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Using Visual Speech Information in Masking
Methods for Audio Speaker Separation

Faheem Khan, Ben Milner and Thomas Le Cornu

Abstract—This work examines whether visual speech infor-
mation can be effective within audio masking-based speaker
separation to improve the quality and intelligibility of the target
speech. Two visual-only methods of generating an audio mask for
speaker separation are first developed. These use a deep neural
network to map visual speech features to an audio feature space
from which both visually-derived binary masks and visually-
derived ratio masks are estimated, before application to the
speech mixture. Secondly, an audio ratio masking method forms
a baseline approach for speaker separation which is extended
to exploit visual speech information to form audio-visual ratio
masks. Speech quality and intelligibility tests are carried out on
the visual-only, audio-only and audio-visual masking methods
of speaker separation at mixing levels from -10dB to +10dB.
These reveal substantial improvements in the target speech
when applying the visual-only and audio-only masks, but with
highest performance occurring when combining audio and visual
information to create the audio-visual masks.

Index terms - speaker separation, audio-visual processing,
binary masks, ratio mask

I. INTRODUCTION

This work addresses the problem of single channel
audio speaker separation by investigating how visual speech
information can be exploited to improve extraction of a target
speaker from a mixture of speakers using masking methods.
For this work, we take visual speech information to refer to
information that has been extracted from a speaker’s visual
speech articulators which primarily means features extracted
from a video of the mouth or face. Humans are very good
at extracting a target speaker from a mixture of interfering
speakers. Having two ears is beneficial and to some extent
this has been replicated in speaker separation systems that use
multiple microphones [1]. Furthermore, humans are also able
to exploit visual speech information taken from a target speaker
to improve separation. However, use of this modality is much
less well studied in masking methods for speaker separation
and so the aim of this work is to explore how visual speech
information can be exploited. In particular, visual-only methods
of speaker separation are considered first before extending to
combined audio-visual methods of speaker separation.

Many audio methods of speaker separation have been
proposed (e.g. [2], [3], [4], [5], [6], [7], [8]), while the number
of methods that utilise visual speech information is fewer (e.g.
[9], [10], [11], [12], [13]). When only a single audio channel
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is available the separation problem is severely underdetermined
and requires constraints and assumptions to be imposed. The
proposed work is based on time-frequency masking which
has been effective in suppressing interfering speakers and
extracting a target speaker, and was proposed originally within
computational auditory scene analysis (CASA) [2], [14]. Binary
masking sets mask values to 1 or 0 depending upon whether
a time-frequency region is target or interference dominated,
with each region of the original mixture subsequently retained
or removed. Ideal binary masks (where the mask is known
in advance) are highly effective in extracting a target speaker
from a mixture of speakers at SNRs as low as -20dB [15].
In practice, however, the binary mask must be estimated
from the input mixture. Methods to estimate masks typically
first extract features from the speech mixture and then em-
ploy classification methods to determine whether each time-
frequency component is target or interference dominated. An
early approach combined amplitude modulation spectrogram
(AMS) features with two Gaussian mixture models (GMMs)
to make a Bayesian classification for each time-frequency
region as being target or interference dominated and achieved
improvements in intelligibility [16]. Further related works
continued with classification-based approaches and extracted
pitch-based features and AMS features which were input
into multi-layer perceptrons (MLPs), support vector machines
(SVMs) and deep neural networks (DNNs) to determine each
time-frequency region of the mask [17], [18]. A further study
investigated 16 different acoustic features and identified a multi-
resolution cochleagram feature as giving highest classification
performance [19].

A shortcoming of binary masks occurs when errors lead
to removal of target speech regions or retention of interference
dominated regions. Several studies have shown that instead of
setting each mask value to 0 or 1, better performance can be
obtained using a soft, or ratio, mask. Now, each mask region
takes a value in the range 0 to 1, and rather than retaining or
removing a time-frequency component, a fraction is retained
which is typically proportional to the local signal-to-noise ratio
(SNR), and has similarity to frequency-domain Wiener filtering
[1]. One approach begins by using binary masking to estimate
target and interfering signals which are then used to create a
ratio mask [6]. Alternatively, in [20], a recurrent neural network
(RNN) is used to extract the target and interfering signals from
a mixture which are then used to produce a soft time-frequency
mask. In other studies the ratio mask is estimated directly from
a set of features extracted from the audio mixture using DNNs
[21]. Probabilistic methods of ratio masking have also been
successful and model log spectral features of signals in the
mixture and then make a minimum mean square error (MMSE)
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estimate of the ratio mask [4], [5]. This has been compared
to binary masking and shown to make more effective use
of prior knowledge of speech amplitudes. In fact, in several
comparative evaluations, ratio masking is shown to outperform
binary masking [8], [21], [22].

A motivation of the proposed work is to examine how
visual speech information can be used in mask estimation
for speaker separation. This is motivated by studies that have
shown correlation to exist between audio and visual speech
features [23], [24], [25], [26], [27] and by advances in audio-
visual speech processing [9], [10], [28], [29], [30], [31], [32],
[33]. Visual speech information has taken many different forms
and includes active shape model (ASM) and active appearance
model (AAM) features, 2-D discrete cosine transform (DCT)
features and sieve features [10], [34], [35]. These features
have been used within audio speech enhancement to create
visually-derived Wiener filters to improve speech quality [9],
[10]. Several methods for including visual speech information
into multi-channel speaker separation systems have also been
developed which perform visual stream analysis that provides
additional information to microphone arrays [13], [36]. For
binaural audio, an audio-visual masking method has been
developed that uses a power law transformation to fuse masks
estimated from audio and visual streams [37]. For single-
channel audio, visual speech features taken from target and
interfering speakers have been used to estimate filterbank
features which are subsequently combined to create a visually-
derived ratio mask [11]. This audio-visual correlation has
also been exploited successfully in other applications that
have traditionally been based solely on audio signals. For
example, robust speech recognition in noise has benefited from
visual features that are insensitive to noise [28], [29]. Further
applications of visual speech features include voice activity
detection, voicing classification and visual-to-audio conversion
where no audio is available [30], [31], [32], [38].

The aim of this work is to examine how visual speech
information can be incorporated into an existing audio-based
method of mask estimation to extract a target speaker from an
interfering speaker. Many methods of mask estimation have
been proposed (e.g. [2], [3], [4], [5], [6], [7], [8]) but few
exploit information from visual speech. Of the audio-visual
speaker separation and speech enhancement methods that have
been proposed (e.g. [39], [40]), these typically estimate a clean
audio signal, rather than a mask, from audio features taken
from the mixture and from visual features extracted from the
speaker. In this work, we instead use the audio estimates taken
from the visual features of each speaker to create either a
binary mask or ratio mask. Our previous work on visually-
derived masks used GMMs to map from visual features [41].
We now improve this mapping using a deep neural network
framework and present experiments and analysis to determine
the effectiveness of speaker separation using just visual speech
information. Furthermore, we compare our approach of mask
estimation to a direct visual to mask approach that is based on
methods used in several audio-only mask estimation systems
[21]. We then take an effective audio-only masking method,
[5], and combine this with visual masking methods to create an
audio-visual mask that we show to outperform both audio and

visual only masking methods. The analysis includes speech
quality and intelligibility measures and considers also the effect
of gender in the mixtures and reveals the visual features to be
less sensitive than audio features.

