on subdecadal time
scales. Current understanding of the veracity of the leading instru-
mental records of GST has recently been thoroughly reviewed (9).

Turning first to observational papers, a number of reconstructions
of instrumental GST, based on forms of multiple regression against
forcing factors, have been recently reviewed (10, 11), although some
reconstructions only go back to about 1950 (12–14). One review (11)
analyzed annualmeanGSTdata from these papers and concluded that
detection of an anthropogenic signal was robust when signals from the
El Niño–Southern Oscillation (ENSO), the Atlantic Multidecadal
Oscillation (AMO) (15), total incident solar radiation (TSI), and vol-
canic (VOLC) forcing signals were included. The motivation for these
studies was sometimes forecasting rather than mechanistic explanation
or detection and attribution, leading, for example, to skillful real-time
forecasts of GST 1 year ahead since 2000 (12) (www.metoffice.gov.uk/
news/releases/2016/global-forecast-2017, as of 30 January 2018).
Alternative methodologies more concerned with low-frequency GST
variations use empirical mode decomposition (16) or low-pass filter-
ing (17). Bothmethods enhance themagnitude ofmultidecadal AMO-
like influences on GST compared to those found in regression-based
papers quoted above that also include the contribution of the AMO to
GST (11, 12), although the reason is not obvious. These alternative
methodologies also reduce the inferred anthropogenic warming com-
ponent of GST in the last few decades and explain the big slowdown of
1941–1975 as being largely due to 60- to 80-year natural variability
associated with the AMO.

Dynamical climate models with external and internal forcings,
averaged over many ensemble members over the past century and
earlier, inevitably remove the signals of internal climate variability and
so only respond to external forcings. These studies include an early,
although quite skillful, attempt to reconstruct GST variations and
trends since 1860 (18). Since then, many climate models have included
this period in their analyses, most recently the 40 CMIP5 models or so
(10) that collectively provide estimates of reconstructed uncertainties in
GST and its mean. Since the late 19th century, multidecadal trends in
average GST have been picked up quite well by CMIP5, mainly due to
the net warming effect of increasing greenhouse gases and anthropogen-
ic aerosols. The short-term cooling effects of major volcanic eruptions
are also reconstructed quite well. Nevertheless, a common problem in
CMIP5 simulations is an inability to reproduce the level of observed
warmth in GST around the SecondWorldWar. Some of this deficien-
cy is likely to be due to a peak in the AMO around 1940, inevitably not
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picked up by CMIP5 or the earlier CMIP3 averages (19). Early 20th-
century warming is explained as partly due to an increase in TSI, a lack
of volcanic eruptions, and a small anthropogenic component due to
slowly increasing greenhouse gases, much as in the earliest skillful
climate model paper (18). Notably, recent estimates of past TSI vari-
ations (20, 21) indicate that the increase inTSI over 1891–1950 is likely
to be less than originally estimated (22), especially during minima of
the 11-year cycle. Relatively recent climate model results (23–25) also
show that the AMOcould have contributed appreciably towarming of
the Northern Hemisphere and, considerably more weakly, the entire
globe, during the years 1975–2005, a period of strong overall warming.
However, compared to the first model, the second model study (24)
shows about twice the sensitivity of an increase in Northern Hemi-
sphere temperature to these AMO changes (23). The implied sensitivity
of GST to the AMO in the second study is similar to that of the obser-
vational analyses that used alternative statistical methodologies (16, 17).
If true, then these results would also imply a markedly smaller contribu-
tion to warming of the net effect of increasing greenhouse gases and an-
thropogenic aerosols (usually called GA in the remainder of this paper)
than shown by CMIP5 models over the same period. The third of these
studies (25) identifies internal variability as the time-varying difference be-
tween observations and a CMIP5 66-member ensemble mean with an-
thropogenic and natural forcings during 1920–2013, after scaling down
temperature trends in the latter by ~14% to compensate for the models’
overestimation of observed warming. The implied internal variability in
GST is associated mainly with a pattern resembling the Interdecadal Pa-
cific Oscillation (IPO) and, to a lesser extent, with an AMO-like pattern.

With this background, we reconstruct the monthly GST records
using, separately, the main forcing factors at monthly resolution iden-
tified by previous authors and the average of a large number of cross-
validated regression calculations (seeMaterials andMethods). Monthly
data better represent short-term GST variability than do annual data,
especially that due to ENSO. Furthermore, we transform the raw forcing
data to represent the delayed response of GST to each forcing. Because
these responses are often uncertain, we use a range of response
functions, and to incorporate uncertainty in GST into the reconstruc-
tions, we use three separate GST data sets. As a result, we create 54 sets
of cross-validatedmultiple regressions. Forcing factors first include GA,
as tabulated by the Intergovernmental Panel on Climate Change (20).
The greenhouse gas and aerosol forcing components of GA must be
combined in a regression model because of their strong colinearity:
Their correlation is −0.98 over 1891–1996 and −0.97 over 1896–2011
(20).We then include the AMO, ENSO, IPO (26), and volcanic and TSI
forcing (absolute values of volcanic, TSI, and GA forcing are shown in
fig. S1 and section S1, normalized values of the two AMO indices are
shown in fig. S2A and section S2, and normalized values of the ENSO
and IPO indices are separately shown in fig. S2B). Because we use
monthly data, we can also include the influence on GST of the Arctic
Oscillation (AO) betweenDecember andMarch, as detected in the recent
GST slowdown (27). Earlier work (28) used aNorthernHemisphere Cold
Ocean Warm Land (COWL) index that is negatively correlated with the
AO, but the COWLdepends on temperature observations. For complete-
ness, an adjustment is added to GA forcing to account for a deep-ocean
impact on sea surface temperature (SST) operating on time scales of
about 200 years (see Materials and Methods). This is currently very
small but could well become considerably larger in the future.

We divide the instrumental record into five periods, three exhibit-
ing GST slowdowns or actual cooling (1896–1910, 1941–1975, and
1998–2013 and its subperiods 2001–2010 and 2001–2013) and two
Folland et al., Sci. Adv. 2018;4 : eaao5297 6 June 2018
strong warming periods (1911–1940 and 1976–1997). We selected
slowdown and warming periods with approximately maximum con-
trast in trends according to visual inspection of the GST series. Piece-
wise continuous trends (section S3) show that the trends changed
quickly around the dates we selected for the beginnings and ends of
subperiods, althoughwe did not carry out a formal change-point anal-
ysis in view of the absence of true discontinuities and the slight differ-
ences between observational data sets. Because the main focus of the
paper is on slowdown periods, these are analyzed using regression
model training data independent of the slowdown period being studied.
However, the results are rather insensitive towhether these independent
periods are used or not, as can be deduced from the overview discussion
below using Fig. 1 where no independent periods are used compared to
later sections where they are. Our reconstructions of the two warming
periods use all cross-validated monthly data from 1891 to 2015. The
GST records are taken from three key data sets in current use for climate
monitoring [HadCRUT4.6, updated from HadCRUT4 (8), Goddard
Institute for Space Studies Surface Temperature Analysis (GISTEMP)
(29), and the National Climatic Data Center (NCDC) data set (5)]. We
call the average of these three series theWorldMeteorological Organiza-
tion (WMO)data set as it is usedbyWMOtoassess global and large-scale
temperature changes (for example, for 2016, https://public.wmo.int/en/
resources/library/wmo-statement-state-of-global-climate-2016, as of
30 January 2018). Further details are given in Materials and Methods.

