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Abstract 15 

The tendency of predators to preferentially attack phenotypically odd prey in groups (the oddity 16 

effect) is a clear example of how predator cognition can impact behaviour and morphology in prey. 17 

Through targeting phenotypically odd prey, predators are thought to avoid the cognitive constraints 18 

that delay and limit the success of attacks on homogenous prey groups (the confusion effect). In 19 

addition to influencing which prey a predator will attack, the confusion and oddity effects would also 20 

predict that attacks on odd prey can occur more rapidly than attacking the majority prey type, as 21 

odd prey are more easily targeted, but this prediction has yet to be tested. Here, we used kerri tetra 22 

fish, Inpaichthys kerri, presented with mixed phenotypic groups of Daphnia dyed red or black to 23 

investigate whether odd prey in groups are preferentially attacked, and whether these attacks were 24 

faster than those on the majority prey type. In agreement with previous work, odd prey were 25 

targeted and attacked more often than expected from their frequency in the prey groups, regardless 26 

of whether the odd prey was red in a group of black prey, or vice versa. However, no difference was 27 

found in the time taken to attack odd versus majority prey items, contrary to our predictions. Our 28 

results suggest that the time taken to make an attack is determined by a wider range of factors or is 29 

subject to greater variance than the choice of which prey is selectively targeted in a group. 30 
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1. Introduction 34 

Predation is believed to be a major driver of group formation in prey species across a wide range of 35 

taxa (Ioannou, 2017). The tendency to aggregate into social groupings has been observed after both 36 

short (Hoare, Couzin, Godin, & Krause, 2004) and long term (Herbert-Read et al., 2017) exposure to 37 

an increased level of predation risk. Correspondingly, individuals in groups often experience higher 38 

survival rates compared to solitary individuals (Cresswell, 1994; Neill & Cullen, 1974; Santos et al., 39 

2016; Treherne & Foster, 1982). A number of mechanisms act to reduce this per capita risk of 40 

predation, including risk dilution (Foster & Treherne, 1981; Turner & Pitcher, 1986), the group 41 

vigilance effect (Elgar, 1989; Treherne & Foster, 1981), the avoidance effect (Ioannou, Bartumeus, 42 

Krause, & Ruxton, 2011) and predator mobbing (Andersson & Wiklund, 1978).  43 

Another widespread mechanism for reducing predation risk in prey groups is the confusion 44 

effect, whereby the greater number of targets present in a prey group causes difficulty in the 45 

predator’s targeting and capture of a single individual (Ioannou, Tosh, Neville, & Krause, 2008; 46 

Krakauer, 1995). This is believed to be due to the sensory overload caused by many (often moving) 47 

targets within the visual field, an explanation that has been supported with neural network models 48 

(Krakauer, 1995; Tosh, Jackson, & Ruxton, 2006). The confusion effect has been documented in a 49 

wide range of taxa, including fish, bird, cephalopod and human predators (Cresswell, 1994; Landeau 50 

& Terborgh, 1986; Neill & Cullen, 1974; Schradin, 2000; Theodorakis, 1989; Tosh et al., 2006).  51 

 Although the formation of groups frequently reduces predation risk in prey, there are 52 

numerous mechanisms by which predators have adapted to minimise the effects of, or even to take 53 

advantage of, social behaviour in prey. Aggregation can, in some circumstances, increase risk for 54 

prey species hunted by predators with the ability to consume multiple prey in a single encounter 55 

(Turner & Pitcher, 1986), such as filter feeders (Rieucau, Fernö, Ioannou, & Handegard, 2015; Rode 56 

et al., 2013), or those that set traps for collectively foraging prey (Bauer, Federle, Seidel, Grafe, & 57 

Ioannou, 2015). In order to alleviate the confusion effect, predators can reduce vigilance for their 58 

own predators, allowing increased attention for prey capture but increasing their own risk of 59 



predation (Milinski, 1984), target the edges of prey groups where prey may be less dense (Duffield & 60 