The proposed methods assume that the audio mixture
from the speakers is collected from a single microphone. Visual
speech features are extracted from the mouth region of each
speaker in the mixture. Several example scenarios can be
envisaged with such a system. A first scenario uses a single
microphone and camera, possibly located together, to extract
audio and video. The video captured by the camera will contain
all speakers in the mixture, from which each speaker can be
identified and tracked, such as in [42], [43]. Visual features for
each speaker can then be extracted. A second scenario again
uses a single microphone, but now uses individual cameras with
each capturing video from each speaker in the mixture. These
cameras could again be located centrally or positioned locally
to capture video from where speakers would be located. The
approach considered in this work follows the second scenario
where individual cameras are used, although the techniques
proposed could equally be applied to a single camera, given
suitable face tracking [42], [43].

The paper is structured as follows. Section II discusses
the selection of audio and visual speech features and then
explains the proposed method for estimating audio features
from visual speech features using a deep neural network. The
two visual-only methods of speaker separation, namely binary
masking and ratio masking, are described in Section III. Section
IV presents the audio-visual speaker separation method which
extends an audio-only ratio masking method. Experimental
results and analysis are presented in Section V.

II. AUDIO FEATURE ESTIMATION

This work proposes to exploit visual speech information
for mask estimation by first extracting visual features from each
speaker in the mixture. Audio speech features are subsequently
estimated for each speaker from the corresponding visual
features and are then used within the proposed mask estimation
methods. To maximise mask accuracy it is important to select a
suitable visual speech feature that, when used within estimation,
can yield a reliable audio speech feature.

A. Audio and visual speech features

Several studies have analysed audio and visual speech
features and have shown significant correlation to exist, suffi-
cient to allow audio speech features to be estimated from visual
speech features [10], [23], [44]. Specifically, broad spectral
envelope features such as log filterbank or mel-frequency
cepstral coefficients (MFCCs) can be estimated from visual
features. However, estimation of fine spectral detail, such as
harmonic structure, is not possible from visual features as they
lack necessary source information.

1) Audio speech features: Based on previous analysis
into audio-visual correlation, mel-filterbank audio features are
used in this work [10]. These are extracted from 20ms Hann
windowed frames, taken at 10ms intervals, using a Fourier
transform to create magnitude spectral frames, |X(t, k)|, where
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Fig. 1. Procrustes analysis for normalising lip contours to translation, scale
and rotation. The left plot shows an example set of 40 outer lip contours
before normalisation and the right plot shows the effect of normalisation.

k indicates the spectral bin and t is the frame index. A
D-channel mel-filterbank (where D=23, from [10]) and log
transform are then applied to give log filterbank vectors,
a(t) = [a(t, 1), . . . , a(t, d), . . . , a(t,D)].

2) Visual speech features: Visual features are also
extracted from each speaker in the mixture. Many different
visual speech features have been proposed and include pixel-
based and model-based approaches [45]. Considering their
correlation to audio features and their widespread use in many
visual speech processing applications, active appearance model
(AAM) features are selected as the visual feature [34].

The AAM is trained from a set of images that have
been hand-labelled with 34 2-D vertices that delineate the lip
contour of the speaker. The set of vertices for each image is
first normalised to create a mean lip contour using Procrustes
analysis, which compensates for variations in the position of
the mouth, for the size of the mouth due to varying distances of
the speaker from the camera and for rotation due to the angle
of the speaker’s head. This involves translating the position
of each lip contour to be centred about the origin, scaling
the lip contour to a mean contour size and rotating the lip
contour to be orientated to a mean lip orientation [46]. The
process is illustrated in Figure 1 and shows a set of outer
lip contours before (left-hand side) and after normalisation
(right-hand side). Following normalisation, the 34 pairs of
co-ordinates are stacked to create a 68-D vector, r.

From the set of co-ordinate vectors extracted from the
training images, principal components analysis (PCA) is applied
which allows each co-ordinate vector to be represented as

r = r̄ + Pss (1)

where r̄ is the mean co-ordinate vector, Ps, is the set of
eigenvectors and s is a vector of coefficients that encodes the
shape of the lips. To model appearance, the lip region for each
training image is warped so that the points match those of the
mean shape, and pixel intensities within this shape are raster
scanned into vector, u. PCA is then applied which allows each
pixel intensity vector to be represented as

u = ū + Pbb (2)

where ū is the mean intensity vector, Pb, is the set of
eigenvectors and b is the coefficient vector that encodes the
appearance of the lips.

The shape and appearance vectors are then stacked, and
a final PCA performed to decorrelate the features. The final
AAM vector, o, is computed as

o = Q

[
s
b

]
(3)

where matrix Q is a PCA derived matrix that combines and
compresses the shape and appearance components. For the
shape and appearance vectors, the dimensionality was selected
such that 98% of the total variation is captured which resulted
in 30 dimensional AAM vectors.

For new images, as used in testing, a tracker automatically
locates the mouth of the speaker and the AAM is fitted to
this region by solving for the model parameters in (1), (2)
and (3) [42], [34]. In this way, video frames are tracked and
parameterised into feature vectors, o(t), that encode the visual
speech at each 40ms instant, as the audio-visual database used
in this work was captured at 25 video frames per second (see
Section V for further details). The vectors are then upsampled
to 100Hz to match the audio frame rate where each AAM
vector is considered as representing the instantaneous mouth
shape at 10ms intervals. First and second order derivatives, with
window widths of ± 2 frames and ± 1 frame, respectively,
are then augmented to produce visual vectors, v(t). These
are z-score normalised to set each coefficient to have zero
mean and standard deviation of one. The window widths
chosen for the temporal derivatives result in information from
7 visual vectors being included, which can be considered as
representing approximately 70ms of visual speech (the precise
duration depends on the shutter speed used when recording the
video). This was found to be a good compromise between a
further small reduction in estimation error against an increase
in latency.

B. Audio feature estimation from visual features

For mask estimation, the visual features from each speaker
are used to estimate audio filterbank features for each speaker.
Earlier work [11] used Gaussian mixture models (GMMs) for
estimation but in this work it is proposed to use DNNs, given
their success in a range of speech processing applications, e.g.
[47], [48]. Essentially, given a visual vector, v(t), an estimate
of the corresponding audio filterbank feature, â(t), is made

â(t) = f(v(t)) (4)

where f is a feed-forward DNN configured for regression.
The visual vector is applied to the input layer of the DNN
which is passed through a number of hidden layers before the
estimated filterbank vector is available on the output layer. The
output from each hidden layer, and from the output layer, are
a function of the output of the layer below, a set of weight
connection parameters between the two layers and a bias term.
A non-linearity is applied to the output of each hidden layer.
This represents a fairly standard DNN implementation, as this is
not the major focus of the work, but for completeness training
and testing details are now given.
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TABLE I
MEAN SQUARE FILTERBANK ESTIMATION ERROR USING GMM AND DNN
METHODS FOR SPEAKERS S2, S4, S6 AND S7 AND THE MEAN SQUARE OF

THE REFERENCE FILTERBANKS.

S2 S4 S6 S7 Mean
GMM 1.04 1.22 1.24 1.08 1.15
DNN 0.89 0.93 0.99 0.94 0.94
Mean square 9.10 10.73 10.76 9.89 10.12

1) Training: Backpropagation of errors in conjunction
with gradient descent optimisation is applied to learn a set of
weight values that minimise the mean square error between
the audio filterbank vector estimated from the network, â(t),
and the corresponding original vector, a(t). A random search
over various model hyperparameters was conducted to find
an optimal set [49], where the network architecture found to
perform best contains four hidden layers, each with 512 units
using a rectified linear unit (ReLU) activation function. The
final output layer uses a linear activation function to provide
the real-valued coefficient estimates. For regularisation, dropout
is applied to each of the hidden layers with probability 0.5,
and an l2 norm regularisation is applied with a weight of
0.001. Weights are initialised according to a uniform probability
distribution in the range -0.01 to +0.01, and the learning rate
is fixed at 0.0003 throughout training.