The purpose of the regression analyses is to determine their skill
at reproducing GST in each period and to explain the causes of its
variations and trends, in principle down to the monthly time scale.
We also compare the skill of the reconstructions over the five periods
with that of the average of simulations from 40 CMIP5models (table
S1 and section S4). The reconstructions have an important advantage
over CMIP5 in that they incorporate internal variability via the ob-
served climate modes such as the AMO, IPO, and ENSO, which the
models cannot do.We also calculate the linear component of changes
in GST over each period shown by observations, reconstructions, and
CMIP5. This is achieved using a method called restricted maximum
likelihood regression or REML. This is well adapted to estimating
trends over short periods and allows for the sometimes very large
serial correlation in trend residuals and data uncertainties (Materials
and Methods and section S3). Finally, we show reconstructions of
worldwide maps of GST to further investigate some key results and
problems. For TSI, we often use the word “solar” in the diagrams.
We mainly highlight changes, trends, or correlations significant at
the 1% level or better, rather than 5%, as true statistical significance
could be easily overestimated given the many statistics in this paper.
RESULTS
Overview
Figure 1A showsmonthlyWMOGSTand its constituentHadCRUT4.6,
NCDC, and GISTEMP GST anomalies relative to a 1961–1990 aver-
age, together with 95% confidence ranges around the WMO average
for each month. The year 1891 is chosen as the first year analyzed as
uncertainties in GST increase quite rapidly before then. On decadal
time scales, the only periods of obvious observed GST cooling after
1891 are around 1896–1910 and 1941–1950. Figure 1B shows the av-
erage influences of the various forcings on GST using the multiple re-
gression reconstructions where cross-validation is carried out over the
whole period 1891–2015. This particular reconstruction uses the av-
erage of 81,000 fairly similar regression equations throughout the
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record (seeMaterials andMethods). The total of 81,000 equations first
results from the use of separate regression equations for each of the
1500months over 1891–2015. In addition, there are 18 predictor com-
binations for each of the three GST series. The 18 predictor combina-
tions are derived from two or three variants of the ENSO or IPO,
volcanic, TSI, andGA forcings, as well as fixed AMOandAO forcings.
These combinations are shown in table S2 of section S5. Equation 1 is
an example, calculated from the average of 1272 cross-validated equa-
tions (training period 1891–1996) for 1998–2013, based on a typical
set of the 54 GST and predictor combinations used for this period

GST ¼ �0:0595þ 0:0172�AMOþ 0:0617�ENSOþ
0:0441�VOLCþ 0:0457�TSIþ 0:2802�GAþ
0:0219�AO ð1Þ

Monthly forcing values are normalized over 1891–2015 so that re-
gression coefficient magnitudes can be compared directly. The other
Folland et al., Sci. Adv. 2018;4 : eaao5297 6 June 2018
53 equations vary sufficiently to be used to estimate uncertainties in
the reconstructions. ENSO and unfiltered IPO are highly correlated
(monthly r = 0.76) and thus are each used in 9 (of 18) different pre-
dictor combinations for each version of GST (Materials and Methods
and section S5). Furthermore,VOLChas a positive value at timeswhen
negative volcanic forcing is less than the average for 1961–1990, while
the AO is set to zero fromApril to November (Materials andMethods)
as its sign andmagnitude do not relate clearly to higher-latitudeNorth-
ern Hemisphere surface temperature anomalies at these times of the
year. The dominant factor in all equations is GA. Equation 1 is quite
similar to that published for standardized annual forcing andGSTdata
over 1947–2006 (12), although the AO was not included.

In Fig. 1B (b), ENSO influences are combinedwith those of the IPO.
Much of the influence of the December–March AO is intermonthly,
but interannual fluctuations also occur, including a decadal decline
in the Northern Hemisphere winter AO around 2000–2010 previously
highlighted (27). A larger than usual influence of the TSI 11-year cycle
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Fig. 1. Observed, reconstructed, and CMIP5 simulated GST for the whole period 1891–2015. (A) Monthly GST anomalies (January 1891 to September 2017) from
the three analyses that make up the WMO data set and the WMO average. Shown are the two warming and three slowdown periods. Estimated 95% confidence limits
on the WMO data set are shown in brown. (B) Reconstructions of monthly GST 1891–2015 from each of the various forcing factors. This uses the average of 81,000
cross-validated regression equations calculated from data covering this whole period. (C) (a) Average cross-validated reconstruction (red) of observed monthly WMO
GST (black) for the whole period 1891–2015. (b) As in (a) but using the CMIP5 40 model average (blue) of monthly GST.
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that reduces GST from about 2001 to 2010 by about 0.08°C (Fig. 1B, d)
is also notable. Changing GA increases GST at all times, most slowly in
the two decades after the Second World War, but increases GST at its
strongest and nearly constant rate from the late 1970s. In the early 21st-
century slowdown of 1998–2013, the SD of the monthly regression re-
siduals (observed GSTminus reconstructed GST) using all the chosen
forcing factors is very similar to the assessed uncertainties in monthly
observed GST itself (section S6 and fig. S5). However, the structure of
themean residuals (Fig. 1B, g) is complex before 1950, reflecting poorly
reconstructed cold conditions around 1907–1910, a short sharp peak
of unexplained observed warmth in the sparse observed data of the
First World War and a peak in unexplained observed warmth during
the Second World War (see the “Using global maps to investigate re-
construction biases in 1907–1910 and 1944–1945” section). After 1950,
mean residuals appear quasi-random, although they have an inter-
monthly correlation near 0.5 falling to near zero at 6 months lag.

Figure 1C (a) provides an overview of the GST reconstructions
using all data. It shows high reconstruction skill on interannual time
scales (2- to 5-year high-pass–filtered period; correlation, 0.78 with
observed GST; significance, <0.01%) and for the whole spectrum
(correlation, 0.93; significance, 0.5%).Materials andMethods describes
correlation significance calculations. For the average GST from the
40 CMIP5 models (Fig. 1C, b), its correlation with observed GST
over 1891–2015, dominated by trend, is only modestly less at 0.89
(significance, 0.5%), but there is relatively little high-pass 2- to 5-year
skill (correlation, 0.06; significance, 2%). High-pass skill results al-
most entirely from skillful simulations of episodic volcanic forcings
of GST around 1902–1906, 1965–1969, 1983–1985, and 1991–1995.
The cool period before 1915 is missed by CMIP5 but is somewhat
better in the reconstructions (Fig. 1C, a), although the cold conditions
in 1907–1910 are underestimated by the reconstructions. The ob-
served rate of warming from 1911 to 1940 is markedly better recon-
structed than simulated by CMIP5, with CMIP5 simulating this
warming trend too weakly. The CMIP5 models reproduce the ob-
served slowing of GST warming from about 1940 to 1975, but the ob-
served peak of warmth during the SecondWorld War is missed, just
as it is by the reconstructions (see the “Using global maps to investi-
gate reconstruction biases in 1907–1910 and 1944–1945” section). The
warming from around 1976 to 1997 is well reconstructed and well
simulated by CMIP5, but the slowdown in GST around 1998–2013,
particularly 2001–2013, is missed entirely by CMIP5 but is very well
reconstructed. The rate of simulated warming by CMIP5 of 0.22° ±
0.06°C per decade over the period 1976–2015 is somewhat greater
than that observed at 0.17° ± 0.02°C. By contrast, the reconstruction
gives the same rate of warming as observed, 0.17° ± 0.01°C per dec-
ade. This CMIP5 overestimate of recent observed warming in GST,
although not quite significant at the 10% level using CMIP5 uncer-
tainties, is shown below to derive from a relatively large overestimate
ofwarming in the recent slowdownsince 1998.This overestimate is at least
partly due to missing natural forced and internal variability. For obvious
reasons, CMIP5 models were unable to simulate the observed changes in
the IPO/ENSO, AMO, and the AO, and they were also not provided with
observed solar and volcanic forcings for much of this period.