Ioannou, 2017), or selectively target phenotypically odd individuals within the prey group, which 61 

stand out from the ‘background’ of other, homogenous group members. This ‘oddity effect’ has 62 

been demonstrated among predatory fish targeting grouped prey of mixed colours (Landeau & 63 

Terborgh, 1986; Ohguchi, 1978), body size (Rodgers, Downing, & Morrell, 2015; Theodorakis, 1989) 64 

and species (Almany, Peacock, Syms, McCormick, & Jones, 2007). The strategy of initially focusing on 65 

conspicuously odd individuals in dense prey aggregations can be predicted from the optimal foraging 66 

theory (Emlen, 1966; MacArthur & Pianka, 1966; Schoener, 1971), acting to maximise intake of 67 

energy per unit time while minimising the time required to obtain energy, which may be slowed by 68 

sensory confusion (Almany et al., 2007; Milinski & Heller, 1978). As a result, this frequency-69 

dependent selection against rare phenotypes within groups is often used to explain non-random 70 

assortment in groups based on such phenotypic traits (Allan & Pitcher, 1986; Hoare, Krause, 71 

Peuhkuri, & Godin, 2000; McRobert & Bradner, 1998). Landeau & Terborgh (1986) demonstrated an 72 

increased attack rate and higher rate of capture when odd individuals were present in groups of 73 

silvery minnows (Hybognathus nuchalis) predated by largemouth bass (Micropterus salmoides) 74 

compared to homogeneous prey groups. Additionally, investigations on group predation have found 75 

shorter capture times for individual prey items than for grouped prey for both leopard geckos 76 

(Eublepharis macularius) and common marmosets (Callithrix jacchus) (Schradin, 2000), as well as an 77 

increased capture/contact ratio for cephalopod and fish predators (Neill & Cullen, 1974). 78 

Through focusing attacks on phenotypically odd individuals to minimise the confusion effect, 79 

the time required to target and successfully attack a prey item should be reduced, maximising 80 

predation efficiency (Landeau & Terborgh, 1986). Here, a system of artificially coloured Daphnia 81 

(Ohguchi, 1978) preyed upon by the predatory fish kerri tetra, Inpaichthys kerri, was used to test 82 

whether minority (odd) prey are selectively targeted by predators, as documented in previous 83 

experiments, and also the time taken to do so. Therefore, we tested whether the targeting of odd 84 



prey can occur faster compared to attacks on majority prey phenotypes within the group, following 85 

the expected effects of confusion and oddity.  86 

 87 

2. Methods 88 

2.1. Predatory fish 89 

In this study, an experimental predator-prey system was used, consisting of a kerri tetra predating 90 

upon mixed phenotypic groupings of Daphnia magna. Kerri tetra are native to South America 91 

(Aripuanã River and upper Madeira River basin, Mato Grosso State, Brazil) and are often kept in 92 

aquaria. Tetra maintain an omnivorous diet, consisting of detritus plant material as well as live foods 93 

including small crustaceans including Artemia and Daphnia spp. Thirty-five mixed-sex kerri tetra 94 

‘Super Blue’ were sourced from an aquarium wholesaler and were housed in 35L aquaria (31 x 31 x 95 

37cm) in groups of approximately nine individuals. A natural light cycle was present in the room with 96 

additional illumination of tanks from above by a 60-watt bulb. Water temperature was at 24⁰C and 97 

ad libitum feeding of Aqua One Brand tropical fish flakes and Daphnia magna was undertaken prior 98 

to the study period. During the predation trial period, fish were not fed for 17 hours prior to their 99 

trial. 100 

 101 

2.2. Daphnia prey 102 

Live Daphnia magna were obtained from Notcutts Garden Centres Ltd., Norwich, and housed in a 103 

large indoor container (47 x 61 x 61cm, ~175L) to establish a source population. Daphnia were fed 104 

on a mixture of live Spirulina sp., yeast (Fast Action Dried; The Pantry, Aldi) and crushed fish flakes 105 