2) Accuracy of estimation: As a preliminary test, an
investigation was made into filterbank estimation accuracy from
visual features using the DNN, primarily to compare against the
earlier method of using GMMs. Four speaker-dependent DNNs
were trained, each using speech from one of four speakers in
the GRID database (2 male and 2 female) with testing using a
separate set of utterances from each speaker - for specific details
see Section V. For each estimated filterbank vector the mean
square error (MSE) was computed using the reference filterbank
extracted from the clean audio and these were averaged across
all frames for each speaker. To compare against our earlier
work [41], the same data was used to create four 64 component
speaker-dependent GMMs (which gave lowest error) and the
MSE computed. Table I shows the MSE for speakers S2, S4,
S6 and S7 for the DNN and GMM estimation methods. To
indicate how effective filterbank estimation is relative to the
reference filterbank amplitudes, the final line in Table I shows
the mean square of the reference filterbank amplitudes for each
speaker. For all four speakers the MSE is lower using the
DNN-based system, with the average error reduced by almost
20%, which confirms the choice of using of DNNs over GMMs
for estimation. Furthermore, the results also show estimation
to be consistent across the four speakers.

III. VISUAL-ONLY SPEAKER SEPARATION

Two methods of visual-only mask estimation are devel-
oped and explained in this section, namely visually-derived
binary masks and visually-derived ratio masks. Both methods
use only visual speech information to create the mask which
subsequently extracts the target speaker from the mixed audio.

A. Visually-derived binary mask

Binary masking is effective at separating a target from a
mixture of interfering sounds when the true, or ideal, mask is
known in advance [14]. In practice, the binary mask is typically
estimated from the audio mixture with many methods having
been proposed [17], [18]. In this work, audio-visual correlation
is exploited and a method of estimating the binary mask using
visual speech information is proposed.

1) Estimation of visually-derived binary mask: A binary
mask is computed from filterbank estimates of the target and
interfering speakers, â1 and â2, obtained from corresponding
visual speech features, v1 and v2, extracted from each speaker
in the mixture. To generate a binary mask that can be applied
to the K-dimensional magnitude spectra, the D-channel log
filterbank estimates are transformed to magnitude spectrum
estimates, â′, using an exponential operation and interpolation

â′(t) = interp(exp(â(t))) (5)

The interp function uses cubic spline interpolation to convert
the D-channel mel-filterbank estimate into a K-dimensional
spectral estimate and takes into account the mel-spacing of the
filterbank channels [50]. The magnitude spectrum binary mask,
m̂(t, k), is then calculated for each time-frequency unit, as

m̂(t, k) =

{
1 â′1(t, k) ≥ λâ′2(t, k)
0 â′1(t, k) <λâ′2(t, k)

(6)

where 1 ≤ t ≤ T and 1 ≤ k ≤ K, with â′1(t, k) and â′2(t, k)
being magnitude spectrum estimates for each time-frequency
unit. λ allows a bias to be introduced in terms of retaining or
removing time-frequency units and allows the proportion of
correctly classified target-dominated regions (HITs) and false
alarms (FAs) to be adjusted – see Section III-A3.

2) Extraction of target speaker: From the single channel
mixed audio, 20ms Hann windowed frames are extracted at
10ms intervals and the magnitude and phase spectra computed,
|Y (t, k)| and ∠Y (t, k). The binary masked magnitude spectrum
estimate of the target speaker, |X̂1(t, k)|, is then calculated

|X̂1(t, k)| = m̂(t, k)|Y (t, k)| 1 ≤ t ≤ T, 1 ≤ k ≤ K
(7)

The sequence of magnitude spectral frames of the masked
target speech is transformed into a continuous time-domain
speech signal by combining each magnitude spectrum estimate
with the phase of the original mixed speech signal, ∠Y (t, k),
and applying an inverse Fourier transform. The resulting short-
duration frames are then overlapped and added to create the
estimate of the target speaker’s speech.

3) Analysis of mask estimation: An analysis of the
visually-derived binary masking is now made and considers the
effect of the threshold, λ. Performance of mask estimation is
measured using the HIT-FA rate as this has been shown to be
perceptually more useful than measuring classification accuracy
and correlates closely with intelligibility [16], [51]. The HIT
rate is the percentage of correctly classified target-dominated
regions, while the FA (false alarm) rate is the percentage of
wrongly classified interference-dominated regions. As the target
and interfering speakers have been pre-mixed, the ideal, binary
mask is known and forms the reference mask for evaluation.
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As detailed in Section V, speech mixtures for evaluation
are created from combinations of four speakers (two male and
two female) which gives a total of 12 combinations, which are
mixed at an SNR of 0dB. The HIT-FA rate is computed and
then averaged across all speaker combinations and measured for
λ from 0.1 to 10 which corresponds to thresholds of -20dB to
+20dB. Figure 2 shows the HIT-FA rates for each threshold and,
for comparison, shows performance using filterbank features
estimated using the DNN and GMM systems described in
Section II-B. As a first observation, HIT-FA using the DNN
is consistently higher across all values of λ compared to the
GMM, which supports the MSE analysis in Section II-B2. In
terms of λ, a stable region with HIT-FA rates above 60% is
achieved with 0.5 ≤ λ ≤ 1.5 with highest performance of 61%
with λ = 1.0 which indicates that no bias is necessary with
the 0dB SNR mixing.

Further analysis was made into mask estimation with
male-male (MM), female-female (FF) and mixed-gender (MG)
speech mixtures. Table II shows HIT, FA and HIT-FA rates
for these combinations using DNN and GMM estimation.
For all gender combinations the DNN again outperforms
the GMM. Using the DNN, HIT-FA rates for all gender
combinations exceed 60% with female-female slightly lower
(2%) resulting from slightly higher FAs and lower HITs. This
indicates that using visual speech information avoids gender
biases as performance is largely consistent across all gender
combinations. As a final test, we investigated an alternative
approach that uses a DNN to estimate the mask directly from
the visual features extracted from the two speakers (v1 and
v2). These results are shown in the final column of Table
II (DNN Mask) and were obtained using the same DNN
architecture described in Section II-B1 as this was found to
give best performance. HIT-FA using this direct estimation
is lower than when using the visual vectors to first estimate
filterbanks vectors for each speaker and then create the mask.

The ability of the visual features from the two speakers
to create an effective audio mask relies on the DNNs being
able to model the correlation between mouth shape and the
audio spectral envelope. When training the DNNs no scaling
was applied to the audio signals, and given that the average
power of the training data for the four speakers is very similar,
this effectively represents a 0dB mixing SNR case. In testing
situations where the input audio power does not match that of
the average power of the training data, then the log filterbank
estimates can be considered as being offset by a constant
term which reflects the mismatch. After transformation to
the magnitude spectral domain through (5), this mismatch
corresponds to a multiplicative gain term. When the audio
from both speakers is scaled by the same amount (such as
from a new level of amplification or by both speakers being at
a new distance from the microphone) these gain terms cancel
and the mask remains the same. This is a common scenario in
practical situations where both speakers are likely to be close
together and speaking with similar average speech powers,
resulting in an SNR close to 0dB.