Period 1896–1910
Reconstructions are made for 1891–1913 to give a longer perspective.
This period shows a marked overall cooling in GST (Fig. 2A). The re-
construction is surprisingly good for 1891–1906, but overestimates
observed GST thereafter, especially during 1907–1910. CMIP5 aver-
Folland et al., Sci. Adv. 2018;4 : eaao5297 6 June 2018
age GST is also skillful until about 1902 but much less skillful there-
after (section S6 discusses apparent annual cycles in CMIP5 GST
anomalies). As for other slowdown and warming periods, Fig. 2B
shows the level of agreement between the 54 main regression recon-
structions. Figure 2B (a to j) shows how the contributions to recon-
structed GST of the forcing factors build up. For example, the joint
influence of ENSO and the IPO is very important for reconstructing
interannual and subannual GST over this period (Fig. 2B, g). Figure 2C
shows the linear change in GST over 1896–1910 and changes derived
from the components and all the forcing factors. These reconstructions
are generally less successful than for other periods. However, although
the observed linear cooling of GST over 1896–1910 is large at −0.34° ±
0.28°C, its uncertainty is also large. Accordingly, the observed cool-
ing just fails significance at the 1% level, partly due to relatively large
observed GST uncertainties included in the REML trend method.
Reconstructed cooling is underestimated at −0.08° ± 0.07°C, which
is also not significant at the 1% level, but the differential cooling error
of −0.27° ± 0.09°C is significant at the 1% level. CMIP5 gives only a
nominal cooling of −0.05° ± 0.19°C. Although the reconstruction
underestimates observed cooling, Fig. 2C shows that ENSO and
the IPO contribute significantly to cooling (−0.09° ± 0.05°C over
1896–1910), with perhaps a very small, if significant, cooling contri-
bution from the AMO. The IPO fluctuated quite strongly but moved
to a negative phase toward the end of the period (30). Volcanic erup-
tions in 1902 also cool GST shortly afterward (7) and perhaps, to a
small extent, after an eruption in 1907 (Fig. 2B) (7), but volcanic
cooling over 1896–1910 is only significant at the 2% level. The fact
that observed GST becomes somewhat cooler than the reconstruc-
tion from 1902 to 1905 hints that the 1902 volcanic forcing might be
underestimated, although the larger 1907–1910 underestimate likely
requires additional causes (see the “Using global maps to investigate
reconstruction biases in 1907–1910 and 1944–1945” section).

Table 1A shows the correlation skill and significance of recon-
structed and CMIP5 GST with observed GST over 1896–1910 using
low- and high-pass correlations on several time scales. All reconstruc-
tion correlations are significant at the 2% level or better, whereas for
CMIP5, only the high-pass–filtered seasonal time scale shows signif-
icant skill. CMIP5GST is anticorrelated with observedGST for all low-
pass correlations and formultiannual high-pass correlations.However,
CMIP5 GST does show a slight overall cooling trend over 1896–1910,
although it is much smaller in magnitude than observed. The CMIP5
GST behavior may be explained by a combination of a weak anthro-
pogenic forcing during this period and some of the high-frequency var-
iability being driven by ENSO/IPO and volcanic forcings (that is, the
1902 Santa Maria eruption). In contrast to CMIP5 GST and despite
problems with the magnitude of the trend, reconstructed multiannual
low- and high-pass correlations (0.78 and 0.80) are nearly as high as
values in 1976–1997 and 1998–2013 discussed below.