(Aqua One Brand). Daphnia were kept under the optimum conditions as described by Jonczyk and 106 

Gilron (2005), of ~20⁰C and a cycle of 16 hours light to 8 hours dark.  107 

To manipulate prey appearance, live Daphnia were dyed red or black using food colouring. 108 

Individuals were pipetted into 10ml beakers; each contained 2ml of tank water and 0.25ml of dye for 109 

a period of 30 minutes. The dyes (Sainsbury’s Brand) ingredients consisted of: Red (Water, Colours: 110 



Anthocyanins, Paprika Extract; Emulsifier: Polysorbate 80; Acidity Regulator: Citric Acid; 111 

Antioxidants: Alphatocopherol, Ascorbyl Palmitate; Palm Oil, Preservative: Potassium Sorbate) and 112 

Black (Propylene Glycol, Water, Colour: Vegetable Carbon; Emulsifier: Acacia Gum; Preservative: 113 

Potassium Sorbate; Acidity Regulator: Citric Acid).  114 

 115 

2.3. Preference Tests 116 

All prey targeting experiments were carried out in tanks of the same dimensions as those housing 117 

the fish (i.e. 31 x 31 x 37cm, ~35L). The trial tank was positioned adjacent (without a gap) to another 118 

tank housing approximately nine kerri tetras from the population, to reduce acclimatisation time 119 

and stress caused to individuals due to the shoaling behaviour demonstrated in this family (Marcos 120 

Mirande, 2009). A single fish was introduced to the trial tank from the stock population, and after an 121 

acclimatisation period of 10 minutes the Daphnia group was poured in gently at the surface of the 122 

water. The time taken to make the first attack from the introduction of the prey was recorded from 123 

observations ~40cm from the tank, along with the colour of the prey attacked. 124 

Preliminary testing was carried out to determine any preference in the predators for either 125 

colour of prey item. Ten kerri tetras were randomly selected from the population and individually 126 

presented with ten Daphnia, in an equal ratio of black and red (5:5). A second preliminary 127 

preference test was also carried out, with five Daphnia of a single colour presented in each trial for a 128 

random sample of 20 predators (n=10 per prey colour).  129 

 130 

2.4. Oddity Trials 131 

Trials testing for the oddity effect used the same protocol as detailed in 2.3, above, with ten Daphnia 132 

poured at the surface. Each predator (n=35) was subjected to the following treatments in a random 133 

order to reduce order effects over a series of weeks, with a minimum of 48 hours between an 134 

individual’s trials: Red oddity (Red 1 : 9 Black), black oddity (Black 1 : 9 Red) and in equal ratio (Red 5 135 

: 5 Black). 136 



The time taken from the prey being introduced to the first predation event (i.e. a prey was 137 

consumed) was again recorded, along with the colour of the attacked prey. If a second attack was 138 

made within three minutes of the first attack, the time taken (from the first attack) and the colour of 139 

the second attacked prey was also recorded. Trials were stopped after 3 minutes if there had been 140 

no attacks to ensure prey aggregation. Any fish from trials resulting in no predation were moved into 141 

a separate stock tank and the trial was repeated 24 hours later. Variation in extraneous variables 142 

was kept to a minimum by carrying out trials during the same hours each day (10am - 3pm) and 143 

keeping noise to a minimum. Filters were turned off in the trial tank during trials to avoid distraction 144 

and maintain the aggregation of Daphnia prey groups. Any remaining Daphnia were removed from 145 

the tank following the trial. All procedures were approved by the University of East Anglia Animal 146 

and Ethical Review Board, and were performed in accordance with national UK guidelines for the 147 

care and use of laboratory animals. The data supporting the findings of this study are available as 148 

Supplementary Information data. 149 

 150 

2.5. Statistical Analysis 151 

As the identities of individual fish could not be recorded between trials across treatments, each prey 152 

treatment was analysed separately to avoid pseudoreplication within the analysis, as each fish was 153 

used only once per prey treatment. Whether the fish showed a preference for a particular prey type 154 