However, in situations where the average power of the
audio from the two speakers is significantly different (such as
from one speaker having a much louder voice or being closer
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Fig. 2. Binary masking HIT-FA rates for DNN and GMM filterbank estimation
for varying values of λ.

TABLE II
HIT, FA AND HIT-FA FOR BINARY MASK ESTIMATION FROM DNN AND
GMM-BASED FILTERBANK ESTIMATES AND DIRECT ESTIMATION OF THE

MASK (DNN MASK) FOR MALE-MALE (MM), FEMALE-FEMALE (FF) AND
MIXED-GENDER (MG) SPEECH MIXTURES.

DNN GMM DNN Mask
MM HIT 81.12 79.45 68.06

FA 18.88 20.55 14.23
HIT-FA 62.25 58.90 53.83

FF HIT 80.37 78.62 63.36
FA 19.63 21.38 13.30
HIT-FA 60.74 57.24 50.06

MG HIT 81.33 79.44 68.32
FA 18.67 20.56 14.18
HIT-FA 62.65 58.89 54.14

to the microphone), then the two gain terms will not cancel,
as visual information alone cannot provide the absolute power
of the audio. This corresponds to situations where the SNR
takes on positive or negative values, depending on whether the
target speaker has a larger or smaller average power than the
interfering speaker. The impact of this can be determined from
the binary masking equation (6) and the analysis made in Figure
2. These scenarios where SNRs deviate significantly from 0dB
are less likely in a practical scenario, as both speakers will
tend to have similar average powers, but experimental results
are presented in Section V that consider both 0dB and non-0dB
SNR situations.

B. Visually-derived ratio masks

Ratio masks have been proposed as a less aggressive
form of binary mask that allow a fraction of the mixture
to be retained in proportion to the local SNR [5], [6], [8].
The main challenge in formulating a ratio mask is knowledge
of the target and interfering speakers to calculate the SNR.
The implementation in this work again proposes to exploit
audio-visual correlation such that audio estimates of the target
and interfering speakers are obtained from the visual speech
features as shown in Section II-B. Once the ratio mask has been
produced a series of perceptual transforms are then considered
to improve further the resulting target speech.

1) Estimation of visually-derived ratio masks: A ratio
mask, RM(t, k), to extract target speech is defined as

RM(t, k) =
|X1(t, k)|2

|X1(t, k)|2 + |X2(t, k)|2
=

SNR(t, k)

SNR(t, k) + 1
(8)

where |X1(t, k)|2 and |X2(t, k)|2 are the energy at time frame
t and frequency bin k for the target and interfering speakers
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respectively and SNR(t, k) is the local SNR. Audio-visual
correlation can be exploited to provide spectral envelope
information from the target and interfering speakers to enable
a visually-derived ratio mask to be calculated. Specifically, a
spectral domain ratio mask is obtained by transforming the
filterbank estimates of the target and interfering speakers, â1

and â2, to spectral estimates, â′1 and â′2, as shown in (5). The
ratio mask to extract the target speaker is calculated as

RM(t, k) =
â′21 (t, k)

â′21 (t, k) + â′22 (t, k)
. (9)

2) Perceptual gain transformation: The filterbank-
domain ratio mask of (9) is effective at speaker separation, but
can be improved by modifying its frequency response through
a perceptually-motivated transformation. Such a transformation
aims to reduce distortion of the target speaker and improve
suppression of the interfering speaker. This is implemented as a
perceptual gain transform, Π, to give a perceptually-motivated
gain, H(k), (where the time frame variable, t, has been removed
for ease of notation)

H(k) = Π
(
RM(k)

)
. (10)

A range of perceptual gain transformations has been considered
and these include piecewise and parametric functions. Four
of the more effective transforms are described in (11) to (14),
which define H1 to H4, and are plotted in Figure 3.

H1(k) = RM(k) (11)

H2(k) =

{
RM(k) RM(k) > ρ
0 RM(k) ≤ ρ (12)

H3(k) =
(
RM(k)

)γ
(13)

H4(k) = norm
[
log
(
RM(k)

)]
(14)

Gain function H1 provides a baseline and is equal to the
original ratio mask, RM . The second function, H2, restricts
the gain so that if it falls below a threshold, ρ, then it is
set to zero. This removes time-frequency regions where the
SNR falls below a threshold and has similar properties to the
suppression part of binary masking. Four cut-off values of
ρ = {0.2, 0.4, 0.6, 0.8} are tested and give increasings levels
of suppression. Gain function H3 raises the gain to the power
γ which adjusts non-linearly the RM gain and is similar to
the scaling method applied to the Ideal Ratio Mask (IRM)
proposed in [21]. Values of γ greater than one compress the
resulting gain, while γ less than one expand the gain. The
fourth gain function, H4, takes the logarithm of the gain which
also introduces the gain compression. The norm function is
used to rescale the log gain to be in the range 0 to 1.

3) Extraction of target speaker: As described in Section
III-A2, the magnitude, |Y (t, k)|, and phase, ∠Y (t, k), spectra
are computed from the audio mixture. The magnitude spectrum
estimate of the target speaker, |X̂1(t, k)|, is then calculated as

|X̂1(t, k)| = H{1,2,3,4}(t, k)|Y (t, k)| (15)
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Fig. 3. Gain mapping functions showing transformation from ratio mask,
RM , to perceptual gain functions H1 to H4, as defined in Eqs. (11) to (14).

where H{1,2,3,4}(t, k) is one of the four perceptual gain
functions. As before, the magnitude spectrum estimates are
combined with the phase of the mixed speech, ∠Y (t, k), an
inverse Fourier transform taken followed by overlapping and
adding to produce the estimate of the target speech.

IV. AUDIO-VISUAL SPEAKER SEPARATION

The approach taken for audio-visual mask estimation
begins by considering existing audio-only mask estimation
methods in terms of their effectiveness and suitability for
combination with visual speech information and included [4],
[5], [21]. An initial experiment was conducted to compare a
minimum mean square error (MMSE) ratio mask estimation
method, based on the mixture-maximisation assumption [5],
with a DNN approach that estimates a ratio mask from the
input mixture [21]. The input to the MMSE method is a log
spectral feature, extracted from the mixture of speakers, and
the output is an estimate of the log spectral feature of the
target speaker - further details are given in Section IV-A. The
DNN method follows broadly the approach in [21], with some
differences primarily to make a fair comparison between the
two approaches. Specifically, a DNN is trained to map a stack
of five input log spectral features (the same as those used in
the MMSE method) to a ratio mask. The mask is then applied
to the noisy mixture to estimate the target speaker spectral
features, following the procedure used in (7).

The experimental set-up and evaluation metrics used to
compare the two methods are the same as used for the main
experiments described in Section V, with the tests conducted
at an SNR of 0dB. Table III shows SDR, SIR, SAR, PESQ
and STOI for the two methods and for no compensation (NC).
For the majority of metrics the MMSE method outperforms
the DNN approach, resulting in less distortion and interference,
and slightly better speech quality. The exception is SAR, which
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TABLE III
COMPARISON OF MMSE [5] AND DNN [21] METHODS OF AUDIO-ONLY

SPEAKER SEPARATION.

Method SDR SIR SAR PESQ STOI
NC 0.41 0.41 279.08 1.89 0.75
MMSE 5.80 9.15 9.21 2.11 0.80
DNN 4.93 6.87 9.43 2.09 0.80

indicates that slightly more artefacts are produced by the MMSE
method. Based on these results, the MMSE method was chosen
to be the basis for audio-visual speaker separation. A brief
description of this method is now given before consideration
as to how visual information can be included.