Period 1911–1940
In this first main warming period, observed GST warmed steadily
(Fig. 3A), with the observed linear component of warming over
1911–1940 of 0.38° ± 0.18°C being more than that reconstructed
(0.25° ± 0.04°C) but less certain inmagnitude. Both changes are highly
significant. The estimated differential warming trend (observedminus
reconstructed) of 0.08° ± 0.07°C is not significant at the 1% level, but
slower reconstructed warming results from warmer than observed
GST at the beginning of the period. Warming simulated by CMIP5
was also less than observed (0.19° ± 0.16°C) and is only significant
4 of 16
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at the 2% level. This is explained partly by CMIP5 GST also being
warmer than observed at the beginning of the period; significance
is further reduced by a high serial correlation of CMIP5 trend resi-
duals. Figure 3B (a to j) shows reconstructions from the 54 main re-
gression equations for individual or combinations of forcing factors
for 1911–1940. Most reconstructed warming arises from a combina-
tion of GA (a), AMO (h), TSI (i), and volcanic forcing (j), while most
of the interseasonal and interannual variability arises from ENSO
and the IPO (g). Figure 3C shows that these factors, except the last,
appear to contribute significantly to warming over 1911–1940, but
none dominates. Allowing for uncertainties, the largest warming
factor appears to be GA, giving a warming of 0.12° ± 0.01°C. The
AMO contributes 0.05° ± 0.01°C, with a TSI contribution of 0.04° ±
Folland et al., Sci. Adv. 2018;4 : eaao5297 6 June 2018
0.01°C. Volcanic forcing is smaller at 0.03° ± 0.01°C but is still signif-
icant at the 1% level. Accordingly, increases of greenhouse gases con-
tribute significantly to the early 20th-century GST warming trend but
by nomeans fully explain it, with amoremodest TSI influence than in
early climate model simulations (18). An AMO warming due to the
increasing positive state of the AMO, which a CMIP5 multimodel av-
erage cannot capture, is consistent with previous suggestions (31), at
least for the Northern Hemisphere component of AMO warming.
ENSO and the IPO appear to contribute little to overall warming
(Fig. 3C), consistent with alternative instrumental IPO reconstruc-
tions (30) not used here. However, this conclusion may disagree with
paleoclimate reconstructions of the IPO (32) where the suggestionwas
made that the relative lack of Pacific SST data at this time creates an
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Fig. 2. Reconstructions for slowdown period 1, 1896–1910, where time series include the overlapping longer period 1891–1913 and the observed series 1890–1914.
(A) Average reconstruction of GST for 1891–1913. Shown are reconstructions (red), 95% confidence range of GST for the 54 regression equations (light blue), and
average CMIP5 simulation of GST (blue) and WMO GST (black). Linear trends are shown from 1896 to 1910 using the REML trend method. (B) Reconstruction of
WMO GST for 1891–1913. Shown for each panel are averaged observed GST (black) and each of the 54 regression equation estimates of GST (blue) for the different
forcing factors and their combinations and for the three component WMO global temperature data sets. (C) Linear component of total temperature change for
slowdown period 1: 1896–1910, for WMO average GST (observations), the reconstruction, its difference from WMO GST, and component forcings. Red lines show
±1s uncertainties in the temperature changes. Stars denote significance at the 1% level or better. The REML trend method is used.
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erroneous estimate of IPO changes. Figure 3 (A and C) leaves room
for additional warming from the IPO and ENSO should future digi-
tized historic instrumental SST data support this (see Discussion and
Conclusions).
Folland et al., Sci. Adv. 2018;4 : eaao5297 6 June 2018
Table 1B shows the correlation skill and significance of recon-
structed and CMIP5 GST with observed GST. Reconstruction skill
levels are similar to those for 1896–1910 for low- and high-pass skill
(for example, low-pass correlation skill for multiannual periods is
Table 1. Correlation skill of average reconstructed GST and CMIP5 average GST with WMO GST.
Period
 Low pass (r)
 Significance (%)
 Period
 High pass (r)
 Significance (%)
A. Slowdown period 1, 1896–1910
Reconstruction, ≥2 months
 0.66
 0.1
 2–10 months
 0.32
 <0.01
Reconstruction, ≥2 seasons
 0.72
 0.2
 2–10 seasons
 0.32
 2.0
Reconstruction, ≥2 years
 0.78
 2.0
 2–10 years
 0.80
 0.05
CMIP5, ≥2 months
 −0.34
 2–10 months
 0.14
CMIP5, ≥2 seasons
 −0.47
 2–10 seasons
 0.34
 1.0
CMIP5, ≥2 years
 −0.75
 2–10 years
 −0.47
B. Warming period 1, 1911–1940
Reconstruction, ≥2 months
 0.67
 <0.01
 2–10 months
 0.39
 <0.01
Reconstruction, ≥2 seasons
 0.71
 0.02
 2–10 seasons
 0.39
 <0.01
Reconstruction, ≥2 years
 0.78
 0.5
 2–10 years
 0.59
 0.1
CMIP5, ≥2 months
 0.38
 0.5
 2–10 months
 0.16
 0.5
CMIP5, ≥2 seasons
 0.43
 2–10 seasons
 0.19
CMIP5, ≥2 years
 0.52
 2–10 years
 −0.52
C. Slowdown period 2, 1951–1975
Reconstruction, ≥2 months
 0.64
 <0.01
 2–10 months
 0.13
 5.0
Reconstruction, ≥2 seasons
 0.72
 <0.01
 2–10 seasons
 0.36
 0.05
Reconstruction, ≥2 years
 0.80
 <0.01
 2–10 years
 0.81
 <0.01
CMIP5, ≥2 months
 0.24
 2–10 months
 −0.02
CMIP5, ≥2 seasons
 0.27
 2–10 seasons
 0.03
CMIP5, ≥2 years
 0.31
 2–10 years
 0.28
D. Warming period 2, 1976–1997
Reconstruction, ≥2 months
 0.80
 <0.01
 2–10 months
 0.28
 <0.01
Reconstruction, ≥2 seasons
 0.86
 <0.01
 2–10 seasons
 0.51
 <0.01
Reconstruction, ≥2 years
 0.94
 0.01
 2–10 years
 0.87
 <0.01
CMIP5, ≥2 months
 0.58
 0.5
 2–10 months
 0.16
 1.0
CMIP5, ≥2 seasons
 0.65
 0.5
 2–10 seasons
 0.20
CMIP5, ≥2 years
 0.76
 0.1
 2–10 years
 0.50
 5.0
E. Slowdown period 3, 1998–2013
Reconstruction, ≥2 months
 0.60
 <0.01
 2–10 months
 0.25
 0.05
Reconstruction, ≥2 seasons
 0.69
 0.05
 2–10 seasons
 0.37
 0.5
Reconstruction, ≥2 years
 0.84
 0.1
 2–10 years
 0.80
 0.02
CMIP5, ≥2 months
 0.34
 5.0
 2–10 months
 0.09
CMIP5, ≥2 seasons
 0.41
 2–10 seasons
 0.20
CMIP5, ≥2 years
 0.54
 2–10 years
 0.26
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0.78), although high-pass reconstruction interannual skill is less
than that for 1896–1910 at 0.59. All reconstruction skill measures
are nevertheless significant or highly significant. The smaller high-
pass interannual skill in these reconstructions than in 1896–1910
mainly arises from three periods of about a year where reconstruc-
tions are poor (Fig. 3A), one of the worst being in much of 1911.
Observed GST was markedly cooler then than reconstructions,
continuing the warm bias in the reconstructions over 1907–1910 noted
above.Apparent poor skill around1915 is alsonotablewhenobservations
were markedly warmer than reconstructions. CMIP5 GST shows some
correlation skill (Table 1B) as it picks up the warming trend in observed
GST moderately well, but skill as a whole is considerably less than for
reconstructions. CMIP5 high-pass skill is low or negative on interannual
time scales. Overall, the reconstructions are much more skillful than
CMIP5 simulations over 1911–1940 and demonstrate the several causes
of observed early 20th-centurywarming, including increasing greenhouse
gases, but none dominates.
Folland et al., Sci. Adv. 2018;4 : eaao5297 6 June 2018
Periods 1941–1975 and 1951–1975
The period 1941–1975 (the big slowdown) is the longest (Fig. 4A),
with an observed linear cooling of −0.08° ± 0.10°C, although this is
not significant. CMIP5 simulates the big slowdown quite well with
almost no overall warming at 0.02° ± 0.28°C. Most other details of
the big pause simulated by CMIP5 are poor except for cooling due to
the eruption of Mt. Agung in 1963 (Fig. 4A). Reconstructions also
show slight overall warming at 0.03° ± 0.04°C (see also below) but
reproduce many of the pronounced annual to interannual fluctua-
tions, including the cooling due to the eruption of Mt. Agung (Fig.
4B, a to j). Figure 4B also shows, as for 1911–1940, that ENSO and
the IPO (g) are important for reconstructing interannual GST vari-
ations. However, as withCMIP5, amajor problemoccurs duringmuch
of the Second World War. The reconstruction is skillful in 1940, but
the observations were warmer than the reconstruction for the next
5 years, especially in 1944 and 1945. This likely arises from obser-
vational biases owing to a major change from mainly bucket-based
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Fig. 3. Reconstructions for warming period 1, 1911–1940. (A) Average reconstruction of GST for warming period 1: 1911–1940. Linear trends are shown from 1911
to 1940 using the REML trend method. Otherwise as for Fig. 2A. (B) Reconstruction of WMO GST for warming period 1: 1911–1940. Otherwise as for Fig. 2B. (C) Linear
component of total temperature change for warming period 1: 1911–1940. Stars denote significance at the 1% level or better. Otherwise as for Fig. 2C.
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measurements of SST early in the war, adjusted to be warmer than
raw observations, to unadjusted ships’ engine intake measurements
(28, 33). The latter likely became dominant quite suddenly from
December 1941 (28, 34) and are likely to be biased warm. This provides
the most prominent discrepancy between observed and reconstructed
GST. Thewarmbias in the observations ends suddenly in late 1945when
there was also a sudden partial reversion to bucket-based measurements
(28). We return to this problem in the section, “Using global maps to
investigate reconstruction biases in 1907–1910 and 1944–1945,” below.

Because of doubtful Second World War data and sparse data im-
mediately after the SecondWorldWar, we concentrate the remaining
discussion on 1951–1975. Figure 4C shows that the linear compo-
nent of the observed GST temperature change was almost zero over
1951–1975 (0.02° ± 0.13°C). The reconstruction also shows no overall
warming at −0.01° ± 0.04°C, as does CMIP5 GST at 0.02° ± 0.31°C.
Folland et al., Sci. Adv. 2018;4 : eaao5297 6 June 2018
Thus, both very well reconstruct and simulate the lack of trend in the
more secure part of the big slowdown. Figure 4C shows that an essen-
tially zero change in reconstructed GST is the residual of a significant
reconstructed warming of 0.14° ± 0.03°C due to GA and small but sig-
nificant reconstructed cooling influences due to the AMO (−0.05° ±
0.02°C) and volcanic forcing (−0.04 ± 0.01°C), with perhaps a small
insignificant cooling due to ENSO and the IPO (−0.02° ± 0.03°C).
Thus, net warming of GST from GA continued very slowly during
much of the big slowdown due to an increasing influence of anthro-
pogenic aerosols at that time (20) but accelerated after 1970 [Figs. 1B
(e) and 4B (a)]. GAwarming just cancelled the small signals from sev-
eral natural forcing factors that collectively modestly cooled GST.