(red prey in the equal ratio treatment or odd prey in the odd : majority prey treatments) was tested 155 

using binomial tests. The proportion of that prey type in the Daphnia group was used as the 156 

expected probability, assuming targeting by the predators was random. Due to the right skew in the 157 

distribution of the times taken to attack the prey, negative binomial General Linear Models (GLM) 158 

were used with a log link function to analyse the effect of prey type on the time taken to attack prey. 159 

The dispersion parameter was inspected to ensure it was approximately equal to 1 (0.5 to 2). All 160 

statistical tests were carried out in R version 3.3.3 (R Development Core Team, 2011). 161 



In cases where there was no statistically significant effect of the targeted prey’s colour on 162 

the time taken to make an attack, we carried out a randomisation-based power analysis to 163 

determine approximately how many trials would be required to achieve a statistically significant 164 

effect of target prey colour on the time taken. The observed data was resampled with replacement 165 

N times, and the negative binomial GLMs as described above were repeated on this randomly 166 

sampled data. N is the simulated sample size, and we tested sample sizes from 40 to 1,000 trials in 167 

increments of 10 trials. At each value of N, 1,000 iterations were carried out and the P value 168 

associated with the effect of prey colour (from the negative binomial GLMs) at the 80% quantile was 169 

saved for each value of N. This 80% corresponds to a value of beta of 0.8, where beta is the test 170 

power to avoid incorrectly accepting the null hypothesis. Reported is the sample size (N) where the P 171 

value at the 80% quantile is statistically significant at P < 0.05; in other words, the sample size that is 172 

expected to be required to detect a statistically significant difference in 80% of repeats of the 173 

experiment. 174 

 175 

3. Results 176 

3.1. Prey colour preference  177 

In the first preliminary test with homogenous groups of 5 prey items, no evidence to support faster 178 

targeting based purely on colour alone was found. There was no significant difference in the time 179 

from introduction to first attack between the two colours (mean±SD, Black: 13.17±7.02s and Red: 180 

10.02±6.55s, negative binomial GLM: deviance = 1.059, P = 0.30). In the second preliminary test with 181 

a ratio of 5 red to 5 black Daphnia per trial, there was no evidence of selective predation based on 182 

colour. Each prey type was targeted and attacked in the first attack in exactly the same ratio that 183 

would be expected from random predation, with each colour being targeted in 50% of trials. There 184 

was also no significant difference in the time taken from prey introduction to attack between the 185 

prey colour conditions (mean±SD, Black: 8.92±5.29s and Red: 5.78±1.91s, Welch Two Sample t-test: 186 

t=1.2503, df=5.0234, p=0.2663). 187 



In the main trials, the treatment with an equal ratio of red to black prey (5:5) showed that 188 

the proportion of red prey targeted in the first attack (15/35 trials) did not vary significantly from 189 

random targeting (Figure 1A, binomial test: P = 0.50). In the 30 trials of this treatment where a 190 

second attack also took place, there was a tendency for the red prey to be attacked (20 trials), 191 

although this effect was not significantly different to that expected from chance alone (Figure 1B, 192 

binomial test: P = 0.099; the expected probability of attacking red prey was calculated from the 193 

proportions of red to black prey remaining after the first attack in these trials), providing further 194 

evidence in support of no selective predation based on colour alone. 195 

 196 

3.2. Selection for prey oddity 197 

Of first attacks in the 35 trials, 11 trials resulted in the odd prey being targeted when the odd prey 198 

was red (1 red : 9 black), and the same number of trials resulted in the odd prey being targeted 199 

when the odd prey was black (1 black : 9 red). This proportion (31%) was significantly greater than 200 

that expected from random targeting (binomial test: P = 0.00042), given the proportion of odd to 201 

majority prey (10%). There was thus evidence of an oddity effect in both treatments, seemingly 202 

unaffected by whether the odd prey item was red or black.  203 

 The oddity effect was also evident in the second attack made, excluding trials where the first 204 

attack resulted in the odd prey being consumed as there was no odd prey present in the second 205 

attack, thus changing the expected ratio from random predation (1 odd : 8 majority prey). In 8 out of 206 