A. Audio-only mask estimation

In the time-domain, speech from a target speaker and
interfering speaker are assumed to be additive to create the
time-domain mixture. From time-domain signals, short-time log
spectral vectors are extracted, where x1(k) and x2(k) represent
the kth log spectral amplitudes extracted from speakers 1 and 2
respectively, and y(k) is extracted from the mixture of the two
speakers. To simplify notation, we have omitted the time frame
variable, t, while in practice the method is applied to each
time frame. The ratio mask method makes an element-wise
mixture-maximisation approximation of the log spectral vectors
from the speakers in the mixture [52], as

y(k) = max
(
x1(k), x2(k)

)
+ e(k), 1 ≤ k ≤ K (16)

where e(k) is the approximation error which can be modelled
as zero mean Gaussian white noise with variance σ2

e(k).
The log spectral vectors for each speaker in the mixture

are modelled using Gaussian mixture models (GMMs) which
model the feature space of each speaker as a set of subsources.
Specifically, it is assumed that speaker 1 is modelled using a
set of I Gaussian subsources, S1 = {s1 = i|i = 1, 2, . . . , I}
and speaker 2 is modelled as a set of J subsources, S2 =
{s2 = j|j = 1, 2, . . . , J}, as

px1|s1 (x1|s1 = i) =

K∏
k=1

N
(
x1(k), µi1(k), σ2i

1 (k)
)

(17)

px2|s2 (x2|s2 = j) =

K∏
k=1

N
(
x2(k), µj2(k), σ2j

2 (k)
)

(18)

where µi1(k), µj2(k), σ2i
1 (k) and σ2j

2 (k) are the means and
variances of speakers 1 and 2 for subsources i and j.
Each subsource from the target speaker has prior probability,
ps1(s1 = i|i = 1, 2, . . . , I), and for the interfering speaker,
ps2(s2 = j|j = 1, 2, . . . , J). Training of the GMMs to estimate
the prior probabilities, means and variances used the Linde-
Buzo-Gray (LBG) algorithm for initialisation followed by
expectation-maximisation (EM) which was terminated either
when no change occurred or after 25 iterations [53]. Initial
experiments using a validation test set found best performance
with I = J = 256 subsources to model the target and
interfering speakers. In practice a GMM is trained in isolation
for each speaker in the mixture and we apply no normalisation
to the data.

A minimum mean square error (MMSE) estimate of each
element of the target speaker’s log spectral vector, x̂1(k), can
be made from the conditional expectation given y, as

x̂1(k) = E (x1(k)|y)

=

∫
x1(k)

x1(k)p(x1(k)|y)dx1(k), 1 ≤ k ≤ K (19)

The conditional probability, p(x1(k)|y), can be written as

p(x1(k)|y) =
∑
i,j

p(x1(k)|y, s1 = i, s2 = j)p(s1 = i, s2 = j|y)

(20)
which gives the estimate of x1(k) as

x̂1(k) =
∑
i,j

∫
x1(k)

x1(k)p(x1(k)|y, s1 = i, s2 = j)dx1(k)

× p(s1 = i, s2 = j|y).

(21)

This comprises two factors and can be viewed as a weighted
summation of the conditional estimate of x1(k) by the posterior
probability, p(s1 = i, s2 = j|y), of the two subsources i and
j given y. In practice, summing across all I × J combinations
of subsources is computationally expensive and instead, as
suggested in [5], the MMSE estimate is made from just the
most probable pair of subsources, i∗ and j∗, that maximize
the posterior probability, i.e. {i∗, j∗} = arg maxi,j p(s1 =
i, s2 = j|y). Following the derivation in [5], the subsources
are computed as,

{i∗, j∗} = arg min
i,j

1

2

∑
k

[(y(k)−max
(
µi1(k), µj2(k)

))2
σ2
max(k)

+ log σ2
max(k)

]
− log p(s1 = i)− log p(s2 = j).

(22)

where σ2
max(k) is the variance of the subsource (i or j) with

the larger mean. This simplification can now be applied to
(21), where the estimate of the target is reduced to,

x̂1(k) =

{
Ay(k) +Bµi

∗

1 (k) if µi
∗

1 (k) ≥ µj
∗

2 (k)

µi
∗

1 (k) if µi
∗

1 (k) < µj
∗

2 (k)
(23)

with

A =
σ2i∗

1 (k)

σ2i∗
1 (k) + σ2

e(k)
and B =

σ2
e(k)

σ2i∗
1 (k) + σ2

e(k)
. (24)

where σ2i∗

1 (k) is the variance of the i∗th subsource from
speaker 1 and σ2

e(k) is the variance of the approximation
error defined in (16). This shows that the estimate of the target
speaker is computed in two ways depending on whether the
mean component of the target speaker from the i∗th subsource,
µi

∗

1 (k), is greater or less than the mean of the interfering
speaker from the j∗th subsource, µj

∗

2 (k). In binary masking,
the estimate is set to either the mixed signal, y(k), or to zero.
With this ratio mask approach, when the target speaker mean
exceeds the interfering speaker mean, the estimate is now a
Wiener filter-like estimate that considers both the mixed signal,
y(k), and target speaker mean, µi

∗

1 (k). Conversely, when the
target speaker mean is less than the interfering speaker mean,
the output is set to the target speaker mean. This is considered
to be a better estimate than that in binary masking which
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assumes that in this situation the target speaker is completely
masked and sets the output to zero. Finally, the time-domain
signal is computed by taking an inverse Fourier transform of
the target spectral estimate combined with the phase of the
speech mixture.

B. Audio-visual mask estimation

The audio-only ratio mask method is now extended to
include visual speech information with the aim of improving
the mask. Beginning with (23), visual information is included
in two ways: 1) when the target mean component is less
than the interfering speaker component (i.e. µi

∗

1 (k) < µj
∗

2 (k)),
and 2) when the target mean component is greater than the
interfering speaker component (i.e. µi

∗

1 (k) ≥ µj
∗

2 (k)). This
leads to a modified version of (23) that incorporates visual
speech information as,

x̂1(k) =

{
(1− β)

(
Ay(k) +Bµi

∗
1 (k)

)
+ βxV1 (k) if µi

∗
1 (k) ≥ µj

∗

2 (k)

(1− α)µi
∗
1 (k) + αxV1 (k) if µi

∗
1 (k) < µj

∗

2 (k)
(25)

Considering first the situation where the target mean is
less than interfering mean, i.e. the lower part of (25) where
µi

∗

1 (k) < µj
∗

2 (k). The estimate, x̂1(k), is now refined to
become a combination of the target mean, µi

∗

1 (k), and a
weighted estimate of the target speaker’s audio, xV1 (k), that
is derived from the corresponding visual speech feature, v1,
extracted from the target speaker’s mouth. The weighting
term, α, allows the contribution made by the visually-derived
component, xV1 (k), in the estimation of x̂1(k), to be adjusted.

Two methods are considered to provide the audio estimate,
xV1 (k). The first method uses directly the log of the magnitude
spectral estimate made from the visual feature in (4) and (5), i.e.
xV1 = log(â′1). The second method uses the spectral estimate
made from the visually-derived ratio mask method in (15) as
the visually-derived estimate

xV1 (k) = log|X̂1(t, k)| 1 ≤ k ≤ K (26)

Considering now the situation where the target mean is
greater than interfering mean, i.e. the upper part of (25) where
µi

∗

1 (k) ≥ µj
∗

2 (k). The audio-only method in (23) estimates the
target, x̂1(k), from a Wiener-like weighting of the target mean,
µi

∗

1 (k), and the input mixture, y(k). This is also be refined to
include visually-derived information, xV1 (k), by introducing a
second weighting term, β, to adjust the contribution made from
visual information. Again, the visually-derived term, xV1 (k),
can be taken directly from the audio vector or from the output
of the ratio mask.