The good correlation skill of reconstructed GST over 1951–1975
is reflected in Table 1C, which also shows the poor skill of CMIP5
GST. Most reconstruction correlation statistics with observed GST
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Fig. 4. Reconstructions for slowdown period 2, 1941–1975, where the time series include the lead-in period 1939–1940. (A) Average reconstruction of GST for
slowdown period 2: 1941–1975. Thick trend lines are for 1941–1975, and thin lines are for 1951–1975. Otherwise as for Fig. 2A. (B) Reconstruction of WMO GST for
slowdown period 2: 1941–1975. Otherwise as for Fig. 2B. (C) Linear component of total temperature change for slowdown period 2: 1951–1975. Stars denote significance
at the 1% level or better. Otherwise as for Fig. 2C.
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are significant at better than the 1% level, but no CMIP5 statistics
reach this level. Reconstruction statistics are particularly good for
low-pass multiannual and for high-pass interannual time scales at
0.80 and 0.81, respectively, although much smaller, high-pass sea-
sonal correlations are still significant at the 0.05% level with a corre-
lation of 0.36, reflecting interseasonal skill contributed by ENSO and
the IPO. Table S3 shows correlations for 1941–1975 that are, as
expected, generally lower but still show some skill.

Period 1976–1997
This warming period shows rather larger multiannual fluctuations in
the rate of warming of GST than does 1911–1940 (compare Fig. 5A
with Fig. 3A). Observed fluctuations in GST in the early 1980s and
1990s are caused by volcanic forcing (Fig. 5B, j) due to the eruptions
of El Chichón andMt. Pinatubo (7, 35). Cooling in the late 1980s arises
fromENSOand the IPO (Fig. 5B, g), particularly because amoderately
Folland et al., Sci. Adv. 2018;4 : eaao5297 6 June 2018
strong El Niño in 1987 was followed by a very strong La Niña in
1988–1989 (www.cpc.noaa.gov/products/analysis_monitoring/
ensostuff/ensoyears.shtml, as of 16 March 2017). CMIP5 GST re-
flects the volcanic cooling signals skillfully and the stronger GA in-
fluence than in 1911–1940, but of course, it cannot capture the
ENSO-related cooling between 1987 and 1989.

Figure 5C shows that the warming of observed and reconstructed
GST over 1976–1997 (0.38° ± 0.15°C and 0.36° ± 0.04°C, respectively)
was both significant at the 0.01% level and similar. CMIP5 gives a
slightly smaller warming of 0.31° ± 0.22°C to that observed, a rate
of 0.14° ± 0.10°C per decade significant at the 1% level, compared to
the observed rate of 0.17° ± 0.07°C per decade. A key result (Fig. 5, B
and C) is that, although there was a small but significant reconstructed
warming influence from the AMO (0.02° ± 0.01°C) and a somewhat
larger but small overall reconstructed cooling influence from volcanic
forcing (−0.05° ± 0.03°C), much of the dominant influence was net
 on June 22, 2018
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Fig. 5. Reconstructions for warming period 2, 1976–1997. (A) Average reconstruction of GST for warming period 2: 1976–1997. The linear trends are for 1976–1997.
Otherwise as for Fig. 2A. (B) Reconstruction of WMO GST for warming period 2: 1976–1997. Stars denote significance at the 1% level or better. Otherwise as for Fig. 2B.
(C) Linear component of total temperature change over warming period 2: 1976–1997. Stars denote significance at the 1% level or better. Otherwise as for Fig. 2C.
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warming due to GA at 0.35° ± 0.02°C. This is a reconstructed rate of
0.16° ± 0.01°C per decade. Reconstruction correlation skill with
observed GST was high or very high (Table 1D) and generally
higher for both low-pass and interannual high-pass correlations
than in the previous periods. Thus, low-pass multiannual correla-
tion of reconstructed and observed GST reached 0.94, with a high-
pass interannual correlation of 0.87. Shorter time scale high-pass
skill estimates were much lower but still significant. CMIP5 corre-
lation skill is higher than that for previous periods but markedly
less than the reconstruction skill, with a low-pass multiannual cor-
relation with an observed GST of 0.76 and an interannual high-pass
correlation of 0.50.

Period 1998–2013 and subperiods 2001–2010 and
2001–2013
This third slowdown period is often known as the pause or hiatus. It is
not easy to define, but it started in about 1998 and can currently be
regarded as finishing in 2013 (Fig. 1A). Besides taking an overview
of the slightly longer period 1997–2015, we investigate the three over-
lapping slowdown periods 1998–2013, 2001–2010, and 2001–2013.
Figure 6A shows that reconstructed GST from the beginning of
1997 until the end of 2015 follows observed GST quite closely on in-
terannual and some subannual time scales. Monthly observed GST
often deviates strongly from the reconstructions, and as elsewhere
Folland et al., Sci. Adv. 2018;4 : eaao5297 6 June 2018
in the record, observed monthly GST values have a much larger un-
certainty than annual values [1s uncertainties in HadCRUT4 average
near 0.09° and 0.05°C, respectively, over 1997–2015 (8)]. CMIP5 GST,
by contrast, fails to capture the slowdown at all, much as previously
noted (2). CMIP5 average GST also shows artificial fluctuations on the
annual time scale in this period (Fig. 6A). Again, see section S6 for a
discussion of apparent annual cycles in CMIP5 GST anomalies. These
can cause artificial high-frequency correlations between observed and
CMIP5 GST.

Figure 6B first shows that reconstruction uncertainty tends to in-
crease after 2010. Figure 6B (a) reflects a steady average reconstructed
warming due to GA averaging 0.17°C per decade, about the same as
1976–1997 despite the observed slowdown. This indicates that no
slowdown occurred in background GAwarming. Figure 6B (b) shows
that adding reconstructed TSI forcingmarkedly improves the shape of
reconstructed GST from GA forcing alone. Adding all other forcing
factors, especially ENSO and the IPO, considerably increases this cor-
respondence on all time scales down to the subannual. The match be-
tween observed and average reconstructed GST is now quite close
throughout 1997–2015 (Fig. 6A), except on monthly time scales and
for some multimonth periods.