24 trials the targeted prey was odd when it was red (binomial test: P = 0.0033), and 8 out of 22 trials 207 

the targeted prey was odd when it was black (binomial test: P = 0.0018). Overall, in each of the 208 

oddity treatments, 19 of the 35 trials resulted in an odd prey being consumed during either the first 209 

or second predation event, regardless of whether the odd prey was red or black (Figure 1).  210 

 211 

3.3. Time taken to attack prey 212 



No correlation was found between the time for the first and second attack within any treatment 213 

(Figure 2, Spearman’s rank correlation: equal ratio treatment: rs = 0.29, P = 0.12; red odd treatment: 214 

rs = -0.095, P = 0.59; black odd treatment: rs = 0.12, P = 0.51). This indicates that the two latencies 215 

were likely driven by different factors; the first and second attacks of each treatment were therefore 216 

analysed separately. For the first attack by each fish, attacks on odd prey were not more or less rapid 217 

than attacks on majority prey (negative binomial GLM: red odd treatment: deviance = 0.20, P = 0.65; 218 

black odd treatment: deviance = 1.11, P = 0.29). The power analysis revealed sample sizes of >1,000 219 

and 230 trials for red odd and black odd treatments, respectively, would be required to reliably 220 

detect a statistically significant effect. Similarly, there was no difference in the time taken to make 221 

the second attack depending on whether the second attacked prey was odd or in the majority (red 222 

odd treatment: deviance = 0.00092, P = 0.98; black odd treatment: deviance = 0.0034, P = 0.95). 223 

Sample sizes of >1,000 were estimated to be required to detect statistically significant effects in both 224 

tests.  225 

The time taken to make the second attack was also analysed as a function of whether the 226 

prey group still contained an odd prey (in trials where a majority prey was attacked first) or was 227 

homogeneous with only the majority prey type remaining (in trials where an odd prey was attacked 228 

first). In the red odd treatment, there was no indication that the presence of an odd prey in the 229 

second attack affected the time taken to make the attack (negative binomial GLM: deviance = 0.026, 230 

P = 0.87). However, the presence of a black odd prey made the time taken to attack the second prey 231 

significantly faster than if the prey group was homogenously red (deviance = 4.81, P = 0.028). This 232 

finding supports that of Landeau & Terborgh (1986) who also demonstrated that attacks on groups 233 

containing phenotypically odd prey were faster than those on homogeneous groups. 234 

 In the treatment with an equal ratio of red to black prey (5:5), there was no difference in the 235 

time taken to attack each prey type (Figure 3, negative binomial GLM: first attack: deviance = 0.13, P 236 

= 0.72, second attack: deviance = 2.00, P = 0.16), further supporting the finding that there was no 237 

preference for a certain prey colour. The power analysis determined >1,000 and 150 trials would be 238 



required to detect a statistically significant effect of prey colour for first and second attacks, 239 

respectively.  240 

 241 

4. Discussion 242 

In agreement with previous studies, mostly in fish (Almany et al., 2007; Landeau & Terborgh, 1986; 243 

Ohguchi, 1978; Rodgers et al., 2015; Theodorakis, 1989), we demonstrate a strong oddity effect in 244 

the kerri tetra predating artificially coloured Daphnia prey. There was no apparent preference for 245 

red or black coloured prey, but when the oddly coloured phenotype in a group was dominated by 246 

the other colour, both red and black coloured prey were attacked in a significantly greater 247 

proportion than expected from their frequency in the group. This frequency-dependent predation 248 

selects against rare phenotypes in prey groups, and provides a mechanism for prey groups to assort 249 

and be homogenous (Allan & Pitcher, 1986; Hoare et al., 2000; McRobert & Bradner, 1998).  250 