V. EXPERIMENTAL RESULTS

Experiments first investigate visual-only methods of
binary masking and ratio masking. Audio-visual methods are
then investigated and compared against the best performing
visual-only and audio-only methods. All experiments are
performed using speech taken from the GRID corpus which
comprises audio-visual speech recordings taken from 30
speakers, with each providing 1000 sentences [54], and sampled

at 25 video frames per second. Speech from two male speakers
(S2 and S6) and two female speakers (S4 and S7) are used
for the experiments. Of the 1000 utterances spoken by each
speaker, 800 are used for training and the remaining 200 for
testing. Speech mixtures are created using data from pairs
of speakers which gives 12 different combinations of target
and interfering speaker (i.e. 8 male/female combinations, 2
male/male combinations and 2 female/female combinations)
which contain 2400 test utterances.

The test scenario assumes that the two speakers are talking
simultaneously and located close together. Video is captured
from each speaker with a separate camera. The mixed audio is
created by taking speech from the target speaker and mixing it
with speech from the interfering speaker that has been scaled to
create the desired SNR. For each pair of speakers, utterances are
mixed randomly to avoid any bias in the results. To measure
the effectiveness of speaker separation in terms of quality,
four measures are used, namely the source-to-distortion ratio
(SDR), source-to-interference ratio (SIR), source-to-artefacts
ratio (SAR) and the ITU standard objective measure of quality,
namely PESQ [55], [56]. The SDR measures the amount
of distortion present in the estimate of the target speech
that arises from the interfering speaker, noise and artefacts
introduced during separation. The SIR indicates how much of
the interfering speaker remains in the target speech, while the
SAR measures the level of artefacts present in the target speech.
The intelligibility of the target speech is also considered and
this is measured using the short-time objective intelligibility
measure (STOI) which has been shown to correlate closely
with subjective intelligibility measures [57].

A. Visual-only masking
The first set of experiments examines the effectiveness

of the visual-only binary mask and ratio-mask/perceptual gain
function methods of speaker separation. Binary masking (BM)
is implemented as in (6). Ratio masks combined with perceptual
gain functions H1 to H4, as in (11) to (12), are investigated
and referred to as methods RM1–RM4. For H2 and H3 the
effect of ρ and γ is investigated.

Tables IV to VIII show SDR, SIR, SAR, PESQ and STOI
for the various masking methods and for no compensation
(NC) at SNRs from -10dB to 10dB, with results from the 12
speaker combinations averaged to give a single score. The
results show that binary masking (BM) is mainly inferior to
ratio masking (RM1), a result that has also been reported in
audio-only methods of masking for speaker separation [21].
Applying a perceptual gain transform (i.e. moving from RM1
to RM2, RM3, RM4) generally improves performance although
this varies according to SNR and performance measure, with
no single transform consistently being best. RM2, in effect,
combines the ratio mask and binary mask by setting the output
to zero if the gain is below the threshold ρ, with RM1 equivalent
to ρ = 0. As ρ is increased, more mask values are set to zero
and hence more regions of the output signal are removed. This
reduces the SDR, SAR, PESQ and STOI as increasing amounts
of the target signal become lost. Conversely, SIR improves as
ρ increases, as more time-frequency regions become removed
which removes associated interferences that improves the SIR.
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TABLE IV
SDRS OF VISUAL-ONLY METHODS OF SPEAKER SEPARATION.

Method -10dB -5dB 0dB 5dB 10dB
NC -8.41 -4.27 0.41 5.30 10.26
BM 0.21 2.63 5.31 8.38 11.81
RM1 -0.03 3.27 6.44 9.34 11.94
RM2, ρ = 0.2 0.02 3.23 6.32 9.16 11.70
RM2, ρ = 0.4 0.15 3.18 6.07 8.72 11.13
RM2, ρ = 0.6 0.38 3.09 5.63 7.97 10.12
RM2, ρ = 0.8 0.59 2.86 4.85 6.62 8.33
RM3, γ = 0.5 -1.60 2.11 5.87 9.47 12.80
RM3, γ = 2.0 0.89 3.71 6.27 8.55 10.59
RM3, γ = 3.0 1.16 3.70 5.94 7.91 9.71
RM4 -0.82 2.60 6.01 9.26 12.25

TABLE V
SIRS OF VISUAL-ONLY METHODS OF SPEAKER SEPARATION.

Method -10dB -5dB 0dB 5dB 10dB
NC -8.41 -4.27 0.41 5.30 10.26
BM 9.28 10.26 11.44 13.34 16.06
RM1 4.26 7.52 10.94 14.44 17.92
RM2, ρ = 0.2 5.24 8.25 11.46 14.78 18.12
RM2, ρ = 0.4 6.48 9.31 12.29 15.34 18.43
RM2, ρ = 0.6 8.09 10.62 13.34 16.07 18.78
RM2, ρ = 0.8 10.14 12.47 14.72 16.87 18.99
RM3, γ = 0.5 0.80 4.47 8.35 12.33 16.34
RM3, γ = 2.0 7.41 10.28 13.23 16.17 19.05
RM3, γ = 3.0 8.95 11.62 14.30 16.91 19.42
RM4 3.49 6.60 9.99 13.55 17.18

Considering now RM3, which raises the ratio mask gain
to the power γ. RM1 is equivalent to RM3 with γ = 1, with
γ = 0.5 boosting gain while γ > 1 suppresses gain. Examining
SDRs, as SNRs increase, highest performance occurs with
reducing γ, which is equivalent to reducing gain at low SNRs
and increasing gain at higher SNRs. When gain is suppressed
(γ > 1) this reduces the contribution of the interfering speaker
and so improves SIRs. Higher SAR, PESQ and STOI occur
when gain is boosted (γ = 0.5) which consequently retains
more of the target speaker. Interestingly, a scaling of 0.5 was
also reported to give best performance when applied to an IRM
proposed in [21]. RM4 also boosts gains and has a similar
performance trend across performance metrics to RM3 (ρ =
0.5), although has lower overall quality and intelligibility.

These results have shown that using solely visual speech
information to create masks, it is possible to improve the quality
and intelligibility of the output speech over the situation with
no compensation (NC). The exception is SAR, which is highest
with NC as any processing introduces attributes into the signal,
although of the masking methods RM3 (ρ = 0.5) gives best
SAR. It may be possible to further improve performance by
combining perceptual gain functions although this has not been
tested formally. In terms of identifying a best performing visual
masking method, highest intelligibility (STOI) and quality
(as measured using PESQ) is attained consistently with RM3
(γ = 0.5). For the other measures, no single approach is best
across all SNRs, although ratio masking is clearly better than
binary masking.

B. Audio-visual masking

The next experiments consider audio-visual speaker
separation. The first experiments examine the effect of adjusting

TABLE VI
SARS OF VISUAL-ONLY METHODS OF SPEAKER SEPARATION.