Figure 6C shows the reconstructed GST changes. In all three
periods (1998–2013, 2001–2010, and 2001–2013), the observed
but insignificant GST changes (0.11° ± 0.17°C, 0.07° ± 0.15°C, and
 on June 22, 2018
ttp://advances.sciencem
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Fig. 6. Reconstructions for slowdown period 3, 1997–2015 and its three main sub-periods, where the observed time series include the lead-in period 1995–1996.
(A) Average reconstruction of GST for slowdown period 3: 1997–2015. The linear trends are for 1998–2013 (thin lines) and 2001–2010 (thick lines). Otherwise as for Fig. 2A.
(B) Reconstruction of WMO GST for slowdown period 3: 1997–2015. Otherwise as for Fig. 2B. (C) Linear components of total temperature change over slowdown period 3.
(a) 1998–2013; (b) 2001–2010; (c) 2001–2013. Stars denote significance at the 1% level or better. Otherwise as for Fig. 2C. (D) Summary of the contributions of significant
forcing (at <1% level) factors to GST trends (°C per decade) during (a) warming periods and (b) slowdown periods. The period 2001–2013 is used to represent slowdown
period 3 where the appreciable but not significant ENSO-induced trend is shown.
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0.07° ± 0.13°C, respectively) are quite well (1998–2013) or very well
(2001–2010 and 2001–2013) matched by corresponding reconstructed
changes (0.17° ± 0.06°C, 0.04° ± 0.10°C, and 0.10° ± 0.08°C), although
reconstructed warming over 1998–2013 is significant. The CMIP5
GST change over 1998–2013 is, by contrast, highly significant at
0.36° ± 0.10°C, a rate of 0.23° ± −0.06°C per decade that varies little
over the period (Fig. 6A). This is markedly higher than the 1976–1997
rate of GST increase shown by CMIP5. The reconstructed compo-
nent ofGST change due toGAalone over 1998–2013 is 0.27° ± 0.01°C.
This is not onlymuchmore than the total observedwarming of 0.11°C
but also distinctly less than the total warming shown by CMIP5. The
latter, of course, will have been unable to simulate changes in the IPO,
ENSO, and theAO, andCMIP5models did not have observed volcan-
ic and solar forcings for much of this period. A key published finding
for the 1998–2013 slowdown, partly based on model simulations, is a
cooling influence of ENSO/IPO (36, 37). However, over the early part
of the period 1999–2008, Fig. 6B (g) is consistent with a slight overall
warming of GST from ENSO/IPO (38). Nevertheless, reconstructed
cooling due to ENSO/IPO is seen in the three subperiods (1998–2013,
−0.05° ± −0.05°C; 2001–2010, −0.03° ± −0.08°C; 2001–2013, −0.04° ±
−0.06°C). However, none of these ENSO/IPO cooling influences is
significant at the 1% level, although the 1998–2013 cooling is signif-
icant at the 5% level. By contrast, the TSI cooling influence is signif-
icant at the 0.1% level or better in 2001–2010 and 2001–2013 and at
the 2% level in 1998–2013. Except in 1998–2013, when solar forcing
actually causes some warming of GST between 1998 and 2002, overall
solar cooling is larger than that due to the ENSO/IPO [Figs. 6B (i) and
1B (d)]. Over 1998–2013, 2001–2010, and 2001–2013, TSI cooling of
GST is reconstructed as−0.03° ± 0.03°C,−0.08° ± 0.04°C, and−0.06° ±
−0.04°C, respectively, with the largest TSI cooling influence over
2001–2010. The “Using globalmaps to investigate reconstruction biases
in 1907–1910 and 1944–1945” section provides further evidence of a
TSI cooling signal. A consistent but small significant volcanic cooling
influence in each subperiod (Fig. 6C) agrees with previously reported
volcanic cooling influences (1). Finally, although the influence of the
AO is always small and not significant, it gives a visible cooling of
−0.015° ± 0.025°C in 2001–2010 (Fig. 6C). This is caused by a distinct
trend in December to March toward a more negative AO over this
period, creating increasingly cold winter conditions over mid- and
high-latitude Eurasia (27).

There remain doubts about the measurement of GST during the
recent slowdown because rapidly increasing Arctic warming may be
underestimated (39), possibly even relegating the recent slowdown to
statistical insignificance (40). An offsetting problem is that Antarctica
as a whole has been warming much more slowly than the global aver-
age, and it is also poorly sampled. The GST data sets do not represent
either region very well. This problem has recently been investigated
(41) using the ERA Interim Reanalysis (42) to estimate better recent
values of GST. ERA Interim estimates near-surface air temperature in
data-sparse regions in a physically consistent way with the help of a
weather forecastingmodel. Use of ERA Interim, however, does not lead
to significantly different conclusions about the causes of the 1998–2013
slowdown (seeMaterials andMethods and section S8). The observed
warming of ERA Interim GST over 1998–2013 is rather larger than
that forWMOGST at 0.20° ± 0.20°C, although still not significant at
the 1% level, mainly because it represents the rapidly warming Arctic
better and agrees somewhat betterwith the reconstructed GST warming
of 0.17° ±−0.06°C.However, ERA InterimGSTwarming increases after
2001 only slightly more than WMO GST at 0.11° ± 0.26°C (2001–2010)
Folland et al., Sci. Adv. 2018;4 : eaao5297 6 June 2018
and 0.10° ± 0.20°C (2001–2013) (see figs. S6 and S7), so our analysis
does not detect any significant differences in the influences of the
forcing factors on the 1998–2013 slowdown when using ERA Interim
GST in place of WMO GST, although ERA Interim does hint at more
observed warming.

Our main conclusion is that the most robust influence on the
1998–2013 slowdown resulted from the cooling effects of reduced
TSI forcing between 2003 and 2011 (Fig. 6B, i) followed by a trend
toward increasing La Niña conditions and a negative IPO in its sec-
ond half. The negative IPO is in turn likely to have been enhanced by
regional anthropogenic aerosol forcing (43). Cooling throughout the
slowdown was slightly but significantly enhanced by persistent but
small increases in volcanic forcing. Previous studies (1, 44) pointed
out this modest contribution to the recent slowdown from small vol-
canic eruptions, and our results add to this evidence. Despite this, the
background net influence of GA warming continued at a nearly con-
stant rate of 0.17° ± 0.01°C per decade.

Using global maps to investigate reconstruction biases in
1907–1910 and 1944–1945
For the first slowdown period 1896–1910, reconstructions for the
subperiod 1907–1910 were too warm. To investigate this further,
global maps combining surface air temperature anomalies over land
with SST were reconstructed for 1907–1910 using the monthlyWMO
data set at 5° latitude × 5° longitude resolution (Fig. 7A). For each 5° ×
5° box, significance of the differences between reconstructions and
observations was calculated at the 1% level using a two-sided t test.
Figure 7A (a to c) shows that the main cause of the reconstruction
warm bias is relative observed coolness of much of the global oceans.
Accordingly,most of the oceans are observed to be significantly (at the
1% level) cooler than reconstructions. By contrast, land surface tem-
peratures do not show large-scale differences of either sign. Besides
possible observed SST cold biases and most SSTs being strongly pos-
itively bias-corrected at this time (8, 33, 34), these differences might
reflect a missing or poorly estimated forcing factor in reconstructed
SST. Possibilities are inadequate estimates of AMO and IPO (32) forc-
ings or perhaps underestimated volcanic cooling, for example, from
the apparently modest 1907 eruption of Ksudach, Kamchatka (7), al-
though this might be expected to be more apparent in land surface
temperatures.

A bigger problem, but of opposite sign, occurs during the Second
World War where reconstructed GST is much colder than observa-
tions, especially in 1944 to 1945. Figure 4A suggests that this offset
lasted from about 1942 until late 1945 or the start of 1946. Figure
7B (a to c) shows similar global maps for reconstructions and observa-
tions averaged over 1944 and 1945. Observed SST, which is currently
not bias-adjusted, is warmer than reconstructions almost worldwide.
As mentioned above, a possible reason is a major increase in engine
intake SSTs that are often biased warm (5, 33). This may have been
a particular problem with the mix of warships and merchant ships re-
porting SST during the SecondWorldWar. Soon after the war, an op-
posite problem rapidly developed due to an increase in the fraction of
SSTs measured using cold-biased uninsulated buckets (28, 45). There-
fore, the fact that the warm bias problem did not last beyond 1946 is
consistent with a warm SST bias caused by dominant engine intake
data. Another possibility is that reconstructed AMOwarming was un-
derestimated during the Second World War. Against this possibility,
AMO warming usually affects the North Atlantic and North Pacific,
while the Southern Hemisphere tends to be near or slightly cooler than
11 of 16

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on June 22, 2018
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

normal (26). However, evidence for a potential observed warm bias in
Fig. 7B appears to be truly global.