 The most widely accepted explanation for the oddity effect is that predators find it less 251 

cognitively demanding to attack prey that are visually different than others present in the group, 252 

where multiple prey in the visual field cause the confusion effect (Ioannou et al., 2008). Based on 253 

this cognitive explanation, we predicted that in addition to a preference for attacking phenotypically 254 

odd individuals, attacks on these prey should take less time because these prey are more quickly 255 

targeted, and should be easier to attack once a target prey is selected (compared to a non-odd, 256 

majority prey item). However, we found no evidence that attacks on odd prey were faster than 257 

those on majority prey items when attacks were made on groups with an odd individual. Attacks 258 

were faster, however, when the second attack was made on a group with the odd black prey 259 

remaining compared to a homogenous group of red prey, in which the odd prey had already been 260 

consumed (as previously demonstrated by Landeau & Terborgh, 1986). However, this was not 261 

consistently demonstrated, with no evidence presented when comparing groups containing odd red 262 

prey and homogenously black groups in the second attack.   263 



The time taken to complete cognitively demanding tasks is a widespread method used to 264 

measure the difficulty of a task in both cognitive psychology (Hockley, 1984; Wenger & Townsend, 265 

2000) and animal behaviour (Abbott & Sherratt, 2013; Passino & Seeley, 2006). It is thus surprising 266 

to find that a preference for odd prey exists but no evidence of any effect of the targeted prey type 267 

on the time taken in this study. Previous work, also using Daphnia as prey, has shown a reduced rate 268 

of attacks on larger groups (Ioannou et al., 2008; Milinski, 1977), suggesting that the confusion effect 269 

does indeed slow the speed at which attacks are made (although see Duffield & Ioannou, 2017, using 270 

virtual prey). Previous work using bluegill sunfish (Lepomis macrochirus) attacking a virtual prey 271 

population (Ioannou, Guttal, & Couzin, 2012) has shown a similar trend, where differences in the 272 

time taken to make an attack could not explain the predators’ avoidance of polarised prey groups. 273 

Similarly, despite evolving the prey behaviours to create a population with fewer of the prey types 274 

preferentially selected in the initial population, there was no change in the time taken for the 275 

predators to attack prey.  276 

There are a number of possible explanations for why the time taken to make an attack may 277 

not reflect prey phenotypes presented or selected for attack. One explanation is that the time taken 278 

to identify prey and make attacks tend to be highly variable (e.g. Figure 3), suggesting that inter-279 

individual response varies greatly between trials, even when the prey group composition is the same 280 

within each treatment. Similar results were found in Neill & Cullen’s (1974) study investigating 281 

cephalopod and fish hunting behaviour, noting that there was a great deal of variation in the time 282 

for predators to make initial contact with prey. This could be due to consistent behavioural 283 

differences between individual fish, i.e. animal ‘personality’. Consistent variation in boldness (the 284 

response to perceived risk: Réale, Reader, Sol, McDougall, & Dingemanse, 2007) has been shown to 285 

correlate with the latency to approach and consume food (Ioannou & Dall, 2016).  Mamuneas et al. 286 

(2014) showed bolder (typically male) three-spined sticklebacks (Gasterosteus aculeatus) to have 287 

faster information acquisition and decision making ability (determined from maze navigation to a 288 

food reward) than shyer conspecifics, but demonstrated no difference in decision-making accuracy.   289 



Inter-individual variation can also be driven by shorter-term differences in hunger 290 