Method -10dB -5dB 0dB 5dB 10dB
NC 276.66 277.62 279.08 281.78 284.87
BM 1.68 4.15 7.10 10.53 14.36
RM1 3.76 6.33 8.94 11.36 13.51
RM2, ρ = 0.2 3.11 5.79 8.47 10.94 13.12
RM2, ρ = 0.4 2.59 5.18 7.74 10.13 12.28
RM2, ρ = 0.6 2.20 4.56 6.82 8.96 10.94
RM2, ρ = 0.8 1.85 3.81 5.59 7.23 8.86
RM3, γ = 0.5 5.08 7.55 10.41 13.27 15.87
RM3, γ = 2.0 3.09 5.45 7.65 9.64 11.44
RM3, γ = 3.0 2.83 4.99 6.94 8.70 10.34
RM4 3.21 6.00 8.96 11.80 14.37

TABLE VII
PESQ OF VISUAL-ONLY METHODS OF SPEAKER SEPARATION.

Method -10dB -5dB 0dB 5dB 10dB
NC 1.20 1.52 1.89 2.18 2.54
BM 1.10 1.41 1.76 2.12 2.46
RM1 1.71 1.95 2.19 2.45 2.68
RM2, ρ = 0.2 1.47 1.72 1.98 2.24 2.49
RM2, ρ = 0.4 1.33 1.59 1.84 2.10 2.35
RM2, ρ = 0.6 1.22 1.45 1.70 1.95 2.20
RM2, ρ = 0.8 1.08 1.28 1.50 1.72 1.95
RM3, γ = 0.5 1.76 2.04 2.32 2.61 2.88
RM3, γ = 2.0 1.50 1.72 1.96 2.19 2.42
RM3, γ = 3.0 1.37 1.60 1.83 2.05 2.28
RM4 1.69 1.93 2.16 2.40 2.63

the relative contribution of the audio and visual components
in deriving the ratio mask, by varying α and β in (25). Next,
a comparison is made between audio-only, visual-only and
audio-visual methods of speaker separation which considers
the effect of different gender combinations in the mixture.

1) Effect of α: The effect of changing the contribution
of visual information when the target speaker mean is less
than the interfering speaker mean (i.e. µi

∗

1 (k) < µj
∗

2 (k)) in
(25) is now examined in the ratio mask by varying α. For
these tests, β is set to zero so no visual information is used
when the target speaker mean is greater than the interfering
speaker mean (i.e. µi

∗

1 (k) ≥ µj
∗

2 (k)). In addition, the tests also
compare taking the visual estimate, xV1 (k) in (25), directly
from the visual vector (i.e. (5)) or from the ratio mask estimate
(RM1), i.e. (26). Note, although Section V-A has shown that
superior performance over the ratio mask can be achieved
with a perceptual gain function for some situations (e.g. RM3,
γ = 0.5), we use RM1 to make analysis more straightforward.

TABLE VIII
STOI OF VISUAL-ONLY METHODS OF SPEAKER SEPARATION.

Method -10dB -5dB 0dB 5dB 10dB
NC 0.56 0.65 0.75 0.83 0.89
BM 0.58 0.65 0.73 0.82 0.88
RM1 0.70 0.75 0.80 0.85 0.88
RM2, ρ = 0.2 0.67 0.73 0.78 0.83 0.87
RM2, ρ = 0.4 0.64 0.70 0.76 0.81 0.85
RM2, ρ = 0.6 0.61 0.66 0.72 0.77 0.82
RM2, ρ = 0.8 0.58 0.62 0.67 0.71 0.76
RM3, γ = 0.5 0.72 0.78 0.83 0.88 0.92
RM3, γ = 2.0 0.65 0.70 0.75 0.80 0.84
RM3, γ = 3.0 0.62 0.67 0.72 0.77 0.81
RM4 0.68 0.74 0.80 0.85 0.89
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Fig. 4. Effect of α for direct visual (DV) and ratio mask (RM) estimates, for
a) SDR, SIR, SAR (left axis) and PESQ (right axis), and b) STOI.

That said, in further analysis in Section V-B3, we compare
RM1 with RM3. Figure 4a shows SDR, SIR, SAR and PESQ
scores and Figure 4b shows STOI scores, both computed for
0 ≤ α ≤ 1 with xV1 (k) estimated directly from the visual
vector (DV) and from the ratio mask (RM) at an SNR of 0dB.

Setting α = 0 is equivalent to the audio-only ratio
mask method in (23). Increasing α beyond zero increases
the contribution of the visual information up to α = 1 where
the contribution is solely from the visual estimate. As a first
observation, using the ratio mask (RM) estimate in (25) gives
higher performance than the direct visual (DV) estimate due
to it providing a better estimate of the audio feature. Secondly,
as the contribution made by the visual component increases,
performance improves although when weighting too much
towards visual the performance reduces as the information in
the visual features is not sufficient to maintain performance. The
proportion, α, of visual information for peak performance varies
across the different measures and is in the range 0.4 ≤ α ≤ 0.9.
For further tests a value of α = 0.5 is used together with the
ratio mask for providing xV1 (k) in (25).

2) Effect of β: The effect of varying the contribution of
visual information is now examined when the target speaker
mean is greater than the interfering speaker mean (i.e. µi

∗

1 (k) ≥
µj

∗

2 (k)) where increasing β in (25) increases the proportion of
visual information. The tests again compare the the effect of
estimating xV1 from either the direct visual estimate or the ratio
mask estimate. Figure 5a shows SDR, SIR, SAR and PESQ
scores and Figure 5b shows STOI scores, both computed for
0 ≤ β ≤ 1, with α = 0.5.
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Fig. 5. Effect of β for direct visual (DV) and ratio mask (RM) estimates, for
a) SDR, SIR, SAR (left axis) and PESQ (right axis), and b) STOI.

The results show that using the ratio mask to provide
xV1 is again better than estimation directly from the visual
vector and secondly that best performance occurs when using
a smaller proportion of visual information than when the target
speaker mean is less than the interfering speaker mean (Figure
4). When the target mean is greater than the interfering mean
it is likely that the audio component in the mixture is closer
to the target speech than when the target mean is less than
the interfering mean. Therefore, adjusting this potentially more
accurate audio component by the less accurate DV-based visual
estimate tends to degrade the resulting estimate in comparison
to using the more accurate estimate from the ratio mask. In
the situation where the target mean is less than the interfering
mean (Figure 4), the audio component in the mixture is likely
to be a poorer estimate of the target speech, so adjusting this
by the less accurate DV-based visual estimate has a smaller
impact. Highest SDR, SAR, PESQ and STOI scores occur with
0.3 ≤ β ≤ 0.5 which is a lower range of values than found
when optimising for α. This equates to using less contribution
from the visual information when µi

∗

1 (k) ≥ µj
∗

2 (k) and more
contribution when µi

∗

1 (k) < µj
∗

2 (k). This is again attributed
to the audio component in the mixture being closer to the
target speaker when the target speaker mean is greater than
the interfering speaker mean, and hence less contribution is
required from the visual information. Conversely, when the
target speaker mean is less than the interfering speaker mean,
the visual information is more useful, hence the observation
of α > β for best performance. We also performed a similar
analysis using RM3 (γ = 0.5). This showed a similar trend in
performance with again the observation of α > β and values
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TABLE IX
SDRS OF AUDIO AND VISUAL METHODS OF SPEAKER SEPARATION.