Further investigation of TSI forcing
Figure 7C shows a map of least-squares regression temperature
changes due to TSI forcing for 5° × 5° boxes in 2001–2010, the decade
when we reconstructed the strongest TSI cooling influence on the re-
cent slowdown. REML calculations are too time-consuming for such a
large data set. A worldwide cooling signal is fairly consistent over the
oceans but very patchy over land. Its average global magnitude of
−0.13°C is larger than the REML estimate of −0.08°C, partly because
calculations are made separately for each 5° × 5° box, and REML es-
timates are likely more accurate for short periods. Nevertheless, Fig.
7C supports the plausibility of a substantial cooling influence of TSI
forcing onGST over 2001–2010. The reconstructions described above
of solar cooling of GST using REML are consistent in magnitude with
the larger responses of GST to TSI forcing simulated by CMIP5
models over 11-year cycles (46).
DISCUSSION AND CONCLUSIONS
We have shown that much of the variability and trends in GST since
1891 can be reconstructed skillfully down to interannual, annual, and,
sometimes, subannual time scales. We have highlighted two warming
periods, 1911–1940 and 1976–1997, and three slowdown periods,
1896–1910, 1941–1975, and 1998–2013. For each slowdown, we re-
constructed slightly longer periods to show how the periods started
and ended. For each slowdown, the regression equations used train-
Folland et al., Sci. Adv. 2018;4 : eaao5297 6 June 2018
ing data that were independent of the period studied. For warming
periods, we relied on the same cross-validation procedure used for
slowdowns but used all the GST and forcing data for training the re-
gressionmethod. Although we have allowed for many uncertainties, a
full analysis requires a better understanding of the uncertainties in
forcings. In this regard, estimates of TSI forcing before the satellite
era have evolved considerably (20), but the increasing trend in TSI
before 1960 is probably still not knownwell. Finally, we have not used
recent estimates of a small estimated cooling in recent decades due to
global greening (47). This effect is small over land; globally, it is
smaller still because the ice-free land surface covers only about 25%
of the globe.

From soon after the Second World War, there are no serious fail-
ures of the reconstructions. However, manymonthly and somemulti-
monthly variations in observed GST are not reconstructed well. Some
of these apparent errors are due to observational noise, with observed
monthly GST uncertainties throughout the period since 1891 being
about twice as large as simultaneous annual GST uncertainties (8).
The lack of observed warming of GST over 1951–1975 is well recon-
structed, as is strong warming from 1976 to 1997 and the observed
warming peak in 1998 due to the 1997–1998 El Niño and the subse-
quent GST slowdown. Renewed warming in 2014–2015 is also recon-
structed well. Less expected is the relatively large reconstructed
influence of TSI forcing on the 1998–2013 slowdown, especially when
compared to ENSO and IPO forcing. Figure 6 (B and C) shows that
uncertainties arising from the use of three quite different assumptions
about the delayed GST response time to TSI forcing did not stop re-
constructed TSI influences from being significant from 2001 onward,
A B C

Fig. 7. Global maps of observed and reconstructed temperature anomalies for some key results. (A) (a) Observed maps of temperature anomalies (°C) in 1907–1910.
(b) Reconstructed anomalies. (c) Observed minus reconstructed anomalies. Significant differences at the 1% level in each 5° × 5° box for observed minus reconstructed
anomalies (two-sided t test) are shown by stars. Dark red indicates warmest, and dark blue denotes coldest. (B) (a) Observed maps of temperature anomalies in 1944–1945.
(b) Reconstructed anomalies. (c) Observed minus reconstructed anomalies. Otherwise as for (A). (C) Reconstructed linear component of worldwide temperature change
due to TSI forcing, 2001–2010. Calculated changes for 5° × 5° boxes are ordinary least-squares trends multiplied by the period length. Dark red indicates warmest, and dark
blue denotes coldest.
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although uncertainties arising from these markedly varying response
times are included in REML calculations of temperature change and
trend. Recent research (46) tends to favor a 4-year GST response time,
the middle value of our three response times (see also fig. S8), as this
correspondswell to the approximately 2-year lag ofGST toTSI forcing
found there.

Despite important influences of natural variability, since 1891, the
net warming effects of increasing greenhouse gases and anthropogenic
aerosols on GST have been dominant, shown most clearly by Fig. 1B
(e). Even over 1891–1950, net anthropogenic warming was clearly im-
portant, although natural effects played a comparable role. Figure 6D
compares drivers of each warming (a) and slowdown period (b) in the
form of reconstructed GST trends to aid comparison. The first warm-
ing period 1911–1940 is unlike the second, with warming in the first
period being about equally due to GA forcing on the one hand and
four natural forcings on the other. However, in 1976–1997, GA forc-
ing dominated the warming. Figure 6D (b) shows the greatly increas-
ing influence of GA warming on GST trends from the first slowdown
period to the third. In all slowdowns, GA warming is fully or partly
offset by natural cooling. The first slowdown, a nominal pronounced
cooling, was probably dominated by natural ENSO/IPO cooling, but
its magnitude and that of the overall cooling remain uncertain. The
second slowdown, at least in 1951–1975, is much more securely re-
constructed; here, GA warming was mostly offset by natural cooling
owing to a decline in the AMO and increased volcanic forcing. In the
third slowdown, as measured over 2001–2013, the strongest of all
GAwarming signals is partly offset by several natural cooling factors:
solar cooling, an increasing tendency to La Niña events compared to
El Niño events, and a small signal due to increasing volcanic activity.
By contrast, since the end of the 20th century, the CMIP5 GST warm-
ing rate is likely to be almost all caused by GA warming where its
forcing of CMIP5 GST may be a little too fast at 0.23° ± 0.06°C per
decade. Given, say, another decade of observedGST data, REML trend
methods could be used to test stringently whether CMIP5, or forth-
coming CMIP6, rates of early 21st-century warming really significant-
ly differ from observations globally or hemispherically.

Progress to better understand worldwide surface temperature
variations partly depends on improving the instrumental database. It
is clear that a large number of historical observations not yet digitized
exist back to before 1800 (48) and especially in much of the period
studied here. They await extraction and digitization through projects
like the international Atmospheric Circulation Reconstructions over
the Earth Project (48), which has already delivered a useful fraction
of these data (www.met-acre.net/). In conclusion, the mostly high re-
construction skill of observed monthly GST shown here is consistent
with the general veracity of the GST record since 1891 and a good
understanding of the multiple causes of its variations and trends.
MATERIALS AND METHODS
We used cross-validated linear regression to relate monthly GST de-
seasonalized anomalies relative to 1961–1990 from each of three
records (5, 8, 29) to a set of monthly forcing factors. These were also
expressed relative to 1961–1990 but standardized over 1891–2015.
Linearity in the response of GST to the sum of combinations of forc-
ing factors remains a widespread assumption in climate change at-
tribution (10). The forcing factors were transformed to reflect the
character of GST responses to these factors, often using a delayed
e-folding response profile. We included a range of response times
Folland et al., Sci. Adv. 2018;4 : eaao5297 6 June 2018
to account for their uncertainties, and some new estimates of the forc-
ings, to create 54 main regression equations for each period studied.
Each main equation for warming periods 1911–1940 and 1976–1997
averages 1500 constituent cross-validated regression equations, the
number of months in the training period 1891–2015. Table S2 shows
the 18 combinations of forcing factors used in each main equation
for a given record of the three records contributing to WMO GST.
For the slowdown period 1896–1910, part of a longer study period
1891–1913, training data for 1914–2015 were used in the same way to
create 54 main regression equations, each the average of 1224 cross-
validated regression equations. For 1941–1975, training data com-
bined the periods 1891–1938 and 1976–2015 in a similar way, and
for 1998–2013, the training period was 1891–1996. This procedure
minimized biases in the calculations of regression coefficients. The
symmetrical cross-validation window centered on a given month was
49months long for all equations, although necessarily asymmetrical at
the beginning and end of GST data sets.