(McDonald, Rands, Hill, Elder, & Ioannou, 2016). Although such differences in motivation can often 291 

result in inter-trial variation that swamps any other measured effect such as the prey phenotype 292 

targeted (e.g. odd or majority). Our study showed no relationship between the time taken to attack 293 

the first prey from when the prey were introduced and the time taken to attack the second prey 294 

after the first prey was consumed (shown in Figure 2). This suggests that factors other than 295 

motivation drove the time taken to attack the first and second prey within the trials. The delay from 296 

the introduction of prey to the first attack may be primarily affected by the time needed to detect, 297 

recognise and decide to attack the prey, while the second attack should be predominantly 298 

influenced by the decision to attack another prey, given the level of perceived risk by the predator 299 

(Lima & Dill, 1990). 300 

It is also possible that the prey group size was not large enough to create the required 301 

confusion to generate a difference between odd and majority prey in the time taken to make the 302 

attack (although the task did affect prey choice). The predation of Daphnia by aquatic predators has 303 

been prevalent in the literature on confusion and oddity (e.g. Landeau & Terborgh, 1986; Milinski, 304 

1977; Rodgers et al., 2015). Previous studies utilising a similar methodology have determined an 305 

increasing level of confusion with increasing group numbers. Landeau and Terborgh (1986) 306 

demonstrated an increased level of difficulty in prey capture in any group larger than one individual. 307 

The greatest level of difficulty was demonstrated in the larger groups of 8 and 15 individuals, with 308 

only 17% and 11% of the trials resulting in capture, respectively, and an increased number of attacks 309 

per kill. While tests into size oddity by Rodgers et al. (2015) utilised 12 individuals per group. 310 

Therefore, with reflective groups sizes present within our study (n=10 per trial), it can be assumed 311 

that the confusion effect was present.  312 

Interestingly our results and those from other studies suggests that the time taken to make 313 

an attack may be more variable and hence less predictable than the choice of which prey to target. 314 

To the best of our knowledge, this issue has not been explicitly investigated in previous studies on 315 



predator-prey interactions. It may suggest however that selection pressure from predator behaviour 316 

is asymmetric, with strong selection on prey phenotypes from predators’ choice of which prey to 317 

attack, but relatively weak selection on predators being able to make faster attacks when attacking 318 

particular prey types. If this is the case, it brings into question why predators show such 319 

preferences for these odd individuals. It may be that a reduction in the time taken to initiate 320 

attacks is considered less important by predators than other factors, such as vigilance for their 321 

own predators, which may apply a stronger selective pressure (e.g. Milinski, 1984). 322 

 323 

 324 
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 454 

  455 



Figure legends 456 

 457 

Figure 1: The frequency (total counts) of attacking each prey type (red or black) in the three different 458 

treatments (equal ratio, red odd prey and black odd prey) for the first (a) and second (b) attack in 459 

each trial. First attack: All treatments (n = 35 trials), Second attack: Equal ratio (n = 30 trials), red 460 

oddity (n = 24 trials) and black oddity (n = 22 trials). Trials are omitted from the second attack plot 461 

(and corresponding analysis) if the first attack was on the odd prey, as only majority prey type 462 

remained. Expected frequencies of attacking each prey colour, based on the frequency of each 463 

colour within the trials, is indicated by the horizontal dashed lines.  464 

 465 

Figure 2: The correlation between the times (seconds) taken to attack the first and second prey in 466 

each trial. The data are arranged by treatment: equal ratio (a), red odd prey (b) and black odd prey 467 

(c). First attack: All treatments (n = 35 trials), Second attack: Equal ratio (n = 30 trials), red oddity (n = 468 

24 trials) and black oddity (n = 22 trials). 469 

 470 

Figure 3: The time (seconds) taken to make the first (a) and second (b) attack in each treatment. 471 

Attacks are split within each treatment depending on prey type. First attack: All treatments (n = 35 472 

trials), Second attack: Equal ratio (n = 30 trials), red oddity (n = 34 trials) and black oddity (n = 33 473 

trials). Medians are illustrated by thick horizontal lines (black or white), the interquartile range (IQR) 474 

is enclosed within the boxes and the whiskers represent cases within 1.5 × IQR. The empty circles 475 

represent data points outside of the whiskers.  476 