Method -10dB -5dB 0dB 5dB 10dB
NC -8.41 -4.27 0.41 5.30 10.26
AUDIO 0.94 3.42 5.80 8.68 11.78
RM1 -0.03 3.27 6.44 9.34 11.94
RM3 -1.60 2.11 5.87 9.47 12.80
AVα RM1 1.29 3.94 6.24 9.28 12.74
AVα RM3 0.85 3.60 6.14 8.87 11.94
AVβ RM1 2.71 4.88 7.27 10.14 13.44
AVβ RM3 1.85 4.37 7.01 9.75 12.50

TABLE X
SIRS OF AUDIO AND VISUAL METHODS OF SPEAKER SEPARATION.

Method -10dB -5dB 0dB 5dB 10dB
NC -8.41 -4.27 0.41 5.30 10.26
AUDIO 5.41 7.33 9.15 11.60 14.57
RM1 4.26 7.52 10.94 14.44 17.92
RM3 0.80 4.47 8.35 12.33 16.34
AVα RM1 6.00 8.12 9.76 11.65 14.52
AVα RM3 4.47 6.93 9.12 11.52 14.52
AVβ RM1 7.74 9.76 11.71 14.76 17.92
AVβ RM3 5.38 7.82 10.47 13.39 16.71

of α = 0.5 and β = 0.4 giving best performance.
3) Comparison of methods: A comparison of the audio-

only, visual-only and audio-visual mask estimation methods
is now made across a range of SNRs from -10dB to 10dB.
As a baseline the original audio-only ratio masking method
(AUDIO) is used, as was overviewed in Section IV-A. For
visual-only methods the ratio mask methods of RM1 and RM3
(γ = 0.5) are used. Two audio-visual methods are considered.
Method AVα is based on (25) and uses visual information
only when the target speaker mean is less than the interfering
speaker mean. Method AVβ extends AVα and uses visual
information when the target speaker mean is also greater than
the interfering speaker mean. The two audio-visual methods are
combined with RM1 and RM3 to give four systems, AVα RM1,
AVα RM3, AVβ RM1 and AVβ RM3.

Tables IX to XIII show SDR, SIR, SAR, PESQ and STOI
scores for the seven systems and for no compensation (NC).
Comparing audio-only and visual-only methods (RM1 and
RM3) shows the best performing method to vary with SNR and
metric. Audio-only mask estimation gives higher SDR at low
SNRs but is outperformed by visual-only masks at higher SNRs.
Visual-only mask estimation using RM1 outperforms RM3 at
all SNRs for SIRs but the converse is true for SAR, PESQ and
STOI. For these measures RM3 generally outperforms audio-
only mask estimation. Comparing visual masks to the audio-
visual masks reveals AVα to give higher scores across almost
all combinations of SNR and performance measures as a result
of combining audio and visual information for mask estimation
when the target mean is less than the interfering mean. By
utilising visual information in all mask estimates, AVβ further
improves performance and attains highest performance at all
SNRs and for all five performance measures, with specific
performance dependent on whether the RM1 or RM3 is used.

As a further test, the effect of the gender of the two
speakers in the mixture is examined for the audio-only, visual-
only (RM1) and audio-visual (AVβ RM1) methods. Using the

TABLE XI
SARS OF AUDIO AND VISUAL METHODS OF SPEAKER SEPARATION.

Method -10dB -5dB 0dB 5dB 10dB
NC 276.66 277.62 279.08 281.78 284.87
AUDIO 4.22 6.61 9.21 12.30 15.50
RM1 3.76 6.33 8.94 11.36 13.51
RM3 5.08 7.55 10.41 13.27 15.87
AVα RM1 4.34 6.85 9.45 13.55 17.98
AVα RM3 4.89 7.30 9.87 12.79 15.92
AVβ RM1 5.32 7.46 9.85 13.90 18.01
AVβ RM3 5.64 7.86 10.51 12.94 15.51

TABLE XII
PESQ OF AUDIO AND VISUAL METHODS OF SPEAKER SEPARATION.

Method -10dB -5dB 0dB 5dB 10dB
NC 1.20 1.52 1.89 2.18 2.54
AUDIO 1.80 1.98 2.11 2.37 2.59
RM1 1.71 1.95 2.19 2.45 2.68
RM3 1.76 2.04 2.32 2.61 2.88
AVα RM1 1.82 2.04 2.26 2.45 2.70
AVα RM3 1.88 2.07 2.30 2.44 2.65
AVβ RM1 2.06 2.26 2.45 2.69 2.91
AVβ RM3 2.07 2.25 2.45 2.67 2.89

two male and two female speakers, separate SDR, SIR, SAR,
PESQ and STOI scores are measured for male-male (MM),
female-female (FF) and mixed gender (MG) combinations at
an SNR of 0dB with results and error bars shown in Figure
6. In terms of SDR, a large difference is observed between
male-male mixtures compared to female-female and mixed
gender mixtures when using audio-only masking. For visual-
only masking, male-male separation is much improved, and
performance across all three gender combinations is much
closer which suggests visual masking is less sensitive to
gender than audio masking. With audio-visual separation, the
improvement of male-male separation with visual-only masking
is maintained while female-female and mixed gender separation
improve further. SIR and SAR measurements show similar
trends to that for SDR, although differences between gender
combinations are less. Considering PESQ and STOI, with
audio-only separation lower performance is observed for same
gender combinations than for mixed gender. With visual-only
separation, STOI and PESQ scores are improved across same
gender mixtures, and for audio-visual separation the highest
performance for all gender combinations is attained.

VI. CONCLUSION

The aim of this work has been to investigate whether
visual speech information can be used to aid mask estimation

TABLE XIII
STOI OF AUDIO AND VISUAL METHODS OF SPEAKER SEPARATION.

Method -10dB -5dB 0dB 5dB 10dB
NC 0.56 0.65 0.75 0.83 0.89
AUDIO 0.74 0.78 0.80 0.86 0.90
RM1 0.70 0.75 0.80 0.85 0.88
RM3 0.72 0.78 0.83 0.88 0.92
AVα RM1 0.75 0.78 0.81 0.87 0.91
AVα RM3 0.76 0.79 0.83 0.87 0.90
AVβ RM1 0.78 0.80 0.83 0.88 0.92
AVβ RM3 0.78 0.81 0.85 0.88 0.92
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Fig. 6. Male-male (MM), female-female (FF) and mixed-gender (MG) speaker
separation using audio-only, visual-only and audio-visual methods showing a)
SDR, b) SIR, c) SAR, d) PESQ and e) STOI, with standard error bars shown.

for audio speaker separation. Estimation of audio features
from visual features, that will subsequently be used within
mask estimation, was found to be more accurate when moving
from GMMs to DNNs. It may be that more sophisticated
neural network architectures will achieve more accurate audio
features, and subsequently better masks, but this is beyond the
scope of this paper. The subsequent binary masks and ratio
masks, computed solely from visual features, were found to
be able to extract target speech from a mixture of speakers.
The models used to map from visual to audio features were
trained with speech data that had similar average powers which
results in masks that can be considered as assuming a mixture
SNR of 0dB. This works well for situations where the two
speakers are equidistant from the microphone and have similar
loudnesses. However, when the audio power from the two
speaker differs, the absolute powers, which the visual features
are unable to represent, reduces the accuracy of the mask. In
such circumstances, supplementary information regarding the
SNR could be used to scale the audio amplitudes estimated
from the visual features, and could employ methods such as an
audio-visual voice activity detector to estimate the SNR [31].
Compared to audio-only ratio masks, the resulting target speech
from visually-derived masks was found to be of generally
slightly lower quality and intelligibility. Audio-visual masking
was then proposed to combine the audio and visual masks into
an audio-visual mask. Evaluation found this to give highest
performance across all methods tested and across all SNRs.
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