We only chose those predictors known to physically affect GST
using published literature. The GA predictor (20) was based on the
sum of all the anthropogenic forcing factors listed and thus included
all factors listed such as land surface forcing estimates. Because these
GA data ended in 2011, they were updated to 2015 in two ways,
consistent with the evolution of the RCP4.5 and RCP8.5 forcing time
series, respectively, and the average was taken. The TSI predictor used
new data compiled for CMIP6 using data for the CMIP6 Historical
Simulation until 2014 and the first year of data (2015) for simulations
of the future (21). For the AMO predictor, we used an average of an
index based on an eigenvector analysis of worldwide SST (26) and one
calculated from North Atlantic minus global SST using HadISST1
(33). Twelve-month running means of the AMO indices were used,
leading monthly GST by 1 year (12). For ENSO, we used a Niño 3.4
index leading GST by 4months [leads in the range 3 to 6months were
observed (49) and gave similar regression coefficients], calculated using
HadISST2.1.0.0 (50) until 2010. This contains more tropical Pacific
data than HadISST1 but had to be updated with HadISST1 from
2011 to 2015. For the IPO, whose time series is highly correlated with
that of the Pacific Decadal Oscillation (26, 30), we created an unfiltered
monthly index using a published IPOpattern (26) andHadISST1. This
also leads GST by 4 months. Monthly Niño 3.4 (ENSO) and IPO in-
dices were separately used in 9 of the 18 main regression equations for
each period (section S5). The AMO and IPO (and approximately the
related ENSO) indices are independent of global mean SST via the
eigenvector analysis that mainly created them and thus are largely
independent of GST, minimizing circularity with GST in regression
equations (26). The volcanic index is an update (51) of data used to
study the recent GST slowdown (1). This finishes in 2014; thus, values
for months in 2015 were persisted, using the value for December
2014. The average delayed e-folding time of the response of GST
to tropical volcanic eruptions was estimated at 8 months from pub-
lished data (35). We have also used 6 and 12 months; this range of
short e-folding times reflects the likelihood that climate responses to
short-term sharp cooling are substantially less than those for the
slower GA or TSI forcing changes. The average observed GST re-
sponse time to major volcanoes is generally longer at near 15 months;
this is consistent because negative volcanic forcing takes time to de-
velop fully after an eruption (Fig. 1B, c).We have used the same delayed
e-folding times for periods when negative radiative volcanic forcing
increased in magnitude and when it decreased. The AO index was
calculated using the 20th Century Reanalysis (52) as the time series of
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the first eigenvector of pressure at mean sea level over 30° to 90°N in
December to March. It was set to zero otherwise.

In the regression procedure, 18 of the 54 equations each use
e-folding times of GST to TSI forcing of 2 years, 4 years, and 10 years
(table S2). There are widely varying estimates of this response time
from less than a year (13) to near a decade (53). Section S9 shows the
effects on TSI forcing of using different e-folding response times. For
the response to GA forcing, our delayed e-folding time of 4 years
partly derives from a published model (54) forced with changing
greenhouse gases alone. We also used a 10-year GA response time;
supporting this are estimated e-folding times of near 8 years for the
HadCM3 model (54) and also of 10 years (14). An e-folding GST re-
sponse time of 4 years is nevertheless consistent with the most com-
prehensive study so far (46) where the average lag of CMIP5 model
responses of near 2 years of GST to TSI forcing is also consistent with
this value. Finally, we added a “recalcitrant response” of GST to multi-
century changes in forcing (54), using an e-folding time of 200 years;
an e-folding time of 500 years gives little difference. Recalcitrant
forcing was added to transformed GA series with both 4- and 10-year
e-folding response times. Recalcitrant forcing ri was calculated from
all external forcing factors, including volcanic forcing, using data back
to 1750 (20) and projected back to 1290 using average forcing for
1760–1800 to represent forcing throughout the Little Ice Age. The
response of GST to recalcitrant forcing ri was added linearly to that
of GA forcing gi to give a total response T

T ¼ ð1=c1ÞSigiexpðð�ti þ 0:5Þ=d1Þ þ

0:02ð1=c2ÞSiriexpðð�ti þ 0:5Þ=d2Þ ð2Þ

where cj = Si=1,nexp((−ti + 0.5)/dj). Here, n is large enough (that is,
the integration goes far enough in the past) such that Si=n+1,∞exp((−ti +
0.5)/dj) is small and can be neglected. Here, t is the time in months,
d1 = 48 or 120, consistent with the chosen GST response times to GA
forcing of 4 and 10 years, and d2 = 2400, consistent with a recalci-
trant response time of 200 years. Here, GA values used in the calcu-
lations are equal to T. Equation 2 gives slightly more weight to
recalcitrant forcing than previously published (54) where a factor
of 0.014 replaced our value of 0.02. However, a much larger factor
of 0.1 has very little influence on our regression results.

FormodeledGST, we used all available CMIP5models. Themodel
global means were not masked by the observational coverage. The
GST were first averaged across the members of each model ensemble
(formodels for which such an ensemblewas available) and then across
the multimodel ensemble. The RCP8.5 CMIP5 simulations were used
to cover the 2006–2015 period not covered by the historical CMIP5
simulations.

For observed GST, we separately used three data sets: HadCRUT4.6
updated fromHadCRUT4 (8) (www.metoffice.gov.uk/hadobs/hadcrut4,
as of 28 November 2017), GISTEMP (29) (https://data.giss.nasa.gov/
gistemp/tabledata_v3/GLB.Ts+dSST.txt, as of 28 November 2017),
and the NCDCNational Centers for Environmental Information data
set (5) (www.ncdc.noaa.gov/monitoring-references/faq/anomalies.php,
as of 28 November 2017). We also used the average of these three data
sets, known as the WMO average. Further details are given in section
S10. Furthermore, we used an adjusted version of published ERA Inter-
im GST (41) during 1997–2015, which has a physically consistent cov-
erage of the whole globe.We adjusted the ERA InterimGST anomalies,
Folland et al., Sci. Adv. 2018;4 : eaao5297 6 June 2018
published relative to 1981–2010, tomake them consistent with those of
WMO GST anomalies relative to 1961–1990, using overlapping
monthly data for 1983–1996. ERA Interim GST data in 1979–1982
were not used as they are inhomogeneous with later data (41).

To create global regression maps, we used the mean of the three
temperature data sources (5, 8, 29) with a 5° × 5° spatial resolution.
For a given period mapped, we used the same training period and
cross-validation method as for the corresponding time series analysis.
We simplified the calculations by using a single set of cross-validation
equations taking appropriate averages of predictors used in the 18
equations (not 54 because we are using just average WMO GST). A
separate regression was created in this way for each 5° × 5° region,
whether land or ocean; this simplification was adequate as uncertain-
ties were not used. We then reconstructed 5° × 5° box temperatures
over periods longer than a month by averaging constituent months.
Finally, the contribution of each predictor to temperature in each
5° × 5° boxwasmapped bymultiplying the spatially varying regression
coefficients for that predictor by the average predictor time series for
that box for the period covered.

Cross-correlation significance calculations account for autocorrela-
tions (55). Successive autocorrelationswith increasing lag for each series
were used to calculate cross-correlation degrees of freedom until one
time series has a lagged autocorrelation of <0.10, approximately the
threshold of autocorrelation significance at the 5% level. Calculation
of trends or linear temperature changes and their significance uses
REML, particularly appropriate for short data sets (section S3) (56).
REML allows for persistence in monthly residuals through their first
serial correlation values. Uncertainties in the monthly GST reconstruc-
tions resulting from using 54 different equations or from uncertainties
in observed GST were included in REML calculations. For observed
GST, uncertainties for HadCRUT4.6 GST were used (8), increased by
taking account of differences between the threeWMOdata sets for each
month. For the CMIP5, GST average published uncertainties were
used. Data or model uncertainties only slightly affect the calculation
of GST trend or change but reduce trend significance, often quite ap-
preciably, when compared to regression methods neglecting this
source of uncertainty. Finally, section S11 and tables S4 (A and B) show
cross-correlations between predictor forcings for 1891–2015 and for
1951–2015. Appreciable colinearity between TSI andGA forcing dis-
appears after 1950 but is appreciable over the period as awhole, although
it does not usually cause large uncertainties. The other predictors do not
have correlations large enough to cause significant problems.
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